-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
151 lines (138 loc) · 6.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from vectorizer import fun
from sklearn import tree
from sklearn.metrics import accuracy_score
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
import matplotlib.pyplot as plt
import numpy
def classifiers(ngramVal):
ret=[]
emails_train,labels_train,emails_test,labels_test=fun(ngramVal)
#Decision Tree Classifier
classifier=tree.DecisionTreeClassifier().fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
#Multi-Layer Peceptron Classifier
classifier=MLPClassifier(random_state=1,max_iter=400).fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
#Random Forest Classifier
classifier=RandomForestClassifier(n_estimators=10,max_depth=1000).fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
#KNN Classifier
classifier=KNeighborsClassifier(n_neighbors=5,metric='euclidean').fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
#SVM Classifier
classifier=svm.SVC(kernel='linear', C=1,decision_function_shape='ovo').fit(emails_train, labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
classifier=svm.SVC(kernel='rbf', gamma=1, C=1,decision_function_shape='ovo').fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
classifier=svm.SVC(kernel='poly', degree=3, C=1,decision_function_shape='ovo').fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
classifier=svm.SVC(kernel='sigmoid', C=1,decision_function_shape='ovo').fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
return ret
def plotAccuracyDiffModels():
print("Hello World")
xLabel=['Decision Tree','MLP','Random Forest','KNN','SVM-Linear','SVM-Radial Basis Kernel','SVM-Polynomial','SVM-Sigmoid']
fig,ax=plt.subplots()
for i in range(1,4):
yLabel=classifiers(ngramVal=i)
ax.plot(xLabel,yLabel,marker="o")
with open("CombinedResult.csv",'a') as csvfile:
numpy.savetxt(csvfile,yLabel,delimiter=",")
ax.set_xlabel("Classifier")
ax.set_ylabel("Accuracy")
ax.legend(['ngram value 1','ngram value 2','ngram value 3'])
plt.xticks(rotation=45)
plt.title("Different Models v/s Accuracy")
plt.show()
def plotMLP():
xLabel=[]
for iterVal in range(1,1000,100):
xLabel.append(iterVal)
fig,ax=plt.subplots()
for ngramVal in range(1,4):
ret=[]
emails_train,labels_train,emails_test,labels_test=fun(ngramVal)
for i in range(1,1000,100):
classifier=MLPClassifier(random_state=1,max_iter=i).fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
with open("MLP.csv",'a') as csvfile:
numpy.savetxt(csvfile,ret,delimiter=",")
ax.plot(xLabel,ret,marker="o")
ax.set_xlabel("Epoch Value")
ax.set_ylabel("Accuracy")
ax.legend(['ngram value 1','ngram value 2','ngram value 3'])
plt.title("MaxIterations v/s Accuracy for MLP")
plt.show()
def plotRandomForestClassifier():
xLabel=[]
for iterVal in range(1,100):
xLabel.append(iterVal)
fig,ax=plt.subplots()
for ngramVal in range(1,4):
ret=[]
emails_train,labels_train,emails_test,labels_test=fun(ngramVal)
for i in range(1,100):
classifier=RandomForestClassifier(n_estimators=i,max_depth=1000).fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
with open("RFC.csv",'a') as csvfile:
numpy.savetxt(csvfile,ret,delimiter=",")
ax.plot(xLabel,ret,marker="o")
ax.set_xlabel("Number of Classifiers")
ax.set_ylabel("Accuracy")
ax.legend(['ngram value 1','ngram value 2','ngram value 3'])
plt.title("Number of Classifiers v/s Accuracy for Random Forest")
plt.show()
def plotKNN():
xLabel=[]
for iterVal in range(1,50):
xLabel.append(iterVal)
fig,ax=plt.subplots()
for ngramVal in range(1,4):
ret=[]
emails_train,labels_train,emails_test,labels_test=fun(ngramVal)
for i in range(1,50):
classifier=KNeighborsClassifier(n_neighbors=i,metric='euclidean').fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
with open("KNN.csv",'a') as csvfile:
numpy.savetxt(csvfile,ret,delimiter=",")
ax.plot(xLabel,ret,marker="o")
ax.set_xlabel("Number of Nearest Neighbors")
ax.set_ylabel("Accuracy")
ax.legend(['ngram value 1','ngram value 2','ngram value 3'])
plt.title("Number of Nearest Neighbors v/s Accuracy")
plt.show()
def plotDTC():
xLabel=[]
for iterVal in range(1,50):
xLabel.append(iterVal)
fig,ax=plt.subplots()
for ngramVal in range(1,4):
ret=[]
emails_train,labels_train,emails_test,labels_test=fun(ngramVal)
for i in range(1,50):
classifier=tree.DecisionTreeClassifier(max_depth=i).fit(emails_train,labels_train)
val=classifier.predict(emails_test)
ret.append(accuracy_score(val,labels_test))
with open("DTC.csv",'a') as csvfile:
numpy.savetxt(csvfile,ret,delimiter=",")
ax.plot(xLabel,ret,marker="o")
ax.set_xlabel("Maximum Depth")
ax.set_ylabel("Accuracy")
ax.legend(['ngram value 1','ngram value 2','ngram value 3'])
plt.title("Maximum Depth v/s Accuracy for Decision Tree Classifier")
plt.show()
plotMLP()