-
Notifications
You must be signed in to change notification settings - Fork 1
/
APBController.v
257 lines (249 loc) · 6.39 KB
/
APBController.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
module APBController (
input reg hclk,
input reg hresetn,
input reg hwrite_reg,
input reg hwrite_reg1,
input reg hwrite,
input reg valid,
input reg [31:0] haddr,
input reg [31:0] hwdata,
input reg [31:0] hwdata1,
input reg [31:0] hwdata2,
input reg [31:0] haddr1,
input reg [31:0] haddr2,
input reg [31:0] pr_data,
output reg penable,
output reg pwrite,
output reg hr_readyout,
output reg [2:0] psel,
output reg [31:0] paddr,
output reg [31:0] pwdata
);
// Define states using parameters
parameter ST_IDLE = 3'b000;
parameter ST_WWAIT = 3'b001;
parameter ST_READ = 3'b010;
parameter ST_RENABLE = 3'b011;
parameter ST_WRITE = 3'b100;
parameter ST_WRITEP = 3'b101;
parameter ST_WENABLE = 3'b110;
parameter ST_WENABLEP = 3'b111;
// Define present state and next state variables
reg [2:0] present;
reg [2:0] next;
// Present state logic
always @(posedge hclk or negedge hresetn) begin
if (~hresetn)
present <= ST_IDLE;
else
present <= next;
end
// Next state logic
always @(*) begin
case (present)
ST_IDLE:
begin
if (valid == 1 && hwrite == 1)
next = ST_WWAIT;
else if (valid == 1 && hwrite == 0)
next = ST_READ;
else
next = ST_IDLE;
end
ST_READ:
begin
next = ST_RENABLE;
end
ST_RENABLE:
begin
if (valid == 1 && hwrite == 1)
next = ST_WWAIT;
else if (valid == 1 && hwrite == 0)
next = ST_READ;
else
next = ST_IDLE;
end
ST_WRITE:
begin
if (valid == 1)
next = ST_WENABLEP;
else
next = ST_WENABLE;
end
ST_WRITEP:
begin
next = ST_WENABLEP;
end
ST_WWAIT:
begin
if (valid == 1)
next = ST_WRITEP;
else
next = ST_WRITE;
end
ST_WENABLE:
begin
if (valid == 1 && hwrite == 0)
next = ST_READ;
else if (valid == 1 && hwrite == 1)
next = ST_WWAIT;
else
next = ST_IDLE;
end
ST_WENABLEP:
begin
if (valid == 1 && hwrite_reg == 0)
next = ST_WRITEP;
else if (valid == 0 && hwrite_reg == 1)
next = ST_WRITEP;
else if (hwrite_reg == 0)
next = ST_WRITE;
end
endcase
end
// Temporary output logic
reg [2:0] psel_temp;
reg [31:0] paddr_temp;
reg [31:0] pwdata_temp;
reg penable_temp;
reg hr_readyout_temp;
reg hr_readyput_temp;
always @(*) begin
case (present)
ST_IDLE:
begin
if (valid == 1 && hwrite == 0) begin
paddr_temp = haddr;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyout_temp = 0;
end
else if (valid == 1 && hwrite == 1) begin
psel_temp = 3'b000;
penable_temp = 0;
hr_readyout_temp = 1;
end
else begin
psel_temp = 3'b000;
penable_temp = 0;
hr_readyout_temp = 1;
end
end
ST_READ:
begin
penable_temp = 1;
hr_readyout_temp = 1;
end
ST_RENABLE:
begin
if (valid == 1 && hwrite == 0) begin
paddr_temp = haddr;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyout_temp = 0;
end
else begin
psel_temp = 3'b000;
penable_temp = 0;
hr_readyout_temp = 1;
end
end
ST_WRITE:
begin
penable_temp = 1;
hr_readyout_temp = 1;
end
ST_WRITEP:
begin
penable_temp = 1;
hr_readyout_temp = 1;
end
ST_WWAIT:
begin
if (valid == 1) begin
paddr_temp = haddr1;
pwdata_temp = hwdata;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyput_temp = 0;
end
else begin
paddr_temp = haddr2;
pwdata_temp = hwdata2;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyput_temp = 0;
end
end
ST_WENABLE:
begin
if (valid == 1 && hwrite == 0) begin
paddr_temp = haddr;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyout_temp = 0;
end
else if (valid == 1 && hwrite == 1) begin
psel_temp = 3'b000;
penable_temp = 0;
hr_readyout_temp = 1;
end
else begin
psel_temp = 3'b000;
penable_temp = 0;
hr_readyout_temp = 1;
end
end
ST_WENABLEP:
begin
if (valid == 1 && hwrite_reg == 0) begin
paddr_temp = haddr;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyout_temp = 0;
end
else if (valid == 0 && hwrite_reg == 1) begin
paddr_temp = haddr1;
pwdata_temp = hwdata1;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyout_temp = 0;
end
else if (hwrite_reg == 0) begin
paddr_temp = haddr2;
pwdata_temp = hwdata2;
pwrite = hwrite;
psel_temp = hwrite_reg1;
penable_temp = 0;
hr_readyout_temp = 0;
end
end
endcase
end
// Actual output logic
always @(posedge hclk) begin
if (!hresetn) begin
paddr <= 0;
pwrite <= 0;
pwdata <= 0;
psel <= 0;
penable <= 0;
hr_readyout <= 1;
end
else begin
paddr <= paddr_temp;
pwdata <= pwdata_temp;
pwrite <= pwrite;
psel <= psel_temp;
penable <= penable_temp;
hr_readyout <= hr_readyout_temp;
end
end
endmodule