-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpresentation.qmd
814 lines (545 loc) · 21.7 KB
/
presentation.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
---
title: Environmental drivers of vector-borne and zoonotic diseases
subtitle: Leveraging remote sensing for Public Health
author: Verónica Andreo
title-slide-attributes:
data-background-color: "#1A428A"
format:
revealjs:
hash-type: number
slide-number: true
chalkboard:
buttons: true
preview-links: auto
logo: "https://ig.conae.unc.edu.ar/wp-content/uploads/sites/68/2022/04/G-UNC-CONAE-C.png"
theme: [default, assets/css/IG_style.scss]
---
## About me { background-color="#1A428A" }
<br>
:::: {.columns}
::: {.column width="60%"}
- Researcher and lecturer at Instituto Gulich
- Background: Dr. in Biology, MSc. in Spatial Information Applications
- Remote sensing and geospatial applications in disease ecology
- Member of the GRASS GIS Dev Team & project chair; OSGeo Charter member & FOSS4G enthusiast
:::
::: {.column width="40%"}
```{r}
#| echo: false
#| fig-height: 4
#| fig-width: 4
library(leaflet)
leaflet() %>%
addTiles() %>% # Add default OpenStreetMap map tiles
addMarkers(lng=-64.4653258, lat=-31.5204194, popup="IG")
```
:::
::::
{{< fa globe >}} <https://veroandreo.gitlab.io/>
## Overview { background-color="#1A428A" }
- Motivation
- Health Geography
- Disease Ecology
- Leveraging remote sensing for Disease Ecology
- Resolution vs scale
- How can we use RS?
- Examples
- Gaps, challenges and opportunities
- Conclusion
---
:::{.r-stack}
![](assets/img/lecture/sdg_poster.png){.fragment fragment-index=2 .fade-in-then-out width="90%"}
![](assets/img/lecture/sdg_3.png){.fragment .fade-in-then-out fragment-index=1 width="55%" fig-align="center"}
![](assets/img/lecture/sdg_3_target33.png){.fragment fragment-index=3 .fade-in width="100%" fig-align="center"}
:::
::: footer
<https://sdgs.un.org/goals/goal3>
:::
::: {.notes}
Vector-borne and zoonotic diseases are responsible for one-sixth of disease and disability worldwide. This is one of the reasons why good health and well being is among the 17 goals from UN for a sustainable development. More specifically, the target is to end epidemics of NTD among other communicable diseases.
:::
---
### Neglected Tropical Diseases (NTD)
<br>
::: {.columns}
::: {.column width="50%"}
![](https://www.rets.epsjv.fiocruz.br/sites/default/files/ntd_-_materia_-_ingles_0.png){fig-align="center"}
:::
::: {.column width="50%"}
![](assets/img/lecture/vbd_cycle.png){.fragment .fade-in width="80%" fig-align="center"}
:::
:::
![](assets/img/lecture/aedesaegypti_blood.png){.fragment .absolute bottom=40 right=380 width=150}
![](assets/img/lecture/sandfly.png){.fragment .absolute top=5 right=-30 width=170}
![](assets/img/lecture/tick.png){.fragment .absolute bottom=130 right=-30 width=120}
::: {.notes}
Now, which are these NTD and why is it that remote sensing might be relevant for their study? Well, as you can see most of them diseases are transmitted by animals, they need a vector to carry the pathogen from host to humans or among humans. Animals, specially hectothermic ones, are highly affected by the environmental conditions of a certain area... think of Aedes aegypti mosquitoes for example... and what information can be most easily extracted from RS? Yes, environmental
:::
---
::: {.center}
You all have seen this, right?
:::
::: {.columns}
::: {.column width="60%"}
![](assets/img/lecture/Snow-cholera-map.jpg)
:::
::: {.column width="7%"}
:::
::: {.column width="30%"}
<br><br>
![](assets/img/lecture/John_Snow.jpg)
:::
:::
::: {.notes}
Before we reach the core of remote sensing uses and applications there are a couple of things that happened first and some definitions I'd like to share... You all have seen this right? This is the first class of a GIS course, but also, the first time that the association between health/disease and place/space was clearly mapped.
:::
## Health Geography
<br>
::: {.columns}
::: {.column width="33%"}
::: {.color-box-light-blue .fragment fragment-index=1}
**Environmental health**: focuses on environmental hazards, environmental risk assessment, and the physical and psycho-social health impacts of environmental contamination.
:::
:::
::: {.column width="33%"}
::: {.color-box-light-blue .fragment fragment-index=3}
**Disease ecology**: study of infectious diseases (including NTDs) and the spatial distribution of environmental, social, political & economic conditions associated with disease.
:::
:::
::: {.column width="33%"}
::: {.color-box-light-blue .fragment fragment-index=2}
**Health care delivery and access**: spatial patterns of health care
provision and patient behavior.
:::
:::
:::
::: {.notes}
This was the beginning of what was the called health geography; the application of geographical information, perspectives, and methods to the study of health, disease, and health care. Within this discipline we might identify 3 fields of study: Environmental health, Health access and disease ecology
:::
## Health Geography
<br>
::: {.columns}
::: {.column width="33%"}
::: {.color-box-light-blue}
**Environmental health**: focuses on environmental hazards, environmental risk assessment, and the physical and psycho-social health impacts of environmental contamination.
:::
:::
::: {.column width="33%"}
::: {.color-box-light-magenta}
**Disease ecology**: study of infectious diseases (including NTDs) and the spatial distribution of environmental, social, political & economic conditions associated with disease.
:::
:::
::: {.column width="33%"}
::: {.color-box-light-blue}
**Health care delivery and access**: spatial patterns of health care
provision and patient behavior.
:::
:::
:::
::: {.notes}
While RS has applications in all fields, I'll focus on those related to disease ecology as it is where I have worked the most
:::
## Disease Ecology I
::: {.columns}
::: {.column width="57%"}
<br><br>
![](assets/img/lecture/global_view_diseases.png){width="700"}
:::
::: {.column width="43%"}
The main objective is to understand the influence of environmental factors and to predict when and where a disease is most likely to occur
::: {style="display: flex; align-items: center; justify-content: center;"}
{{< fa solid angles-down size=2x >}}
:::
decision making, planning of prevention, management or response actions, etc.
:::
:::
## Disease Ecology II
::: {.r-stack}
![](assets/img/lecture/disease_triad.jpg){.fragment width="150%" fig-align="center"}
![](assets/img/lecture/lambin_2010.png){.fragment width="85%" fig-align="center"}
::: {data-id="box" .fragment style="background: rgba(232, 31, 118, 0.2); border: 5px solid; border-color: #e81f76; width: 700px; height: 370px; transform: translate(0%, -26%);"}
:::
:::
::: footer
@lambin_pathogenic_2010
:::
::: {.notes}
This relationship with environment is usually represented by a triad, the
epidemiologic triad. For disease to occur (in humans) we need proper environmental
conditions, a pathogen and competent hosts and vectors.
These relationships might be a bit drawn in a more complex way, but the basis is
the same, i.e., environment encompasses climate, LULCC, habitat fragmentation,
human behaviour, and all the relationships among them. This is what we usually try
to observe with RS.
:::
## Use of RS in Health applications
![](assets/img/lecture/growth_papers_health_and_RS.png){width="90%"}
::: footer
@viana_remote_2017
:::
:::{.notes}
Indeed, the use of remote sensing for public health applications has been increasing
since 2007 according to this review, but I'd say it started even earlier. I particularly remember a set of publications from the 4 corners area when sin nombre virus appeared.
:::
## Most common RS variables used
:::: {.columns}
:::{.column width="70%"}
![](assets/img/lecture/most_used_RS_vars.png){fig-align="center"}
:::
::: {.column width="30%"}
<br>
:::{.color-box-light-blue}
- LST
- Precipitation
- NDVI
- LULC
- Elevation
- NDWI
:::
:::
::::
::: footer
@parselia_satellite_2019
:::
:::{.notes}
The most common variables used in general are: LST, Precipitation, NDVI,
Elevation... This is for mosquitoes, if we think about ticks or mice, for example,
I beat vegetation variables are more frequently used
:::
## Remote sensing basic features
![](assets/img/lecture/all_resolutions_relation.png){fig-align="center"}
::: footer
@dif_resolutions_2018
:::
::: {.notes}
However, we should take into account some basic features of remote sensing before selecting which data to use.
:::
## Remote sensing & scale I
<br>
![](assets/img/lecture/scale_vs_variables_spp_distr.png){fig-align="center"}
::: footer
@pearson_predicting_2003
:::
:::{.notes}
To decide which RS dataset most suits our problem we also need to think about the
scale on which variables operate. This shows for example the relationship of env var and distribution of species according to scale.
:::
## Remote sensing & scale II
::: {.panel-tabset}
## Taxonomy
![](assets/img/lecture/resolution_vs_animals.png){fig-align="center"}
## Plants
![](assets/img/lecture/resolution_vs_forest.png){fig-align="center"}
## Animals
![](assets/img/lecture/resolution_vs_movement_a.png){width="65%" fig-align="center"}
:::
::: footer
@leitao_improving_2019, @lechner_applications_2020, @rumiano_movement_2020
:::
:::{.notes}
Also if we study other biological or ecological phenomena we should consider scale and think which type of RS product would be the most appropriate.
:::
## How to apply RS in disease ecology?
<br>
::: {.r-stack}
![General approach used in (disease) ecology](assets/img/lecture/workflow_sdm_other.png)
::: {data-id="box1" .fragment style="background: rgba(232, 31, 118, 0.2); border: 5px solid; border-color: #e81f76; width: 300px; height: 140px; transform: translate(-115%, -77%);"}
:::
::: {data-id="box2" .fragment style="background: rgba(232, 31, 118, 0.2); border: 5px solid; border-color: #e81f76; width: 300px; height: 160px; transform: translate(-115%, 30%);"}
:::
::: {data-id="box3" .fragment style="background: rgba(232, 31, 118, 0.2); border: 5px solid; border-color: #e81f76; width: 330px; height: 300px; transform: translate(100%, -10%);"}
:::
:::
::: {.notes}
Going back to disease ecology then, what do we use RS for?
- To map the response variables, i.e., species occurrence or abundance, infections, disease cases
- To map the predictor variables
- To validate predictions
:::
## { background-image="assets/img/lecture/satellite_and_earth.jpg" }
::: { style="color: #ffffff; font-size: 1.5em;" }
Let's have a look at some real cases...
:::
---
### Detecting and mapping species occurrences
<br>
- Very high resolution (VHR) imagery
- Hyperspectral data (esp. for plant species)
- Direct and indirect counting (CV, ML, DL)
::: {.columns}
::: {.column width="53%"}
![(a) Emperor penguins. (b) Elephants ](assets/img/lecture/map_spp_from_vhr_img.png)
:::
::: {.column width="47%"}
![Great gerbil burrows classification](assets/img/lecture/great_gerbil_burrows.jpg)
:::
:::
::: footer
@wang_surveying_2019
:::
---
### Detecting and mapping species occurrences
<br>
![Pine beetle infection](assets/img/lecture/pine_beetle_infection.jpg){width="70%"}
::: {style="float: right; transform: translate(0%, -100%);"}
![](assets/img/lecture/pine_beetle_study_landsat.png){width="550px"}
:::
::: footer
@meng_landsat_based_2022
:::
---
### Time series analysis of satellite products {.smaller}
- MODIS LST temporal and spatial reconstruction (LWR & splines)
- Estimation of relevant indices (GRASS GIS temporal framework!)
- Detection of spatial and temporal clusters of favorable conditions for the occurrence of West Nile Fever cases in Greece
::: {.columns}
::: {.column width="33%"}
![](assets/img/lecture/fig_modis_workflow.png)
![](assets/img/grass_gis.svg){.absolute top=350 left=-100 width="85"}
:::
::: {.column width="67%"}
<br>
![](assets/img/lecture/co_cluster_method.png){.fragment .grow}
:::
:::
::: footer
@metz_new_2017, @andreo_identifying_2018
:::
---
### Environmental risk of Dengue
- MODIS LST is used to estimate number of extrinsic incubation periods (EIP) that virus might complete; the higher this number, the higher the environmental risk
![[CONAE Geoportal](https://geoportal.conae.gov.ar/mapstore/#/viewer/openlayers/geoportal)](assets/img/lecture/riesgo_dengue_por_localidad.png)
::: footer
@porcasi_operative_2012, <https://github.com/InstitutoGulich/RiesgoAmbiental>
:::
---
### SDM & GIS based approach for HPS risk map
::: {.columns}
::: {.column width="50%"}
![](assets/img/lecture/workflow_sph_andreo_etal_2014.png)
<br>
![](assets/img/grass_gis.svg){width="30%" fig-align="center"}
:::
::: {.column width="50%" .smaller}
We combined a rescaled probability map of the host with one of the human cases to determine levels of transmission risk
![](assets/img/lecture/colilargo_mirror.svg){.absolute top=230 right=50 width="210"}
<br>
![](assets/img/lecture/riesgo_sph_andreo_etal_2014.png)
:::
:::
::: footer
@andreo_modeling_2011, @andreo_estimating_2014
:::
---
### Cutaneous leishmaniasis and LULCC
![](assets/img/lecture/sandfly.png){.absolute top=5 right=-30 width=120}
<br>
::: {.columns}
::: {.column width="50%"}
![Change map](assets/img/lecture/change_maps.png)
![](assets/img/lecture/grass_logo_magnets.png){.fragment .absolute top=400 left=25 width="90"}
:::
::: {.column width="50%"}
![CL Prediction map](assets/img/lecture/fig_ensemble_final.png)
:::
:::
::: footer
@andreo_ecological_2022, [*i.cva*](https://grass.osgeo.org/grass-stable/manuals/addons/i.cva.html)
:::
<!-- --- -->
<!-- ### Mosquitoes: towards operational high res maps -->
<!-- ::: {.columns} -->
<!-- ::: {.column width="60%"} -->
<!-- ![Workflow](assets/img/lecture/workflow_dengue.png) -->
<!-- ![](assets/img/grass_gis.svg){.fragment .absolute top=200 left=2 width=80} -->
<!-- ![](assets/img/lecture/R_logo.png){.fragment .absolute top=300 left=530 width=85} -->
<!-- ::: -->
<!-- ::: {.column width="40%"} -->
<!-- ![](assets/img/lecture/Predictions.png) -->
<!-- ![](assets/img/lecture/aedesaegypti_blood_mirror.png){width="32%" style="float: right;"} -->
<!-- ::: -->
<!-- ::: -->
<!-- ::: footer -->
<!-- @andreo_towards_2021 -->
<!-- ::: -->
---
### Spatial distribution of temporal patterns
- Temporal and spatial patterns in *Aedes aegypty* in Córdoba
- Association with variables derived from Sentinel 2 imagery analysis to predict temporal patterns over the whole city.
![](assets/img/lecture/spatial_distr_temp_patterns.png){.r-stretch}
![](assets/img/lecture/aedesaegypti_blood.png){.absolute top=220 left=200 width=120}
![](assets/img/lecture/R_logo.png){.fragment .absolute bottom=30 right=420 width=130}
![](assets/img/grass_gis.svg){.fragment .absolute bottom=30 right=30 width=100}
::: footer
@andreo_spatial_2021
:::
---
### Urban environmental characterisation for the distribution of ovitraps
:::: {.columns}
::: {.column width="40%"}
- Object-based classification of VHR imagery
- Landscape metrics for polygons
- Clustering to find groups of similar polygons
- Stratified distribution of ovitraps
::: {style="font-size: 0.7em;"}
![](assets/img/lecture/carlita.png){width="60" style="float: right;"}
MSc thesis, **Carla Rodriguez**.
:::
:::
::: {.column width="60%"}
![](assets/img/lecture/tesis_carla.png)
:::
::::
::: footer
@grippa_open_source_2017, @georganos_scale_2018, Rodriguez Gonzalez et al.
:::
---
### Predictive system based on population dynamics and weather forecasting {.smaller}
:::: {.columns}
::: {.column width="60%"}
![](assets/img/lecture/modelo_exe.png)
:::
::: {.column width="40%"}
![](assets/img/lecture/Fig_agui.png){width="75%" fig-align="center"}
<br>
::: {style="font-size: 0.8em;"}
Development of an early warning system (EWS) for dengue. PhD candidate, **Tomás San Miguel**.
![](assets/img/lecture/tomi.png){width="65" style="float: right;"}
:::
:::
::::
::: footer
@aguirre_implementation_2021
:::
## {{< fa person-digging >}} Online surveillance system {{< fa person-digging >}}
<br>
![](assets/img/lecture/bid_etapas_flujo_de_trabajo.drawio.png){.fragment fig-align="center"}
<br>
![](assets/img/lecture/bid_logos.png){width="500" fig-align="center"}
## {{< fa person-digging >}} Online surveillance system {{< fa person-digging >}}
::: {.r-stack}
![](assets/img/lecture/bid_geonode.png){fig-align="center" width="67%"}
![](assets/img/lecture/bid_geonode_mosquitos.jpg){.fragment fig-align="center" width="85%"}
![](assets/img/lecture/bid_geonode_dengue_2020.jpg){.fragment fig-align="center" width="82%"}
:::
## Other projects under development {.smaller}
::: {layout="[1, 20]"}
![](assets/img/lecture/abraham.png){width="51"}
Incidence of asthma as a function of remotely sensed air quality and LULCC. PhD candidate, **Abraham Coiman**.
:::
::: {layout="[1, 20]"}
![](assets/img/lecture/carlita.png){width="51"}
Distribution of congenital diseases and access to health. PhD candidate, **Carla Rodriguez Gonzalez**.
:::
::: {layout="[1, 20]"}
![](assets/img/lecture/mati.png){width="51"}
Epidemiological characterisation of intestinal parasite infection in children. PhD candidate, **Matias Scavuzzo**.
:::
::: {layout="[1, 20]"}
![](assets/img/lecture/mica.png){width="51"}
Geospatial modelling of malnutrition in children and adolescents. PhD candidate, **Micaela Campero**.
:::
::: {layout="[3, 18]"}
![](assets/img/lecture/juan_diego.png){width="51"}
![](assets/img/lecture/xime.png){width="51"}
Environmental variables associated with non-communicable diseases. **Dr. Juan Diego Pinotti** and **Dr. Ximena Porcasi**.
:::
## Is everything studied then?? { background-color="#1A428A" }
---
## Challenges and gaps - RS
![](assets/img/lecture/satellite_b.png){.absolute top=5 right=-15 width=120}
- **Trade-off** between different RS resolutions, the problem under study, the data and methods available
- **Gaps in optical RS**: clouds, shadows in optical RS (spatial and temporal interpolations)
- Need for **corrections** if high level data is not suitable
- **Limited access** to VHR, LiDAR, Hyper-spectral (US$, tricky to scale yet)
- **Investment and capacity building**: huge volumes of data vs. limited bandwidth, storage and computational capacity (cloud computing, parallelisation | resources)
::: {.color-box-light-blue}
[**Field data will always be needed! :)**]{style="color: #1a428a;"}
:::
<!-- ## Challenges and gaps - Ecology and Health -->
<!-- <br> -->
<!-- - Missing **baseline** distribution information of hosts, vectors, infection -->
<!-- - Updating and digitisation of disease cases and intervention data, data still missing in large parts of the world -->
<!-- - **Harmonisation of records** at different administrative levels -->
<!-- - Facilitating access to (aggregated) health data -->
<!-- - __Political decision and resource allocation__ -->
## Opportunities: low hanging fruits?
- SAR data to avoid clouds, e.g., [**SAOCOM**](https://saocom.invap.com.ar/) to estimate soil moisture
- Open LiDAR data, e.g., [GEDI](https://gedi.umd.edu/) onboard of ISS
- Open source solutions for the cloud [openEO.cloud](https://openeo.cloud/), [actinia](https://actinia.mundialis.de/), OpenPlains? ;-)
::: {.columns}
::: {.column width="34%"}
![](assets/img/lecture/satellite_saocom.png){width="180px" style="float: right;"}
![](assets/img/lecture/lago_san_martin_saocom.jpg){width="200px"}
:::
::: {.column width="33%"}
![](assets/img/lecture/gedi.jpg){width="70%"}
![](assets/img/lecture/gedi_forest_hh.jpg)
:::
::: {.column width="33%"}
![](assets/img/lecture/openeo_logo.svg){width="80%"}
![](assets/img/lecture/actinia_logo.png){width="80%"}
:::
:::
::: footer
@torresani_lidar_2023
:::
## New missions: hyper-spectral for all
- A number of recent and upcoming missions for hyper-spectral data: [PRISMA](https://prismauserregistration.asi.it/) (recently made open), [EnMap](https://www.enmap.org/), [CHIME](https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Going_hyperspectral_for_CHIME), TIRS
:::: {.columns}
:::{.column width="65%"}
![](assets/img/lecture/hyperspectral.jpg){width="85%" fig-align="center"}
:::
::: {.column width="35%"}
![](assets/img/lecture/logo_prisma.png){fig-align="center"}
:::
::::
::: footer
<http://database.eohandbook.com/database/instrumenttable.aspx>,
:::
## Specialized cameras onboard drones
- Cheaper UAVs with different types of cameras, e.g. thermal multi- or hyper-spectral sensors to detect and count animals in inaccessible places
![](assets/img/lecture/drone.png){.absolute top=100 right=-20 width=120}
![](assets/img/lecture/map_monkeys_with_drones_tir.png){fig-align="center" width="90%"}
::: footer
@carrasco_escobar_use_2022
:::
---
![](assets/img/lecture/one_health_and_satellites.png){fig-align="center" width="95%"}
:::{.notes}
So, it's clearly not all done already, and RS can contribute a big deal to reach SDGs in general and SDG 3 in particular, especially if we consider that for human good health and well being, environmental health and animal health are also necessary conditions.
:::
# { background-image="assets/img/lecture/CONAE_aereo.png" }
::: {style="color: #ffffff; font-size: 5em;" .fragment}
Thanks!
:::
<br><br>
:::{.fragment style="float: right; font-size: 0.7em;"}
![](assets/img/profile.png){.bio-img}
[{{< fa envelope >}} [email protected]]([email protected])
[{{< fa brands twitter >}} VeronicaAndreo](https://twitter.com/VeronicaAndreo)
[{{< fa presentation-screen >}} Slides](https://veroandreo.github.io/grass_ncsu_2023/introduction.html)
:::
::: {.fragment style="float: left;" .color-box-white}
Unhealthy lab
![](assets/img/lecture/insaludables.png)
:::
## References {.tiny}
::: {#refs .tiny}
:::
<!-- # Extra slides { background-color="#1A428A" } -->
<!-- --- -->
<!-- ### App to count mosquito eggs in ovitraps pics -->
<!-- <br> -->
<!-- [https://ovitrap-monitor.netlify.app/](https://ovitrap-monitor.netlify.app/) -->
<!-- ::: {.columns} -->
<!-- ::: {.column width="45%"} -->
<!-- ![](assets/img/lecture/app-count.png) -->
<!-- ::: -->
<!-- ::: {.column width="55%"} -->
<!-- ![](assets/img/lecture/app-reports.png) -->
<!-- ::: -->
<!-- ::: -->
<!-- ::: footer -->
<!-- Hamesse et al. -->
<!-- ::: -->