forked from danforthcenter/plantcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplantcv-train.py
executable file
·93 lines (75 loc) · 3.56 KB
/
plantcv-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
from __future__ import print_function
import os
import sys
import argparse
import datetime
import plantcv.learn
# Parse command-line arguments
###########################################
def options():
"""Parse command line options.
:return args: object -- parsed arguments
:raises: IOError, KeyError
"""
# Job start time
start_time = datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')
print("Starting run " + start_time + '\n', file=sys.stderr)
# Create an argument parser
parser = argparse.ArgumentParser(description="PlantCV machine learning training script.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Create subcommand parsers
subparsers = parser.add_subparsers()
# Create the Naive Bayes subcommand
nb_cmd = subparsers.add_parser("naive_bayes", help="Run the naive Bayes two-class training method.")
nb_cmd.add_argument("-i", "--imgdir", help="Input directory containing images.", required=True)
nb_cmd.add_argument("-b", "--maskdir", help="Input directory containing black/white masks.", required=True)
nb_cmd.add_argument("-o", "--outfile", help="Trained classifier output filename.", required=True)
nb_cmd.add_argument("-p", "--plots", help="Make output plots.", default=False, action="store_true")
nb_cmd.set_defaults(func=run_naive_bayes)
# Create the Naive Bayes Multiclass subcommand
nbm_cmd = subparsers.add_parser("naive_bayes_multiclass",
help="Run the naive Bayes two or more class training method.")
nbm_cmd.add_argument("-f", "--file",
help="Input file containing a table of pixel RGB values sampled for each input class.",
required=True)
nbm_cmd.add_argument("-o", "--outfile", help="Trained classifier output filename.", required=True)
nbm_cmd.add_argument("-p", "--plots", help="Make output plots.", default=False, action="store_true")
nbm_cmd.set_defaults(func=run_naive_bayes_multiclass)
# If no arguments are given, print the help menu
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
# Parse command-line options
args = parser.parse_args()
# Execute the selected training method
args.func(args)
###########################################
# Run the naive Bayes method
###########################################
def run_naive_bayes(args):
if not os.path.exists(args.imgdir):
raise IOError("Directory does not exist: {0}".format(args.imgdir))
if not os.path.exists(args.maskdir):
raise IOError("Directory does not exist: {0}".format(args.maskdir))
print("Running the naive Bayes two-class training method...")
plantcv.learn.naive_bayes(imgdir=args.imgdir, maskdir=args.maskdir, outfile=args.outfile, mkplots=args.plots)
###########################################
# Run the naive Bayes multiclass method
###########################################
def run_naive_bayes_multiclass(args):
if not os.path.exists(args.file):
raise IOError("File does not exist: {0}".format(args.file))
print("Running the naive Bayes multiclass training method...")
plantcv.learn.naive_bayes_multiclass(samples_file=args.file, outfile=args.outfile, mkplots=args.plots)
###########################################
# Main
###########################################
def main():
"""Main program.
"""
# Parse command-line options and run training method
options()
###########################################
if __name__ == '__main__':
main()