-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathtraining_vidcap.py
138 lines (126 loc) · 7.49 KB
/
training_vidcap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/python
import numpy as np
import tensorflow as tf
from utils import *
import sys
#GLOBAL VARIABLE INITIALIZATIONS TO BUILD MODEL
n_steps = 80
hidden_dim = 500
frame_dim = 4096
batch_size = 10
vocab_size = len(word2id)
bias_init_vector = get_bias_vector()
def build_model():
"""This function creates weight matrices that transform:
* frames to caption dimension
* hidden state to vocabulary dimension
* creates word embedding matrix """
print "Network config: \nN_Steps: {}\nHidden_dim:{}\nFrame_dim:{}\nBatch_size:{}\nVocab_size:{}\n".format(n_steps,
hidden_dim,
frame_dim,
batch_size,
vocab_size)
#Create placeholders for holding a batch of videos, captions and caption masks
video = tf.placeholder(tf.float32,shape=[batch_size,n_steps,frame_dim],name='Input_Video')
caption = tf.placeholder(tf.int32,shape=[batch_size,n_steps],name='GT_Caption')
caption_mask = tf.placeholder(tf.float32,shape=[batch_size,n_steps],name='Caption_Mask')
dropout_prob = tf.placeholder(tf.float32,name='Dropout_Keep_Probability')
with tf.variable_scope('Im2Cap') as scope:
W_im2cap = tf.get_variable(name='W_im2cap',shape=[frame_dim,
hidden_dim],
initializer=tf.random_uniform_initializer(minval=-0.08,maxval=0.08))
b_im2cap = tf.get_variable(name='b_im2cap',shape=[hidden_dim],
initializer=tf.constant_initializer(0.0))
with tf.variable_scope('Hid2Vocab') as scope:
W_H2vocab = tf.get_variable(name='W_H2vocab',shape=[hidden_dim,vocab_size],
initializer=tf.random_uniform_initializer(minval=-0.08,maxval=0.08))
b_H2vocab = tf.Variable(name='b_H2vocab',initial_value=bias_init_vector.astype(np.float32))
with tf.variable_scope('Word_Vectors') as scope:
word_emb = tf.get_variable(name='Word_embedding',shape=[vocab_size,hidden_dim],
initializer=tf.random_uniform_initializer(minval=-0.08,maxval=0.08))
print "Created weights"
#Build two LSTMs, one for processing the video and another for generating the caption
with tf.variable_scope('LSTM_Video',reuse=None) as scope:
lstm_vid = tf.nn.rnn_cell.BasicLSTMCell(hidden_dim)
lstm_vid = tf.nn.rnn_cell.DropoutWrapper(lstm_vid,output_keep_prob=dropout_prob)
with tf.variable_scope('LSTM_Caption',reuse=None) as scope:
lstm_cap = tf.nn.rnn_cell.BasicLSTMCell(hidden_dim)
lstm_cap = tf.nn.rnn_cell.DropoutWrapper(lstm_cap,output_keep_prob=dropout_prob)
#Prepare input for lstm_video
video_rshp = tf.reshape(video,[-1,frame_dim])
video_rshp = tf.nn.dropout(video_rshp,keep_prob=dropout_prob)
video_emb = tf.nn.xw_plus_b(video_rshp,W_im2cap,b_im2cap)
video_emb = tf.reshape(video_emb,[batch_size,n_steps,hidden_dim])
padding = tf.zeros([batch_size,n_steps-1,hidden_dim])
video_input = tf.concat([video_emb,padding],1)
print "Video_input: {}".format(video_input.get_shape())
#Run lstm_vid for 2*n_steps-1 timesteps
with tf.variable_scope('LSTM_Video') as scope:
out_vid,state_vid = tf.nn.dynamic_rnn(lstm_vid,video_input,dtype=tf.float32)
print "Video_output: {}".format(out_vid.get_shape())
#Prepare input for lstm_cap
padding = tf.zeros([batch_size,n_steps,hidden_dim])
caption_vectors = tf.nn.embedding_lookup(word_emb,caption[:,0:n_steps-1])
caption_vectors = tf.nn.dropout(caption_vectors,keep_prob=dropout_prob)
caption_2n = tf.concat([padding,caption_vectors],1)
caption_input = tf.concat([caption_2n,out_vid],2)
print "Caption_input: {}".format(caption_input.get_shape())
#Run lstm_cap for 2*n_steps-1 timesteps
with tf.variable_scope('LSTM_Caption') as scope:
out_cap,state_cap = tf.nn.dynamic_rnn(lstm_cap,caption_input,dtype=tf.float32)
print "Caption_output: {}".format(out_cap.get_shape())
#Compute masked loss
output_captions = out_cap[:,n_steps:,:]
output_logits = tf.reshape(output_captions,[-1,hidden_dim])
output_logits = tf.nn.dropout(output_logits,keep_prob=dropout_prob)
output_logits = tf.nn.xw_plus_b(output_logits,W_H2vocab,b_H2vocab)
output_labels = tf.reshape(caption[:,1:],[-1])
caption_mask_out = tf.reshape(caption_mask[:,1:],[-1])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output_logits,labels=output_labels)
masked_loss = loss*caption_mask_out
loss = tf.reduce_sum(masked_loss)/tf.reduce_sum(caption_mask_out)
return video,caption,caption_mask,output_logits,loss,dropout_prob
if __name__=="__main__":
with tf.Graph().as_default():
learning_rate = 0.0001
video,caption,caption_mask,output_logits,loss,dropout_prob = build_model()
optim = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(loss)
nEpoch = int(sys.argv[1])
nIter = int(nEpoch*1576/batch_size)
ckpt_file = None
saver = tf.train.Saver()
with tf.Session() as sess:
if ckpt_file:
saver_ = tf.train.import_meta_graph(ckpt_file)
saver_.restore(sess,tf.train.latest_checkpoint('.'))
print "Restored model"
else:
sess.run(tf.initialize_all_variables())
for i in range(nIter):
vids,caps,caps_mask,_ = fetch_data_batch(batch_size=batch_size)
_,curr_loss,o_l = sess.run([optim,loss,output_logits],feed_dict={video:vids,
caption:caps,
caption_mask:caps_mask,
dropout_prob:0.5})
if i%20 == 0:
print "\nIteration {} \n".format(i)
out_logits = o_l.reshape([batch_size,n_steps-1,vocab_size])
output_captions = np.argmax(out_logits,2)
print_in_english(output_captions[0:4])
print "GT Captions"
print_in_english(caps[0:4])
print "Current train loss: {} ".format(curr_loss)
vids,caps,caps_mask,_ = fetch_data_batch_val(batch_size=batch_size)
curr_loss,o_l = sess.run([loss,output_logits],feed_dict={video:vids,
caption:caps,
caption_mask:caps_mask,
dropout_prob:1.0})
out_logits = o_l.reshape([batch_size,n_steps-1,vocab_size])
output_captions = np.argmax(out_logits,2)
print_in_english(output_captions[0:4])
print "GT Captions"
print_in_english(caps[0:4])
print "Current validation loss: {} ".format(curr_loss)
if i%2000 == 0:
saver.save(sess,'S2VT_Dyn_{}_{}_{}_{}.ckpt'.format(batch_size,learning_rate,nEpoch,i))
print 'Saved {}'.format(i)