-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
197 lines (176 loc) · 5.85 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import logging
import json
import pinecone
import os
import flask
from flask import Flask
from tqdm.auto import tqdm
from uuid import uuid4
from datasets import load_dataset
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chat_models import ChatOpenAI
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.chains import RetrievalQA
from langchain.agents import Tool
from langchain.agents import initialize_agent
app = Flask(__name__)
app.config["DEBUG"] = True
logging.basicConfig(filename='record.log', level=logging.DEBUG)
os.environ['OPENAI_API_KEY'] = "YOUR_OPENAI_API_KEY"
os.environ['PINECONE_API_KEY'] = "YOUR_PINECONE_API_KEY"
environment = "YOUR_PINECONE_ENVIRONMENT"
index_name = "dst111-chatbot-test"
model_name = 'text-embedding-ada-002'
embed = OpenAIEmbeddings(
model=model_name,
openai_api_key=os.environ['OPENAI_API_KEY']
)
pinecone.init(api_key=os.environ['PINECONE_API_KEY'], environment=environment)
# chat completion llm
llm = ChatOpenAI(
openai_api_key=os.environ['OPENAI_API_KEY'],
model_name='gpt-3.5-turbo',
temperature=0.0
)
# conversational memory
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=5,
return_messages=True
)
@app.route('/')
def index():
return 'Index Page'
@app.route('/datasheets/<datasheet_id>/chatbots')
def create_chatbot():
return 'creating chatbot'
@app.route('/datasheets/<datasheet_id>/train', methods=['PUT'])
def train(datasheet_id):
create_index(index_name)
index = pinecone.GRPCIndex(index_name)
app.logger.info(index.describe_index_stats())
# data = load_dataset('squad', split='train')
# data = load_dataset('json', data_files='./faqs.json', split='train')
# app.logger.info('loaded dataset', "", data)
faqs = load_faqs()
# loop faqs
for faq in faqs:
metadatas = [{
'datasheet_id': datasheet_id,
'title': 'datasheet name',
# 'text': 'datasheet description',
}]
documents = [json.dumps(faq)]
embeds = embed.embed_documents(documents)
ids = [faq['id']]
# add everything to pinecone
index.upsert(vectors=zip(ids, embeds, metadatas))
# data = data.to_pandas()
# # app.logger.info('converted to pandas', "", data)
# batch_size = 100
# for i in tqdm(range(0, len(data), batch_size)):
# # get end of batch
# i_end = min(len(data), i+batch_size)
# batch = data.iloc[i:i_end]
# # first get metadata fields for this record
# metadatas = [{
# 'datasheet_id': datasheet_id,
# 'title': 'datasheet name',
# 'text': 'datasheet description',
# } for j, record in batch.iterrows()]
# # get the list of contexts / documents
# # app.logger.info('batch', '', batch)
# documents = batch['context']
# # app.logger.info('documents', '', documents)
# # create document embeddings
# embeds = embed.embed_documents(documents)
# # get IDs
# ids = batch['id']
# # add everything to pinecone
# index.upsert(vectors=zip(ids, embeds, metadatas))
app.logger.info(index.describe_index_stats())
return 'FAQs indexed successfully!'
# load faqs.json
def load_faqs():
with open('faqs.json', 'r') as f:
faqs = json.load(f)
return faqs
# create index if not exists
def create_index(index_name):
if index_name not in pinecone.list_indexes():
# we create a new index
pinecone.create_index(
name=index_name,
metric='dotproduct',
dimension=1536 # 1536 dim of text-embedding-ada-002
)
@app.route('/chatbots/<chatbot_id>/similarity_search', methods=['POST'])
def similarity_search(chatbot_id):
query = flask.request.get_json()["query"]
app.logger.info('query', query)
text_field = "title"
# switch back to normal index for langchain
index = pinecone.Index(index_name)
vectorstore = Pinecone(
index, embed.embed_query, text_field
)
answer = vectorstore.similarity_search(
query, # our search query
k=3 # return 3 most relevant docs
)
app.logger.info('answer is %s', answer)
return answer
@app.route('/chatbots/<chatbot_id>/conversation', methods=['POST'])
def conversation(chatbot_id):
query = flask.request.get_json()["query"]
text_field = "title"
# switch back to normal index for langchain
index = pinecone.Index(index_name)
vectorstore = Pinecone(
index, embed.embed_query, text_field
)
# retrieval qa chain
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever()
)
return qa.run(query)
@app.route('/chatbots/<chatbot_id>/conversation_agent', methods=['POST'])
def conversation_agent(chatbot_id):
query = flask.request.get_json()["query"]
text_field = "title"
# switch back to normal index for langchain
index = pinecone.Index(index_name)
vectorstore = Pinecone(
index, embed.embed_query, text_field
)
# retrieval qa chain
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever()
)
tools = [
Tool(
name='Knowledge Base',
func=qa.run,
description=(
'use this tool when answering general knowledge queries to get '
'more information about the topic'
)
)
]
agent = initialize_agent(
agent='chat-conversational-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
early_stopping_method='generate',
memory=conversational_memory
)
answer = agent(query)
return answer['output']
app.run()