forked from chrischoy/SpatioTemporalSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
156 lines (131 loc) · 4.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Change dataloader multiprocess start method to anything not fork
import open3d as o3d
import torch.multiprocessing as mp
try:
mp.set_start_method('forkserver') # Reuse process created
except RuntimeError:
pass
import os
import sys
import json
import logging
from easydict import EasyDict as edict
# Torch packages
import torch
# Train deps
from config import get_config
from lib.test import test
from lib.train import train
from lib.utils import load_state_with_same_shape, get_torch_device, count_parameters
from lib.dataset import initialize_data_loader
from lib.datasets import load_dataset
from models import load_model, load_wrapper
ch = logging.StreamHandler(sys.stdout)
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(
format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s',
datefmt='%m/%d %H:%M:%S',
handlers=[ch])
def main():
config = get_config()
if config.resume:
json_config = json.load(open(config.resume + '/config.json', 'r'))
json_config['resume'] = config.resume
config = edict(json_config)
if config.is_cuda and not torch.cuda.is_available():
raise Exception("No GPU found")
device = get_torch_device(config.is_cuda)
logging.info('===> Configurations')
dconfig = vars(config)
for k in dconfig:
logging.info(' {}: {}'.format(k, dconfig[k]))
DatasetClass = load_dataset(config.dataset)
if config.test_original_pointcloud:
if not DatasetClass.IS_FULL_POINTCLOUD_EVAL:
raise ValueError('This dataset does not support full pointcloud evaluation.')
if config.evaluate_original_pointcloud:
if not config.return_transformation:
raise ValueError('Pointcloud evaluation requires config.return_transformation=true.')
if (config.return_transformation ^ config.evaluate_original_pointcloud):
raise ValueError('Rotation evaluation requires config.evaluate_original_pointcloud=true and '
'config.return_transformation=true.')
logging.info('===> Initializing dataloader')
if config.is_train:
train_data_loader = initialize_data_loader(
DatasetClass,
config,
phase=config.train_phase,
num_workers=config.num_workers,
augment_data=True,
shuffle=True,
repeat=True,
batch_size=config.batch_size,
limit_numpoints=config.train_limit_numpoints)
val_data_loader = initialize_data_loader(
DatasetClass,
config,
num_workers=config.num_val_workers,
phase=config.val_phase,
augment_data=False,
shuffle=True,
repeat=False,
batch_size=config.val_batch_size,
limit_numpoints=False)
if train_data_loader.dataset.NUM_IN_CHANNEL is not None:
num_in_channel = train_data_loader.dataset.NUM_IN_CHANNEL
else:
num_in_channel = 3 # RGB color
num_labels = train_data_loader.dataset.NUM_LABELS
else:
test_data_loader = initialize_data_loader(
DatasetClass,
config,
num_workers=config.num_workers,
phase=config.test_phase,
augment_data=False,
shuffle=False,
repeat=False,
batch_size=config.test_batch_size,
limit_numpoints=False)
if test_data_loader.dataset.NUM_IN_CHANNEL is not None:
num_in_channel = test_data_loader.dataset.NUM_IN_CHANNEL
else:
num_in_channel = 3 # RGB color
num_labels = test_data_loader.dataset.NUM_LABELS
logging.info('===> Building model')
NetClass = load_model(config.model)
if config.wrapper_type == 'None':
model = NetClass(num_in_channel, num_labels, config)
logging.info('===> Number of trainable parameters: {}: {}'.format(NetClass.__name__,
count_parameters(model)))
else:
wrapper = load_wrapper(config.wrapper_type)
model = wrapper(NetClass, num_in_channel, num_labels, config)
logging.info('===> Number of trainable parameters: {}: {}'.format(
wrapper.__name__ + NetClass.__name__, count_parameters(model)))
logging.info(model)
model = model.to(device)
if config.weights == 'modelzoo': # Load modelzoo weights if possible.
logging.info('===> Loading modelzoo weights')
model.preload_modelzoo()
# Load weights if specified by the parameter.
elif config.weights.lower() != 'none':
logging.info('===> Loading weights: ' + config.weights)
state = torch.load(config.weights)
if config.weights_for_inner_model:
model.model.load_state_dict(state['state_dict'])
else:
if config.lenient_weight_loading:
matched_weights = load_state_with_same_shape(model, state['state_dict'])
model_dict = model.state_dict()
model_dict.update(matched_weights)
model.load_state_dict(model_dict)
else:
model.load_state_dict(state['state_dict'])
if config.is_train:
train(model, train_data_loader, val_data_loader, config)
else:
test(model, test_data_loader, config)
if __name__ == '__main__':
__spec__ = None
main()