-
Notifications
You must be signed in to change notification settings - Fork 744
/
conntrack_linux.go
914 lines (809 loc) · 31 KB
/
conntrack_linux.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"strings"
"time"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
const (
// ConntrackTable Conntrack table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK 1
ConntrackTable = 1
// ConntrackExpectTable Conntrack expect table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK_EXP 2
ConntrackExpectTable = 2
)
const (
// backward compatibility with golang 1.6 which does not have io.SeekCurrent
seekCurrent = 1
)
// InetFamily Family type
type InetFamily uint8
// -L [table] [options] List conntrack or expectation table
// -G [table] parameters Get conntrack or expectation
// -I [table] parameters Create a conntrack or expectation
// -U [table] parameters Update a conntrack
// -E [table] [options] Show events
// -C [table] Show counter
// -S Show statistics
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return pkgHandle.ConntrackTableList(table, family)
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return pkgHandle.ConntrackTableFlush(table)
}
// ConntrackCreate creates a new conntrack flow in the desired table
// conntrack -I [table] Create a conntrack or expectation
func ConntrackCreate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
return pkgHandle.ConntrackCreate(table, family, flow)
}
// ConntrackUpdate updates an existing conntrack flow in the desired table using the handle
// conntrack -U [table] Update a conntrack
func ConntrackUpdate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
return pkgHandle.ConntrackUpdate(table, family, flow)
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
//
// Deprecated: use [ConntrackDeleteFilters] instead.
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilters(table, family, filter)
}
// ConntrackDeleteFilters deletes entries on the specified table matching any of the specified filters
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilters(table ConntrackTableType, family InetFamily, filters ...CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilters(table, family, filters...)
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
res, executeErr := h.dumpConntrackTable(table, family)
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
// Deserialize all the flows
var result []*ConntrackFlow
for _, dataRaw := range res {
result = append(result, parseRawData(dataRaw))
}
return result, executeErr
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
req := h.newConntrackRequest(table, unix.AF_INET, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackCreate creates a new conntrack flow in the desired table using the handle
// conntrack -I [table] Create a conntrack or expectation
func (h *Handle) ConntrackCreate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_NEW, unix.NLM_F_ACK|unix.NLM_F_CREATE)
attr, err := flow.toNlData()
if err != nil {
return err
}
for _, a := range attr {
req.AddData(a)
}
_, err = req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackUpdate updates an existing conntrack flow in the desired table using the handle
// conntrack -U [table] Update a conntrack
func (h *Handle) ConntrackUpdate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_NEW, unix.NLM_F_ACK|unix.NLM_F_REPLACE)
attr, err := flow.toNlData()
if err != nil {
return err
}
for _, a := range attr {
req.AddData(a)
}
_, err = req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
//
// Deprecated: use [Handle.ConntrackDeleteFilters] instead.
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return h.ConntrackDeleteFilters(table, family, filter)
}
// ConntrackDeleteFilters deletes entries on the specified table matching any of the specified filters using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilters(table ConntrackTableType, family InetFamily, filters ...CustomConntrackFilter) (uint, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return 0, err
}
var matched uint
var errMsgs []string
for _, dataRaw := range res {
flow := parseRawData(dataRaw)
for _, filter := range filters {
if match := filter.MatchConntrackFlow(flow); match {
req2 := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
// skip the first 4 byte that are the netfilter header, the newConntrackRequest is adding it already
req2.AddRawData(dataRaw[4:])
if _, err = req2.Execute(unix.NETLINK_NETFILTER, 0); err == nil {
matched++
// flow is already deleted, no need to match on other filters and continue to the next flow.
break
}
errMsgs = append(errMsgs, fmt.Sprintf("failed to delete conntrack flow '%s': %s", flow.String(), err.Error()))
}
}
}
if len(errMsgs) > 0 {
return matched, fmt.Errorf(strings.Join(errMsgs, "; "))
}
return matched, nil
}
func (h *Handle) newConntrackRequest(table ConntrackTableType, family InetFamily, operation, flags int) *nl.NetlinkRequest {
// Create the Netlink request object
req := h.newNetlinkRequest((int(table)<<8)|operation, flags)
// Add the netfilter header
msg := &nl.Nfgenmsg{
NfgenFamily: uint8(family),
Version: nl.NFNETLINK_V0,
ResId: 0,
}
req.AddData(msg)
return req
}
func (h *Handle) dumpConntrackTable(table ConntrackTableType, family InetFamily) ([][]byte, error) {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_GET, unix.NLM_F_DUMP)
return req.Execute(unix.NETLINK_NETFILTER, 0)
}
// ProtoInfo wraps an L4-protocol structure - roughly corresponds to the
// __nfct_protoinfo union found in libnetfilter_conntrack/include/internal/object.h.
// Currently, only protocol names, and TCP state is supported.
type ProtoInfo interface {
Protocol() string
}
// ProtoInfoTCP corresponds to the `tcp` struct of the __nfct_protoinfo union.
// Only TCP state is currently supported.
type ProtoInfoTCP struct {
State uint8
}
// Protocol returns "tcp".
func (*ProtoInfoTCP) Protocol() string {return "tcp"}
func (p *ProtoInfoTCP) toNlData() ([]*nl.RtAttr, error) {
ctProtoInfo := nl.NewRtAttr(unix.NLA_F_NESTED | nl.CTA_PROTOINFO, []byte{})
ctProtoInfoTCP := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_PROTOINFO_TCP, []byte{})
ctProtoInfoTCPState := nl.NewRtAttr(nl.CTA_PROTOINFO_TCP_STATE, nl.Uint8Attr(p.State))
ctProtoInfoTCP.AddChild(ctProtoInfoTCPState)
ctProtoInfo.AddChild(ctProtoInfoTCP)
return []*nl.RtAttr{ctProtoInfo}, nil
}
// ProtoInfoSCTP only supports the protocol name.
type ProtoInfoSCTP struct {}
// Protocol returns "sctp".
func (*ProtoInfoSCTP) Protocol() string {return "sctp"}
// ProtoInfoDCCP only supports the protocol name.
type ProtoInfoDCCP struct {}
// Protocol returns "dccp".
func (*ProtoInfoDCCP) Protocol() string {return "dccp"}
// The full conntrack flow structure is very complicated and can be found in the file:
// http://git.netfilter.org/libnetfilter_conntrack/tree/include/internal/object.h
// For the time being, the structure below allows to parse and extract the base information of a flow
type IPTuple struct {
Bytes uint64
DstIP net.IP
DstPort uint16
Packets uint64
Protocol uint8
SrcIP net.IP
SrcPort uint16
}
// toNlData generates the inner fields of a nested tuple netlink datastructure
// does not generate the "nested"-flagged outer message.
func (t *IPTuple) toNlData(family uint8) ([]*nl.RtAttr, error) {
var srcIPsFlag, dstIPsFlag int
if family == nl.FAMILY_V4 {
srcIPsFlag = nl.CTA_IP_V4_SRC
dstIPsFlag = nl.CTA_IP_V4_DST
} else if family == nl.FAMILY_V6 {
srcIPsFlag = nl.CTA_IP_V6_SRC
dstIPsFlag = nl.CTA_IP_V6_DST
} else {
return []*nl.RtAttr{}, fmt.Errorf("couldn't generate netlink message for tuple due to unrecognized FamilyType '%d'", family)
}
ctTupleIP := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_IP, nil)
ctTupleIPSrc := nl.NewRtAttr(srcIPsFlag, t.SrcIP)
ctTupleIP.AddChild(ctTupleIPSrc)
ctTupleIPDst := nl.NewRtAttr(dstIPsFlag, t.DstIP)
ctTupleIP.AddChild(ctTupleIPDst)
ctTupleProto := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_PROTO, nil)
ctTupleProtoNum := nl.NewRtAttr(nl.CTA_PROTO_NUM, []byte{t.Protocol})
ctTupleProto.AddChild(ctTupleProtoNum)
ctTupleProtoSrcPort := nl.NewRtAttr(nl.CTA_PROTO_SRC_PORT, nl.BEUint16Attr(t.SrcPort))
ctTupleProto.AddChild(ctTupleProtoSrcPort)
ctTupleProtoDstPort := nl.NewRtAttr(nl.CTA_PROTO_DST_PORT, nl.BEUint16Attr(t.DstPort))
ctTupleProto.AddChild(ctTupleProtoDstPort, )
return []*nl.RtAttr{ctTupleIP, ctTupleProto}, nil
}
type ConntrackFlow struct {
FamilyType uint8
Forward IPTuple
Reverse IPTuple
Mark uint32
Zone uint16
TimeStart uint64
TimeStop uint64
TimeOut uint32
Labels []byte
ProtoInfo ProtoInfo
}
func (s *ConntrackFlow) String() string {
// conntrack cmd output:
// udp 17 src=127.0.0.1 dst=127.0.0.1 sport=4001 dport=1234 packets=5 bytes=532 [UNREPLIED] src=127.0.0.1 dst=127.0.0.1 sport=1234 dport=4001 packets=10 bytes=1078 mark=0 labels=0x00000000050012ac4202010000000000 zone=100
// start=2019-07-26 01:26:21.557800506 +0000 UTC stop=1970-01-01 00:00:00 +0000 UTC timeout=30(sec)
start := time.Unix(0, int64(s.TimeStart))
stop := time.Unix(0, int64(s.TimeStop))
timeout := int32(s.TimeOut)
res := fmt.Sprintf("%s\t%d src=%s dst=%s sport=%d dport=%d packets=%d bytes=%d\tsrc=%s dst=%s sport=%d dport=%d packets=%d bytes=%d mark=0x%x ",
nl.L4ProtoMap[s.Forward.Protocol], s.Forward.Protocol,
s.Forward.SrcIP.String(), s.Forward.DstIP.String(), s.Forward.SrcPort, s.Forward.DstPort, s.Forward.Packets, s.Forward.Bytes,
s.Reverse.SrcIP.String(), s.Reverse.DstIP.String(), s.Reverse.SrcPort, s.Reverse.DstPort, s.Reverse.Packets, s.Reverse.Bytes,
s.Mark)
if len(s.Labels) > 0 {
res += fmt.Sprintf("labels=0x%x ", s.Labels)
}
if s.Zone != 0 {
res += fmt.Sprintf("zone=%d ", s.Zone)
}
res += fmt.Sprintf("start=%v stop=%v timeout=%d(sec)", start, stop, timeout)
return res
}
// toNlData generates netlink messages representing the flow.
func (s *ConntrackFlow) toNlData() ([]*nl.RtAttr, error) {
var payload []*nl.RtAttr
// The message structure is built as follows:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG>
// <len, NLA_F_NESTED|CTA_TUPLE_IP>
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC]>
// <IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST]>
// <IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO>
// <len, CTA_PROTO_NUM>
// <uint8>
// <len, CTA_PROTO_SRC_PORT>
// <BEuint16>
// <len, CTA_PROTO_DST_PORT>
// <BEuint16>
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY>
// <len, NLA_F_NESTED|CTA_TUPLE_IP>
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC]>
// <IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST]>
// <IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO>
// <len, CTA_PROTO_NUM>
// <uint8>
// <len, CTA_PROTO_SRC_PORT>
// <BEuint16>
// <len, CTA_PROTO_DST_PORT>
// <BEuint16>
// <len, CTA_STATUS>
// <uint64>
// <len, CTA_MARK>
// <BEuint64>
// <len, CTA_TIMEOUT>
// <BEuint64>
// <len, NLA_F_NESTED|CTA_PROTOINFO>
// CTA_TUPLE_ORIG
ctTupleOrig := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_ORIG, nil)
forwardFlowAttrs, err := s.Forward.toNlData(s.FamilyType)
if err != nil {
return nil, fmt.Errorf("couldn't generate netlink data for conntrack forward flow: %w", err)
}
for _, a := range forwardFlowAttrs {
ctTupleOrig.AddChild(a)
}
// CTA_TUPLE_REPLY
ctTupleReply := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_REPLY, nil)
reverseFlowAttrs, err := s.Reverse.toNlData(s.FamilyType)
if err != nil {
return nil, fmt.Errorf("couldn't generate netlink data for conntrack reverse flow: %w", err)
}
for _, a := range reverseFlowAttrs {
ctTupleReply.AddChild(a)
}
ctMark := nl.NewRtAttr(nl.CTA_MARK, nl.BEUint32Attr(s.Mark))
ctTimeout := nl.NewRtAttr(nl.CTA_TIMEOUT, nl.BEUint32Attr(s.TimeOut))
payload = append(payload, ctTupleOrig, ctTupleReply, ctMark, ctTimeout)
if s.ProtoInfo != nil {
switch p := s.ProtoInfo.(type) {
case *ProtoInfoTCP:
attrs, err := p.toNlData()
if err != nil {
return nil, fmt.Errorf("couldn't generate netlink data for conntrack flow's TCP protoinfo: %w", err)
}
payload = append(payload, attrs...)
default:
return nil, errors.New("couldn't generate netlink data for conntrack: field 'ProtoInfo' only supports TCP or nil")
}
}
return payload, nil
}
// This method parse the ip tuple structure
// The message structure is the following:
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC], 16 bytes for the IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST], 16 bytes for the IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO, 1 byte for the protocol, 3 bytes of padding>
// <len, CTA_PROTO_SRC_PORT, 2 bytes for the source port, 2 bytes of padding>
// <len, CTA_PROTO_DST_PORT, 2 bytes for the source port, 2 bytes of padding>
func parseIpTuple(reader *bytes.Reader, tpl *IPTuple) uint8 {
for i := 0; i < 2; i++ {
_, t, _, v := parseNfAttrTLV(reader)
switch t {
case nl.CTA_IP_V4_SRC, nl.CTA_IP_V6_SRC:
tpl.SrcIP = v
case nl.CTA_IP_V4_DST, nl.CTA_IP_V6_DST:
tpl.DstIP = v
}
}
// Get total length of nested protocol-specific info.
_, _, protoInfoTotalLen := parseNfAttrTL(reader)
_, t, l, v := parseNfAttrTLV(reader)
// Track the number of bytes read.
protoInfoBytesRead := uint16(nl.SizeofNfattr) + l
if t == nl.CTA_PROTO_NUM {
tpl.Protocol = uint8(v[0])
}
// We only parse TCP & UDP headers. Skip the others.
if tpl.Protocol != unix.IPPROTO_TCP && tpl.Protocol != unix.IPPROTO_UDP {
// skip the rest
bytesRemaining := protoInfoTotalLen - protoInfoBytesRead
reader.Seek(int64(bytesRemaining), seekCurrent)
return tpl.Protocol
}
// Skip 3 bytes of padding
reader.Seek(3, seekCurrent)
protoInfoBytesRead += 3
for i := 0; i < 2; i++ {
_, t, _ := parseNfAttrTL(reader)
protoInfoBytesRead += uint16(nl.SizeofNfattr)
switch t {
case nl.CTA_PROTO_SRC_PORT:
parseBERaw16(reader, &tpl.SrcPort)
protoInfoBytesRead += 2
case nl.CTA_PROTO_DST_PORT:
parseBERaw16(reader, &tpl.DstPort)
protoInfoBytesRead += 2
}
// Skip 2 bytes of padding
reader.Seek(2, seekCurrent)
protoInfoBytesRead += 2
}
// Skip any remaining/unknown parts of the message
bytesRemaining := protoInfoTotalLen - protoInfoBytesRead
reader.Seek(int64(bytesRemaining), seekCurrent)
return tpl.Protocol
}
func parseNfAttrTLV(r *bytes.Reader) (isNested bool, attrType, len uint16, value []byte) {
isNested, attrType, len = parseNfAttrTL(r)
value = make([]byte, len)
binary.Read(r, binary.BigEndian, &value)
return isNested, attrType, len, value
}
func parseNfAttrTL(r *bytes.Reader) (isNested bool, attrType, len uint16) {
binary.Read(r, nl.NativeEndian(), &len)
len -= nl.SizeofNfattr
binary.Read(r, nl.NativeEndian(), &attrType)
isNested = (attrType & nl.NLA_F_NESTED) == nl.NLA_F_NESTED
attrType = attrType & (nl.NLA_F_NESTED - 1)
return isNested, attrType, len
}
// skipNfAttrValue seeks `r` past attr of length `len`.
// Maintains buffer alignment.
// Returns length of the seek performed.
func skipNfAttrValue(r *bytes.Reader, len uint16) uint16 {
len = (len + nl.NLA_ALIGNTO - 1) & ^(nl.NLA_ALIGNTO - 1)
r.Seek(int64(len), seekCurrent)
return len
}
func parseBERaw16(r *bytes.Reader, v *uint16) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw32(r *bytes.Reader, v *uint32) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw64(r *bytes.Reader, v *uint64) {
binary.Read(r, binary.BigEndian, v)
}
func parseRaw32(r *bytes.Reader, v *uint32) {
binary.Read(r, nl.NativeEndian(), v)
}
func parseByteAndPacketCounters(r *bytes.Reader) (bytes, packets uint64) {
for i := 0; i < 2; i++ {
switch _, t, _ := parseNfAttrTL(r); t {
case nl.CTA_COUNTERS_BYTES:
parseBERaw64(r, &bytes)
case nl.CTA_COUNTERS_PACKETS:
parseBERaw64(r, &packets)
default:
return
}
}
return
}
// when the flow is alive, only the timestamp_start is returned in structure
func parseTimeStamp(r *bytes.Reader, readSize uint16) (tstart, tstop uint64) {
var numTimeStamps int
oneItem := nl.SizeofNfattr + 8 // 4 bytes attr header + 8 bytes timestamp
if readSize == uint16(oneItem) {
numTimeStamps = 1
} else if readSize == 2*uint16(oneItem) {
numTimeStamps = 2
} else {
return
}
for i := 0; i < numTimeStamps; i++ {
switch _, t, _ := parseNfAttrTL(r); t {
case nl.CTA_TIMESTAMP_START:
parseBERaw64(r, &tstart)
case nl.CTA_TIMESTAMP_STOP:
parseBERaw64(r, &tstop)
default:
return
}
}
return
}
func parseProtoInfoTCPState(r *bytes.Reader) (s uint8) {
binary.Read(r, binary.BigEndian, &s)
r.Seek(nl.SizeofNfattr - 1, seekCurrent)
return s
}
// parseProtoInfoTCP reads the entire nested protoinfo structure, but only parses the state attr.
func parseProtoInfoTCP(r *bytes.Reader, attrLen uint16) (*ProtoInfoTCP) {
p := new(ProtoInfoTCP)
bytesRead := 0
for bytesRead < int(attrLen) {
_, t, l := parseNfAttrTL(r)
bytesRead += nl.SizeofNfattr
switch t {
case nl.CTA_PROTOINFO_TCP_STATE:
p.State = parseProtoInfoTCPState(r)
bytesRead += nl.SizeofNfattr
default:
bytesRead += int(skipNfAttrValue(r, l))
}
}
return p
}
func parseProtoInfo(r *bytes.Reader, attrLen uint16) (p ProtoInfo) {
bytesRead := 0
for bytesRead < int(attrLen) {
_, t, l := parseNfAttrTL(r)
bytesRead += nl.SizeofNfattr
switch t {
case nl.CTA_PROTOINFO_TCP:
p = parseProtoInfoTCP(r, l)
bytesRead += int(l)
// No inner fields of DCCP / SCTP currently supported.
case nl.CTA_PROTOINFO_DCCP:
p = new(ProtoInfoDCCP)
skipped := skipNfAttrValue(r, l)
bytesRead += int(skipped)
case nl.CTA_PROTOINFO_SCTP:
p = new(ProtoInfoSCTP)
skipped := skipNfAttrValue(r, l)
bytesRead += int(skipped)
default:
skipped := skipNfAttrValue(r, l)
bytesRead += int(skipped)
}
}
return p
}
func parseTimeOut(r *bytes.Reader) (ttimeout uint32) {
parseBERaw32(r, &ttimeout)
return
}
func parseConnectionMark(r *bytes.Reader) (mark uint32) {
parseBERaw32(r, &mark)
return
}
func parseConnectionLabels(r *bytes.Reader) (label []byte) {
label = make([]byte, 16) // netfilter defines 128 bit labels value
binary.Read(r, nl.NativeEndian(), &label)
return
}
func parseConnectionZone(r *bytes.Reader) (zone uint16) {
parseBERaw16(r, &zone)
r.Seek(2, seekCurrent)
return
}
func parseRawData(data []byte) *ConntrackFlow {
s := &ConntrackFlow{}
// First there is the Nfgenmsg header
// consume only the family field
reader := bytes.NewReader(data)
binary.Read(reader, nl.NativeEndian(), &s.FamilyType)
// skip rest of the Netfilter header
reader.Seek(3, seekCurrent)
// The message structure is the following:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the forward flow
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the reverse flow
for reader.Len() > 0 {
if nested, t, l := parseNfAttrTL(reader); nested {
switch t {
case nl.CTA_TUPLE_ORIG:
if nested, t, l = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Forward)
}
case nl.CTA_TUPLE_REPLY:
if nested, t, l = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Reverse)
} else {
// Header not recognized skip it
skipNfAttrValue(reader, l)
}
case nl.CTA_COUNTERS_ORIG:
s.Forward.Bytes, s.Forward.Packets = parseByteAndPacketCounters(reader)
case nl.CTA_COUNTERS_REPLY:
s.Reverse.Bytes, s.Reverse.Packets = parseByteAndPacketCounters(reader)
case nl.CTA_TIMESTAMP:
s.TimeStart, s.TimeStop = parseTimeStamp(reader, l)
case nl.CTA_PROTOINFO:
s.ProtoInfo = parseProtoInfo(reader, l)
default:
skipNfAttrValue(reader, l)
}
} else {
switch t {
case nl.CTA_MARK:
s.Mark = parseConnectionMark(reader)
case nl.CTA_LABELS:
s.Labels = parseConnectionLabels(reader)
case nl.CTA_TIMEOUT:
s.TimeOut = parseTimeOut(reader)
case nl.CTA_ID, nl.CTA_STATUS, nl.CTA_USE:
skipNfAttrValue(reader, l)
case nl.CTA_ZONE:
s.Zone = parseConnectionZone(reader)
default:
skipNfAttrValue(reader, l)
}
}
}
return s
}
// Conntrack parameters and options:
// -n, --src-nat ip source NAT ip
// -g, --dst-nat ip destination NAT ip
// -j, --any-nat ip source or destination NAT ip
// -m, --mark mark Set mark
// -c, --secmark secmark Set selinux secmark
// -e, --event-mask eventmask Event mask, eg. NEW,DESTROY
// -z, --zero Zero counters while listing
// -o, --output type[,...] Output format, eg. xml
// -l, --label label[,...] conntrack labels
// Common parameters and options:
// -s, --src, --orig-src ip Source address from original direction
// -d, --dst, --orig-dst ip Destination address from original direction
// -r, --reply-src ip Source address from reply direction
// -q, --reply-dst ip Destination address from reply direction
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
// -f, --family proto Layer 3 Protocol, eg. 'ipv6'
// -t, --timeout timeout Set timeout
// -u, --status status Set status, eg. ASSURED
// -w, --zone value Set conntrack zone
// --orig-zone value Set zone for original direction
// --reply-zone value Set zone for reply direction
// -b, --buffer-size Netlink socket buffer size
// --mask-src ip Source mask address
// --mask-dst ip Destination mask address
// Layer 4 Protocol common parameters and options:
// TCP, UDP, SCTP, UDPLite and DCCP
// --sport, --orig-port-src port Source port in original direction
// --dport, --orig-port-dst port Destination port in original direction
// Filter types
type ConntrackFilterType uint8
const (
ConntrackOrigSrcIP = iota // -orig-src ip Source address from original direction
ConntrackOrigDstIP // -orig-dst ip Destination address from original direction
ConntrackReplySrcIP // --reply-src ip Reply Source IP
ConntrackReplyDstIP // --reply-dst ip Reply Destination IP
ConntrackReplyAnyIP // Match source or destination reply IP
ConntrackOrigSrcPort // --orig-port-src port Source port in original direction
ConntrackOrigDstPort // --orig-port-dst port Destination port in original direction
ConntrackMatchLabels // --label label1,label2 Labels used in entry
ConntrackUnmatchLabels // --label label1,label2 Labels not used in entry
ConntrackNatSrcIP = ConntrackReplySrcIP // deprecated use instead ConntrackReplySrcIP
ConntrackNatDstIP = ConntrackReplyDstIP // deprecated use instead ConntrackReplyDstIP
ConntrackNatAnyIP = ConntrackReplyAnyIP // deprecated use instead ConntrackReplyAnyIP
)
type CustomConntrackFilter interface {
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches
// the filter or false otherwise
MatchConntrackFlow(flow *ConntrackFlow) bool
}
type ConntrackFilter struct {
ipNetFilter map[ConntrackFilterType]*net.IPNet
portFilter map[ConntrackFilterType]uint16
protoFilter uint8
labelFilter map[ConntrackFilterType][][]byte
zoneFilter *uint16
}
// AddIPNet adds a IP subnet to the conntrack filter
func (f *ConntrackFilter) AddIPNet(tp ConntrackFilterType, ipNet *net.IPNet) error {
if ipNet == nil {
return fmt.Errorf("Filter attribute empty")
}
if f.ipNetFilter == nil {
f.ipNetFilter = make(map[ConntrackFilterType]*net.IPNet)
}
if _, ok := f.ipNetFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.ipNetFilter[tp] = ipNet
return nil
}
// AddIP adds an IP to the conntrack filter
func (f *ConntrackFilter) AddIP(tp ConntrackFilterType, ip net.IP) error {
if ip == nil {
return fmt.Errorf("Filter attribute empty")
}
return f.AddIPNet(tp, NewIPNet(ip))
}
// AddPort adds a Port to the conntrack filter if the Layer 4 protocol allows it
func (f *ConntrackFilter) AddPort(tp ConntrackFilterType, port uint16) error {
switch f.protoFilter {
// TCP, UDP, DCCP, SCTP, UDPLite
case 6, 17, 33, 132, 136:
default:
return fmt.Errorf("Filter attribute not available without a valid Layer 4 protocol: %d", f.protoFilter)
}
if f.portFilter == nil {
f.portFilter = make(map[ConntrackFilterType]uint16)
}
if _, ok := f.portFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.portFilter[tp] = port
return nil
}
// AddProtocol adds the Layer 4 protocol to the conntrack filter
func (f *ConntrackFilter) AddProtocol(proto uint8) error {
if f.protoFilter != 0 {
return errors.New("Filter attribute already present")
}
f.protoFilter = proto
return nil
}
// AddLabels adds the provided list (zero or more) of labels to the conntrack filter
// ConntrackFilterType here can be either:
// 1. ConntrackMatchLabels: This matches every flow that has a label value (len(flow.Labels) > 0)
// against the list of provided labels. If `flow.Labels` contains ALL the provided labels
// it is considered a match. This can be used when you want to match flows that contain
// one or more labels.
// 2. ConntrackUnmatchLabels: This matches every flow that has a label value (len(flow.Labels) > 0)
// against the list of provided labels. If `flow.Labels` does NOT contain ALL the provided labels
// it is considered a match. This can be used when you want to match flows that don't contain
// one or more labels.
func (f *ConntrackFilter) AddLabels(tp ConntrackFilterType, labels [][]byte) error {
if len(labels) == 0 {
return errors.New("Invalid length for provided labels")
}
if f.labelFilter == nil {
f.labelFilter = make(map[ConntrackFilterType][][]byte)
}
if _, ok := f.labelFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.labelFilter[tp] = labels
return nil
}
// AddZone adds a zone to the conntrack filter
func (f *ConntrackFilter) AddZone(zone uint16) error {
if f.zoneFilter != nil {
return errors.New("Filter attribute already present")
}
f.zoneFilter = &zone
return nil
}
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches the filter
// false otherwise
func (f *ConntrackFilter) MatchConntrackFlow(flow *ConntrackFlow) bool {
if len(f.ipNetFilter) == 0 && len(f.portFilter) == 0 && f.protoFilter == 0 && len(f.labelFilter) == 0 && f.zoneFilter == nil {
// empty filter always not match
return false
}
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
if f.protoFilter != 0 && flow.Forward.Protocol != f.protoFilter {
// different Layer 4 protocol always not match
return false
}
// Conntrack zone filter
if f.zoneFilter != nil && *f.zoneFilter != flow.Zone {
return false
}
match := true
// IP conntrack filter
if len(f.ipNetFilter) > 0 {
// -orig-src ip Source address from original direction
if elem, found := f.ipNetFilter[ConntrackOrigSrcIP]; found {
match = match && elem.Contains(flow.Forward.SrcIP)
}
// -orig-dst ip Destination address from original direction
if elem, found := f.ipNetFilter[ConntrackOrigDstIP]; match && found {
match = match && elem.Contains(flow.Forward.DstIP)
}
// -src-nat ip Source NAT ip
if elem, found := f.ipNetFilter[ConntrackReplySrcIP]; match && found {
match = match && elem.Contains(flow.Reverse.SrcIP)
}
// -dst-nat ip Destination NAT ip
if elem, found := f.ipNetFilter[ConntrackReplyDstIP]; match && found {
match = match && elem.Contains(flow.Reverse.DstIP)
}
// Match source or destination reply IP
if elem, found := f.ipNetFilter[ConntrackReplyAnyIP]; match && found {
match = match && (elem.Contains(flow.Reverse.SrcIP) || elem.Contains(flow.Reverse.DstIP))
}
}
// Layer 4 Port filter
if len(f.portFilter) > 0 {
// -orig-port-src port Source port from original direction
if elem, found := f.portFilter[ConntrackOrigSrcPort]; match && found {
match = match && elem == flow.Forward.SrcPort
}
// -orig-port-dst port Destination port from original direction
if elem, found := f.portFilter[ConntrackOrigDstPort]; match && found {
match = match && elem == flow.Forward.DstPort
}
}
// Label filter
if len(f.labelFilter) > 0 {
if len(flow.Labels) > 0 {
// --label label1,label2 in conn entry;
// every label passed should be contained in flow.Labels for a match to be true
if elem, found := f.labelFilter[ConntrackMatchLabels]; match && found {
for _, label := range elem {
match = match && (bytes.Contains(flow.Labels, label))
}
}
// --label label1,label2 in conn entry;
// every label passed should be not contained in flow.Labels for a match to be true
if elem, found := f.labelFilter[ConntrackUnmatchLabels]; match && found {
for _, label := range elem {
match = match && !(bytes.Contains(flow.Labels, label))
}
}
} else {
// flow doesn't contain labels, so it doesn't contain or notContain any provided matches
match = false
}
}
return match
}
var _ CustomConntrackFilter = (*ConntrackFilter)(nil)