-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer.py
296 lines (248 loc) · 12.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection model trainer.
This file provides a generic training method that can be used to train a
DetectionModel.
"""
import functools
import tensorflow as tf
from object_detection.builders import optimizer_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import batcher
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import ops as util_ops
from object_detection.utils import variables_helper
from deployment import model_deploy
slim = tf.contrib.slim
def _create_input_queue(batch_size_per_clone, create_tensor_dict_fn,
batch_queue_capacity, num_batch_queue_threads,
prefetch_queue_capacity, data_augmentation_options):
"""Sets up reader, prefetcher and returns input queue.
Args:
batch_size_per_clone: batch size to use per clone.
create_tensor_dict_fn: function to create tensor dictionary.
batch_queue_capacity: maximum number of elements to store within a queue.
num_batch_queue_threads: number of threads to use for batching.
prefetch_queue_capacity: maximum capacity of the queue used to prefetch
assembled batches.
data_augmentation_options: a list of tuples, where each tuple contains a
data augmentation function and a dictionary containing arguments and their
values (see preprocessor.py).
Returns:
input queue: a batcher.BatchQueue object holding enqueued tensor_dicts
(which hold images, boxes and targets). To get a batch of tensor_dicts,
call input_queue.Dequeue().
"""
tensor_dict = create_tensor_dict_fn()
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tensor_dict[fields.InputDataFields.image], 0)
images = tensor_dict[fields.InputDataFields.image]
float_images = tf.to_float(images)
tensor_dict[fields.InputDataFields.image] = float_images
if data_augmentation_options:
tensor_dict = preprocessor.preprocess(tensor_dict,
data_augmentation_options)
input_queue = batcher.BatchQueue(
tensor_dict,
batch_size=batch_size_per_clone,
batch_queue_capacity=batch_queue_capacity,
num_batch_queue_threads=num_batch_queue_threads,
prefetch_queue_capacity=prefetch_queue_capacity)
return input_queue
def _get_inputs(input_queue, num_classes):
"""Dequeue batch and construct inputs to object detection model.
Args:
input_queue: BatchQueue object holding enqueued tensor_dicts.
num_classes: Number of classes.
Returns:
images: a list of 3-D float tensor of images.
locations_list: a list of tensors of shape [num_boxes, 4]
containing the corners of the groundtruth boxes.
classes_list: a list of padded one-hot tensors containing target classes.
masks_list: a list of 3-D float tensors of shape [num_boxes, image_height,
image_width] containing instance masks for objects if present in the
input_queue. Else returns None.
"""
read_data_list = input_queue.dequeue()
label_id_offset = 1
def extract_images_and_targets(read_data):
image = read_data[fields.InputDataFields.image]
location_gt = read_data[fields.InputDataFields.groundtruth_boxes]
classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes],
tf.int32)
classes_gt -= label_id_offset
classes_gt = util_ops.padded_one_hot_encoding(indices=classes_gt,
depth=num_classes, left_pad=0)
masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks)
return image, location_gt, classes_gt, masks_gt
return zip(*map(extract_images_and_targets, read_data_list))
def _create_losses(input_queue, create_model_fn):
"""Creates loss function for a DetectionModel.
Args:
input_queue: BatchQueue object holding enqueued tensor_dicts.
create_model_fn: A function to create the DetectionModel.
"""
detection_model = create_model_fn()
(images, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_masks_list
) = _get_inputs(input_queue, detection_model.num_classes)
images = [detection_model.preprocess(image) for image in images]
images = tf.concat(images, 0)
if any(mask is None for mask in groundtruth_masks_list):
groundtruth_masks_list = None
detection_model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list,
groundtruth_masks_list)
prediction_dict = detection_model.predict(images)
losses_dict = detection_model.loss(prediction_dict)
for loss_tensor in losses_dict.values():
tf.losses.add_loss(loss_tensor)
def train(create_tensor_dict_fn, create_model_fn, train_config, master, task,
num_clones, worker_replicas, clone_on_cpu, ps_tasks, worker_job_name,
is_chief, train_dir):
"""Training function for detection models.
Args:
create_tensor_dict_fn: a function to create a tensor input dictionary.
create_model_fn: a function that creates a DetectionModel and generates
losses.
train_config: a train_pb2.TrainConfig protobuf.
master: BNS name of the TensorFlow master to use.
task: The task id of this training instance.
num_clones: The number of clones to run per machine.
worker_replicas: The number of work replicas to train with.
clone_on_cpu: True if clones should be forced to run on CPU.
ps_tasks: Number of parameter server tasks.
worker_job_name: Name of the worker job.
is_chief: Whether this replica is the chief replica.
train_dir: Directory to write checkpoints and training summaries to.
"""
detection_model = create_model_fn()
data_augmentation_options = [
preprocessor_builder.build(step)
for step in train_config.data_augmentation_options]
with tf.Graph().as_default():
# Build a configuration specifying multi-GPU and multi-replicas.
deploy_config = model_deploy.DeploymentConfig(
num_clones=num_clones,
clone_on_cpu=clone_on_cpu,
replica_id=task,
num_replicas=worker_replicas,
num_ps_tasks=ps_tasks,
worker_job_name=worker_job_name)
# Place the global step on the device storing the variables.
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step()
with tf.device(deploy_config.inputs_device()):
input_queue = _create_input_queue(train_config.batch_size // num_clones,
create_tensor_dict_fn,
train_config.batch_queue_capacity,
train_config.num_batch_queue_threads,
train_config.prefetch_queue_capacity,
data_augmentation_options)
# Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
global_summaries = set([])
model_fn = functools.partial(_create_losses,
create_model_fn=create_model_fn)
clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
first_clone_scope = clones[0].scope
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by model_fn.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
with tf.device(deploy_config.optimizer_device()):
training_optimizer = optimizer_builder.build(train_config.optimizer,
global_summaries)
sync_optimizer = None
if train_config.sync_replicas:
training_optimizer = tf.SyncReplicasOptimizer(
training_optimizer,
replicas_to_aggregate=train_config.replicas_to_aggregate,
total_num_replicas=train_config.worker_replicas)
sync_optimizer = training_optimizer
# Create ops required to initialize the model from a given checkpoint.
init_fn = None
if train_config.fine_tune_checkpoint:
var_map = detection_model.restore_map(
from_detection_checkpoint=train_config.from_detection_checkpoint)
available_var_map = (variables_helper.
get_variables_available_in_checkpoint(
var_map, train_config.fine_tune_checkpoint))
init_saver = tf.train.Saver(available_var_map)
def initializer_fn(sess):
init_saver.restore(sess, train_config.fine_tune_checkpoint)
init_fn = initializer_fn
with tf.device(deploy_config.optimizer_device()):
total_loss, grads_and_vars = model_deploy.optimize_clones(
clones, training_optimizer, regularization_losses=None)
total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')
# Optionally multiply bias gradients by train_config.bias_grad_multiplier.
if train_config.bias_grad_multiplier:
biases_regex_list = ['.*/biases']
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
grads_and_vars,
biases_regex_list,
multiplier=train_config.bias_grad_multiplier)
# Optionally freeze some layers by setting their gradients to be zero.
if train_config.freeze_variables:
grads_and_vars = variables_helper.freeze_gradients_matching_regex(
grads_and_vars, train_config.freeze_variables)
# Optionally clip gradients
if train_config.gradient_clipping_by_norm > 0:
with tf.name_scope('clip_grads'):
grads_and_vars = slim.learning.clip_gradient_norms(
grads_and_vars, train_config.gradient_clipping_by_norm)
# Create gradient updates.
grad_updates = training_optimizer.apply_gradients(grads_and_vars,
global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops)
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(total_loss, name='train_op')
# Add summaries.
for model_var in slim.get_model_variables():
global_summaries.add(tf.summary.histogram(model_var.op.name, model_var))
for loss_tensor in tf.losses.get_losses():
global_summaries.add(tf.summary.scalar(loss_tensor.op.name, loss_tensor))
global_summaries.add(
tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone_scope))
summaries |= global_summaries
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries), name='summary_op')
# Soft placement allows placing on CPU ops without GPU implementation.
session_config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
# Save checkpoints regularly.
keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
saver = tf.train.Saver(
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
slim.learning.train(
train_tensor,
logdir=train_dir,
master=master,
is_chief=is_chief,
session_config=session_config,
startup_delay_steps=train_config.startup_delay_steps,
init_fn=init_fn,
summary_op=summary_op,
number_of_steps=(
train_config.num_steps if train_config.num_steps else None),
save_summaries_secs=120,
sync_optimizer=sync_optimizer,
saver=saver)