-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdataloader.py
executable file
·342 lines (300 loc) · 14.2 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from __future__ import print_function, division
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.autograd import Variable
from utils import read_txt, read_csv, padding, read_csv_complete, get_AD_risk
import random
import copy
import matplotlib.pyplot as plt
"""
to do list:
1. to make the dataloader work, create shuffled filename.txt and label.txt
2. save different version for MRI scans: clip or background remove
3. for those 82 cases, 1.5T has inconsistency between data/datasets/ADNI and /data/MRI_GAN/
4. in filename.txt maybe put complete path of data, no need to assign data_dir
"""
class Augment:
def __init__(self):
self.contrast_factor = 0.2
self.bright_factor = 0.4
self.sig_factor = 0.2
def change_contrast(self, image):
ratio = 1 + (random.random() - 0.5)*self.contrast_factor
return image.mean() + ratio*(image - image.mean())
def change_brightness(self, image):
val = (random.random() - 0.5)*self.bright_factor
return image + val
def add_noise(self, image):
sig = random.random() * self.sig_factor
return np.random.normal(0, sig, image.shape) + image
def apply(self, image):
image = self.change_contrast(image)
image = self.change_brightness(image)
image = self.add_noise(image)
return image
class Data(Dataset):
"""
txt files ./lookuptxt/*.txt complete path of MRIs
MRI with clip and backremove: /data/datasets/ADNI_NoBack/*.npy
"""
def __init__(self, Data_dir, class1, class2, stage, ratio=(0.6, 0.2, 0.2), seed=1000, shuffle=True):
random.seed(seed)
self.Data_dir = Data_dir
if 'AIBL' in Data_dir:
self.Data_list, self.Label_list = read_csv('./lookupcsv/{}.csv'.format('AIBL'))
self.Data_list = [d+'.npy' for d in self.Data_list]
else:
Data_list0 = read_txt('./lookuptxt/', class1 + '.txt')
Data_list1 = read_txt('./lookuptxt/', class2 + '.txt')
self.Data_list = Data_list0 + Data_list1
self.Label_list = [0]*len(Data_list0) + [1]*len(Data_list1)
self.stage = stage
self.length = len(self.Data_list)
idxs = list(range(self.length))
if shuffle:
random.shuffle(idxs)
split1, split2 = int(self.length*ratio[0]), int(self.length*(ratio[0]+ratio[1]))
if self.stage == 'train':
self.index_list = idxs[:split1]
elif self.stage == 'valid':
self.index_list = idxs[split1:split2]
elif self.stage == 'test':
self.index_list = idxs[split2:]
elif self.stage == 'all':
self.index_list = idxs
else:
raise ValueError('invalid stage setting')
def __len__(self):
return len(self.index_list)
def __getitem__(self, idx):
index = self.index_list[idx]
label = self.Label_list[index]
data = np.load(self.Data_dir + self.Data_list[index]).astype(np.float32)
data = np.expand_dims(data, axis=0)
return data, label
def get_sample_weights(self):
labels = []
for idx in self.index_list:
labels.append(self.Label_list[idx])
weights = []
count, count0, count1 = float(len(labels)), float(labels.count(0)), float(labels.count(1))
weights = [count/count0 if i == 0 else count/count1 for i in labels]
return weights, count0 / count1
class CNN_Data(Dataset):
"""
csv files ./lookuptxt/*.csv contains MRI filenames along with demographic and diagnosis information
"""
def __init__(self, Data_dir, exp_idx, stage, seed=1000):
random.seed(seed)
self.Data_dir = Data_dir
if stage in ['train', 'valid', 'test', 'valid_patch']:
self.Data_list, self.Label_list = read_csv('./lookupcsv/exp{}/{}.csv'.format(exp_idx, stage.replace('_patch', '')))
elif stage in ['ADNI', 'NACC', 'AIBL']:
self.Data_list, self.Label_list = read_csv('./lookupcsv/{}.csv'.format(stage))
def __len__(self):
return len(self.Data_list)
def get_filenames(self):
return [i +'.npy' for i in self.Data_list]
def __getitem__(self, idx):
label = self.Label_list[idx]
data = np.load(self.Data_dir + self.Data_list[idx] + '.npy').astype(np.float32)
data = np.expand_dims(data, axis=0)
return data, label
def get_sample_weights(self):
count, count0, count1 = float(len(self.Label_list)), float(self.Label_list.count(0)), float(self.Label_list.count(1))
weights = [count / count0 if i == 0 else count / count1 for i in self.Label_list]
return weights, count0 / count1
class FCN_Data(CNN_Data):
def __init__(self, Data_dir, exp_idx, stage, transform=None, whole_volume=False, seed=1000, patch_size=47):
CNN_Data.__init__(self, Data_dir, exp_idx, stage, seed)
self.stage = stage
self.transform = transform
self.whole = whole_volume
self.patch_size = patch_size
self.patch_sampler = PatchGenerator(patch_size=self.patch_size)
self.cache = []
def __getitem__(self, idx):
if self.whole:
data = np.load(self.Data_dir + self.Data_list[idx] + '.npy').astype(np.float32)
data = np.expand_dims(padding(data, win_size=self.patch_size // 2), axis=0)
label = self.Label_list[idx]
return data, label
elif self.stage == 'valid_patch' and len(self.cache) == len(self.Label_list):
return self.cache[idx]
elif self.stage == 'valid_patch':
label = self.Label_list[idx]
data = np.load(self.Data_dir + self.Data_list[idx] + '.npy', mmap_mode='r').astype(np.float32)
array_list = []
patch_locs = [[25, 90, 30], [115, 90, 30], [67, 90, 90], [67, 45, 60], [67, 135, 60]]
for i, loc in enumerate(patch_locs):
x, y, z = loc
patch = data[x:x+47, y:y+47, z:z+47]
array_list.append(np.expand_dims(patch, axis = 0))
data = Variable(torch.FloatTensor(np.stack(array_list, axis = 0)))
label = Variable(torch.LongTensor([label]*5))
self.cache.append((data, label))
return data, label
elif self.stage == 'train':
label = self.Label_list[idx]
data = np.load(self.Data_dir + self.Data_list[idx] + '.npy', mmap_mode='r').astype(np.float32)
patch = self.patch_sampler.random_sample(data)
if self.transform:
patch = self.transform.apply(patch).astype(np.float32)
patch = np.expand_dims(patch, axis=0)
return patch, label
class PatchGenerator:
def __init__(self, patch_size):
self.patch_size = patch_size
def random_sample(self, data1, data2=None):
"""sample random patch from numpy array data"""
X, Y, Z = data1.shape
x = random.randint(0, X-self.patch_size)
y = random.randint(0, Y-self.patch_size)
z = random.randint(0, Z-self.patch_size)
if data2 is None:
return data1[x:x+self.patch_size, y:y+self.patch_size, z:z+self.patch_size]
return data1[x:x+self.patch_size, y:y+self.patch_size, z:z+self.patch_size], \
data2[x:x+self.patch_size, y:y+self.patch_size, z:z+self.patch_size]
def fixed_sample(self, data):
"""sample patch from fixed locations"""
patches = []
patch_locs = [[25, 90, 30], [115, 90, 30], [67, 90, 90], [67, 45, 60], [67, 135, 60]]
for i, loc in enumerate(patch_locs):
x, y, z = loc
patch = data[x:x+47, y:y+47, z:z+47]
patches.append(np.expand_dims(patch, axis = 0))
return patches
class GAN_Data(Dataset):
def __init__(self, Data_dir, stage, ratio=(0.6, 0.2, 0.2), seed=1000):
random.seed(seed)
self.Data_dir = Data_dir
Data_list0 = read_txt('./lookuptxt/', 'ADNI_1.5T_GAN_NL.txt')
Data_list1 = read_txt('./lookuptxt/', 'ADNI_1.5T_GAN_MCI.txt')
Data_list2 = read_txt('./lookuptxt/', 'ADNI_1.5T_GAN_AD.txt')
Data_list3 = read_txt('./lookuptxt/', 'ADNI_3T_NL.txt')
Data_list4 = read_txt('./lookuptxt/', 'ADNI_3T_MCI.txt')
Data_list5 = read_txt('./lookuptxt/', 'ADNI_3T_AD.txt')
self.Data_list_lo = Data_list0 + Data_list2 + Data_list1
self.Data_list_hi = Data_list3 + Data_list5 + Data_list4
self.Label_list = [0]*len(Data_list0) + [1]*len(Data_list2) + [2]*len(Data_list1)
self.stage = stage
self.length = len(self.Data_list_lo)
self.patchsampler = PatchGenerator(patch_size = 47)
idxs = list(range(self.length))
random.shuffle(idxs)
split1, split2 = int(self.length*ratio[0]), int(self.length*(ratio[0]+ratio[1]))
if self.stage == 'train_p':
self.index_list = idxs[:split1]
elif self.stage == 'train_w':
self.index_list = idxs[:split1]
elif self.stage == 'valid':
self.index_list = idxs[split1:split2]
elif self.stage == 'test':
self.index_list = idxs[split2:]
elif self.stage == 'all':
self.index_list = idxs
else:
raise ValueError('invalid stage setting')
def get_filenames(self):
return [self.Data_list_hi[idx] for idx in self.index_list], [self.Data_list_lo[idx] for idx in self.index_list]
def __len__(self):
return len(self.index_list)
def __getitem__(self, idx):
index = self.index_list[idx]
data_lo = np.load(self.Data_dir + self.Data_list_lo[index], mmap_mode='r').astype(np.float32)
data_hi = np.load(self.Data_dir + self.Data_list_hi[index], mmap_mode='r').astype(np.float32)
if self.stage == 'train_p':
patch_lo, patch_hi = self.patchsampler.random_sample(data_lo, data_hi)
return np.expand_dims(patch_lo, axis=0), np.expand_dims(patch_hi, axis=0)
elif self.stage == 'train_w':
return np.expand_dims(data_lo[:,:,:], axis=0), self.Label_list[index]
else:
return np.expand_dims(data_lo[:,:,:], axis=0), np.expand_dims(data_hi[:,:,:], axis=0), self.Label_list[index]
class MLP_Data(Dataset):
def __init__(self, Data_dir, exp_idx, stage, roi_threshold, roi_count, choice, seed=1000):
random.seed(seed)
self.exp_idx = exp_idx
self.Data_dir = Data_dir
self.roi_threshold = roi_threshold
self.roi_count = roi_count
if choice == 'count':
self.select_roi_count()
else:
self.select_roi_thres()
if stage in ['train', 'valid', 'test']:
self.path = './lookupcsv/exp{}/{}.csv'.format(exp_idx, stage)
else:
self.path = './lookupcsv/{}.csv'.format(stage)
self.Data_list, self.Label_list, self.demor_list = read_csv_complete(self.path)
self.risk_list = [get_AD_risk(np.load(Data_dir+filename+'.npy'))[self.roi] for filename in self.Data_list]
self.in_size = self.risk_list[0].shape[0]
def select_roi_thres(self):
self.roi = np.load(self.Data_dir + 'train_MCC.npy')
self.roi = self.roi > self.roi_threshold
for i in range(self.roi.shape[0]):
for j in range(self.roi.shape[1]):
for k in range(self.roi.shape[2]):
if i%3!=0 or j%2!=0 or k%3!=0:
self.roi[i,j,k] = False
def select_roi_count(self):
self.roi = np.load(self.Data_dir + 'train_MCC.npy')
tmp = []
for i in range(self.roi.shape[0]):
for j in range(self.roi.shape[1]):
for k in range(self.roi.shape[2]):
if i%3!=0 or j%2!=0 or k%3!=0: continue
tmp.append((self.roi[i,j,k], i, j, k))
tmp.sort()
tmp = tmp[-self.roi_count:]
self.roi = self.roi != self.roi
for _, i, j, k in tmp:
self.roi[i,j,k] = True
def __len__(self):
return len(self.Data_list)
def __getitem__(self, idx):
label = self.Label_list[idx]
risk = self.risk_list[idx]
demor = self.demor_list[idx]
return risk, label, np.asarray(demor).astype(np.float32)
def get_sample_weights(self):
count, count0, count1 = float(len(self.Label_list)), float(self.Label_list.count(0)), float(self.Label_list.count(1))
weights = [count / count0 if i == 0 else count / count1 for i in self.Label_list]
return weights, count0 / count1
if __name__ == "__main__":
transform = Augment()
dataset = FCN_Data(Data_dir='/data/datasets/ADNI_NoBack/', exp_idx=0, stage='train', transform=None)
dataset = CNN_Data(Data_dir='/data/datasets/ADNI_NoBack/', exp_idx=0, stage='train')
train_dataloader = DataLoader(dataset, batch_size=1)
for scan1, label in train_dataloader:
print(scan1.shape)
# scan1 = scan1.data.squeeze().numpy()
# plt.imshow(scan1[20, :, :], cmap='gray', vmin=-1, vmax=2.5)
# plt.show()
# dataset = GAN_Data(Data_dir='/data/datasets/ADNI_NoBack/', stage='train_w')
# sample_weight = dataset.get_sample_weights()
# sampler = torch.utils.data.sampler.WeightedRandomSampler(sample_weight, len(sample_weight))
# train_w_dataloader = DataLoader(dataset, batch_size=3, sampler=sampler)
# for scan1, scan2, label in train_w_dataloader:
# print(label)
# dataloader = DataLoader(dataset, batch_size=10)
# for scan1, scan2, label in dataloader:
# print(scan1.shape, scan2.shape, label.shape)
# numpy_label = label.numpy()
# index = torch.LongTensor(np.argwhere(numpy_label!=2).squeeze())
# print(label, index)
# selected_scan = torch.index_select(scan1, 0, index)
# selected_label = torch.index_select(label, 0, index)
# print(selected_scan.shape, selected_label)
# dataset = Data(Data_dir='/data/datasets/ADNI_NoBack/', class1='ADNI_1.5T_GAN_NL', class2='ADNI_1.5T_GAN_AD', stage='train')
# labels = []
# print(dataset.get_sample_weights())
# for i in range(len(dataset)):
# scan, label = dataset[i]
# labels.append(label)
# print(labels)
# dataloader = DataLoader(dataset, batch_size=10, shuffle=True, drop_last=True)
# for scan, label in dataloader:
# print(scan.shape, label)