-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathContents.m
67 lines (67 loc) · 3.86 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
% AutoNN - Table of Contents
%
% Examples
% examples/minimal - Directory with minimal examples: regression and LSTM (start here)
% examples/cnn - Directory with CNN examples: ImageNet, CIFAR-10, MNIST and custom data
% examples/rnn - Directory with RNN/LSTM language model example on Shakespeare text
%
% Base classes
% Layer - Main building block for defining new networks
% Net - Compiled network that can be evaluated on data
% Input - Defines a network input (such as images or labels)
% Param - Defines a learnable network parameter
% Selector - Selects a single output of a multiple-outputs layer
% Var - Defines a network variable explicitly
%
% Training classes and packages
% models - Standard models package (e.g. AlexNet, VGG)
% solvers - Solvers package (e.g. SGD, Adam)
% datasets - Standard/custom datasets package (e.g. CIFAR-10)
% Stats - Aggregation and plotting of training statistics
%
% Extra CNN blocks (in addition to MatConvNet's)
% vl_nnlstm - Long Short-Term Memory cell (LSTM)
% vl_nnlstm_params - Initialize the learnable parameters for an LSTM
% vl_nnaffinegrid - Affine grid generator for Spatial Transformer Networks
% vl_nnmaxout - CNN maxout operator
% vl_nnmask - CNN dropout mask generator
% For - Differentiable For-loop or recursion, with dynamic iteration count
% While - Differentiable While-loop or recursion, with dynamic stop condition
%
% Layer methods
% display - Display layer information
% find - Searches for layers that meet the specified criteria
% deepCopy - Copies a network or subnetwork, optionally sharing some layers
% evalOutputSize - Computes output size of a layer
% plotPDF - Displays the network topology in a PDF
% workspaceNames - Sets names of unnamed layers based on the current workspace
% sequentialNames - Sets names of all unnamed layers based on type and order
%
% Layer overloaded methods
% Operators - Many functions and operators are overloaded, see: methods('Layer')
% MatConvNet layers - All MatConvNet layer functions are overloaded, see: methods('Layer')
% vl_nnconv - Additional options for vl_nnconv (CNN convolution)
% vl_nnconvt - Additional options for vl_nnconvt (CNN deconvolution)
% vl_nnbnorm - Additional options for vl_nnbnorm (CNN batch normalisation)
% vl_nndropout - Additional options for vl_nndropout (CNN dropout)
% eq - Overloaded equality operator, or test for Layer instance equality
%
% Layer static methods
% fromDagNN - Converts a DagNN object to the AutoNN framework
% fromCompiledNet - Decompiles a Net back into Layer objects
% fromFunction - Generator for new custom layer type
% create - Creates a layer from a function handle and arguments
%
% Net methods
% eval - Network evaluation, including backpropagation to compute derivatives
% displayVars - Display table with information on variables and derivatives
% getVarsInfo - Retrieves network variables information as a struct
% plotDiagnostics - Creates or updates diagnostics plot
% setParameterServer - Sets up a parameter server for multi-GPU training
%
% Utilities
% setup_autonn - Sets up AutoNN, by adding its folders to the Matlab path
% cnn_benchmark - Times execution of AutoNN and DagNN models
% vl_argparsepos - Parse list of param.-value pairs, with positional arguments
% vl_parseprop - Parses name-value pairs list to override properties of object
% dynamic_subplot - Dynamically reflowing subplots, to maintain aspect ratio