-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathagent.py
486 lines (395 loc) · 19.1 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import numpy as np
import random
import pickle
import copy
import time
from collections import namedtuple, deque
import pandas as pd
from model import QNetwork
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = 100000 # replay buffer size
BATCH_SIZE = 1024 # minibatch size
GAMMA = 0.99 # discount factor
LR = 0.00005 # learning rate
TAU = 0.001 # for soft update of target parameters
base_dir = './data/'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
""" Interacts with and learns from the environment """
def __init__(self, state_size = 4*4, action_size = 4, seed = 42,
fc1_units=256, fc2_units=256, fc3_units=256,
buffer_size = BUFFER_SIZE, batch_size = BATCH_SIZE,
lr = LR, use_expected_rewards = True, predict_steps = 2,
gamma = GAMMA, tau = TAU):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
fc*_units (int): size of the respective layer
buffer_size (int): number of steps to save in replay buffer
batch_size (int): self-explanatory
lr (float): learning rate
use_expected_rewards (bool): whether to predict the weighted sum of future rewards or just for current step
predict_steps (int): for how many steps to predict the expected rewards
"""
TAU = tau
GAMMA = gamma
self.state_size = state_size
self.action_size = action_size
self.seed = seed
random.seed(seed)
np.random.seed(seed)
self.batch_size = batch_size
self.losses = []
self.use_expected_rewards = use_expected_rewards
self.current_iteration = 0
# Game scores
self.scores_list = []
self.last_n_scores = deque(maxlen=50)
self.mean_scores = []
self.max_score = 0
self.min_score = 1000
self.best_score_board = []
# Rewards
self.total_rewards_list = []
self.last_n_total_rewards = deque(maxlen=50)
self.mean_total_rewards = []
self.max_total_reward = 0
self.best_reward_board = []
# Max cell value on game board
self.max_vals_list = []
self.last_n_vals = deque(maxlen=50)
self.mean_vals = []
self.max_val = 0
self.best_val_board = []
# Number of steps per episode
self.max_steps_list = []
self.last_n_steps = deque(maxlen=50)
self.mean_steps = []
self.max_steps = 0
self.total_steps = 0
self.best_steps_board = []
self.actions_avg_list = []
self.actions_deque = {
0:deque(maxlen=50),
1:deque(maxlen=50),
2:deque(maxlen=50),
3:deque(maxlen=50)
}
# Q-Network
self.qnetwork_local = QNetwork(state_size, action_size, seed, fc1_units=fc1_units, fc2_units=fc2_units, fc3_units = fc3_units).to(device)
self.qnetwork_target = QNetwork(state_size, action_size, seed, fc1_units=fc1_units, fc2_units=fc2_units, fc3_units = fc3_units).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=lr)
lr_s = lambda epoch: 0.998 ** (epoch % 1000) if epoch < 100000 else 0.999 ** (epoch % 1000)
self.lr_decay = optim.lr_scheduler.StepLR(self.optimizer, 1000, 0.9999)
# Replay buffer
self.memory = ReplayBuffer(action_size, buffer_size, batch_size, seed)
# Initialize time step
self.t_step = 0
self.steps_ahead = predict_steps
def save(self, name):
"""Saves the state of the model and stats
Params
======
name (str): name of the agent version used in dqn function
"""
torch.save(self.qnetwork_local.state_dict(), base_dir+'/network_local_%s.pth' % name)
torch.save(self.qnetwork_target.state_dict(), base_dir+'/network_target_%s.pth' % name)
torch.save(self.optimizer.state_dict(), base_dir+'/optimizer_%s.pth' % name)
torch.save(self.lr_decay.state_dict(), base_dir+'/lr_schd_%s.pth' % name)
state = {
'state_size': self.state_size,
'action_size': self.action_size,
'seed': self.seed,
'batch_size': self.batch_size,
'losses': self.losses,
'use_expected_rewards': self.use_expected_rewards,
'current_iteration': self.current_iteration,
# Game scores
'scores_list': self.scores_list,
'last_n_scores': self.last_n_scores,
'mean_scores': self.mean_scores,
'max_score': self.max_score,
'min_score': self.min_score,
'best_score_board': self.best_score_board,
# Rewards
'total_rewards_list': self.total_rewards_list,
'last_n_total_rewards': self.last_n_total_rewards,
'mean_total_rewards': self.mean_total_rewards,
'max_total_reward': self.max_total_reward,
'best_reward_board': self.best_reward_board,
# Max cell value on game board
'max_vals_list': self.max_vals_list,
'last_n_vals': self.last_n_vals,
'mean_vals': self.mean_vals,
'max_val': self.max_val,
'best_val_board': self.best_val_board,
# Number of steps per episode
'max_steps_list': self.max_steps_list,
'last_n_steps': self.last_n_steps,
'mean_steps': self.mean_steps,
'max_steps': self.max_steps,
'total_steps': self.total_steps,
'best_steps_board': self.best_steps_board,
'actions_avg_list': self.actions_avg_list,
'actions_deque': self.actions_deque,
# Replay buffer
'memory': self.memory.dump(),
# Initialize time step
't_step': self.t_step,
'steps_ahead': self.steps_ahead
}
with open(base_dir+'/agent_state_%s.pkl' % name, 'wb') as f:
pickle.dump(state, f)
def load(self, name):
"""Saves the state of the model and stats
Params
======
name (str): name of the agent version used in dqn function
"""
self.qnetwork_local.load_state_dict(torch.load(base_dir+'/network_local_%s.pth' % name))
self.qnetwork_target.load_state_dict(torch.load(base_dir+'/network_target_%s.pth' % name))
self.optimizer.load_state_dict(torch.load(base_dir + '/optimizer_%s.pth' % name))
self.lr_decay.load_state_dict(torch.load(base_dir + '/lr_schd_%s.pth' % name))
with open(base_dir+'/agent_state_%s.pkl' % name, 'rb') as f:
state = pickle.load(f)
self.state_size = state['state_size']
self.action_size = state['action_size']
self.seed = state['seed']
random.seed(self.seed)
np.random.seed(self.seed)
self.batch_size = state['batch_size']
self.losses = state['losses']
self.use_expected_rewards = state['use_expected_rewards']
self.current_iteration = state['current_iteration']
# Game scores
self.scores_list = state['scores_list']
self.last_n_scores = state['last_n_scores']
self.mean_scores = state['mean_scores']
self.max_score = state['max_score']
self.min_score = state['min_score'] if 'min_score' in state.keys() else state['max_score']
self.best_score_board = state['best_score_board']
# Rewards
self.total_rewards_list = state['total_rewards_list']
self.last_n_total_rewards = state['last_n_total_rewards']
self.mean_total_rewards = state['mean_total_rewards']
self.max_total_reward = state['max_total_reward']
self.best_reward_board = state['best_reward_board']
# Max cell value on game board
self.max_vals_list = state['max_vals_list']
self.last_n_vals = state['last_n_vals']
self.mean_vals = state['mean_vals']
self.max_val = state['max_val']
self.best_val_board = state['best_val_board']
# Number of steps per episode
self.max_steps_list = state['max_steps_list']
self.last_n_steps = state['last_n_steps']
self.mean_steps = state['mean_steps']
self.max_steps = state['max_steps']
self.total_steps = state['total_steps']
self.best_steps_board = state['best_steps_board']
self.actions_avg_list = state['actions_avg_list']
self.actions_deque = state['actions_deque']
# Replay buffer
self.memory.load(state['memory'])
# Initialize time step
self.t_step = state['t_step']
self.steps_ahead = state['steps_ahead']
def step(self, state, action, reward, next_state, done, error, action_dist):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done, error, action_dist, None)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
return action_values.cpu().data.numpy()
def learn(self, learn_iterations, mode = 'board_max', save_loss = True, gamma = GAMMA, weight = None):
if self.use_expected_rewards:
self.memory.calc_expected_rewards(self.steps_ahead, weight)
self.memory.add_episode_experiences()
losses = []
if len(self.memory) > self.batch_size:
if learn_iterations is None:
learn_iterations = self.learn_iterations
for i in range(learn_iterations):
states, actions, rewards, next_states, dones = self.memory.sample(mode=mode)
# Get expected Q values from local model
Q_expected = self.qnetwork_local(states).gather(1, actions)
# Compute loss
loss = F.mse_loss(Q_expected, rewards)
losses.append(loss.detach().numpy())
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.lr_decay.step()
if save_loss:
self.losses.append(np.mean(losses))
else:
self.losses.append(0)
def soft_update(self, local_model, target_model, tau):
"""NOT USED ANYMORE
Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.episode_memory = []
self.batch_size = batch_size
self.seed = random.seed(seed)
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done", "error", "action_dist", "weight"])
self.geomspaces = [np.geomspace(1., 0.5, i) for i in range(1, 10)]
def dump(self):
# Saves the buffer into dict object
d = {
'action_size': self.action_size,
'batch_size': self.batch_size,
'seed': self.seed,
'geomspaces': self.geomspaces
}
d['memory'] = [d._asdict() for d in self.memory]
return d
def load(self, d):
# creates a new buffer from dict
self.action_size = d['action_size']
self.batch_size = d['batch_size']
self.seed = d['seed']
self.geomspaces = d['geomspaces']
for e in d['memory']:
self.memory.append(self.experience(**e))
def reset_episode_memory(self):
self.episode_memory = []
def add(self, state, action, reward, next_state, done, error, action_dist, weight = None):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done, error, action_dist, weight)
self.episode_memory.append(e)
def add_episode_experiences(self):
self.memory.extend(self.episode_memory)
self.reset_episode_memory()
def calc_expected_rewards(self, steps_ahead = 1, weight = None):
rewards = [e.reward for e in self.episode_memory if e is not None]
exp_rewards = [np.sum(rewards[i:i+steps_ahead] * self.geomspaces[steps_ahead-1]) for i in range(len(rewards) - steps_ahead)]
temp_memory = []
for i, e in enumerate(self.episode_memory[:-steps_ahead]):
t_e = self.experience(e.state, e.action, exp_rewards[i], e.next_state, e.done, e.error, e.action_dist, weight)
temp_memory.append(t_e)
self.episode_memory = temp_memory
def sample(self, mode='board_max'):
"""Randomly sample a batch of experiences from memory."""
if mode == 'random':
experiences = random.sample(self.memory, k=self.batch_size)
elif mode == 'board_max':
probs = np.array([e.state.max() for e in self.memory])
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'board_sum':
probs = np.array([e.state.sum() for e in self.memory])
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'reward':
# Shifting by +1 is to keep steps with 0 reward in training set, otherwise they will receive 0 probability during sampling
probs = np.array([e.reward + 1 for e in self.memory])
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'error':
probs = np.array([e.error for e in self.memory])
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'error_u':
probs = np.array([e.error for e in self.memory])
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, replace=False, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'weighted_error':
weights = np.array([e.weight for e in self.memory])
max_weight = weights.max()
sum_weight = weights.sum()
weights = np.array([(max_weight - w + 1) / (sum_weight + len(weights)) for w in weights])
probs = np.array([e.error for e in self.memory])
probs = probs * weights
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'weighted_error_reversed':
weights = np.array([e.weight for e in self.memory])
sum_weight = weights.sum()
weights = np.array([(w) / (sum_weight) for w in weights])
probs = np.array([e.error for e in self.memory])
probs = probs * weights
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'action_balanced_error':
probs = np.array([e.error * e.action_dist for e in self.memory])
probs = probs / probs.sum()
idx = np.random.choice(len(self.memory), size=self.batch_size, p=probs)
experiences = deque(maxlen=self.batch_size)
for i in idx:
experiences.append(self.memory[i])
elif mode == 'clipped_error':
t = pd.DataFrame(self.memory)
t = t[t['error'] < t['error'].quantile(0.99)]
t['probs'] = t['error'] * t['action_dist']
t['probs'] = t['probs'] / t['probs'].sum()
idx = np.random.choice(len(t), size=self.batch_size, p=t['probs'].values)
t = t.iloc[idx]
experiences = deque(maxlen=self.batch_size)
for i in list(t.itertuples(name='Experience', index=False)):
experiences.append(i)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)