We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I tried to run napari-empanada following the tutorial https://empanada.readthedocs.io/en/latest/tutorials/3d_tutorial.html#d-inference-tutorial
I installed it on windows 11 with the GPU support:
conda create -y -n empanada -c conda-forge python=3.9 conda activate empanada conda install pyqt pip install "napari[all]" conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia pip install empanada-napari=1.1.1
I started napari, started the plugin 3D inference, loaded the image Hela Cell FibSEM ( https://www.dropbox.com/s/2gu3go2puzc47ip/hela_cell_em.tif?dl=0 ) and pressed "Run 3D inference" and get the following error logs:
napari
3D inference
napari ImportError: _multiarray_umath failed to import C:\Users\u0094799\.conda\envs\empanada\lib\site-packages\torch\_subclasses\functional_tensor.py:258: UserWarning: Failed to initialize NumPy: CPU dispatcher tracer already initlized (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:84.)! Running without zarr storage directory, this may use a lot of memory! Predicting xy... 0%| | 0/256 [00:00<?, ?it/s] --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) File ~\.conda\envs\empanada\lib\site-packages\superqt\utils\_qthreading.py:613, in create_worker.<locals>.reraise(e=RuntimeError('Numpy is not available')) 612 def reraise(e): --> 613 raise e e = RuntimeError('Numpy is not available') File ~\.conda\envs\empanada\lib\site-packages\superqt\utils\_qthreading.py:175, in WorkerBase.run(self=<napari._qt.qthreading.FunctionWorker object>) 173 warnings.filterwarnings("always") 174 warnings.showwarning = lambda *w: self.warned.emit(w) --> 175 result = self.work() self = <napari._qt.qthreading.FunctionWorker object at 0x0000021E8C513940> 176 if isinstance(result, Exception): 177 if isinstance(result, RuntimeError): 178 # The Worker object has likely been deleted. 179 # A deleted wrapped C/C++ object may result in a runtime 180 # error that will cause segfault if we try to do much other 181 # than simply notify the user. File ~\.conda\envs\empanada\lib\site-packages\superqt\utils\_qthreading.py:354, in FunctionWorker.work(self=<napari._qt.qthreading.FunctionWorker object>) 353 def work(self) -> _R: --> 354 return self._func(*self._args, **self._kwargs) self._func = <function volume_inference_widget.<locals>.stack_inference at 0x0000021E28751DC0> self = <napari._qt.qthreading.FunctionWorker object at 0x0000021E8C513940> self._args = (<empanada_napari.inference.Engine3d object at 0x0000021E8C516FD0>, <class 'numpy.ndarray'> (256, 256, 256) uint8, 'xy') self._kwargs = {} File ~\.conda\envs\empanada\lib\site-packages\empanada_napari\_volume_inference.py:27, in volume_inference_widget.<locals>.stack_inference(engine=<empanada_napari.inference.Engine3d object>, volume=<class 'numpy.ndarray'> (256, 256, 256) uint8, axis_name='xy') 25 @thread_worker 26 def stack_inference(engine, volume, axis_name): ---> 27 stack, trackers = engine.infer_on_axis(volume, axis_name) volume = <class 'numpy.ndarray'> (256, 256, 256) uint8 axis_name = 'xy' engine = <empanada_napari.inference.Engine3d object at 0x0000021E8C516FD0> 28 trackers_dict = {axis_name: trackers} 29 return stack, axis_name, trackers_dict File ~\.conda\envs\empanada\lib\site-packages\empanada_napari\inference.py:513, in Engine3d.infer_on_axis(self=<empanada_napari.inference.Engine3d object>, volume=<class 'numpy.ndarray'> (256, 256, 256) uint8, axis_name='xy') 510 matcher_proc.start() 512 print(f'Predicting {axis_name}...') --> 513 for batch in tqdm(dataloader, total=len(dataloader)): dataloader = <torch.utils.data.dataloader.DataLoader object at 0x0000021E8C509A90> 514 image = batch['image'] 515 size = batch['size'] File ~\.conda\envs\empanada\lib\site-packages\tqdm\std.py:1181, in tqdm.__iter__(self=<tqdm.std.tqdm object>) 1178 time = self._time 1180 try: -> 1181 for obj in iterable: iterable = <torch.utils.data.dataloader.DataLoader object at 0x0000021E8C509A90> 1182 yield obj 1183 # Update and possibly print the progressbar. 1184 # Note: does not call self.update(1) for speed optimisation. File ~\.conda\envs\empanada\lib\site-packages\torch\utils\data\dataloader.py:630, in _BaseDataLoaderIter.__next__(self=<torch.utils.data.dataloader._SingleProcessDataLoaderIter object>) 627 if self._sampler_iter is None: 628 # TODO(https://github.com/pytorch/pytorch/issues/76750) 629 self._reset() # type: ignore[call-arg] --> 630 data = self._next_data() self = <torch.utils.data.dataloader._SingleProcessDataLoaderIter object at 0x0000021E98B7EFD0> 631 self._num_yielded += 1 632 if self._dataset_kind == _DatasetKind.Iterable and \ 633 self._IterableDataset_len_called is not None and \ 634 self._num_yielded > self._IterableDataset_len_called: File ~\.conda\envs\empanada\lib\site-packages\torch\utils\data\dataloader.py:673, in _SingleProcessDataLoaderIter._next_data(self=<torch.utils.data.dataloader._SingleProcessDataLoaderIter object>) 671 def _next_data(self): 672 index = self._next_index() # may raise StopIteration --> 673 data = self._dataset_fetcher.fetch(index) # may raise StopIteration index = [0] self = <torch.utils.data.dataloader._SingleProcessDataLoaderIter object at 0x0000021E98B7EFD0> self._dataset_fetcher = <torch.utils.data._utils.fetch._MapDatasetFetcher object at 0x0000021E98B7EFA0> 674 if self._pin_memory: 675 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) File ~\.conda\envs\empanada\lib\site-packages\torch\utils\data\_utils\fetch.py:52, in _MapDatasetFetcher.fetch(self=<torch.utils.data._utils.fetch._MapDatasetFetcher object>, possibly_batched_index=[0]) 50 data = self.dataset.__getitems__(possibly_batched_index) 51 else: ---> 52 data = [self.dataset[idx] for idx in possibly_batched_index] self = <torch.utils.data._utils.fetch._MapDatasetFetcher object at 0x0000021E98B7EFA0> self.dataset = <empanada.data.volume_dataset.VolumeDataset object at 0x0000021E8C509D30> possibly_batched_index = [0] 53 else: 54 data = self.dataset[possibly_batched_index] File ~\.conda\envs\empanada\lib\site-packages\torch\utils\data\_utils\fetch.py:52, in <listcomp>(.0=<list_iterator object>) 50 data = self.dataset.__getitems__(possibly_batched_index) 51 else: ---> 52 data = [self.dataset[idx] for idx in possibly_batched_index] self = <torch.utils.data._utils.fetch._MapDatasetFetcher object at 0x0000021E98B7EFA0> self.dataset = <empanada.data.volume_dataset.VolumeDataset object at 0x0000021E8C509D30> idx = 0 53 else: 54 data = self.dataset[possibly_batched_index] File ~\.conda\envs\empanada\lib\site-packages\empanada\data\volume_dataset.py:51, in VolumeDataset.__getitem__(self=<empanada.data.volume_dataset.VolumeDataset object>, idx=0) 48 assert (image.shape[0] * self.scale) >= h 49 assert (image.shape[1] * self.scale) >= w ---> 51 image = self.tfs(image=image)['image'] image = <class 'numpy.ndarray'> (256, 256) uint8 self = <empanada.data.volume_dataset.VolumeDataset object at 0x0000021E8C509D30> self.tfs = <empanada_napari.utils.Preprocessor object at 0x0000021E98B65670> 53 return {'index': idx, 'image': image, 'size': (h, w)} File ~\.conda\envs\empanada\lib\site-packages\empanada_napari\utils.py:163, in Preprocessor.__call__(self=<empanada_napari.utils.Preprocessor object>, image=<class 'numpy.ndarray'> (256, 256) float32) 161 max_value = np.iinfo(image.dtype).max 162 image = normalize(image, self.mean, self.std, max_pixel_value=max_value) --> 163 return {'image': to_tensor(image)} image = <class 'numpy.ndarray'> (256, 256) float32 File ~\.conda\envs\empanada\lib\site-packages\empanada_napari\utils.py:148, in to_tensor(img=<class 'numpy.ndarray'> (256, 256) float32) 146 def to_tensor(img): 147 # move channel dim from last to first --> 148 tensor = torch.from_numpy(img[None]) img = <class 'numpy.ndarray'> (256, 256) float32 149 return tensor RuntimeError: Numpy is not available
conda list >conda list # packages in environment at C:\Users\u0094799\.conda\envs\empanada: # # Name Version Build Channel alabaster 0.7.16 pypi_0 pypi albumentations 1.3.1 pypi_0 pypi alembic 1.13.3 pypi_0 pypi aniso8601 9.0.1 pypi_0 pypi annotated-types 0.7.0 pypi_0 pypi app-model 0.2.8 pypi_0 pypi appdirs 1.4.4 pypi_0 pypi asciitree 0.3.3 pypi_0 pypi asttokens 2.4.1 pypi_0 pypi attrs 24.2.0 pypi_0 pypi babel 2.16.0 pypi_0 pypi blas 1.0 mkl conda-forge blinker 1.8.2 pypi_0 pypi brotli-python 1.1.0 py39ha51f57c_2 conda-forge build 1.2.2 pypi_0 pypi bzip2 1.0.8 h2466b09_7 conda-forge ca-certificates 2024.8.30 h56e8100_0 conda-forge cachetools 5.5.0 pypi_0 pypi cachey 0.2.1 pypi_0 pypi certifi 2024.8.30 pyhd8ed1ab_0 conda-forge cffi 1.17.1 py39ha55e580_0 conda-forge charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge click 8.1.7 pypi_0 pypi cloudpickle 3.0.0 pypi_0 pypi colorama 0.4.6 pypi_0 pypi comm 0.2.2 pypi_0 pypi connected-components-3d 3.18.0 pypi_0 pypi contourpy 1.2.1 pypi_0 pypi cuda-cccl 12.6.77 0 nvidia cuda-cccl_win-64 12.6.77 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.6.77 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.6 3 nvidia cycler 0.12.1 pypi_0 pypi cztile 0.1.2 pypi_0 pypi dask 2024.8.0 pypi_0 pypi databricks-sdk 0.33.0 pypi_0 pypi debugpy 1.8.6 pypi_0 pypi decorator 5.1.1 pypi_0 pypi deprecated 1.2.14 pypi_0 pypi docker 7.1.0 pypi_0 pypi docstring-parser 0.16 pypi_0 pypi docutils 0.17.1 pypi_0 pypi empanada-dl 0.1.7 pypi_0 pypi empanada-napari 1.1.1 pypi_0 pypi et-xmlfile 1.1.0 pypi_0 pypi exceptiongroup 1.2.2 pypi_0 pypi executing 2.1.0 pypi_0 pypi fasteners 0.19 pypi_0 pypi filelock 3.16.1 pyhd8ed1ab_0 conda-forge flask 3.0.3 pypi_0 pypi flexcache 0.3 pypi_0 pypi flexparser 0.3.1 pypi_0 pypi fonttools 4.54.1 pypi_0 pypi freetype 2.12.1 hdaf720e_2 conda-forge freetype-py 2.5.1 pypi_0 pypi fsspec 2024.9.0 pypi_0 pypi gitdb 4.0.11 pypi_0 pypi gitpython 3.1.43 pypi_0 pypi glib 2.82.1 h7025463_0 conda-forge glib-tools 2.82.1 h4394cf3_0 conda-forge google-auth 2.35.0 pypi_0 pypi graphene 3.3 pypi_0 pypi graphql-core 3.2.4 pypi_0 pypi graphql-relay 3.2.0 pypi_0 pypi greenlet 3.1.1 pypi_0 pypi gst-plugins-base 1.24.7 hb0a98b8_0 conda-forge gstreamer 1.24.7 h5006eae_0 conda-forge h2 4.1.0 pyhd8ed1ab_0 conda-forge heapdict 1.0.1 pypi_0 pypi hpack 4.0.0 pyh9f0ad1d_0 conda-forge hsluv 5.0.4 pypi_0 pypi hyperframe 6.0.1 pyhd8ed1ab_0 conda-forge icu 75.1 he0c23c2_0 conda-forge idna 3.10 pyhd8ed1ab_0 conda-forge imagecodecs 2024.9.22 pypi_0 pypi imagehash 4.3.1 pypi_0 pypi imageio 2.35.1 pypi_0 pypi imagesize 1.4.1 pypi_0 pypi importlib-metadata 8.4.0 pypi_0 pypi importlib-resources 6.4.5 pypi_0 pypi in-n-out 0.2.1 pypi_0 pypi intel-openmp 2024.2.1 h57928b3_1083 conda-forge ipykernel 6.29.5 pypi_0 pypi ipython 8.18.1 pypi_0 pypi itsdangerous 2.2.0 pypi_0 pypi jedi 0.19.1 pypi_0 pypi jinja2 3.1.4 pyhd8ed1ab_0 conda-forge joblib 1.4.2 pypi_0 pypi jsonschema 4.23.0 pypi_0 pypi jsonschema-specifications 2023.12.1 pypi_0 pypi jupyter-client 8.6.3 pypi_0 pypi jupyter-core 5.7.2 pypi_0 pypi kiwisolver 1.4.7 pypi_0 pypi krb5 1.21.3 hdf4eb48_0 conda-forge lazy-loader 0.4 pypi_0 pypi lcms2 2.16 h67d730c_0 conda-forge lerc 4.0.0 h63175ca_0 conda-forge libblas 3.9.0 1_h8933c1f_netlib conda-forge libcblas 3.9.0 5_hd5c7e75_netlib conda-forge libclang13 19.1.0 default_ha5278ca_0 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand 10.3.7.77 0 nvidia libcurand-dev 10.3.7.77 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libdeflate 1.21 h2466b09_0 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libglib 2.82.1 h7025463_0 conda-forge libhwloc 2.11.1 default_h8125262_1000 conda-forge libiconv 1.17 hcfcfb64_2 conda-forge libintl 0.22.5 h5728263_3 conda-forge libintl-devel 0.22.5 h5728263_3 conda-forge libjpeg-turbo 3.0.0 hcfcfb64_1 conda-forge liblapack 3.9.0 5_hd5c7e75_netlib conda-forge libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libogg 1.3.5 h2466b09_0 conda-forge libpng 1.6.44 h3ca93ac_0 conda-forge libsqlite 3.46.1 h2466b09_0 conda-forge libtiff 4.7.0 hb151862_0 conda-forge libuv 1.49.0 h2466b09_0 conda-forge libvorbis 1.3.7 h0e60522_0 conda-forge libwebp-base 1.4.0 hcfcfb64_0 conda-forge libxcb 1.16 h013a479_1 conda-forge libxml2 2.12.7 h0f24e4e_4 conda-forge libzlib 1.3.1 h2466b09_2 conda-forge llvmlite 0.42.0 pypi_0 pypi locket 1.0.0 pypi_0 pypi m2w64-gcc-libgfortran 5.3.0 6 conda-forge m2w64-gcc-libs 5.3.0 7 conda-forge m2w64-gcc-libs-core 5.3.0 7 conda-forge m2w64-gmp 6.1.0 2 conda-forge m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge magicgui 0.9.1 pypi_0 pypi mako 1.3.5 pypi_0 pypi markdown 3.7 pypi_0 pypi markdown-it-py 3.0.0 pypi_0 pypi markupsafe 2.1.5 py39ha55e580_1 conda-forge matplotlib 3.8.4 pypi_0 pypi matplotlib-inline 0.1.7 pypi_0 pypi mdurl 0.1.2 pypi_0 pypi mkl 2023.1.0 h6a75c08_48682 conda-forge mlflow 2.16.2 pypi_0 pypi mlflow-skinny 2.16.2 pypi_0 pypi mpmath 1.3.0 pyhd8ed1ab_0 conda-forge msys2-conda-epoch 20160418 1 conda-forge napari 0.4.18 pypi_0 pypi napari-console 0.1.0 pypi_0 pypi napari-plugin-engine 0.2.0 pypi_0 pypi napari-plugin-manager 0.1.3 pypi_0 pypi napari-svg 0.2.0 pypi_0 pypi nest-asyncio 1.6.0 pypi_0 pypi networkx 3.2.1 pyhd8ed1ab_0 conda-forge npe2 0.7.7 pypi_0 pypi numba 0.59.0 pypi_0 pypi numcodecs 0.12.1 pypi_0 pypi numpy 1.22.0 pypi_0 pypi numpydoc 1.5.0 pypi_0 pypi opencv-python 4.9.0.80 pypi_0 pypi opencv-python-headless 4.9.0.80 pypi_0 pypi openjpeg 2.5.2 h3d672ee_0 conda-forge openpyxl 3.1.5 pypi_0 pypi openssl 3.3.2 h2466b09_0 conda-forge opentelemetry-api 1.27.0 pypi_0 pypi opentelemetry-sdk 1.27.0 pypi_0 pypi opentelemetry-semantic-conventions 0.48b0 pypi_0 pypi packaging 24.1 pyhd8ed1ab_0 conda-forge pandas 2.0.3 pypi_0 pypi parso 0.8.4 pypi_0 pypi partd 1.4.2 pypi_0 pypi pcre2 10.44 h3d7b363_2 conda-forge pillow 10.4.0 py39hfa8c767_1 conda-forge pint 0.24.3 pypi_0 pypi pip 24.2 pyh8b19718_1 conda-forge platformdirs 4.3.6 pypi_0 pypi ply 3.11 pyhd8ed1ab_2 conda-forge pooch 1.8.2 pypi_0 pypi prompt-toolkit 3.0.48 pypi_0 pypi protobuf 5.28.2 pypi_0 pypi psutil 6.0.0 pypi_0 pypi psygnal 0.11.1 pypi_0 pypi pthread-stubs 0.4 hcd874cb_1001 conda-forge pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge pure-eval 0.2.3 pypi_0 pypi pyarrow 17.0.0 pypi_0 pypi pyasn1 0.6.1 pypi_0 pypi pyasn1-modules 0.4.1 pypi_0 pypi pyconify 0.1.6 pypi_0 pypi pycparser 2.22 pyhd8ed1ab_0 conda-forge pydantic 1.10.18 pypi_0 pypi pydantic-compat 0.1.2 pypi_0 pypi pydantic-core 2.23.4 pypi_0 pypi pygments 2.18.0 pypi_0 pypi pyopengl 3.1.7 pypi_0 pypi pyparsing 3.1.4 pypi_0 pypi pyproject-hooks 1.2.0 pypi_0 pypi pyqt 5.15.9 py39hb77abff_5 conda-forge pyqt5-sip 12.12.2 py39h99910a6_5 conda-forge pysocks 1.7.1 pyh0701188_6 conda-forge python 3.9.20 hfaddaf0_1_cpython conda-forge python-dateutil 2.9.0.post0 pypi_0 pypi python_abi 3.9 5_cp39 conda-forge pytorch 2.4.1 py3.9_cuda11.8_cudnn9_0 pytorch pytorch-cuda 11.8 h24eeafa_5 pytorch pytorch-mutex 1.0 cuda pytorch pytz 2024.2 pypi_0 pypi pywavelets 1.4.1 pypi_0 pypi pywin32 307 pypi_0 pypi pyyaml 6.0.2 py39ha55e580_1 conda-forge pyzmq 26.2.0 pypi_0 pypi qt-main 5.15.8 h264fbc2_26 conda-forge qtconsole 5.6.0 pypi_0 pypi qtpy 2.4.1 pypi_0 pypi qudida 0.0.4 pypi_0 pypi referencing 0.35.1 pypi_0 pypi requests 2.32.3 pyhd8ed1ab_0 conda-forge rich 13.9.2 pypi_0 pypi rpds-py 0.20.0 pypi_0 pypi rsa 4.9 pypi_0 pypi scikit-image 0.22.0 pypi_0 pypi scikit-learn 1.5.2 pypi_0 pypi scipy 1.11.4 pypi_0 pypi setuptools 75.1.0 pyhd8ed1ab_0 conda-forge shellingham 1.5.4 pypi_0 pypi simpleitk 2.4.0 pypi_0 pypi sip 6.7.12 py39h99910a6_0 conda-forge six 1.16.0 pypi_0 pypi smmap 5.0.1 pypi_0 pypi snowballstemmer 2.2.0 pypi_0 pypi sphinx 4.5.0 pypi_0 pypi sphinxcontrib-applehelp 2.0.0 pypi_0 pypi sphinxcontrib-devhelp 2.0.0 pypi_0 pypi sphinxcontrib-htmlhelp 2.1.0 pypi_0 pypi sphinxcontrib-jsmath 1.0.1 pypi_0 pypi sphinxcontrib-qthelp 2.0.0 pypi_0 pypi sphinxcontrib-serializinghtml 2.0.0 pypi_0 pypi sqlalchemy 2.0.35 pypi_0 pypi sqlparse 0.5.1 pypi_0 pypi stack-data 0.6.3 pypi_0 pypi superqt 0.6.7 pypi_0 pypi sympy 1.13.3 pyh04b8f61_3 conda-forge tabulate 0.9.0 pypi_0 pypi tbb 2021.13.0 hc790b64_0 conda-forge threadpoolctl 3.5.0 pypi_0 pypi tifffile 2024.8.30 pypi_0 pypi tk 8.6.13 h5226925_1 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge tomli 2.0.2 pyhd8ed1ab_0 conda-forge tomli-w 1.0.0 pypi_0 pypi toolz 1.0.0 pypi_0 pypi torchaudio 2.4.1 pypi_0 pypi torchvision 0.19.1 pypi_0 pypi tornado 6.4.1 pypi_0 pypi tqdm 4.66.5 pypi_0 pypi traitlets 5.14.3 pypi_0 pypi triangle 20230923 pypi_0 pypi typer 0.12.5 pypi_0 pypi typing_extensions 4.12.2 pyha770c72_0 conda-forge tzdata 2024.2 pypi_0 pypi ucrt 10.0.22621.0 h57928b3_0 conda-forge urllib3 2.2.3 pyhd8ed1ab_0 conda-forge vc 14.3 h8a93ad2_21 conda-forge vc14_runtime 14.40.33810 ha82c5b3_21 conda-forge vispy 0.12.2 pypi_0 pypi vs2015_runtime 14.40.33810 h3bf8584_21 conda-forge waitress 3.0.0 pypi_0 pypi wcwidth 0.2.13 pypi_0 pypi werkzeug 3.0.4 pypi_0 pypi wheel 0.44.0 pyhd8ed1ab_0 conda-forge win_inet_pton 1.1.0 pyh7428d3b_7 conda-forge wrapt 1.16.0 pypi_0 pypi xorg-libxau 1.0.11 hcd874cb_0 conda-forge xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge xz 5.2.6 h8d14728_0 conda-forge yaml 0.2.5 h8ffe710_2 conda-forge zarr 2.17.1 pypi_0 pypi zipp 3.20.2 pypi_0 pypi zstandard 0.23.0 py39h9bf74da_1 conda-forge zstd 1.5.6 h0ea2cb4_0 conda-forge
pip list pip list Package Version ---------------------------------- ----------- alabaster 0.7.16 albumentations 1.3.1 alembic 1.13.3 aniso8601 9.0.1 annotated-types 0.7.0 app-model 0.2.8 appdirs 1.4.4 asciitree 0.3.3 asttokens 2.4.1 attrs 24.2.0 babel 2.16.0 blinker 1.8.2 Brotli 1.1.0 build 1.2.2 cachetools 5.5.0 cachey 0.2.1 certifi 2024.8.30 cffi 1.17.1 charset-normalizer 3.3.2 click 8.1.7 cloudpickle 3.0.0 colorama 0.4.6 comm 0.2.2 connected-components-3d 3.18.0 contourpy 1.2.1 cycler 0.12.1 cztile 0.1.2 dask 2024.8.0 databricks-sdk 0.33.0 debugpy 1.8.6 decorator 5.1.1 Deprecated 1.2.14 docker 7.1.0 docstring_parser 0.16 docutils 0.17.1 empanada-dl 0.1.7 empanada-napari 1.1.1 et-xmlfile 1.1.0 exceptiongroup 1.2.2 executing 2.1.0 fasteners 0.19 filelock 3.16.1 Flask 3.0.3 flexcache 0.3 flexparser 0.3.1 fonttools 4.54.1 freetype-py 2.5.1 fsspec 2024.9.0 gitdb 4.0.11 GitPython 3.1.43 google-auth 2.35.0 graphene 3.3 graphql-core 3.2.4 graphql-relay 3.2.0 greenlet 3.1.1 h2 4.1.0 HeapDict 1.0.1 hpack 4.0.0 hsluv 5.0.4 hyperframe 6.0.1 idna 3.10 imagecodecs 2024.9.22 ImageHash 4.3.1 imageio 2.35.1 imagesize 1.4.1 importlib_metadata 8.4.0 importlib_resources 6.4.5 in-n-out 0.2.1 ipykernel 6.29.5 ipython 8.18.1 itsdangerous 2.2.0 jedi 0.19.1 Jinja2 3.1.4 joblib 1.4.2 jsonschema 4.23.0 jsonschema-specifications 2023.12.1 jupyter_client 8.6.3 jupyter_core 5.7.2 kiwisolver 1.4.7 lazy_loader 0.4 llvmlite 0.42.0 locket 1.0.0 magicgui 0.9.1 Mako 1.3.5 Markdown 3.7 markdown-it-py 3.0.0 MarkupSafe 2.1.5 matplotlib 3.8.4 matplotlib-inline 0.1.7 mdurl 0.1.2 mlflow 2.16.2 mlflow-skinny 2.16.2 mpmath 1.3.0 napari 0.4.18 napari-console 0.1.0 napari-plugin-engine 0.2.0 napari-plugin-manager 0.1.3 napari-svg 0.2.0 nest-asyncio 1.6.0 networkx 3.2.1 npe2 0.7.7 numba 0.59.0 numcodecs 0.12.1 numpy 1.22.0 numpydoc 1.5.0 opencv-python 4.9.0.80 opencv-python-headless 4.9.0.80 openpyxl 3.1.5 opentelemetry-api 1.27.0 opentelemetry-sdk 1.27.0 opentelemetry-semantic-conventions 0.48b0 packaging 24.1 pandas 2.0.3 parso 0.8.4 partd 1.4.2 pillow 10.4.0 Pint 0.24.3 pip 24.2 platformdirs 4.3.6 ply 3.11 pooch 1.8.2 prompt_toolkit 3.0.48 protobuf 5.28.2 psutil 6.0.0 psygnal 0.11.1 pure_eval 0.2.3 pyarrow 17.0.0 pyasn1 0.6.1 pyasn1_modules 0.4.1 pyconify 0.1.6 pycparser 2.22 pydantic 1.10.18 pydantic-compat 0.1.2 pydantic_core 2.23.4 Pygments 2.18.0 PyOpenGL 3.1.7 pyparsing 3.1.4 pyproject_hooks 1.2.0 PyQt5 5.15.9 PyQt5-sip 12.12.2 PySocks 1.7.1 python-dateutil 2.9.0.post0 pytz 2024.2 PyWavelets 1.4.1 pywin32 307 PyYAML 6.0.2 pyzmq 26.2.0 qtconsole 5.6.0 QtPy 2.4.1 qudida 0.0.4 referencing 0.35.1 requests 2.32.3 rich 13.9.2 rpds-py 0.20.0 rsa 4.9 scikit-image 0.22.0 scikit-learn 1.5.2 scipy 1.11.4 setuptools 75.1.0 shellingham 1.5.4 SimpleITK 2.4.0 sip 6.7.12 six 1.16.0 smmap 5.0.1 snowballstemmer 2.2.0 Sphinx 4.5.0 sphinxcontrib-applehelp 2.0.0 sphinxcontrib-devhelp 2.0.0 sphinxcontrib-htmlhelp 2.1.0 sphinxcontrib-jsmath 1.0.1 sphinxcontrib-qthelp 2.0.0 sphinxcontrib-serializinghtml 2.0.0 SQLAlchemy 2.0.35 sqlparse 0.5.1 stack-data 0.6.3 superqt 0.6.7 sympy 1.13.3 tabulate 0.9.0 threadpoolctl 3.5.0 tifffile 2024.8.30 toml 0.10.2 tomli 2.0.2 tomli_w 1.0.0 toolz 1.0.0 torch 2.4.1 torchaudio 2.4.1 torchvision 0.19.1 tornado 6.4.1 tqdm 4.66.5 traitlets 5.14.3 triangle 20230923 typer 0.12.5 typing_extensions 4.12.2 tzdata 2024.2 urllib3 2.2.3 vispy 0.12.2 waitress 3.0.0 wcwidth 0.2.13 Werkzeug 3.0.4 wheel 0.44.0 win_inet_pton 1.1.0 wrapt 1.16.0 zarr 2.17.1 zipp 3.20.2 zstandard 0.23.0
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I tried to run napari-empanada following the tutorial https://empanada.readthedocs.io/en/latest/tutorials/3d_tutorial.html#d-inference-tutorial
I installed it on windows 11 with the GPU support:
conda create -y -n empanada -c conda-forge python=3.9 conda activate empanada conda install pyqt pip install "napari[all]" conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia pip install empanada-napari=1.1.1
I started
napari
, started the plugin3D inference
, loaded the image Hela Cell FibSEM ( https://www.dropbox.com/s/2gu3go2puzc47ip/hela_cell_em.tif?dl=0 ) and pressed "Run 3D inference" and get the following error logs:The text was updated successfully, but these errors were encountered: