-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
461 lines (370 loc) · 19.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import pickle
import os
import numpy as np
import os
class Time2Vec(nn.Module):
def __init__(self,vocab_size,n_embd ):
super().__init__()
self.time = nn.Embedding(vocab_size, n_embd)
def forward(self, x,word =None):
return self.time(x)
def save_embeddings(self):
return self.time.weight.detach().cpu().numpy()
def load_embeddings(self, paras):
self.time.weight = nn.Parameter(torch.from_numpy(paras).float())
def save_in_text_format(self, id2word, path, embeddings=None):
pass
class Time2Sin(nn.Module):
def __init__(self, hidden_size, fun_type = "mix", add_phase_shift = False):
super().__init__()
self.frequency_emb = nn.Parameter(torch.Tensor(hidden_size))
if add_phase_shift:
self.phase_emb = nn.Parameter(torch.Tensor(hidden_size))
self.fun_type = fun_type
self.add_phase_shift = add_phase_shift
self.hidden_size = hidden_size
def forward(self, x,word =None):
phase = x.unsqueeze(-1).float() @ self.frequency_emb.unsqueeze(0)
if self.fun_type == "mixed":
if not self.add_phase_shift:
encoded = torch.cat([torch.cos(phase[:,:self.hidden_size//2]), torch.sin(phase[:,self.hidden_size//2:])], -1)
else:
encoded = torch.cat([torch.cos(phase[:,:self.hidden_size//2]+self.phase_emb[:self.hidden_size//2]), torch.sin(phase[:,self.hidden_size//2:]+self.phase_emb[self.hidden_size//2:])], -1)
else:
if self.fun_type == "cos":
encoded = torch.cos(phase)
elif self.fun_type == "sin":
encoded = torch.sin(phase)
if self.add_phase_shift:
encoded += self.phase_emb
# print("sin used")
return encoded
def save_embeddings(self):
if self.add_phase_shift:
return self.frequency_emb.cpu().data.numpy(),self.phase_emb.cpu().data.numpy()
else:
return self.frequency_emb.cpu().data.numpy()
def load_embeddings(self, paras):
if len(paras) ==2:
self.frequency_emb.weight = nn.Parameter(torch.from_numpy(paras[0]).float())
self.phase_emb.weight = nn.Parameter(torch.from_numpy(paras[1]).float())
else:
self.frequency_emb.weight = nn.Parameter(torch.from_numpy(paras).float())
def save_in_text_format(self, id2word,path, embeddings=None):
pass
class Time2Linear(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.slope = nn.Parameter(torch.Tensor(hidden_size))
self.bias = nn.Parameter(torch.Tensor(hidden_size))
def forward(self, x,word =None):
encoded = x.unsqueeze(-1).float() @ self.slope.unsqueeze(0) + self.bias
return encoded
def save_embeddings(self):
return self.slope.cpu().data.numpy(), self.bias.cpu().data.numpy()
def load_embeddings(self, paras):
self.slope.data,self.bias.data = nn.Parameter(torch.from_numpy(paras[0]).float()),nn.Parameter(torch.from_numpy(paras[1]).float())
def save_in_text_format(self, id2word,path, embeddings=None):
pass
class WordawareEncoder(nn.Module):
def __init__(self, hidden_size,vocab_size,operator = "linear", add_phase_shift = True, add_amplitude = False, frequencies = None, dropout=0, fre_pattern ="1-10000" ):
super().__init__()
# dropout not used
self.add_phase_shift = add_phase_shift
self.para_embedding = nn.Embedding(vocab_size, hidden_size)
if add_phase_shift:
self.phase_shift_embedding = nn.Embedding(vocab_size, hidden_size)
self.operator = operator
self.hidden_size = hidden_size
self.add_amplitude = add_amplitude
if self.add_amplitude:
self.amplitude_embedding = nn.Embedding(vocab_size, hidden_size)
if operator == "mixed_fixed":
if frequencies is None:
base, divided = [int(x) for x in fre_pattern.split("-")]
print("use frequencey parttern with the base {} and the divided {}".format(base,divided))
frequencies = [base/np.power(divided,2 * (hid_ixd)/hidden_size ) for hid_ixd in range(hidden_size//2)]
assert len(frequencies) == self.hidden_size//2 , "fixed frequencies size not match"
self.frequencies = torch.nn.parameter.Parameter(torch.Tensor(frequencies),requires_grad=False)
def forward(self, _time,word ):
time = _time.unsqueeze(-1).repeat([1,self.hidden_size])
if self.operator == "linear":
return self.para_embedding(word)*time
if self.operator == "mixed_fixed":
# frequencies = self.frequencies.unsqueeze(0).repeat([word.size(0),1]) # d/2 -> b * d/2
omega = self.frequencies*(_time.unsqueeze(-1).repeat([1,self.hidden_size//2])) # (b * d/2) * (b * d/2)
if self.add_phase_shift:
init_phase = self.phase_shift_embedding(word)
phase = torch.cat([torch.cos(omega+ init_phase[:,:self.hidden_size//2]) , torch.sin(omega + init_phase[:,self.hidden_size//2:])], -1)
else:
phase = torch.cat([torch.cos(omega) , torch.sin(omega)], -1)
amplitute = self.para_embedding(word)
return amplitute * phase
phase = self.para_embedding(word)*(time.float())
if self.add_phase_shift:
phase += self.phase_shift_embedding(word)
if self.operator == "cos":
output= torch.cos(phase)
elif self.operator == "sin":
output= torch.sin(phase)
elif self.operator == "mixed":
# print("mixed with cos and sine")
output= torch.cat([torch.cos(phase[:,:self.hidden_size//2]), torch.sin(phase[:,self.hidden_size//2:])], -1)
else:
exit("not implemented")
try:
ampli = self.amplitude_embedding(word)
except:
return output
return output * ampli
def save_embeddings(self):
if not self.add_phase_shift:
return self.para_embedding.weight.detach().cpu().numpy()
else:
return self.para_embedding.weight.detach().cpu().numpy(),self.phase_shift_embedding.cpu().weight.detach().numpy()
def load_embeddings(self, paras):
if len(paras) ==2 :
self.para_embedding.weight = nn.Parameter(torch.from_numpy(paras[0]).float())
self.phase_shift_embedding.weight = nn.Parameter(torch.from_numpy(paras[1]).float())
else:
self.para_embedding.weight = nn.Parameter(torch.from_numpy(paras).float())
def load_time_machine(embedding_type, hidden_size = None, vocab_size = None,add_phase_shift = False ,dropout =0,fre_pattern ="1-10000"):
assert hidden_size != None, "hidden_size should not be not none "
print("used {}".format(embedding_type))
if embedding_type == "linear":
return Time2Linear(hidden_size)
elif embedding_type == "sin":
return Time2Sin(hidden_size,fun_type="sin",add_phase_shift=add_phase_shift)
elif embedding_type == "cos":
return Time2Sin(hidden_size,fun_type="cos",add_phase_shift=add_phase_shift)
elif embedding_type == "mixed":
return Time2Sin(hidden_size,fun_type="mixed",add_phase_shift=add_phase_shift)
elif embedding_type == "word_linear":
return WordawareEncoder(hidden_size,vocab_size, "linear",add_phase_shift=add_phase_shift, dropout = dropout)
elif embedding_type == "word_sin":
return WordawareEncoder(hidden_size,vocab_size, "sin",add_phase_shift=add_phase_shift, dropout = dropout)
elif embedding_type == "word_cos":
return WordawareEncoder(hidden_size,vocab_size, "cos",add_phase_shift=add_phase_shift, dropout = dropout)
elif embedding_type == "word_cos_amplitude":
return WordawareEncoder(hidden_size,vocab_size, "cos",add_phase_shift=add_phase_shift,add_amplitude = True, dropout = dropout)
elif embedding_type == "word_sin_amplitude":
return WordawareEncoder(hidden_size,vocab_size, "cos",add_phase_shift=add_phase_shift,add_amplitude = True, dropout = dropout)
elif embedding_type == "word_mixed":
return WordawareEncoder(hidden_size,vocab_size, "mixed",add_phase_shift=add_phase_shift, dropout = dropout)
elif embedding_type == "word_mixed_fixed":
return WordawareEncoder(hidden_size,vocab_size, "mixed_fixed",add_phase_shift=add_phase_shift, dropout = dropout,fre_pattern = fre_pattern)
elif embedding_type == "word_mixed_amplitude":
return WordawareEncoder(hidden_size, vocab_size, "mixed", add_phase_shift=add_phase_shift,add_amplitude = True, dropout = dropout)
elif embedding_type == "word_mixed_fixed_no_amplitude":
return WordawareEncoder(hidden_size, vocab_size, "word_mixed", add_phase_shift=add_phase_shift,add_amplitude = False, dropout = dropout, fre_pattern = fre_pattern)
else:
assert vocab_size != None, "vocab_size should not be none "
return Time2Vec(vocab_size,hidden_size)
class TimestampedSkipGramModel(nn.Module):
def __init__(self, emb_size, emb_dimension, time_type, add_phase_shift = False,dropout= 0,fre_pattern="1-10000", in_batch_negative = False):
super(TimestampedSkipGramModel, self).__init__()
self.emb_size = emb_size
self.emb_dimension = emb_dimension
self.in_batch_negative = in_batch_negative
self.u_embeddings = nn.Embedding(emb_size, emb_dimension)
self.v_embeddings = nn.Embedding(emb_size, emb_dimension) # sparse=True
self.add_phase_shift = add_phase_shift
self.time_encoder = load_time_machine(time_type, vocab_size = emb_size, hidden_size = emb_dimension, add_phase_shift = add_phase_shift, dropout = dropout,fre_pattern=fre_pattern )
# dropout not used
initrange = 1.0 / self.emb_dimension
init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
init.constant_(self.v_embeddings.weight.data, 0)
def forward_embedding(self,pos_u,time=None):
emb_u = self.u_embeddings(pos_u)
if time is not None:
# emb_u += self.time_encoder(time)
emb_u += self.time_encoder(time,pos_u)
return emb_u
def get_temporal_embedding(self,word,time):
return self.forward_embedding(word,time).cpu().data.numpy()
def forward(self, pos_u, pos_v, neg_v,time=None):
emb_u = self.forward_embedding(pos_u,time)
emb_v = self.v_embeddings(pos_v)
if not self.in_batch_negative:
emb_neg_v = self.v_embeddings(neg_v)
score = torch.sum(torch.mul(emb_u, emb_v), dim=1)
score = torch.clamp(score, max=10, min=-10)
score = -F.logsigmoid(score)
neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze()
neg_score = torch.clamp(neg_score, max=10, min=-10)
neg_score = -torch.mean(F.logsigmoid(-neg_score), dim=1) #-torch.sum(F.logsigmoid(-neg_score), dim=1)
else:
in_batch_score = emb_u @ emb_v.transpose(0,1)
in_batch_score = torch.clamp(in_batch_score, max=10, min=-10)
score = -F.logsigmoid(torch.diagonal(in_batch_score))
n1,n2 = in_batch_score.size()
# off_diagonal = in_batch_score.masked_select(~torch.eye(n1, dtype=bool)).view(n1, n1 - 1)
off_diagonal = in_batch_score.flatten()[1:].view(n1 - 1, n1 + 1)[:, :-1].reshape(n1, n1 - 1)
neg_score = -torch.mean(F.logsigmoid(-off_diagonal), dim=1)
return torch.mean(score + neg_score), torch.mean(score), torch.mean(neg_score)
def save_in_text_format(self, id2word, path):
embeddings = self.u_embeddings.weight.cpu().data.numpy()
return self.time_encoder.save_in_text_format(id2word,path,embeddings)
def save_embedding(self, id2word, path):
# if self.add_phase_shift:
# path = path + "_shift"
if not os.path.exists(path):
os.mkdir(path)
embedding = self.u_embeddings.weight.cpu().data.numpy()
file_name = os.path.join(path,"vectors.txt")
with open(file_name, 'w',encoding = "utf-8") as f:
f.write('%d %d\n' % (len(id2word), self.emb_dimension))
for wid, w in id2word.items():
e = ' '.join(map(lambda x: str(x), embedding[wid]))
f.write('%s %s\n' % (w, e))
pickle.dump( id2word,open("{}/dict.pkl".format(path),"wb"))
pickle.dump( self.time_encoder.save_embeddings(),open("{}/para.pkl".format(path),"wb"))
def save_dict(self,id2word,path):
if not os.path.exists(path):
os.mkdir(path)
with open(os.path.join(path,"vocab.txt"), 'w',encoding = "utf-8") as f:
for wid, w in id2word.items():
f.write('{}\t{}\n' .format(wid, w))
def read_embeddings_from_file(self,file_name):
embedding_dict = dict()
with open(file_name) as f:
for i,line in enumerate(f):
if i==0:
vocab_size,emb_dimension = [int(item) for item in line.split()]
# embeddings= np.zeros([vocab_size,emb_dimension])
else:
tokens = line.split()
word, vector = tokens[0], [float(num_str) for num_str in tokens[1:]]
embedding_dict[word] = vector
return embedding_dict
def load_embeddings(self, id2word, path):
file_name = os.path.join(path,"vectors.txt")
print("load embeddings from " + file_name)
word2id = {value:key for key,value in id2word.items()}
with open(file_name,encoding="utf-8") as f:
for i,line in enumerate(f):
if i==0:
vocab_size,emb_dimension = [int(item) for item in line.split()]
embeddings= np.zeros([vocab_size,emb_dimension])
else:
tokens = line.split()
word, vector = tokens[0], [float(num_str) for num_str in tokens[1:]]
embeddings[word2id[word]]=vector
self.u_embeddings.weight = torch.nn.Parameter(torch.from_numpy(embeddings).float())
other_embeddings_pkl = "{}/para.pkl".format(path)
a = pickle.load(open(other_embeddings_pkl,"rb"))
# print(a)
self.time_encoder.load_embeddings(a)
def get_embedding(self,id2word,word, year =None):
word2id = {value:key for key,value in id2word.items()}
id_of_word = word2id(word)
# embeddings = self.u_embeddings.weight.cpu().data.numpy()
# embed = embeddings[id_of_word]
word,time = torch.FloatTensor([word]),torch.FloatTensor([year])
emb_u = self.u_embeddings(word)
if time is not None:
# emb_u += self.time_encoder(time)
emb_u += self.time_encoder(time,emb_u)
return emb_u.cpu().data.numpy()
class DE(nn.Module):
def __init__(self, emb_size, emb_dimension, time_type,dropout= 0):
super(DE, self).__init__()
self.emb_dimension = emb_dimension
# time encoder
self.dense1 = nn.Linear(emb_dimension,emb_dimension)
self.dense2 = nn.Linear(emb_dimension, emb_dimension)
self.dense4 = nn.Linear(emb_dimension, emb_dimension)
# word encoder
self.u_embeddings = nn.Embedding(emb_size, emb_dimension*3)
self.v_embeddings = nn.Embedding(emb_size, emb_dimension*3)
self.T = nn.Parameter(torch.randn(emb_dimension,emb_dimension,emb_dimension*3))
self.B = nn.Parameter(torch.randn(emb_dimension,emb_dimension*3))
initrange = 1.0 / self.emb_dimension
init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
init.constant_(self.v_embeddings.weight.data, 0)
def word_embedding(self, pos_u,timevec =None):
emb_u = self.u_embeddings(pos_u)
trans_w = torch.einsum('ijk,bk->bij', self.T, emb_u)
h3 = torch.einsum('bij,bi->bj', trans_w, timevec)
use_w = self.dense4(h3)
return use_w
def time_encoding(self,time):
h1 = torch.tanh(self.dense1(time.unsqueeze(-1).repeat(1, self.emb_dimension).float()))
timevec = torch.tanh(self.dense2(h1))
return timevec
def forward(self, pos_u, pos_v, neg_v,time=None):
timevec = self.time_encoding(time)
use_w = self.word_embedding(pos_u,timevec)
#encoding target for postive
emb_v = self.v_embeddings(pos_v)
trans_w_v = torch.einsum('ijk,bk->bij', self.T, emb_v)
h3_v = torch.einsum('bij,bi->bj', trans_w_v, timevec)
use_c_v = self.dense4(h3_v)
# encoding targets for negative
emb_v_neg = self.v_embeddings(neg_v)
trans_w_v_neg = torch.einsum('ijk,blk->blij', self.T, emb_v_neg) # l is the numbers of nagetive samples
h3_v_neg = torch.einsum('blij,bli->blj', trans_w_v_neg, timevec.unsqueeze(-2).repeat(1,neg_v.size(1) ,1))
use_c_v_neg = self.dense4(h3_v_neg)
score = torch.sum(torch.mul(use_w, use_c_v), dim=1)
score = torch.clamp(score, max=10, min=-10)
score = -F.logsigmoid(score)
neg_score = torch.bmm(use_c_v_neg, use_w.unsqueeze(2)).squeeze()
neg_score = torch.clamp(neg_score, max=10, min=-10)
neg_score = -torch.mean(F.logsigmoid(-neg_score), dim=1) #-torch.sum(F.logsigmoid(-neg_score), dim=1)
return torch.mean(score + neg_score), torch.mean(score), torch.mean(neg_score)
def get_temporal_embedding(self,word,time):
timevec = self.time_encoding(time)
use_w = self.word_embedding(word, timevec)
return use_w.cpu().data.numpy()
def get_embedding(self,id2word,word, year =None):
word2id = {value:key for key,value in id2word.items()}
id_of_word = word2id(word)
# embeddings = self.u_embeddings.weight.cpu().data.numpy()
# embed = embeddings[id_of_word]
word,time = torch.FloatTensor([word]),torch.FloatTensor([year])
timevec = self.time_encoding(time)
use_w = self.word_embedding(word, timevec)
return use_w.cpu().data.numpy()
class SkipGramModel(nn.Module):
def __init__(self, emb_size, emb_dimension):
super(SkipGramModel, self).__init__()
self.emb_size = emb_size
self.emb_dimension = emb_dimension
self.u_embeddings = nn.Embedding(emb_size, emb_dimension) #, sparse=True
self.v_embeddings = nn.Embedding(emb_size, emb_dimension) # , sparse=True
initrange = 1.0 / self.emb_dimension
init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
init.constant_(self.v_embeddings.weight.data, 0)
def forward_embedding(self,pos_u,time=None):
emb_u = self.u_embeddings(pos_u)
return emb_u
def get_temporal_embedding(self,word,time):
return self.forward_embedding(word,time).cpu().data.numpy()
def forward(self, pos_u, pos_v, neg_v):
emb_u = self.u_embeddings(pos_u)
emb_v = self.v_embeddings(pos_v)
emb_neg_v = self.v_embeddings(neg_v)
score = torch.sum(torch.mul(emb_u, emb_v), dim=1)
score = torch.clamp(score, max=10, min=-10)
score = -F.logsigmoid(score)
neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze()
neg_score = torch.clamp(neg_score, max=10, min=-10)
neg_score = -torch.mean(F.logsigmoid(-neg_score), dim=1)
return torch.mean(score + neg_score),torch.mean(score), torch.mean(neg_score)
def save_embedding(self, id2word, path):
if not os.path.exists(path):
os.mkdir(path)
file_name = os.path.join(path,"vectors.txt")
print("save in " + file_name)
embedding = self.u_embeddings.weight.cpu().data.numpy()
with open(file_name, 'w') as f:
f.write('%d %d\n' % (len(id2word), self.emb_dimension))
for wid, w in id2word.items():
e = ' '.join(map(lambda x: str(x), embedding[wid]))
f.write('%s %s\n' % (w, e))
def load_embeddings(self, id2word, path):
print("not implemented")