-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
245 lines (197 loc) · 8.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import re
import nltk
import itertools
nltk.download('brown')
from nltk.corpus import brown
corpus = []
for cat in ['news']:
for text_id in brown.fileids(cat):
raw_text = list(itertools.chain.from_iterable(brown.sents(text_id)))
text = ' '.join(raw_text)
text = text.lower()
text.replace('\n', ' ')
text = re.sub('[^a-z ]+', '', text)
corpus.append([w for w in text.split() if w != ''])
from collections import Counter
import random, math
def subsample_frequent_words(corpus):
filtered_corpus = []
word_counts = dict(Counter(list(itertools.chain.from_iterable(corpus))))
sum_word_counts = sum(list(word_counts.values()))
word_counts = {word: word_counts[word]/float(sum_word_counts) for word in word_counts}
for text in corpus:
filtered_corpus.append([])
for word in text:
if random.random() < (1+math.sqrt(word_counts[word] * 1e3)) * 1e-3 / float(word_counts[word]):
filtered_corpus[-1].append(word)
return filtered_corpus
corpus = subsample_frequent_words(corpus)
vocabulary = set(itertools.chain.from_iterable(corpus))
word_to_index = {w: idx for (idx, w) in enumerate(vocabulary)}
index_to_word = {idx: w for (idx, w) in enumerate(vocabulary)}
import numpy as np
context_tuple_list = []
w = 4
for text in corpus:
for i, word in enumerate(text):
first_context_word_index = max(0,i-w)
last_context_word_index = min(i+w, len(text))
for j in range(first_context_word_index, last_context_word_index):
if i!=j:
context_tuple_list.append((word, text[j]))
print("There are {} pairs of target and context words".format(len(context_tuple_list)))
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.nn.functional as F
class Word2Vec(nn.Module):
def __init__(self, embedding_size, vocab_size):
super(Word2Vec, self).__init__()
self.embeddings = nn.Embedding(vocab_size, embedding_size)
self.linear = nn.Linear(embedding_size, vocab_size)
def forward(self, context_word):
emb = self.embeddings(context_word)
hidden = self.linear(emb)
out = F.log_softmax(hidden)
return out
class EarlyStopping():
def __init__(self, patience=5, min_percent_gain=0.1):
self.patience = patience
self.loss_list = []
self.min_percent_gain = min_percent_gain / 100.
def update_loss(self, loss):
self.loss_list.append(loss)
if len(self.loss_list) > self.patience:
del self.loss_list[0]
def stop_training(self):
if len(self.loss_list) == 1:
return False
gain = (max(self.loss_list) - min(self.loss_list)) / max(self.loss_list)
print("Loss gain: {}%".format(round(100*gain,2)))
if gain < self.min_percent_gain:
return True
else:
return False
vocabulary_size = len(vocabulary)
net = Word2Vec(embedding_size=2, vocab_size=vocabulary_size)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters())
early_stopping = EarlyStopping()
context_tensor_list = []
for target, context in context_tuple_list:
target_tensor = autograd.Variable(torch.LongTensor([word_to_index[target]]))
context_tensor = autograd.Variable(torch.LongTensor([word_to_index[context]]))
context_tensor_list.append((target_tensor, context_tensor))
while True:
losses = []
for target_tensor, context_tensor in context_tensor_list:
net.zero_grad()
log_probs = net(context_tensor)
loss = loss_function(log_probs, target_tensor)
loss.backward()
optimizer.step()
losses.append(loss.data)
print("Loss: ", np.mean(losses))
early_stopping.update_loss(np.mean(losses))
if early_stopping.stop_training():
break
import random
def get_batches(context_tuple_list, batch_size=100):
random.shuffle(context_tuple_list)
batches = []
batch_target, batch_context, batch_negative = [], [], []
for i in range(len(context_tuple_list)):
batch_target.append(word_to_index[context_tuple_list[i][0]])
batch_context.append(word_to_index[context_tuple_list[i][1]])
batch_negative.append([word_to_index[w] for w in context_tuple_list[i][2]])
if (i+1) % batch_size == 0 or i == len(context_tuple_list)-1:
tensor_target = autograd.Variable(torch.from_numpy(np.array(batch_target)).long())
tensor_context = autograd.Variable(torch.from_numpy(np.array(batch_context)).long())
tensor_negative = autograd.Variable(torch.from_numpy(np.array(batch_negative)).long())
batches.append((tensor_target, tensor_context, tensor_negative))
batch_target, batch_context, batch_negative = [], [], []
return batches
from numpy.random import multinomial
def sample_negative(sample_size):
sample_probability = {}
word_counts = dict(Counter(list(itertools.chain.from_iterable(corpus))))
normalizing_factor = sum([v**0.75 for v in word_counts.values()])
for word in word_counts:
sample_probability[word] = word_counts[word]**0.75 / normalizing_factor
words = np.array(list(word_counts.keys()))
while True:
word_list = []
sampled_index = np.array(multinomial(sample_size, list(sample_probability.values())))
for index, count in enumerate(sampled_index):
for _ in range(count):
word_list.append(words[index])
yield word_list
import numpy as np
context_tuple_list = []
w = 4
negative_samples = sample_negative(8)
for text in corpus:
for i, word in enumerate(text):
first_context_word_index = max(0,i-w)
last_context_word_index = min(i+w, len(text))
for j in range(first_context_word_index, last_context_word_index):
if i!=j:
context_tuple_list.append((word, text[j], next(negative_samples)))
print("There are {} pairs of target and context words".format(len(context_tuple_list)))
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.nn.functional as F
class Word2Vec(nn.Module):
def __init__(self, embedding_size, vocab_size):
super(Word2Vec, self).__init__()
self.embeddings_target = nn.Embedding(vocab_size, embedding_size)
self.embeddings_context = nn.Embedding(vocab_size, embedding_size)
def forward(self, target_word, context_word, negative_example):
emb_target = self.embeddings_target(target_word)
emb_context = self.embeddings_context(context_word)
emb_product = torch.mul(emb_target, emb_context)
emb_product = torch.sum(emb_product, dim=1)
out = torch.sum(F.logsigmoid(emb_product))
emb_negative = self.embeddings_context(negative_example)
emb_product = torch.bmm(emb_negative, emb_target.unsqueeze(2))
emb_product = torch.sum(emb_product, dim=1)
out += torch.sum(F.logsigmoid(-emb_product))
return -out
import time
vocabulary_size = len(vocabulary)
loss_function = nn.CrossEntropyLoss()
net = Word2Vec(embedding_size=200, vocab_size=vocabulary_size)
optimizer = optim.Adam(net.parameters())
early_stopping = EarlyStopping(patience=5, min_percent_gain=1)
while True:
losses = []
context_tuple_batches = get_batches(context_tuple_list, batch_size=2000)
for i in range(len(context_tuple_batches)):
net.zero_grad()
target_tensor, context_tensor, negative_tensor = context_tuple_batches[i]
loss = net(target_tensor, context_tensor, negative_tensor)
loss.backward()
optimizer.step()
losses.append(loss.data)
print("Loss: ", np.mean(losses))
early_stopping.update_loss(np.mean(losses))
if early_stopping.stop_training():
break
import numpy as np
def get_closest_word(word, topn=5):
word_distance = []
emb = net.embeddings_target
pdist = nn.PairwiseDistance()
i = word_to_index[word]
lookup_tensor_i = torch.tensor([i], dtype=torch.long)
v_i = emb(lookup_tensor_i)
for j in range(len(vocabulary)):
if j != i:
lookup_tensor_j = torch.tensor([j], dtype=torch.long)
v_j = emb(lookup_tensor_j)
word_distance.append((index_to_word[j], float(pdist(v_i, v_j))))
word_distance.sort(key=lambda x: x[1])
return word_distance[:topn]