-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
341 lines (274 loc) · 15.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AdamW,get_linear_schedule_with_warmup
from model import SkipGramModel,TimestampedSkipGramModel,DE
from data_reader import DataReader, Word2vecDataset,TimestampledWord2vecDataset
import json
import os
import argparse
import pickle
import numpy as np
# from scipy.spatial import distance
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.manifold import TSNE
from functools import wraps
import time
def log_time_delta(func):
@wraps(func)
def _deco(*args, **kwargs):
start = time.time()
ret = func(*args, **kwargs)
end = time.time()
delta = end - start
print( "Running the function {} takes {:.2f} seconds".format(func.__name__,delta))
return ret
return _deco
#word_sin word_cos word_mixed word_linear word_mixed_fixed
parser = argparse.ArgumentParser(description='parameter information')
parser.add_argument('--time_type', dest='time_type', type=str,default= "word_mixed_amplitude", help='sin cos mixed others linear, sin, word_sin,word_cos,word_linear')
parser.add_argument('--text', dest='text', type=str,default= "nyt_yao_tiny.txt.norm.dev", help='text dataset')
parser.add_argument('--use_time', dest='use_time', default= 1, type=int, help='use_time or not')
parser.add_argument('--output', dest='output', default= "word2vec" , type=str, help='output dir to save embeddings')
parser.add_argument('--log_step', dest='log_step', default= 100 , type=int, help='log_step')
parser.add_argument('--from_scatch', dest='from_scatch', default= 1 , type=int, help='from_scatch or not')
parser.add_argument('--batch_size', dest='batch_size', default= 2, type=int, help='batch_size')
parser.add_argument('--emb_dimension', dest='emb_dimension', default= 100 , type=int, help='emb_dimension')
parser.add_argument('--add_phase_shift', dest='add_phase_shift', default= 0, type=int, help='add_phase_shift')
parser.add_argument('--verbose', dest='verbose', default= 0, type=int, help='verbose')
parser.add_argument('--lr', dest='lr', default= 0.0025, type=float, help='learning rate')
parser.add_argument('--do_eval', dest='do_eval', default= 0, type=int, help='verbose')
parser.add_argument('--iterations', dest='iterations', default= 20, type=int, help='iterations')
parser.add_argument('--years', dest='years', default= 30, type=int, help='years')
parser.add_argument('--weight_decay', dest='weight_decay', default= 0.00000000001, type=float, help='weight_decay')
parser.add_argument('--weight_decay_fre', dest='weight_decay_fre', default= 0.00000000001, type=float, help='weight_decay_fre')
parser.add_argument('--time_scale', dest='time_scale', default= 1, type=int, help='time_scale')
parser.add_argument('--min_count', dest='min_count', default= 200, type=int, help='min_count')
parser.add_argument('--window_size', dest='window_size', default= 5, type=int, help='window_size')
parser.add_argument('--dropout', dest='dropout', default= 0, type=float, help='dropout rate')
parser.add_argument('--fre_pattern', dest='fre_pattern', default= "1-10000", type=str, help='fre_pattern with base and the divided')
parser.add_argument('--save_step', dest='save_step', default= 100000000 , type=int, help='log_step')
parser.add_argument('--seed', dest='seed', default= 42 , type=int, help='seed')
parser.add_argument('--in_batch_negative', dest='in_batch_negative', default= 0 , type=int, help='in_batch_negative')
args = parser.parse_args()
if not torch.cuda.is_available():
args.verbose = 1
torch.manual_seed(args.seed)
import random
random.seed(args.seed)
np.random.seed(args.seed)
def save_dict( id2word, path):
if not os.path.exists(path):
os.mkdir(path)
with open(os.path.join(path, "vocab.txt"), 'w', encoding="utf-8") as f:
for wid, w in id2word.items():
f.write('{}\t{}\n'.format(wid, w))
class Word2VecTrainer:
def __init__(self, args):# input_file, output_file, emb_dimension=100, batch_size=32, window_size=5, iterations=3,initial_lr=0.01, min_count=25,weight_decay = 0, time_scale =1
# self.data = DataReader(args.text, args.min_count)
# if not args.use_time:
# dataset = Word2vecDataset(self.data, args.window_size)
# else:
# dataset = TimestampledWord2vecDataset(self.data, args.window_size,args.time_scale)
#
# self.dataloader = DataLoader(dataset, batch_size=args.batch_size,
# shuffle=True, num_workers=0, collate_fn=dataset.collate)
self.data,self.dataloader = self.load_train(args) # self.data
if "train" in args.text:
test_filename = args.text.replace("train","test")
if os.path.exists(test_filename):
print("load test dataset: ".format(test_filename))
self.test = self.load_train(args, data = self.data, filename=test_filename, is_train=False )
else:
self.test = None
dev_filename = args.text.replace("train", "dev")
if os.path.exists(dev_filename):
print("load dev dataset: ".format(dev_filename))
self.dev = self.load_train(args, data = self.data, filename=dev_filename, is_train=False)
else:
self.dev = None
else:
self.dev, self.test = None, None
if args.use_time:
self.output_file_name = "{}/{}".format(args.output, args.time_type)
if args.add_phase_shift:
self.output_file_name += "_shift"
else:
self.output_file_name = "{}/{}".format(args.output, "word2vec")
if not os.path.exists(args.output):
os.mkdir(args.output)
if not os.path.exists(self.output_file_name):
os.mkdir(self.output_file_name)
self.emb_size = len(self.data.word2id)
self.emb_dimension = args.emb_dimension
self.batch_size = args.batch_size
self.iterations = args.iterations
self.lr = args.lr
self.time_type = args.time_type
self.weight_decay = args.weight_decay
print(args)
if args.use_time:
# self.skip_gram_model = TimestampedSkipGramModel(self.emb_size, self.emb_dimension,time_type = args.time_type,add_phase_shift=args.add_phase_shift,dropout =args.dropout,fre_pattern=args.fre_pattern,in_batch_negative = args.in_batch_negative)
self.skip_gram_model = DE(self.emb_size, self.emb_dimension, time_type=args.time_type,dropout=args.dropout)
else:
self.skip_gram_model = SkipGramModel(self.emb_size, self.emb_dimension)
self.use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if self.use_cuda else "cpu")
if self.use_cuda:
print("using cuda and GPU ....")
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
self.model = torch.nn.DataParallel(self.skip_gram_model)
else:
self.model = self.skip_gram_model
self.model.cuda()
else:
self.model = self.skip_gram_model
print(self.model)
# load_path = "{}/{}".format(self.output_file_name)
# torch.save(self.skip_gram_model,"pytorch.bin")
# self.skip_gram_model = torch.load("pytorch.bin")
# self.skip_gram_model = load_model(self.skip_gram_model,"pytorch.bin")
# exit()
# if not args.from_scatch and os.path.exists(self.output_file_name):
#
# print("loading parameters ....")
# self.skip_gram_model.load_embeddings(self.data.id2word,self.output_file_name)
def load_train(self,args,data= None, filename = None, is_train = True):
if data is None:
assert is_train==True, "wrong to load data 1"
data = DataReader(args.text, args.min_count)
filename = args.text
else:
assert is_train == False, "wrong to load test data 2"
assert filename is not None, "wrong to load test data 3"
assert data is not None, "wrong to load test data 4"
print("load filenames as dev/test {}".format(filename))
if not args.use_time:
dataset = Word2vecDataset(data, input_text = filename, window_size= args.window_size)
else:
dataset = TimestampledWord2vecDataset(data,input_text = filename, window_size= args.window_size, time_scale=args.time_scale,in_batch_negative = args.in_batch_negative)
print("load data length: {}".format(len(dataset)))
# if torch.cuda.is_available() and torch.cuda.device_count() > 1:
# dataset_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# else:
# dataset_sampler = torch.utils.data.RandomSampler(dataset)
process_method = dataset.collate_in_batch_negative if args.in_batch_negative else dataset.collate
dataloader = DataLoader(dataset, batch_size=args.batch_size,
shuffle=is_train, num_workers=0, collate_fn=process_method) # shuffle if it is train
if is_train:
return data,dataloader
else:
return dataloader
@log_time_delta
def evaluation_loss(self,logger =None):
results = []
self.skip_gram_model.eval()
print("evaluating ...")
for index,dataloader in enumerate([self.dev,self.test]):
if dataloader is None:
continue
losses = []
for i, sample_batched in enumerate(tqdm(dataloader)):
if len(sample_batched[0]) > 1:
pos_u = sample_batched[0].to(self.device)
pos_v = sample_batched[1].to(self.device)
neg_v = sample_batched[2].to(self.device)
if args.use_time:
time = sample_batched[3].to(self.device)
# print(time)
loss, pos, neg = self.skip_gram_model.forward(pos_u, pos_v, neg_v, time)
else:
loss, pos, neg = self.skip_gram_model.forward(pos_u, pos_v, neg_v)
# print(loss)
losses.append(loss.item())
mean_result = np.array(losses).mean()
results.append(mean_result)
print("test{} loss is {}".format(index, mean_result))
logger.write("Loss in test{}: {} \n".format( index, str(mean_result)))
logger.flush()
self.skip_gram_model.train()
return results
def train(self):
print(os.path.join(self.output_file_name,"log.txt"))
if not os.path.exists(self.output_file_name):
os.mkdir(self.output_file_name)
print(self.model)
if args.time_type =="word_mixed_amplitude":
no_decay = ['para_embedding']
# print([n for n, p in param_optimizer])
print("using small weight decay")
print([n for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)])
print("using big weight decay")
print([n for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)])
#weight_decay_fre
optimizer_grouped_parameters = [
{'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay_fre}
]
print(optimizer_grouped_parameters)
else:
optimizer_grouped_parameters = self.model.parameters()
optimizer = optim.Adam(optimizer_grouped_parameters, lr=self.lr,weight_decay=self.weight_decay) #,
# optimizer = AdamW(optimizer_grouped_parameters, lr=self.lr,weight_decay=self.weight_decay)
# optimizer = optim.Adam(, lr=self.lr, weight_decay=self.weight_decay)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(self.dataloader)*self.iterations)
# scheduler = get_linear_schedule_with_warmup(optimizer,0, len(self.dataloader)*self.iterations)
save_dict(self.data.id2word,self.output_file_name)
print(self.skip_gram_model)
with open("{}/log.txt".format(self.output_file_name,"log.txt"),"w") as f:
for iteration in range(self.iterations):
print("\nIteration: " + str(iteration + 1))
f.write(str(args) +"\n")
# optimizer = optim.SparseAdam(self.skip_gram_model.parameters(), lr=self.initial_lr)
# self.evaluation_loss(logger=f)
running_loss = 0.0
# if torch.cuda.is_available() and torch.cuda.device_count() >1:
# dataloader_sampler = torch.utils.data.distributed.DistributedSampler(self.dataloader)
# else:
dataloader_sampler = self.dataloader
for i, sample_batched in enumerate(tqdm(dataloader_sampler)):
if len(sample_batched[0]) > 1:
pos_u = sample_batched[0].to(self.device)
pos_v = sample_batched[1].to(self.device)
neg_v = sample_batched[2].to(self.device) if not args.in_batch_negative else None
optimizer.zero_grad()
if args.use_time:
time = sample_batched[3].to(self.device)
# print(time)
loss,pos,neg = self.model.forward(pos_u, pos_v, neg_v,time)
else:
loss,pos,neg = self.model.forward(pos_u, pos_v, neg_v)
# print(loss)
if torch.cuda.device_count()>1:
loss,pos,neg = loss.mean(),pos.mean(),neg.mean()
loss.backward()
optimizer.step()
# scheduler.step()
loss,pos,neg = loss.item(),pos.item(),neg.item()
if i % args.log_step == 0: # i > 0 and
f.write("Loss in {} steps: {} {}, {}\n".format(i,str(loss),str(pos),str(neg)))
if not torch.cuda.is_available() or i % (args.log_step*10) == 0 :
print("Loss in {} steps: {} {}, {}\n".format(i,str(loss),str(pos),str(neg)))
if (i+1) % args.save_step == 0 :
torch.save(self.model, os.path.join(self.output_file_name, "pytorch_{}_{}.bin".format(iteration,i)))
self.evaluation_loss(logger=f)
epoch_path = os.path.join(self.output_file_name,str(iteration))
if not os.path.exists(epoch_path):
os.mkdir(epoch_path)
torch.save(self.model, os.path.join( epoch_path,"pytorch.bin") )
# self.skip_gram_model.save_embedding(self.data.id2word, os.path.join(self.output_file_name,str(iteration)))
# self.skip_gram_model.save_in_text_format(self.data.id2word, os.path.join(self.output_file_name, str(iteration)))
# self.skip_gram_model.save_in_text_format(self.data.id2word,self.output_file_name)
torch.save(self.model, os.path.join(self.output_file_name,"pytorch.bin") )
with open(os.path.join(self.output_file_name,"config.json"), "wt") as f:
json.dump(vars(args), f, indent=4)
save_dict(self.data.id2word,self.output_file_name)
if __name__ == '__main__':
w2v = Word2VecTrainer(args)
#input_file = args.text, output_file = args.output, batch_size = args.batch_size, initial_lr = args.lr, weight_decay = args.weight_decay, iterations = args.iterations, time_scale = args.time_scale
w2v.train()