Simple Pytorch implementations of most used Generative Adversarial Network (GAN) varieties.
Support both GPU and CPU.
epoch 0
epoch 10
epoch 20
epoch 30
epoch 40
epoch 50
epoch 100
epoch 150
epoch 199
-
-
epoch 0
epoch 10
epoch 20
epoch 30
epoch 40
epoch 50
epoch 100
epoch 150
epoch 199
-
-
Improved Conditional GAN (Improved cGAN)
epoch 0
epoch 10
epoch 20
epoch 30
epoch 40
epoch 50
epoch 100
epoch 150
epoch 199
-
-
Deep Convolutional GAN (DCGAN)
epoch 0
epoch 10
epoch 20
epoch 30
epoch 40
epoch 50
epoch 60
epoch 70
epoch 80
epoch 90
epoch 0
epoch 10
epoch 20
epoch 30
epoch 40
epoch 50
epoch 100
epoch 150
epoch 199
-
-
Wasserstein GAN with Gradient Plenty (WGAN-GP)
epoch 0
epoch 10
epoch 20
epoch 30
epoch 40
epoch 50
epoch 100
epoch 150
epoch 199
-
-
This project is going with the GAN Theory and Practice part of the Deep Learning Course: from Algorithm to Practice .
If you have any question about the project, please feel free to contact with me.
E-mail: [email protected]