-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer.py
713 lines (633 loc) · 36.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# coding=utf-8
# The full version of the trainer.py for Diffusion for Robust Depth(D4RD) based on MonoViT, Litemono. We additionally provide the ablation study part code: contrast mode(in paper table5, trinity,distill, etc.) KITTI-C training(in paper table3). The code is based on the original Monodepth2 codebase.
# Author: Jiyuan Wang
# Created: 2024-12-10
# Origin used for paper: https://arxiv.org/abs/2404.09831
# Hope you can cite our paper if you use the code for your research.
from __future__ import absolute_import, division, print_function
import os
import copy
import random
import time
import datasets
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.distributed as dist
from tensorboardX import SummaryWriter
import json
import networks
from layers import *
from my_utils import *
import options as g
from Evaluate import *
from tqdm import tqdm, trange
import ssl
from linear_warmup_cosine_annealing_warm_restarts_weight_decay import ChainedScheduler
os.environ['MASTER_ADDR'] = 'localhost'
ssl._create_default_https_context = ssl._create_unverified_context
def init_seeds(seed=0, faster=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = faster
class Trainer:
def __init__(self, options):
# region pre-processing
pid = os.getpid()
print('pid: ', pid)
self.opts = modify_opt(options)
if self.opts.use_multi_gpu:
dist.init_process_group(backend='nccl')
self.local_rank = self.opts.local_rank
self.opts.batch_size = self.opts.batch_size // torch.cuda.device_count()
torch.cuda.set_device(self.local_rank)
print('distributed init: rank {}'.format(self.opts.local_rank), flush=True)
setup_for_distributed(self.opts.local_rank == 0)
init_seeds(0 + self.opts.local_rank)
else:
init_seeds(0)
self.device = torch.device("cuda")
self.opts.device = self.device
self.opts.scales = [0, 1, 2] if self.opts.net_type == "lite" else [0, 1, 2, 3]
self.opts.flip_right = False
self.num_scales = len(self.opts.scales)
self.opts.novel_frame_ids = [-1, 1]
self.num_pose_frames = 2
self.opts.num_workers = self.opts.batch_size + 4
self.opts.split = "eigen_zhou"
print("Using SSIM loss", end=',')
self.ssim = SSIM()
self.ssim.to(self.device)
self.opts.model_name = createUniqueName(self.opts)
self.log_path = os.path.join(self.opts.log_dir, self.opts.model_name)
self.save_folder = os.path.join(self.log_path, "models", "weights_{}")
assert self.opts.height % 32 == 0, "'height' must be a multiple of 32"
assert self.opts.width % 32 == 0, "'width' must be a multiple of 32"
if self.opts.flip_right:
self.opts.batch_size = self.opts.batch_size // 2
# For D4RD, will be [1/7,1/7,1/7,1/7,1/7,1/7,1/7] for 7 weather
self.opts.mixRate = modify_rate(self.opts.mixRate, self.opts.weather)
print("Mixing rate is: ", self.opts.mixRate)
self.parameters_to_train, self.parameters_to_train_pose = [], []
self.target_sides = ["r"]
# endregion
# region build network
self.create_models()
if options.use_teacher:
twf = self.opts.teacher_weights_folder
self.opts.teacher_weights_folder = "./ckpt/baseline" if twf is None else twf
self.create_models('teacher')
if self.opts.use_multi_gpu:
for model_name, model in self.models.items():
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
if self.opts.debug >= 1:
print("=>DistributedDataParallel for ", model_name, type(model))
self.models[model_name] = torch.nn.parallel.DistributedDataParallel(model, device_ids=[self.local_rank], output_device=self.local_rank, find_unused_parameters=True)
if self.opts.net_type == "vit":
self.params = [{"params": self.parameters_to_train, "lr": 1e-4}, {"params": list(self.models["encoder"].parameters()), "lr": 5e-5}]
self.model_optimizer = optim.AdamW(self.params)
self.model_lr_scheduler = optim.lr_scheduler.ExponentialLR(self.model_optimizer, 0.9)
else:
self.model_optimizer = optim.AdamW(self.parameters_to_train, self.opts.lr[0], weight_decay=self.opts.weight_decay)
self.model_pose_optimizer = optim.AdamW(self.parameters_to_train_pose, self.opts.lr[3], weight_decay=self.opts.weight_decay)
#This is for the Litemono Scheduler
self.model_lr_scheduler = ChainedScheduler(
self.model_optimizer,
T_0=int(self.opts.lr[2]),
T_mul=1,
eta_min=self.opts.lr[1],
last_epoch=-1,
max_lr=self.opts.lr[0],
warmup_steps=0,
gamma=0.9
)
self.model_pose_lr_scheduler = ChainedScheduler(
self.model_pose_optimizer,
T_0=int(self.opts.lr[5]),
T_mul=1,
eta_min=self.opts.lr[4],
last_epoch=-1,
max_lr=self.opts.lr[3],
warmup_steps=0,
gamma=0.9
)
self.model_prefix, self.models_to_load = self.prepare_model()
if self.opts.load_weights_folder is not None or self.opts.teacher_weights_folder is not None or self.opts.finetune or self.opts.robust_weights_folder is not None:
self.load_model()
if self.opts.mypretrain is not None:
self.load_pretrain()
print("Training model named: \033[91m", self.opts.model_name, "\033[0m")
print("Models and tensorboard events files are saved to: ", self.opts.log_dir)
print("Training is using: ", self.device)
# endregion
# region 建立数据集
datasets_dict = {"kitti": datasets.KITTIRAWDataset}
self.dataset = datasets_dict[self.opts.dataset]
fpath = os.path.join(os.path.dirname(__file__), "./splits", self.opts.split, "{}_files.txt")
train_filenames = readlines(fpath.format("train"))
val_filenames = readlines(fpath.format("val"))
if self.opts.debug > 0:
train_filenames = train_filenames[:100] if self.opts.debug >= 1 else train_filenames[:1000]
val_filenames = val_filenames[:40] if self.opts.debug >= 0.5 else val_filenames
self.opts.num_workers = 0 if self.opts.debug >= 2 else self.opts.num_workers
self.opts.num_epochs = min(10, self.opts.num_epochs) if (self.opts.debug >= 1 and self.opts.start_epoch == 0) else self.opts.num_epochs
num_train_samples = len(train_filenames)
self.num_total_steps = num_train_samples // (self.opts.batch_size * torch.cuda.device_count()) * (self.opts.num_epochs - self.opts.start_epoch)
def worker_init(worker_id):
worker_seed = torch.utils.data.get_worker_info().seed % (2 ** 32)
np.random.seed(worker_seed)
random.seed(worker_seed)
self.train_dataset = self.dataset(self.opts, train_filenames, is_train=True)
if self.opts.use_multi_gpu:
self.train_sampler = torch.utils.data.distributed.DistributedSampler(self.train_dataset)
self.train_loader = DataLoader(self.train_dataset, self.opts.batch_size, False, num_workers=self.opts.num_workers, sampler=self.train_sampler, pin_memory=True, drop_last=True,
worker_init_fn=worker_init, collate_fn=rmnone_collate)
else:
self.train_loader = DataLoader(self.train_dataset, self.opts.batch_size, False, num_workers=self.opts.num_workers, pin_memory=True, drop_last=True, worker_init_fn=worker_init,
collate_fn=rmnone_collate)
# only train use multi gpu;add the driving_stereo dataset, cadc dataset for test
self.val_dataset = self.dataset(self.opts, val_filenames, is_train=False)
self.val_loader = DataLoader(self.val_dataset, 20, False, num_workers=12, pin_memory=True, drop_last=False)
# endregion
# region 辅助函数
self.backproject_depth = {}
self.project_3d = {}
for scale in self.opts.scales:
h = int(self.opts.height // (2 ** scale))
w = int(self.opts.width // (2 ** scale))
self.backproject_depth[scale] = BackprojectDepth(self.opts.batch_size, h, w)
self.backproject_depth[scale].to(self.device)
self.project_3d[scale] = Project3D(self.opts.batch_size, h, w)
self.project_3d[scale].to(self.device)
self.best_abs = 10.0
self.berhu = BerhuLoss()
if not self.opts.use_multi_gpu or dist.get_rank() == 0:
self.create_summary_writer()
self.val_gt_depths = prepare_gt_depths(self.opts, train_mode=True)
print("√") # endregion
# 预创建函数
def create_summary_writer(self):
print("Using split:\n ", self.opts.split)
print("There are {:d} training items , {:d} validation items \n".format(len(self.train_dataset), len(self.val_dataset)))
remove_logfolder(self.log_path, self.opts.save_strategy == "overwrite")
self.writers = {}
for mode in ["train", "val"]:
self.writers[mode] = SummaryWriter(os.path.join(self.log_path, mode))
self.save_opts()
def create_models(self, type='student'):
'''
Build the Student and Teacher models for training, support MonoViT, LiteMono.
'''
pre_map = {'teacher': 'teacher_', 'student': '', 'robust': 'robust_'}
if type == 'student':
print("=>Building network:")
self.models = {}
net_type = "vit" if type == "teacher" else self.opts.net_type
pre = pre_map[type]
print("==>build " + pre + net_type + " net")
if net_type == "vit":
self.models[pre + "encoder"] = networks.mpvit_small()
self.models[pre + "encoder"].num_ch_enc = [64, 128, 216, 288, 288]
self.models[pre + "depth"] = networks.HR_DepthDecoder(self.opts)
elif net_type == "lite":
self.models[pre + "encoder"] = networks.LiteMono(model=self.opts.model, drop_path_rate=self.opts.drop_path, width=self.opts.width, height=self.opts.height)
self.models[pre + "depth"] = networks.DepthDecoderLite(self.models[pre + "encoder"].num_ch_enc, self.opts.scales, opts=self.opts)
self.models[pre + "encoder"].to(self.device)
self.models[pre + "depth"].to(self.device)
if type == 'student':
self.parameters_to_train += list(self.models["depth"].parameters())
if net_type != "vit":
self.parameters_to_train += list(self.models["encoder"].parameters())
self.models["pose_encoder"] = networks.ResnetEncoder(18, True, num_input_images=self.num_pose_frames)
self.models["pose_encoder"].to(self.device)
self.models["pose"] = networks.PoseDecoder(self.models["pose_encoder"].num_ch_enc, num_input_features=1, num_frames_to_predict_for=2)
self.models["pose"].to(self.device)
if net_type == "vit":
self.parameters_to_train += list(self.models["pose_encoder"].parameters())
self.parameters_to_train += list(self.models["pose"].parameters())
else:
self.parameters_to_train_pose += list(self.models["pose_encoder"].parameters())
self.parameters_to_train_pose += list(self.models["pose"].parameters())
def set_train(self):
self.models['encoder'].train()
self.models['depth'].train()
def set_eval(self):
self.models['encoder'].eval()
self.models['depth'].eval()
def set_default(self):
if self.opts.use_teacher:
self.models['teacher_encoder'].eval()
self.models['teacher_depth'].eval()
self.models['pose_encoder'].train()
self.models['pose'].train()
def train(self):
self.epoch, self.step = 0, 0
self.start_time = time.time()
for self.epoch in range(self.opts.start_epoch):
self.model_lr_scheduler.step()
self.model_pose_lr_scheduler.step()
if self.opts.start_epoch != 0 and (not self.opts.use_multi_gpu or dist.get_rank() == 0):
self.val()
print("Each validation use time: ", sec_to_hm_str(time.time() - self.start_time))
self.start_time = time.time()
if self.opts.net_type == "vit":
depth_lr = self.model_optimizer.param_groups[1]['lr']
pose_lr = self.model_optimizer.param_groups[0]['lr']
print(f'\nStarting from epoch {self.epoch} and current learning rate for depth is {depth_lr} and pose lr is {pose_lr}')
print("==>Training started...")
for self.epoch in range(self.opts.start_epoch, self.opts.num_epochs):
self.run_epoch()
if not self.opts.use_multi_gpu or dist.get_rank() == 0:
if self.opts.do_save and self.epoch > 10:
self.save_model(str(self.epoch))
else:
self.save_model("last")
print("Training finished after {} epochs,".format(self.epoch))
def run_epoch(self):
if self.opts.use_multi_gpu:
self.train_sampler.set_epoch(self.epoch) # At the beginning of each epoch, the random seed of the data loader is reset to ensure that the order of data read by each process is different
all_batches = len(self.train_loader)
belogged_loss, record_loss = {}, {}
self.set_train()
for batch_idx, inputs in enumerate(self.train_loader):
if inputs is None:
self.model_optimizer.zero_grad()
self.model_optimizer.step()
self.step += 1
continue
before_op_time = time.time()
outputs, losses = self.process_batch(inputs)
self.model_optimizer.zero_grad()
if self.opts.net_type == "lite":
self.model_pose_optimizer.zero_grad()
losses["loss/total_loss"].backward()
self.model_optimizer.step()
if self.opts.net_type == "lite":
self.model_pose_optimizer.step()
duration = time.time() - before_op_time
# record loss
for key, ipt in losses.items():
if key.split('/')[1] not in record_loss:
record_loss[key.split('/')[1]] = 0
record_loss[key.split('/')[1]] += ipt.item()
# log with steps
early_phase = batch_idx % 100 == 0 and self.step < self.opts.log_frequency
late_phase = self.step % self.opts.log_frequency == 0
if early_phase or late_phase:
for key, ipt in losses.items():
belogged_loss[key.split('/')[1]] = ipt.item()
self.log_time(batch_idx, duration, belogged_loss)
self.step += 1
# log with epoch
if batch_idx == (all_batches - 2) and (not self.opts.use_multi_gpu or dist.get_rank() == 0):
for key, ipt in record_loss.items():
self.writers["val"].add_scalar(key, ipt / (batch_idx + 1), self.epoch)
self.log_img("train", inputs, outputs)
if not self.opts.use_multi_gpu:
del inputs, outputs, losses
if not self.opts.use_multi_gpu or dist.get_rank() == 0:
#we only do the validation on the main process
with torch.no_grad():
self.val()
if self.opts.use_multi_gpu:
dist.barrier()
self.model_lr_scheduler.step()
self.model_pose_lr_scheduler.step()
def process_batch(self, inputs):
for key, ipt in inputs.items():
inputs[key] = ipt.to(self.device)
with torch.no_grad():
if self.opts.stage == 1:
self.opts.use_diffusion = False
outputs_teacher = self.models["teacher_depth"](self.models["teacher_encoder"](inputs[("color", 0, 0)]), type="teacher", rgb=inputs[("color", 0, 0)]) if self.opts.use_teacher else None
if self.opts.stage == 1:
self.opts.use_diffusion = True
inputs_color = torch.cat([inputs[("color_aug", 0, 0)], inputs[("color", 0, 0)]], dim=0) if self.opts.contrast_mode == "trinity" or self.opts.contrast_mode == "contrast" else inputs[("color_aug", 0, 0)]
feat = self.models["encoder"](inputs_color)
if self.opts.dfs_after_sigmod and self.opts.extra_condition:
outputs = self.models["depth"](feat, type="student" if self.opts.contrast_mode == "None" or self.opts.contrast_mode == "distill" else "contrast", x0=outputs_teacher["x0"], rgb=inputs_color)
else:
outputs = self.models["depth"](feat, "student", outputs_teacher["x0"]) if self.opts.use_teacher else self.models["depth"](feat)
outputs.update(self.predict_poses(inputs))
if self.opts.use_teacher:
outputs["teacher_disp", 0], outputs["teacher_condition"] = outputs_teacher["disp", 0], outputs_teacher["condition"]
if self.opts.no_ph:# only use diffusion loss
losses = {}
losses["loss/ddim_loss"] = outputs["ddim_loss"]
losses["loss/total_loss"] = losses["loss/ddim_loss"]
else:
self.pred_novel_images(inputs, outputs)
losses = self.compute_losses(inputs, outputs)
if self.opts.debug >= 2:
print('\033[91m' + "loss:" + str(losses["loss/total_loss"].item())[:5] + 'ddim_loss:' + str(losses["loss/ddim_loss"].item())[:5] + '\033[0m')
if self.opts.vis_mode:
VisualizeDepth(None, outputs["depth", 0][0].cpu().detach().numpy(), "org", None)
raise NotImplementedError("vis_mode!")
return outputs, losses
def predict_poses(self, inputs):
"""Predict poses between input frames for monocular sequences.
"""
outputs = {}
frameIDs = self.opts.novel_frame_ids + [0]
if self.num_pose_frames == 2:
pose_feats = {f_i: inputs["color", f_i, 0] for f_i in frameIDs}
for f_i in frameIDs:
if f_i != "s":
# To maintain ordering we always pass frames in temporal order
if f_i < 0:
pose_inputs = [pose_feats[f_i], pose_feats[0]]
else:
pose_inputs = [pose_feats[0], pose_feats[f_i]]
pose_inputs = [self.models["pose_encoder"](torch.cat(pose_inputs, 1))]
outputs[("pose_feats", 0, f_i)] = pose_inputs
axisangle, translation = self.models["pose"](pose_inputs)
outputs[("axisangle", 0, f_i)] = axisangle
outputs[("translation", 0, f_i)] = translation
# Invert the matrix if the frame id is negative
outputs[("cam_T_cam", 0, f_i)] = transformation_from_parameters(axisangle[:, 0], translation[:, 0], invert=(f_i < 0))
return outputs
def val(self):
"""Validate the model on a single minibatch"""
verbose = self.opts.debug
if verbose == 1:
print("Train √ Begin validation...")
writer = self.writers["val"]
cv2.setNumThreads(0)
self.set_eval()
test_encoder = self.models["encoder"] if not self.opts.use_multi_gpu else self.models["encoder"].module
test_depth = self.models["depth"] if not self.opts.use_multi_gpu else self.models["depth"].module
if verbose > 0:
print_title(self.opts.model_name[:18])
#######kitti########
load_val_mode = g.weatherList
load_val_mode = ['rgb/data'] if self.opts.weather == 'clear' else load_val_mode
error_all = []
for ld_mode in load_val_mode:
self.val_dataset.specify_data(ld_mode)
pbar = tqdm(self.val_loader, desc=ld_mode) if verbose > 0 else doNothing()
pred_disps, _, _ = inference(self.opts, self.val_dataset, self.val_loader, test_encoder, test_depth, pbar)
errors, ratios = evaluate(self.opts, pred_disps, None, self.val_gt_depths, ld_mode, train_mode=True, train_opt={'epoch': self.epoch, 'writer': writer})
mean_errors = np.array(errors).mean(0)
error_all.append(mean_errors)
for ind, error in enumerate(mean_errors):
writer.add_scalar('{}/{}'.format(g.load_map[ld_mode], g.index_map[ind]), error, self.epoch)
if verbose > 0:
print_errors(mean_errors, ld_mode if self.opts.weather == "robust" else g.load_map[ld_mode])
pbar.close()
# region Average, Variance of Error
mean_errors = np.array(error_all).mean(0)
var_errors = np.array(error_all).var(0)
current_abs = mean_errors[0]
if current_abs < self.best_abs:
self.best_abs = current_abs
self.best_epoch = self.epoch
self.save_model('best')
for ind, error in enumerate(mean_errors):
writer.add_scalar('{}/{}'.format(g.load_map["average"], g.index_map[ind]), error, self.epoch)
writer.add_scalar('{}/{}'.format(g.load_map["variance"], g.index_map[ind]), var_errors[ind], self.epoch)
if verbose > 0:
print_errors(mean_errors, g.load_map["average"])
print_errors(var_errors, g.load_map["variance"])
print("KITTI time:", time.time() - self.start_time)
# endregion
self.set_train()
def pred_novel_images(self, inputs, outputs):
"""为小批量生成扭曲(重新投影)的彩色图像。生成的图像将保存到“输出”字典中"""
if self.opts.use_diffusion and not self.opts.multi_scale:
self.opts.scales = [0]
pre_map = ['']
pre_map = pre_map if not self.opts.enhance_teacher else ['', 'teacher_']
source_scale = 0
for pre in pre_map:
for scale in self.opts.scales:
disp = outputs[(pre + "disp", scale)]
disp = F.interpolate(disp, [self.opts.height, self.opts.width], mode="bilinear", align_corners=False)
_, depth = disp_to_depth(disp, 0.1, 100)
for i, frame_id in enumerate(self.opts.novel_frame_ids):
if frame_id == "s":
T = inputs["stereo_T"]
else:
T = outputs[("cam_T_cam", 0, frame_id)]
cam_points = self.backproject_depth[source_scale](depth, inputs[("inv_K", source_scale)])
pix_coords = self.project_3d[source_scale](cam_points, inputs[("K", source_scale)], T)
outputs[("sample", frame_id, scale)] = pix_coords
outputs[(pre + "color", frame_id, scale)] = F.grid_sample(inputs[("color", frame_id, source_scale)], outputs[("sample", frame_id, scale)], padding_mode="border",
align_corners=True) #use clear image to reprojection
def compute_reprojection_loss(self, pred, target):
abs_diff = torch.abs(target - pred)
l1_loss = abs_diff.mean(1, True)
ssim_loss = self.ssim(pred, target).mean(1, True)
reprojection_loss = 0.85 * ssim_loss + 0.15 * l1_loss
return reprojection_loss
def compute_supervised_loss(self, pred, target, valid_pixels=None, loss_type=None):
""" Calculate the supervision loss (L_{dis} in paper). - valid_pixels Mask of a valid depth-cueping pixel (i.e., non-zero depth value)"""
if valid_pixels is None:
valid_pixels = torch.ones(target.shape, device=self.device)
if loss_type is None:
loss_type = self.opts.loss
if loss_type == 'log':
loss = torch.log(torch.abs(target - pred) + 1) * valid_pixels
elif loss_type == 'l1':
loss = F.smooth_l1_loss(pred, target, reduction='none') * valid_pixels
elif loss_type == 'berhu':
loss = self.berhu(pred, target) * valid_pixels
elif loss_type == 'kldiv':
average = target.log()
loss = F.kl_div(average, pred, reduction='none') * valid_pixels
loss = loss.sum() / (valid_pixels.sum() + 1e-7)
return loss
def compute_mask(self, inputs, outputs):
clear_rep, _ = self.compute_repro_irepo(inputs, outputs, 0, pre='teacher_')
mask = (clear_rep < (1.5 / (self.epoch + 1))).float()
return mask
def compute_repro_irepo(self, inputs, outputs, scale, pre=''):
#we Refactor the Reprojection part code into a separate function
reprojection_losses, identity_reprojection_losses = [], []
target = inputs[("color", 0, 0)]
for frame_id in self.opts.novel_frame_ids:
pred = outputs[(pre + "color", frame_id, scale)] # This is the image after warp, the size is the same, this is the latitude of the same size as the image
reprojection_losses.append(self.compute_reprojection_loss(pred, target))
reprojection_losses = torch.cat(reprojection_losses, 1) # The dimension after cat is [batch_2, 2, size], and before it is [batch_2, 1, size]
reprojection_loss, _ = torch.min(reprojection_losses, dim=1, keepdim=True)
identity_reprojection_loss = None
if pre == '':
for frame_id in self.opts.novel_frame_ids:
pred = inputs[("color", frame_id, 0)]
identity_reprojection_losses.append(self.compute_reprojection_loss(pred, target))
identity_reprojection_losses = torch.cat(identity_reprojection_losses, 1)
identity_reprojection_loss, _ = torch.min(identity_reprojection_losses, dim=1, keepdim=True)
identity_reprojection_loss += torch.randn(identity_reprojection_loss.shape, device=self.device) * 0.00001
return reprojection_loss, identity_reprojection_loss
def compute_losses(self, inputs, outputs, mode='train'):
losses = {}
total_loss, condition_smooth_loss = 0, 0
if self.opts.net_type != 'plane' and self.opts.use_diffusion:
mask = self.compute_mask(inputs, outputs) if self.opts.enhance_teacher else None
if self.opts.use_diffusion:
losses['loss/ddim_loss'] = outputs['ddim_loss'] * self.opts.ddim_weight
total_loss += losses['loss/ddim_loss']
if self.opts.teacher_loss:
losses['loss/teacher_loss'] = self.compute_supervised_loss(outputs['teacher_disp', 0], outputs['disp', 0], mask) * self.opts.teacher_weight
total_loss += losses['loss/teacher_loss']
if self.opts.contrast_mode == "trinity" and self.opts.stage == 2:
cst_loss = self.compute_supervised_loss(outputs['condition'], outputs["contrast_condition"], loss_type='l1') + 0.5 * self.compute_supervised_loss(outputs['condition'],
outputs["teacher_condition"], loss_type='l1') + 0.5 * self.compute_supervised_loss(outputs['contrast_condition'], outputs["teacher_condition"], loss_type='l1')
delta_loss = outputs['delta_loss'] * self.opts.delta_weight if self.opts.use_CNN else 0
losses['loss/cst_loss'] = delta_loss + cst_loss * self.opts.condition_weight
condition_smooth_loss = get_smooth_loss(outputs['condition'], inputs[("color", 0, 0)])
total_loss += losses['loss/cst_loss']
elif self.opts.contrast_mode == "contrast" and self.opts.stage == 2:
cst_loss = self.compute_supervised_loss(outputs['contrast_condition'], outputs["condition"], loss_type='l1') * self.opts.condition_weight
delta_loss = outputs['delta_loss'] * self.opts.delta_weight if self.opts.use_CNN else 0
losses['loss/cst_loss'] = delta_loss + cst_loss
total_loss += losses['loss/cst_loss']
elif self.opts.contrast_mode == "distill" and self.opts.stage == 2:
cst_loss = self.compute_supervised_loss(outputs['teacher_condition'], outputs["condition"], loss_type='l1') * self.opts.condition_weight
losses['loss/cst_loss'] = cst_loss
total_loss += losses['loss/cst_loss']
scale = 0 # todo Note that this should be changed when there is more scale in the future
disp = outputs[("disp", scale)]
color = inputs[("color", 0, scale)]
reprojection_loss, identity_reprojection_loss = self.compute_repro_irepo(inputs, outputs, scale)
to_optimise, idxs = torch.min(torch.cat((identity_reprojection_loss, reprojection_loss), dim=1), dim=1)
losses["loss/ph_loss"] = to_optimise.mean()
total_loss += losses["loss/ph_loss"]
mean_disp = disp.mean(2, True).mean(3, True)
norm_disp = disp / (mean_disp + 1e-7)
smooth_loss = get_smooth_loss(norm_disp, color)
losses["loss/adjust_loss"] = self.opts.smooth_weight * (smooth_loss + condition_smooth_loss) / (2 ** scale)
total_loss += losses["loss/adjust_loss"]
losses["loss/total_loss"] = total_loss
return losses
def log_time(self, batch_idx, duration, losses):
"""Print a logging statement to the terminal """
samples_per_sec = self.opts.batch_size * torch.cuda.device_count() / duration
time_sofar = time.time() - self.start_time
training_time_left = (self.num_total_steps / self.step - 1.0) * time_sofar if self.step > 0 else 0
print_string = "epoch {:>3} | batch {:>6} | examples/s: {:5.1f} |".format(self.epoch, batch_idx, samples_per_sec)
for key in losses:
print_string += " {}:{:.5f} |".format(key, losses[key])
print_string += " time elapsed: {} | time left: {}".format(sec_to_hm_str(time_sofar), sec_to_hm_str(training_time_left))
print(print_string)
def log_img(self, mode, inputs, outputs):
"""Write an event to the tensorboard events file"""
writer = self.writers[mode]
j, scale = 0, 0
for frame_id in (self.opts.novel_frame_ids + [0]):
writer.add_image("color/{}_{}".format(frame_id, 0), inputs[("color", frame_id, 0)][j].data, self.epoch)
try:
writer.add_image("color_pred/{}_{}".format(frame_id, 0), outputs[("color", frame_id, 0)][j].data, self.epoch)
except KeyError:
pass
if frame_id == 0:
writer.add_image("color_weather/{}_{}".format(frame_id, 1), inputs[("color_aug", frame_id, 0)][j].data, self.epoch)
scale = 0
if not self.opts.no_ph:
try:
writer.add_image("disp_{}/{}".format(scale, j), VisualizeMap(outputs["disp", 0][j].data, doTrans=True), self.epoch)
writer.add_image("disp_teacher/{}".format(j), VisualizeMap(outputs["teacher_disp", 0][j].data, doTrans=True), self.epoch)
writer.add_image("disp_robust/{}".format(j), VisualizeMap(outputs["robust_disp", 0][j].data, doTrans=True), self.epoch)
except KeyError:
pass
if self.opts.use_diffusion:
try:
writer.add_image("condition/{}".format(j), VisualizeMap(outputs["condition"][j].data[0], doTrans=True), self.epoch)
writer.add_image("contrast_condition/{}".format(j), VisualizeMap(outputs["contrast_condition"][j].data[0], doTrans=True), self.epoch)
writer.add_image("teacher_condition/{}".format(j), VisualizeMap(outputs["teacher_condition"][j].data[0], doTrans=True), self.epoch)
except KeyError:
pass
except TypeError:
pass
def save_opts(self):
"""Save options to disk so we know what we ran this experiment with """
models_dir = self.log_path
if not os.path.exists(models_dir):
os.makedirs(models_dir)
self.opts.device = str(self.device)
to_save = self.opts.__dict__.copy()
with open(os.path.join(models_dir, 'opts.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def save_model(self, folder_name):
"""Save model weights to disk """
save_folder = os.path.join(self.log_path, folder_name)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for model_name, model in self.models.items():
if 'teacher' in model_name or 'robust' in model_name:
continue
save_path = os.path.join(save_folder, "{}.pth".format(model_name))
if self.opts.use_multi_gpu:
to_save = model.module.state_dict()
else:
to_save = model.state_dict()
if model_name == 'encoder':
# save the sizes - these are needed at prediction time
to_save['height'] = self.opts.height
to_save['width'] = self.opts.width
torch.save(to_save, save_path)
save_path = os.path.join(save_folder, "{}.pth".format("adam"))
torch.save(self.model_optimizer.state_dict(), save_path)
def prepare_model(self):
prefix = []
models_to_load = {}
if self.opts.teacher_weights_folder is not None:
self.opts.teacher_weights_folder = os.path.expanduser(self.opts.teacher_weights_folder)
assert os.path.isdir(self.opts.teacher_weights_folder), "Cannot find folder {}".format(self.opts.teacher_weights_folder)
prefix.append('teacher_')
models_to_load['teacher_'] = ['encoder', 'depth']
print("==>loading teacher model from folder {}".format(self.opts.teacher_weights_folder))
if self.opts.load_weights_folder is not None:
self.opts.load_weights_folder = os.path.expanduser(self.opts.load_weights_folder)
assert os.path.isdir(self.opts.load_weights_folder), "Cannot find folder {}".format(self.opts.load_weights_folder)
prefix.append('')
models_to_load[''] = ['encoder', 'depth', 'pose_encoder', 'pose']
print("==>loading model from folder {}".format(self.opts.load_weights_folder))
if self.opts.robust_weights_folder is not None:
self.opts.robust_weights_folder = os.path.expanduser(self.opts.robust_weights_folder)
assert os.path.isdir(self.opts.robust_weights_folder), "Cannot find folder {}".format(self.opts.robust_weights_folder)
prefix.append('robust_')
models_to_load['robust_'] = ['encoder', 'depth']
print("==>loading model from folder {}".format(self.opts.robust_weights_folder))
return prefix, models_to_load
def load_pretrain(self):
#This is just for lite-mono baseline.
self.opts.mypretrain = os.path.expanduser(self.opts.mypretrain)
path = self.opts.mypretrain
model_dict = self.models["encoder"].state_dict()
pretrained_dict = torch.load(path)['model']
pretrained_dict = {k: v for k, v in pretrained_dict.items() if (k in model_dict and not k.startswith('norm'))}
model_dict.update(pretrained_dict)
self.models["encoder"].load_state_dict(model_dict)
print('mypretrain loaded.')
def load_model(self, ):
"""Load model(s) from disk """
prefix, models_to_load = self.model_prefix, self.models_to_load
for pre in prefix:
print("=>loading {} model weights".format(pre))
for n in models_to_load[pre]:
n_bkup = n
n = pre + n
base = self.opts.teacher_weights_folder if pre != '' else self.opts.load_weights_folder
print("==>Loading {} weights...".format(n), end=" ")
path = os.path.join(base, "{}.pth".format(n_bkup))
model = self.models[n] if not self.opts.use_multi_gpu else self.models[n].module
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location=self.device)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
if pre != '':
for param in self.models[n].parameters():
param.requires_grad = False
print("√")
# loading adam state
load_adam = (self.opts.load_weights_folder is not None and not self.opts.finetune)
if load_adam:
optimizer_load_path = os.path.join(self.opts.load_weights_folder, "adam.pth")
if os.path.isfile(optimizer_load_path):
print("Loading Adam weights...", end=" ")
optimizer_dict = torch.load(optimizer_load_path, map_location=self.device)
self.model_optimizer.load_state_dict(optimizer_dict)
print("√")
else:
print("Cannot find Adam weights so Adam is randomly initialized")