-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw3.tex
262 lines (228 loc) · 10 KB
/
hw3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Short Sectioned Assignment
% LaTeX Template
% Version 1.0 (5/5/12)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% Original author:
% Frits Wenneker (http://www.howtotex.com)
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\documentclass[paper=a4, fontsize=11pt]{scrartcl} % A4 paper and 11pt font size
\usepackage[T1]{fontenc} % Use 8-bit encoding that has 256 glyphs
\usepackage{fourier} % Use the Adobe Utopia font for the document - comment this line to return to the LaTeX default
\usepackage[english]{babel} % English language/hyphenation
\usepackage{amsmath,amsfonts,amsthm, amssymb} % Math packages
\usepackage{lipsum} % Used for inserting dummy 'Lorem ipsum' text into the template
\usepackage{sectsty} % Allows customizing section commands
\allsectionsfont{\centering \normalfont\scshape} % Make all sections centered, the default font and small caps
\usepackage{fancyhdr} % Custom headers and footers
\usepackage{verbatim} % Enable batch comments
\usepackage{algorithm}
\usepackage{algorithmic} % pesudo code
\usepackage{graphicx}
%\usepackage{calligra}
%\usepackage[T1]{fontenc} % Enable caligra typeface
\usepackage{color} % enable background color
\usepackage{enumerate} % enable style ajustment of enumerate
\usepackage{caption}
\usepackage{subcaption} % enable subfigure
\usepackage{footnote}
\pagestyle{fancyplain} % Makes all pages in the document conform to the custom headers and footers
\fancyhead{} % No page header - if you want one, create it in the same way as the footers below
\fancyfoot[L]{} % Empty left footer
\fancyfoot[C]{} % Empty center footer
\fancyfoot[R]{\thepage} % Page numbering for right footer
\renewcommand{\headrulewidth}{0pt} % Remove header underlines
\renewcommand{\footrulewidth}{0pt} % Remove footer underlines
\setlength{\headheight}{13.6pt} % Customize the height of the header
\numberwithin{equation}{section} % Number equations within sections (i.e. 1.1, 1.2, 2.1, 2.2 instead of 1, 2, 3, 4)
\numberwithin{figure}{section} % Number figures within sections (i.e. 1.1, 1.2, 2.1, 2.2 instead of 1, 2, 3, 4)
\numberwithin{table}{section} % Number tables within sections (i.e. 1.1, 1.2, 2.1, 2.2 instead of 1, 2, 3, 4)
\setlength\parindent{0pt} % Removes all indentation from paragraphs - comment this line for an assignment with lots of text
%----------------------------------------------------------------------------------------
% TITLE SECTION
%----------------------------------------------------------------------------------------
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}} % Create horizontal rule command with 1 argument of height
\title{
\normalfont \normalsize
\textsc{Northwestern University, EECS Department} \\ [25pt] % Your university, school and/or department name(s)
\horrule{0.5pt} \\[0.4cm] % Thin top horizontal rule
\huge EECS 495 Homework 3 \\ % The assignment title
\horrule{2pt} \\[0.5cm] % Thick bottom horizontal rule
}
\author{Zhiyuan Wang} % Your name
\date{\normalsize\today} % Today's date or a custom date
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}
{-\baselineskip}{0.5 \baselineskip}{\bf\leftline}}
\makeatother
\makeatletter
\renewcommand{\subsection}{\@startsection{subsection}{10}{0mm}{-\baselineskip}{0.5 \baselineskip}{\bf\leftline}}
\makeatother
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newenvironment{myproof}{\begin{proof}\setlength{\parindent}{2em}}{\end{proof}}
\newcommand{\argmin}{\operatornamewithlimits{argmin}}
%\setcounter{section}{-1}
\begin{document}
\setlength{\parindent}{2em}
\maketitle % Print the title
%----------------------------------------------------------------------------------------
% PROBLEM 1
%----------------------------------------------------------------------------------------
\section{Accelerated proximal gradient for the lasso problem}
the proximal gradient step:
Since $\norm{A\mathbf{x}-\mathbf{b}}_2^2$ is $L$-Lipschitz by (5.2.3) we get:
\begin{equation}
\mathbf{x}^* = \min_\mathbf{x} \norm{\mathbf{x}-\mathbf{y}}_2^2+\cfrac{2\lambda}{L}\norm{\mathbf{x}}_1
\end{equation}
where $\mathbf{y}=\mathbf{x}^{k-1}-\cfrac{1}{L} \bigtriangledown f(\mathbf{x}^{k-1})$, $L = d_{max}(A^TA)$
This problem is separable by each entry of $x_i$:
\begin{equation}
x_i^* = \argmin_x\ (x_i - y_i)^2+\cfrac{2\lambda}{L}|x_i|
\end{equation}
\begin{equation}
\bigtriangledown f(x_i) = 2(x_i-y_i+\cfrac{\lambda}{L}sign(x_i))
\end{equation}
If $y_i=0$, then clearly $x_i^*=0$. If $y_i>0$, there must be $x_i>0$, otherwise let $\bigtriangledown f(x_i) = 0$, then for $\forall \lambda>0$, $y_i=x_i-\cfrac{\lambda}{L}< 0$, that contradicts the assumption. Likewise, when $y_i<0$, $x_i<0$.
Thus,
\begin{equation}
x_i^k =
\begin{cases}
[y_i-\cfrac{\lambda}{L}]^+ &\mbox{if} \ y>0 \\
0 &\mbox{if} \ y = 0 \\
-[-y_i-\cfrac{\lambda}{L}]^+ &\mbox{if} \ y<0
\end{cases}
\end{equation}
\begin{equation}
\begin{split}
x_i^k &=\begin{bmatrix} |y_i| - \cfrac{\lambda}{L}\end{bmatrix}^+sign(y_i)\\
&= \left[ \begin{vmatrix}
\left( \mathbf{x}^{k-1}-\cfrac{1}{d_{max}(A^TA)}A^T(A\mathbf{x}^{k-1}-\mathbf{b}) \right)_i
\end{vmatrix} - \cfrac{\lambda}{L}\right] ^+ sign\left( \left( \mathbf{x}^{k-1}-\cfrac{1}{d_{max}(A^TA)}A^T(A\mathbf{x}^{k-1}-\mathbf{b}) \right)_i \right)
\end{split}
\end{equation}
the accelerated proximal gradient step:
\begin{equation}
\begin{split}
x_i^k &= \left[ \begin{vmatrix}
\left( \mathbf{y}^{k-1}-\cfrac{1}{d_{max}(A^TA)}A^T(A\mathbf{y}^{k-1}-\mathbf{b}) \right)_i
\end{vmatrix} - \cfrac{\lambda}{L}\right] ^+ sign\left( \left( \mathbf{y}^{k-1}-\cfrac{1}{d_{max}(A^TA)}A^T(A\mathbf{y}^{k-1}-\mathbf{b}) \right)_i \right)\\
\mathbf{y}^k &= \mathbf{x}^{k} + \cfrac{k}{k+3}(\mathbf{x}^k - \mathbf{x}^{k-1})
\end{split}
\end{equation}
\begin{figure}[htb!]
\centering
\includegraphics[scale=0.33]{lasso1.eps}
\end{figure}
\section{The L-Lipschitz constant for logistic loss}
\begin{equation} \label{eq3}
\bigtriangledown_\mathbf{x}^3 \mathcal{H}=\sum\limits_{n=1}^NQ\bigtriangledown f_\mathbf{x}(\mathbf{a}^n)(1-2f_\mathbf{x}(\mathbf{a}^n))R
\end{equation}
Let $\bigtriangledown_\mathbf{x}^3 \mathcal{H} = 0$, $f_\mathbf{x}(\mathbf{a}^n) = 0,~ \cfrac{1}{2}~,~ 1$. $\bigtriangledown_\mathbf{x}^2 \mathcal{H}$ get maxima at $f_\mathbf{x}(\mathbf{a}^n)=\cfrac{1}{2}$.
\begin{equation}
\begin{split}
\bigtriangledown_x^2 \mathcal{H} &\preceq \sum\limits_{n=1}^N \cfrac{1}{4} (\mathbf{a}^n)^T \mathbf{a}^n \\
& \preceq \cfrac{1}{4} d_{max}(A^TA)I
\end{split}
\end{equation}
\begin{equation}
L = \cfrac{1}{4}d_{max}(A^TA)
\end{equation}
where $d_{max}(A^TA)$ is the largest eigenvalue of $A^TA$.
\section{Sparse logistic regression applications}
I tried to search some interesting stuff at IEEE Xplore, Google Scholar and Microsoft Academic Search, but nothing really caught my eyes, so I answered the other questions.
\section{Nonnegative Matrix Factorization}
The subproblem of minimizing over $X$ is given as
\begin{equation}
\begin{split}
\min_X\ \frac{1}{2}\norm{AX-B}_F^2 &=\frac{1}{2}\sum_{i=1}^N\norm{\mathbf{a}^iX-\mathbf{b}^i}_2^2 \\
subject~to~X &\geq 0
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\bigtriangledown g(X) &= \sum_{i=1}^N (\mathbf{a}^i)^T(\mathbf{a}^iX-\mathbf{b}^i)\\
& = A^T(AX-B)
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\bigtriangledown^2 g(X) &= \sum_{i=1}^N (\mathbf{a}^i)^T\mathbf{a}^i \\
& = A^TA
\end{split}
\end{equation}
\begin{equation}
X^k = \begin{bmatrix} X^{k-1} - \frac{1}{L} A^T(AX^{k-1}-B)\end{bmatrix}^+
\end{equation}
where $L = d_{max}(A^TA)$.
The subproblem of minimizing over $A$ is given as
\begin{equation}
\begin{split}
\min_X\ \frac{1}{2}\norm{AX-B}_F^2 &=\frac{1}{2}\sum_{j=1}^P\norm{A\mathbf{x}_j-\mathbf{b}_j}_2^2 \\
subject~to~A &\geq 0
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\bigtriangledown g(A) &= \sum_{j=1}^P \mathbf{x}_j(A\mathbf{x}_j-\mathbf{b}_j)\\
& = X^T(AX^T-B^T)
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\bigtriangledown^2 g(A) &= \sum_{j=1}^P \mathbf{x}_j\mathbf{x}_j^T \\
& = XX^T
\end{split}
\end{equation}
\begin{equation}
A^k = \begin{bmatrix}
A^{k-1} - \frac{1}{L}X^T(A^{k-1}X^T-B^T)
\end{bmatrix}^+
\end{equation}
where here $L = d_{max}(XX^T)$
\section{Robust Face Recognition}
\begin{equation}
\min_{\mathbf{x}, \mathbf{e}}\ \mu\norm{A\mathbf{x}+\mathbf{e}-\mathbf{b}}_2^2 + \norm{\mathbf{x}}_1+\norm{\mathbf{e}}_1
\end{equation}
where $\mu$ is dependent on $\epsilon$.
The subproblem of minimizing over $\mathbf{x}$ is given as
\begin{equation}
\min_\mathbf{x}\ \cfrac{1}{2}\norm{A\mathbf{x}-(\mathbf{b}-\mathbf{e})}_2^2+\cfrac{1}{2\mu L_x}\norm{\mathbf{x}}_1
\end{equation}
\begin{equation}
\bigtriangledown^2 f(\mathbf{x}) = A^TA
\end{equation}
\begin{equation}
\mathbf{x}^k = \mathcal{T}_{\frac{1}{2\mu L_x}}(\mathbf{x}^{k-1} - \cfrac{1}{L_x}A^T[A\mathbf{x}-(\mathbf{b}-\mathbf{e})])
\end{equation}
$$ = \begin{bmatrix} \begin{vmatrix}
\mathbf{x}^{k-1} - \cfrac{1}{d_{max}(A^TA)}A^T[A\mathbf{x}^{k-1}-(\mathbf{b}-\mathbf{e})]
\end{vmatrix} - \cfrac{1}{2\mu L_x} \end{bmatrix}^+ sign(\mathbf{x}^{k-1} - \cfrac{1}{d_{max}(A^TA)}A^T[A\mathbf{x}^{k-1}-(\mathbf{b}-\mathbf{e})])$$
where $L_x = d_{max}(A^TA)$.
The subproblem of minimizing over $\mathbf{e}$ is given as
\begin{equation}
\min_\mathbf{e}\ \cfrac{1}{2}\norm{\mathbf{e}-(\mathbf{b}-A\mathbf{x})}_2^2 + \cfrac{1}{2\mu L_e}\norm{\mathbf{e}}_1
\end{equation}
\begin{equation}
\bigtriangledown^2 f(\mathbf{e}) = I
\end{equation}
\begin{equation}
\mathbf{e}^k = \mathcal{T}_{\frac{1}{2\mu L_e}}(\mathbf{e}^{k-1} - \cfrac{1}{L_e}[\mathbf{e}^{k-1}-(\mathbf{b}-A\mathbf{x})])
\end{equation}
$$= \begin{bmatrix}
\begin{vmatrix}
\mathbf{b}-A\mathbf{x}
\end{vmatrix} - \cfrac{1}{2\mu}
\end{bmatrix}^+sign(\mathbf{b}-A\mathbf{x})$$
where $L_e = 1$.
%----------------------------------------------------------------------------------------
\end{document}