-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_cell_protein_quantification.cppipe
366 lines (347 loc) · 17.7 KB
/
single_cell_protein_quantification.cppipe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
CellProfiler Pipeline: http://www.cellprofiler.org
Version:5
DateRevision:407
GitHash:
ModuleCount:19
HasImagePlaneDetails:False
Images:[module_num:1|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['To begin creating your project, use the Images module to compile a list of files and/or folders that you want to analyze. You can also specify a set of rules to include only the desired files in your selected folders.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
:
Filter images?:No filtering
Select the rule criteria:and (extension does istif) (directory doesnot containregexp "[\\\\/]\\.")
Metadata:[module_num:2|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:['The Metadata module optionally allows you to extract information describing your images (i.e, metadata) which will be stored along with your measurements. This information can be contained in the file name and/or location, or in an external file.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Extract metadata?:Yes
Metadata data type:Text
Metadata types:{}
Extraction method count:1
Metadata extraction method:Extract from file/folder names
Metadata source:File name
Regular expression to extract from file name:^(?P<Time>.*)_(?P<Well>.*)_(?P<Stack>.*)_ch(?P<ChannelNumber>[0-9]{1,2})
Regular expression to extract from folder name:(?P<Date>[0-9]{4}_[0-9]{2}_[0-9]{2})$
Extract metadata from:All images
Select the filtering criteria:and (file does contain "")
Metadata file location:Elsewhere...|
Match file and image metadata:[]
Use case insensitive matching?:No
Metadata file name:
Does cached metadata exist?:No
NamesAndTypes:[module_num:3|svn_version:'Unknown'|variable_revision_number:8|show_window:False|notes:['DNA: DNA stained with DAPI']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Assign a name to:Images matching rules
Select the image type:Grayscale image
Name to assign these images:DNA
Match metadata:[]
Image set matching method:Order
Set intensity range from:Image metadata
Assignments count:3
Single images count:0
Maximum intensity:255.0
Process as 3D?:No
Relative pixel spacing in X:1.0
Relative pixel spacing in Y:1.0
Relative pixel spacing in Z:1.0
Select the rule criteria:and (file does contain "ch00")
Name to assign these images:DAPI
Name to assign these objects:Cell
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Select the rule criteria:and (file does contain "ch01")
Name to assign these images:GFP
Name to assign these objects:Nucleus
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Select the rule criteria:and (file does contain "ch02")
Name to assign these images:mCherry
Name to assign these objects:Cytoplasm
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Groups:[module_num:4|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['The Groups module optionally allows you to split your list of images into image subsets (groups) which will be processed independently of each other. Examples of groupings include screening batches, microtiter plates, time-lapse movies, etc.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Do you want to group your images?:No
grouping metadata count:1
Metadata category:None
IdentifyPrimaryObjects:[module_num:5|svn_version:'Unknown'|variable_revision_number:14|show_window:False|notes:['Identify nuclei']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:DAPI
Name the primary objects to be identified:Nuclei
Typical diameter of objects, in pixel units (Min,Max):10,100
Discard objects outside the diameter range?:Yes
Discard objects touching the border of the image?:No
Method to distinguish clumped objects:Intensity
Method to draw dividing lines between clumped objects:Shape
Size of smoothing filter:10
Suppress local maxima that are closer than this minimum allowed distance:7.0
Speed up by using lower-resolution image to find local maxima?:Yes
Fill holes in identified objects?:After both thresholding and declumping
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:Yes
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Display accepted local maxima?:No
Select maxima color:Blue
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:1.3488
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:400
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Otsu
GrayToColor:[module_num:6|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:['Merge the 3 channels to RGB']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select a color scheme:RGB
Rescale intensity:Yes
Select the image to be colored red:mCherry
Select the image to be colored green:GFP
Select the image to be colored blue:DAPI
Name the output image:Merge
Relative weight for the red image:1.0
Relative weight for the green image:1.0
Relative weight for the blue image:1.0
Select the image to be colored cyan:Leave this black
Select the image to be colored magenta:Leave this black
Select the image to be colored yellow:Leave this black
Select the image that determines brightness:Leave this black
Relative weight for the cyan image:1.0
Relative weight for the magenta image:1.0
Relative weight for the yellow image:1.0
Relative weight for the brightness image:1.0
Hidden:1
Image name:None
Color:#ff0000
Weight:1.0
ColorToGray:[module_num:7|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:['Convert merged image from RGB to GrayScale']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Merge
Conversion method:Combine
Image type:RGB
Name the output image:Merge_Gray
Relative weight of the red channel:1.0
Relative weight of the green channel:1.0
Relative weight of the blue channel:1.0
Convert red to gray?:Yes
Name the output image:None
Convert green to gray?:Yes
Name the output image:polyA
Convert blue to gray?:Yes
Name the output image:DNA
Convert hue to gray?:Yes
Name the output image:OrigHue
Convert saturation to gray?:Yes
Name the output image:OrigSaturation
Convert value to gray?:Yes
Name the output image:OrigValue
Channel count:1
Channel number:1
Relative weight of the channel:1.0
Image name:Channel1
IdentifySecondaryObjects:[module_num:8|svn_version:'Unknown'|variable_revision_number:10|show_window:False|notes:['Identify cells']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input objects:Nuclei
Name the objects to be identified:Cells
Select the method to identify the secondary objects:Propagation
Select the input image:Merge_Gray
Number of pixels by which to expand the primary objects:10
Regularization factor:0.05
Discard secondary objects touching the border of the image?:No
Discard the associated primary objects?:No
Name the new primary objects:FilteredNuclei
Fill holes in identified objects?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:0.0
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Three classes
Log transform before thresholding?:Yes
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Otsu
EnhanceOrSuppressFeatures:[module_num:9|svn_version:'Unknown'|variable_revision_number:7|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:mCherry
Name the output image:Enhanced_mCherry
Select the operation:Enhance
Feature size:5
Feature type:Speckles
Range of hole sizes:1,10
Smoothing scale:2.0
Shear angle:0.0
Decay:0.95
Enhancement method:Tubeness
Speed and accuracy:Fast
Rescale result image:No
EnhanceOrSuppressFeatures:[module_num:10|svn_version:'Unknown'|variable_revision_number:7|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:GFP
Name the output image:Enhanced_GFP
Select the operation:Enhance
Feature size:5
Feature type:Speckles
Range of hole sizes:1,10
Smoothing scale:2.0
Shear angle:0.0
Decay:0.95
Enhancement method:Tubeness
Speed and accuracy:Fast
Rescale result image:No
IdentifyPrimaryObjects:[module_num:11|svn_version:'Unknown'|variable_revision_number:14|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:mCherry
Name the primary objects to be identified:mCherry_dots
Typical diameter of objects, in pixel units (Min,Max):1,50
Discard objects outside the diameter range?:No
Discard objects touching the border of the image?:No
Method to distinguish clumped objects:Intensity
Method to draw dividing lines between clumped objects:Intensity
Size of smoothing filter:10
Suppress local maxima that are closer than this minimum allowed distance:7.0
Speed up by using lower-resolution image to find local maxima?:Yes
Fill holes in identified objects?:After both thresholding and declumping
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:Yes
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Display accepted local maxima?:No
Select maxima color:Blue
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Robust Background
Threshold smoothing scale:1.3488
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Minimum Cross-Entropy
IdentifyPrimaryObjects:[module_num:12|svn_version:'Unknown'|variable_revision_number:14|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:GFP
Name the primary objects to be identified:GFP_dots
Typical diameter of objects, in pixel units (Min,Max):1,50
Discard objects outside the diameter range?:No
Discard objects touching the border of the image?:No
Method to distinguish clumped objects:Intensity
Method to draw dividing lines between clumped objects:Intensity
Size of smoothing filter:10
Suppress local maxima that are closer than this minimum allowed distance:7.0
Speed up by using lower-resolution image to find local maxima?:Yes
Fill holes in identified objects?:After both thresholding and declumping
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:Yes
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Display accepted local maxima?:No
Select maxima color:Blue
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Robust Background
Threshold smoothing scale:1.3488
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Minimum Cross-Entropy
MaskImage:[module_num:13|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:mCherry
Name the output image:Masked_mCherry
Use objects or an image as a mask?:Objects
Select object for mask:mCherry_dots
Select image for mask:None
Invert the mask?:No
MaskImage:[module_num:14|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:GFP
Name the output image:Masked_GFP
Use objects or an image as a mask?:Objects
Select object for mask:GFP_dots
Select image for mask:None
Invert the mask?:No
MeasureObjectIntensity:[module_num:15|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:['Measure mCherry and GFP intensities in each cell']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Masked_GFP, Masked_mCherry
Select objects to measure:Cells
MeasureObjectSizeShape:[module_num:16|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:['Measure the sizes and shapes of the cells to make sure the cells are normal']|batch_state:array([], dtype=uint8)|enabled:False|wants_pause:False]
Select object sets to measure:Cells
Calculate the Zernike features?:Yes
Calculate the advanced features?:No
OverlayOutlines:[module_num:17|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Display outlines on a blank image?:No
Select image on which to display outlines:Merge
Name the output image:OrigSegmented
Outline display mode:Color
Select method to determine brightness of outlines:Max of image
How to outline:Thick
Select outline color:yellow
Select objects to display:Cells
Select outline color:blue
Select objects to display:Nuclei
SaveImages:[module_num:18|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:False|wants_pause:False]
Select the type of image to save:Image
Select the image to save:OrigSegmented
Select method for constructing file names:From image filename
Select image name for file prefix:DAPI
Enter single file name:OrigBlue
Number of digits:4
Append a suffix to the image file name?:Yes
Text to append to the image name:_OrigSegmented
Saved file format:tiff
Output file location:Elsewhere...|D:\\MIT\\STARmap\\GFP-mCherry\\20210413_protein\\20210415-72hr-RAW\\Plate2-72hrs-result
Image bit depth:8-bit integer
Overwrite existing files without warning?:Yes
When to save:Every cycle
Record the file and path information to the saved image?:No
Create subfolders in the output folder?:No
Base image folder:Elsewhere...|
How to save the series:T (Time)
ExportToSpreadsheet:[module_num:19|svn_version:'Unknown'|variable_revision_number:13|show_window:False|notes:['Export all kinds of measurements of each cell to Excel']|batch_state:array([], dtype=uint8)|enabled:False|wants_pause:False]
Select the column delimiter:Comma (",")
Add image metadata columns to your object data file?:Yes
Add image file and folder names to your object data file?:No
Select the measurements to export:No
Calculate the per-image mean values for object measurements?:No
Calculate the per-image median values for object measurements?:No
Calculate the per-image standard deviation values for object measurements?:No
Output file location:Elsewhere...|D:\\MIT\\STARmap\\STARmap_computation\\GFP-mCherry\\20210513_Neuron\\2021-05-13-Neuron-24hrs-export
Create a GenePattern GCT file?:No
Select source of sample row name:Metadata
Select the image to use as the identifier:None
Select the metadata to use as the identifier:None
Export all measurement types?:No
Press button to select measurements:
Representation of Nan/Inf:NaN
Add a prefix to file names?:No
Filename prefix:MyExpt_
Overwrite existing files without warning?:Yes
Data to export:Cells
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes