-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodel.py
206 lines (183 loc) · 7.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# coding: utf-8
# Author:WangTianRui
# Date :2020/11/3 16:49
# from base.BaseModel import *
import torch.nn as nn
import torch
from utils.conv_stft import *
from utils.complexnn import *
class DCCRN(nn.Module):
def __init__(self,
rnn_layer=2, rnn_hidden=256,
win_len=400, hop_len=100, fft_len=512, win_type='hanning',
use_clstm=True, use_cbn=False, masking_mode='E',
kernel_size=5, kernel_num=(32, 64, 128, 256, 256, 256)
):
super(DCCRN, self).__init__()
self.rnn_layer = rnn_layer
self.rnn_hidden = rnn_hidden
self.win_len = win_len
self.hop_len = hop_len
self.fft_len = fft_len
self.win_type = win_type
self.use_clstm = use_clstm
self.use_cbn = use_cbn
self.masking_mode = masking_mode
self.kernel_size = kernel_size
self.kernel_num = (2,) + kernel_num
self.stft = ConvSTFT(self.win_len, self.hop_len, self.fft_len, self.win_type, 'complex', fix=True)
self.istft = ConviSTFT(self.win_len, self.hop_len, self.fft_len, self.win_type, 'complex', fix=True)
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
for idx in range(len(self.kernel_num) - 1):
self.encoder.append(
nn.Sequential(
ComplexConv2d(
self.kernel_num[idx],
self.kernel_num[idx + 1],
kernel_size=(self.kernel_size, 2),
stride=(2, 1),
padding=(2, 1)
),
nn.BatchNorm2d(self.kernel_num[idx + 1]) if not use_cbn else ComplexBatchNorm(
self.kernel_num[idx + 1]),
nn.PReLU()
)
)
hidden_dim = self.fft_len // (2 ** (len(self.kernel_num)))
if self.use_clstm:
rnns = []
for idx in range(rnn_layer):
rnns.append(
NavieComplexLSTM(
input_size=hidden_dim * self.kernel_num[-1] if idx == 0 else self.rnn_hidden,
hidden_size=self.rnn_hidden,
batch_first=False,
projection_dim=hidden_dim * self.kernel_num[-1] if idx == rnn_layer - 1 else None
)
)
self.enhance = nn.Sequential(*rnns)
else:
self.enhance = nn.LSTM(
input_size=hidden_dim * self.kernel_num[-1],
hidden_size=self.rnn_hidden,
num_layers=2,
dropout=0.0,
batch_first=False
)
self.transform = nn.Linear(self.rnn_hidden, hidden_dim * self.kernel_num[-1])
for idx in range(len(self.kernel_num) - 1, 0, -1):
if idx != 1:
self.decoder.append(
nn.Sequential(
ComplexConvTranspose2d(
self.kernel_num[idx] * 2,
self.kernel_num[idx - 1],
kernel_size=(self.kernel_size, 2),
stride=(2, 1),
padding=(2, 0),
output_padding=(1, 0)
),
nn.BatchNorm2d(self.kernel_num[idx - 1]) if not use_cbn else ComplexBatchNorm(
self.kernel_num[idx - 1]),
nn.PReLU()
)
)
else:
self.decoder.append(
nn.Sequential(
ComplexConvTranspose2d(
self.kernel_num[idx] * 2,
self.kernel_num[idx - 1],
kernel_size=(self.kernel_size, 2),
stride=(2, 1),
padding=(2, 0),
output_padding=(1, 0)
)
)
)
if isinstance(self.enhance, nn.LSTM):
self.enhance.flatten_parameters()
def forward(self, x):
stft = self.stft(x)
# print("stft:", stft.size())
real = stft[:, :self.fft_len // 2 + 1]
imag = stft[:, self.fft_len // 2 + 1:]
# print("real imag:", real.size(), imag.size())
spec_mags = torch.sqrt(real ** 2 + imag ** 2 + 1e-8)
spec_phase = torch.atan2(imag, real)
spec_complex = torch.stack([real, imag], dim=1)[:, :, 1:] # B,2,256
# print("spec", spec_mags.size(), spec_phase.size(), spec_complex.size())
out = spec_complex
encoder_out = []
for idx, encoder in enumerate(self.encoder):
out = encoder(out)
# print("encoder out:", out.size())
encoder_out.append(out)
B, C, D, T = out.size()
out = out.permute(3, 0, 1, 2)
if self.use_clstm:
r_rnn_in = out[:, :, :C // 2]
i_rnn_in = out[:, :, C // 2:]
r_rnn_in = torch.reshape(r_rnn_in, [T, B, C // 2 * D])
i_rnn_in = torch.reshape(i_rnn_in, [T, B, C // 2 * D])
r_rnn_in, i_rnn_in = self.enhance([r_rnn_in, i_rnn_in])
r_rnn_in = torch.reshape(r_rnn_in, [T, B, C // 2, D])
i_rnn_in = torch.reshape(i_rnn_in, [T, B, C // 2, D])
out = torch.cat([r_rnn_in, i_rnn_in], 2)
else:
out = torch.reshape(out, [T, B, C * D])
out, _ = self.enhance(out)
out = self.transform(out)
out = torch.reshape(out, [T, B, C, D])
out = out.permute(1, 2, 3, 0)
for idx in range(len(self.decoder)):
out = complex_cat([out, encoder_out[-1 - idx]], 1)
out = self.decoder[idx](out)
out = out[..., 1:]
mask_real = out[:, 0]
mask_imag = out[:, 1]
mask_real = F.pad(mask_real, [0, 0, 1, 0])
mask_imag = F.pad(mask_imag, [0, 0, 1, 0])
if self.masking_mode == 'E':
mask_mags = (mask_real ** 2 + mask_imag ** 2) ** 0.5
real_phase = mask_real / (mask_mags + 1e-8)
imag_phase = mask_imag / (mask_mags + 1e-8)
mask_phase = torch.atan2(
imag_phase,
real_phase
)
mask_mags = torch.tanh(mask_mags)
est_mags = mask_mags * spec_mags
est_phase = spec_phase + mask_phase
real = est_mags * torch.cos(est_phase)
imag = est_mags * torch.sin(est_phase)
elif self.masking_mode == 'C':
real = real * mask_real - imag * mask_imag
imag = real * mask_imag + imag * mask_real
elif self.masking_mode == 'R':
real = real * mask_real
imag = imag * mask_imag
out_spec = torch.cat([real, imag], 1)
out_wav = self.istft(out_spec)
out_wav = torch.squeeze(out_wav, 1)
out_wav = out_wav.clamp_(-1, 1)
return out_wav
def l2_norm(s1, s2):
norm = torch.sum(s1 * s2, -1, keepdim=True)
return norm
def si_snr(s1, s2, eps=1e-8):
s1_s2_norm = l2_norm(s1, s2)
s2_s2_norm = l2_norm(s2, s2)
s_target = s1_s2_norm / (s2_s2_norm + eps) * s2
e_nosie = s1 - s_target
target_norm = l2_norm(s_target, s_target)
noise_norm = l2_norm(e_nosie, e_nosie)
snr = 10 * torch.log10(target_norm / (noise_norm + eps) + eps)
return torch.mean(snr)
def loss(inputs, label):
return -(si_snr(inputs, label))
if __name__ == '__main__':
test_model = DCCRN(rnn_hidden=256, masking_mode='E', use_clstm=True, kernel_num=(32, 64, 128, 256, 256, 256))
from BaseModel import *
model_test_timer(test_model, (1, 16000 * 30))