-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathmain_resnet.py
241 lines (202 loc) · 10.4 KB
/
main_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import logging
import torch
import torch.nn as nn
from torch import cuda
from torch.autograd import Variable
from torch.utils.data import DataLoader,Dataset
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils
from PIL import Image
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import random
from custom_transform import CustomResize
from custom_transform import CustomToTensor
from AD_Dataset import AD_Dataset
from AD_2DSlicesData import AD_2DSlicesData
from AlexNet2D import alexnet
from AlexNet3D import AlexNet
import ResNet2D
import ResNet3D
logging.basicConfig(
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO)
parser = argparse.ArgumentParser(description="Starter code for JHU CS661 Computer Vision HW3.")
parser.add_argument("--network_type", "--nt", default="AlexNet2D", choices=["AlexNet2D", "AlexNet3D", "ResNet2D", "ResNet3D"],
help="Deep network type. (default=AlexNet)")
parser.add_argument("--load",
help="Load saved network weights.")
parser.add_argument("--save", default="best_model",
help="Save network weights.")
parser.add_argument("--augmentation", default=True, type=bool,
help="Save network weights.")
parser.add_argument("--epochs", default=20, type=int,
help="Epochs through the data. (default=20)")
parser.add_argument("--learning_rate", "-lr", default=1e-3, type=float,
help="Learning rate of the optimization. (default=0.01)")
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument("--estop", default=1e-2, type=float,
help="Early stopping criteria on the development set. (default=1e-2)")
parser.add_argument("--batch_size", default=1, type=int,
help="Batch size for training. (default=1)")
parser.add_argument("--optimizer", default="Adam", choices=["SGD", "Adadelta", "Adam"],
help="Optimizer of choice for training. (default=Adam)")
parser.add_argument("--gpuid", default=[0], nargs='+', type=int,
help="ID of gpu device to use. Empty implies cpu usage.")
# feel free to add more arguments as you need
def main(options):
# Path configuration
TRAINING_PATH = 'train.txt'
TESTING_PATH = 'test.txt'
IMG_PATH = './Image'
if options.network_type == 'AlexNet3D':
trg_size = (224, 224, 224)
elif options.network_type == 'AlexNet2D':
trg_size = (224, 224)
elif options.network_type == 'ResNet3D':
trg_size = (110, 110, 110)
elif options.network_type == 'ResNet2D':
trg_size = (224, 224)
if options.network_type == "AlexNet3D" or "ResNet3D":
transformations = transforms.Compose([CustomResize(options.network_type, trg_size),
CustomToTensor(options.network_type)
])
dset_train = AD_2DSlicesData(IMG_PATH, TRAINING_PATH, transformations)
dset_test = AD_2DSlicesData(IMG_PATH, TESTING_PATH, transformations)
elif options.network_type == 'AlexNet2D' or "ResNet2D":
transformations = transforms.Compose([transforms.Resize(trg_size, Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
dset_train = AD_2DSlicesData(IMG_PATH, TRAINING_PATH, transformations)
dset_test = AD_2DSlicesData(IMG_PATH, TESTING_PATH, transformations)
# Use argument load to distinguish training and testing
if options.load is None:
train_loader = DataLoader(dset_train,
batch_size = options.batch_size,
shuffle = True,
num_workers = 4,
drop_last = True
)
else:
# Only shuffle the data when doing training
train_loader = DataLoader(dset_train,
batch_size=options.batch_size,
shuffle=False,
num_workers=4,
drop_last=True
)
test_loader = DataLoader(dset_test,
batch_size = options.batch_size,
shuffle = False,
num_workers = 4,
drop_last=True
)
use_cuda = (len(options.gpuid) >= 1)
# if options.gpuid:
# cuda.set_device(options.gpuid[0])
# Training process
if options.load is None:
# Initial the model
if options.network_type == 'AlexNet3D':
model = AlexNet()
elif options.network_type == 'AlexNet2D':
model = alexnet(pretrained=True)
elif options.network_type == 'ResNet2D':
model = ResNet2D.resnet152(pretrained=True)
elif options.network_type == 'ResNet3D':
model = ResNet3D.ResNet()
if use_cuda > 0:
model = nn.DataParallel(model, device_ids=options.gpuid).cuda()
else:
model.cpu()
# Binary cross-entropy loss
criterion = torch.nn.CrossEntropyLoss()
lr = options.learning_rate
optimizer = eval("torch.optim." + options.optimizer)(model.parameters(), lr,
#momentum=options.momentum,
weight_decay=options.weight_decay)
# Prepare for label encoding
last_dev_avg_loss = float("inf")
best_accuracy = float("-inf")
# main training loop
for epoch_i in range(options.epochs):
logging.info("At {0}-th epoch.".format(epoch_i))
train_loss = 0.0
correct_cnt = 0.0
model.train()
for it, train_data in enumerate(train_loader):
data_dic = train_data
if use_cuda:
imgs, labels = Variable(data_dic['image']).cuda(), Variable(data_dic['label']).cuda()
else:
imgs, labels = Variable(data_dic['image']), Variable(data_dic['label'])
# add channel dimension: (batch_size, D, H ,W) to (batch_size, 1, D, H ,W)
# since 3D convolution requires 5D tensors
img_input = imgs#.unsqueeze(1)
integer_encoded = labels.data.cpu().numpy()
# target should be LongTensor in loss function
ground_truth = Variable(torch.from_numpy(integer_encoded)).long()
if use_cuda:
ground_truth = ground_truth.cuda()
train_output = model(img_input)
train_prob_predict = F.softmax(train_output, dim=1)
_, predict = train_prob_predict.topk(1)
loss = criterion(train_output, ground_truth)
train_loss += loss
correct_this_batch = (predict.squeeze(1) == ground_truth).sum()
correct_cnt += correct_this_batch
accuracy = float(correct_this_batch) / len(ground_truth)
logging.info("batch {0} training loss is : {1:.5f}".format(it, loss.data[0]))
logging.info("batch {0} training accuracy is : {1:.5f}".format(it, accuracy))
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_avg_loss = train_loss / (len(dset_train) / options.batch_size)
train_avg_acu = float(correct_cnt) / len(dset_train)
logging.info("Average training loss is {0:.5f} at the end of epoch {1}".format(train_avg_loss.data[0], epoch_i))
logging.info("Average training accuracy is {0:.5f} at the end of epoch {1}".format(train_avg_acu, epoch_i))
# validation -- this is a crude esitmation because there might be some paddings at the end
dev_loss = 0.0
correct_cnt = 0.0
model.eval()
for it, test_data in enumerate(test_loader):
data_dic = test_data
if use_cuda:
imgs, labels = Variable(data_dic['image'], volatile=True).cuda(), Variable(data_dic['label'], volatile=True).cuda()
else:
imgs, labels = Variable(data_dic['image'], volatile=True), Variable(data_dic['label'], volatile=True)
img_input = imgs#.unsqueeze(1)
integer_encoded = labels.data.cpu().numpy()
ground_truth = Variable(torch.from_numpy(integer_encoded), volatile=True).long()
if use_cuda:
ground_truth = ground_truth.cuda()
test_output = model(img_input)
test_prob_predict = F.softmax(test_output, dim=1)
_, predict = test_prob_predict.topk(1)
loss = criterion(test_output, ground_truth)
dev_loss += loss
correct_this_batch = (predict.squeeze(1) == ground_truth).sum()
correct_cnt += (predict.squeeze(1) == ground_truth).sum()
accuracy = float(correct_this_batch) / len(ground_truth)
logging.info("batch {0} dev loss is : {1:.5f}".format(it, loss.data[0]))
logging.info("batch {0} dev accuracy is : {1:.5f}".format(it, accuracy))
dev_avg_loss = dev_loss / (len(dset_test) / options.batch_size)
dev_avg_acu = float(correct_cnt) / len(dset_test)
logging.info("Average validation loss is {0:.5f} at the end of epoch {1}".format(dev_avg_loss.data[0], epoch_i))
logging.info("Average validation accuracy is {0:.5f} at the end of epoch {1}".format(dev_avg_acu, epoch_i))
torch.save(model.state_dict(), open(options.save + ".nll_{0:.3f}.epoch_{1}".format(dev_avg_loss.data[0], epoch_i), 'wb'))
last_dev_avg_loss = dev_avg_loss
if __name__ == "__main__":
ret = parser.parse_known_args()
options = ret[0]
if ret[1]:
logging.warning("unknown arguments: {0}".format(parser.parse_known_args()[1]))
main(options)