-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.yaml
64 lines (60 loc) · 1.85 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Parameters for DVC pipeline
# Parameters specific to the problem to solve
problem: pcvrp
problem_params:
PRICE_MODE: 1 # for pcvrp medic (deprecated)
DISCOUNT_FACTOR: 0.9 # for pcvrp medic (deprecated)
PLAYER_ROLE: engineer # medic, engineer, maybe searcher?
MEDIC_MODEL_FILE: pretrained_asist/medic/cvrp_baseline
MEDIC_GRAPH_SIZE: 55 # number of victims (contains high value)
RUBBLE_GRAPH_SIZE: 18 # number of rubbles
HIGH_VALUE_VICTIM_SIZE: 7 # number of freeze plate + number of high value victims
MEDIC_SPEED: 0.0091 # medic speed after conversion
ENGINEER_SPEED: 0.0065 # engineer speed after conversion
MEDIC_TOOL_DURABILITY: 20
ENGINEER_TOOL_DURABILITY: 131
DISTANCE_RATIO: 0.001663 # Saturn to 2D[0-1] conversion factor
HIGH_VALUE_MISMATCH_PENALTY_COEFF: 0.004 # coefficient 1
LATE_RUBBLE_PENALTY_COEFF: 1.757 # coefficient 2
# Metric file
metric_file: scores/scores.json
# Training parameters
seed: 1234
eval_only: false
no_cuda: false
cuda: 0 # Specify a list of int if want model be distributed across gpus, or a single int otherwise
run_name: engineer_medic
graph_size: 25
batch_size: 512
n_epochs: 50
epoch_size: 128000
val_size: 128000 # affect num_samples when collecting problem dataset using baseline
val_dataset:
eval_batch_size: 1024
checkpoint_encoder: false
data_distribution: saturn
epoch_start: 0
checkpoint_epochs: 1
log_step: 50
load_path:
resume:
no_tensorboard: false
no_progress_bar: false
no_wandb: false # Set to true if don't want to log onto WandB
high_value: 1
# Model parameters
model: attention
embedding_dim: 128
hidden_dim: 128
n_encode_layers: 3
tanh_clipping: 10
normalization: batch
lr_model: 1.0e-4
lr_critic: 1.0e-4
lr_decay: 1.0
max_grad_norm: 1.0
exp_beta: 0.8
baseline: rollout
bl_alpha: 0.05
bl_warmup_epochs:
shrink_size: