forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tf.py
259 lines (230 loc) · 7.61 KB
/
train_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import numpy as np
import random
from tensorpack.input_source import QueueInput
from tensorpack.utils import logger
from tensorpack.utils.gpu import get_num_gpu
from tensorpack import ModelSaver, ScheduledHyperParamSetter, EstimatedTimeLeft, ClassificationError, InferenceRunner,\
DataParallelInferenceRunner, TrainConfig, SyncMultiGPUTrainerParameterServer, launch_train_with_config
from common.logger_utils import initialize_logging
from tensorflow_.utils_tp import prepare_tf_context, prepare_model, get_data
def parse_args():
parser = argparse.ArgumentParser(
description='Train a model for image classification (TensorFlow/TensorPack)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--data-dir',
type=str,
default='../imgclsmob_data/imagenet',
help='training and validation pictures to use.')
parser.add_argument(
'--data-format',
type=str,
default='channels_last',
help='ordering of the dimensions in tensors. options are channels_last and channels_first')
parser.add_argument(
'--model',
type=str,
required=True,
help='type of model to use. see model_provider for options')
parser.add_argument(
'--use-pretrained',
action='store_true',
help='enable using pretrained model')
parser.add_argument(
'--resume',
type=str,
default='',
help='resume from previously saved parameters if not None')
# parser.add_argument(
# '--resume-state',
# type=str,
# default='',
# help='resume from previously saved optimizer state if not None')
parser.add_argument(
'--input-size',
type=int,
default=224,
help='size of the input for model')
parser.add_argument(
'--resize-inv-factor',
type=float,
default=0.875,
help='inverted ratio for input image crop')
parser.add_argument(
'--num-gpus',
type=int,
default=0,
help='number of gpus to use.')
parser.add_argument(
'-j',
'--num-data-workers',
dest='num_workers',
default=4,
type=int,
help='number of preprocessing workers')
parser.add_argument(
'--batch-size',
type=int,
default=512,
help='training batch size per device (CPU/GPU)')
parser.add_argument(
'--num-epochs',
type=int,
default=120,
help='number of training epochs.')
parser.add_argument(
'--start-epoch',
type=int,
default=1,
help='starting epoch for resuming, default is 1 for new training')
parser.add_argument(
'--attempt',
type=int,
default=1,
help='current number of training')
parser.add_argument(
'--optimizer-name',
type=str,
default='nag',
help='optimizer name')
parser.add_argument(
'--lr',
type=float,
default=0.1,
help='learning rate')
parser.add_argument(
'--momentum',
type=float,
default=0.9,
help='momentum value for optimizer')
parser.add_argument(
'--wd',
type=float,
default=0.0001,
help='weight decay rate')
parser.add_argument(
'--log-interval',
type=int,
default=50,
help='number of batches to wait before logging')
parser.add_argument(
'--save-interval',
type=int,
default=4,
help='saving parameters epoch interval, best model will always be saved')
parser.add_argument(
'--save-dir',
type=str,
default='',
help='directory of saved models and log-files')
parser.add_argument(
'--logging-file-name',
type=str,
default='train.log',
help='filename of training log')
parser.add_argument(
'--seed',
type=int,
default=-1,
help='Random seed to be fixed')
parser.add_argument(
'--log-packages',
type=str,
default='tensorflow-gpu',
help='list of python packages for logging')
parser.add_argument(
'--log-pip-packages',
type=str,
default='tensorflow-gpu, tensorpack',
help='list of pip packages for logging')
args = parser.parse_args()
return args
def init_rand(seed):
if seed <= 0:
seed = np.random.randint(10000)
random.seed(seed)
np.random.seed(seed)
return seed
def train_net(net,
session_init,
batch_size,
num_epochs,
train_dataflow,
val_dataflow):
num_towers = max(get_num_gpu(), 1)
batch_per_tower = batch_size // num_towers
logger.info("Running on {} towers. Batch size per tower: {}".format(num_towers, batch_per_tower))
num_training_samples = 1281167
step_size = num_training_samples // batch_size
max_iter = (num_epochs - 1) * step_size
callbacks = [
ModelSaver(),
ScheduledHyperParamSetter(
'learning_rate',
[(0, 0.5), (max_iter, 0)],
interp='linear',
step_based=True),
EstimatedTimeLeft()]
infs = [ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')]
if num_towers == 1:
# single-GPU inference with queue prefetch
callbacks.append(InferenceRunner(
input=QueueInput(val_dataflow),
infs=infs))
else:
# multi-GPU inference (with mandatory queue prefetch)
callbacks.append(DataParallelInferenceRunner(
input=val_dataflow,
infs=infs,
gpus=list(range(num_towers))))
config = TrainConfig(
dataflow=train_dataflow,
model=net,
callbacks=callbacks,
session_init=session_init,
steps_per_epoch=step_size,
max_epoch=num_epochs)
launch_train_with_config(
config=config,
trainer=SyncMultiGPUTrainerParameterServer(num_towers))
def main():
args = parse_args()
args.seed = init_rand(seed=args.seed)
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
logger.set_logger_dir(args.save_dir)
batch_size = prepare_tf_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net, inputs_desc = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
data_format=args.data_format)
train_dataflow = get_data(
is_train=True,
batch_size=batch_size,
data_dir_path=args.data_dir,
input_image_size=net.image_size,
resize_inv_factor=args.resize_inv_factor)
val_dataflow = get_data(
is_train=False,
batch_size=batch_size,
data_dir_path=args.data_dir,
input_image_size=net.image_size,
resize_inv_factor=args.resize_inv_factor)
train_net(
net=net,
session_init=inputs_desc,
batch_size=batch_size,
num_epochs=args.num_epochs,
train_dataflow=train_dataflow,
val_dataflow=val_dataflow)
if __name__ == '__main__':
main()