-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathaltschulEriksonDinuclShuffle.py
138 lines (120 loc) · 3.62 KB
/
altschulEriksonDinuclShuffle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# altschulEriksonDinuclShuffle.py
# P. Clote, Oct 2003
# NOTE: One cannot use function "count(s,word)" to count the number
# of occurrences of dinucleotide word in string s, since the built-in
# function counts only nonoverlapping words, presumably in a left to
# right fashion.
import sys,string,random
def computeCountAndLists(s):
#WARNING: Use of function count(s,'UU') returns 1 on word UUU
#since it apparently counts only nonoverlapping words UU
#For this reason, we work with the indices.
#Initialize lists and mono- and dinucleotide dictionaries
List = {} #List is a dictionary of lists
List['A'] = []; List['C'] = [];
List['G'] = []; List['T'] = [];
nuclList = ["A","C","G","T"]
s = s.upper()
s = s.replace("T","T")
nuclCnt = {} #empty dictionary
dinuclCnt = {} #empty dictionary
for x in nuclList:
nuclCnt[x]=0
dinuclCnt[x]={}
for y in nuclList:
dinuclCnt[x][y]=0
#Compute count and lists
nuclCnt[s[0]] = 1
nuclTotal = 1
dinuclTotal = 0
for i in range(len(s)-1):
x = s[i]; y = s[i+1]
List[x].append( y )
nuclCnt[y] += 1; nuclTotal += 1
dinuclCnt[x][y] += 1; dinuclTotal += 1
assert (nuclTotal==len(s))
assert (dinuclTotal==len(s)-1)
return nuclCnt,dinuclCnt,List
def chooseEdge(x,dinuclCnt):
numInList = 0
for y in ['A','C','G','T']:
numInList += dinuclCnt[x][y]
z = random.random()
denom=dinuclCnt[x]['A']+dinuclCnt[x]['C']+dinuclCnt[x]['G']+dinuclCnt[x]['T']
numerator = dinuclCnt[x]['A']
if z < float(numerator)/float(denom):
dinuclCnt[x]['A'] -= 1
return 'A'
numerator += dinuclCnt[x]['C']
if z < float(numerator)/float(denom):
dinuclCnt[x]['C'] -= 1
return 'C'
numerator += dinuclCnt[x]['G']
if z < float(numerator)/float(denom):
dinuclCnt[x]['G'] -= 1
return 'G'
dinuclCnt[x]['T'] -= 1
return 'T'
def connectedToLast(edgeList,nuclList,lastCh):
D = {}
for x in nuclList: D[x]=0
for edge in edgeList:
a = edge[0]; b = edge[1]
if b==lastCh: D[a]=1
for i in range(2):
for edge in edgeList:
a = edge[0]; b = edge[1]
if D[b]==1: D[a]=1
ok = 0
for x in nuclList:
if x!=lastCh and D[x]==0: return 0
return 1
def eulerian(s):
nuclCnt,dinuclCnt,List = computeCountAndLists(s)
#compute nucleotides appearing in s
nuclList = []
for x in ["A","C","G","T"]:
if x in s: nuclList.append(x)
#compute numInList[x] = number of dinucleotides beginning with x
numInList = {}
for x in nuclList:
numInList[x]=0
for y in nuclList:
numInList[x] += dinuclCnt[x][y]
#create dinucleotide shuffle L
firstCh = s[0] #start with first letter of s
lastCh = s[-1]
edgeList = []
for x in nuclList:
if x!= lastCh: edgeList.append( [x,chooseEdge(x,dinuclCnt)] )
ok = connectedToLast(edgeList,nuclList,lastCh)
return ok,edgeList,nuclList,lastCh
def shuffleEdgeList(L):
n = len(L); barrier = n
for i in range(n-1):
z = int(random.random() * barrier)
tmp = L[z]
L[z]= L[barrier-1]
L[barrier-1] = tmp
barrier -= 1
return L
def dinuclShuffle(s):
ok = 0
while not ok:
ok,edgeList,nuclList,lastCh = eulerian(s)
nuclCnt,dinuclCnt,List = computeCountAndLists(s)
#remove last edges from each vertex list, shuffle, then add back
#the removed edges at end of vertex lists.
for [x,y] in edgeList: List[x].remove(y)
for x in nuclList: shuffleEdgeList(List[x])
for [x,y] in edgeList: List[x].append(y)
#construct the eulerian path
L = [s[0]]; prevCh = s[0]
for i in range(len(s)-2):
ch = List[prevCh][0]
L.append( ch )
del List[prevCh][0]
prevCh = ch
L.append(s[-1])
t = string.join(L,"")
return t