diff --git a/atl11_play.ipynb b/atl11_play.ipynb index ce9017d..1d21651 100644 --- a/atl11_play.ipynb +++ b/atl11_play.ipynb @@ -30,7 +30,7 @@ "import hvplot.pandas\n", "import hvplot.xarray\n", "\n", - "# import intake\n", + "import intake\n", "import geopandas as gpd\n", "import numpy as np\n", "import pandas as pd\n", @@ -123,6 +123,15 @@ }, "outputs": [], "source": [ + "# Xarray open_dataset preprocessor to add fields based on input filename.\n", + "# Adapted from the intake.open_netcdf._add_path_to_ds function.\n", + "add_path_to_ds = lambda ds: ds.assign_coords(\n", + " coords=intake.source.utils.reverse_format(\n", + " format_string=\"ATL11.001z123/ATL11_{referencegroundtrack:04d}1x_{mincycle:02d}{maxcycle:02d}_{}_v{}.zarr\",\n", + " resolved_string=ds.encoding[\"source\"],\n", + " )\n", + ")\n", + "\n", "# Load dataset from all Zarr stores\n", "# Aligning chunks spatially along cycle_number (i.e. time)\n", "ds: xr.Dataset = xr.open_mfdataset(\n", @@ -132,6 +141,7 @@ " combine=\"nested\",\n", " concat_dim=\"ref_pt\",\n", " parallel=\"True\",\n", + " preprocess=add_path_to_ds,\n", " backend_kwargs={\"consolidated\": True},\n", ")\n", "# ds = ds.unify_chunks().compute()\n", @@ -306,11 +316,9 @@ "source": [ "# Save to Zarr/NetCDF formats for distribution\n", "ds_subset.to_zarr(\n", - " store=f\"ATLXI/ds_subset_{placename}.zarr\", mode=\"w\", consolidated=True,\n", + " store=f\"ATLXI/ds_subset_{placename}.zarr\", mode=\"w\", consolidated=True\n", ")\n", - "ds_subset.to_netcdf(\n", - " path=f\"ATLXI/ds_subset_{placename}.nc\", engine=\"h5netcdf\",\n", - ")" + "ds_subset.to_netcdf(path=f\"ATLXI/ds_subset_{placename}.nc\", engine=\"h5netcdf\")" ] }, { @@ -324,7 +332,7 @@ " data=ds_subset.sel(cycle_number=7)[[*essential_columns]],\n", " label=\"Cycle_7\",\n", " kdims=[\"x\", \"y\"],\n", - " vdims=[\"utc_time\", \"h_corr\", \"cycle_number\"],\n", + " vdims=[\"utc_time\", \"h_corr\", \"cycle_number\", \"referencegroundtrack\"],\n", " datatype=[\"xarray\"],\n", ")\n", "df_subset = points_subset.dframe()" @@ -343,10 +351,12 @@ " title=f\"Elevation (metres) at Cycle 7\",\n", " x=\"x\",\n", " y=\"y\",\n", - " c=\"h_corr\",\n", - " cmap=\"Blues\",\n", - " rasterize=True,\n", + " c=\"referencegroundtrack\",\n", + " cmap=\"Set3\",\n", + " # rasterize=True,\n", " hover=True,\n", + " datashade=True,\n", + " dynspread=True,\n", ")" ] }, @@ -726,13 +736,13 @@ " grid=agg_grid,\n", " region=region.bounds(),\n", " projection=f\"x1:{scale}\",\n", - " frame=[\"afg\", f'WSne+t\"ICESat-2 Ice Surface Change over {region.name}\"',],\n", + " frame=[\"afg\", f'WSne+t\"ICESat-2 Ice Surface Change over {region.name}\"'],\n", " Q=True,\n", ")\n", "for subglacial_lake in subglacial_lakes:\n", " fig.plot(data=subglacial_lake, L=True, pen=\"thinnest\")\n", "fig.colorbar(\n", - " position=\"JCR+e\", frame=[\"af\", 'x+l\"Elevation Change from Cycle 5 to 6\"', \"y+lm\"],\n", + " position=\"JCR+e\", frame=[\"af\", 'x+l\"Elevation Change from Cycle 5 to 6\"', \"y+lm\"]\n", ")\n", "fig.savefig(f\"figures/plot_atl11_dh56_{placename}.png\")\n", "fig.show(width=600)" @@ -854,7 +864,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.2" + "version": "3.8.3" } }, "nbformat": 4, diff --git a/atl11_play.py b/atl11_play.py index 177d2b0..7d373af 100644 --- a/atl11_play.py +++ b/atl11_play.py @@ -6,7 +6,7 @@ # extension: .py # format_name: hydrogen # format_version: '1.3' -# jupytext_version: 1.4.2 +# jupytext_version: 1.5.0 # kernelspec: # display_name: deepicedrain # language: python @@ -34,7 +34,7 @@ import hvplot.pandas import hvplot.xarray -# import intake +import intake import geopandas as gpd import numpy as np import pandas as pd @@ -63,6 +63,15 @@ print(f"{len(stores)} reference ground track Zarr stores") # %% +# Xarray open_dataset preprocessor to add fields based on input filename. +# Adapted from the intake.open_netcdf._add_path_to_ds function. +add_path_to_ds = lambda ds: ds.assign_coords( + coords=intake.source.utils.reverse_format( + format_string="ATL11.001z123/ATL11_{referencegroundtrack:04d}1x_{mincycle:02d}{maxcycle:02d}_{}_v{}.zarr", + resolved_string=ds.encoding["source"], + ) +) + # Load dataset from all Zarr stores # Aligning chunks spatially along cycle_number (i.e. time) ds: xr.Dataset = xr.open_mfdataset( @@ -72,6 +81,7 @@ combine="nested", concat_dim="ref_pt", parallel="True", + preprocess=add_path_to_ds, backend_kwargs={"consolidated": True}, ) # ds = ds.unify_chunks().compute() @@ -178,11 +188,9 @@ # %% # Save to Zarr/NetCDF formats for distribution ds_subset.to_zarr( - store=f"ATLXI/ds_subset_{placename}.zarr", mode="w", consolidated=True, -) -ds_subset.to_netcdf( - path=f"ATLXI/ds_subset_{placename}.nc", engine="h5netcdf", + store=f"ATLXI/ds_subset_{placename}.zarr", mode="w", consolidated=True ) +ds_subset.to_netcdf(path=f"ATLXI/ds_subset_{placename}.nc", engine="h5netcdf") # %% # Look at Cycle Number 7 only for plotting @@ -190,7 +198,7 @@ data=ds_subset.sel(cycle_number=7)[[*essential_columns]], label="Cycle_7", kdims=["x", "y"], - vdims=["utc_time", "h_corr", "cycle_number"], + vdims=["utc_time", "h_corr", "cycle_number", "referencegroundtrack"], datatype=["xarray"], ) df_subset = points_subset.dframe() @@ -201,10 +209,12 @@ title=f"Elevation (metres) at Cycle 7", x="x", y="y", - c="h_corr", - cmap="Blues", - rasterize=True, + c="referencegroundtrack", + cmap="Set3", + # rasterize=True, hover=True, + datashade=True, + dynspread=True, ) @@ -359,13 +369,13 @@ grid=agg_grid, region=region.bounds(), projection=f"x1:{scale}", - frame=["afg", f'WSne+t"ICESat-2 Ice Surface Change over {region.name}"',], + frame=["afg", f'WSne+t"ICESat-2 Ice Surface Change over {region.name}"'], Q=True, ) for subglacial_lake in subglacial_lakes: fig.plot(data=subglacial_lake, L=True, pen="thinnest") fig.colorbar( - position="JCR+e", frame=["af", 'x+l"Elevation Change from Cycle 5 to 6"', "y+lm"], + position="JCR+e", frame=["af", 'x+l"Elevation Change from Cycle 5 to 6"', "y+lm"] ) fig.savefig(f"figures/plot_atl11_dh56_{placename}.png") fig.show(width=600) diff --git a/atlxi_dhdt.ipynb b/atlxi_dhdt.ipynb index 5333912..e249911 100644 --- a/atlxi_dhdt.ipynb +++ b/atlxi_dhdt.ipynb @@ -34,6 +34,7 @@ "source": [ "import dask\n", "import datashader\n", + "import intake\n", "import numpy as np\n", "import pandas as pd\n", "import pygmt\n", @@ -98,6 +99,14 @@ "metadata": {}, "outputs": [], "source": [ + "# Xarray open_dataset preprocessor to add fields based on input filename.\n", + "add_path_to_ds = lambda ds: ds.assign_coords(\n", + " coords=intake.source.utils.reverse_format(\n", + " format_string=\"ATL11.001z123/ATL11_{referencegroundtrack:04d}1x_{mincycle:02d}{maxcycle:02d}_{}_v{}.zarr\",\n", + " resolved_string=ds.encoding[\"source\"],\n", + " )\n", + ")\n", + "\n", "# Load ATL11 data from Zarr\n", "ds: xr.Dataset = xr.open_mfdataset(\n", " paths=\"ATL11.001z123/ATL11_*.zarr\",\n", @@ -106,6 +115,7 @@ " combine=\"nested\",\n", " concat_dim=\"ref_pt\",\n", " parallel=\"True\",\n", + " preprocess=add_path_to_ds,\n", " backend_kwargs={\"consolidated\": True},\n", ")" ] @@ -352,8 +362,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 27min 59s, sys: 2min 25s, total: 30min 25s\n", - "Wall time: 29min 12s\n" + "CPU times: user 2min 54s, sys: 1min 51s, total: 4min 45s\n", + "Wall time: 4min 11s\n" ] } ], @@ -427,6 +437,9 @@ " \n", " \n", " \n", + " maxcycle\n", + " mincycle\n", + " referencegroundtrack\n", " x\n", " x_atc\n", " y\n", @@ -441,10 +454,16 @@ " 2.203888e+08\n", " 2.203888e+08\n", " 2.203888e+08\n", + " 2.203888e+08\n", + " 2.203888e+08\n", + " 2.203888e+08\n", " 2.161963e+08\n", " \n", " \n", " mean\n", + " 6.083857e+00\n", + " 1.264584e+00\n", + " 7.191751e+02\n", " 2.434822e+05\n", " 3.012317e+07\n", " 5.866348e+04\n", @@ -453,6 +472,9 @@ " \n", " \n", " std\n", + " 3.175861e-01\n", + " 4.946184e-01\n", + " 3.978832e+02\n", " 1.062715e+06\n", " 1.445927e+06\n", " 9.249454e+05\n", @@ -461,6 +483,9 @@ " \n", " \n", " min\n", + " 5.000000e+00\n", + " 1.000000e+00\n", + " 1.000000e+00\n", " -4.367936e+06\n", " 2.563874e+07\n", " -2.551004e+06\n", @@ -469,6 +494,9 @@ " \n", " \n", " 25%\n", + " 6.000000e+00\n", + " 1.000000e+00\n", + " 3.700000e+02\n", " -4.427290e+05\n", " 2.887657e+07\n", " -5.929225e+05\n", @@ -477,6 +505,9 @@ " \n", " \n", " 50%\n", + " 6.000000e+00\n", + " 1.000000e+00\n", + " 7.450000e+02\n", " 1.882507e+05\n", " 3.012436e+07\n", " 3.427737e+04\n", @@ -485,6 +516,9 @@ " \n", " \n", " 75%\n", + " 6.000000e+00\n", + " 1.000000e+00\n", + " 1.073000e+03\n", " 1.020950e+06\n", " 3.138991e+07\n", " 7.047390e+05\n", @@ -493,6 +527,9 @@ " \n", " \n", " max\n", + " 7.000000e+00\n", + " 5.000000e+00\n", + " 1.387000e+03\n", " 4.003066e+06\n", " 3.457507e+07\n", " 4.000857e+06\n", @@ -504,15 +541,25 @@ "" ], "text/plain": [ - " x x_atc y y_atc h_range\n", - "count 2.203888e+08 2.203888e+08 2.203888e+08 2.203888e+08 2.161963e+08\n", - "mean 2.434822e+05 3.012317e+07 5.866348e+04 6.939610e+01 2.457177e-01\n", - "std 1.062715e+06 1.445927e+06 9.249454e+05 2.746865e+03 1.304804e+01\n", - "min -4.367936e+06 2.563874e+07 -2.551004e+06 -4.352500e+03 0.000000e+00\n", - "25% -4.427290e+05 2.887657e+07 -5.929225e+05 -3.351000e+03 3.833008e-02\n", - "50% 1.882507e+05 3.012436e+07 3.427737e+04 -1.500000e+00 7.861328e-02\n", - "75% 1.020950e+06 3.138991e+07 7.047390e+05 3.350000e+03 1.630859e-01\n", - "max 4.003066e+06 3.457507e+07 4.000857e+06 4.348500e+03 3.588577e+04" + " maxcycle mincycle referencegroundtrack x \\\n", + "count 2.203888e+08 2.203888e+08 2.203888e+08 2.203888e+08 \n", + "mean 6.083857e+00 1.264584e+00 7.191751e+02 2.434822e+05 \n", + "std 3.175861e-01 4.946184e-01 3.978832e+02 1.062715e+06 \n", + "min 5.000000e+00 1.000000e+00 1.000000e+00 -4.367936e+06 \n", + "25% 6.000000e+00 1.000000e+00 3.700000e+02 -4.427290e+05 \n", + "50% 6.000000e+00 1.000000e+00 7.450000e+02 1.882507e+05 \n", + "75% 6.000000e+00 1.000000e+00 1.073000e+03 1.020950e+06 \n", + "max 7.000000e+00 5.000000e+00 1.387000e+03 4.003066e+06 \n", + "\n", + " x_atc y y_atc h_range \n", + "count 2.203888e+08 2.203888e+08 2.203888e+08 2.161963e+08 \n", + "mean 3.012317e+07 5.866348e+04 6.939610e+01 2.457177e-01 \n", + "std 1.445927e+06 9.249454e+05 2.746865e+03 1.304804e+01 \n", + "min 2.563874e+07 -2.551004e+06 -4.352500e+03 0.000000e+00 \n", + "25% 2.887657e+07 -5.929225e+05 -3.351000e+03 3.833008e-02 \n", + "50% 3.012436e+07 3.427737e+04 -1.500000e+00 7.861328e-02 \n", + "75% 3.138991e+07 7.047390e+05 3.350000e+03 1.630859e-01 \n", + "max 3.457507e+07 4.000857e+06 4.348500e+03 3.588577e+04 " ] }, "execution_count": 18, @@ -699,8 +746,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 18min 12s, sys: 2min 34s, total: 20min 47s\n", - "Wall time: 20min 42s\n" + "CPU times: user 9min 25s, sys: 3min 3s, total: 12min 28s\n", + "Wall time: 16min 41s\n" ] } ], @@ -831,6 +878,302 @@ "fig.show(width=600)" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Along track plots of subglacial lake drainage/filling events\n", + "\n", + "Let's take a closer look at one potential\n", + "subglacial lake filling event at Whillans Ice Stream.\n", + "We'll plot a cross-section view of\n", + "ice surface height changes over time,\n", + "along an ICESat-2 reference ground track." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "import holoviews as hv\n", + "import hvplot.pandas\n", + "import panel as pn" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Subset dataset to geographic region of interest\n", + "placename: str = \"whillans2\"\n", + "region: deepicedrain.Region = regions[placename]\n", + "ds_subset: xr.Dataset = region.subset(ds=ds_dhdt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Quick facet plot of height over different cycles\n", + "# See https://xarray.pydata.org/en/stable/plotting.html#datasets\n", + "ds_subset.plot.scatter(\n", + " x=\"x\", y=\"y\", hue=\"h_corr\", cmap=\"gist_earth\", col=\"cycle_number\", col_wrap=4\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 7, 59, 68, 74, 83, 120, 129, 135])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Find reference ground tracks that have data up to cycle 7 (the most recent cycle)\n", + "rgts = np.unique(\n", + " ar=ds_subset.sel(cycle_number=7).dropna(dim=\"ref_pt\").referencegroundtrack\n", + ")\n", + "rgts" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "# Convert xarray.Dataset to pandas.DataFrame for easier analysis\n", + "df_many: pd.DataFrame = ds_subset.to_dataframe().dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "def dhdt_plot(\n", + " cycle: int = 7,\n", + " dhdt_variable: str = \"dhdt_slope\",\n", + " dhdt_range: tuple = (1, 10),\n", + " rasterize: bool = False,\n", + " datashade: bool = False,\n", + ") -> hv.element.chart.Scatter:\n", + " \"\"\"\n", + " ICESat-2 rate of height change over time (dhdt) interactive scatter plot.\n", + " Uses HvPlot, and intended to be used inside a Panel dashboard.\n", + " \"\"\"\n", + " df_ = df_many.query(\n", + " expr=\"cycle_number == @cycle & \"\n", + " \"abs(dhdt_slope) > @dhdt_range[0] & abs(dhdt_slope) < @dhdt_range[1]\"\n", + " )\n", + " return df_.hvplot.scatter(\n", + " title=f\"ICESat-2 Cycle {cycle} {dhdt_variable}\",\n", + " x=\"x\",\n", + " y=\"y\",\n", + " c=dhdt_variable,\n", + " cmap=\"gist_earth\" if dhdt_variable == \"h_corr\" else \"BrBG\",\n", + " clim=None,\n", + " # by=\"cycle_number\",\n", + " rasterize=rasterize,\n", + " datashade=datashade,\n", + " dynspread=datashade,\n", + " hover=True,\n", + " hover_cols=[\"referencegroundtrack\", \"dhdt_slope\", \"h_corr\"],\n", + " colorbar=True,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Interactive holoviews scatter plot to find referencegroundtrack needed\n", + "# Tip: Hover over the points, and find those with high 'dhdt_slope' values\n", + "layout: pn.layout.Column = pn.interact(\n", + " dhdt_plot,\n", + " cycle=pn.widgets.IntSlider(name=\"Cycle Number\", start=2, end=7, step=1, value=7),\n", + " dhdt_variable=pn.widgets.RadioButtonGroup(\n", + " name=\"dhdt_variables\",\n", + " value=\"dhdt_slope\",\n", + " options=[\"referencegroundtrack\", \"dhdt_slope\", \"h_corr\"],\n", + " ),\n", + " dhdt_range=pn.widgets.RangeSlider(\n", + " name=\"dhdt range ±\", start=0, end=20, value=(1, 10), step=0.5\n", + " ),\n", + " rasterize=pn.widgets.Checkbox(name=\"Rasterize\"),\n", + " datashade=pn.widgets.Checkbox(name=\"Datashade\"),\n", + ")\n", + "dashboard: pn.layout.Column = pn.Column(\n", + " pn.Row(\n", + " pn.Column(layout[0][1], align=\"center\"),\n", + " pn.Column(layout[0][0], layout[0][2], align=\"center\"),\n", + " pn.Column(layout[0][3], layout[0][4], align=\"center\"),\n", + " ),\n", + " layout[1],\n", + ")\n", + "dashboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Show dashboard in another browser tab\n", + "# dashboard.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking at Reference Ground Track 135\n" + ] + } + ], + "source": [ + "# Select one Reference Ground track to look at\n", + "rgt: int = 135\n", + "assert rgt in rgts\n", + "df_rgt: pd.DataFrame = df_many.query(expr=\"referencegroundtrack == @rgt\")\n", + "print(f\"Looking at Reference Ground Track {rgt}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# Select one laser pair (out of three) based on y_atc field\n", + "# df = df_rgt.query(expr=\"y_atc < -100\") # left\n", + "df = df_rgt.query(expr=\"abs(y_atc) < 100\") # centre\n", + "# df = df_rgt.query(expr=\"y_atc > 100\") # right" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Interactive scatter plot of height along one laser pair track, over time\n", + "df.hvplot.scatter(\n", + " x=\"x_atc\",\n", + " y=\"h_corr\",\n", + " by=\"cycle_number\",\n", + " hover=True,\n", + " hover_cols=[\"x\", \"y\", \"dhdt_slope\"],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# Filter points to those with significant dhdt values > +/- 0.2 m/yr\n", + "df = df.query(expr=\"abs(dhdt_slope) > 0.2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADJgAAAXlCAYAAAD3XINeAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3JpcHQgOS4yMl/9qq4AACAASURBVHic7N1LrCxJehjmyFaTI4qP7tFwLFF3rkakNbIWkqy5AuwZt2QQNuCFSREDCHVgAYJhuEEBgjZ6LGbhzd14oYUkbwgbaNBLGThlwESb5E7mQiaHBszbY8CiH7TpJnuuxsZYVLdImyAsIL04Vbfr1qlHZFZGZDy+DyhMz7nnVEZmRvwRkRl/5jCOYwAAAAAAAAAAAAAAAKBfb65dgFsNw3B/8H83kX+2PfzvcRy3Z3+T6gzDsAmv1wX1AoimXwEA6IO5IwAAAAAAAFAK9y+BUgwhhJhXmGzHcbxLXZgYBwE0NnDG2oYQwpr7OQxDK6+TyV5fDhaEN1cv4JSDOm9AeKMW+5WI/qSYfh3g2K6PuxiTx3EcMhWHCJHzGH0PRTB3JIUJcwqxEM6IGQOGQtuQsdB8xv7zuO4DcF5D91ovuRjn9a9AqSLnfSGsNJ7tqXwtzylS9oPXjltp3wu9c82Omrh/CZSoijeYJFz8e2iz29YYDB6qsEa9CBbzk9FRRvK5er4ZhkfXEwwOr9CvAAD0w9yRVGbUrZR1EAAAAKAFa10/Kf36jutKANAQ9y+B0hWdYJIpiJ6ysSC4XGvWi/BQN3S2JLNQ/T4cHIYglr2iXwEA6Ie5Iynt6tf91V8EAAAAIIzjeNfJm6bW5lokABTM/UugFm+sXYBzdq99in3FYyqbYRjGXVCnAKXUixDC/cGryeBmwzBsEtbvfSzrus6WEj/0KwAA6ZUy9gvmjk2SXAIAAACQTu7raVO3t0L5oq9xWiwKAOVy/xKoSXEJJgeLrEtafCugFqDAerEZhuHeQnFulXHw2GVyg34FAKAvBY79zB0bIrkEAAAAYDbJD/PEXld0fAGgUO5fArUpKsHk4CZ9iUFrYzHwegrsYPf2GZ0llo3CrZj40E1yg34FAKAv5o5k4BwCAAAApJX7+svU7bk+BABEc/8SqFExCSYHT/AvmcXAK1i4g90efJako51olwE7XvqsXcaUCkh8aD6e6VcAAPpi7khqu3Pn/AFAYr1fOwYAONTS2Ggcx7u1y3Bs7rW6zNf4vMEEACrV6/3Llsaw0Ks31y5ACIsE0cOAuR3H8VEAPVrAe8u2NsMw3Jc48W3RDXVjXwdO1ocz2zpcKDJnm/chhGHG39GZg+SStTUbz/QrAAB9MXckk6k386PrFQAAAACfGoZhk+m6ytz7vJtQWEKH61AAUBb3L4GarZ5gcsPTH7chxD/h4NTvHSwOnvy6yxUXA9cwIVykjDM72O3c87LrjF+Vfc72LRIn0i3JJZfa15xY2lxyg34FAKAv5o5kFHOeZ9ctAADgZqnvo0bNCRKXoYZ7xQCXbENcPC0ugeNIljeYHD308JKSjxUAdMf9S6B2qyaYzHyK/zYs9ATIfTA8WIw8JaBuMj4x4TU9BPEZC8QXX8BxUD+mdLYWiXPRhAtAh6Lr98wEh9Xi2dL0KwAAfTF3pDCSSwAAYEWpx+PDMIwllAOARWVJFAEA+uH+JdCC1RJMZi4Cvkux8HafvTejTKU/MaFmUzrYJPVibxzHu4mLxV2A4KQZmcGTB49HCQ5dxTP9CkAzxEFgCnNHAKiXsT8ALE//ChRtdw0tJmEv+bWzmQ+HfO3vMyzAjD0O4v8DxwGAErh/CVRvzTeYrJqhd8ouUA8TFoHL2EtgYgZn0g5272CxeFTdUC84I9vgsdN4pl8BaMDxq1sBzjF3pDTOJcA0xv4AsDz9K9CSYRg2Oa7ptcBxeqAfBGBt7l8CrXhjjY1ODKJZFgEf2m0vNnDL2FteUR3sEfWCWSY+/WSxut1LPNOvAAB0ydwRAAAAAOpTyrWzW78/afkmrDGQUAEA5XD/EmjCKgkmIYToSdBamXBTtnvrazN5JKaD2q7xBIbdNqPqhnrBkdUGj1OSGyqut/oVAID+mDsCAAAAAKl849ov7B6ECACw5/4l0ITsCSZTMuwLeM3S2tvvzoTJ92pPYPBKTaaaUq9TDR4LiKfJ6FcAAPpj7ggAAAAAdZpwzzZZ8kbkPea/H/E7JSSYuAYJAAVw/xJoSdYEk10AjQqiBSwCnhJMN55KsJjY+rF2JxdVL5KXglqUEveaq7f6FQCAbpk7AgAAAACprPJk8SO1XAMFAB7U0ne7fwlclfsNJrFBZ/VFwAdig7mAms/aHWx0J+9VYexEvfoudSFiEywqq7f6FQAAzjF3BAAAAIAyrX3dbKknjCe5p1vDE9ABgFlW77vdvwRiZEswmfCU+RKeAvDKlKfNpy5LJ2o6jsXUU+qX8e0azdRb/QoAQNdqGisVMxYFAAAAgN5FJm9EX9NLtPiypuufAMCDmvpv9y+Bi3K+waT57PoJTxAAOhF5Mam0uFdLLNOvAAAAAAAAAFRmwgMYU9wvvfqd+wcYZnxQ5FzV3gsHAADK9WbGbVX3lPm9cRzvhmEYI351E0zeWNmJhIZzbe+wrhbZ9ljehHhWA/1KBkdvijl1zKuIJT3GxhNv+Tne5yr29ejcnd2HCi7wn9VKO+tNK22sdVdiSAgVxRGxAm5zEA8exevS23+slse84jnMo75N08P885g6Uo+IOWgIztfqempTPYyvSWdKW1myPrXSRlvZjxK0PI/mqmv3mY/P8fbK36ySBBPCp4kwaxGT2tRbfKz9nl/kfDGERq9t1Ma1bijXmtc6Wm1PnY8pqr/ekSXBZMLrIEuuFNcmjPSniDpxoWO75rXJxTAMIXzaBhcJ0icmMVP//lrsqLYz4Tb6lbQO2m5M+c7FklXbZ8mx8ZIrdTtq+7vvqPbchTCpDr76913S1tXyX+ubcl2kmVhHz9bL0i8qzREzfpi739pY+yb2YSE8jiMhFHSexIpmJBv3pYyZE8txcXx+Sxlujd0Rcfu1f5sw1zi3rYsWvlhY5Zg3hnj+6X+L50xVU30roR/rYf55rJTrPq4dXzejr88yD419a3fu479WuWqKuyHkH1+TX6nX1ub2P7H97tLbDQdttIRxeG2xplQlz6M7HhtFXTcbhuG+9Po7DMNmhWO8yjktZU5xpWxnlV6X1lByfDyn93t+M89Z0ddQW+Va96f/bVxanJvvX5Yyhq31WkeL7anGMUUIrndcMkZ87sdxDHM/IYT71NtI/Ynch/HGbSQ/F6V/ajsGu3px6bNZu07e8Lm5/DnKuHYdWOIYrFCmpLGslONaev1I2a/MPTbhYTCxZLtNGgdvOa6l7tMtdbr2c3dQBxcp/9zjVGkdLTrepThGN3x3120s4TlbvZ6G5fuwVc+TWFFHvZtxThefO6aMmUuej4TffanPjx5XzKhbsz8L1qeU5Vwz/onnFcW2FY5Vkfteynmrsb7FlDnhtqudf84tUyjsuk+iOlt8zFj52CxyTCLLl/34Rx6DxcYEic5Tjv5i1vbDzPF1a59SzuOtdXOF+rNUe4nue0KCfq/U81nLvpTeLnLVzTXLuPZ5uHG/Fyt/zDZP/E1MP5i1jLdsc+73hsLmFEud36WOW2nfu3BdK+YcRx63Zu/5JTxnTd27jKgjUXXlxu271r3i8e+13s08r7PvXyaMSZOO1dzvCCtd62ixPeWoC9fq443ln1uHmr7ekeUNJqGNp9WsngHKK8XUp3GF7L8JGfS32oSHbLUinsxTsWLqa2NaOK5F9SuJYku2ONJzbNxlJM9+0vYZ2fdz4XO42WV6340FPMUjhOR1dL+/xdTLlrTSxlqWsH3VHguP9RgrihkzdnTMi5Aodq+u9TGveB6tx3jOBerbdK3PP0+p/bpPLzL09ZvdNm596l/MEy6zjsVj30K3RDvtMe62Or4mvQR1Z9/3XOx3U13Py/kGhR5jTQqtz6NbMI7j3cHT2Ys1juN295Tf0mSbg5hTtKXX+FjzPb8c88VQ0LmqnWvd0boZlx5x/7IAa1zraLE9GVMspsjrHW8svKFHJlzUXf2kXzKO43Ycx7trn7XL2YCoCfCuoXRlGIZNxoB8aDMMw9jjMadM+pXlZbx5vbjeY2OGCU+yc7e3O4djSHMO70s4RzknVMMwrL7PLWmhjbUscfw4lDzmixWzmDtyUouL31of84rns7USz5lJfZuu9fnnOTVf9+lJ5pux97ecs9gkjQLrxU0LMHuNuy2Or8kjcd052z527TTVdnNdL+8u1iyt9Xl0g2L66CWP6bXvOleea+XMft5zJbmbU7Sj5/hY8z2/zOes2fFBDq51z9ZSvXP/sgK5r3W02J6MKfq43pE8wSRSsU/2olhdTS4PgtKag4tWBnL0Qb8SKfcAdskv7D02Jh44HkqaIBTS78Oa52iNOrpfKKLPvlELbaxlKy1wSdK2xIrktK+OtLj4rfUxr3h+s57iOQfUt+lan3+eU/N1n15kXHxy7NZzVsz11127u3r8bnmYT69xt8XxNXms1e9m6vdyXC/vKtYsrfV5dM+WOKaR3zF7nLNgfEhazinMKdrRc3ys+Z7fWot3g3nAZK5136y5cekV2thK1kguCY21p87HFF1d78iRYNJL0CezXiaXhV3A156n20Z8solsN8XcHDxDPVzIChcjNksN7nqPjbE3zhe02Lnby3wOs08sCqijPV18WVwLbaxlK7evRduWWJFHL3PH3hXQnhZX2D6lvEm1BvGcaqlv07U+/zyn5us+vSigPd+y+Cn3k8Zv3c4tC0XXPk8t3zCnQZnrzqu2kbnfq/16+SnFjGFuUcBxPFT98cwotp9e4pjGJKWeLM8tyapTlNQWzSna0XN8rPme30rJJcfbJ4Jr3YtqYlwaQxvLb8XkkrUs3p4K2KdDLa8DK+J6x5uZNnpN6YuZyWQcx7vd07pi7J/sdZfr1Z8rKWnQtBmG4T7XxZMWOFaraTkmLGLC4OPSsZwTn+5DCMOMv1ti26lkjY0TBqylnrvD78vpfhiG0s5RavfDMLQ+TlpcQ22sSYW0r0XaViH7EkKlscLckRNKaE9La3bMW0gMFM+pjvo2W7Pzz3MauO7TvILa86w+fhzH7TBcP9XDMGwyxIpkCSYFnac14m4J+01lFriuNrXvOUyUuyUWzOnzNhe+b5LOY83Smp1Htyx2XJHJrfU/SxJMCOnXIZhTNKfL+FjzPb+1k0t29GURChnLudZdCPcvi9dTcsne0u1p7b7pUE1jiiqvdyRNMInNfhIgObIN0yr2/TAM2xDCtrW6NHPCEH0sJgahvSm/e60M177r2t83db4zSfo0t9T0K4uJaXvJ4sitg7sGYuOtLg1YtyHEXVQ+eFpLtnN3+D0T/+Ti+ZtwznKdpzn7F8LlfZx8vvZlqfXiy4qqb2ONm9W+Lh3XmXF/iZtcYsXtzB0JISz+lKdbbiYuVq86GPOK5+I586hvE3Uw/5yz7VKu+/R+7XhOHbl67ub28TPnozHj8cUWYJ+S4Xpxl3HXU1S5waV6HdX/zJgLRd33uhbjZrTNzYJJdF3GmqU1MI/ufWwUO6641a3fMfV6ZK1qmVMQoYH4eIsq7/nNfOtKzHxxzvigh5h3K9e6jUuP9XT/spox7ArXOpprT52PKbq93jFGfO7HcQxTP+GhkVz9/jnf3eIn5bmo6bOryDHH4uTxaekYTdz3zY3bimqvS9XDmO2tffxb+7QQk1vYh0zHaW4MnR1LcsaQxmPj1T5u5XM3LrCPSY/p1P1Ze//mnLcZ+1jV2Chm/2747ubb2ErnLFeMTB0/Nqm3MXdfxIqL52xuzG9i7pgyZk4sR7IyxLSPXOc857GeWJ9rG/OK5+m2UWU8n7CfRe5bqW2nhvoWs72cxyzD8Vpk327Z5px6keNY5q4ba39ytLUwvT+cXD9C5DisgGOZ9B7nfhtz2leOunBim1f3Y8I+F9k3J65zWc7TjWVc69raYvEldj9SnIupbT/H+aox1qxU95PWydLrydrHP8c+3rqfIa6Pu1g3Ir8jx33QnPdaF2k/udpNyvZS2/fOPN/VxMdr332lLEXf85uwnVljg9znaq1PpnroWnfCNlRx3ev+/mXs+V5wW1fra87j32p7mri9asYUM/btpv2cce4W2ec5xzT2wKS8+NpEQFzik6sx1PBZqhHVfLwmHIPF9jFM6Exz7N/a56C1TwsxRr+y6LlO0a6jJ0mJ60DNsfFav3bu57cOzJOfuxn1c/Y+TdmfJfdv4nZvOmcT20NVsTFmvxLVvyba2ErnLHkdzNm+prSt0vdl6v7UFCtm7t+l9l/dvsfuf6ZyJCtDxLm79u83t6Mc+zmzXlc35s0ZA6fEh9L3Zer+1BjTIvevyP1qre3krG8x28lwbm46ZhPPzSL7NnN7VVz3yVU31vxMrDNZ56Nz6kmuuJR7+xOPWzVxN+KYZR1f1/jJFXNT16fE+79kfb1lzn9L/55lTtZyrCmx3i+9XxPOn/vqhRzPpY5jhtiQI/7MiatVzClStpfavjf2eCx1fmec5zXGtcXf88t1/HLsy9qf1MdxyvFboN651l3ZZ+I+XoplVe5/7DFYcFtz+oTF+oajsjTZniZsp7oxRUQdWnybN8aIbNc7Yg+MBJMMn9wNsPTPDQ3o7LGr6fjFNuYE283y1LGY/Vv7HLT0mdA5FH1zSL8SfZwmx8cFt510cNdBbGz23E05f0vEogn7s9g5nLCdJSenSS8mrfGJ2acM56jKNrbiOUu+X7nb14S2lWoBlliR5phGt/1a2mLKmLnkOVjp/C4+t8l1rGPbbIL9Sz7mzX3+JsQ/8XzlT+S+FRmbU9WxHupbzDYylL+6+eeMbVU3r0lZN9b+TKiba5y3yduN3J8k8Ttyv+Zeg2wy7k7ct2T7WvMnd/tNVZcy1Z+six6Xrq+xbTJDfaoy1pRY71PsU2wdzbF/a5+DhY5n0tiy1HcnjrNZ6vKMuFrNnCLx+anqe3PWqbnnWT2efc6W3JdV6kiOT+p6MaHuudZ92/5UWf8mHtfoOLZk+8+w/6UkmGSp0zPKUlV7it1GguNZ4nq9bq53vBnS2iT+/i4Nw3C/dhnOGcfxbsGvuwsPlXkpmxBCGIZhDCFsdz/bjuO4Pf8nq4ppP0se7xBCCOM4bodh2EZunwrsYkbM+Sy5PeyplwksGbszxBCx8XWLtdnU+zgMwybyu++WiEW5z9mE8dki+7c3juNdbJwfhuF+4bFaD6ppYy1bo31NaFuTzqdYkUzvc0det62wDh9rcswrnt+ug3h+VcnXRVNR36Zrff45VWXXfZo2oW4uOp7ZnbfYMfPUcxtTH9a8TjiZuPtIC+Nr1rFWH7vU/D1pfyfWLK7JeXSH1hxXLGoYhk1L1xLNKaomPn6qlnt+UXPGpTYWOzaobFyQnGvdt2t4XHrI/ctyJbnW0Xh7Mqb4VDfXO1InmLC8khpKUhNveky1P46bYRhCqLPTramsrGTCTcsQFpyEUpUUk7A1B3Y9xcZFJxwZZE90mzKJWkC2xUvHUl1Moro21rK1EmVT9GdiRQLmjhyq9CbDVLXWP/F8AS3H8wgt7lMM9W261uefU7R23ad2q12nnXLTcsqCyNjvTbTI8uq+pLxh3kvc7WR8zfKW7Gen9DuLLRLaxbclvuocsSavWufRLCRmsV9s/Ni1ofHKr23CvDFd1oXlkcwp2tZLfGzpnl8v56x0rnUvoPVxqfuX5Up4raPn9tRL3evqescbS2zwRj1UKmbaNca7kL6e7Bfh3w/DMA7DcL/mExHXfhqjGwZt2CWXxNalljr5VvYjhyTnPVVdEhtfk+rcpdzHVDf9r0keEyLrZuo4G/Xda7ejitTYxpoUW2dTHNtdHbhaD2LLKFak1evckUeqj7Nr16dUfZV4vrhm4zmvU99ma3b+OVFV1306sepbpnf1Pua713oKb7Tdte9rJh9HcfeR6sfXrGPpJ91P+PUUC/gWJ9Ysa+0yuua7qGbqZah0IewJ5hQVW7utFBQf3fO7oqV9ycG17sW11P8/4v5lkda8D1Zle1q7LpXUT/V2vWP1BBMTB64Zx3E74cbHUjbhIcNzLLXTLSlwUp5dfZ2SXNJMfdKvTNLcsWqpLl9R1bmLnUil2HbsRZYMkpahoP1shWNZl9UvwtSyvdZjhblj91pKmr+o4TGveB6p9XjOZOrbAfPP15RUlu6tuQDlyOIJJpFlXuMJq6naQC9xt5vxNYtbrd40Vmd7iTVZNDyPbkriNnxt7DB124uXNTKBNnd97iZO9KqT+FhNPS783kIriXO5uNYdqYdxqfuXRVn7Wkez7cmYIq216u3qCSYQaxzHu3Ech7BOQz3sdO9jJ/eQ2zAMm8jXnR1qeqDOWUVkRTNPi+cu8WQj2T7txgRXb0zkGOyvtKCjSS22sYqt9fTp/Xcvcr7EirzMHbslvpZNPF9YD/G8d+pbOrXOPydy3ac8ayZEvBJbL2YsOoh5guqScSJmbDHpeIq7j2jnzLLiW8KqqLNiDVy1VuJGiu1OHU+V1t7MKWiCehxnHMfh2mftMhbEte6F9TIudf+yCKneUqk9daDH6x0STKjOUWe7Vof76nViKTaw30cDd6Y4eGvJlEHAXWNPdKJhYuMrNbbZpZ8MNcnKT70KIe85y72go0U1trEmrfn06YnbiGlTYsUKepg78sraTxxaTItjXvE8qS7iecfUt3lann/SuIxP+lurni4SIxKOLcTdg22LZ1Ro8TqbKC6LNQtrcR7NVVPr5OKJqSs+oVn/TDTxMYRQX5uprbzdca07qerHpbHcv1xNymsdTbcnY4rVrXa9Q4IJ1doFrtU73F1n28QAhjrtMovHMP1imuSSjnXyarpWVdVuC+oju3tV4QWlnJNSlXa+uKyZ8yVWpGPuCFUoLQbOJp6Tk/r2uoL62dXPi+s+ZSloAUoIIc2TDEt7OmKqNiDuwlWuwS6gwH0Ra8gp9m1rS9bLuW1uicW9t/x+UuYUNKK0PvWiyDHApqDrH5xWVb27xLg0Lfcv+6I9Va/L6x0STGjCYYe7Uqd731JGZ0v70rJhGDa7czWnw5dcAhOVEhsrbLurviI2g1Wfjnus8mNZhArbWMsWf7LcHAs9kUOsKIS5Y5t6rtNLS1Q/xfNE1P3mqW/TtT7/hCWliCG5njaaKj6KuwVsGzog1jTGdZ5lTbg+MGVMsdriudixT+zvabPUpIT42PA9P4uC1+NadyK993HuX6aXuI5pTwm1XjdLJsGEJh1leN6FPJ2ujE6y2XWckkuYy/mvl3M3U4oJlD6/SdpYXao4X2JF2cwdoQjiORxR3+pWwA28KuIqryug3jyyVuLpJaluKIu7QA5iDURbbDwb2e5SvcEkhPixT2nxwZyCFtRaj2PfYnJvbFGkKuqdulM+9y/r4XjRsjfXLgCTbUu80VCy3UL6Vx3sLqjvA3uKAH8/DEO1C/hveCMGGdx4fsQPmElsvElRmfoLq/XpuOoyxWvsKRRiRSXMHavl+C0kxZhXPC9CS/G8yOsawzCMCb5WfUuzfX0Ga1m7bWQxjuNdRExMfixmxkdx91NiJaQj1jTGvaNVLZa4Mffa3DiO22GIeUD8YvTRVEN8zGITHhaDb8PDNTMxIjHXuovQZVxx/3IRKfdFe0rImGJdq7/BpLHOlwqM47g9yvJMkeFZVab4MAz77PYxCMhF2p+jILnkKv0KSxEbqVhLE324RF2/jeN3hbkjPShkzCse3cbxIyf1DdLI3rYSXiu+ui83jn97SyRrbX+AMok1ExQyj27dknUy9djh2t/X+gYTmEx8XMaMudomPNxnGL3VpAjGVbdx/CK4f0mkatuTMUU5vMGE7h0Pzg8Wp98anDahwEB9YvF9k0E4Q/ZiloSNg6zj2YklwdMK4KpeYiNhG5xbaIbxDbn1NnekPaWOecVzoFHmn/Qqpu7PGv9GPljIuAKAxZQ6j25d7JtBhmG4r+EBi0uVs4Z9pR/iY3Jzryns32qy/44QrBfKyrFmDe5fUjNjirJJMIEjh53ujR3uZo2LGkevQXtVlpxlYBkLJMm09ro6mE1sXEcHbxS6Wod2GfVA38SKRtU+d6Q9xrzJiefkpL5N1MH8k0pV/rTHyWWPXBCa6pjcsnBK3AVyEGsKYx5dtJsTtmPmCLdejxvH8e7WdmsuQ4nEx3XtYsut64X2fyvhhFOMSxvm/mV22tMFxhR1S51g4ildVG3fQd7wFomk9f8oAGtrjVjirSUND+70K1wlNgI0QfymKqXPHWlPRWPekssGADn02BdevYY7DMNmxqKmHo8lAAupaB5NvFLO47WxzxLltBicZMTHMi2UZHJIwsnttA+q4/4lORlTtKeEN5ioSBRvN5je7oLgpCdILJ3JuUDyAQW7cYLYcmLJFNpGh8TGqrlgBUAzSpo70h5jXoCbmX/C61I9zCfmezdhQpvM8QRyANpjHl2vJd4MEq6f92zzg5nJtZCM+FiHBEkmh04lnEg2gUa5f0kqxhRtKyHBpCqRr6c04GrU7rwOEwfwiwRPwbhtN55fE72K6VduIzbWT91eh4sAQAyxYr415460x5iXW4nn5FRyfTP/hDzGcdzuFihdsvS4ptv2XXLcBdpRW6wxj+7Hubq5qwPXLDV+uDW59mpZa2p/lE18rM8uySTHeduEh2QT648oWm3j0tK4f8mhW9qTMUUfUieYRD39qLJs/dgGUcv+MMPULPFb63jCjPRTtrvPpGxV5puTHbzT48ROv8IrYiMAULrcc0faY8wLAFTq6nXc2LHvwQ3ra9sDAPPottzytrWYpI1Fxg+RybUnRSbCwCLEx3odvXlAoglwM/cvuYUxRT+SJphMmEhNehX2WkzuODSxo51VxzNNDl6V6zAjce5FEKa5ocPd9piRrV8hBLERAKhLjrkj7THmBQAqd+uTvI9/7yKLHAAwj2aipccO18Y+5/4t55tW6JT42I59okkIWRb37hNN7sy3oE3uXzKVMUV/Ur/BJITbnipQGk+Z51iy+n3DWy3Oea1etp6cUMP+zZzwdZlYckS/0jGxsT2Nv8K05LZbctmghcz5AQAAIABJREFUNyW3x5LLVpuWxrAkZsxbrZJjZsllY56Sz2mxZWt8/glFiXxQUOz4uIS3lxQb20LZZQOmKbk9l1w28+hG7RY9jld+7ZbEjazMR1iD+Niuo0W3+3OcIvbdSzLpUsnnu+Sy1cj9y/RKrrPRZTOm6FOOBJMYTQUpg6rpIi4MFLmofuLbFKaa2y5OZvFRlhnJJV4/OY1+pV1iI1VR34AYYkU8c0c6YcxbKcednNQ3YAGpx55XFykMw7C5dO0z5g3QueKhuAvkINbMZh7dsePxRMz4ISy80C8yGeaUYsY6NEt87MBRssnhk+WXmvNJMumQtj+N+5dcUuK5n8GYokPFvMGkkmx9gZJTFs/knJl8IAhXYs75dW5fo1/plNhIhbRxmK+np6X0sp/0Va+ZqcExb0/1vpf9pAzqG1TihsWG1Zvw1PFLi5RKeHtJCOIukIdYM0OD82heF3Nd4Xg8EZO0scYiaW2crMTHPu3i23HS3RIJJ/chhKhV6A1zrZtW9VS311D9sTWm6NcbqTfQSvZq5FMOQij7lUZU4Ghwf802hHA3juOdgFyHiec3hN35TVWeGulX+iQ2Vqv1+tv6/gHLECuAKMa8xRPPyUl9m84xg+Ut0a6ufUfMgtEcxBAgB7FmYebRnLFWgurV7z28P7xbqHfzd8Ip4iN74zhu9+d2HMchhHAXHs755PgSGbeog/4FltN0ezKm6FvyBJOdmEa0mbDYdg0ll60HxR7/BMEwOiDvgnHTnVRLdjEudsK1HcdxcH7P0q/0R2ysUIHnQbuDhhTez7OeYutFqxfS3FRaVJdjXvEcWEKBMVFsY4rs9aWk/vdcWWLK2OoYG4BoXc6jexLZ15cyrom6f528FPBAfOSkw4ST8GmySSwx7IqS5toUp9i64doKVxhTdKykBJMQCg6kIbJsAi4LiKlrW3WtSpM63KQlqZ9+pT9iY7tKbqdA2cQPoDW9jnnFcyAX8QY+laU93LgodK2njwNQj17n0ZwR8yCUVPVhxmI6ybSkJD5y1T7ZJDwkmkTxwKmrXHsCWmNM0bEsCSYTJlJFPm2+xDI1KOZ1oUUOUpcsV2RdE5ArtKsnzu9C9Ct9ERtZQqJ2N+l150C80mL6MAz3wzCMFz6X5gRixbLMHWlSq2Pe0sornlMR9a1izg0n1Nqml0rguPY9JSSY1HqOgLqINQtqdR7NSTVdD5w77oHFiI9MtVt/oz5cUVqbca27ODWNV15Tarkq0mx7MqYg1xtMQqj7afPRbx1IWgpqVnP9Zxk63OXV3K70K9OUeA6JV8pkavFtRCa7qb+QTs72NXtbYgUT1Tj+U3+X0fNxFM/hiPo2W7PzT7qQu97EPDE729j0uG1GtNXtkuUTd4EcxJrFOVacUvwb0IZhiH1A4uplpVriI5Ptxinizu1c66ZV4sMZjbenWsvNQrIlmExYNF3i0+ajymNh+E1aDrSLUs/qE5vp69xOo1/hkGNVvdLa6BRFTaR3NyYuPalkXLuMMEERCwQX2oZYsRxzR7pV8ZhXPE+k8njOdepbGsYJrKGoMWzuBY2RY5jjMq3RVsVdIAexJqOK59EciB1LlJC0MWHcY17CqsTH8uz65Psrn6SxY+bcrTeudSfSwLi0qGs/ZNdtezKmaFvON5iEEN+Qkg+KYk14BVRRQaI2sU+aKu2VXLt6uvqFiqWVdpwbEFNHdLbz6FfIRmycp6ALUWvFgNxJbkXEOsioiPixwIUTsSKSuWNZSjvO3G7Fcyqez9xexm1RHvXtiPknpZowhs1Vd0pM3piUYLLSzWtxF8hBrKmMayNFKeoNbRd4ECFdEB8n20R+KF8R155c687L/Uuu0J5uUFq76UnWBJOJHdfqlXxCAA1BEF1CVCZnKYvEd2In/7H1o6R9YwGxT0op5GJWdfQr3Vj93HGzVZ/kkXiyUcyTKCJjjNhCNRpbIChWLMvckRaVVF8XJZ6n0Ug85zL1bZ6W55/UrYg2XfLCgX3bjGhHqcpWxDkKobq4C0wj1iyn2Xk0J/29EMJHVz7/6pV//0ZBZa257VE+8RESca07jQbGpXvuX/ar1fZUUl1lBbnfYBLChMpZwM2Y6O0LoouIfhNB0lJEKvlGzAJ0DstptY6URL9CLmJjWimPb7LvjmyruS4S6HNoUcwCwWT9e2yy8LVfECsWZ+5YgInJ09Qj1TkVz5fXXFzhdepbUlXOP6leKW16lYUDCy/CSRJvxF0gB7GmScZ/efxyCOHplc+fuPLv3yqorNAD8ZFWuda9vFbGpe5fdkp7Ss6YYiXZE0x2F5GLXww8cbu1NbgiTblhUcAi8RDS3OxYvS4VcmxbUsureKulX+nC6sdDbLxN7CKCFJOpTOcupo4mLUfs5F+fQ6NSXoxZ8nvFioWYO06T8Bi4mLes1dtdAe1FPI/USjwnivo2UQfzTypVwlvOC1g4cO17N0f/e1LieCPuAjmINctYvWzGf/ksVBez1JmaykqzVq8/4uN0JbwZY6nEBUIIrnVHa2RcGkJw/5Im29Pq576QttKtNd5gEsK0ircZhuE+56uhdpUyOoBGDvKIU/wi8RAm1ZHt0gOcxFnOU+o+V5h8ZaVf6ZzYWIXsk6lcT1aPbbOJxy4x363PoToT+sRUCwRjLsBElVGsWJy544qMj9ZR85hXPF9cS/GcC9S32Zqdf1K92KcZpmrTUd+b8NrkEk95TRpvxF0gB7Emn5rn0Zx0U53MfO2tprLSIfGxXonHB85bBNe6F9fauNT9y0712p6MKdq2SoLJLuhMWgwcQki+GHgYhs0wDGOYVikF0AXNeBPBmHOReAjTF4qnLMuSBOQkHM9M9CukIjYuZ6XJVM4J+WqLRCZ8p/hCrbK3r4RP9hUrFmLuOMmiT8qygLY9Gce84vkCWovnRFHfJupg/kmlpixCWXrsWkJ7jlyQcO3tJTkezCPuAjmINRVz76hKNdXnmsoKrxEfbxY7PkiRuBD71HsPS33gWvcCWhyXun/ZPe1pIcYUZVjrDSZTg+nefaqnzu8q5NSGK0MvjVn1IklJDsxYKD65fsS+8jDRzSUBeSW7uFbSp8q6oF9pl9jYlGyTqdxPe5i4SGTJC0meLEHzcrevXX+S5AKMWLG4bueOexPq1CJj3ontgwl6GPOK57drOJ5zgfo2W7PzT6oX214WG7tO6e8zLBa6JV5kiTXiLpCDWHO7HubRPFJ0nTxSU1lpjPjYhRQPlWrtLRJJudZ9u5bGpSd0f/+yV621J2MKQghhjPjcj+MYUnzCQ+cXU4ZHZbq1XGH3BPu5209wLOaUo+TP7GN0Y73YJKijk8uToR7cvJ83HOeb20DMtpduY7k/BbTBVc7t2p8b40cT/UoJ5zjiOEwqw4TjWHtsbO7c3XB8Z/Xpu3Y4OwbeuG9Ttz27vk7dVup6k7kOzt6fHtrYSucsR3ycUudnzwmmbifDNsSK6/vY7dzxYLu56tPsMVLi/csWNws6l9WOeSfGJfF85rZytYklP5F1sshxUup203J9iznvGerV7Hgz47wssm8ltJWIY+va8TJ1c3b9nFlHc9SdW9pNznFfk3F3t71ijnONn9Lq6pkyNndtbc1+IeV2W441uT45jt2UepiqbazZBkr7zD0HNZV1ifq6QNmqnVOkbC81fW8P8bHVepzr+M08f1XNFTLUQde6M2xr7Xp0w366f5lxDFtS/GqtPeXYjwXazc3neK06lLOdTN3ncRzXe4PJ3jjvifMhPDSO/WuiXj15/9If7LLw9r/7KiDP2Pa+3CRyY724n1IvDh3VkfuDrM2p9eSW+pH8CWZH+1asWt+kwbr0K80SG9sR/TrQMOF87ttjuPzkjqRPVxgfMv2nbGPOWOU+Yj+PiS9Ub2L7ehU/YseTkTHk2Nw3TogVC+p87rg3uT5N+fKD9nFp3zzBaBnNj3nFc/GcedS32Zqdf1L9teMp9WNOfzinPW9zXJ8cb3jyZc7rp+IukINYs4jm59GxKh8bTVHTOPuW6w1wK/GxXpPmi/t7HFM2cHB/Y8r5yzJnrIlr3call7h/GafFMWyD7cmYomNvrl2AnX0lnFtBXv3drqKlVm3nVZNxHO8iFrFckrte7N3depNkQnn3ry7bb+/ka6x2nfH+eCwViDfDMNwnnkDcD8NwcpKyH2C4wMIZ+pXGiI3tGMdxOwzDNsQf883BuT8X86Ne9Ri5vZtMrKsh7MoesY+vfnciry2lGTPmB/vk0RCWb1s5x/whiBUX9Tp33JtTnw7HShfmW7EXnO8if48rehnziufiOfOob9O1Pv+k3mvHu7p5F6bdBE7ZH+Z++M2Udnn4N1mJu0AOYs1teplHR6p2bJRBTftdU1kpmPhYrxljgxDirme8+t0ZxYr53i651m1ceknv9y8jNTmGbak9GVP0rYgEk33W1o0BNZecAbR7C3S0uS1VP+bcXArh00HoEtuPWUx0cpKycKDeXOikpmZ8ZtNihm1N9CvNEhsbcUP/PvuC18E2c5haVw8tGbM8SYbmzLywHsLybWuNMf8hseJIx3PHvTmL9I4vVs5xt1sgWctxr0EXY17x/BXxnKnUt4k6mH/2rsprxyHMSoA6tPTYK3d7riLBZEfcBXIQa27TxTw6UrVjowmqGUfccO0DliI+1quUscGeNS0XuNb9inHpCe5fRml1DNtSezKm6NQbaxfg0A2vhsphO47jYMCU365e1NDIF+tgZ7wqaynbMH8/Jr1OrYPAXcvAsGn6lbb0EBt7krF9Zr/4sKsra/dzzVx0gRPWrNuLtS2xYnk9zh33Vhr3Vv/0qBJ1NuYVz5fTVDznPPVtnpbnn63q5TgWcu0y+8KBGdtbbdwp7gI5iDW36WEeXeu5SWHO8V75+tXkcU+SUtClHuJjq1Y8d6dILonjWvdyqh2XntPr/cvWzuNULbUnY4p+FZVgEkKxAbW5jqs2BwG3xEHrLYHsrBVuLm3HcXy1H5nqfInnk8boV9rSSWzsRobzuVpbG8dxO47jEFaaZKmrtGzF9rV42xIrltfj3HEv8zipyfpTil7GvOL5YrTHzqhv87Q8/2xYieO5xa147TLp2DRy+1UQd4EcxJrbdDKPrqbvzGDKsajquFnEzdI6iY9N6vWBBLVyrXsx1Y9Lz+n4/mWJ+5tNS+3JmKJPxSWYhLB6wzq0D54qZwF29aK0jvbuMJAtLeP+nqvnqbdd0rmkYfqVtnQQG7uS8HwWcfFhhbGLGEM3WlpML1Ysq8e5416m/W66/pSipzGveH4T7bFj6tt0rc8/G1TSWC6pFRYZbHOMTS+Z0mZKaV/iLpCDWDNfB/PobsZGjWk2GYZ6dBAfm9XxAwmq5Vr3TZoZl57T6f3LkvZ1Na20J2OK/hSZYLK3C16rZHeGTIs/mG7FerG3DQ+DtCFH/Ug8Ybi2H6kXP5X0Wkc6oF9pR8uxsUcH53OpY1vU4p4E+3dKtrEJlCRD+8qWHCpWLK+3ueNeysWzwU2lrHoa84rnk3UVzzlPfZuu9flnS3q7dpxpkUFpD7+J2dei6oC4C+Qg1szX8jy6t7HRFdUkbbTWxqhXy/GxdSs8THX1BxLUzrXuyZocl17S0/1LY9hPtdKejCn6MozjuHYZog3DcL/7z02Cr/cqnUoNw7AJD3UiRb3YK6J+7NrAEvsZfeNzd3zvr/7ijO8+2Mbc/XIDl5voV9rQamzs1Y39+n4ifHJSEVFXkp+nBOMWdQt2Fm5fF+NJamJFGj3NHfcWGiet2h540NOYVzy/SDznLPVtutbnn63o9drxwtctjecSEHeBHMSa+VqdR/c6NgKW02p87EHCexzmjIm41n2Rdr7Tw/1LY9jXtdKejCnaV1WCyaGDRhbC/BtAIYRyFn6wjIMbLyHMD2D7+lHkAHpGJ3Pz/kR2CDcNZid2OiY4LEq/Ur9WY2OvJp7PqGNc2gKfmXGn6DEKlGLGYqxi25ZYkU4Pc8e9uW3CuLY8vY15xfNy94eyqW/T9DD/bEGv145vuGZpPJeRuAvkINbM0+o8utexEbCcVuNjL25c39L9+GANrnWXuz+lafn+pTHsYy20J2OKdlWbYHLNUaBVSQghPArIITRWNw7rfcobR4fHMdd2QmPnivroV+rVWmzs2cExntUGh2G4NvAtYoGP/g/SydUn5CBWpNX63DEEdag1vY15xXOYR32L18v8s2bq82v9YZf7XwP1FMhBrJmntXm0egAspbX42KPj+xuOb9lc62aK1u5fqjPntXBsjCnq12yCCQAAHLLABwAAgBzMPwEAAAAAgFpJMAEAoAvXFviM4zjkKgsAAADtMv8EAAAAAABq9cbaBQAAgNQOX70IAAAAqZh/AgAAAAAANZNgAgBAUsMw3A/DMF74lLD4Zrt2AQAAALiN+ScAAAAAAMBtJJgAALC2TSPbAAAAoGzmnwAAAAAAABdIMAEAYHXDMCRbgBPzhNpxHO9SbR8AAIBymH8CAAAAAACcJ8EEAICkIhfPpHzC67Xv3ibcNgAAAJmYfwIAAAAAANxGggkAADlcW0SzSfEU2ZinxwIAANAU808AAAAAAICZJJgAAFCKRRf47Bb3XP3OyCfcAgAA0A7zTwAAAAAAgBMkmAAAkFzkIprNMAz3SzxJNnZxTwjB4h4AAICGmH8CAAAAAADMJ8EEAIBcthG/swkh3O8W6Ey2WyA0hrjFPdtxHGPKBAAAQF3MPwEAAAAAAGYYxnFcuwwAAHRiwpNd915bgHP4JNoTi4AmPXl2HMdhyu8DAABQD/NPAAAAAACA6SSYAACQ1YxFPinceXosAABA28w/AQAAAAAApnlj7QIAANCX3VNg11xcY3EPAABAB8w/AQAAAAAAppFgAgBAdist8tkGi3sAAAC6Yv4JAAAAAAAQbxjHce0yAADQqWEY7kMImwyb2u4WFQEAANAh808AAAAAAIDrJJgAALC6hAt9LOwBAADgFfNPAAAAAACA8ySYAABQjN1CnxBuW+yzDSEEC3sAAAA4x/wTAAAAAADgMQkmAAAUaRiGTXi80Gf//7fHv29BDwAAAHOYfwIAAAAAADyQYAIAAAAAAAAAAAAAANC5N9YuAAAAAAAAAAAAAAAAAOuSYAIAAAAAAAAAAAAAANA5CSYAAAAAAAAAAAAAAACdk2ACAAAAAAAAAAAAAADQOQkmAAAAAAAAAAAAAAAAnZNgAgAAAAAAAAAAAAAA0DkJJgAAAAAAAAAAAAAAAJ2TYAIAAAAAAAAAAAAAANA5CSYAAAAAAAAAAAAAAACdk2ACAAAAAAAAAAAAAADQOQkmAAAAAAAAAAAAAAAAnZNgAgAAAAAAAAAAAAAA0DkJJgAAAAAAAAAAAAAAAJ2TYAIAAAAAAAAAAAAAANA5CSYAAAAAAAAAAAAAAACdk2ACAAAAAAAAAAAAAADQOQkmAAAAAAAAAAAAAAAAnZNgAgAAAAAAAAAAAAAA0DkJJgAAAAAAAAAAAAAAAJ2TYAIAAAAAAAAAAAAAANA5CSYAAAAAAAAAAAAAAACdk2ACAAAAAAAAAAAAAADQOQkmAAAAAAAAAAAAAAAAnZNgAgAAAAAAAAAAAAAA0DkJJgAAAAAAAAAAAAAAAJ2TYAIAAAAAAAAAAAAAANA5CSYAAAAAAAAAAAAAAACdk2ACAAAAAAAAAAAAAADQOQkmAAAAAAAAAAAAAAAAnZNgAgAAAAAAAAAAAAAA0DkJJgAAAAAAAAAAAAAAAJ2TYAIAAAAAAAAAAAAAANA5CSYAAAAAAAAAAAAAAACdk2ACAAAAAAAAAAAAAADQOQkmAAAZDcNwPwzDOAzDuHZZAEq2j5XDMNyvXRaAUhlbAlwnVgLEMQ8HuM7YEiCOsSUAQN0kmAAAAAAAAAAAAAAAAHROggkAAAAAAAAAAAAAAEDnJJgAAAAAAAAAAAAAAAB0ToIJAAAAAAAAAAAAAABA5ySYAAAAAAAAAAAAAAAAdE6CCQAAAAAAAAAAAAAAQOckmAAAAAAAAAAAAAAAAHROggkAAAAAAAAAAAAAAEDnJJgAAAAAAAAAAAAAAAB0ToIJACQ2DMO4+9yvXZY1OQ4cGobhfl8n1i7L2rSNB+rEA8eBY2LEA23jgePwKW2DQ9rGp7SNB47DA22DY9rGA23jgePwKW2DQ9rGp7SNB47DA22DY9rGA8fhgRjxKXWCQ9rGA8cBAOojwQQAAAAAAAAAAAAAAKBzEkwAAAAAAAAAAAAAAAA6J8EEAAAAAAAAAAAAAACgcxJMAAAAAAAAAAAAAAAAOifBBAAAAAAAAAAAAAAAoHMSTAAAAAAAAAAAAAAAADonwQQAAAAAAAAAAAAAAKBzb65dAAA4ZxiGvxtC2Jz552/tPjX5yjAM92sXogC9H4ev7P/DcXjQ+XE4pG3sOA4POj8Oh3pvG3u9Hwdt44Hj8Ji2seM4POj8OBzqvW3s9X4ctI0HjsNj2saO4/Cg8+NwqPe2sdf7cdA2Huu9Tuz1fhy0jQeOw2O9t4293o+DtvFY73Vir/fjoG086O04fOXMz7fjOP7trCUBgJmGcRzXLgMAnDQMw2+GEJ6uXQ4AAAAAAAAAAICZPhrH8Y+uXQgAiPHG2gUAAAAAAAAAAAAAAABgXW+uXQAAAAAAAAAAAGC6/+yznws//j3fc/X3vvBPvpWhNAAAANTOG0wAAAAAAAAAAKAyscklP/u7v5uhNAAAALRAggkAAAAAAAAAAFTme37w90f93r/2/d8TlYgCAAAAEkwAAAAAAAAAAKAyv/9zcQkm/9K/iH/bCQAAAH17c+0CAMAF3wohPD3zbx+FEH45Y1kAAAAAAAAAivAffu/3feGd3/y9r576t3/22e8Kn/1n/9+jn/8H3/t9H/3s7/6ue6wAkM7mzM+/lbUUAHADCSYAlOzS5OqXx3G8y1YSAAAAAAAAgAK8fPJ0E0K4P/VvL569FUII4bP/7JNH//aV7/7M03Ec/2jSwgFAx4ZhGM/8kwQTAKrxxtoFAAAAAAAAAAAA4nzn85/5m6d+/uLZW+G/+vf/0KU/3aYpEQAAAK2QYAIAAAAAAAAAAJX4+O3v+sKpnz978Un4z//xfxP+4L/9W+f+VIIJAAAAF725dgEAAAAAAAAAAIDbvHj2VngSvhX+27f/cPg7P/VD4Sd/+jde/duvfPnt8OLZW5v3JZkAAABwgQQTAAAAAAAAAACoxN/7Gz/yyz/507/x9NmLT1797MWzt8Kv/qXvDn/xw09/7713v3j8p5sc5QMAAKBeEkwAAAAAAAAAAKAS73/t5+5+IvzY+OzLn4Q/98HHIYSHZJKvf/jBtT/19hIAAAAukmACAAAAAAAAAACFevnk6f3+v5+8/OguPB/u3w8h/J0f+XL41R/57hBCCF//8IPwzsffDiGE8Oc//j/DL779QyGEEJ69eEhCefbik/Cdz3/mCy//+tPNk5cfSTQBAADgpGEcx7XLAAAnDcNwH86/pnk7juNdzvIAAAAAAAAA5PTNP/vHf+nz3/m9rx7+7MlPfmsbLtxHDSF85Rff/qGnH33rs+Ev/Bf//NTv3EkyAYDlDcNwbkGudU4AVOONtQsAAAAAAAAAAAC87n/+kz/8vxwnl4QQwv/0D5/+W2f+ZBuej3chhF9+5+Nvh3/nv/u/zn31ueQUAAAAOifBBAAAAAAAAAAACvLyydP77//tf/EnTv3bD/z6+Lkbv16CCQAAACdJMAEAAAAAAAAAgEK8fPJ0Ey4kgbx49lYIIWyPfrx/e8mpfzt27d8BAADo1JtrFwAAAAAAAAAAAHjl4htG/rd/+Xu/cZBM8tjzcRueD9v33v2jm7/yH33n0T/fb/7IF/7m7WUEAACgQd5gAgAAAAAAAAAAFXjv3S+GX/jRH/z7V3/x+Xj3i2//0Pav/dSfCS+evfXqs/v7r2YoKgAAABXyBhMAAAAAAAAAACjEk5cf3b188vQ+HL3J5H//k3/gn7549tZfe/9rP7ed8n3vvfvF4x9N+nsAAAD64Q0mAAAAAAAAAABQkCcvP7r7zuc/8439//9//pUx/Jt/4X/93Pvf/PnNpb87ci6RRIIJAAAAJw3jOK5dBgA4aRiGR0/lObAdx/EuZ3kAAAAAAAAAcviJn/mxR/dKv/7hB+Gdj78dQgjb8DzuXunP/tQP/9I//t7PfvUX3/6hEEIIf/Xlr37jx//6//FvLF1eACCEYRjOLci1zgmAakgwAaBYEkwAAAAAAACA3nzzz/7xX/r8d37vqy+evRV+5ctvhxfP3nr1b+9/8+cf/uP5OFz9oudn77dGJ6gAAPEkmADQgjfXLgAAAAAAAAAAABDCyydP7z8fwldDCOHZi0/CsxefhBcfvBXee/eLh7+2nfPdv/UPP7f/z80ffH5TMQEAAGjUG2sXAAAAAAAAAAAAevfyydOTbxx59uKTm7/7t/7h58Lv/vr3vPq8fPL03BPWAQAA6Jg3mAAAAAAANG4Yhvv9f4/jeLdmWSCVw3oeXl+Ud/h05+04jrOe9gwAAGt75+NvhxDCNjyPntdtQwibfXLJsZdPnt4/efmROSIAAACvSDABAAAAAJqyW2T+6ImvN9qGUFdyxjAMm/BwHDZHPx/HcRzWKRUsK7K9H/77ZhiGEB4STappz6R3oi4tVkeGYcj9dHD1O8LxeamlbzxIpjuVSJc8ie6wrSx9zM7sWwgHiYLqNtCBbTgzvn3n42+Hr3/4QZiQXBLC83Ebng9nv/PCzwEAAOjUG2sXAAAAAACgApvwsDB93CVuFG1XxhSJNlCEYRjud4vD59bxfXu+v/6rAOs7invHsW//s/vd76Xs/xf/7iv7Fg5+Pjt277exwEe/AST15OVH21/70vd9dPzzf/SXf+AhuWSO5+Pdb/7229849U/f+fxnTv4cAACAfkkwAQAAAACY5r6CxYWllw9mGYZhs/BbiqpJHAP6NCPu7RNNkiSCLPx9m5nJgpuiZYTrAAAgAElEQVQMiTQAq/iJn/mx+9/+/t/39Nd/+A+EF8/eCi+evRXee/eL4R/8+T+2/5VZb6r6hR/93KSfAwAA0K831y4AAAAAAECFNsMw3I/jeLd2QY6dWfw5axESlOTgzTyXXKrrlxYi3w/DcDeOo7YClGZuUkfRcS0ypl+yj+mx+ycZBSjeyydPN//pQbx68dm3wq98+e3w4tlb+x9tw/N5c9Bf+NEf/NYnP/Bd4c998HF49uKTEEII7737xfDi2Vtf/Zs3lxwAAICWSDABAAAAAJo3juMw928vPDV8MwzDptSFmwe2JSbCwBRXFiJvw0M9v9oWd9+z/xy7DyHMjhVwztQ+aPdGh0PieKcuvDHktTpxIbYtFtcWfntUuPBdJ+v7me0Xm/ALMNXLJ08fjXf3iSCvEkxmJpfs7d+IEt597celz2cBAADI7I21CwAAAAAAULLdosVzC3k8DRvyONfW7sZxjH5C/ziO20tt+sJiboCsDpJGDm3HcRyOEyoOYtujWLhEXFs6uWTKvu1diN2b3fdNstvWnI9kFiCVk7Fsn2TyV1/+6jdu+fL3v/Zzp/qJ7e7nAAAA8IoEEwAAAACAK3aL108uasxdFujNhYXN0Yklxy616TkLlQESeBSLriU3nEkymRXXhmG4333GU2W50ankkqsLnOeOxyQPArX7+ocfhB//zodfvfV73v/mz2+//uEH4Z2Pvx3e+fjb4f1v/vwSxQMAAKAxEkwAAAAAACLMXcgOzHfmKfch3JBcsidxDCjVuTd8RP75qd+LimvDMIz7z+5vUsXDufu2j92Pkmgmbt+YDijOX/upP3MyNr149lZ45+Nv376B58MmhHD/zsffDl//8IPw9Q8/CCGEze7nAAAA8IoEEwAAAACAeI8W/XgqNiSVJLlkb6GFygBLm/z2koPfKzqunRo3SeIFCCGEsHnv3S++9oMXz94Kxz+75fsn/hwAAIBOvbl2AQAAAAAAenThzQwhhLAtZbHlWuU8WIC62W0namHtiuVNvt1c+1ZK3Tz3BP8c2x+G4T62zl36jt1/TqrDR3/76u8P/n8x8eFWqevapeN46/lt0Zw6e+IcHtfXRY91KfEpg9lv+Dj4/de+YxiGTUPHB6A5f+s/+fWvfOnXfie8ePZW+JUvvx1ePHvr+FdSjV0kmAAAAPAaCSYAAAAAABntFvBeW8SzGYYhhPgFvuOV73rt38dxHNYo54XvfvX3u8XDx083v7roaeXyXlrwvN/uNsxc/DxhG6+VbcZ2kh3DmU6VZfHF0eM43l1pQ48kqsOXzvNrC/jn1KcT+zj5HE6JJWu2mwt1eXPwO2PIU4+LsHSdvRIvjhMbxvDQdmcngOSKgxPKcny8iqpL4zhud8fi0KPknxOu/XuKRcg5kl5uTdgBSOrlk6f3XwrhaQghPHvxSXj24pPw4oOHt5f86d/5rY9CCH87PE+WJCgmAgAA8BoJJgAAAAAAN5j4Zo3jBanXbHaLeHO/NWKVcs7ZdkXl3ey2ezcxKSAm6eO17ewWc0dvp+C6+Wi/U20rJukqxsxjOes8h10CRkmL2mOkbDczjv9mibfV1GzqMZtbx8PMGLjbZvI4OKEsyZNLjt6882obS33/Jdf2Y2oy3hnH+5J9YbM3uQAlefnk6cl+7tmLT8I7f+nb4esffvDLiySXPB/vwvPHCafheb/jIAAAAE57Y+0CAAAAAAC07oYFuSE8LAC6331HUmuWM2NyyV728u5MWcg9dVH1a9uJ2bda6uZO0QuCMyaXHNqcWYxepJTt5pbEh5qO4ZIyJpccmhQzcsTBCWVZ7c0lMxMiioyZ4zhux3G8O/gsUc4i9xXgVl//8IMQlnx71EMyyV3YvVns5XtfCC+fPM01lgcAAKASEkwAAAAAACLsFpYeL7655Yn62/CwMHXYf8Kni31OubSod3v0ufRvJ78/UzkvObvtU9sqrLzb8PCk/OFou+eOdcxi+XOLql/bVrhh3wo4hpfKVuOC/0l1OISr5zn2HNSUIJGy3Zz795g2cyq+92BqnT13jB6dy3CweDVyu4/kiIOx1kwuWVATdfzMeOza75/8+TAM98MwjGc+9xXFVqBueZPkno8PiSXvfWEfT+93b1EBAACAEEIIb65dAAAAAACASjxaoBi5sPTk4thTf7t7ivc2hNMLa4dhuD/zd3eHv1NqOSO3vd1t49rfl1Les09fH8fx7syi5IsLYy8kM22Pt3Xjvq15DCcrfCH35Dp8YZH0yTq1Pwfn6tQwDJuF3gSQSrJ2c2YR+Kw205FJdfZcXDr3NxEx42J9zRgHr2okuaQJM8/Fo3oU2fY3u22OEdsAmO3Jy4+2//Vf/FPh2YtPXvv5P/rLPxD+vYf/XHR8t0smOY6Bm5dPnt4/efmRWAcAAIA3mAAAAAAAXLJ/unV4vAjn6uKbMwtk72IWKe5+59FT9s89ifsWBZVzO47j1e0WVt6LC74OFz5PcDKZKWJb0QvCCjqGrYmqwzvRySWHdv9+6vtrOf6LtpsLiTox27n05otexNbZuUmW534vanH/8fcsGQdjFJJc0mUd3b9B5OAzhvNv3ZlizhuLanpTFFCZn/iZH7t/790vhhfP3nr1ee/dL4Z/8Of/2P5XFu0HvvP5z3zhzD/VMpYEAAAgMW8wAQAAAACaN3NR4KUFNlcXuZ75jqsLno9//8R3bMLyi02LKOeEBbsllDd6gfHujQxjzO+eS/yYUq6jvz9Xj0s4hs254U04IUw4B+M4bodheHSuK3iLSYp2MytR57BMZ76jCzckSkytZ9HHOWMcjCnHGskl3dbHvci2f/KNNjMdfsfZfjPH27qAvrx88nTzt770fV/50q/9TgghvEoueeX5OCy9zY/f/q4vfP47v/fo57/2pe/76MnSGwMAAKBKEkwAAAAAgB4stVhz6sLSRwvIp2zs3CLyKd8RqYRyTtlmCeVN5dRT+6P379Si/DNJB6Ufw0W+Kzax55RxnLygL/oYnkp6m7po+UwCRo9JPjclS52py72YmlQ292+nyhUHzyrkzSWcN+VcnGvbZ7/jIMnpUSKlJBNgYff75JIQQnj24pPwk+E3wnvvfjH86d/5rY9SbPCDP/sD3/rSr/3O0+Of//b3/75HPwMAAKBPb6xdAAAAAACAFp1ZQD5nQW7SxeKllDN2sWZt5Z3hpsSPg785/LymlGPYmhvrxNxjeS1xqChLt5vdIvAldFmXp5yPcRy34zjeHXxyJpgsHgcvkVxShc0wDOPMN9SF8PCWo7Pnc1/fw+m6U3ScBerx8snTkzHs2YtPQggh/Lv/928kSfj4hR/9wW+9ePbWaz/bvTmly/EQAAAAj3mDCQAAAABAvM1uMeOkJ+TvzFqws3u6/ms/m/ok9olqKedebeWdanJ5ZiyCbv0YlsgC5WWcetPF5CSAU3WZ5Ry8DWKuHHEwhPAqAU/7XF9sYsecN4pEJ0jt3obzqE54iwmQ2vvf/Pl03/21n7v7ifBj9+Hd12Lb9v2v/Zy4BgAAQAhBggkAAAAA0IdbFrwfL2jcL5S9tho55QLVTVjuifsllHPKvtRW3min3saQKFmjhGN4zTbUtch7raSamo5T6YlHNR3LJSQ/Hwdvl4g+rhnj4KltX0ou2Uigy+dc8sZBstLhebqYZDKO403ZY7skk/Hoxz3FCiCdk2OP7/mR3z389yTe/9rP3f3sT/3wL33jrT/8hRBC+I//yjcklwAAAPCKBBMAAAAAoHm3PmV6oadXb04sUCxRLeXcq628l6y1YLWlY/iaKQuL1zwGc2OUt8g80ut+r+YgiWTv1ji25sL9a9teMrmTGXaxbXtiXJY6Aai3BDQggycvP9r+/b/xr3/jbvtPvnr489/8U58Jf/DhP9P1Oc+H+x8P4as//p0P9/9/DM9vS8gDAACgHRJMAAAAAACu2D29+tFixrXKAz2akdTVK4vgSWrOm0kqdBcmviljQZIZrjt1jFLGvkfb0ycBt/qJn/mxTfjRH/zqJz/wXeHPffBxCCGE9979YgghhPe/9jJdssfzM2/sej7ch+fiGgAAABJMAAAAAABm6/xNAZCSBdZQmGEYNiGE4zeWXHPYR9bSpu8O3pRx/Gaj1G/KOKWW45bN7u1Nx/1EsuN06m1RAAvYhBDCi2dvhRfP3lq7LCHobwAAANiRYAIAAAAAEGH3FpNHC01D/NOyl1yMmnJhay3lTLGNXpOFijuGZxbzWvQGK4lILnmt7R+/2eHgrSeluztKHrkLj/fbW4IAuNkf+b3/9wv/5DN/YO1iHNK3AQAAEEKQYAIAAAAAkM3xgttS1VLOvdrKW6JCj+Gjt5ikenPA2ovfl9yvQs8l9TvVRrYhhG1Db/I6Ti45+6aMSt9gtnp5d4lKr8V1MQvo1d/9L//78D/88z8U/ul3//7wK19++9VbTN75+NupN33uTYGr9xMAAACU4Y21CwAAAAAA0KhaFujUUs692so7Ra59q/kYtvoWk1n7lTMxZu0knEi31I9W69bNzpz77TiOjxIyFrBafLqwL6d+nqw9nEq4mNn+SqzTmxMfgO68fPL0/uNfevurX/wffy88e/FJ+Mmf/o3w7MUn4Z2Pvx2+/uEHaTf+fNyGhzd0vf7GrufVJU4CAACQiAQTAAAAAAAowKnFzXMWFQ/DcD8Mw3jwqSEx4JEzT7Xf7J6Av5hTT9SnGqfajHOZ3jbVWydKjIO7Mi1SrlzOtIPVFw7nflvJrh68+tzwPUUeT6BOL588PTn2/Mmf/o19ckn6+PJ83Ibn4114Pg67j5gGAADAKxJMAAAAAADymP2GgqNFsuPSBTtSSzn3aivvNWss7ir5GJ46HksnEKyRkHC8X3PLcPx3XS0OPPPGicnHsuREgULkbiPF1eNdYsSjdpswoenWGPHo9/9/9u43xq37vBf8Q91xVClKRv53E4VmxtKN4CZpfC0Gi1oZd+Em3cXdKFcQkD3Mu/viDhTA17uF63QhoAUWBO7tC++FnWIBQ0UHAgrsi0XJF6udXRn7Jtd+EUe52DVHcC+SokqtUcb0OFBtzzS2VDVFzr4gKXM45Pzl8PDP5wMQHv7OIc9zDimSPvx9+exDt5m+2Od/f+u6pexhWyNzPIGRsNlreiP4AQAAABkSMAEAAAAA2AfdfqW7T5Mo+zqhcVTqbBm1evtgRxOYe3TjWLdvo3QMN5nU3ZcJyc37GYaAyY4fg0F26hjyLi/9COsM676Nk70c476/Du7SIAJvPbe1w3/zwxw+61ct29lHYT5gtAiXAAAAMAQETAAAAAAA9s+efu18HyfJdhqVOnvd97DXu23dwh+xswmx2/2V9VE6hl0nde81ZJJhuKRfnTc27H+P50/LXh6fYQ5g7Cmso3vJ/tvpMR7g6+CONO9j3wJvXbbVaVvHoEc9Q/Ee18OOO8HsZR93EeYbteMJDLlnXn68WitObxjvNgYAAABZEDABAAAAANi9rSZEdpuAWNnORMrmOp2TGqv9mCTbxajUee/+u4wNc707tasJzDsMfYzMMewxqTuicVzS3XT+yDJc0mbXwYg+TXje1qTuITlWPe1l0v+Qd2YZJrvuArGH588gXgd3rFf4ZZ86Cu04CNhr/4fpPa7HMdzW+0/EzvZxr49Xj+fvUB1PYCQl83Mz6wIlteJ0zM/NDLyQ157+4s/r+ULauvzld554ceBFAAAAMHQETAAAAAAAtm9HEwo3mRhf2WyibHPZwH4xe1TqbBm1endqkwmxPSfg9tq3Xh0tRu0YNvej1zbuBU161d4KlbTV33kcN7v/fdFjnzYNzTT3I43uE543617Sy6aTuoc9XNKmZ5ebbvvXFjLSvWR7uoahtnju7CnINYjXwT3Ya4eVbenxGrHp61yMwHtc027efzb7d7vZPvbc1ibPpZ7P3314PgETan5uJp55+fF45uXHMwuXnLz+YaF97Kkfvve8kAkAAABTWRcAAAAAADDKcrlcZbPJhmmalnpMUmxNFI/4ePLjZhNUS/v5i9mjUmfLqNW7C6XYOIk2icb+RWxz3zbbwKgdw03qbUkiItpq3457wYx96kCw5faj+/60HoP247pZfVse/02OX6XjOdVre92ek0MhTdNqLpfrdix38m9maPcvaz2Ob+vYdg33dBnbcPu2MEGvjhD7/jq4G72ORy6XS/bhtbDr87rL60N0WS9iSLttbPP9J6L3a2S7Td+DNttWfPxc2va2tlgOsKWFa6/EC4+eitePHls3Pru6MtA6OsMlLZ/5xd0kIr430GIAAAAYKgImAAAAAAB7s+Wk0u1OjN/EUE3g38RAwxqjVu9ONCcwbzbhvS/7NmrHsFlvr1/p36l1XT+a972TcMqe9eFxjtjZY7DZBOotQ0RtE7GHzh6fy0O/f0OgZxhqG7frFQRJOtZbZ1Cvg7vU7XhUIqKvT6ItjsGWx36Yu21s499sbLEson/vdX3bFsB2XFhajBcejXshk9nVlbiwtJhtUQAAANB0IOsCAJhczRb0aa9LbO8LdAAAABiYTSZqbvn/sM3b7nRiYjUymMAfI1Bny6jVuxPN+nazfzvat1E7hmmaVtM0zcXOa25p1T4UE6/3sD/VNE1zO3ysd/OcGvp/Ky3Nx3Snj+vI7F+WdvncqaZpWmo+x9uDJvu93Yj97/rVdX/aurL0e1u7+Xc7FK9xm9nl+0/ELt6D2l4f9v21FmAL1YhGyGTh2iuxcO2VTMIl108eWe42/ovPHPR6BwD7I9lsjtSgf/QEADaTS1PvSwBkYxu/GLaZof71NQAAANhM2wTUXv9fXI3G//tmOrlnVOpsGbV6d6LZtaN16aYv+zaKx3AbxyaiOZFv2M8nte1LRLaP9Ugcr82M+/5laYt/cz2P7Sa329a53kG9Dg6z3R77UbDN95+I/rz+bee5NLLHEhgB5a7fkZaiPNj3sNee/uLPT17/sNC6fv3kkeWnX/vp5wdZAwCMm70ERZo/QAIAmRMwASAzHV+Yd/NkRBR6LBMwAQAAAAAAAEZPeV3Xq+qgwyXNGpLXXz/5F7kDvz6c+/yv/ub0/M3HBl4DAIyZTQImyxHx481uax4UAMNCwASAobVFhxMBEwAAAAAAAICdKueSiKhsHPfL6QCwF5sETMxzAmBkHMi6AAAAAAAAAAAAYGA2hksiOjurAAAAMIEETAAAAAAAAAAAAAAAACacgAkAAAAAAAAAAEyOatYFAAAAMJwETAAAAAAAAAAAYHJ0C5hUo5yWBl4JAAAAQ2Uq6wIAAAAAAAAAAIABKafVKOdKEZG0jQmXAAAAIGACAAAAAAAAAAATpZxWo3snEwAAACbYgawLAAAAAAAAAAAAAAAAIFsCJgAAAAAAAAAAAAAAABNOwAQAAAAAAAAAAAAAAGDCCZgAAAAAAAAAAAAAAABMOAETAAAAAAAAAAAAAACACSdgAgAAAAAAAAAAAAAAMOEETAAAAAAAAAAAAAAAACacgAkAAAAAAAAAAAAAAMCEEzABAAAAAAAAAAAAAACYcAImAAAAAAAAAAAAAAAAE07ABAAAAAAAAAAAAAAAYMIJmAAAAAAAAAAAAAAAAEw4ARMAAAAAAAAAAOiTer5QqecLafO/Sdb1AAAAwHYJmAAAAAAAAAAAQB/U84VKRLRCJUlEVJpjAAAAMPQETAAAAAAAAAAAYI86wiXtdDEBAABgJAiYAAAAAAAAAADAHl0/eeTJrGsAAACAvRAwAQAAAAAAAACAPVp84tNvZ10DAAAA7IWACQAAAAAAAAAA7NGrTz/0/VpxesP4/NxMBtUAAADAzk1lXQAAAAAAAAAAAIy6i8++GddPHln+4P77Ch8cvS9W778v3jh1NGrF6VLWtQEAAMB26GACAAAAAAAAAAB7UM8XKhFROXn9w8L9H/wqTty4HR89lsZ/88BbsXDtlazLAwAAgG0RMAEAAAAAAAAAgF2q5wtJRCSd47/zv/99zK6uRERUBl4UAAAA7IKACQAAAAAAAAAA7N6GcAkAAACMIgETAAAAAAAAAAAAAACACSdgAgAAAAAAAAAAu5SvL5eunzyy3Dn+0WNp68/qYCsCAACA3REwAQAAAAAAAACAXTp7+Uzy0nMnCrXi9L2xWnE6/vD3/2VERDXKaSmz4gAAAGAHprIuAAAAAAAAAAAARlgSETE/NxMx17FEuAQAAIARImACAAAAAAAAAAC7UM8XkudPHnny5PUPI6LRuWR+bibjqgAAAGB3DmRdAAAAAAAAAAAAjKjKyesfFlpXirW1OH/pZutqNZuSAAAAYHcETAAAAAAAAAAAYIfq+UKl23ixthYRUV04d6U02IoAAABgbwRMAAAAAAAAAACgjxauvZJ1CQAAALBjAiYAAAAAAAAAALBz1W6Dh07ciYhIopzr2uEEAAAAhpWACQAAAAAAAAAA7FC+vlyNiFLn+KHjt1t/JgMtCAAAAPZoKusCAAAAAAAAAABgFOXry9WPkk9dvfvuwdMREQ98472sSwIAAIBd08EEAAAAAAAAAAB26ZNf/vD783Ofj59++xOdi6pZ1AMAAAC7pYMJAAAAAAAAAADswtnLZ5J44puViIjXjx6L2dXPxlOr78bs6kqEgAkAAAAjRsAEAAAAAAAAAAB26OzlM0mxtlb56uJqzM/NREQjZPL3UweXZ5975/MZlwcAAAA7JmACAAAAAAAAAAA7UM8XkosRldb1i7U3Y35uJmrF6firIw8UsqwNAAAAdutA1gUAAAAAAAAAAMCIqXQOnL90M4s6AAAAoG8ETAAAAAAAAAAAoA+aIZNq1nUAAADAbgiYAAAAAAAAAABAH/zsX3zy6sK5K6Ws6wAAAIDdEDABAAAAAAAAAICd6dql5A/+9D9/bdCFAAAAQL8ImAAAAAAAAAAAwM5UoyNk8sA33oso5ypRziUZ1QQAAAB7MpV1AQAAAAAAAAAAMEry9eVqlHMREZ1hktb1rh1OAAAAYJjpYAIAAAAAAAAAADvXq1OJDiYAAACMJB1MAAAAAAAAAABgh/74C08++VdHHoiIiNnVlXhq9d2YXV3JuCoAAADYPQETAAAAAAAAAADYpnq+ULl+8siT/+76h4Va8ZcxPzcTrx89FhHRCphUMy0QAAAAdulA1gUAAAAAAAAAAMAoqOcLlYhITl7/sBARUaytxflLNyMi4vWjx+L/fvjRq1FOS1nWCAAAALslYAIAAAAAAAAAANuTdA4Ua2tRrK1FRMSf57/09sArAgAAgD4RMAEAAAAAAAAAgD346uJqREQsnLuiewkAAAAjS8AEAAAAAAAAAAD2YH5uJiJCuAQAAICRJmACAAAAAAAAAADbU+0cuH7yyHJElBbOXdmwDAAAAEaJgAkAAAAAAAAAAGxDvr5cikankurBY3eXDx67u/z0039dWLj2SpJ1bQAAALBXAiYAAAAAAAAAALBN+fpydfGPph659D88UnjoW7cKzeEkyrlKpoUBAADAHk1lXQAAAAAAAAAAAIyCs5fPJBFRifyXGtefOBYXlhZjdnUlohEySaKcVrOsEQAAAHZLBxMAAAAAAAAAANhCPV9Izl+6WTl/6WYUa2v3xl949FT7asnAC+uzer6Q1PMF3VgAAAAmkIAJAAAAAAAAAABsop4vJBFRKdbWolhbi/OXbsb5SzfvLb8XMimnpWwq7I9msKQSEUk9X0gFTQAAACaLgAkAAAAAAAAAAGxuQ9CivYvJU6vvRkRUB1hP3zXDJJ0dWJJmuAYAAIAJIGACAAAAAAAAAAC70OpiMru6Uh317iWxMVyy1TgAAABjRsAEAAAAAAAAAAB24Y1TR+O79Z9cHYNwSU/XTx55MusaAAAAGAwBEwAAAAAAAAAA2Fy1c+DQiTtRPvB6fOvW0uko50a+y0etON11fPGJT7894FIAAADIiIAJAAAAAAAAAABs4v/89/cvtwcwasXp+Om3P9G+ysgHTObnZjaETObnZuLVpx8SMAEAAJgQU1kXAAAAAAAAAAAAw+z/eaDwfMxFxFz76EwsXFtp/FlOSxmU1Vffrf/k6p/Pfen0+n2MWLj2SjXOZVMTAAAAg6WDCQAAAAAAAAAA7MILj56KiKhmXUc/fOvW0ukLS4v3rs+urkTz+sh3ZwEAAGB7dDABAAAAAAAAAIBdOPXLv/ubcehe0jK7uvJxVxYAAAAmjg4mAAAAAAAAAACwia98+P5yt/H/9n/8+WODrmUf9erEMhYdWgAAANiagAkAAAAAAAAAAGwi/48fVTtDJv/q/eWXsqpnXzQ6sXSGSUpRTgVMAAAAJkQuTdOsawCArnK5XCUikh6Lq2k6Pq2mAQAAAAAAAACA0ZXL5XpNyDXPCYCRoYMJAAAAAAAAAAAAAADAhBMwAQAAAAAAAAAAAAAAmHACJgAAAAAAAAAAAAAAABNOwAQAAAAAAAAAAAAAAGDCCZgAAAAAAAAAAAAAAABMOAETAAAAAAAAAAAAAACACSdgAgAAAAAAAAAAAAAAMOEETAAAAAAAAAAAAAAAACacgAkAAAAAAAAAAAAAAMCEEzABAAAAAAAAAAAAAACYcAImAAAAAAAAAAAAAAAAE24q6wIAAAAAAAAAACBrZy+fqTT/TCKiunDuSinLerJWzxeSiEjy9eWJPg4AAACTRAcTAAAAAAAAAAAmWjNckhRra8n5SzcjIpK2wMnEqecLlYioRERSzxfS5nUAAADGnIAJAAAAAAAAAAATrVhbSy4++2acv3QzirW1uPjsm1GsrSVnL59Jsq5t0Jphks79TpodTQAAABhjAiYAAAAAAAAAAEy0ZteSbmOTGKrous+3Hj74B4MuBAAAgMESMAEAAAAAAAAAgC4uPvtm1iUMjdWj9z2SdQ0AAADsLwETAAAAAAAAAADorpp1AYNWK053HV984tNvD7gUAAAABkzABAAAAAAAAACASdc1SJKvL09cwGR+bqbaGTKZn2gssywAACAASURBVJuJV59+6PsZlQQAAMCATGVdAAAAAAAAAAAAZKwVJEnaxkpZFJK1hXNXSmfjTCXm1h+LhXNXJi5sAwAAMGkETAAAAAAAAAAAmGjNTiUCFBER5VyysD5oExGRxDnHBwAAYNwdyLoAAAAAAAAAAAAYCuVcEuVcJesyMtYZLmmMOS4AAABjT8AEAAAAAAAAAICJtvZ7D7z4/u88lEZEJRphijTKuW5Bi0kwqfsNAAAw8aayLgAAAAAAAAAAALJQzxeSiKhEfLJx/a1H4oFvvBeHTtyJxnjkMiwPAAAABkoHEwAAAAAAAAAAJlWlc+D9Hzz48ZVybsPyCVDqOlpOu48DAAAwNgRMAAAAAAAAAACgTVvIpJplHZkop9VYHzLpvA4AAMCYmsq6AAAAAAAAAAAAGCaHjt9u/NEIW0yexn7nsi4DAACAwdLBBAAAAAAAAACAiVQrTncd/1+//psRunYAAAAwYQRMAAAAAAAAAACYSG+cOrohZDI/NxOvHz1WmtjuJQAAAEysqawLAAAAAAAAAACALNSK09VacTqJuXXD1YVzV4RLAAAAmDg6mAAAAAAAAAAAMJEWzl0pRUR7mKTaHAMAAICJo4MJAAAAAAAAAAATS6AEAAAAGnQwAQAAAAAAAAAAAAAAmHACJgAAAAAAAAAAAAAAABNuKusCAAAAAAAAAABg0Or5QhIRSfNqNV9frmZZDwAAAGRNBxMAAAAAAAAAACZKM1xSiUbAJImIyvu/81Aa5Vwl28oAAAAgOwImAAAAAAAAAAD0TT1fSOr5Qtp2GcbQxoaa7rx1KCIiETIBAABgUgmYAAAAAAAAAADQF22dQdol9XzhR81lQ+39HzwY0QiZDH2tg3L28pnk7OUzQjcAAAATQMAEAAAAAAAAAIBt26JDSa9gxumIqAx7yOTQ8dutP4e6zkH5/nO//aPzl25WLj77ZvJ//evfSgVNAAAAxpuACQAAAAAAAAAAW2oFS6J7h5LtBjKGIrhRK053HTt04k7jSjktDbikofP95377R6XqO6eLtbWIiCjW1uLis28mZy+fGYrHEAAAgP4TMAEAAAAAAAAAYFPNAMlm3StGKmAyPzezLmRSK07H/NxMvPDoqYiIamaFDZFS9Z3T3caf/9O3Xhx0LQAAAAzGVNYFAAAAAAAAAAAw9LYKhiQREfn6cunaE1/40cO37nYNJ0RE1POFSr6+nHmHkPm5mYi59WNf/uiDq7qXAAAAMKl0MAEAAAAAAAAAYCuPbLbw+skjyxERZy+fSf7n8mOn5+dmNls9aXZEyVK3LiXVbz1742sDr2RItR7TTkdXf/X2oGsBAABgMARMAAAAAAAAAADoqZ4vVCKiZ0eSWnE6XnruRKF5NWmNPfPy4/HB/ff1ulmmAZOFc1dKsT5kUm2O0XTy+off6xy79fDBq09c+5kQDgAAwJiayroAAAAAAAAAAACGU7PTSNcwyAf33xc3jh+OZreSbh1B4sbxw3H/B2vdFmXdwSQESjaXry9X137vgZd+tTqVHDj068Kv7xxYfuL/WxYuAQAAGGMCJgAAAAAAAAAA9NIzCPJH/+GL7VerERGfu3v7kXcOHt7O/XYNpDBEyrlk+ql4vm2kEOVcGuU0l1lNAAAA7KsDWRcAAAAAAAAAAMDourC0GAvnrlQjIv7sp6+9Pbu6cm/Z/NxM1IrTXW/X7I4ycPV8oVLPF9LmpZJVHSOg0nW0nOs+DgAAwMgTMAEAAAAAAAAAoKt8fbl0/eSR5c7xVmhkdnUlZldX1oUOLiwtxm9+tHpv3fm5mfjB1x/uvIskIgYe7qjnC5VY35UlOXjs7ouDrAEAAACGlYAJAAAAAAAAAABdnb18JnnpuROF9i4kteJ0zM/NRETEU6vvtobXBUX+l+s/Wnc/96/+Y69NDLp7yIbt3V05WLjzbw6nUc7pZLJeNesCAAAAGKyprAsAAAAAAAAAAGBoJRGNLiQxt37BhaXFRveShkYYoZyWmt1MkoVrr8S//fLX4+/u+40t7z9rd24cjkMn7lQiIpd1LUOkGhsfn2qU01IWxQAAALD/dDABAAAAAAAAAGDH2sIlEe3dLhoBhKsREXP1n256H7cePnh1H0rbsQe+8V7jj0Y4hoiIclqNiFI0HtvGRbgEAABgrAmYAAAAAAAAAADQ1cK1VzqDJBGxIVxSaoYR2n2/td7s6kqjA0oXD9+6e7qeLwwy1LEhIHEvXNLQuR+TrZw2QiWtCwAAAGNNwAQAAAAAAAAAgJ4uLC2uC5TMrq7EhaXF1tVql3BJq/tFtf32z7z8eNw4frjbJpJ6vpD0vfAu8vXlar6+nDt47O7yoRN34oFvvBeHTtzprBsAAAAm0lTWBQAAAAAAAAAAMLSqEZE0AiWLG5dt1tWinJainKtExL3wyAf33xfHb3RdO4kBdQ85e/lM5XP/05fffufg4UJHWEaHDgAAACaaDiYAAAAAAAAAAHTX6OjRLXhR2jRc8rF7XUy2MJAOJmcvn6lERPLOwcOnIyJeP3oszj7xzWqU05zuJQAAAEw6ARMAAAAAAAAAAHr7OGRSjUbXku2HMRrrVSMiFq69Ep/49a+7rvaLz/7G3/Wn2C11C7IkZy+fGUjABQAAAIaZgAkAAAAAAAAAAJsrp9Uop9vtWtJ521Y4Ja4lvxG14vSGVT7z7j88VM8XKnuuc/cETAAAAJh4AiYAAAAAAAAAAAzM/NxMvHX8cLdFyX6HTIq1tTh/6eaG8YVzV3YenAEAAIAxI2ACAAAAAAAAAMB+q0ZEXFhajIiI1fvv67XevnQSqecLST1fSM9fuhnF2lpcfPbNKNbWIiLiKx++v7wf2wQAAIBRI2ACAAAAAAAAAMD+KqfViChFxNWFa6/Eg//4D73WrO5TBRs6o5y/dDNmV1fiT37240KUc/sSbAEAAIBRImACAAAAAAAAAMD+a4RM3o6I+PlXDnZd5frJI08OsqTzl37e+lPABAAAgIknYAIAAAAAAAAAwEDd/K2DUStObxj/5af+WaGeLwws7HHo+O3GH+W0NKhtAgAAwLCayroAAAAAAAAAAAAmz/zcTBRPrcX5SzfvjRVraxERlXq+UMrXl6t93Fw1unQpOXTiTkSEcMkWzl4+U4n1x6+0cO5KPx8fAAAAhoAOJgAAAAAAAAAADEajU0j1qdV3IyLiq4urvdbsdxeT6vWTR5bbB45+bfVqRJSinApKbKIVLinW1oWBKmcvnxlYpxkAAAAGQwcTAAAAAAAAAAAGp5yWZsu55LfXPvcXEXG4x1p9DS/8+5e+8AfvHDxcaB/73N3b8WffeVW4ZGvJ+Us3W91l4mLtzagVp2N+biaJRmcYAAAAxoQOJgAAAAAAAAAADFryxzfeOPzYR907mNx6+ODVfm7snYOHT3cb04Vja+3hkpZibS1+97W/eySjkgAAANgnAiYAAAAAAAAAAGTi//g3/7zr+KtPPziQ7X/lw/dfHMiGRlhnuKTld197b8CVAAAAsN8ETAAAAAAAAAAAyMwzLz8eteJ01IrTceP44Xjr+OF49emHNnQc2Q9/8rMff28Q2xlHD9+6+3bWNQAAANBfAiYAAAAAAAAAAAxatf3K/NxMREQcv3E7Tty4HReffTPq+UKlXxv7yofvL3eOza6uRJTTarf1WafXMXLsAAAAxoyACQAAAAAAAAAAg9UIdlQvLC3G7OpKnL90M4q1tc61knq+kPRjc3/ysx9/77v1n1ydXV2J1uXC0mKpH/c97vL15dLBY3fXBXSOfPGjl/L1ZQETAACAMZNL0zTrGgCgq1wuV4mIXieMq2maOuELAAAAAAAAo6ycSyKiUp9/pNca1Xx92feCWSr3/N62pAMMAHwsl8v1mpBrnhMAI0MHEwAAAAAAAAAAsrJph5JbDx/smTxhYHo9Rn3pLgMAAMDwEDABAAAAAAAAACBTteJ01/FXn35wwJUAAADA5BIwAQAAAAAAAAAgU/NzMxtCJvNzM/Hq0w+9nVFJfKy6w3EAAABG1FTWBQAAAAAAAAAAMKHKaSnKuXR2dSXm52Yi5hrDxdpafHVxNWrFaSGGrDUeo0pEJG2j1SinHhsAAIAxk0vTNOsaAKCrXG7DScp21TRNS4OsBwAAAAAAANgn5Vyl/C/+q6/XPvXwg+cv3Yxiba19aTVfX/bdYNYaIZMI4RIA6CqXy/WakGueEwAjQwcTAAAAAAAAAACyVi3/7f+bvP+DB+POW4c6lyX1fCHJ15eFGrJUNjEWAABg3B3IugAAAAAAAAAAACZeJSK6hUsiIuLWwwf/YKDVAAAAwATSwQQAAAAAAAAAgKG2evS+RzZbXs8XKq2/8/VlnTYAAABgF3QwAQAAAAAAAAAga9WIiFpxuuvCxSc+/XbnWD1fSOr5wo/q+UIaEUnr0h42AQAAALZPwAQAAAAAAAAAgKxVIyJ+8u1PbAiZvHX8cPzua++tG6vnC0lEVCLidJf7EjIBAACAXRAwAQAAAAAAAAAgW+W0GhGlC0uL1Tf/+9+4PT83c2/RiRu34+Fbd0+3QiPN/24aILl+8siT+1ovAAAAjCEBEwAAAAAAAAAAstcImcQf33jj8O+/+tfd1kjeyRc+iohkoHUBAADAhBAwAQAAAAAAAABgWCQREXfeOtR1YRpxeDt38tJzJ37cx5oAAABgIkxlXQAAAAAAAAAAAPRDrTgdb5w6GgvnrpSyrgUAAABGjYAJAAAAAAAAAADDohoRyfzcTJy/dHPbN3rr+OH4j3/4hdbtq/tUGwAAAIy1A1kXAAAAAAAAAAAAERFRTksRUT104nbMz81s6ya14nT8xz/8Qny3/pOrC+eulBbOXREwAQAAgF0QMAEAAAAAAAAAYHiU09KXP/rgaq04HbXidM/VPrj/vpifm7kXRPnz/JdOv/6nn0ujnKsMqlQAAAAYJwImAAAAAAAAAAAMlW/dWjp9YWkxfvLtT8R/eeJT65b94ycOvFcrTscf/Ycvbgig/PDoZyMikijnksFVCwAAAONhKusCAAAAAAAAAACg0+zqSvzw6Gfj5fPH4/ylmxER8capo1ErTj+4jZsnEVHd1wIBAABgzAiYAAAAAAAAAAAwbKoRkbx+9FhERMzPzaxfmovlSKPQeaOnVt8dRG0T67Wnv/jzk9c/vHfcf/jUgy995y+vfS/LmgAAAOifA1kXAAAAAAAAAAAA65TTUmzSgeTT//SrBzuXz66uxOzqSuuq7iV91hkuiYh46ofvPf+X33nixaxqAgAAoL8ETAAAAAAAAAAAGD7ltNQWGFnn7//ZfYcjF09GLpa/8uH7yxeWFuPC0mJrcSnKqYBJn3WGS1o+84u7yaBrAQAAYH9MZV0AAAAAAAAAAAB0c2FpMV54NOL1o8c2LkyjFXhYnl1dqTa7ngAAAAC7pIMJAAAAAAAAAADDqtTWmaSrvzryQOGFR08lUc5VBlTTRLp+8shyt/FffOagbjEAAABjQsAEAAAAAAAAAGCM1fOFSj1fSLKuY1fKaTUittuZRMhkHz392k8/v/SlQ7fbx/72Nw+/952/vPa9rGoCAACgvwRMAAAAAAAAAADGUD1fSOr5QhoRSURURjZoUk6rW3UxYQDKucrs7PXDN3/rYNz8rYNx6+yv47/+nb95MMq50XtOAQAA0JWACQAAAAAAAADAmGkGSTq7eSTNy8iZXV3ZNGQigDIQSUTE107/bXzt9N/GE595Z904AAAAo0/ABAAAAAAAAABg/PSa9D+aYYByWppdXakuXHtlXZhkdnVlfbiknJYyqA4AAADGwlTWBQAAAAAAAAAAwJbKaSnKuZ/Prq4UFq6tdC69GhHfz6CqSVKN7gGl6qALAQAAYH/oYAIAAAAAAAAAMGaeefnxruO14vSAK+mzcvr52BhoKEU5/VqUU0GH/dToDtN5jKuOOwAAwPjQwQQAAAAAAAAAYAzNz83E+Us3712vFadjfm4m/nWGNfVFI+hAFhpdZCrNa8IlAAAAY0bABAAAYEjV84UkIpJcxJNpRCEiIhexnEa8HRHfz9eXfXEHAAAAAPRSrRWnk2eK3TuZwK4J+AAAAIwtARMAAIAh9E6+8GJEPB8RkbaNN4MmhYg4Xc8Xqvn6si/yAAAAAIANLj77ZhLR6FryxqmjUStOR0TEv3p/+aVMCwMAAACGloAJAADAEGl2Lalsc/Wkni9UhEwAAAAAgHb1fKESEUlERLG2FsXaWtz8zwcj/e9ux+zqyvMR8b1sKwQAAACG0YGsCwAAAGCd7YZLWpLml8UAAAAAAOvCJe1m/svdmF1dyaAiAAAAYFQImAAAAIy+pNn5BAAAAAAAAAAAYFcETAAAAIbEXjqR5CJeFDIBAAAAACKiusflAAAAwIQSMAEAABgCzXBJz4DIB/ffFx/cf1/P26cRhc1uDwAAAABMhnx9uXrr4YNXO8dvnf11REQ1ymlp8FUBAAAAo2Aq6wIA9lMul2v9CnjnZMt7v8qTpv07gZrL5ZK2bfXaZjVN0779KlCPfdyXbQEA+6pnOGR+biZqxemIiDh/6WYUa2s976OeLyT5+rL3fwAAAACYUGcvn0mi/Njp85du3ht749TRqBWnqwvn6sIlAAAAQE8CJsBYaoYuNvsF76Rt3TQaQYxdn0xtC5ZsZ5tJLperxh7DH1vsY1+3BQBkp1acvhcuiWiETYqn1qL9y+F2uYgX6/lCCJkAAAAAwMRKIhrnEruNAwAAAPRyIOsCAPopl8slzcDITk+OJrlcrtIMiux0m5WI2CrQsmF7EVFp6z6yk+0l2wjQdNuWE8YAMMSunzyy3G38jVNHN4y1B046pRGF8EUxAAAAAAAAAACwQwImwNhoBih2HNhos1UHkm7b3GmwZMM2dxEy2e02hUwAYIi99NyJQmdwZH5uJmrF6biwtBgL116JC0uL8dCv/uHesk0k9XzB+z4AAAAATKCLz75573L+0s0o1tYiIuJzd29fzbg0AAAAYMhNZV0AQB/1mkRZTdO01DnYIxyS5HK5Srf1t3n7iIhqRETnfbQFSfa6zW7W7WMzSNItMFOJiNxW2wEABqeeL1QiIs4Xpxuhkbn1yx/76IOYXV2JiLj33x8e/Wy8XjwWzxQfj4vPvtnrrpNofi4BAAAAACZD83zjve8IW+GSQydux4Wlxbezqovx1Dq/HRGRry9v+X03AAAAw08HE2AstAUq2lXTNM31Cm40x7stS7bZ6aNruCRN01K3bbaNd5voueX2drKPaZpWe21rFx1TAIB9UM8Xknq+kEYzFFqsrcX5Szc3rHfu1tK667OrK3FhaXHb29h7pQAAAADACNlwTrBYW4vf/09/3XUZ7Ebn+e1odNX2PTQAAMAYEDABxkW34MWWv5CSpmk1eoRMNrtdj5DGdre52+DHhpq22l6PbW03QAMA7K+uX/S2h0wuLC22upaUopzmou19vdXNZH5uZrP7954PAAAAAMSdG4ezLoHx0u3cs5AJAADAGBAwAcbFhoDJdm/YDJlsCGHsdHvbCZe0bbNr8KPX+r26l2xzc7vqmAIA7Luu78ezq+/GwrVXYuHaK+3hksb7eTm9FzRphU9qxel45uXHe25DFxMAAAAA4IFvvBexg+9QYQvOOwMAAIwpARNg5HXr/NEMjYyTHXcvaVtvNwEaAGA4VO+FS9qVG58DLiwtbuc+vO8DAAAAwITo1vG4OVZtnVeE/XL95JEns64BAACAvREwAdihZjeRTjsOtHQLiHQLyzTtukNLr/V77AcAMAD1fCH55aem/qbbsge+8V4rHFra4gvfUkS0upxsRhcTAAAAAJgQrY7HteJ01IrTMT83E7XidJx94ptZl8YY6RZkioh46bkTPx5wKQAAAPTZVNYFAOyD/e5e0q2byFB3TEnTtJrL5TqHk9AGGwAGrhn2qHzql/+0brxWnI43Th2N2hOPx8K5K1v/kmCjs0nuQjmXvvBo4wu985du9lq7EhEbPgwAAAAAAOOpSwDA94L0Ta04HfPx8Tnp1vltAAAARp+ACTAOOk+GjtXJ0R5dTcZqHwFgwvTqWBa14vRu7q96YWkxOVv8ZjxTfDwuPvtm15Xq+UIlX1/eOrgCAAAAAIyyanT5wbyFc1d8v0g/lWrF6cozxcfXDW7rx5MAAAAYagImwMhrdg/p9wnRze6vL9vqFhxJ03RbJ9x22TGl68lkAGC4fO7u7Ud2eJPW54Kt3ud9gQwAAAAAY6yeL1QuNs8T3uuYXJyO79Z/cjXr2hgvC9deidePHosXHj0VERGzqyvx1Oq7GVcFAABAPwiYABMvl8slsYPgxT4FWrIgbAIA2dg09PlnP33t7R3dW7nx2WT2L4rp60ePRa04HcXaWrc1kxiPzzAAAAAAQId6vlCJtvOOxdpazK6+Gw8ceC8i4nSUc0nzXCL0Q2V2dSUWrq2sHy3nKlHe3o8qAgAAMJwOZF0AQJaa4ZLOTiLV7XYS2eN2OyeWOqELABPgh089uNw5VitOx0++/Ym4sLS46/u9sLQYs6sr936VsIuk+SUzAAAAADB+NvyozZ23DsWdtw71XA4AAADQScAEmBi5XK7ScUljY7gkYjBBj71sVxAFAEZUPV+oPPXD955vXX/r+OGoFadjfm4mIiJmV1ci9vBef2Fpcd39dZHU8wVfJAMAAADAhLhz43DjD10l6C/fWQMAAIwpARNgIjTDJEnHpVM1Ikppun+toXO5XJLL5bqGSzbZrkmgADAGmt1D1r2vn7hxO944dbR9qBTlXX8W2e4XxD5bAAAAAMCE+Om3PxGx/XOHsF3dzmNXBZkAAABGn4AJQEM1TdN9D5dEo3NJ56TOapqO14m2XC6X9uMSJsACMF66vq99dXE1IiL+furg8h7CJRHltBrlNNfsgtJTvr48Vp87AAAAAIDo2tV4fm4m/rdjj13d03lH6KbxnCpFI2jSuAiXAMBmkn7Np+rx48YA0DdTWRcAMCSSZqCh72GPZrCkZ9eUcQuXAAA7N7u6EheWFn/cj/t6avXdiIioFaejWFtbt+yjT07d7sc2AAAAAIDhUitOxzPFx+P8pZsREfHGqaNRK07HwrkrX8u4NMZVI2QivAQAADBmBEyASdHtxFa3wEeSy+Uq/Qp9NBPjvbpwjHO4pF8nEp+MiEKf7gsAslaNLp8LPnosjQtLi33byOzqSsyursTZuW9G8dRa/N5/uhXHbzRyJZ/86J8O1/OFNCJK+fqyL/4AAAAAYExcWFqMFx49ta6TST/POwIAsCfLEdGXHxwMAU8A9pmACTARegU5enQX2XPIZItgScR4h0t6Hu+dah5HARMAxsIzLzd+PbC9q0itOB2FR96PWI1qlPv22eBekKVWnL73i4UdKhGR69P2AAAAAICMza6uxMK1lXjh0VMR0eh0PLu6ElHOVfp47hEAgN358TjPFQNgvAiYABMtTRtte7sEQpJcLpc0l29bj8BKu7EOlgAA3dXzhcrFts8Hbx0/HD/4+sNRK07HVz781PLsc+/08/NB6/PLZmHXqOcLlXx92ecSAAAA+P/Zu8MYN+/7TvA/CnJVOUo4lqzGEsWOo0Zx2iaqRbeolXEX3vhadKOsTtiC7PWuWBxuMLenGlg4yYvpbRcBsbjcwi/s5I3PBQZTFHvd65YsdoXZysBhz42BWpGDqzmCk9aXKlVmQtGjQrbMSWTJirPhvRhyxJkhJY00w4fkfD7AQOT/eYb8DTQPh3ye//f/AxgiHbqWWOEaAAAAuGPbki4AoE90OrF6y0mZqzVDKt06l5QjonCX4RInfQFggNUy2TXvDw5+79rmPWGxUY5iozBWX7jdnt5jAAAAAMDw6Hy+r7i+BfUAAACArU3ABCBudjJZNXzHAZMOHVBaloMl6+2GcgvrCr4AAInr+Lf7sdl6REQcXbx0cTOedHJuNibnZuPbj354Mx4eAAAAAEhYLZMtNb8a//BnDx2Itdc7dTAGAAAA1mV70gUADLJUKpWPpa4lnZTvsmMJALBFTM7Nxlh9YVMCJhERY/WFKD52MH60bVvkKourN5dqmWw5U6t6vwIAAAAAA2Z15+Qf/2D70drUgXKmVk0lWBYAAAAw4HQwAQZaKpXKp1KpUvtXj0u4ZdeSHteyXtphA0BvdPyb+988cCHG6gvlKG7ae4ZyREQll46p8dFu++iMBgAAAACDqdO5vXwtk3XODwAAALhrAibAoMt3+OqJZphl9fOVG41GodFobFh4o1NQ5S6DNE4mA0ACTr5wOCq59IqxSi4dL//qR89uYrgkmo992/ckzZUOAQAAAIDh4JogPVfLZPPONQMAAAyH7UkXAHAvGo1GIZVKNXr9vKlUqlOYpdyvXUua9a6mgwkA9ECuspiPiOWQyetHRlq3L35+s5+82CiM/XGucWZk36328p4AAAAAAAZEs0NJ14n8mVq1L69XMryawZJ883YjIsp+DwEAAAaXDibA0LnL7h7r1etwyeqJn+tdeWjN/hvZZQUA6KyWyZYmpucjV1mMXGUxIm4GTT599crjvahhcm42Judm49uPfnjNtvOHdlUztar3BAAAAAAwOLpeCz1/aFe1l4VAe7ikTb4ZhAIAAGAACZgAw2CjJkWuCY102qlb95INqqGbNY/fpStJN72uFwC2vE4X1tqDJkcXL13sVS1j9YV4YeJjy+GWlkPnr2bPPfrxb/SqDgAAAABgc7z7wH3x/DMHs8dPHTOxn17q9vvm9xAAAGBACZgAwyi/zvBFt64n3UIYPe8G0uXx7+hnXOfPBgBsnI5/qx+brcdYfSE+f3muVwGT5b/7U+OjazbuvXzjaDMMAwAAAAD0qVomm69lso1u2//8n+1v3TSxHwAAALhr25MuAOBeNRqNQiqVWn0ytZRKpQp3Evzo1pFkHaGRcpcQx7o1Go3CrZ4nVtaZT6VS+VvVuQE/GwCwwR55rx7/dK4WUbzl60RfLAAAIABJREFU3/2N1Pq7n5+Ynu+2j4vOAAAAANDfbnk9stW9eObE6V6dd4Q4f2hX9dD5q9nV468+saf620kUBAAAwD0TMAGGxerwRcRSyKTcLbTRFr7oNKHyVgGM1fv3ZEJmM0hTWvV8XX/G5s+newkAJOTy3h1n916+cXT1eGbP4tmI+GrPCik2yhFRHvvjXNfVDQEAAACAwdXqXDw5N5twJWw1zz9zMDsxPR+5yuLy2NT4aFRy6ayACQAAwGASMAGGQpfwRcRSl4/2yZSdgiir3VHnk4R0qr/1M66uuWNwpo9/NgAYKl8uPnKx84W1wxdnTpzu+d/jybnZOHdgf0RlW6fN3h8AAAAAwCaoZbKliIhUxOONiNci4kBEXGzfJ1Or3rLrSOsxOpkaH43vf3pHTM7Nxlh9IaKYKvWwezIsBZzGk64CAACAjSJgAgyNW4RM2g1yuCQajUY5lUoVonNnktv9bF27uQAAmyLfbxfWHv3oW1EcH4uJ6fkV43/9yyO/lEmoJgAAAAAYNs1AyIprd80V8bJd9m8tJlfO1KrlVdtuef2zkkuvHurba50MpW4LPPo9BAAAGFAdl64FGFTNAMXdnKwqxx2ES5oBlkQ1a1zvz1kQLgGA3qllsqUXn34jWl/tXUw+ffXK4wmVVX724SNRyaVjanw0vvex+5c3/PJf1z9Ry2RLtUz2doFVAAAAAOAWapnsN+L2C8N1kl/9fbcLl0yNjy7ffnXkoYiIchT7dzE9hs/MidOdrluXk+jiDQAAwMbQwQQYOq0gRVsYpNtJ19ZJrfKddi3pl5BGs95yKpVqnWjuuipMv9QMAFtFp4u+E9PzMRWjUcml4yvffe21hEor/2D7jsejuUrix753bfX2Vs0u/AEAAADAXWieGzx6Dw+Rby0Ck4p4Lrp0PIlY6lzS3r1kcm62HEXXBem9mXMvxbMPH4mIiCfql2KsvlCOEwkXBQAAwF0TMAGG1lYIVrSCJknXAQCs0DHc+hvfvBS/vvtCr2u5qdgof+vUsYiI0mOz9W576WACAAAAAHeh2bnkXsIlLV+IiKON2+zU3r0kIgo6l5CIYqoUEfnJudn20VIUU34nAQAABtS2pAsAAADYCj55rR5j9YVIchXBmXMvxaoLfQAAAADAPdqAziXtbvs47eGS//by92Lm3Esb9NSwbt0WLbKYEQAAwIASMAEAANhAl/fuONtpfMdDN85GRNId1vJj9YXY/dSVbtutKAcAAAAAd6iWyZZqmWwjNmgy/aquJF33qeTSy/ffvu+nIyJKG/H8AAAAANuTLgAAAGCYfLn4yMWJ6fnIVRaXxyq5dEz9D4cvzpw43RcBjrH6QvyH3/mF+LU//cHyWCWXjqnx0ZhJsC4AAAAAGBS1TPYbcQfdRl7+7N7489/a13X7xPR8RES8fmQkPvjEf61GRLbbvpVcekW4JCJudiwupkpJdk9myypH54BVX5wLBwAAYP0ETAAAADZWfmp8NCbi5oXh1Rd9E1NsFKKYKj378JH8mZF98X89sTTcCsRMxHy+9nQ2n6lVXfwDAAAAgC5qmWwp7iBcsrrbSLd9IpYWhSl+dzb77QMP/90DF3/8ifZ93n3gvvjex+5f0+FkrL7Qftc5PXqvec45VoZMylFs+H0EAAAYUAImAAAAG6i14mBErLjgu//GtQNJ1LNGsVH4wZ8c/X40V0Js77bS/LdUy2TLmVrVaocAAAAAsMqddi65XbhkrL4QT9QvrQ6JxL/6X3/hE+3n7Fqdh1f75Hv1m91LIsKEfhJzM2QSIVwCAAAw8ARMAAAANkAtk81HRCnXNjYR88sXf//wzVcuJlJYB9/atftLEVFqv1C9Sr7TIAAAAABsZXfbueTBD96P8dqba8Ikt/r+GL/1Pns+uN5+12IxJKvY8DsIAAAwJARMAAAANsaaUEaushi//6PvROOfXEuinq5mzr2Uf/bhI0mXAQAAAAADoxkuueXCLJ26jTz4wfvxR3/zl3f6NOXbPUdLW/cSHSMAAACADbMt6QIAAACGRMcLv5+8Vm+tTNhXF3kn52bjvUcaSZcBAAAAAIPilsGPlz+7d024JCJivPbmnTz22VgKihTupMvJqn366rwjAAAAMNh0MAEAANh8hT5bRbAcEfn/btffxjc+9XMx+u0bKza++sSe5387mboAAAAAoO80u5d0NTU+GpVces34WH1hdRhkrWIj1X53cm42nn044szIvjW7PvjB+/HIe++2dy+JPjvvCAAAAAw4ARMAAIANUMrvP1sov3V09fj/+KVfLcycON1fF3mLjXIUU4UzI/tKz558JCam55c3vX5kJCq59Bd/O+JLCVYIAAAAAH2hGS7p2r2kW7hkcm72duGScnTuPlKenJvNR8zGmZF98erIQysec5XCrZ4AAAAAYL0ETAAAADbA15988OjiR+5bDmtUcul4/chIxNLF5/4KmEREFBvl//PP/vHZiDg6NT4aERG5ymI8NluPx2brUXs6m8/Uqv1XNwAAAAD01rrCJWP1hXiifulW4ZKzUWx8puuzFRuFKKbyEfHcWH0h2/VxVnU+gX7Q3u0nU6sKQAEAAAwgARMAAIANUsml42Tu8Iqx/TeuHUionNt6a8f9F1u3J6bnI1dZbN9cqmWyBSETAAAAAFirkksvh0vG6guduot0Uohi4/bn25b2KTeDJl+IiNWdk03cp6/UMtl8RJRWjZWETAAAAAaPgAkAAMAG+P0XvxPv/NRPR8TSyoUtn397LqGKbm/m3Evx7MNH4vqF+1eHS1pKEWElRAAAAAC2rPOHdlUPnb+aXT3e7F4cD37w/u3CJdUoNn72rp68FTSJiCimWpP3y3cUUoHe6tTpJy9kAgAAMHgETAAAAO5Ba2W20YgYjRsRETER8zE1PhqTc7MxVl+4eMsHSNjk3Gx845s/l3QZAAAAANB3apls/lDEmnDJ1PhoVHLpO+lcUo5iY2Mm12/U48Dm6BQwAQAAYAAJmAAAANybNRfOcpXF+OP6N2P3U+9EtFYY7E/liMh/8lo9rsfOpGsBAAAAgL7RWlhm9XgrXLKqc8nZiLgYEQeaX69FhFAIAAAAMHAETAAAAO7NrVZmK0ex0b8Bk2KjHMVUefdT7+T/88gvRq6yuGLz+UO7qpmESgMAAACAhHU87/fYbD0quXSM195sDZ2NYuMzvSsL+s/U+GhMTM+vGT/5wuGYSaAeAAAA7t62pAsAAAAYRh+8fd/ZgVihsNgo/MHHH6+2Vl5sqeTS8fwzB7MJVgYAAAAAfSdXWYyx+kKM1RcilhaYES5hy6vk0jE1Ptr1PgAAAINDBxMAAIB7UMrvP1sov3V09fjEv819dVBWZvvWrt2vRUR2anw0ckcW47HZeuQqi/Fi5Y2oPZ0tZWrV/g/KAAAAAMAGOn9o1+OHzl9dO374/picm42IqA7EAjPQG+VKLp0/mTucdB0AAADcIx1MAAAA7sHXn3zwaJeV2fKJFbV+5daNien5yFUW27fla5lsqfclAQAAAEAyapls/tD5q2u6+1Zy6Xj+X3y8dfe13lYFfa3caWzmxGkhLAAAgAGjgwkAAMA9quTSsXpltv03rh1IqJx1mzn3Uv7MyL648vLubrsMUlgGAAAAAO5aLZPNR8SaBVcufOz+mBofjbH6wtKA7iWwbObE6fLxU8cK0XYuWbgEAABgMAmYAAAA3IPff/E78c5P/XRERLR3Mvn823MJVXR3xuoL8XfvbYuIVNKlAAAAAECSOi62Un/gvoiI+MH2HdWI+FIvC4JBMHPidDk6dzIBAABggAiYAAAA3IXWSoajETEaNyIiYiLmY2p8NCbnZmOsvnAx0QLXpxwR+eyBK3HlO3vWbLy8d8fZTO9rAgAAAIC+kassxv7fvXb2K7979jNJ1wJ9qZjKx1JAKx8RZV1+AAAABtO2pAsAAAAYUGtWMsxVFuOPn/tmjNUXIgZppbZioxwR5UpuZEUXlpZTxx862vuiAAAAAKD3Lu/dcaDT+HuPNOIP33zlaHMSPdBu6bgoxc3z5vkophoJVgQAAMBdEjABAAC4O7e6kFxohjYGR7FReOnB0Woll46p8dGo5NJRyaXj5AuHo5JLJ10dAAAAAGy6Wiabr4/ctyZgUsml4z/9859p3RUwgbVKHUeLqc7jAAAA9K3tSRcAAAAwTK5f2FmOvxqwcEnTt3btfi0isq1wSa6yGBPT8xERUXs6m8/UqgP5cwEAAADA7dQy2XxElA6dv7pi/MLH7m/r+jsbIWACAAAADDEdTAAAAO5CKb//bKfxky8cHtgQxsy5l8pj9YWIiJiYno+J6fnIVRYjV1mMiCg1L7IDAAAAwDDqeO6r/sB9ERHROm8WEQN7/g82keMCAABgSAiYAAAA3IWvP/ng0ZsrF0ZUcunWSoaDHMLIT87Nxn//6lwrVLJaqdcFAQAAAECScpXFGKsvxOTcbGvIRHpYq9NxUY5io9DzSgAAALgn25MuAAAAYFBVcuk4mTu8Ymz/jWsHEipnw/zGN/8hrsfOpMsAAAAAgMTN/cLOa5Nzs6ebd8tRbAiYwGrFRjmKqUK0L8AkXAIAADCQBEwAAADuwlh9Ic6M7Fsz/vm353pfzEYpNgpRTDWSLgMAAAAAeqmWyeYv791xYO/lG2u2bXv4xsUQLIHbWzpGHCcAAAADTsAEAABgnWqZbP53I+J343JELHUymRofjbH6Qnz+8tzFZKu7Z4XdT71T+s8jvxi5yuKKDecP7apmEioKAAAAADZDLZPNR0Rpdbjkwsfuj5c/uzd2Hrz2iaNz3y9FMVUQMgEAAACG3bakCwAAABgkrQvO7WO5ymL8m//7XEzOzUYM+gptxUb5+KOfK0+Nj0Yll14eruTS8fwzB7MJVgYAAAAAmyHfabD+wH1RyaXbuxh33A9YqZbJ5muZbKmWyTZqmWzp9t8BAABAPxEwAQAAWJ+OF5J/9ts3IiKGahXDqfHROPnC4ajk0pGrLMbE9HwrYAMAAAAAQ63V3XesvtAacl4MbqNtgabW8ZKvZbKNBEsCAABgnQRMAAAANsD1CztjWMIlv3mlWm3dnpieX76Y3vy3ZNU5AAAAAIZdq7vvE/VLraGhOPcHm6zjuWPnlAEAAAbH9qQLAAAAGBJDc4H5977/rewv/eDtuPLy7uVwySpWawQAAABg4DUnvXc813XpF+6LybnZ9g4mQ3P+DwAAAKAbHUwAAADW4eQLh5dXL2yp5NJx8oXDCVW0OcbqC/HIe/WkywAAAACATdEtXPLuA/fF1PhozH36p6tj9YVyLAVLCsPSvRg20/lDu6pdxh/vdS0AAADcHR1MAAAA1mH/jWsHpsZHI3dkMR6bXQpgTI2PRgxTV49ioxDFVCN74Epc+c6epKsBAAAAgJ554N0PWgvMZCPiS4IlcOde+Ud7sofOX10xVsmlY2p89LUnkykJAACAdRIwAQAAWIc9H7x/4K0d90cll17RyeTTV690XJltgBUquZHSlXfTkassrthQyu8/+4WEigIAAACAzdQ65zdWX4iIKEUxpXsJ3KFKLh1TMbq8OFPE8gJNAAAADAgBEwAAgHU4unjp4rd27c6uHv/c2/NrxgZasVF+9tSxcoxHfiLml4dfPzISlVz6qIAJAAAAAIPshx/e/ksf/uGPu25/on6pdTMfEQImcGcKlVy61L44U0TEzInThYTqAQAAYJ0ETAAAANbh85fnLj7wwY14deShODOyLyIiJudmY6y+MLQXma0wBwAAAMAwqWWypQ9HfGL1eCWXjv/0zz/aOt/XGs73tjoYXDMnTpePnzpWiIhSc6gcAloAAAADRcAEAABgPYqNwlgxVRqrL+QjZluj5Sg2hm4FtplzL8XxRz+3fD9XWYzHZuux50fvR+3pbD5Tq7owCAAAAMBAqWWypegQGqnk0ssLrbSFSyJMjod1mTlxuhwRqaTrAAAA4O5sS7oAAACAgbMUJilEa/W1IQyXtEzOLYVoJqbnY2J6PnKVxRj99o2IiFItk7V6IwAAAABDIVdZjIg14ZIIARNYv2IqH8VU6fY7AgAA0G90MAEAALgbxcZSuGS4lcfqC/k/+4/1uFLZ02l7KaxEBwAAAMAAubx3x4G9l2+sGa/k0jFWX2gtuFKNiNdiaXGZYT8HCBtrKViSb95uxJAv0gQAADBsdDABAACgs6WL54Xr37s/6UoAAAAA4J7VMtnS3ss3jnbadv7w/cvdfCMiGxEhXALr1B4uuSkfxZRu2AAAAANCwAQAAIDuio3yB2/fdzbpMgAAAADgXtQy2U4T3yMiYmp8NF75lb2rh02Ih/Xrdtw4ngAAAAaEgAkAAAC3NPFvcxcrufSa8U5jAAAAADBoKrl0jNUXVg/rXgIAAABsOQImAAAA3NbU+OiKQEkll46p8dEEKwIAAACAO/ejn9r22U7jrXNeT9Qv9bQeGFLdglkCWwAAAANCwAQAAIBb+s0r1WrEUsjk5AuH4+QLhyMiIldZTLQuAAAAALgTtUy29FM/+smeTtt+6ic/icm52dUdTMpRbBR6Ux0MkaXjZnWYpBDFhoAJAADAgNiedAEAAAD0t9/7/reyP9y2Pc6M7ItcZTEmpucjYilgUpvOliKinKlVXSAEAAAAoO/UMtlSROQ7bWt16Z0591L7sHAJ3AvHDwAAwEATMAEAAOC2Judm4z9cvRG/9qc/WL2pdXFewAQAAACAgTI1Prq6c0lElzAKsD7NcFfE0jFVztSqgicAAAADYFvSBQAAANDnllacK//GN/+h2x4uugMAAADQd27XvWSsvhCTc7OrN1lIBe5R27HXOv7ybYETAAAA+pgOJgAAANxesVH4yV/8zPcjIpt0KQAAAMOglsm2Jl2WUxHPNVZ+3ipkalUTnAHuwa3CJRER5w/fH5Nz/2+nTV5/4d51OvbytUw27z0OAABAf9PBBAAAgDvyP/3rX/lSp/Hzh3ZVe10LAADAIGtOem5NfC411ob5S80ACgCbYGp8NF75lb2rh6sRUYhiw+R32Dze3wAAAPQ5ARMAAADuVH5qfHTFQCWXjuefOairCQAAwB263Yr6bUzABNgElVw6Krl0jNUXVm/6knAJbK6TLxxOugQAAABuY3vSBQAAADA4Krl0nMy5CAgAAHAP7ig4kop4fLMLARhy5bjFa+4T9Uvtd3UugQ1UyaUjV1lcMxZLxyUAAAB9TAcTAAAA7sjMuZc6jndY7REAAIB71IjI1jLZRtJ1AAyw/Hsf2n6tfaCSS8fU+GhMzs22n9MqC5fAxpoaHy1PjY8udwxqHXszJ0471gAAAPqcDiYAAADcscm52Xj24SPL98fqCzE5N5tgRQAAAIPl8t4dZ/devnH0TvevZbKlTK1a2MyaAIZNLZMtRUT+Q+/9eHns5AtLXXnH6gurF0wx4R02XrkZLGnvIuT9DAAAwAAQMAEAAOBOlcfqC/mZc2s6lrgIDwAAcIe+XHzk4sT0fOQqi0mXAjCUWuGS1eMT0/MxNT4aZ0b2RcRsREQ1Ir6kewlsvGanEscWAADAABIwAQAA4M4UG+UopgoRUVq1xYVCAACAO5efGh+NGF85KHQCsLlylcWI8WjvXpIVLgEAAABYaVvSBQAAADBAli66F2IpVFKOYiPlQjwAAMC9e/3IyJqxy3t3nM3UqoUEygEYOpVcOiIinqhfag05pwUAAACwSqrRaCRdAwB0lEqlOrYwbyo3Gg0XVgEAAACAvlfLZPPR1g2ykkvH1Pjomv1ylcV4bLa+fL+5T2HmxGmToAHu0OrX3Jap8dH49d0XWh1MylF0nQk2XTGVj4i84w2ArSKVSnWbkGueEwADQwcTAAAAAAAA2CSdJjrnKouRqyxGRMRYfSEm52Yj4mbwZGp8NF4/MhIT0/MR3RfhAaCDTK1aLuX3n211LIlYCpcUt51phUvCZHfYZMVUPoqpRiy9B1q6vRQ2AQAAoM9tT7oAAAAAAAAAGGIdJ1P+y6//f7F72zttI0eWb01Mzy8HUF6svJGvPZ0tZWpVk6EB7sDxU8dKE3//3tHXj4ys6Bb1bP1IK9CnKxRsvjVdhJpjqV4XAgAAwProYAIAAAAAAACb5PyhXY93Gr9+YeeK+61V9dvDJW3yzU4oANxCLZMtvfj0G/lcZTEmpudbnaAiIuLMyL7WTQETSEox1Sl4AgAAQB8RMAEAAAAAAIAeq+TSK+5Pzs3GWH2hU7ikRcAE4BZqmWwpVr1WtoImEctBvkIUGwImkBzHHwAAQJ8TMAEAAAAAAIBN8vwzB19bHSap5NLx2m9/uLp638m52Z7VBbBVtIJ7v/jeu2eFS6BnOh9rjkEAAIC+tz3pAgAAAAAAAGAY1TLZ/Ittq+m/+8B98b2P3R9T46MREa81v1astr/z4PW4fmFnp4czIRPgLlRy6VaXqKNJ1wJbSOt9S/v7nEIShQAAALA+AiYAAAAAAACwwWqZbD4iSu1jD7z7Qfz5PxuJsfrCUreSYmNpomUxVYrmBMzdT70Tf3dfJj70nVT7txYytaqACcCtlWNVaC8iYqx+KXbX32ltB3phqVNJOSLi3KMf/8beyzeORkTp8qmPn917+cZXva8BAADoXwImAAAAAAAAsMHOH9r13KHzV9eM/8Y3L8Vntv19RPsk6GKjEMVUIyLizMi+ePZf/tLqbyvNRKRWDwJw08kXDucnpucjV1lcHqvk0vG3v7U3JucETCAJbeGSiIjYe/nG0fOHdh3IOB4BAAD6loAJAAAAAAAA9Mjot29ELE2zXD2xshARpWcfPtLx+46fOlaaOXG6sLnVAQy2qfHRiPFOW2YLzY4KQA+1h0taDp2/mq1lsnldTAAAAPrTtqQLAAAAAAAAgK1i/lM7Om9YmvgsQAJwl/bfuHagy/hZ4RLoL+cP7Xou6RoAAADoTMAEAAAAAAAANtjzzxz8UiWXXjFWyaWj8U+uRUSUo9hYGyZZmgBtEjTAXfj823Mdx/d88H7H4AmQnOefOfilpGsAAACgs+1JFwAAAAAAAADDZubcS3HmqX3xV488EB/6TioiInY/dSXG6guF26ykX46IfERErrIYj83WI1dZXNpyYpOLBhhgn788d/FvPvRAnBnZtzw2Vl+IybnZbIJlwZZWyu8/Wyi/dXT12MyJ0wK1AAAAfUrABAAAAAAAADZefqy+ELFrIeKx5kh9aTxu0aVk5txL+TMj+6J68YH4tT/9wYrHq2WyjUytmtq0igEG3OTcbETMrh42kR0S8oWvffMzx588VpqYns9HRHz35z509gtf++Znkq4LAACA7lKNRiPpGgCgo1QqVYrmSn0dlBuNRqGX9QAAAAAA3MrxU8fyEVGamJ6P14+MxM6D15qTnVcpNrqHRIqpRkREbepAtz3KmVrVuVGAToprri2Vo+h6EgAAvZFKpbpNyDXPCYCBoYMJAAAAAAAA3KPjp47lJ6bnS7nKYkRE5CqLUcml48xT+2KsvtC+q5X0ATZLsVGIYiofrZCJcAkAAADAugiYAAAAAAAAwD04fupY/n//12+WHnj3gxXjucpizP/o/oijK4ZvFzApR0R+58Hrcf3Czo0tFGArKDbKIcwHAAAAcFe2JV0AAAAAAAAADKpW55LV4ZKW0W/fiFia6FyOiEJz4nN3S6vtl3d+7FqnreVMrWo1fgAAAAAANoUOJgAAAAAAAHCXvvi1C88dOn+16/bzh3ZVM0uhkTtXbBR2FlOlkev1A69f2f+Jn/zXbdciIp585U3hEgBgsBRTpYjIN+8thW5vF7gFAAAgMQImAAAAEVHLZEut21aDBQAAYKMcOn/1tbv5vuOPfq4cj0brs+qeiIjnTx0rzZw47TMrADAYVoZLIlYGTQAAAOhD25IuAAAAIGnNcEm+9VXLZBsJlwQAAMAQ2LHvRvUeFjHIdxo7fupYqcM4AEA/6vh+JoqpTuMAAAD0AQETAABgS2sLl3QaBwAAgK5qmWz+Iz/88c5O23Y/9U48+PnL2XuYQGniJQAwrLzPAQAA6FMCJgAAAJ25wAUAAEBXtUw2HxGlj156/8HV23Y/9U7sPHi9ddfnSwCAdsXG3XZ4AwAAYJMJmAAAAHRWTroAAAAA+tf5Q7ue6zQ+/6kd7eGSiLsPmHSceDlz4rQJmQDAoFjxvuXMyL74X37+ybNJFQMAAMDtCZgAAABb2qtP7KmuZxwAAACOnzqWv75z255O20a/fWP10F0tYDBz7qWYnJuNiIhcZTF+/8XvxItPvxG1TLZ0N48HANBzxUY5io3UX+x9+GzxJ2Nx5eXdcexPLh8tfvmJxvFTx3R5AwAA6EPbky4AAAAgSf/+dzLZNx/ZFY/N1iNXWYyIiKnx0ajk0tnfTrg2AAAA+k9zMmQpW73ecfv8p3ZE5ubdchQbd9txJD9WX4g/+4/1uPLyiixLvpbJNjK1auouHxcAoKf++h8yRyem55fv5yqLUZlNl+JEeD8DAADQZwRMAACALe3TV688XsntjkouHTG+YpPV0wAAAOgkPzE9Hw+8+0HHjfcfXA6eVO8hXBLR/Fy6KlyyrJbJljK16r08PgBAT7SHS1pylcU4fupYaebEae9nAAAA+oiACQAAsGXVMtn870VkIy5GREQll46p8dGIiBirLyRZGgAAAH3qi1+78Pih81fXjL/7wH3x41+7EY9+9K3WULanhQEADJh/U/zOgTiRdBUAAAC025Z0AQAAAEmoZbL5iCi1j+Uqi5GrLMZYfSEm52bLCZUGAADAAHrg3Q/awyUREff6ubIQEbHzZkcUAIChsvfyja8mXQMAAAArCZgAAABbVb7T4G9881JMzs32uhYAAAAGwLlHP/6NQ+evduxM8t4jjfa75Sg2Cvf0ZMVGOSIKOz92rdPWcqZWvbfHBwDokct7d5ztNJapVS30BAAA0GcETAAAANqMfvtGxEZMBAIAAGConHv049/Ye/kX6vJNAAAgAElEQVTG0W7bsweu3LyzUZ8pi43yzn93LfXqE3ueP39oV7WSS8f5Q7uqwiUAwCB59Nx3PxMru7uVm2MAAAD0me1JFwAAAJCEy3t3HNh7+Uan8bMZ4RIAAABWqY/c1/FzZETE7qfeiZ0Hr7fubuhK3MdPHcvH72S+2DaUff7UscbMidOpjXweAIDNJCALAAAwGHQwAQAAtqQvFx+5WMmlV4xVcun4cvGRiwmVBAAAQJ+qZbL5Q+evZjttq+TS7eGSiA0OmEREqdPg8VPHOo4DAAAAAMDd0sEEAADYkvbfuHZganw0ckcW47HZekRETI2PRkTkEy0MAACAvlLLZPPRJeQREbHnR+9HRFQj4rWIKEexsdEBE6BN85hsnb8pZ2pVxxzAICimVrx+e88EAADQnwRMAACALWnPB+8feGvH/VHJpaO9k8mnr16pJlgWAAAA/afrQgSVXDp2P3Uloh7ZiHhtkyZKlm9VA2wlb2Wyz0XEF9uG8rVMtpypVQtJ1QTAHVgKl7QHdvNRTJWj2PD6DQAA0Ge2JV0AAABAEr7y3ddeG6svrBgbqy/EV777WjahkgAAABgwu5+6Em2fLTcrBLImtPLpq1eqMydOm5DJllHLZPO1TLbRWBkuaRHAAuh/nbrBef0GAADoQzqYAAAAW9bk3GycGbkUr448tHw/OkzcAQAAYGuqZbKliDjQadvOg9djrP5O+9CmfJ6cOfdS/szIvuXPrhERk3Oz2Sim8pvUMQX6UaeJyctqmWwjIgqZWtUxATBIiqmSLiYAAAD9RcAEAADYmoqNQhRTpbH6Qr5ttdmyi1kAAAA0gyVdV9XeefB67H7qnW6bN1p+rL4Qq7twxlJ9JtPDTaWISCVdBADr4r0MAABAn9mWdAEAAACJWQqTFGLpIpZwCQAAALcNl7z7wH0xNf6zq4d9poRN0jwmN3xfAHqqU5CkrBsbAABA/9HBBAAA2NqWLmC5iAUAAMAdeeDdD+LMyL549uGIybnZiM0Pl5SjGXi5fmFnXP/e/XH9ws7Y/pEfH/hocROfFfrA7QJfHTjHA9CPmh3F4+ZrunAuAABAnxIwAQAAAAAAgKZUxOONW2yv5NIREXFmZF9EzEasb/L7+jUnZF6/sDN/5eU9y8M//sH2o7VMtpGpVVOb+vyQrPUeX6VaJlvI1KqCJkOslsnmo22Suv9vGBDNQMnxU8eWgianjjWi2V185sRpxzEAAECf2JZ0AQAAAAAAANAPaplsqRGRvZN9x+oLrZubPyGy2Ci0h0vaNTs8wJbyvY/dvxz26sAxMcSar3mtLgj5WAoVbW7QD9gwrXBJrrIYE9PzETePZQAAAPqEgAkAAAAAAABbXnPS8i0nOFZy6ZgaH+1RRUBEnO00+P98du8tj0XBq+G0qnNJO//fMCBylcX8i0+/ERPT85GrLMaLT78Rucpi/vipY0ImAAAAfWJ70gUAAAAAAABAPzv5wuFytE1qHqsvxOTcbEREOYqNQo/KWFEDDLtmSOTo6vFKLn2r7iUtm99ZiCR4DYQB1+xasmbsZO5wPrx2AwAA9AUBEwAAAAAAALh1gCM/Vl+IJ+qXYqy+sLRv74IlLWvqO39oV/XJV97sdR2w6bp1FHr5s3vjz39r3/L9Si4ducrimu/P1KomKQMMkBeffiPiRNJVAAAAEBGxLekCAAAAAAAAICnHTx0rHT91rHHy/zj8XKeuCFPjoxERcWZkXzz78JE4M7IvIiIfxVRPV9I/+cLh/NT46HL3hkouHc8/czB7/NQxK/ozjDr+Xj9Q/9GK+68fGVnTzeTSQzveqWWyjoshdPKFw+VOr9PnD+2qJlAOsLEEAwEAAPqEDiYAAAAAAABsKc3J5/mIyL94czjbCm60dJq8/urIQ60uJvno7WTI/Or6WuM9rgP6RuuYyB1ZjInp+YiIeOjSjT0RUaplsuVMrarDz3DJT42PxkTML3euqeTSMTU+mn0y2bqAO9exY5zOUwAAAP1DwAQAAAAAAICtptRpMFdZbE1W7vqNSx1MZiO6dFgANkTHCcivHxmJiIix+kJMzs3G8Uc/FxGxHC5ZxTE6pKbGRyPGk64CuEutIEn7a7QwIAAAQB/ZlnQBAAAAAAAA0Cu1TLZjuKSltSp+N83uJRG97xrS7fms+M3QydSqhfOHdlXbx6bGRzt18Lml2x3vDJaZcy91HG97XQb6XKZWLWcmLkbbVzkzcTHpsgAAAGijgwkAAAAAAADcoSfqlyIiylFs9HS17ZlzL5WfffhIfqmDypLJudkYe+YtAROGzvFTx0rxzMFsp22t7iWt2+3HRAeOjyEzOTcbzz58ZPl+++8DMACKqVKs7F7Suu31GgAAoE+kGo1G0jUAQEep1JoTjO3KjUZvL+ACAAAAAIOtlsnmI+ILEXG02z7vPdKIy8d/Eq+OPLQ8cf2T79VjzwfX44n6pRirL1Sj2PjZHpV8UzHV7aJez8MusJlqmWy+kkuXcpXFqOTSMTU+urztwQ/ejz/6m79csf+ZkX1x9b+MxKfO/XDF+PlDu6pPvvJm749VNk8xlY+Izl1pio1Ub4sB7kr39zOFKDaETAAYeKlU98/u5jkBMCh0MAEAAGDTNSdxtU8AKGdqVSdRAQCAXus8MblN9sCV+ET9eozVFyKi46r4HbsqAPeudf4gV1mMiIhcZTFerLwRJ184HBERj7z37prvGasvxPGJIzExPR+t72sGU7LPnzqWnzlx2oTlYVFslKOYKsfaxcmcY4LBlw9dTAAAAPrCtqQLAAAAYLh1CJdEROSb4wAAAD1Ry2S7hksquXRUcunITFyMnQevl+PWExyTmvxo0iVbQcfjdGJ6PiIinqhfag0VVnesmBofjZMvHI5KLh0RES8+/UZ88WsXntu8UknEUsemctuXrgcwDHRjAwAA6Bs6mAAAALDZugVJrEoHAAD0hanx0YiI+Kfn/iYiIh/FRiqKqU5h+YhkAyarP1+VTchkqxirLzQ7C3UPFLR3MYmIOHT+araWyZZ0UR0yXvdgkBVi7fsrxzQAAEAf0cEEAACATXV5744DXTbpYAIAAPTMq0/sqXYab3U7mJybXblhaQJ7a6X8luRWyl9Zz9KXSdYMn47H1yPv1VvHaHnVMViOuHn8todL2uiiOiRqmWyplsk2mv/6P4VBVGyUmx2odCECAADoU6lGo5F0DQDQUSqVKkX3iaflRsPFUwAYBK88+fPfP3T+anb1+PlDu6pPvvLmzyZREwAAsPUcP3WslKss5iem51eMT42Pxq/vvtDqjLBkaeIj0GPN0MCKle13Hrweu596p3V37UTkpW5DX4iIo7WpbmtcRFkXk8FWy2Q7XTPy/woD7PipY/m4eVyXZ06cFjQBYOClUqluE3LNcwJgYGxPugAAAACG2/PPHHxtYno+276KaCWXjqnx0eyTyZUFAABsQZVcOqZiNB6brUfEUrgkIqJ4bqF9t76f8NGchN/6MsGaoXHyhcORqywuH6MREX/7W3tjcu6diG6r3Bcb5SimSmvG2zhGBluXcEl0GQMGwPFTx/IT0/Ol1jnjSi6d/+orv3r2C1/75mcSLg0AAGDLEzABAABgU+2/ce3A1Pho5I4srpjEtf/GtbMJlwYAAGwhMydOF46fOlaq5NL5Si69PN7WuaQaEV/qOIG9j3To8JCvZbKNTK2q6wrDIF/JpaP9GI2IOP7ovjta2b6SS0f7AhetsczG1gjAPWoPl0RE67X7aGIFAQAAsGxb0gUAAAAw3P7wzVcujtUXWl1LYmp8NMbqC/GHb75yMenaAACArWXmxOlC7oeX32ndH6svxOTcbOtutt/DJU0dOzU0V/iHgVXLZPMT0/P5F59+Iyam5+/qMVrnHVohlda5iOOnjjk+Blgpv/9A0jUAG2t1GLA19tVnfvUbCZQDAABAGx1MAAAA2HSTc7NxZuRSvDry0PL9iMgnWhQAALD1FFOlYsSepMsAVmp15mlNOM5VFuPFyhtx8oXDEbHUHfU2D1GO5nmGTh1QmtsZUF9/8sGLH//799ZMSJ8aH41iMiUBm+Qfv/LO7XcCAABgUwmYAAAA0BNj9YUYqy+0D5ncAQAA9E4xlY/hCLovT6SHIdKxw8jE9HxMjY/evgtqsVGIYqo0Vl/InxnZt/y9Ecur5OfjhPMQA6w8NT6an4ibnW1ePzISlVza/ykMmUfPffczSdcAAACw1QmYAAAAsLmWJnk0WnevvLy0WPAHb9934KPFpIoCAAC2gmZXhObXgdh58HrsfqrrytiF3lV290r5/QcK5bdWjFVy6ZgaHy3PJFQTbJY9P3q/1QX19oqNwmRE/MGfHP3+43/2w+yqbhf5WiZbytSqA3Gcs9LMidPlM1/bH8+OH1kx/j/X/vZ2nW2A/lWIteFCr9EAAAB9QMAEAACAzVdspKKYKr39F3sfv7GwI9scPVrLZBuZWjWVaG0AAMAwWzFx8fqFnXEl9nQKmRSi2BiIlfC//uSDRxc/cl88NltfHpsaH41YCtIMxM8AHXTszPPJa/XYXX+ntf32iqnSVyKytUrH3EG+lsnmM7Wq42TQFFOlsYiYnIt4deShiIhW8OhoglUB96D5WpyqZbKt92plr88AAAD9QcAEAACAnqhNHYiIyK4Zt4IoAACwCdomLK5w/cLOiKdWDJUHJVzSUsmlo5JLJ10GbKQ1AZO2jkPrOUbXhFQ6bB+o452bxuoLMVZfSLoMYKMUU6XMRNvrdjEVg/aeDAAAYBhtS7oAAAAAtrzbTf4AAADYLOUoNgYt8N5t4qUJmQysTK1aLuX3n22Fpyq5dDz3Lw5VY6m70IYdoxa4GFhe92DYFFOlWHleOB/OEwMAAPQFARMAAAB64vLeHQe6jJ/tdS0AAMCW0HHi8flDu6pRbKSaXwM32XzmxOnCp69eqbaP/eaV6vMzJ06baM3AOn7qWOnrTz54dGp8NFpf39q1O3v80c/d1eN16vCj688AW+po0On12useDK5OYZJ8FFNCJgAAAAnbnnQBAAAAbA1ff3JPFMpvdRx/NIF6AACA4VXLZPMRUeq07ZV/tCf7ZG/L2VjFVOkrEdlVo1+MYuq15iRsGETdJhTnY30hgnJE5KfGRyN3ZDEem60vb5gaH42pU8dKMydOD1ywjFgKmRRThWj9rgxgQBC4I+t93QcAAGCDCZgAAADQE19/8sGLix+5Lx6brUeushgRS5M7Krn00S8kXBsAADA8uoVL3n3gvvhX/9vPJ1DRhtuoifgwfIqNQnP1+1Ill+7UtcQxMsiWQnT+D2GYCY8BAAAkTsAEAACAnlme3DG+YtjEAAAAYCN1DGA88O4HERExVl/oaTHA7X366pXqt3btXt2ZJ37zSrW67gcrNspx6lg5OrwWzJw47RwEQH8oRDMQfOXlPRERcf3CzoipbClTqwqZAAAAJEjABAAAgJ6YOfdSPPvwkTgzsm95bKy+EJNzsxEnEiwMAAAYNgdutfGJ+qVe1bFZOk6cD+F9BlQtky39XkQ24mJELHc7jcm52RirL6wJndyh8qevXnn8W7t2Zyem55c7qdaezpYiopypVR0vAEla6kiUevuXf+b7NxZ2tL/W52sZIRMAAIAkCZgAAADQM5Nzs3Fm5FK8OvLQ8v3osrowAADAetUy2VJEHO20bf5TO2Lm3Es9rmgTFBuFKKZKsfKzVLk5URMGSvOYXXFeYGJ6PnbPvRM7D16/68edOfdSPiKyV17es7Qi/k2t53K8APSBVeGSlnwtk80LAwIAACRjW9IFAAAAsLW0upY0wyURJnUAAAAboJbJ5qNLgL2SS8df/c5HWncH/zNIsVGIpZ+jHBGF5n0YRB2P2evfu791826P13xErA6XLG9rvl4A0L+8TgMAACREBxMAAAB6pRxtEzyuf+/+uH5hZ+zYd+PxG1NWpAMAAO5Z14mIU+OjzVuz5aEJYwzLzwHdFTaxM08+hiFsBjCkTr5wOGaSLgIAAGCL0sEEAACA3liaFFK+fmFnXHl5z/IqojcWdmQjomT1UAAAYNMJZUBfOX9oV7XT+H/Zf+D5TQyXRKZW9VoA0AcquXS3MSFAAACAhAiYAAAA0DvFRuHKy3u6XRwUMAEAAO5ac8L4ms8brYmLY/WFXpfUE7VMNl/LZEtJ1wF34/lnDmZXTy6u5NLx738nk73Hhy5HtHcvuqnTGADJmBofLU+Nj0Yll17+mhofjZkTpwVMAAAAErI96QIAAACgScAEAAC4JydfOFyemJ7P5yqLERHLkxQjIp6oX0qytE3RDJbkm7cbEVHWmYFBMzU+GhMxHxERrx8Z6bia/boVG4UopvKVXLp0Mnc4JqZXPv7xU8dKMydOO1YAklduBkvazw17fQYAAEiQgAkAAAA9dXnvjgN7L9/oNH42k0A9AADAcDh+6lg+IkpT46MR4zfHH/zg/fijv/nLxOraLO3hkjb5Wiabz9SqVv1mIOy/ce3sWzvuP9qhq8i9/w4XG+U4dSwiOnYtcYwA9IFmpxKvybDJ2j47lGMplO64AwCgq21JFwAAAMDW8uXiIxc7jX/9yT29LgUAABgiX/zahedefPqNmJiej1YHk4iIt+/76dbNYVsNu1sXSN0hGRh/+OYrF8fqCyvGJudmY+bcSxv1e7w8eTJXWYyJ6fn44tcuVF98+o0NengA7lkxVYpiqtH8KkUx5b0MbKBVwfR8RJSaYwAA0JEOJgAAAPTcyRcOx8T0/PL914+MRCWXPvqFBGsCAAAGVy2TLR2KyEYsTSLPVRajMptu71pQiGLDKr3Qf/KTc7MRMbspDz5z4nThD/7k6Pf/f/buPziO877z/KdpSQwo2gMSpC1y0ALFiOZKsWliuHUWDGaXjqoSl0jjUHH1+LLl3brKFLxhdOuSJW/hKs4pfbkoF+6WKNduMdRlirncVbKxppM91tjg5S7HleqOFOhKaQaRbfJ8UCCAwxbkpQgOFJIwJMd9f0zPcH704BeB6fnxflVNEfP0/HgATvd0P8/z/X7v//8+YpaNQ5gqLKx0om6u3QLPAKC12EZ1Rbbiz5y3AeugTtVD1WkDAAAAJBFgAgAAAAAISdlCryImDQEAAACsWr1FU7HMvJSQBvOzasfgksl9W3P7Jm+Z1e0XDvfkvhxGh4BmZBupFyTTPdMbtJWFlQAQvuCF77ZhteP5GwAAAAC0gk1hdwAAAAAA0FnSE+cC27/qXg5c7QEAAAAAazWYn1WhOkL7OfnMXjMTi1S0JRN9+rNfi9YEnQDN6sevPDQ+d75Hc+d7KjfY3npVFlkyiMQPUAMANImFqa7idwJBgMD6qBuoxXkQAAAA6qGCCQAAAACg4dIT53RiT3/p/uH8uxrMzw6E2CUAAAAArctRnUWIfnBJ22a/Tib6pETYvQBWz42alqSUdJ9++n5hynpOPdr+5A1Hjd1n2/b4AACtpCywRJLkTvVaSppW1M1xnAbuwfFTB6yRMzOF6o61LDfKfgYAAIBaVDABAAAAAIRidDpbug3mZyUWdQAAAABYA39BVM31xPYnb0iSs46VEJpNvWsorq3QCmqCwhamuuQmeyXbW/fP8O39Xk3b5L6tORZUAkDo4pJqK1kVUF0BWAfJRJ9ubru/3maqBQEAAKAGASYAAAAAgEZj8QYAAACAdXX81AFlYpHSLZno05d/9fPxNg4uUXp4LK7a6ysnPTzGNRdaQaMWMzqS9I2vfUaZWKTUmIlFdPKZvWaD+gAAqMf2HNmeUW+zGzUJMgHujSNJbz+ypd52AkwAAABQ476wOwAAAAAA6DC258g2HJVNXLz33Z25xdnNTtQOr1sAAAAAWtPQ2aOWJCuZ6KvelJJUd8FiO0hPnNOJPf2SpMP5dzWYn3U0HHKngGZie3HZhiUplUz0SYnKzUNnj6b8YC0AQHMicBa4B+nhMeebfzqQkxQYWHt95+bxaIP7BAAAgOZHBRMAQMu4trtXL2/r0bGurrC7AgAA7pXtxWV7hpvsddxkrxZnN5uSUmSkAwAAALAGnZl11zZSkqzR6axGp7MazM9KUspfTA80tQuHe04GtUfd3PoHe9jeUouTWbgMAE2gvMpUueOnDnBeA9wL20i98NYl83/7F5+o2c8ysYiet/dfC6lnAAAAaGJUMAEAtJRicMl3FxZC7gkAALhXfjBJ9QSh5UbN1IYsKAEAAACA9lJvwaUlFs2jyf3Zr0WfvbJ/q0bOzEgqLHB8o79bmY2rKFKqpDpyZkaxzHyx3XKfNhV1c+wzABCiN/q7Jan8+Cy/Oh3HZ2Ad7L99U8lEn2L98zqUzUsq7WMEcQEAAKAGASYAgJZzrKtLv/7B1t6w+wEAADYMExoAAAAAViw9cU4n9vTrYveuina/ogeAJpWJRXQ8dqAh75WeOOec2NNvPf6XH1QsXtbdMQgWMANAiDKxiJOJRSwlKtvTw2Mcn4F7UwqylQrnX1WVTNjHAAAAUGNT2B0AAGAtjprbPhl2HwAAwIZhQgMAAADAqoycuap/dmG6dH8wP6vR6Wx4HWqMetdOXFOhFTT6c5oanc5WB5cUWW7UJNkFAITLUe13A1WugXtle44kZ3Q6WwrAj2XmdfrpN4s3y682DwAAAJRQwQQA0JJe/Er0zq+G3QkAAHBPUtbu3rjzTk375L6tT0RD6A8AAACA1lNYFN5rSdIvTr2vX/7e99T1yB117V0Iu2sbz/biso2UKqtAOv4iMqCpfdW93PtH0ccr2vzAMEfDoXTJEsFZABAav1IJx2FgIxSuG66OTmfNiR//WDvTNfmoLTdqWlE3xz4IAAAASQSYAABaUDLRp9d/++IlfTPsngAAgHvx6pEd1x79u9sV2UMzsYiSiT7zSHjdAgAAANAi/IoDFdl2F6a6JKkYYNL+Wa/vBplIBJeghRy7Pj2w7cNFXeh+qNTmVx0KJdAj6uba/3gBAM3u7jlN4bvA9jg2A+vnkiTz4R8sakFdQdsJtgUAAEAJASYAgJaRiUX0Rn+3buy4E3ZXAADAOkkm+qRETTOTGAAAAABWwgpqXJjqkp5UvGOCLVh8iRY1mJ/VYH62UW/nSLKuD/2sJmt3yto9/vVG9QIAEKy2Kpsl20hxngM0TOC1FQAAADpTTc07AACa1eUvPaCuvXf07+ey+lefVW/Y/QEAAPfmC3O53GraAQAAAGDFOiW4pIwbNS03aqaWfyQQvve+uzM3d75Hc+d7qjdt1L7rSHKe/5WDOn7qgDKxSLGKql49smNgg94TALByQYvbLdkGi96B9eAHa/2/W7oDN0/u28q8DAAAAEoIMAEAtIzR6axGp7OSpC89RoAJAACt7jevft8cnc5WZCsdnc7qN69+3wyxWwAAAABaRNTNBWa0vr5z83ij+xI2P7AkJclyo6ZHoAmalR8I5S3ObjYXprq0MNVVHmSycZWHbM8pz4KfTPRJkg5l8zr99Jt67chjVzfkfQEAa1L2/UCACbBebM8Y++c7c5lYpKI5E4vo5DN7mZcBAABAyX1hdwAAgLU48ie65P3PYfcCAADcq8H8rB9gki1vZtIQAAAAwLKGzh61Yok+jZyZKbX5FQkG0iH2q9H8YJLq6yjLjZpW1M11XCUXNL2aa/6FqS65U71OIz+vI2dmFMvMl+7vm7xlulEzVS9wDQDQGFWBh3Knei0lOacB1sv3t26/9P3EdjPWP69D2bykUuAt+xgAAABKCDABALQc53LYPQAAABuMiQwAAAAAK2FlYhEdjx0Iux9hqxekb4nrKzSfsJNKOJKs8uCSMgRmAUB4HElWeXBJmZQko7HdAdqWI/86qqqSCec/AAAAKNkUdgcAAFgp53LhFmdoAwCA9mB7cdVOWjh+OwAAAAAAwLpKD4/FP31rLrfEQ8IOgAGAzlQYE647LuxXbANwj9IT5zQ6nfUryxeMTmeVnjgXYq8AAADQbAgwAQC0jLhDcAkAAG3Hnzi8/cOt426yV26y13KjpseEIQAAAIDlpIfHgoLWVaetbV3fuXm8zqaO+jugZQQuHo66ucYkm7CN1AtvXTLrbW5YPwAAtWyv7rlLytrd28iuAG3MGszPloJK0hPnisEmBNkCAACghAATAAAAAECo3GSv8q93D1Q1W27UZEIDAAAAwJKqqxHsXrwz7geedIzn7f3XMrFIRVsy0afjpw5wTYWmc/zUASUTfaX7mVik4n4DWJLUtXchaBtBWQAQsupzmqJXj+x4qcFdAdrewlSX/MRfxeRfJP4CAACAJOm+sDsAYH0ZhlF9wbfSCaTyQXPH8+pnBwEAAADWWb1zVkss7gAAAACwFNtIvSCVVyMYkG2k/GqJncJKJvqkRNjdAFYklYlFdDx2oKJx6OzRVCODw6586QH99VyfDmXzpbZkok/pRnUAABDorZ9/cFzSQCwzX2pLWbvH08NjjBMD62hhqktz53uqmy03alpRN8f+BgAA0OEIMAFaXFlAyb1mIit/vmUYhnR3MR8BJwAAAAgD2XYBAAAA1GcbKQVfN3AtAWBJJ/b0S3sKmfJjmXkdyuY1cmbGcp9mUSUAhOnr3/re54bOHk0pUTqfczqtOh2woWwvLtvwFt7eUu8RJP4CAAAAASZAqzEMw1Lhgq4RE2TF96gIOPG8jsr8BgAAgA12fefm3p3XF4Pax6Mh9AcAAABAa3jvuzuf2NT1My1Mdalr74K2P3kj7C6FJS6purq5WIyJZvTpW3O572/dbla3716809ugLlTsLyNnZlSeJV9Syo2acYJMACA8nMMAG8z2jJ999+NXVVkJsohgfQAAAGhT2B0AsDKGYaQMw/BUGPQO64LOUiHYxPP7w4UlAAAA7tnz9v5rmVikoi0Ti+h5e/+1kLoEAAAAoMm5UTO1OLvZXJjqkiQtTHVp7nxPyL0KR3p4zFFh0XxR9X2gaTz13kzNQsbB/KxevvJaY8YAbM+R7RmSFMvMVweXFNUEbDFCy9MAACAASURBVAEAGsw2LL9aHYAN8IOtwddOk/u25hrcFQAAADQhKpgATazB1UpWqxhsIkkOVU3QaL/+4NZeN2qmom6Ozx4AAG0gmehTrH9eh7L50n0153kwAAAAgOZQc72wMNWlhUe61LV3oePGDNMT58r/HoWfh0UFBjSdwfysRqelC90PldpGp7NhdMU5lM0z7gAAzcY2LJUH+tmGJyku2+O8BlhHJ5/Ze2nkzIxZHmybiUWUTPSZR8LrFgAAAJoEASZAE1qnwJK1DrCs5T0tv7oKgSbYcMe6uvTyth5JGpAkN2p6kihXDwBAG8jEIqqqZML3OwAAAIBVef9vIuNd/+udzrqWKGT3rh7btwqZv1mMiabjDOZnrcH8bE17IzuRHh6LXzz1yduStjTyfQEAywqqWpKSZDS6I0C7q5P4i+sHAAAAEGACNJM1BpaULu7WM7ijrC9FK+kTgSbYcH5wSbWUGzUJMgEAoEWlJ87pxJ5+XezeVWorZDTNSsMhdgwAAABAy/nEldnPhd2HENQbv7fEAjE0ETdqpqTe0ud1+5M31LV3QZKchgdD2UZqcFBb5n7So4Wpruqt7DcA0GxsIyWbNQjAOnIkWST+AgAAQJBNYXcAQIFhGCkVMm8sF8jhqBDAYfi3ePG2nv3xPM8pf23P84zie6/g6ZZhGJ4fpAI0SqowOQUAAFrR6HRWo9NZDeZn7waX3FtFPwAAAABtrGoRVKlt6OxRriOAJuSP31fsn3PnezR/YdvJkBYMW5KUTDxccTy5ue1+XTjckwuhPwCApbHoHVhH6YlzVnFOpmh0Oqv0xDmupwAAAEAFEyBsfmDJSoJK1rVCyVqUv/8Kq62kDMMoBsQw4INGYLADAIAWVgwuKcM5JAAAAIBAyUSfYv3zOpTNV7SpM6t2OAoeG+20vwOaW+D4/a0rD5q14WKNcbF7V+GWkGL98xo5M6NtNz/U4Qs3nnWjpinJoXI6ADRc6bzm27ce14M/MiRJb/38g19/9exRpYfHOC4D6+TunEy2vJk1FwAAACDABAjLCgI0miKopB4/YMSRlv1dLBUqmjjN+rugtWRiEcUy83W3u1Hz9aib+1wDuwQAAO4di6EAAAAArFomFqmpZJIeHuu8cWjbi8uuSWYVl03iJ2ApF7ofkiTFMoXgkirF/Yn9CAAay5Gkb9963PrFP3+/1BjLzA/0T7zfq2GOy8AGYx8DAAAAASZAGPyAjFSdzS1X8aMq2KReRRbLMIwUQSa4V//Xg560dJDJgBs1U1E3F5ekobNHqwOgnI6cZAYAoJnZniPbiEuyFqa6rIW3t2hhqkuSLCVNkS0UAAAAQICgQPXOvXaw7469u1HTkmRF7Q7+e6AZNVtyibj8ubrySkhVyOANAI1WCJB1fjFqetWb9k3eMofOHrWoYgKsi5pzs7nzPdr80GLvgyF1CAAAAM3D8LyaazIAG6xOEEZbVfjwf0ep6vf0PM8IoTtoUUH7yu7P7dKvfvkh/fJff7BkJZOomzPcqJmSZGViEXXf/FDnf2lnMaMhQSYAADQhfxFUUCB2nCATAAAAANXKkstI6tDqJWXqXFNxPYWmMHT2aGrkzIxVPq6fiUWUTPTFw1wo/M0/Hbj6xCt/b9abb4i6Oea1ACAEbkCAiSRN7tuaO/LalYcb3R+gLflVEOfO9xSTfhU5xYSeAFbPMIx6C3Lbam0gAKC9UcEECF9bnjwWf6dlqrUAq/at6KysuVkNJZ7SiGbqBpm8EzWvSjIllR6z98yMMtmI3ujvtjTcsC4DAICVq5cZ1FInZyIGAAAAECg9ca54DVG4ZmDML2gsPiWJBfJoBlYy0acRzUiS3ujvLiaECvWa/4WvjD/8TQ1cjWXmzYDNjEUAQJPZN3nrubD7ALQN24sXk3ZWbbHcqJkiyAQAAKBzbQq7A0AHcyTF2zG4pJzneY5ftYRBeKwL6/G7PycTfXUf5/nBJdVimfmlyt0DAIDmVC/wBAAAAECnskvVj+8GmdgGyY4C+IvGgKaQTPQpmegrBpfo07fmngi1Q7aReuGtS+b1oZ9VNN9+8L47Fw735ELqFQB0vOs7N48HtVGZDWgY5mUAAAA6GAEmQAg8z4v7t44Z/PB/X7KkYd0M5mclqTQJVc6Qlpz0qVf1BAAANK2OOW8GAAAAsGJBC54s2QYLoWpxTYXQFcf0qw3Mv3utwV25yw9Uu9i9S8//ykEdP3WglNjqwds/3XL4wo1n3aiZcqMmxxUAaLCDE299TmXnMNd3bh732wCso+s7N/fWaa8J8gIAAEDnIMAEANCSRqezGszPVmQ68zmvWLvDm5ACAABrdvzUgcD2lLU7cIIDAAAAAAJ07ELweovAyPSNZlAc0y83mJ/VsevToY/nX+h+SFIhOdXImZnqzeWVkgAADRR1c/GomzOibs4guATYGK8e6Qlsz3ffz7wMAABAB7sv7A4AALAazmXJerzw8+h0VlJW3/3CnvHjiQPFSShHkvXo391eqlIJE6oAADSp46cOVCzmeKO/W5lYZODrIfYJAAAAQAuxvXjYXQjL2aGHBg5l8xXjoslEn+zwugSUi49OZ1Mn9hTuHM6/Wwg4CXefdVQWPHIom6/3OAJMAABAW3r1yI5r1WsrMrGIkok+80h43QIAAEDICDABALSUuFMIMHn6v1Dun/bp0nd37un9o+jjA2UPsSSNJxN9GtGMtt38UI+8faf8JZyom+vYSWYAAFpBMtFX3URwKAAAAIBqFQvDy9o6ViYWKVR7TlS2D509mkoPjzEminDZniPbiI9OZ1N+i6Ow99lCn5zR6aw1dHBXqF0BAASwjZTunu8Vvjdsr6PP94CNkEz01VxDKOzzNAAAAISKABMAQMtxLkvOZV3yfkeqCi4pGpAUTyb6UlXt8fTwGAMhAAA0qS/M5XJ/td0MbA+hOwAAAACalBs1U1KvJGnzrsXcjmPXL0kKuxJCM2NMFM2hsCjYCLsbFWwvLttIfdW93PtHiccHTmfeDHoU+xAANFplcIlUGWgCYJ2kJ845QwefqqnWxrwMAABAZyPABADQkl77r/WEpNoVqL7di3e+/s9nf6QL3Q9Jkkans4XBxuGGdA8AAKzBb179vvmZ99/The6HdLG7kDl0dDqrwfxs3e98AAAAAJ2lEFxyd7Hh4uxm0032XqJqsaQ6VV1IugMsw/bix2wjdez6tCaGdmtnelNp0+S+rbmTz+x10iF2DwA6VM2Cd0mWbMOiigmwrqz0xDmd2NNfajicf5d5GQAAgA5HgAkAoCX9077a4JJYZl6HsnlJktl7c+DgJ2Y1mJ8tbiarDQAALWAwX/z+zpY3B00mAgAAAOhMgYsN3ahpRd1cR4/9pYfH4kNnj5YH4Djp4TECb4Dl+FnyL3bv0omDB6VfKTSPnJlRLDNvPvutqRfdp011+jEGAJqEJeZ7gXU3Op2tbmJeBgAAoIMRYAIAaGmD+Vld7N6lWGZeI2dm7m7IbNLc3h5tf/JG+cMZBEHbKcvaOe43XZPkMNkJoM1wTAMAAACwHBYb2oaVrhwDtTRBlm9gpYoV0aVScIkkad/kLVNSyo2aDtWSAKDxipUVilWvqSoFNATXEAAAAB1s0/IPAdCsDMOwDMNI+Tevkbewf3egaHQ6q8H8bGVwiW9hqqv2CbaRkm0QaIK2UBZcIkkD/s1SYbKTzzmA1mN79RZpMJEBAAAAYEks+pYkpVbYBqBSxbhDeXBJFcZcAaBx4lIhuOTxv/xAX/nmdZ1++k2NnJmxXnrms6+H3TmgbRTmZarnYJwl5msAAADQAQzPY5040GoMw7BUGMQObSDb8zwjrPdG+yj7LNfzhCQzaMO/+qzG/90XNFC87yZ7A1+ga+9CdRUTiQERtIGq4JJ6yKgHoDXZRmkB1I9feaj3p+/f9xKVmQAAAABI0ne++CmveuF3JhZRMtHnpIfHOnscxK6bHIrxUGA5hbEIa+jgU0sFmCjq5pgfA4AGWuLcL54eHmPMGFgvdtnaDa4dgHuyROLmnKRLSz3X89j/AADN4b6wOwBgdfwF+WQcQ7tYc6DUv/+erv27S56xxKSpJOkjD/603vsCrS44qqqS5UbNFEEmAFqO7cWrqzS5UZOgOQAAAABKJvoU65/XoWy+ok1UPlwKfxtgObYXl22k/pvc9z/zev/Dn6wXYAIAaKyg43EsM6/P//x7X9cw5zjAurE9x42akpRS0iyuwWBeBlhfpuok2QUAoNlsCrsDAFaO4BKgvq69C4Htt77/US1MdTW4N8DG8hddDyz7wAICqgC0nDpVmiy/HQAAAEBnc/ys1aWbJJHBWlK9QBLb428DrITtxX/5Ru6T9qaLur2/NrfVhcM9J0PoFQAgQNx551rYfQDaiRs1g9YjWX47AAAAOgwBJkBr4cINbcXzvLjneUa9m1aRWW/7kzf0wCc+CNw2d76nuokJVbQsfxBvVd8HDPwBaCMczwAAAAA4qh3fI6tuAX8b4F7YRkqSLnbv0je+9hllYpHSLZno05/9WpRswwDQJKiqAKy7evMvzMsA68dZao2Uv04KAICmcF/YHQCwMn71kpVcuLFwHp3Gkb9vfOTBf1jZ422PAUe0srUM4qXcqEkJYwDtoCPPdcuCC6u/Azi2AwAAoOOkh8cc2Yalu+OCDhU6fIW/gyNVXUckTUXdHH8jYIUudD8kSaUKSSNnZjRyZkaZbMRynzYt9icAaKi4aqsqMCYKrLPrOzf37ry+GLSJABMAAIAORIAJ0DqWumhzVIhyZkAbncf24v6EsqV/0FFJW4IeNnTwqbiKE6pnj3qSnPTwGIOPaDdBg+xFDP4BaBkXDvfkDl+4UdN+fefm3mgI/QnLEoElRdY7UfOqJz3H4hYAAAB0jEKFgfJzZEu2kSKpzF3+tUT5GJFF8hFgRUoJrYpGzswolpmXpOK/JPMBgAbyxz0NN2oWz20cxkKB9Zfvvj8wwGRy39ZcJ83LAAAAoGBT2B0AcM8cz/PiBJego/kZCpNffXhLJhYJeoQjKTVyZsY6/fSbxQkha+js0XoL8YGm5U9cBh3ziwPq4/We6y8uAICm92e/FjWrv9MzsYiet/dfC6lLYaleOFfDk0wVFrdwjAcAAECnCDr3tfwkNCgIGvfk7wMspzDXEB+dzkqqDC6pwv4EAA0WdXNx/8a6CGADnHxm76WgeZmTz+w1Q+oSAAAAQkQFE6B1BA1WO55HVjZAkk7s6bcudu/SxYQ0oruTPvd97KfjI/9jrCbLWCwzr0w2Ymk4zF4Dq1Mvk30mFlEy0SedPWqdll6SNFDnJVJu1GTwHUBLSCb6pERNc0cs4HCjpmVIL67yaSlJxkb0BwAAAGgRloKTcsDnRs0UVReAZdieI9uIP3v1b//w79W9I+zuAAAkP5C4ODbsFJMPAlhfyUSfYv3zOpTNl+6LaywAAICORIAJ0Nq4kAN8F7t3lX4uX5D6T/Lv9Dz7ranefZO3ap5TJ/MY0Mxqsk+Wgkv8wJPjf3gg97u/86PxndcX6waZiAXIAFpXp5z/prw1PInFYgAAAOhoNsmYVqBTrqmAe3Zkzt2xsG1Oc+oJuysA0NkKwSXl82OWbMPh3A9YX+mJcxo6+JQysYjKK5l81b3cG2K3AAAAEJJNYXcAwNp5Hpk5gOX83927P/nh/caWsPsB3Cs3atYEl0gBgVKezOft/QMfPLDpRiP6BQAbIT1xLvA89wtzuVyj+9Jo9Y73K2Td4/MBAACApjZ09mjK/tmgvvPGL+jEnv7ypDOMlZcpXxBW3kZVW2DFLEnq2rug2/trU0BcONxzsuE9AoDOFTTe2RGVroFGS0+c02B+tnQbnc7q2PXpekkNAQAA0MaoYAIAaHsXB7b3PH7578PuBtBQP/jUR3uo0gOghVnpiXM6sae/1HA4/64G87NmiH1qCEN6YqnqJT/++GY98OHPtO3mh/UewuQqAAAA2tJLz3z29dPOO6XFTbGMdP6/2vne4EdnXyWDdaVkok8jmiklJilWwE2ePZpKD4/xtwJW6GL3Lp342mc0cmam1PZGf7cysYj55RD7BQCQZBspzgGB9Tc6na1uIkgdAACgAxFgAgBoF3EFZ7ApZOw7I0e1Cy4bNujoZxN3yBKIexD0GQ7MSCnVLiQox+cRQKsImMho6+AJ//gcGERzc9v9+q3fe6x0//d/+0rdIBM3aqaibo7JVQAAALSVeFlwSdGT357bMXTqKScdRoeaXDLRJyVqmhkLAlbC9uKyjdSF7ocsyd+fVKgmfSib16Fs3nKfNi3GVwEgVByDgfUVOBcNAACAzrQp7A4AWDEGSIAlpIfHnK+6l8frbfcXWTplt3gjJn/cqJlyo6anwmBMyl84Cqxa1M05Fw73nKxuf6O/u+5zkok+vf3IlqBNlhggBNCa2vac2D9HqHts/otf3b3k/SqWGzU5zgMAAKAjPPutqRfD7kMTCrp2ctLDY217TQWsO9uLv3/f5lzx7siZGY2cKST08ZP6pLj2BoCGKJ2/nNjTr2/felzfeeMXNHTwKY7BwHqyveI6inIOlYIAAAA6EwEmQAszDINBE6DMsevTLw3mZ2vai4EnUTcXj45cU3TkWkMqN9RZKGoRZIK1mDj46OuHL9x4VipksZ96ZIuOnzpQt4JJ0c1t99fbxHcIgOZVmLBwJGlhqktusrd468jv0fLj/Ud/WqhakolFlvsO4DgPAACAjrBv8tZzYfeh2aSHx+K7F++UkvHsXrwznh4eY2EYsEovfGX8YUnlQSXVOm6MAgAazh8r/vatx/WVb17XL/75+4pl5nX66Tetl5757Othdw9oK7YXl+0ZZTeuIQAAADoUASZAi/C8wAs3Fo0B5WzPGZ3OxgfzsyreRqezOnZ9+iXZhiXbKFUSkW2kZG9skNbkvq1P1NnEvotVcaNmauf1xYHi/W03P1S+LHAkPTxmSKpbwQcAWpLtxecvbDs5d76nektbVucwpNxS23d8+BOlJ87pz37w1xqdzkoqVKpaIsik7f5GAAAA6GzXd24OHPtoRCKZlmMb1stXXhtIT5xTeuKcXr7y2oBsg4XwwBp81b08fiibD7sbANDZbC/+i3/+fk1z3HlnYOjsUcZBgQ3iRk0qtgEAAHQoAkyA1lI9UWZRxQSo4geZjE5nndHprDP4zDuGv6V6AtVSiAsvOzH7Ou5JzWe1Omteenjsc5JqghGTib56r8niCwBN79aVB806m9rqHNiNmilPejZoW/E4nnCvlNqKQbRL+fFDP/feOnYRAAAACN3O64svqXY8g4y6wYLGHtvqOgpoCNtIHbs+PTCYfzfsngAA6nj2W1Mvht0HoN34gSWl5J2sbQAAAOg8BJgALaROFZMUQSZAFdtz/PKtxX2m3j6yoftO9uDHri2xuS2zr6OxDmXz2r14Z7xYkSc9POYooJJJvSATPoMAWljbHL/8Y3Hg71OsUJKeOKfB/GzFtmK1tnpVTD7x7k92MOkDAACAdhJ1c07UzcWjbs4ou5FAYzWoYgKsyfYnb+j2fi9oE8cgAAjZvslbz4XdB6Cd+PMK1XMWFvMNAAAAnYUAE6D1EGQCNKGhs0etobNHvbJb6tUjO14KWvBZhv0W9+Tylx7Qy1deG5CfPUa2cTX9t+dqAkwysYiOnzpQvQCZjDMAmt71nZt767TXHOtaWN3zgYDzCEeF64GcJI1OZ0tBJlOPbAl8bY7zAAAAaCuFJBuef0vJZlx8lVgMD6xOaZ/5xtc+U3GdXhxzBQA0xuS+rbmgdgKOgYbh2gsAAKCDEGACtBjP84qLyqqlDMMg0AQIYgdW/5HWaUJ16OzRwuL+SpYkJRN98XoDnmIQBstwo6bllx+u8f/82sc0Op2tbjbl6dlnr/7te9UbRs7MKJaZD3opPocAmtbz9v5r1UEWmVhEz9v7l6oS1lbKKpcUK7Q5sr2H5QeZHM6/K0nKb7u/3ktwnAcAAEB7KFTfKD+/rVsNEIHjno5sjwWYwGoU9hnnxJ5+SYVKo8dPHdDxUweKVaM5BgFAg+ybvPVcQOKhenPAANaoQxJ/AQAAYBn3hd0BAKvneZ5jGEZcwQvaLcMwpA3OROZ5dRfsA82qep9xlgg8Wa16k0hWengs/tq3HnsxaOPkvq25aJ0nBpSejZOBpyMFZp1PJvqUiUVkTt8sX3hccmTO3fG9j31cF7t3rehN3Khp8fkC0KySiT7F+ud1KJsv3VcbLeA4fuqA8/u/fcXadvPDivZMLKLB/GwxmLD2vMX2HpZteIP5WQ3mH6r7+td3bh6vd74BAAAAtJig6wBLtmEROFHF9uJVATnrORYKdBbbi7//pwNXJZlhdwUAOlnUzTlRqrEBG+7VIz2KO+/UtOe77w8MPAEAAEB7IsAEaF3LLaprm0V3wLooTDIbDX5XS5JOPrP30siZGbO8ekQmFlEy0WceCXhSQHCJJKXcqEmQCSRJh7J5ZWIRXeh+KDDARJJGp7M6sUelIJM3+rvrVTCRCp8vJ+rmWGgAoCllYhFVVTJpi+9DN2papwOCCf3zBKUnzhUa6i0Esz1DtnF1dDprfnv/41Km9iFM+gAAAKADWGqTa4R1RUAJsG6+v3X7c6q6fh85M6O3fv7BcQ2H1CkAAIAN8OqRHdce/bvbWunaBgAAALQnAkyAFmQYRtDicwAhGDp71FL9/dGRbaQG9/RbdbKv15v4rvd6BJl0CDdqWqpTvUQqBItIKma1r2t0Oqt/ve/n9KMHtxUWZ2cjSwWZ8L0CoOmkh8fiQ2ePegGbWv67sN6xvhhcUma53/WSJHPmU5v1YCzCpA8AAAA6D4EUADZYenjM+cM/PnDyr7abz8Yy8xo5MyNJimXmB1zHTElyGLcHgAYoVGiTigHGnAcCGyKZ6JMSNc2c6wAAAHQQAkyAFkNwCdA8/OCSekEAjp913Dqcf1cXu3cFZV9fC4JM2lydCjYVMrFI3col1XZ8+BP9yP85mejT7799RdtufrjUezMZCqB52EYqLenEnv5S0+H8uxrMz1oabvnJjMBjfSwzLyVUPM4vP0lqe3HZhicFT/rsXrwzvi69BQAAAMIXV+1YHIsKl+GP90j+Qkwq2AJr85tXv//s5/7mhnamN1VvKl7ft/o4BQA0N7tmnYQl20gRZAKsr/TEOefEnn7rYveuUttgflaj01mHym0AAACdo2YEDEDzIrgEaDrB+6OhXHp4rDSYOZifDQoGcMofU71tTe+LluZGzZQbNT0t8/+bTPQVB/GKTY5WsZjiL35191Kbl6rIAwChGZ3Olm7+d2pbH6tKx/mVTo7anjE6nc0FbTr23vR6dg0AAAAIj+05sj1DhbGQwniI7bGgewlliUyK11BWWcAJgJXyM+Y//IPFeo9o63EKAGgSQcdaS7bBMRhYX1b5fEzZvDT7GgAAQAehggnQWrhgA1qBJ7O6qTDoUgoIyEmqm+Ej6ubiK6ligfawmv/rZKLPr15yp9g0Xrb42PAH0SsWCYxOZzV08G6GmUwsokw2UsiQH8xyo6ZFFRMATa7lj1HHTx1wTj/9Zs3xf+ZTm8uDCFfjUnrinBlQ7WXgHroJAAAANB+yVK9G4EJMxn4AAEAbsdQG48VAswlIosnaBQAAgA5CBROgRfjVS5biSIp7nmc04taI3xloYU7Vv9VMSSnZhld2q9jHo24ubhQCUZZ6fbSwlVYsKZeJRSQVFgz7rlU8oJC1s2aRRfVC5WSiTze33b/UW6XIZgmgSZS+8xamujR3vkduslfvfXfnE2F2ap1Ybz+ypaIhE4voD47vL95d0/d9QLUXzhsAAAAAVGNxGLA6jiRtf/LGktsBACEg+BhoFM53AAAAOggBJkDrc/ygj7jneVzQAQ2UHh6Lq3YgxfHbi4v9V7pf1pRw3u3mHq7z/JQbNZkEbmFrqVCTTPRJqsoWEzRoHhBkEpBhRr/1e48t95YWnzMAofO/S4vBJQtTXZKkxdnNph+k15LcqGmdfvpN65G3CxWpMrGIkom+0rFekrPqidH6j+caAQAAAC1v6OxRa+js0ZR/Y7ziHh0/dSDsLgCtpWzMtezaXVLhmp59CgAaomKcc+58j27/cOt4WJ0B2hZzDQAAAJBkeF7LrskBOophGIE7K9VE0M78yj31Jowdz2uOjDT+pLYllYJOKtlL/h7l7i4mLXvOu/9hl/7h9keCHh+PujkGclqMH7Sx4uogxUXHkvSPbuf1byZfL25aevHxf2+8KE/Pljed2NOvi927SvdjmXmNnJlZrgt8zgCEbolgEifq5prifGCl6n0PFI/3n741l3vhK+MPr/kNKquiOf4iGAAAAKBlDZ09asUy86lD2bwk6Y3+bmViESdwHA4VvvPFT3mxzHxFm3/tEU8Pj3GtAKzSb7zy+dff2bxlIGhbeniM+ToA2Gi2YY27D//ew+d+9sli0+S+rbl9k7eeYy4LWGfMNQBrVm+Nn5ponRMAAMu5L+wOALgnXMABIfEXh1qSrNOFfdFZh4HLQhBKVUBKneCS4uM5DrSQ1QSXTD2yRflt91dkxFtxcIkk/Y73nGzjUvn7jU5n9eu/sE3v3f9zkvwFBepbLsiEzxkArK/AoNNYZl6DX5rV6HTWvKdXX23lEwAAAKDJxTLzqfKxi1hmXplsxNJwiJ1qEclEnxPrn7eKwTmSNPaVneMElwBr887mLdfC7gMAdDI32auHdTe4RJL2Td4yJ/dtfTHKXBawvmwvXja3bSlpSi2Y9AsAAABrsynsDgBYO6KagXBUDKQUWJJSfnutlS/0LA58ll6nvNoE2sKywSVTj2xRMtGnf/uNRyuCS0ans6t/t0ImmYry4An3SsVDMrGIMrHIUq9i1f1sA0DjdMTk4JqO9QAAAECbC0qMEcvMa+js0RVXiO1U6Ylz6tp7R8lEn5KJPl3+0gN6+cprLJAH1q7e+ERHjFsAQNgm9219Mah9C1lF8AAAIABJREFU3+Ste0vaA6BGncSJzBsDAAB0CAJMAABYvXqDJvUHU2zPkF/pxL+NVz2ioiLFiT39Gjr4lE7s6V9q8b/jRs2UGzW9shsDOi2qPLCk+v88PXFOg/nZ8qbVTFhWLBoYzM9Wv5aSiT7d3Hb/Uq9RP4AKABogZe3urW7LxCI6fupAyy3gqNfnmU9tLv7Ycr8TAAAAEIbftX9Uc52AGtbodFbpiXNKT5wrBrVbsg3GeYA1SA+POV91L1eM7Y+cmdHXzk52hdUnAACADbL6NREAAABoGwSYAACwfpYeTLG9eNntc5LiKgaclAWXfPPRJ3LllUuSib6gIBPHf7/q9yQQoAWd/6WdgYElUmA2e8evTLIyhc9WxeNHp7Pa8eFPKh72W7/32HKvxOcKQGhePbJjoPh9WLz5VZ5a8dhklVeokgrBMn9wfL9UdU4AAAAAoL6d1xdfCrsPLawVr6WA8NmGdez69MDodFb/7MK0Tj/9pmKZeT321wvH/GRQ7FsAsIFOPrP3uaD2yX1bc43uC9DBON8BVujlbT16eVtP2N0AAGBN7gu7AwBWrLiYHECI/AmiuvviO1Hzqic9F3VzSwYAFF6n925J2aSZirq5uCR9f+v2mjLOyUSfRjQjSbr5yY+89y9e/Nu4GzW9Oi9vieznTceNmpYh5Typ4v83E4voL760K/A5o9PZ6mojuTUtPLa9uGzjqsre+49/+J90Yk+/yoOZjp86oN//7SvadvPDoFfhOwhAqIqBJa3MjZrWs/u2PrFv8pYklQfKFBBcAgAAAAQJGht3lht/wxK49gDWypKkWCavPec/ErhNjM0DwIZJD485r/z5wZOHL9x4ttjmj7E+dyTEfgHtaLJsLqOqPRcNoT9AKznW1VUZWHIzvL4AALBWVDABAGCF/OCS1FKP8YMHUm7UrPu4Oq9jLZfdLJnoUzLRp9lPf2SHbKNecAmaUPH/PCi4pDqLfdFgfrY6uESyvYfvoRuXqhtGp7Paf7tyNOPtR7bUez4TowDCVO8Y1GrHptS+yVul74JYZl4jZwoBpJ++NUeWPQAAACCAn5Sl/NzfKSZqwbKC/k787YB7tPB23TFUkvQAwAb78isTzx0/dSB+/NQB5/ipA84Xv/MDIz081mrjxEDTO/nM3kvVSb8ysYhOPrO3JlkmgErHfq7u9QIAAC2DABOgRXhebUYxwzCWXOgOYN2tZnLIWiLIpN7rLJvhbDA/q9HprCRp867FegtRGURtPoGfhaDgkn90O1/x/1zm3ib/62Sm/LeT4xWBLPUCXrT0ZxoANlR64pxTHXQ3Op1VK00c1juGxjLzGszP6oW3LjEpAwAAANQRdXPxqJsz/BsBEitle45sz1BhvNCRFJfttcx1FNB0CmOs7EMAELL08JiTHh6Lp4fHOC8ENlAxAWaxwrw/j8y5ELCMY11dYXcBAIB7RoAJ0FqqL9TIhAQ0t8B9dHLf1ieWerw/GFqxv+/48Cc1QQc7jl2/VP04FTI4MqjTIopZ6yV/ofTEOf2byderg0tyWr/J/8CB9tHprHZ8+JPS/eOnDtSrZLJspR0A2CCp4nGyeBvMz0p2ewRcBwQVAgAAAMD6sb24f2PcELhXthff/uSNwH1pct9WqpMCQKPYRkq2wZwVsHEcSaXAkrIkhVxTAAAAdAACTIAWQhUToOWsanClvMRsWZCJ81X38njCvSJJGjr4lE7s6S89Lurm4pt3LeY271rMdX8uP17M4OhGzZQbNb2yGwOsTeiN/m5JhYXF1Zn5fY5s7+F1m/wvvE5gkMkf//A/Vdy/ue3+eq/CZwkA1ibwWH57v7fkdgAAAAAqLiD0/BuLCQGEaujgUzWVoDOxiE4+s5fqpACw0WzDkm14KsxXpTg3BDZGenjM+ap7ebx8DrvVKssDYam+VgAAoBURYAK0nuqFwRZBJkBjRN1cvDoD2RKL8Os6+czeS+XBJFIp80fFYEyxtPPVro+On9jTr4vduyRJF7t3aejgU5LkyDa8HceumzuOXTcf/IVbA7KN1MTBR19XbRBAiiCTUNUMtBVLCUuqF1xSyCy53pYIMklPnKuoZFIHnyMAYSgdR+fO98hN9hZvLVNZ6fipA4EDyv/h8B6pEFC4/sd8AAAAoB0UKheWn/dbYnwCQMgysYiOnzpQurGIDAAaoBBIUr02gnNDYCPYRurY9emB8ury7VRZHthIxco/AAC0MgJMgBbjeYELgy3DMDwCTYCNNXT2aOrkM3vNZKKvFBzwW7/3mI6fOqDqgBFJTrGaSACnWEa2+DpLXVz+1Xbz2aD2bz76xIsBzdbO64sDQY+f3Le19Hi/wkmxygnHjg3k/30rBrbL/89Hp7NBT4uvW9WSIHeDTMarN+2/fXO5Z5OVBkAYHKkQXLIw1VW9rSWCKD//2ntfP5TN6+1HtmjqkS2lhSiZWEQElwAAAABLCjrft8hUDSBEjJECQDjqnf9xXgg0DvsbsIx/ciFbEZAOAEArui/sDgBYPc/zHMMw4qrNxmEZhuGpAQPbnsciOHSu8soTRclEXzz9nZWVg00PjzlDZ486mVjEKnsdJz08tqr96mM/XTRX8/iigIAHy42aqSUCYrBGSwWXDOZn6wWXOBsaXFJUeA+nTrYnJRN9GtGMYpn5ir7xOQEQCttzZBvxhamuekGRlpp4cYcbNVNxqSIANPlLZC4CAAAA7lFTXwcAaF/p4THnN175/Pg7m7dUXOt/YS53Mqw+AQAAbJSFqS7Nne+525BkbQGwlG9sndXAtHRiT3/YXQEAYM0IMAFaiB88shJkDAAay0kPryy4pGiVwSSOVrFfZ2KR6qAASdK+yVvmS8989vXqBa4+y42aVtTNMSm/vmr+32KZecX653UxtktSTYCJ0/As9v6ibflBJqPTWZ3YI13s3qVkok+x/nn9yl//58WHry5sVuFz4olAEwBhsD1HyTXFVobKr65S830wcmZGx2MHCiXlAQAAAKwelQABhMU2rJelgfIFY4fz72owP9t6AxcA0EpsLy47cM0E85vA+nMkWTXBJQWsLQCWMZifVXqiMAdohNwXAADWYlPYHQAAoIWENUAS9L7O6HQ2LhWyHhRvUqGaSnWFlaK4805QcEkRwWkNciibl1STsSIe2sKIYjUT3+h0VqPTWe348CeSJD+4pJzlL5gGgEar913czJMYdY+XS1SzAgAAAHBX0HgJwSVAE3KjZsqNml7ZrV3HEC3p7jjq6HS2mECiXX9fAGgmFeeB7313Z85N9jbz+DDQmgrzx/Hbl7fm6jyC8x6gjjjfSgCANkCACQAAK5QeHnM+fWuuYgDl07fmcunhsbhsw5JtpGQbnv/vug2o+NVR4iosnnVUqJgSHzr4lIYOPqWL3btKt9947Mh4enjMSSb6Vj3JTkWKxkkm+iQVstr54v4gXXgKwS2lPlzofkjv3f9zpWCYAAwaAmi446cOqDqIMhOL6PipAyH16N4QXAIAAACsgO05sj1Dd8fGwh9HAVDDjZop1Y4Zpto4yAQAEAb/3NBN9sbdZK8WZzebklITBx99ne8cYJ3ZnrM4u/lSna3sb0AdC293aexPair/AADQUu4LuwMAALQM20i9IFWXuDdlG69LKq8MYkmyZBvrNtntB5lUv1bNoM07m7cMDJ09mkoPj8Xdp6u7WnBz2/3advPDirbJfVtz0fXoKCRJ/gB2KmhbMbhkMD9bzGrXPIsiCqXFqz/P9TBoCCAMVjLRpxHNSJLe6O8uBpxYatIqJlE3F3/tyGNX903eqvhinvnUZvnfvU3ZbwAAAKDphFX5FcBK1RsvbNpr9jUrjKN6xbtz53u0MNWlzbsWc4tJ04q6ufb6fQGgyQTNw+28vjgwuW9rb7TdvnOAkF3fubl35/XFoPZx1hcAtdyomXp5W4/0oeQme/XdhQVJN8LuFgAAq0YFEwAA7l29xfgbvQB/ydevzvBedLP7/sK/2+5XJhZRJhbRyWf2mkNnjxIwsH7qBpdkYhEN5mc1Op3NqZmCS+66tsLHNVu/AXSQZKKvdExtdkNnj6ZOPrPXLO9rJhbRHxzfL0kOi+QAAAAAAO3s+s7NvWH3YYPEpbvBJZJKWfT9ai4AgA0yuW/ri0Ht1Ul+ANy75+3914Iqyz9v71/pnDLQMYKqOh7r6gqpNwAA3BsqmACthcW8QHPKqbayiRRyhYdihvdYZr6ife/bdyRJ225+qLcfuVtRQ+2YSa7JHMrm1bX3jkans1LwZ6ZpHM6/q4vdu+p9jpyom2NBNIAwOAr+fm3q76+RMzN6o7+7/Du3gOASAAAAAECbyMQiNWPRkvTqkR4dDKE/G872HDdq1hunIJkTAABoG8lEn2L98zqUzZfui/MdIAj7BQCgbRBgArQQz2MBGhCyepNFW5Z4/EaKK6BSRnp4rHiscJKJPmtEM5IUOLkXy8wr1j+vTCxS/jxskDf6u5XpjkjKFpuaL6jH9uKyjdRgftYazD9UCjKJ9c/rs39z807Xws9uHHntCp8VAKFIT5xzTuzpty527yq1fdW9PH7s6beb61jqc6Omddo/d4hl5pXJRgrfBS1QeQUAAAAAgNUISlSTiUX06pEd174eYr8AAO3n5DN7nzv99Js1c6SZWETRMDoEdIBMLFI9t9GU8zIAAABYH5vC7gAAAC3D9hwFD5T01HnGhg6qpIfHHBWCTMrfL162PS7JeaO/OzC4pOhQNq8vzOVOblhHO1Pg/31x0O3Env5CQ7Nmri/0Kz46nc2lJ85pMD+rTCyi0/9yz5aTz+w1v/PFT3lu1CT7BoAwWKPTWaUnzumV//iq/uTF76n/93868N4//vjVsDtWzT9OVkxyxjJ3M3z51awAAAAALMGNmik3anr+LcV4BNC8di/eGU8m+kqLD5OJvmJ263ZefNjOvxsANK308JiTsnaPl7f53z3NOe8GtLD08Fh89+Kdiv1t9NTkndNPv8l5EFCFBHMAgHZCBRMAAFbDr+6g4EomOUmX/J8dPyBlQ/lBJkbgRttIpSW5Z3qXfI3tT87pi1dnzfXvXUcr/t+XPif+ZKok6XD+3fLHNCtLknliT7+KlQJGzlRkIEy5UdOJujkG6wE0kiVJC1Ndmjt/N75zcXaz6UZNL+rmgr8TwxG48C2Wmdfok1kN5mcb3R8AAACgpbhRs3oMrvhzs4+pAB3p5SuvXTuxp79iHHQwP6vR6ayl4fbcb4+fOmBVjZlKKowF2+F0CQA6xte/9b3PDR05Wp7gx/HnTQGsJ9uwXpYGLnbvkvG/b1HfDxYlaYuYKwZqBFV1TCb6pP/hWoi9AgBgbQgwAQBg/ZiyvYfD7oRsoyZjej1dexc0mL8hSZZsw2pEUEy78xc/SJL15oGP3Tn9L/dsKd/+6VtzucH87KWmrV5SR9BEqSTLjZopBg4BNFp5cEm5VjkmEVwCAAAArEhQ0LblRk0r6uYYwwKajzU6ndWJPYU7h/PvdsT1b3ERWdEb/d1kLgaABkkPjzX9WDDQBixJeuwvP9DC1EdqtrXKvAzQCH5VxwElwu4JAAD3blPYHQAAoK0UqpuELTBjerUHPv6Btj95o7zpRdmG1yS/Q0sqy6xpSdKBN9/fMnLm7uTiYH5WL7x1qeWCS5axos8bAKyTljl+1ptQub3fK/7IgjgAAABgbRiLAJrY6HRWo9MdU7nTkQpBJsWbH1zCNT8AAOgUXJ8BvpevvHat+jqoQ66LAABtiAATAABWb6nJIcuvIBKmivfv2rsQ+KCd/+V/Lv18Yk+/TuzpN4cOPqUTe/otgkzWrOb/PpaZL1X+OJx/t/CY8D8jK+FIpT4v+zgAaIhCpa14ve+2ZjJ09qiVTPRVtGViEX3ja5+RJKfNgg0BAACAhjl+6kDYXQAQLPg6t42vf9PDY46Cf2/GTAGgEWyjMKdZuLXC3BvQjjjvAe6yisH2g/nZUvA9AACtiAATAABWq7C4dekgkybS9cidmiCT8solJ/b062L3Ll3s3iVJuti9qxhk0lS/Rys7lM1Lki50P1Rsav6/rb+IezA/64xOZ8sz7gNAuGzP+V8O/fx4dXMmFtHxUweaZiLj86+99/VD2bwysYiSiT4dP3VApYCTNl5cAwAAAKyX6oDtsramOe8HUMYfTyxrqRd80VbSE+cqFpGlJ84pPXGu+cd/AaDVFZLlpVSYc7MkEWQCbITCfIbzf372E4GbJ/dtfaKxHQKaX4dVdQQAtKn7wu4A0IkMo1QZwPE8ryMmw/zf2fI8zwi7L8C6sL24P3AZNFAZ9uBlXIUBVUmFCiZdexekJ0vbxyVdK9652L2rpr+P/+UHupI3T38saaYkOVE3t6KJwKGzR4t/E0eS42dw63jFBRGl7BStsrDY9hzZhjWYn5W2zmpub48WprrKH7HizwYArKdXj+wYmP/Y/aUAPql0rC1+B4XKjZpWXBoo3o9l5pXJRgIXyAEAAAAIlolFnOOxA9bImRlJ0hv93crEImK8CWhebrLXkhSPurnO2E/9OYJicEmZsOcIAKC9FQJJgo61KUmsRwDWm+3FX3vl868/+CNjIJaZLzX7CbbMI+H1DGgabtRMSb2l+9ufvFGTCBYAgFZCgAkQHkuSZRiG43ktstB4DQzDKGQLATpLuJNnhaCAiiCTKgNlP8dVNQA7cmZG/sBQj99kuVEzVRFIUDlw68j2nLLgEvn/WkNnjzrp4bG2PcZVu75z8/jO64vlf19lYhFJKp9gbNnJ1StfekAn9hyoaEuH1BcAyMQipWNsE6r5Do5l5qWE9Olbc7kwOgQAAAC0IEeSkom+8rGrjhlnAlpJYTHV3bFhN2qSmAYAsJEI5AMa7J3NW64lE31SomZTy859A+ul6npIkjR3vkc/unZDL/+YIBMAQGsiwAQIn2UYhqdCNZO2GWwvViwJux/AhgquYuI0RXWKQpDJSh4ZvAC2luVGTSvq5hw/uKT8edY3/3Qgp63bzaDnrai/beJ5e/9ALDNfk1F/MD+r0elsTtKlpvh8rMHF7l06sadfUuEzciibVywzb03Yj76+8/riSx2TlRBAs3AU/B3T1Mei//b0j/S5gb8L+r4EAAAAUCU9PFY9vuXI7oyK4EArCVpMpaCkRe2p3vgEAABAu+G8B6gvcN+YnNgi5yYBJgCA1rQp7A4AHSpoEswyDMMzDCPlV/1oSX7/PbXggj9gTQrBAnEVPt/NEVxy14r6sopM6sX9uiYo5WM/Xez4xbJu1EydfvrNUgWYN/q7lUz0lT/EbLLPx0o5knSh+yFJheCSsio38iu2pNyo2bLfXQBaT3rinFNWGUpS4fssPTzW1Oeb/Z94J+wuAAAAAK3jbpKTYiXdlJ/sBUBraP/xwkLQW8VYxNz5Hs1f2HYypB4BQGcozLcFjQU39fgw0MrSw2NO9boCf16mFee/AQAAsAwCTIAQeJ7n6O6C9GqWpJQfqNESk2WGYVjLBJZIbVahBahge4XAkmYLHrBLx5olvfDWped+1/7R+LPfmsqdfvrNJR9bL4jgcP7dus8ZOns0NXT2aFtPJgZl6SsPwij9fVpxEUTVJGl5dZYqbf1/DKDpWKPTWQ3mZzWYn9Xv/h8Teu5/mjSb5Th7fefm8eq2mU9tVtfeBYlJTgAAAGClgs7vGX8Amszkvq1P1GlfaWKj1uYvcr79w63jbrJXC1NdunXlwWfdqElSHgDYSFVBJhcv7rvzypXPdMZ3DxAG20i98NYlMz1xTq/8x1f1Jy9+T785es187x9//CrnPOh0mVgksP3yL3+iwT0BAGD9EGAChMTzvGLARb0FZpYqq5o0xWK5oqqgkqDy50WOpDjBJUBICsEBS3KTvdbO64sD+yZvLVeFpJgtssZgfla7F++UFtMWq1z4QRZ1n9dGAn+/Q9l8afGzrzUXFdte/GL3ruX63u7/xwCaiyVJo9NZjZy5qp3pTVqY6pKb7LX8oL9QPW/vHygfTM7EIvqD4/ul5qt2BgAAALSeJgksB1CQPfixa0Htf//Rj3RM1Ws32evkX+8eqGruhHFxAAiX7cVfufKZk26yV3suL2w5fOHGs68deezqK18++GLYXQPa1cJUl+bO92hhqkuStDi72ZREYC06WjLRVxNkkolFdPHhzSH1CACAe3df2B0AOl0x8MIPIKl3wWX5j/HkL04OI2CjLMhlpReGcb9aC4DmFVdwNsh6rNs/3Dr+4C/cGliY6tLC21u0/ckbkuT8d8++5bx54GOfOfDm+1vKnxDLzCupPkvD69nt1tDzwU80Ov3D4l1nJQE/zSo9cc45sad/qeN/y/5uAFpX+SRGGcuNmlbUzYV6XEom+qREZdvQwaeUDqc7AAAAQDthDAJoIq8e2XHt0b+7XarmLBUWUyUTfc4XQ+xXgy05vwcA2BivfPngi4cv3Hi2vM1PqGdJei6cXgHtbeHtLfU2WeJaDR1q9+Kd8WSib2BEM5KkN/q7CwEnr88u80wAAJoXASZAk/A8L24YRjGb0VIDzuXBJtLdCzRnPYM5yvoirX4A3KFiCdBUHNXux3czqCdXl0hu/vXuffnXu0v33ane4nukDrz5fuBzRs7MSL+7qrdpGW7UtD54YNONBz74WU/1tv5PvFP8sR0y1luj01ldfHKXlPlI0HYGDAE0UlxSKiC4pCi0iQw3aqZO+z9nYpG7g8gFHCsBAACAlas3psV5NdBEvjCXywUlWdi9eKc3nB4BADrFJ368GLiOwQ8yAbC+gq7PyhFYi4517L1p/VH08ULyOd9gflZ7p7Nq9UUiAIDORYAJ0ET8ABFnhYEmRaUgEMMwytvXOsl2Lxd9BJYAzcj24rIrqiTdU7CDJ+0IaF5NFZS24Zf6TT3wwc9qtmViEV3+pZ0anc5KbbSgeDA/q4v/epf+f/buP7bt+87z/ItJXFWOG8q/2tg0Q9uNm6ZNPBYze40iz8Az3u7NVYmq3d6XmS5yi8ESKlYT3CFpZleL66HLW2z2xu2kCQbwuRhCxe6h3ZnyOzMrcGphgYXrHBpH6WFMapzEmdQZWQrN0K1smUodK6rbfu8Pfr8Uf3ypn/zN5wMgbH5JfvkRf3z5/X6+7x/zZ3bkl73zybsnn33px23zNwJoARHLVMSz3i5cNZf2+Yu6EjrVWxNBr/qzGY3+QYJtJQAAALBWVZ7TAlAbf/ju6/6f33GXzvXsyS/rz2Y0OpO80sBh1dXIycM69fSFsuWJoFe+BowHAACg6nLnZcxrWz5q3O1y89zurkn2e9Cpjv/4p32funJb//VffDy/bHQm2T5BIgCAjkSCCdCENphoUqqe1QFILAGa3con38uqjTgV14fHZms7rtbnGth8+cBWRcMB9WfzLU/bpiXwuZ49OrG/t7QiYd/Z8QEjPnS6Lf5GAC0iYpmXXn4w5VaN7pWjO1NPNmJMLvvgwcSC/vkDM/r9bReliCdGQBwAAACwDuw/Ay0hV2QnWbq4o6pYR8OBovn0RNCraDigJxo4JgBod8defuu+tM9vlS6/dGhbikB3oAYiVuiPxgdip56+ULafd/bYTh1pxJiABssVn9upuyU99bU5dR9c1I7j1xs9LAAANo0EE6CJOYkmkuTxFFVqawamcoklBBMDLc6XToXsThz5bUw0HDAlGSPBw3KbINqAjtpW3Ni+pXhBOwRD2FVDX+m5t6gy/yPJrIKJBV06tO2F9NN++dKpjnqvATTWt5456B8em813CpFyAR2JoNffoAQTV//kxz+VjkvqsN9DAAAAAEBH66RjYDMR9BojwcONHgcAdJxXju781tFXrn/VuX7p0LbUsZffuq+RYwLa3cjJw0WJted7e5QIevuebeCYgEbIJZcUx/ItTndr8UC3ug8uKtRJR0QAgLZDggnQIpwOIZvsarJZZuFYALQPOykgf3gbj3iczhxGWvvWtI63Pt/9gwf/++LjpcvbvEJDWfeXQrnKfW10IjVihS5//3deldQXTCwUTRzaHQRiaZ8/RJIJgHqKhgOlXZWaTv53MEJyNgAAAACgzdiFaVQ8T2q2RdGdNYoPnTYHxwfc5oo75jUAgEZ58vtTz0l6zrlO5xKgPqLhQOkizn+gE7nGilz6u636D+cX6z0WAACq6o5GDwDA+liWZVqWFbIsy2NZlkd2J5EaPZ2zbuf5QiSXAB1g+WSgIUlzg78uu8v0ga1F16PhgP7x/kuP7zh+Xd0HF9V9cFG+4SvyDV9xgmpdD6zTPr+R9vlj9qWZujStyh5vWfZNIujVxS99ZDm5pM1OpL7XtfWKJD2SzFa6S0u9jwBaXqX94IacyIgZeydLl/3oy/c4/22r3wMAAAAAAPJyc6AhOeeV2mxOdC3iUxPqz2byl9GZpOJTE40eFgAAQFXFh06HHr45nypc9vDN+VR86HTH7f8BlUwtflTmxUaPAgCAzaGDCdDiShM+PJ581wHHWgN9C4PwTMuiujLQwQxJOtezRyf29+aW/I/S8Nis/KkPJ99+YNvk977s86tg+/KV9MVJzanPSS5ZC5d2oUardL+wk0tKt7fqPrioJx65oidm6j+meolPTSx/LtyRYAKgbuJTE+aJ/b3GuZ49+WWjM0n1P/NeQ35Lzh7b1Xf22K58hye7Lbz+i/aH4kOnm/73DQAAAACADct17ezMY9+Ix5Bk2EWHCsUkeeo/IAAAgBqJeGLPS/5zPXv0Ss+9+q0/f1+fvpX1X3vp4+/u+tuf3dfo4QH1lAh6FUwslC0/H/RKl9INGBEAANVDggnQZugwAqBaSpMI7Da3ffGh0489WXrnSFlyW6miE4t2goZbIkKrnHBz/XvP9dyrHT0fUX82U+/x1NXoTFI/+cCnCm9VZ55EBtAosVzwRlLzZ3Zqcbpb0p1Kf9NvSapr0mLa548N2xPJiaC3tD28IbaPAAAAAAC0K4ruAECj2El+Wt4Wd2QnLaDe+rMZPfhXv9DidLcW1S1J/rQTSYI8AAAgAElEQVTPb/nSqVY41w9URTQc0LBmi5JMouGAzn14q4GjAgCgOu5o9AAAAEBrGRwfcEuuWC1otvT2tj3hdmJ/rwor6berT/12xYobBFADqLvl5JIiMTuhseacrlzOBHIwsZDvYiLlWsbXYxwAAAAAAAAA0GFiKj7vaKyhMB6ATapwXsY5XwJ0hL1Ltyaj4YBGTh7OXxJBrzLnrjZ6aAAAbBoJJgAAoNRqCQL7ypZELFOSW/DspCKWx759TeoVDLxJK/49r/Tcm7tPe1ZIMiXpXM+e/ASJc3EmTwCgjkxJricxbPX6TSl7nmBiQcHEgnIdVgAAAAAAQNvKzQO7zRlTjAcAaqlyIkkrnGsEWtVq+zd8/9Axvv3Wy1f6s5miZaMzSb3ky1R4BAAArYMEEwAAUCx3Miz08M35VIV79Ll2MVlOMjGVS67wKGI95rYCXzoVmtvdNVlh/bEWqGxSNnHmJFhI0vt3daXaNLkk/z5P7AqkpFyLV+fySDKr33n52rMNHiGAztLUgRr//JUZ9WczK53oBAAAAAAA7aAkyeTaD3an0tF9TT1vUUtpnz9mX6wWmO8HAABrlTtXvNI+Tsfu/6CzpH3+WDq6z3jqa3M69fQFff+vzyo+NaHShBMAAFoVCSYAAKBcxDJf37bjOVWeADIGxwfKq49ErFzXjlWSKwbHB4yvRx7ou7F9S6W7NHVlE186ZUoK/cOnt14v7N7hsF+79pX7fLzmXB0em9Wppy8omFhQyHyvjxOGAOrGTnqb+Uz3LbebY8be8q5bdfSp3047/+WECgAAAAAA7S5ihdLRfaF0dJ+WMl1+2cWUWqRrd9XY88OGluf5DeaMAdRIpXlX5mOBWopYof/8yCddi0k2+rwMUA8F+7t582d2anG6u0EjAgCg+kgwAQAAruJDp8340OmVEkU2c1LMkKTLB7ZuYhWN5UunzN/+rZ/svPiljxQll/RnM4pPTbT9CcO9S7f2SbnkkmBiofRmThgCqJ+IZZ54+tDWRNBbtDgR9OrssV1X6jGE0ucuWWbaiTAAAAAAAKCN2YkkpfOihYkWncLt7zU6LdEGQB3YBYhcbmE+Fqixs8d2XYmGA0XnR6LhgM4e29XXwGEB9eK6X7t4ORf/EuJXCADQBu5q9AAAAEATi3hiOvIF15tWST5Z0d6lW/ve69qq8709bskJLWV0JqkT+3P/P5q92jEtT7/91stXTuzvXekunCwEUFfRcEDDmpUkne/tcU36qIW0zx+T/Vw3tm/JJ09GwwG9dvNjqeefmtzw7yUAAAAAAGgpleZEmSvNMUTQN4Bqi1imIp6QnG1txGI+FqiTRNCbOxcTLlrMbz061k+19foOXR9RedI5AAAthw4mAADAXcQTk2RUSJjY1MTQt996+YpUMOnkopk7YKR9fqdDhynlkkxGZ5Idk1ziGJ1J6oEPspVuZvIQQD2FJOU7Sg2PzerU0xd06ukLNa2O6bTAdpIlt9+4rcJxvL5tx3O1em4AAAAAAIBWMnLycKOHAKBdRSxz8MgXzBez/8O+v3niIetvnnjIevGZz73a6GEBba7SuWDOEaPtVYpx+W+P7PmJ3V0LAICWR4IJAACoxJCKkyecS3xqYtMrH51JSsoF4VY4ADeaMcnEHlNMkpGO7jPmz+wsvYvZSdWR/PvmGz0EAFB8asIYnUlqeGzWrTNWrIZJJmXrDSYW8mOID51mEhkAAAAAgA4xcvKw6zxAvbqsNgu3v9dexjwJgJoZHpuNhcz3+pz52ZD5Xh9JJkDtxIdOm19JX5wsLMD4lfTFSc6LoBO4xbgkgl6dPbbrSoOGBABA1d3V6AEAAIDm5ySWFDAU8Rgbrr4QsUL9EU+sP3uvca5nz0r3rFnV+Y1wKtUXLluc7lbkd/r1m59ITz4+N3OlY5JLIlZIEY+VCPZo/oa3KKA7EfQqGg6Y8QYOD0DHMfqzGaUTd1a8XXUMYngkmdXnd0zX6+kAAAAAAEBzMKLhgIbHZvML7LlSPdHAQdXba09+LHW+t8f/SHK5+3U0HKAQB4CaefGZz70aKi88pJD5Xp9easCAgE4Q8cQel/oen5vR/Jl3tTjdLUl96f/otySFfOkUv/toZ2Y0HDCGldvvP9/bQ0I1AKDtkGACAAA2anPBuhEr9Lk/3Td3rmfPruoNqeZcE14eSWb1Z+HP9P2Z7zOhjkqqiFieie/2vft6eIdf4eXFw2Oz+p2Xrz2rISZQAHSmJx55U8pKinhiHZN4CAAAAAAAlAh6NRI83OhhNNQXrs36Xzl4r6LBQH7Z6ExSmypaBQAr6J16f1+jxwB0qvkzO53kkkKxtM9PkgnaVnxqQif29yoaXt7f7c9mcvu8Qw0cGAAAVUSCCQAAqMTUSh1EqhAwe2w+ffbH93zcON/bU9QBo8DkZp+jzupaIb8ZvL5tx2uS/FIuscR5H4OJhb606Y/50ikCqwHUgynJmH2oS4E3lspujBl79z1bgye9dGhb6tClm/7CZbMPdclXPC4AAAAAaGppn9+QZDCPA2xOfOh0aHB8oKwLtjpsfmC5I3qy9KaOmz8HUB892dtXZJ+rAlBfLsklDn730ZbSPn9M2mc8pTk9pTn96Mv3yL/vhr3/y+ceANA+7mj0AAAAQJPKJZCEJKVcbq3OQXHECo3OJNV98Ja+/wd73O7Rl/b5Y/ZJ7mbg+nef7+2p9ziaxsM35x+VipNLChi5CRYAqLHcb5b5xyMPOC2o8xJBr84e23Wl2k+Z9vmNn3/sTv/lA1s1fWCrEkGvEkGv/njkAZ3r2SNJJlU5AQAAADSztM9vpH1+S1JMuXkcq4nm4YCWFJ+acILLJOWSLeJTE8wPSFUpWgUAbo5MvfPY3O6usqJ1bssAVA37N+g4duxD0THzb/35+womsg0aEQAAtUOCCQAAqCximYpY9ymXaGLmL9U9ERSSpJf/0W6d+d3dbrcbWqmTSh3ZVRyLJsui4UBhMHPHTaQ9/85rr61yl6Z47wB0APu3ydkuJ4LeSr8rm2YHXMWCiQUduHxLBy/fkvPckjSxK5AiaAIAAABAC3ArDEKxEGCjIh5DkjE6k1R8akLxqQmNziSlzvteuc2Td9zcOYD6ckkyMY9MvfNYwwYEtLtcgS1z9qEu15tfObrTrYgl0OpcYx8WL291/ss+LwCgbZBgAgAAVpdLNAnlL1Ve97mePaYkbc/+otK9miZJwZdOhXzDV8zvPr9bIycP55NL7Ep0TTPOeopPTWjnLz6sdDOTKADqKZ9kIknHfzinYGJBp56+UO2OSmXrKuzi9PxTk/dV8bkAAACAjmF3so3ZnTQ6LSC7afDaAxvWkfPDZZa7o9eqaBUAuDoy9c5jvnTKY1/Y7gC1FrFClTrLf+/LPn+DRgU0SshOvAIAoC3c1egBAAAAKHeSacWTb3a1+Px9GjwxbIzOJHVif+7K0exV9WczDRxOQ5mSjN5PvKf5N3Y2eiwAOlx8asI417NH82d2FCV82Iy0z2/40qmaTe4Oj81qx/H5Wq0eAAAAaGt2UkPh/JCR9vljBAc2BEExADbHrmre6GEAAIDai4YDGtasJOl8b09ZwgnQLhJBr9v5R/3nRz45+WzkGvu+AIC2QgcTAADQcPGpCfVnM/mK8xU4QQaGcgEGVl0Gt4LRmaRGZ5KdnFySP1GYCJZPFiaCXo2cPMxECoB6MvqzGdfJXef2Wj65f9+N3G9CxEO1XwAAAGD93PbXDbvoCGqgUuDXyMnDvObARuS6dLjNhzJHCgD1EPEYinhi9oX9GaA+TCmXZBINBwqPMdj/Qdsp+YxLyh1Xnz2260qDhgQAQM2QYAIAAJqB4SRqnH5q7V0wEo8cmhscH9j0BPHg+IAxOD6wnmBg98qZuROInSdihU7s7zWj4YBGTh7OX+yEISbwAbSdq/d2XS9dNvtQl4584j3nKidOAAAAgOphbqFG3KoL2/M5HNMAG1WeZGJ20rxx2uePpX1+y77ESBIEUDe5oj+FxepIMgHqID502i3BNhQfOs0xRYtI+/yG3VEUqzOdJJNE0JtPrAIAoB3d1egBAAAAOEZnkhrs+4L2XPzlStXn8z5x9cNdw2OzsUENhOJDp83CiQ9fOrWmk3Z2Yolh/9+SZNoTYZVFLFMRT0i5iWopN2nW0ZNkD9+cf/T1bTvcbmLyHkA9mZKMSi2qr97b9bu+TazcDoqI3Vuy3JlEHp25pf5sxrS7OwEAAACogpGTh814owfRphJBr5kIeg2Fi5cTDAZsUgcllBSy5+cL54Od/7NNAVBbuUQSt/NRMUmeOo8G6DjxqQlJ0vyZnVqc7pakWPppvySFfOkU+wFNyD7fVbTtTPv8liRzrXEWnegr6Yv7/sz3maKkkv5sRqMzSVNDDRwYAAA1QAcTAADQeHZVtxP7e9f90GBiQaeevhCzJzzyEyH29RUNjg/EhsdmjVNPX5BzCSYWjNW6ogyODxiDR75gKGJ57EuIYGJ3/dlMo4cAoJPYvyduLaol6d6rSzs3WYXJ9bHORPLErkCqU4NIAAAAgM1y24e3l1G8oka+kr64r3Tu5ivpi5MNGg6A1ue2vTboYgKgDtjOAI2S6x5kFCSXFKKbWRNyiqmJfbd1e+wvft73J3/6d/q3p95WfzbjJJdI/A4BANoQCSYAAKA5RKzQ+3d1pSRVrY3oakHEw2OzRmmF++GxWf3Oy9eedVmXkfb5Y2mf3xoem41JMgbHByy7A0rHe/6d115zW/7ZD24QlACgviJW6OGb86lKSSbKTY5Xdds9PDYrSXr+qcn7qrleAAAAoJNEwwE5+/HOJRoOaNVOs9iwx+dm+kZnkopPTeQvj8/N9NlVwAFsQuF8sn3p5HlktikAALQvQ5JbcknR7Wgqq+2X8p6VsPftrcXpbt39tkeBN5Y0PPauk1wCAEBbIsEEAAA0Dd8vPsh3ARk5eViJoFc3tm/ZzCpXDCIuTS5x9E69v6/wemkVD7trSv45Vut40iHM+NREvlKHU63j8bmZFxs9MACd5/VtO56TKm/nq+18b0+uYxNBWAAAAMCGPXxzPuUklTiXh2/Opxo9rg7FsQ2weaVVoate8KJVjJw8TPdvALVld7Z2uYXtDwCs0y8+csfvNnoMTajsGHlxulvzZ3Y6V/m9AQC0nbsaPQAAAADHH777uv833r+mE/t7JS13MgkmFvRIMqvtN27rwOVb612tkfb5X5XUp9yBvelLp1Y8wO/J3r5Sssj1xN/w2KwzRkOdPmkQsUxFPKHRmaSh5QmWkCJWZ78uABoiPjVhnOvZI+lO19s90qPrXedKQSDdB28VtsBmuwcAAICWYxfXKDymd4RWm0ep0vPH/lDyS1c0+1CX3n24S7MPdWl0JulXxGMwv1B7i9PdWry81fm/6Ys0djxAK1thDqGtk7ei4UC+y2vhMjFfAqAeIlZIEU9hcp9pJ54AqC1TkjH7UJcCbyyV3fjK0Z2pJ+s/JqzM1Ar7pR/5xa93pn3+mC+dYhu6bKX9eJM5CwBAO6KDCQAAaCr92Yw+/UG2aJlTvfIbf3S/EkHvRlbbZ/9rSIrZQRNShZNau+eW6LqxERErN1kfsTz2hYkUAI1i9Gcz+tGX73G90ZL8aZ/fWuvK7MAQ18njaDiw3AKbE5YAAABoQaWdW0sUzqPU6vmLnjvwxpL+yY9/uryf3eYB2Q1mSsuVVxenu7U43S3l3veO7LQAYOMSQW++M7kzp58IehUfOs18CYD6KD5HxbYHqAe7g9AfjzxQdh4/EfTqe1/2+RszMKxgLefwO7b73nrcvrZlkt8bAEC7IsEEAAA0D/vg+4tzlyvexTkptUmGJPmGr5jdBxeLbrjjo7++5VKZc7VJFhIpAKAJ/Zej+/PdsNysY3K8YnJJIuh1Om/xWwAAAIBWtdp+ca0TPMrWX5DoQCJ3LeVe29D8mZ1ut5LYA2zQK0d3ptyWV2Feu6k5iYHRcCA/Z1KQLAgAdTM4PmAMjg/E7Av7NECt2cdszu+/k2i60vkZNM7IycNF7xVWV+mzPPx/Ba/UeSgAANQNCSZAC/F4PFbJpW7Z4h6PJ1b6/PV6bgAdJ9Sfzag/m6l4h//6Lz7hunxx652/WuNzOJPJxo7j19V9cFF33p176K8/vGNr2ue3SoKOy4KGnYmxr6QvTsaHThNUDADNJb9dXmly3CM9utJK0j6/sVKnk0eSuY5bn/3gBhWKAAAA0M6MWncxcbN4eatEInftrdCBloq1wMZ878s+v1sQ2vnengaMpn76sxnFpybkzO+PziRz8/yR+p3PBIAXn/ncq8Njs7FTT18wTj19wRgemyXJBKgPUypONC1cjqZirCUJ6NKhbSueQ+skzutV6ToAAO2IBBMAG1bPBBcAHSR3UtscnUnmT0YV6s9m9J03f6jvPr87X1XDOYD/6jc/e+caq2w4E1n5CeVffXBn6X3ywRN2R5NQ156lVPfBRXUfXNQTj7yp+NSEHp+b6eMEGQA0Gbslu/MbUum3wZL8KyWQaJVKztFwQP3ZjB5/+vJjGx0qAAAA0ATWEvATq3eSyY7j100SuRsrZuzd1+gxAK3KmbN25q9HTh7umArRozPJ5eSSHAJLAdTF4PiAETLf6wsmFvLLgokFDY/Nch4PqLH40OmQCn7zh8dm9e8jb0+eevoCCV5NZnhs1hgem9Xw2Kykyt05UMR09ukLO8AAANDOSDABAABNzUk0cS6jM8n88h/9vresCko0HND0ga2rrbbohNbidHel++UnvHzplPn2U3f5o+H7tOP49Y3+OQCAeolYodGZZKg/m1m1Quh7Pv+7JddfWCXxJJ9cMjqTpBInAAAAWpadNLLWgJ9aBQa5JZGESC6pH7fAmETQq7PHdr3YgOEALc8JsHSpDN3uiRbuf98KnZIAoJq++tL0C27LCxNOANROfGpC3//rszr19AUFEwvaPbfUp1xRR86hNIG0z2+kfX4rmFiQcxkem63YjePQpZt+3rucr6QvlhVfsLv3sZ8LAGhbJJgAAIDms8YAgp23F12XZ7dvcV3+y7u1tO3BD75ldySR3AMY8py2r2mfP/bysQffnT+zQ+d69mjwyBd0Yn/vWoYIAGis2OhMctVW1U4nk7TP/3ba57cs6asrrfTM7+a6aB3NXnUWMYEMAACAlmMnlzQ8WMSXTpkjJw+blw5tSyWCXsWMvZMFczeog2g4YBYmmdjHUGZ86DTvA7BBpd257QC0Bo6oLkyVz5GQLAgAQCfIFeIyFi+7FoIkyaQ5lBWNKEwyqfSYenczbUaP/cXP+/7kT/9O//bU2+rPZpYL0NWuEAcAAA13V6MHAAAA4CpieQoqwjsVIa7Y/654oH6+t8e1GtGFB7xdF7+0+6ujEc9rilhm7uIJJYLemNv9Pz631ONUsD906aYkaVizioYDOtezR+d6ruZOElJREwCaXiLoVSLpXa1a3afWsq6//NIeSdIrPfc6vwMEXQEAAKAVuc6v3Ni+Rdtv3C5b/srRnaknazCIwfGBmCTjW88cdBb1nR0fiNkdAFAH8aHToa/d7Hs3Gg74Jenhm/Op+NSEqaFGjwxoUXaAZS7oLFl4S3sHoOXmR5gjAdAwhy7dfE4uCdSXDm1L+RowHqDDGJK0ON3d6HGgMtd90Z2/+FBfnLu82uM6ch9vuTBHt+6WdLeW9Omxd7Xj+PVGDw0AgJqjgwmAFXk8npjHk5sIb/RYAHSgiBWyL4/Zl9x1j74lyakKUSYR9JZV2XCq15/r2aOv3f/ocovsiGVGwwHXqhze7O2PlS5zqnhI0sSuQEpUYAOAZmZKylcMPd/bs+kVFnZCsX+H+B0AAABAW9l+43bZPMmN7Vv0vS/7/DV6Sre5Z2NwfIA56XqJeGLPv/OaPz41ofjUhJ5/5zW/OCcAAABajN0Fr2y+1k48AdBAc7u79q1+LzTCp29lFU6/VfF2XzrVyefByo6LF6e7NX9mp3O1IxNvAACdgQQToAnYSRzWaheXhxpredxmLsrtLHMiCUBzsZQPaIhPTag/m9Gu2x8W3SUaDmjk5OH8pTAg+PVtO0oDIkKFt6/V69t2vEbVegBoaqaUSwTpz2byyYY3tm/Z0MpGTh7OB9p9JX1xMtdti98BAAAAtBdnvzkR9Ob3nbffuK1TT18w0j5/WUXoGmJeun5ck3wU8fAeABvTcXMFaZ8/lvb5LfsSs6s9A0DdFSSZmJJMXzrlsZcBqC1TKi7SVejrkQeu1HU0cOOaKOJ043AryJkIetXhxR9W+ttDnCMEALQzEkwAbJhlWZ2cpQ6giYzOJPWdN3+YTzZZzcM351OF1+NTE0albiirYMIAAJpZbmI3JC13vUoEvfrLf7Z33asqPCnywAc39PjcTB/BVgAAAGhldhXSorkNJ7nEsf3G7dKHGfUKGo4PnWb+ufE45gE2Ijcf4TZ33JbbNTv5sHB7QfE6AA3lS6dMXzoV6vCq+0B9RayQJLP0mPLG9i2aPrBVX31p+tHGDQ6SNHLysFH43jjv1bmePZJy58GcYhOJoFeXD2x17sp+XYnF6W6T5BIAQLsjwQTARrGjDKApOVXqV3J9y0dLK6QYTmX7tbAnXkLxodNsCwGg2RVM8Dq/D86kecHkeEVOR6zC34hvXpp0/sukOgAAAFqa0/XVCSBxgk123f5QwcRCpYdVez/YbX6FOZdmEKHIFLBhdpBlwaWdKxy7dkGiiwmAhol4DEU8MfvCtgiol4gVevjmfKrw2HL7jds6ePmWDl266a9zR0yUMxJBr0ZOHi6aCxj/+IGfOHdIBL0639ujYGJBBy7fUjCx4HQz7chtaaWOPCMnD9d5JAAA1N9djR4AgJbVrpPgAFpBxAop4rE28tC9S7cmv/3k2cfcbnMmSyq5sX2L/vKf7VV/NqPRmaShIbaFANAiTEnG6ExSJ/ZL53r25APogokF/eMfzqkne7uoOrMzsV6qKImRYCsAAAC0sMHxgZjsAJPCfd9dtz/Ud978odLa5/q4ud1d+3xVGkPa54+dsgOTZz7TfSv1G1u2vn7kntTzT02yr11fIUmlwV68B8BmMW9giPOJAOot4invqhTxtHOSH9BUnn9q8r7B8YHYI8lspQTUGN2FGiOYWNAjyWxZ0sTbW3v+TtL/MTqTjJ3Y36vhsVm3h8ckeeowzKaSCHoVVSD/mjgJOAAAdAISTACslynJtCwmYAA0WMTyKOJ5V5K/9Kaj2av5Vq6F+rMZjf5Bwi25xJRkdB+8pWg4oP/5r98rCjJ2/OU/26tE0Kv+7C0pNyFtMCENAC3BlH1ScXQmqX/52e26tuWjkqTSYLqVfPqDrEZnks5VToAAAACgLRXuK7sV4jh7bKeOVOF57Oq1+aCj/RcXtz744bx+f9tFf67adMcHZtdPbn7LYwdkSpLJnBeAzSJ4FEDd5bqVuAW1d2RgNNAo8akJpRPuBQvQGGmfPzZs//9U4kJRB9Pfm0+lFLHM/ohH8alMxWITHZocZCaCXmMkSMcSAEDnIcEEaA5rPVFTOhlS1xM8lsUJPQBNJmLd51KJSP3ZjPqz9xYlmdhdR9y3m7mOKLGj2avGiWCvEkGvhsdmi4IoCgOQC4KLqcAGAK0gYpmKePIVeb/z5g91Yn+vazJiJfbviHN1kmArAAAAtCuna180HNCwiudH7E5/V56tzlOVBf8tTndr8UC3ug8uUtijEUjqAWrGTqozfelU223XouFAWaXraDigxPhALD50mu0KgHpySy4BUE8u5+5LGGmf32jHfaJmVVrcQcp1Mwn2LujzO6bVn82UFfSsoOPes6+kL+77M99nipbl406GGjQoAADqhAQToAnY3UBW3RH3eDyWy2OZmAXQ2XLJIYUVifIV6qVk4T3NFU+SR6xQf8Rjjc5IJ/b35oMoJOl8b48SQa923f5Q4fRbtfgrAAC1lksyKepk8q8PfVRv37191YeWJJdI0ou1GSQAAABQP783n0r9tx2V40j6s5lcRdNw2U01DSpZvLxV3QcXJQp7AGgDJQF9RtrnN9ut8nMi6NVI8HA+ycSZTxfbcAAAOpEhuSegFoilff5JXzr1WP2G1dFcE37+t7N/rx3HrxcuMiUZlbqZqsOO0dM+v/HYwcW+3ukLmn2oS+8+3KXZh7qc84Ud9VoAADoTCSYAAKD1RUoS9XKVUSTl+7deWWsFxlwQ8XKSSaHvvPnD0rszaQAArSWfYCJJ37w0qXM9ezS+e7+uf6Rb17Z8tOjOLokluXVQRRkAAABtIPR/XzWO7Lyl6x/5aH4OxN4HviZp1+hMUif2q7TzXyg+dLqm+8P5ABe6aQBocW7VopVLMom1U5LJ3qVbk+91be0rnU+v9e8FAJTJFaVz2/ayPQLqLBH0KqoVk0z60j6/pVyHt7bZL2pRZuG/53t7DEluSSZttx9bSdrnNyTFFqe7JUmBN5YUeGNJXzx+XTrY2LEBAFAvJJgAAID2s/EABFOSUZhkIuWCK45mr5beN0SAMQC0mFwXk5AkJxFR/dmM+rOZta4hRZAbAAAA2kEu6LnLH8gsKaAlnUpckG/4inPzLkkhSc+OziT7SjrEGhqqToCeW0XbaDigiK5IBAECaG+uVaRb1f+SebvvlZ57ixISXQp2AEB9lCeZmMzpAnWVP99+LrhHGlv1/q5JC3airiSpExIaaunSoW2pQ5dulrUvffehLu0oLKpmF/VMjA9YiaBXpxIX3FZnpH1+w5dOtfsxu+v+ekHH1Xb/+wEAkMeyrEaPAcAaeTye0i+saVlMhqB9eTyuFWYcfP5RfRGPoYKg4xWQXAIArcy9it0aHmd5qj8YAAAAoL4qVNRX98FFp3uI6Vb9ef7MTknSrxfvSO3625/dt9lxDI4PWJLySSbne3uUCHr18M351PNPTW56/QDQaC8fe/Bdt2C+S4e2pY69/Fb7bOciZecvHQR1AwDQiexjyRP7e/WZv9DGzA8AACAASURBVPqFWyeMSkKSnpXUV7KcLiebMDg+YA2PzRa9D9FwQFc/u2Xy20+efaz0/l/7bt+7r2/b4T/1tGuCidQB70eleRNJ8g1fWTVWxCW+z0GcEwCgZdDBBGghlkVAGwDUlEtl+woMUZUCAFqXS7DcGjDhCwAAgLa2ON0tHZe0POdhOMud5BKb363C7EZFw4Gi669v2/FcNdYLAI2WPHLPFbcEk59/7M6yZW2KOXQAADqRfQ5mdCZpDIa/oGHNrjXJpNI5eiPt81uSQh3QOaMmouGAFC5bfMXlrvrCtVn/Pb9cWml1bf8ezO3u2rd7rvw1mNvdNemjECkAoEPc0egBAAAANBW79WujhwEAqLFcBc3JNdwzJTpXAQAAoAN07Vly3fddvLzV7e6GXdFzM1z3seNDp9n3BtAWzh7bdSUR9BYtSwS9ioYD7badc/t7TOZSADRS2uc3po7c/2ra57fSPr81deT+Vxs9JqDDGJLUn80oGg7o8gHX48r1iqV9/vV3p+9wD9+cT7kt/0r64j635f3ZjEZnkirdjy0Qq8J8QFP7euQB1+Sbs8d2ui0GAKAtkWACAABQKhd0vNLJL06MAUA7iFiPqXJnkpRywRD3ERABAACANuO6f7uU6XquZN83JNmdTWo3jtKx0DkQQDsxo+GARk4ezl9Kuza1hfL5dNNeBgCNFNs9t9TnXNk9t9RHkglQf0ezVyVJ3/ij+6uVaEKCyTo9/85r/v5spmjZ6ExSj8/NuCZROKLhwEr7rm3/PoycPKxE0Ju/RMMBnT22q2/1RwIA0B7uavQAAAAAmpLdulfSo5L8BbdQxR4A2klum+5RxGOocEKcQAgAAAC0qZGThxVMLOiRZFbBxIKkXOBIIuhVvPCOEctUxBOSVJPKpHanEuZYALSt+NBp8199/3cm3+vamg9E27t0a/LbT55tvzkH5lEANJGpI/e/uttleWHCCYCaMyUZuW4Y0pjvwXygfjCxoOGx2UaPr6OMziQlJdd6d1P2+bJE0CuNud8p7fPHfOlUW+8DuiTYMIcBAOgYJJgAAABUwkkxAOgcuUQTJoYBAADQCQwnsEfh4uUq3SeOWGYs+7nJkPleWTDeyMnDxQkpAIBiEY/xbal0+9mniMegiBEA1E62Z8u+3XNLjR4G0NmWizka/dmM+rMZndjfq3M9e5QIejUSPKzhsdl80YN1YB9q/dwLR1SKhci9d0bw53OnEh/bvbPSSmPG3n3PVm2IzSU+NZH/vDpyyVJJaaiBAwMAoI5IMAHagMfjqUkFuZVYFkHXAAAAAAAAANBGDLeFZ4/t6lu4Z0u+wmwi6NX53p5NPVHa53fmtA1JZrtXPQXQsVy3q3JL6GtRaZ+/sCOs6Uun2uLvAtDakkfuuXLo0k1/6fJE0CtfIwYEdKpcooLlXB2dSerEfuWD9qPhgP7j5be0/cbtsodOH9gqSTp4+VZ+2aVD21LHXn6LfY31Ku9OunrBtYhlfv6lvbHuX/0y33WmUCLo1dlju15sxwSTtM9vdO3Z/ehTmTn90wd+pkTQq9mHuuwuMBX37wEAaDskmAAtyuPxOBO27LwCAAAAAAAAADarYoCJU2G2GuzkksJ5bePab3783V2Pzz1HRX8AHaItzu3ZySWFRfCMtM9P0iCAhnv2pR8/9qI+92ppF753Pnn3ZKPGBHQwUwX7PqVJJv/7f3iwrJNJNBzIddyUNDw2qwOXb2n7jds6dOmm/+VjD7576NLN50hqXafcsbZnPQ/Jd575Uq+k5SSTRNCraDhgxodOt9174OzfLmW6JEl3v+3Rb739vr54/Lp0UFKbJIkDALAWJJgALchOLql71xIAAAAAAAAAQGuLT01o8MgXypZ/JX1xX4WHFFY6XV7P0OmNBhCXBVYvZbr8i9Pdse6Ix1SE7tkA2l67BKa5natsi+QZAK3PSTK5/x8+6JPkBEOznwnUW66LSVGRgdGZpP7lZ7fr2paPSsollChceRWFHU7s7kRt0w2uFYzOJHXiS72KhnNFJx64lf1JG29PXfdlFy9vVffBxXqPBQCAhiLBBGgxJJcAAAAAAAAAADYjPjWhE/t789ePZq+qP5vpq3Tfcz178vfvz2Z0NHu16mOyAzYITAbQPnIBlZbLLW0dEJn2+WN0MQHQDJ596cePOf9/opEDATrdcpLJo5L8kvSdN3+oE/t7851MKinsbFLASPv8Bl1Mai7ffWZ0Jikp6Sz/lCKeWCcVh1ic7paOi4IYAICOQoIJ0EJILgEAAAAAAAAAVEMuQKRIpeCcWH82o/hUpnhplQNKdhy/XpP1AkBDRSyPHVDpMBWx2j0Yst3/PgAAsF7OMV7E867sJJPRmaRO7Jdrkolv6QOlu+5eaY10Mak1l+4zi9PdWry8VZKMxWj7JfnM7e7at3tuyW35pI95CgBAh7mj0QMAsC5UbwMAAAAAAAAAbEalAJBVA0MWp7s1f2an0tF9uvaD3Y9u5MkTQa/rsoKOKm0VoAIAueC8/KVttnGVtuftFmgIoIVFPDFFPJb9L7EWQDOIWPep4JhvdCap/mxxMYP+bEan3vp/3Yoi5NEtrU4Kkiqc+YDF6e5cRw8plvb526pI8tcjD1xxW3722M56DwUAgIYjwQRoEXb3kpUmPUxJIcuyPPW41OnPBgAAAAAAAABUUy64OaTiRI6Vgp5NqTiYRJKWMl3+tM9vrffpo+GAouGAEkFv/hINB3Q0ezX3XG0UfA0A7czZljuc7fng+EBbBRoCaFHFVfcNSbGSjlIAGiWXtFCWZNKfzWh0JplPLOnPZhQNB8oe7rYMtTd/xjXJou2S90ZOHi6brzh7bFdfo8cFAEC93dXoAQBYs5V2ykOWxUk3AAAAAAAAAMAa5JI41jqnbEoyKgSTKO3zx9ZZPdZMBL1GaeX7/mzGLKyOCgDtyK7ybLZLl49oOCCFyxa3xd8GoIUVJ5cUartAaKCFmSr4TlbqVpIIejUSPKzhsVlJ0vneHiWCXg2OD8TiQ6c5fqyPoveq1AbmBJqeSxIT+7cAgI5DBxOg9ZFcAgAAAAAAAACojeWOJ9XiltwSIrkEQDtL+/wxu+uTISlmJ5q0tP5sxnV5fOg05y0BAMDK1nmcWdgJ08b+Rr2UdJwpFTP27qvjaGoqPjVhlu7j9mczik9N8HkDAHQcOpgArcMtG9wkuQQAAAAAAAAAsB7rrqAfsUxF/StWLV0rO/CYeW0AHcPe5pZuP41Wr/Z8NHtVknSuZ09+2ehMMtc5gKRBAI1Vlf1WADUWsUxFPCt+X/uzmaJ9DQcJrXUWsUKJ8w9ZwcRC0eJE0Kuzx3a9+GyDhlVNaZ/f6Nqz+4WnMnP6pw/8TImgV7MPdTnddQwxjwEA6DAkmACtjZ1XAAAAAAAAAMCalAQ5G2mf31xrcHPM2LsvZL5XtCwR9CoaDpjxKo8T7avgMzhpL7qi9SQ7Ae2lpYOf+7MZu4tJsvQmvs8AGqty0DrJb0CziVghRTylybgpSa9J0tHsVUNSaZIJ3+UGiIYD5rBmDSfJxJ4PaItkn7TPb0iKLWW6JEl3v+3Rb739vr54/Lp0UFKL77cDALARJJgALYzuJQAAAAAAAACAtdhsBf2zx3b1LdyzRY8ks/ll0XBAopIn1qjkM9hXcJOR9vlDJJmgXc3t7tq3e27JbfmkrwHjqSL3iuMRzl8CaALLQesOk+0T0KSKv69F39V+Sf0RT8xOaDVKb0ddma89+bFHo+GAX5KCiQX9+8jbkxpq9LCqwjWBZPHyVnUfXJSY8wAAdCASTAAAAAAAAAAAADrXmitxJoJeJYLeWo4FbapCglOh2Ho66gCt5OyxnSrtACVJ2Z4t+xownGpyAu0Kv9t8hwE0j4gVkvKV6Q1F/YbonAY0J/v7Wr58ubvJ4nS3Fi9vNX79g4+/u5Tpeo7vcn3FpyYMSf7F6W7Nn9npLO5L+/yWpLYsGLA43S0dl1nx8wkAQBsjwQQAAAAAAAAAAKBzrTUIpKhS/fDYrCTJn/pwX5tULEWV5YM5157EtOaOOkArOXts15X7/+EDBRML+WWJoFfRcMB/rHHD2rxc9fC2CyQE0F5cklzpnAa0lnxySUFSg18kqFdkb/ckSVV+fQxJhe9DoZgkTxWfq64qdRx8/6Dnuo/kEgBAhyLBBAAAAAAAAAAAoP0VJYisV3zodOhr3+17d8tP7vQ7ySW2vrUmBRQEuhhde5ZSux6fe02SaQcpo/3EVr9LmQ1/RoFmFg0HpHDZYrZ9AFBDBcmupVo6EBroRBWSGjh2KGBv84qOwaaO3P/qkal3HqvT87dssYCvRx64curpC2XL/9sje37yYAPGAwBAM7ij0QMAsGZMMgMAAAAAAAAANmTk5GEjEfQWLUsEvRo5eXhtK4h4Ys+/85r/n/z4qtutRmGVVDcF1aMNSVrKdPnnz+zMBcBEPBtJREAdpX1+I+3zx+zLqoFcr/Q/8PYmnovPA9pKfOh0pUC7lj7352wXGj0OAKhkbnfXs40eA4DaYl9k2aVD214oXbZ7bqlv6sj9r9bj+V85ujNVj+eplZGTh5UIevOXaDigs8d29TV6XAAANAodTIDWUVZdzuPxxCyLVnwAAAAAAAAAgNVVqKC/1qqvhiQF3lja6NOXPc/idLcWD3Sr++AilWebmEslXCPt85uVqtO++MznXv38wu1PVVpfIujVA2/f1N0f/KrSXYxWrn4LuIlPTYRO7O/Nf48++8GNycefvtySCSal24S0z29JCvnSqZb8ewC0r2zPln275za874pV2IH9Jtt/1NhqnTj5/NkOXbrpd1ue7dmyr0pPYUoyEkGvgomFshvf29PV8skY0XCgdBGfLwBAx6KDCdAiLMtipxUA0JbSPr8xdeT+V9M+v0WVGQAAAAAAamPv0i3XoJK9S7cmq7H+ud1dGwpaWby8Nfcfupg0M7f3xjXIa3B8wAiZ7/Vtv3HbdUVOJdg/+sZn3YJ3Vl0/0JIiHkNSbHQmKefy+NxMn728FbltE9iGA2g633rm4GulHfyk3P4I1q+go51lJxcakmL//fOfufbiM597dXB8oFV/19DMIlZIUqjSd5kEpzqy34vzvT2u29GQ+V5fq57rj09NmP3ZTNGy/mxG8akJPl8AgI5FggnQWkqrdRkeDyfdAACty6l2t3tuyaloYtiT0gAAAAAAoIoevzbjunzn7Q/XmhhiSq4VPSVJX488cGUj49px/HrR+tE63IKHvvrS9AsrPeZ8b0/+/4mgV9MHtrrezyOl7HkjoB1U+iy31We8VQMKAbSv+NDpUDQcKAqEtpNd2e/cmJhcfrs+c/HnO+//hw/6JMVIMkFNRCyzwndZg+MD7H/YYsZe1+IR33rm4HNVe5KIZSaC3tAKxQJadRtgOIng/dmM+rMZjc4kpdb9ewAA2LS7Gj0AAGtnWZbp8XhK2z8aHo/HoMMJAKBFuU76TR25/9UjU+88Vu/BAAAAAADQrh6fm7ny5t3bda5nT36ZHTThX9MKIlZIEU8sEfQaUQU0PDYrKRfYU5g0sILSuW11H1xcvi3CHHcLKnrPBscHjP94bani5+mlb/j19t3FlW7P/O5uHbQ/S4UsyS8plvb5Q1QlRhtrt4A1vqsAmlEoGg7EFM5fN+NDp0sLe2IVaZ//1ZVuDyYWFOxdUCLojUny1GlY6DDRcEAF32UH+x+2Z1/68WMv6nOvhsz3+qTcsfo7n7x7Mj50uqqvUXzotKmIx0xrn+u+7Hs+/7t706n7qvmctXbtB7sfvaP713pQv1D/8WThTe22vw4AwJqRYAK0GMuyQnbXksKd2JjH4zEty2IiBADQFrI9W9ZaPRUAAAAAAKxRrgJnsnTx2oNNIlZI4wOxRNBrjAQPr2s9vnQqZHekMLr2LD16R/ev/Xb3ElMR5rabWSLoVTCxULTsxvYtevOz9zz6pP2+D44PGMNjs7HtN267rmP2oS5989KkzvXs0ZjvQV3b8tH8uhPJ8vUXMETQGNpXS36253Z3TRZ0pM4jGQxAM7IDq0l42ISpI/e/ulsq2+6XGh6bVSLp1aAGYsol8vC7gGoqK1ggPmdlnu35/66ceL5XknQ0e1XPZt/cUKfRFUXKYtaKWJI/7fPHfOlUSxzn57rwdeULJaSn98k3nH/Z+HwBADrWHY0eAID1sxNJSndiDY/HE7OTTwAAaAmFrYwBAAAAAEANRVznlded3BGfmlB/NlO0rD+bUXxqYtXH+tIp05dOhXb97c/u2/Gjax5FLA/JJc0vGg6UzeFsv3FbR1+5/tW0z2+kfX7jT/7Nxf+0QpKIej/xnqTcZ+U7b/5QD3xwY8X1F6BiLFpflba/zWJ88N6+0u9sNBxo0GgAALX0/SePvOCWVFiJvT9oiH04VJndeahwf4puRKXsxI/RmaRGZ5LOcbuhiKfa30dDWvU8v2EXmGhqueSS8u3V/Jmdzn9JMAEAdCw6mAAtqkInE0OSPB6PpZKdXLqbAACa0TufvHsymFgomphOBL2KhgPPHWvQmAAAAAAAaFsRK2QHlxj56+tnjM4kdWJ/7srR7NXlwJVVgi8GxwecAkmGCAhqKed7eyp1GYlJ0t0f/LLiYwuqv+Y53UxO7O9d7akJ6EF7qM72tykkgt5cQGG4ePng+ECM7ToAtJd73r/9r9b7mOGxWUXDgaYPLEfriU9NFCWYaKhhQ2lK82d25r93drdQR026QkbDAQ1rti27US5Od0vHFVLEasnxAwBQDSSYAA3gkhhSC0Xrt5NOqsayLNrIAgA27dmXfvzY/3Pnb8xt/8mvdjnLPL/3wSTtjAEAAAAAqJFcgMSmj7tHZ5Lrur+dXFJUMIlg5NYwOpPUfHJHdVbm0bdk6atSrpvJpz84oL+/u0fRcECnEhfK7v63v9nzG77qPDPQeFXa/jaxdv7bALSySD4+I7cdJmB4TQbHB2LDd3m2rvdxwcSC/s2NdzSoAYPzfaiaXKJurGCJoYinZTvCVZPdKSQmdeeXzWtnaZJJ1fVnMxWP49oAvxUAgI53R6MHAAAAgA4W8cT+xccu7HrikTflXB6fm+mrQateAAAAAABQHZWCLCoGX6R9/tippy8Yp56+oOGxogqnxuD4AHMATa4/m1F/9uqGHlsS1BTSv7Oek5QPAvvGpVedDjgaOXlYiaBXN7ZvyT/gN/82+6m0z18YSAa0tLTPb6R9fqvg0nKfb+c7W7osPjXRgNEAwCoiRcU/c0HYuWVYRTCxYFTqTHDh8D23tML+/4HLtzQ8Nhv7/pNHXqjV+FqRvR/A529j3F43jiVzyl6HxeluzZ/Z6VytdqJESFruZpoIeiuOq9k/7zFj7771LAcAoJOQYAIAAIBGyk94zZ/ZqXR0n3OJ2dVWAAAAAABAM8lViC0NUKlY3dMOKMkf4wcTC3okmS28C8f/zc/ccfy6Zh/qWvMDbmzfoh3Hr6v74GJ+HfnPSMQy5dG3nBtGZ5L69AfLn4ntN26Xrq7pA5OAtViuLl3EaLV50NGZZFGSSX8243S1aqm/A0AHKE4uKcT2ag2Gx2Zdl79x5GO//J8+d/EPfOlUyCOlKj0+mFjQ1lu//GrNBthCnART5fYDnGRTPofVQMKYVGGbdm3LRyUpVPVOHBHLVMTy9GczqdGZpKLhgKLhQMWxNfNn/eyxXVei4UBRkkw0HNDZY7v6GjgsAACaAgkmAAAAaLj5Mzu1ON1dupgkEwAAAAAAmtFykompXMBKaIV7lx3bBxML+S4m8aHTKz0WzcH82v2Ppv545IGi7iIreeP3uguTS6TSpKSSTiZfnLu82iqZI0I7qPQ5brnP9+hMUvGpCcWnJpzkEq3yWwAAaBP/6P2f3aVcJxjL+1s3Fle6b6UOKB3ILQmCxIjqqHZ3jrbx3q8/lqp6ckkxv/OfFbqYSE2+r5sIehUNBzRy8nC+q6b4XAEAQIIJAAAAGsqU5JZc4mjqCScAAAAAADpWxArZlw0FXthdTAjaaAURy3x9247XJOnyga2r3v27z+/W72+7WPh4j+vnJLdsUsp1QCjsiFDq0qFtFatjA22g1eZA3bbdbM8BNCO2TRswOD5gDI4PWJVu7z5wK///uz/9wad2HL++4vrSPj8F5SqgS9+6FH2fF6e7de0Hu2udQNESKnUP+dYzB1+r81Bc+dKpZk5CrvT56fjPFQAAdzV6AECHYkcUAADJDkap2KJclw5te9RX5yEBAAAAAIDai4YDJt1LWoopyYiGAxrWbMVq1NFwQJGZc2tfa8R6TBGPJeU6IvzFA5+REuV3+/nH7vSXLwVay6VD2x49dOmm2/JUS82B5uZ0DRXO6dK9BEAzilimIh5T5eeg2GatLCZJ0we26uDlW2U3lnSpU/fBRe3Qdc2f2Vlpfc7rT5xMOV6TtbLPKS9OdxsFnzV/2ue3JIV86VTHvpaJoNeMKmAMj80613W+t0eq0+drdCapE/t7lQh6y44TE0GvRsYHjPjQ6aZ8f+JTE8a5nj16pedenevZIyn39/RnM4aG+H4CADobCSZAA1iWZYoDRQAAciJWKHH+IcstMCF55J4rx+o/IgAAAAAAUD0h2UFqhcuaNcAE7uJTE8aJ/b0617NHpUkmN7Zv0eUDW3W+t0eJoFeaKnro6gGcEcujiOddSf7Zh7p0d0lgUiLoVTQcMJ+o6l8E1N+3njn42vDYrN/l8+0/1rhhbUyEc50AWsRyoTNd+8HuR5cyXX5JhqJ+dXJA+kqCiQU5geqlKnUrWUeSSUdyC7yXpJGTh404v6drF7FC87mEklIxSZ56D6dZxIdOhwY1EBsJHi78npl1OOY2JRn92YziUxkNhr+gYO+C061UUr67iqEm/pwvd9NMFi7u6G0WAAASCSYAAABoAm7VLxNBr84e23Xl2QaOCwAAAAAAbI4duOdJ+/yxrj1Lj3YfWLxy92dvxhTxmFS8by2jM0n9y89u17UtH80FCoXL75MLzMkL2UHoa/GaJP/R7FWdCPdK4Vxw4yPJrIKJBf2vH17+3e//+ZEXnvz+1HOb/0uAxomGA0WBd3bQXdMG3AFAW4hYobTPH5PkdEQzJBlpn9/0pVPsj5aolFwy869/JV920fU2KZdk0n15UYvT3bUaWsuyu0kUnQdlH6C60j5/rJO/z/Gh06HB8QGnsEM9kksKu9q9IHv7mgh6c0UHtJys9sTfvNGU70va5ze69ux+dCnTldt+HbhV2KGJ7yYAoOORYAIAAIBmEIqGA7Fh5SatnYqX8aHTTTnhBAAAAAAA1m5wfCCmk7lqqv3ZjP9o9qr6sxlDEU+MJJOWYUoywum3dGJ/b8U7Hc1eXb7/2pNL8uvvz2Y0OiO9mfm4Br67XCH7Mxd/vlPSV7//5BGRZIIWZkoyCgPvWo0doC3Zlag7OZATQOuwt11u1eipUL8OD/7VL6TjK9/nrS99RPu/Wb780qFtKV9thtUSrn52y2Q0GOgrTNDeu3Rrkq6OVdXZr2XEE4svb9MMTXnWk+y/iee1TKdLVH82o3M9e8q6IKVzXWdCzdQ1Ku3zG5JiS5kuSdLidLcWp7u1Q9cLk0wAAOhodzR6AAAAAEB8asIYnUkqGg4oGg6o++Atjc4kZVc9AQAAAAAALcquopo/vj/Xs0ev9NzrXDU49m8RueCkUC4BJFl286c/yCo+NeF0MFl/dxp7/ZIm+7MZPTR10/Vun/jpEp8XtCw7iLQ0sM5slSI7BQHa+eDFgoQTAGhac7u79jV6DO2g+8CtwqspSZOl93ml516nM0feje1b9PJv7/SX3reTfPutl/sKO/31ZzP69lsv9zVwSC2rUpJuMyUv1F0uwaP0OClW72Pt0ZmkRmeSlbogNds+o+trs3h5q7SR41kAANoQCSYAAABoBkZ/NqP41IT+0ws/1lNfm9P+b96pdHRfzK4gAgAAAAAAWlPZcf25nj0617On4u1oUrkkkEknyaQ/m5Ezn/ONS68W3m9jwTi59V9Z6S6HLt3s6OBEtL741ETZpYW4Vv9n/hZAszt7bGejh9AyBscHYpUC+Auq+k8qYt2niPWYPPpW6f0SQa9GTh7OJ5psv3Fbw2OzSvv8HX3Ob3Qmmf/tzyds250fsHbne3vKkkyi4YBT2KBTVfpe1f37VphIVaoVEpMXp7s3fjwLAECbIcEEAAAATWP+zM7cxE2xjp5wBgAAAACgHeW7mBC80WpelHKBQ06F2hI1rRx86dC2VC3XD9SUe3Vpow2CS5m7BdDUzh7bdcUtaaK000anGxwfiA2PzRrbb9wuu23H8euFV5cTgv+d9ZxyXegkKb9vGEwsuHUxKOyChZzO7bqxQYmgV9FwQCMnD+cv9veb17Jx1vraN817VKmz1dzurrLOTAAAdCoSTAAAANAMTEluySUOJpwBAAAAAGgjdvBZ0wSYYI1yXUZWet+q8p4+1vcPrst/+okuPjM1ZlcXj7VCheE20tJzn750ikRBAE0tPnQ6FA0HlAh68xf7OvsVBYbHZo1gYkEHLt/KL0sEvZr5178q7F5SniBud7lzro7OJPVIMlvpaVr6N28T3D9rudcO6+P6msWHTnfya1npb6/Pa5LbJuS3C5W6IPnSqaZ5j74eecC1cyYdrwAAWHZXowcAAAAAKGKFKlTwAwAAAAAALWx0JqkT+3vLlklK0b2kRS3P40iSU/n1SlXez4I5It/wFb06+cn8TZ77bv/kyejUc5t+DlRkJ5UYBdctXzrlaeCQOkXTBNut5NKhbalDl276S5f5GjUgAFifUDQcKEyeNONDp9kXLRBMLLgu+9ED26VtGWdRpd+sfLB2fzaj+ewvtKiKReU6kfO6FZ4H5fO3MbyWBdI+v+EcknUfXCzsNmTWNYEpYpmKeEKSYud7eyQVb1Oi4YAS4wOxZtrujpw8XNRp6XxvjxJBb9+zDRwTAADNxGNZVqPHAACAK49nxWBz07I4AQ20LyWBewAAIABJREFUm3Of/9QH+y8ubi1dHjP2Tj770o8fa8SYAAAAAADAJkQ8lqR8ksnR7FX1ZzNSxCJoHZX9n54XZOmrkjT1073aHb8jf9Pc7q7JI1PvME9UZaXJJQVMOlRUScRjSHLrDGO2QsLd4PiAFUwsFFWlj4YDkhTq8KrhANAW0j6/awCZHbSekvTair9XBYXkzvXs0f5v3ll2l0TQqyf+5o2OOg4o6ApniP2qzXPfnwp1YjeYXHJJ+b6lb/hKQ1+PwfGB/LbESeAIJhaa6jhucHyg4rFPNZJgPB5PpYBc4pwAAC3jjtXvAqBZeDweq8kusYILFecBAJt24ulDW0vb5iaCXp09tsu1TS0AAAAAAGh6ppTrWjI6k8wll7RItX40kCW/VJ5cIkm755b6vv/kkRcaMq7OxPmfaskF+pVu/1oiucSRCHoVDQfyFxufEQBoY3ZHBL9W24fP/Z6ZkvRKz72FvxOSln9DOklBAq/zW2kUJJxgY9xev059TV3/7nR0X6P3zUwpl1wSTCzkO5nsnlvqa5bP/wpJJMxVAABgu6vRAwDQ0goPSgyPxyORbQ0A2KRoOKBh5aqZ2K1oGzwiAAAAAACwYRErZFeZNYqWAWtwa7pb0lLZ8k/8dMmQ9FzdB9SZCLKqpjbc/lWjyjMAoCmYKkka7D64WHjV0FqSTOxOJomgVyPBw9UeY6txC/Q30j6/4Uun2Meqpogn1o77Wa0oPjWhE/t784klJZri8//TB/e8+p923dbfb+3Rj758j6SCbqtDjRwZAADNgw4mAKrNcLqbNHogAIDWMzqTlKR8BTwnuSQ+NdHIYQEAAAAAgM2IWLkK/c4F2KRDl276Gz2GdvPK0Z2p9SxH53HmbsuW5ZIIAQAtzpdOhSSFug8uyrnY3Uty1rIfbyeXFHQuLEVSRQ6/ndXXcZ+tSkUaLx3a9midh1LKcNtvLLy9XgNxk/b5Y798/66+xeluBd5Y0lNfmyvstsp3EwAAGwkmAGrFSTRh5xsAsGb92UzRicrS6wAAAAAAAOgAuQDGikFilw5tI+mhyr73ZZ+/sOCLlCsC870v+0jmqYG0z2+kff5Y2ue37H+b/nxafzaj+NSE+rOZ/LwtgXgAWkbEY+Q6HHgs+0LBzAIvPvO5V//miYesRNAbM38z8JO3vvSR4uQSad1J4oVJJv8/e/cf3NZ533v+cxQpDCXFpEWxtgRClGXRrhJbpeC7N6aoZth6s9OtbJX35h4o2cl2uuUoW0Uzd2zpznK22c2cudPsVLMrxdMdXaXFaqa3c5tWOO2uFgnV3u5VrUkk0d67AVnZtevQpklBMO3SoklHEsLI9dk/gAOBwAF/Ajj48X7NYCQ8+HEegiDOwXmez/M9cm5SZ49d19lj11UL+7xyy4R5sDre3xEsp+ECJj/e11rQFg+16PTzu172oTvL5uf7PxkIRuVx7Dpzqc39b8N/PgEA4FrvdwcA1L2oYRhhx2m8L3MAgFWxe2enzNio56pGAAAAAAAAaBSWE95vGeb3P/35aCg+l22Oh1oUGeg80edfz+pWPNSSDpgMLGhmklWJZSbW5k5sNiWZyUAwHEgmqn48rWBBICpTAagN+YGSTOCEz7DvPP+Fa2H73R73eiiux8a6WhLqm3InqdsrmLxvK+fYYXBiRDOXbig13uw2ufs8uxFCFvFQi3KPY922oxcORmP9Q3X/85eJ+17MPUZtyNcyHmqxI+o0nxqZzbZFBjp97NFCXu//Dx/coCuHu08dPj96wqdueUqNN0vPSGrASjgAABRDwASoIY7jGLnXDcPwTFZ7WOoAeKnnWOzxy9m+uYw+AAAg5Z14zrZxgh8AAAAAAKDxWI79nGXYf/7458wdr85LkrY8M6NY/2uMOZTY9vm7He82bfRqH/ahO/Wu2NhatY+neZ+7BYBqV7xaCSFKSbnhElfX2O3gD8ydN5+dnvjOiipDWI4ty8juL2YuteWGS3I1xGsfGehUaN+cPAIA7D9XK/1+5PVLs+OhFjO3AqEkuwrCS7Yk033//6v/8109+OE9SdKDH97TgSu3jicDwR5J36mWcHXzrpTEnAQAABYgYALUqCXCJbYke6VVQzLPKY/nNTPPV/RAepHHSpJpGEZ0sccDACDJPfEcVu7+hBM5AAAAAAAAjSk9IdT8yubXJXfq42ymnXNGJfXdNy7fPLlzn662bsu29c5OaXBi5KaP3Wo01T3Z1nLCsgxTnLsFgIawJfapHvXoplY6mT+9v4hK0iepdU9LCpahe7WiWACgKibVo7bFRi/qaus2XWl9ONs2ODFiqt/HTkm5x4xRSdlwSZ4eST2VruAXNbd3hO13C9p/8M8DH/ym9QHHtQAA5CBgAtQgwzCcIjctGgJZivtYw8ieHM49kb1oSCTvsV4rgFT3SXEAQPVg5RkAAAAAAAAUMXOpTc2P3DU918LGmgxOjOhq63vZSWqDEyMS4zslN9a1+emusdte7YmAD/1ZEc7dAqhNXhWY3HYUse+hdyXJlGWYK6piImUDiBuubDk1P9V0vAzdqwmx0Yv2yZ37TDfAmwnv2r4HAOpEMhDMnddkV0s1jAqK9s5OqXd2amFrNYTxLcfWhYP2UyOzS32XiEoyKtElSXqpb+vNuQc26KmRWYXic5LSVYXioZatv1mpTgAAUCMImAA1JqdSSK5VVSwpJvM8tkeVlCUrkTiOYxuGEZZHyIQqJgAAAAAAAAAAYDV+8sOANr2ZnnuUGm/WdPfua92jb+33uVt1x2OSWqNN1Cu708/vevnssesFq7lf/mJbsM+H/gBA3bMcW9b9OQyp8Wal3tmoex9s6Pg4EjQbcFL6AtPtTcPt0/M9uW13HncU2JVyr5pazfGAZUS/+7V95uf+8ufZidyuyECnrNV1t9ZE04HdkQVtquCE+nqVCZfkzksyk4GgHUgmGmZO0syltuz/tzxzy8eeeIuNXtRP7gS01Ns9Gajs53A81KJ4qEUaWNDc0PsBAAC8rPO7AwCWzyPwISldPaRU4ZL851XhQbRZJOSS+zhbUsN8aQMAAAAAAAAAAGVhSwvDJa726fme0e7d13zpVT2yPMeEbN9XP65TR8/szU5ui4da3JWTq3ZiWzIQjCYDQSdziWYmdQJA7UhX4Ai/cSl4a+ZSm1Ljzfr4o/U9khr+My0T2M3ug+487uixLybv32E1xwKWka0skdnH5e/z1tzvmmYtPucGy+L1GjbE33IyEDSTgaCTGm+We8kNm1QR87EvJjX5RNNS94smA8FK/U1U7fE2AADVhgomQG3x+jJU1hP7juOEi1QyMRcLtWQqmeQ3N8SXOQAAAAAAAAAAUAKZFcenP7XxjzcptTH/5vzVtrF66UldHVr/wMfDDx1+76ak1U0oxXLYkszIQKff/ViWzIS/BeOEmX+ZoAegpiQjHXpAjtcs7IavKBFIJsKZUEj+JO/VHguYknRg9j1dbd0mj31eo+9DGv3nL5tkIBhtgComBXOvUuPNmlGbtjxzq6oC4ldbt+nk0cd15NxkQSWjPBWZTxbrH7K/+R96Eq9u3pKtJtg7O6XB34pXzWsGAEC1oIIJUCOKVA2xy1G5xGs7Hm3LObgveJxhGIRMAAAAAAAAAADA8liOfe/ep2553dTwq1+XSE6AwPz4o/U9yUiHWU0T0+pNrH/Ilke1mFj/ULW+5l5je2ajr/gPoPaMdW0+5Xcfqprl2LIcQ+l9lC0pnKn8smq9s1ManBjxuqnuAxbJQDD6wQ/aE8lIR2F1iTW+rlhUI7y2nsdgn6TWJartGP5K68OS0pWMjp7Zqw8f3OBrfz74Z79w48QfjgX/+NQrio1eVGz0YvoziqpCAAAUoIIJgCWVuBqJqcb4QgcAAAAAAAAAAEpgpPuBm11jt4P57Z/96T8l/OhPPfGoTpFtb4DVn30TG72Y32Sq34+erAljfgBQ4y737bkhSV1jt4NjXZsTfZff2FGSCeqWE85M2DbTIZP0RPOP1jclvv214R1rfv4q5x5fzU81SVpQXUJafVUY5IiHWgoqYsRDLYoMdCrmU5/89trmNvX53YmFwsqrivQX/3K7jpyb9KUz6b/Lpux3yuR4hwJHbrpXCU4DAJCHCiZA7fA6mK3kSVuvaiSLJrgdp7qS8QAAAAAAAAAAoPa88OIr+/OrlcRDLTr9/K4TPnWpETDJqlwyE26LtNcMAkgAas3p53ed8Kp+Nta1uSEDq5f79tzoGrsddEO8XWO3g1e/9NgdWUZpjgHSQRVbylYysRshXJJR8BqmxpuVjHSsuSoM0iIDnQuqGbrhEjXAMWzm5yxw+vldL1e4K4uzHHvwt+JG6KfT2WqU8VCLZxXKYj9TqRQL1edUF+LvEgCAPFQwAWqY4/DFEwAAAAAAAAAA1DnLiD73lHTyy/uyTQdm31Ns9O9N9TMZqEx4XSuvKidERgY6C1aajgx0yvKnOwCwarH+IfuQDoaPaDLqVj7ITEo/0edv13zhVR1u5+upjaO7t0e7LcMuWSWTHMlA0NT9/Z0dSCYa7XiD6l8lFBnolAYWtsX6h+o+ABsPtdgRdZru8Vk81KIf72v1uVdFWIZpSW0nd+7T1dZtkjLHlrp/bPnjfa2eoZNKSI03S89I4u8SAIACBEwAAAAAAAAAAAAAVL3BiZH8pqqckF9jbHm/jkyyqryqfM3joRYdDe3NhkzcSYCHLhyMNsIkTgD1xQ2ZaCC974v1D4Wf87tTVebueLP0UOmPsTwqCJjJQDDcSCETqn+VVFhSfvW3Rnl97XioxTwa2ptt2D5/d7hKj8tMyf0eN6JzgT36v9sfKXvFkuVq3pWSJCoLAQDgYZ3fHQCweoZR0VLZDNIAAAAAAAAAAIBqwkSgNQokE3bU3D6cu2pwZKBTjTTZ0wfFXtuqfs0jA52KDHTmrjBd1f0FgGJi/UN2rH8oXKWTsX23v+ft9H+s0s1HyatckquSc14qxqsaQyacybybEomNXlRs9KJ6Z6fUOzulwYkRxUYv+t2tioiNXjQHJ0ayP3vv7JS++8blHllG1b+/BpJvqHd2yuumsn4eR83tHV7t//6pR4cJlwAA4I0KJgDKpsIBGAAAAAAAAAAAUJ+KVdnAGh26cDCqvq09L/VtlQYWtjPxtkwsx5ZlhJV+T7vv66pdOfnJ2zOJVzdvCea3fftrw1XZXwDA8ox1bU50jd1e8Pk++USTAvevluZz3jLMj3YFzz4w7pTk6WpBZKBToX1zempkdkGb0vt99p+lEZUKKhxGJRm+9KayTDdYkt+uant/WU5YlrHgj39wYkQnd96//i/+5B8VaJt7Qf3l6/tLfVtvzj2wQU+NzCoUn5MkNzjd80K5NgoAQI0jYALUDq/Bk4oMphQLijiOs5qBher6MgMAAAAAAAAAAKpbekJ+/jiJLWtV4xRYHgI95ZQOk9TEmNm333o5eHLnPl1t3SZJ7irhQVmGWa2hGADA0vouv7Hj/OHuUx0zd3/HWPfJRimnekn6OKtUn/HRDzd+Wg9ovkRPVxvioZaCSiaEdyvAMqL1/B0hGQiazbvalBpvVvOulLY8c8vvLi1HWHnVigYnRpQab9bMpTZJhmbV2jMbCEYl2eWqpJj9mxxY0MyxLAAARRAwAWqH5+pchmFEVxn0WBbDMIqVKl2Ogsc5DieaAQAAAAAAAADACtXxRDE/PXl75ulXN2/xak/40J2GlSzzhLq1Sq8OPpLfXH2rZAMAVuTw+dETkk7IMqK6P7+jdCHe9PPqR199QLf+8ufZygGueKglt2JKPSmYUJ9pQ/nV7bFJMhA0JUVT482SpNR4s5LjHQocuenepTp/9nRYLV1ZxjJuSAreD5cscP8zqPSKVcSsztcMAIAqQMAEqBGO49iG4VnJ0SxXyCQTLvGsXqIlDrKLVD3hwBwAAAAAAAAAAKBK9My9d/PVzVuC+e2//sFkQRtKLxMscSe7mclA0A4kE7UxAZXQF4BadT9Mka4m1YDVmEa7d19rn57vkaTp9qbh9umO75Rz/zM4MaKTX94nqSUbMomHWhQZ6LSfK9dGfRQbvShJOrlznyTpwOx76p2dkvr97FXd8Q4M1Pffs+f8rZlLbdryzK1a+Sw7ISmaemdjsdvLUkUxNnpRV1u36Urrw9mqfIMTI/xdAgCwCAImQG0plqg2M4EOu1QVQjLPV/TAfbFAy1KPBQAAAAAAAAAAgP+enZ64+eC9ea/JVrUwQa2m5YVLXGYyEIxWWcjEa3yS9weA2rSwUocpyZRllK5iRw3IDZdIUvv0fM9Y1+aOQJmrBrghk8jA3uxtsf6hen3do5JbAWxBm+eqslgV9/2ae4xSr++nRd37YMNwzXyGWY4ty/Cq8FNuZu/sVDpQsrAqHxX5AAAogoAJUEMcxwkvEt4wlQ6a2FpD0CSn8shiAZGCLyaZaifuxVM5qqwAAAAAAAAAAABg1eze2SnTY7IV/FNdi7hZTliWsXAMsFYmMQJALmvRuRYNIzdc4uoaux2c+y+3nGr5TzMnSrqxvMnk6cDFiCSFa6TaQmlZRpR9aImk3z8N9R4a69qc6Bq7XVBlcKppkx7yo0OrZTn27+75leH/+fhbBZ9F8VCLAiXeXDIQNJu2tT89P9Wk5l0pNT9yV827Uu7NDfX5DwDAShAwAWpMJmTiLHIXN2giLfwyVRA6yQmT5D52KcXCK0ulyxvqix0AAAAAAAAAAEDVS0/8zK9Q0VAruVeh6htTa8BJnADq39XWbTL+aqNuPNmk7104aMb6hxr6c+7vP7Xl+H7LCJb8GOB+yMTMXG/kY4yGfo9hbS5/sS3YNXZ7QVs81KLIQOfNmE99Wq13mzbejAx06si5yWxb5mfRcyXcTjIQNCVF56eaJEmp8Walxpu1RbfckAl/kwAAFEHABKhNyy0XmDsY4IZO1sJeZRWS1T4OAAAAAAAAAAAA5dTYEz19EzW3d4Ttdwvax7o2P13qlZtXKxkIuuORpiQ7kEzwXgFQy7KByj+//Tn9cuQjSfPqfG1em96cjJ7/s+7Th8+PlraCRw1x/uu70myZVvNvoKBiplpCYl3zJ8G8SglqyKotKJl4qEURdeqpkdlsW2Sg08cerYkdD7WYR0N7y70dz8+01DsbCZgAALCEdX53AMDKOY5jO45jqLIHuoRLAAAAAAAAAAAAgBJ4qW/rzXioZUFbPNSi08/vCvrUpQUy4RJT9yfmmTmBEwCoPZmQw+j72/XLf/bRgptC8TltvPvxcX86VllRc/twftuPvvqAemen0lcso+yf9d95/gvXvv/cE87lvj03zh/uPlXu7VVKTrWEYGq8WTOX2jRzqc29mXkzWCvbrfLhXtx2Pzu1GpmKUV79rsjfSWq8Ob0tQl8AABRlOI7jdx8ArIFhGO7J3XKxlQ6JLHpQbRiG14cJ4RKsyRLvb95fAAAAAAAAAACgJh26cLDYGIgd6x/yffwjGQgWm0gQDiQTTMYDULOufumxOztfT230ui2QTBiV7o8fDl04GD1ybtKUpDuPO/rK5tdzby7rpOvLfXtudI3dXhCmjJrbh1948ZX95dpmpRTbdzbK+8ovjVRx7eqXHrvz//T8wkY3pPxrM4nT3/jt6zVbeemb/6HnxgMfzwc/Wt+U+Or//l7qwZsf/0+lPM4c7d59rX16vie/fbq9abh79K2yfeYUmUMnMc8JAFBD1vvdAQBr4x54lilosuqqJVpGKAUAAAAAAAAAAABoULaKBEwq3ZEVMlX9fQSAou7d+9QtSZ4Bk0YR6x8Ka9RzjoldznDJn5z4pelnxm5vzW8P2+/26MVybdV/yUAwWs+hBz/lVFxzmfX4ers/505JR16fVPNLKW155pYkHZdlvFyTlTgsI/ptya3244bOoslA0FY6KLTmn+lb1uM3zx67XtD+Ul+butf65AAA1Ll1fncAQGk4jhN2HMdQulzgWg6ybUlhx3GMFYZLFjyOcAkAAAAAAAAAAADgLdY/ZP/aTOJ07+xUtu3rydeHY/1DVT3GVm8TNgE0nr7Lb+zwah/r2pyodF8qLRkImqPdu69d7ttzIxnpsLVwboktq4wr61tGdPdrdwrCJQ2iqvftNc4rrGsmA8FSL9DrG48QjTKhDPdq7f2sVjrglvdzuEyV8Gc6emav4qGW7CUy0KmX+rYWVDUBAAALUcEEqDOZYEf2y2mmsslyHremEwWU8AMAAAAAAAAAAACWyTLMb0jH01dG3NYeWYZZDatQj3VtTnSN3Q7mtwX86hAAlFZYUnYuxVjX5kSx4Em9OH+4+9QB6Xj79Lzap+clKTp64dHh7tG3jLJvPDOZfOu9n0kq/+b8Eg+1KBSfK2iLDHQq5lOfGljdV1xLjTdLz/jdi7VJvVO0mFRJQzORgc78prp+bwAAUAoETIA6R/ADAAAAAAAAAAAAqDrFJs5VxYTI08/vCobic3pqZDbbFhnoDJ6+cNCs9iorALCUQDJhKyfp0AjhuQNXbh3Pb2ufnu+RZUTLWrkkx2NfTOrahkfV+dr8gvbp9qbhevgdRAY6dUST2ZCJGy5RlezbG8nRM3vrPtTTvCvl/rcW31u2KlB5JdY/FD504aBTZPsAAGARBEwAAAAAAAAAAAAAAKgOZZ9st1zxUIvioZb8ZibJAkAduTb8qLm//CGT7GTy/T1v65ruh0ym25uGu0ff2l/GbVdUZKBTGljYFusfYmHYMilWNUb1dayyWBjDrobKdytmObYsw44M7DC/9s3pgpvjoZbSBP8sw4xJOrlzX7bpwOx76p2dkvpLsQEAAOrXOr87AAAAAAAAAAAAAAAAJFX5hEgmyQJAfdmYroJgyjLKF3BMT4DP7t/297ytwJGbChy5Ga6ncIkkr30k+80yigx02pGBzmwoNlM1xq6namtHz+wtCPzGQy368/9u++lKVR8qC8sJf7S+KZGp8pOVU/mnFExJGpwYyV56Z6ey7QAAoDgqmAAAAAAAAAAAAAAAUEmWE5ZlRLVwgptdLRMFBydGFqz27LYBAGrTWNfmRNfY7WBuWzzUouce+nv3ankrVN3f77lqs/LCImL9Q7Yswz65c58pSZ+/8+Hws9MTVEooo9joRfvkrn1mJJQOJPTOTik2erHeXnPTqzKOpOA3fOhMKb26ecsJhRQ9GtorSTpyblKh+JyO/3Q8kTwWNAPJRLk+IwiYAACwBMNxHL/7AACAJ8MoGFjJZTtOdQyyAAAAAAAAAAAArEp6xfj0WEiVhEskSZbhSMqGTA7Mvueu+Fw1IRgAwPIdunDQPP7i+Ck3ZBIPtWjLMzPuZ7tkOYaf/asLhcFRif1meWWOVwrb6+f9fOjCwaLzZmL9QzX/cx66cNCUFHXDJXnsQDKxqr+fZCBoNm2bPzU/1RRs3pVS8yN31Zyu2CSV+e/SMIq8L5nnBACoIVQwAVDXMgEFyetLfEapD96LbNPdnu04pV2Fo9LbAwAAAAAAAAAAQIlYjp0MBCXJVCToKD3GY5dxxeYV8ahaUhX9AoA1ux8GsFWH1TTyxfqHbPXLdn/ugG5Ks9mbffnZMxPn3f7Vw6RrrxCAKcsw6/39VXUsI9oAwZ66eE/FRi/qjUvBWw+MO20eN6+q0kgyEDQlReenmiRJqfFmpcabtUW31LwrRegLAIBlIGACoC4tUflCubdlkuNrTokvsU233TQMw1YJgh+V3h4AAAAAAAAAAABKy50Al9NkSjKTgWDY55CJLe9V2BlvAlD7FlaaSFeSsozGmHRsOeEF1bPctor2wTC/ufvpU0fO/zToNh3SQaceqjEU4QaZUDl183rH+ofCHlVM7DoJZUlS9CHdVUrNpXxOz7lUd17fnGj+k7v18roBAFBWBEwAHyxSCk9aJOiwxOMqynGqs5ykYRj5J+GXy8wENlYcxMhsc+EJmCW2ldleeDWhj0pvDwAAAAAAAAAAAGWz2GJi/o3rpCcg505mbIyJ1wDqn1V0IcdVrZRfCy737bkhSV1jt4NjXZsTfZedHfJrH2MZ0ZM795lPn/+pQvG5bPPZ+HUd0sForU6aTwaCZvOudAGG5kfuqnlX6v6N7D/LqSECsbHRi7rauk1XWh+WJA1OjJjq97lTpZD+PNaNJ5rUPl7+zc1PNQWXvhcAAJCkdX53AABKZQ3hEtdKQhu5lqqWUvRxmT5X+/YAAAAAAAAAAABQWf6P6VhOWJZjZC5MjgVQt2YutSk1XtLV86vG5b49N7rGbge7xm4HpXTIxA2cVFymcsov/9lHC8IlriPnJv3f962CW40sNd6s1HizZi61aeZSm3sz+89ySh+f5IZJ6i8QmwnF9c5OaXBiRIMTI7ntdeE/fuEhxUMtBe2Rgc5VPd90e1NHkfbhVT0hAAANiIAJgHpS7GSD7TiOkX+R94ocbiWTZVnkvnbetvK/1LpW9IWv0tsDAAAAAAAAAACAL3xbeTsZCEaTgaCTuUQzE2cBoF5kP19H39+uZKQjGwq43LfnRr195rnBkvy24SOdb2YCH5W06Pa8Qic1omAeRiawFK63ShpVqXEDsfXwWZX9+4gMdCoeasle3Our8S3r8Zte7S/1tXk1AwAADwRMANSFTGWOgrKXmcCF5xfITLvXbeZyKn2sZJuO49iZtoKTB8sNtFR6ewAAAAAAAAAAACivo2f2erZHze2eKy+XWzIQjGrheJTX+BQA1K70hH87Nd6s9tjCaVNdY7eDY12bT/nTscpybmx4TD59vm+99zPP9nqrLpCMdLD/RDnVfngp/XkcdquyRAY6s5dMuGTVP+PRM3sLAisv9W3tKU3HAQCofwRMANQLr+DFkisTOE76y8oynm8529RS2ywS+lhWoMWH7QEAAAAAAAAAAKDMqmwCnNcYkllvK/oDaHCWE45Pddz1usmr4kc92t/ztiSZFa1ikq4uYQc7Zjxvbp+e/07F+lIZtR8AQDUo9j6qj/dXJmTy9eTr2YDZkXPBZXWyAAAgAElEQVSTOnvsus4eu661HIOWMrACAECjWe93B4AGtdgB62pva3QFAZPlPtBxHNswDFuFqzEVVayayDI3mb8td3tFH1/p7QEAAAAAAAAAAKByIgOd+U3VNo7D2BKAunLv3qduSdrodz/KbaxrcyI/NDP5RJMC969W9vPdcsLNlhHdoltm6p2NSo03u7eEA8lETe5n4qEWheJzBW2RgU4zxr4Ta2U5tiwjrIVV5cKZYEZ9sBz7Wcswn52e0MylttzPBVPpoLMdSCaWXGTYFesfCv/O+V+59m7Txmxg+8nbM4lvf2142c8BAECjI2AC+GA5lTVK+bh6ZxhGNL8tU5mknFZcTSTnfisOtPiwPQAAAAAAAAAAAJSf10JhbnvVWMmkPgCoBaef33Xi7LHrBXMNxro2JwJeD6hRfZff2HH+cPep4Ozt425bpnpJmuXDPBTLCTdLal7yjrUhMtCpI5rMhkzcamSqsn05alg6TFK/76d0JSUzL1ySa2VznCzD/K7Uc7V1m660PixJGpwYCcoyzLoK5gAAUEbr/O4AANSoVVdMKXb/TJWSatkeAAAAAAAAAAAAyizWP2R/Pfn6cO/sVLZtcGJEsf4hXya/Rc3tw8tpA4BaF+sfsq8caDud2xYPtej087tO+NWncjh/uPvUQ+/Pm/t73g7v73l7YbhEIjxYGnZkoFNHz+zV0TN7s+ESv/blqD/JQDCaDATreY5PyX62ZCBofvCD9lPJSIf2/OXP9a//9h80ODFS8u0AAFDvDMdx/O4DAKxJpoJJ7pcAe6XVXjyeQ47jGIvcP//DczXbXPZzVHp71cLr95Kj6vsPAAAAAAAAAACwKKvoWIjtx6ryhy4cdCTpyLlJSdKP97UqHmqRpDATZQHUo0MXDprKfA7H+ofqZvz5/OHuUweu3Dqe23blQNvpw3v+Lpi5arOSf+kcunAwd39u19N7Cf5JBoIF86Hqsqpc5nh49P3tao95r5ceSCaKzuFyZUI4BZWptjxzS827UpltFZ8LVioe87NczHMCANSM9X53AABKIP+kR1lPgmRCD0v1oWa3BwAAAAAAAAAAAN/5usJyZvX1XKYYnwJQhzLhubr7fMsPl2Tbzpd/cvWyWIYb7HH3LzUdeImNXsztu61+37qCOuERLpEkMxkIRusuZGI5YVlG9D9+4SHzczd/rlB8bsHNkYFOWct7Js/j59Q7G92ASc1+xgAAUGnekU8AqCGO49iO44RzLqX4QrCi51jlNlfdz0pvDwAAAAAAAAAAABVVVeM6rMQOAPXhct+eG373IRMuyU6eP7lzn3lt+NHoH77w1Jv+dmyVFv486f9bnguJAqXgawi5bCwn/NH6pkRkoFPxUEv24l5fi9R4s+RTdUAAAGoVFUwANDzDyK6M4bdK96EafmYAQKXlntDmJBoAAAAAAADgN1veYza+BEx6Z6d0tXVbQRsAoD607vkoKMswfa4Wkt3vXRt+VF+LTEuSOl/7x8e+/9YTznPff606qqwsn1eYhPkYKJeqCiGX0re/Nrzj0IWDjkclvWX9zNPtTR3t0/MF7R/tMm4FGBcHAGBFqGACNBDDMEzDMKKZC19mlQ2X5H/Ztx2HLxYAUOuSgaCZDASjmQv7PcswZRmO7q+eZLJ6EgAAAAAAAOCz9ATfsHImzr1//uHhZKTDl+4MToxocGJEvbNT2cvgxIg4lwgAtWWsa3PCq737oXcl70BExV0bflSdry2cDB6Kz1VHlZVSYN+JNYia2z0PBse6Nj9d6b5UWFhKfxYcOTeps8eu6+yx62YyEFzy7+lb1uM3vdr/+qltPyl1JwEAqHdUMAHqjGEs+IK61GTaBQlvt5JHvYYr8l4bqfjrs9K0f6VXB6jb1QgAoFQygZIF+8RkIGgHkom63Mctk9d+Lx0yYcUWAAAAAAAAwD/pkImdmThnSuqR1OPXOU03WJKH8SkA9SkdAjCV/pyzfa7sUTIb7n3yd3c2rW/bdOfjjW7b9KFPFHCvVPH4UNfY7aDffViuZCAYbd7VptR4s5p3pbTlmVu5N9fFewn+eKlv683db99RKD6XbYuHWhQZ6Az2+detsouNXjQlKXmuIF9jJgPB6FLHxkfP7NWRc5PZ6z/e16p4qKXnhZL3FACA+kbABKgTmfDEWldnNyWZhmE4ypw8cZz6OHmS+ZmWstyfudKr4NfcqvseYZ7VqveVFwCUD6WoCzX6zw8AAAAAAABUrZxwSa5lTaQrMdujH6qXCdcAsIC1YJ6FW/3drtbgxXK4i7DtzGnb8swtNe9K3Q+XpPn3uW45YVnF53CMdW1OBIrdWEXcfXdqvFmSlBpv1oza3JBJ3YSV4J/IQKc0UNBcv+8rK70w8syltmL3WNZ4d2SgM7+pWl6zp0s4n6pu5vQBAKoTAROgxpUoWOLFDZvUVdBkEXa9Vm7xCZOYAVQlHwZjq8rV1m260vqwrrZuU+/slAYnRvzuEgAAAAAAAIDFVXrMxR0TzN1uw55TBVDHrKJzLWp9rLtg8vLMpTYFdt1c2Oh3+MFyDONI55t6TY/l39Q6e++m10OqUMF7JTXerDsPbx7eZP+UfSfWyjv0Wz1hiXJY0+dvrH8o/Dvnf+Xau00be9y27fN3h797+KVq+XsMZi6lUs/vBQCAzwiYADWsjOGSXG7QJFznIZNs5RaCJgBQ1+p5X7aof7fjydN/vSV43L1+tXWbDnVvU6x/iP0eAAAAAAAAUL0qek4zGemQJAWSCaOS2wUAv/3khwFtetPQ5BNNShzuPnX4/OgJv/tUSjOXspU1pCoJDvZEJh8f7d59rX16PjsZfLq9abh79K39fvZrrWavtd7c5HcnUPNioxfN3MUDJWlwYkS9s1Om+ut7zPtvvvCQfnn8o4L2eKglvxLTAu/v2Xbtf9l6r+eDDZ/R//WbvyBJGpwY6ZFlmL6H6gAAqDEETIAaVaFwSa5ojYdMvPrtuRqJYRhRQiZr4zhOSQYdfHifA6gT8VCLQvG5grbIQKcZa9CQyV9vCR4Pxef01MisQvE59/XQoQsHo4RMAAAAAAAAAH9dOdCWOHDlVkH7dHtTx2IT6UopGQhmx2WSgaAjyW7kitAA6l62OsC14UfV+ea8JKnztXl1av74aPfunmoOOmQ+syVJ7md1MhAsOrb+7596dPgF64Oq+3nyX+NK7fPKiX0nSqV3dkq9s1OSRnKb63cOjeWEZRnRySeazH8Y6NSRc5MLbm798J6SgaAZSCYKxvvTn4nrez7+aL02SfraN6cVOJIthmSqOuYIsOgxAKBmrPO7AwBWbhWT7kt1kBw1DKMmv6g4jhP2uBhKr8yR//qYmdcYAFCjIgOdiodastfdMIWq48SRL0LxOR05N5kN3oTiczp77LrPvQIAAAAAAAAgSX/61UAw95ymlD6v+S3r8ZtFHlJSueGSHOZik5UBoKalV7O3f/LDgDpfmy+4ObeqRrVIBoLRZCDoZEKApnvJtF2TVHSeQ9Pe1HCl+tko8vfbbtuhCweZb4Jyqu/xbssJf/7Oh8Pu+P6HD27I3rTrnbuSFM0N2ElFj2M1c6nN/S/HswAArBAVTIAas8xwSUHi2TAMZ6nndhwnvIznj0qqm5LYmYostsfPbRqGYdZwxRYAaHR2ZKDT1ICyK5tkwhR1XzK4mPwVXlzHXxx/Wv0V7gwAAAAAAACAApGBTmmgoLlSE+KKbadaVnwGgNKznPD0lx67s0mpjX53ZSnFJlDnKBqI+dFXH9A3brx6XJYRlMXq+aUSGehUaN+cnhqZXdAm9psojWyVJY/2uvbssXf2/9GFg9GnRmbNBz+853WXZR0fp8abpWckNcBrBgBAqVHBBKg9ix0khx3HMdZSTi+nskfRg+s6re7h9fMWe60r/cWDLzoAsEKx0YvqnZ3KVuxwq3YovYpTPe7HFmcV33d3jd1+uZJdAQAAAAAAALAijBMBQBn9v59/8O/87sNSRrt3X9MqA4djezfqK5tfd69W7yr+lhGVZVRv/7zZbpUF9yLJjvUPse/G2qWrLIW18FgwnGmve7H+ofBnf/pPibU8R/OulPvfhnjNAAAoJQImQA1ZItgRLmW1jUxIpVhQxTSMmvtivyi3kkle83J/xkq/FnX12gNAmZiDEyO5wZIFtyUDwcb5LE2HS8ycE2gAAAAAAAAAqkysf6jYuFylJsQV2w4T8gDUtRdefGX/WNfmgknMUXP7sB/9yTfavfta+/R80eokS3nv8+sXNiyyKJkv0sESR+l5ENGq698iMvvu3P2kvcj+HFg5y7FlOWFZjpG5NM5xmWWYX9gxGSx2c+54f9Tc3uF1nx/888AHaqBQDgAApbR+6bsAqCLFJsOWNFzichzHNgwjLMnrCzzlsAEAtayR9mOmJDU/cjddBnghO5BMcKIbAAAAAAAA8JtlmDFJJ3fuyzYdmH1PvbNTUn/5N3/0zF77yLlJM3fRnshAp6x/e6VRzqMCaGB9l9/Ycblvz42ffvZTQUl669FNwy+8+Mp+v/t16MJB8+wawiXxUIu+svnv85ur53M9s0habtPMpTaz6e8/e22T/VPfX//lIFAClEG6mlH0D371F/W5D39ebFHJaDIQDEtSWCr4nIwMdCoeatn6m/1/Vz2feQAA1BACJkCNWKR6iV2OcIkrEzKxVRhuqYqV3zOVVBb0JVN9pRZV+ksNX6IANKxGDFX8wa/+ojp/YV47Xp3XL96d1SepdYmt/98/NtzrAAAAAAAAAFQpU5IGJ0a82isxphONDHRKAwsbD104GGXyLIBG0Hf5jR1+9yHX+cPdp85euXV8tY+Ph1r0+pc/recmFjTb1bqS/09+GNCmNw1JUmq8uec/9+25UW2/E08LQzK2qvg1BmpIdh5YZKBT/8OHb+mRd+563c9zLl0mXCIxLwoAgFVb53cHAKxNhcIU1XzAbXpcysrrNV8kALSYZfW10tsDgDphS3JPHC3g1VbPftC+c/hQ96/raus2fe/ATv3+0ccVGdihrc9On/C7bwAAAAAAAACWxPgOADSgjXc/XjRcculX2xUZ6NQ7j2wsuO2Pf2vHB0Nfax8enBhJ5DTbsqpzsc7ccImra+x2cLR79zWfurQ8hRVYKjJnBauTDASjmYuTDARXM+cGFXZg9j1J0ocPbljR454amS1HdwAAaChUMAFqh9eX0IoEPzJVTAraDcOI+l0txHGcsGEYjp99WI1M5ZV8Zft9Vnp7AOA7ywnLMszIQGc0tG9uwUmkyECnIg206t4fBT53M7/taus2HereZsbYFwAAAAAAAADVriLn8LbP3x1+t2ljTyW2BQBYWig+V/S2eKhFf/GvtiXkKBUPtdySoY4j/8dkUJLe3d30k29uuPaY3tDWnIeEq7Sqhi3J/GDDZ7RJ8wU3tk/PV+1+KR1Q6DAlqXlXSs2P3FXzrpQkmbIMs0pf74aVCZQsCAMlA8FoIJloiPHimpMe63d6Z6fUO/vwih8eis/pycMziW9/bZjfLwAAq0QFEwDLVTNffldZ3WOl8l+Pla5CUXB/x1n0BEOltwcAtS9z4jYealFkoFNS+mTS2WPX9W+tNzuSgWCjrCBkhuJzOnJuUmePXdeRc5N+9wcAAAAAAABAPo9V5WcutWnuyoMJr7uX2rMfTBS09c5OKTZ6sRKbBwAs040dzfPPff81I/YbQzti/UOPx/qH9sd+Y2jHc99/zXju+68Z/31L/DGPh1VntYb0WF7ReQvxUEsFO7N8+WGF1HizUu8sqCTTKGOQNcEjXOIyG2i8uBaFJWlwYkQ//MoDK/o8mHyiSd9+6+WgLM/FeAEAwDIQMAFqmN/VQ6pIqYIS+V8sVhL4KFYlpBTb8mN7AFAvbEk6cm5ywUpPmRWP6v+EkmVkwyXuz++GbAAAAAAAAABUGcsxJNkf/KA9kYx0KDXerNtvbDqemRhZVs9OT/QMTowovVJ0+jI4MVLuzQJAdbGMqN8Tkg9dOGh+/7knnGK39wz/5DOremKrIgt1rpzlhF/Z0zbsddNnf/pPFQlZrkLBeyQ13qzUeHP6ikdoFP5YJFwiSTKkU4RMqpTl2Jlj4/DWez9TZKBTHz64YcmHxUMt+v2jj7tX+d0CALBKBEwA1CNzheGLYlVPioYwilT/WNY2V7otP7YHAPUiNnpRvbNTxcqI1/eqNOkBkGixiiWETAAAAAAAAIDqk4x0aH6qKZjXbFYiZOKGStwLADQMyzBlGY7SY/BRP4Mmx18cP+U1rnVjx8Z5ZVb0X6WqnSPwwouv7B/r2rwgTDLWtTnRd/mNHX71aTUyVUwIl1SXRf+OHSm41H3go8x4t3v1d39vz5IPiQx0qnd2yr3K7xYAgFUiYAKg5hWp5BJdbsgkc7+CCh9FQh0L7pN3fclgyxq25cf2AKAemEsMhNbzSaXqXIkKAAAAAAAAwGqU+1ym94RYVmEHUO/yJjBneI2zV0TX2O38kKEkab5p3T8GkonFx/kXq1JiVfccgb7Lb+w4emZv+OiZvfbRM3vtWguXSNKWZ26Fq/11hqf6XpSwtpmS5FbZk9IBkmI8buPvEQCAVVrvdwcArJ5hGNEi4YpyqPYvU7YK+xg1DMMu9hrlhC+8frYlv2Q4jhPOVAfJfXzRbWa2t+pqIpXeHgA0gkAyUfeDo827UvdLcgMAAAAAAACoVWUd30lGOrT+gY+HHzr8Xk/O9hhTAtAIFswXmLnUpn/Y2Kqt935mPuZXjxaTDsScUrryQq5bktqKPKomxsNi/UM1se+JDHTqyLnJgrZ4914zVgP9hydT/O6q2uDEiH778w8qHmrR0dBeSVrwd/jjfa2Kh1qyFfkk2QSlAQBYPQImQO3wClD4rWq+XBUJX0jpKh9OzvXlvI7hFVT48Ho+d5sFFUe8Hr/CaiKV3h4A1IViJ3otf7pTKbYk82++8JB+efyjgtsaIVwDAAAAAAAA1KCKjwkmA8GoJPPjj9YrGemQOH8IoEFdG35UnePz6tS8JEPJQNAJJBNGJfsw3d403D4935Pf/l+037wpy7ihwmCJq3i4hKoaJeVOcHfHHt2J7aqiOTRI8xoj9sJxT5WynLCs+3O+BpJv6OTOfdmbvaqZEC4BAKA01vndAQBrUpGTy5ngRoFqCypkqngs1adShkvc16DYlxIz75KvaHWVatkeANSBsJQ50Xtmr+KhFsVDLbr0q+16amRWhy4cLF4qvMb9ux1PJg51/7q+d2BnetWkUIsmPtd8VwwOAwAAAAAAAFXr6Jm9ZmaSapZ7frMc3HBJXrOZDASrbeE7ACiPzCTka8OPqvO1+YKbL/ftuVGprpw/3H1qtnVDR3779KFPtOnzt3tUPFyymNr6PLeMaKZKSzWzpfTkdncMTpKdqcCCKuI1RpzPK6SAqpId1+6dnVLv7FTRO2bCJQAAoAQMx3GWvhcA3xmGYUrymgS7rNBAXhWPZT+uyGNX9PhKK1LJZCm21lDdI/P7KRbs8LKiIIvf2/PLEr/Lqn0PAqg+hy4cdCQpFJ/zWqUmHEgmau4zcimZ8Ixn4DDWP8TnJwAAAAAAAFCFFjmvp1j/UMlX0U8GgsUmDLBQDYDGYRnmteFHo14BE0mqRBWT84e7Tx24cut4wbaP3ExodcGSNMupaAWWVbMK5gZUdQWCvP01Y29Vyh0jznfk3KQe/PCeHEmzD27QW49uGn7hxVf2V7h7WK68zwe3ismbmx7U1p//TG33Ujow+97C8ImPn31F5tlJzHMCANSQ9X53AMDyOI5jG4bnsa9pGIZZrvBAseol1cw9GM/pe9GAgvvvWl+/zOPtJYIfdm7/aml7AFDrts/fHX63aWNPkRLIUUm1cXJ9uSwjqu5fN4+cm1QoPpdtzllFCQAAAAAAAEBtqbtFcgCgaliO/fO+PQlpviDIMda1ORGoQBe8wiWSdG340eD+nrdX+7S1MVegMFwiSWa6mkl1zneI9Q+FM5VWzGrtI6Rfm0mc/ustQc+/rUfeuZv+zztSKD7Xk7SDZj0uSliPllGphN8jAABrRMAEqC22vIMEUcMwSl6hYrHqEbUQWvCjj27wo163BwC16r+derPnSuvDRW9PBoLRulmNL3MSPj9cIqVX44l+tL1D/f50DQAAAAAAAKuXDATzF52iwkR9KjYeWK7xoEpvDwCq0vsPNdldY7cLJqKPdD9ws8+H/pRAWFZ5Fiott5lLbe5/zS2Wjx0pJh0sieZcd1TDr3c9+8aNV49/48ar2YoXtzY0a+ObRsEYakb9LUpYLywnnPk7Wy7+FgEAWKN1fncAwPJlAhPFDoKjpao2YhiGuVi4ZJE+AABQlXpnp5ZayaSe9m2mpGInRhW2371Z0d4AAAAAAACgVPLHbsxkIFhzleixuNjoRQ1OjKh3dirbNjgxotjoxbJs7+iZvQVVjyMDnTp6Zm9ZtgcA1erw+dETUXP7cO5nYtTcPvzCi6/sr8T2x7o2J1bxsJ9kLvmPrdmww09+GFBqvDl7SQaCK5lUXilex18ck1WxwYkRDU6M6Dem39F/9cp7fncHq7PcYH3Nfv4BAFBNqGAC1J5iqwhJkmkYhpO5j73SiiaGYeSvfOW5/VqoXgIAgJc7jzva9GbhwjOUOwYAAAAAAEA1WyRIstiYDmqT2Ts7lQmYLFg0x1R5FsoxIwOd0kBhe5m2BwBVKz9M8kIFt+1VQWXyiSbt73k7/64JSSfqbAK1Lcn8yQ8DnuN4o927r3WPvlWRoM9SkoFgtHlXm1LjzWreldKWZ27dv9EyorKYT1PNemenNHO3TSk1+90VrFT6M8+QtcSCyfX12QgAgG+oYALUmExoZKkvpKbSFU0cwzCKVjZxb8tcHBWufOWFA3EAQC2yJel7B3Z6rsZXZ2wpPeiw2O0AAAAAAACoHYb0tN99gO8IEwFAnTp/uPvUQ+/Pm5L0UcuGf5p8oqlYuESynB11N4E6/fPYH2z4jOfN7dPzPZXtkLdM4NdMjafDCanxZs1casu9S339XupDwe/kjS9/umC8WJJnG6pQOsTl9bdmE/ACAKB0qGAC1CDHcWzDMMJaXonNotVOVrHp8EqrogAAUCVsSYqHWsx4qKVgNb5DFw5GY/1DdXHC6VD3r6ernXVLR85NKhSfy73ZploLAAAAAABAbclMZgx63Tbd3jQcqHB/UFnuxNVPUusSW63SP/+Tt2cSr27eUvD++rWZRKL0WwMA5Dt/uPvUgSu3spVLHpi796kH5qTAkZv5d01XLqlXlhP+ed+eG9J8wT4pHmpRlRzvFMyzSY03K/VIuppJ3QV/6oP7O8n+7q60PqyrA9t0RPfHUeOhFkUGOvWcHz3EyhEkAQCg7AiYADVqhSGTtbIl2YRLAAA1K7PykS4cdNym3PDFdHtTR/JY0Kz58IVlRHt37jOvtm5bcEJUkt56dNPwCy++wsk2AAAAAACAGuKulF3s9guHHu7prmB/UAGWE5ZlRCWZM5fa5K6SLimYDASdQDJhlHJz337r5eDJnft0tXVbtm1wYkS9s1OeoSYAQGnlhktyXRt+NL+Cycv1HmAY6X7gZtfY7YL9z1uPbhr2oz/LlXpno5p3pRiDq0buGHH2upE9to4MdBYsSggAAIA0AiZADcsEPgzDMBYdXFgj23FIfgMA6oYtycyv7JEprX1TtVy6OnNC9GrrtoLKJfFQi17q23rzBf96BwAAAAAAgBI7emav311AuVhO+P092659/NH6nvybkoFgNJBMlHTsbnBiRNJIKZ8SAGpbeszFrvdAR7V54cVX9n9HX7i2++07Pe44V9TcPvzCi6/s97lri/qtE18Ix/qHeK/UBntwYkQndyq7YN9TI7PZcdXksdIfZwEAANSidX53AMDaZQIgYZV2UqztOI5BuAQAUE++nny9o3d2akH4IoeZDATLFdisBFNSQbhEkkLxOf3K5Q86fOkVAAAAAAAAViVzrqqWz1dhDT7+aP3NIjeV+j1RbHyRibIAGo9lRGUZjtKftdFM0KSsxro2J5ZxN1tWY8zdeOHFV/ZHBjrDR8/stY+e2WtXU7gkHmop1sbxWq2wHFuWEx6cGAk/eXsm4TGuamYqCAIAADQ0KpgAdSJTzcSWJMMwcgcclvtF1j1JbGeeCwCAuvPs9ETPs9MTSqpo1sJUjQ+cFgnPKGy/e1MvVrgzAAAAAAAAWJVMuKTo5LbIQKckqXd2qlJdQvUo2fnL9ATKjuxY4pZnbql5Vyq9DVbtB9BoMpXiJelq6zYZf7VRtz79GXPLlx67c/JY12+Vq0LF+w812V1jt4/ntk0+0aT9PW9LUkLSy40SLnFlXuuq2w9FBjoV2peueJHbFusfaqjfT52InvjDMaXU7HUbgSEAANDwCJgAdSg3bJLLMBaurkF1EgAAFqrlksc/aN85/EeBz/Wc1XW/uwIAAAAAAIC1KzqxLTLQqXioRb2zUxqcGKlkn1BBVw60JQ5cueXZfrgEz59ZnXvB+2zmUps2v3vndMt/mjlRgk0AQE262rpNM5e2KPTanDo1L0kbzx67Hj2kg+FyhEwOnx89cf5wtzpm7v6Ose6TjZLccIkkBSXxmVw97HioxcyrZFJ1QRgsoQKViQAAAGrdOr87AKByHMcJ51787g8AAH750VcfKGiLmtuHfehKaViGOdzycIfkXZ47gxPcAAAAAAAAdcA9/5MJl3DOp0796VcDQTdM5IoMdOpPvxoIlmgTniGm229sKtXzA0BNMv5qo2e1+OMvjp8q9bZGu3dfSwaCzoErt47vfD21cd9D7+aGS1yNVU3BMkxZRlSW4WT+rZqfP1OpJLx9/u7wk7dnEpJsqpfUruZH7nq2j3VtTlS4KwAAAFWHCiYAAABoJGFJ0e8d2KnvHZCOnJuUJP14X6vioZaely4cNMtV4rxs0ifWo69u3uI54JERDiQTtfVzAQAAAAAANLBAMhFOBoJOfnvBitkWC4rVs/KvN20AACAASURBVHioJf07H1jQXDUTbQGgztha5DO2a+x2SQN4o927r7VPz/fkts1catMW3VLzrlQpN1U7MmNeOS2mJFOWEZbl+D/OZRlmbGH/gho1zKroG1bClmT+wa/+olI7N2bHi12Xv9gW7POlWwAAANWDCiYAAABoHJZjy3IM92pkoFORgU5J2bBJLQ7OmpIUis/pyLnJgpDJ0TN7bcIlAAAAAAAAtSe/4m481JI9lyVJhEsaVknO9U23NxWr6My5RACNKR0SKPoZWOqqBvnhEtfI+9vzmxrpc7lgnO7a8KMaTu74PT864yG6zDZUs/Tfeli6f3zthnrzwtwAAAANi4AJAAAAGlYoPqezx65ngxlnj103k4FgzYVMTu7cV7C6juvssesV7g0AAAAAAADW6tCFg+ZLfVt7jp7ZK/eSGy4ZnBjxsXeohNjoRbt3dmpBW+/slGKjF0sy0fhb1uM38ydRxkMtOnpmb82dHwWAkrGccOdr854BzvcfavIj6FEdlTt8cG34USUjHep8bV47Ln7y2OW+PTf87E8yEDRnLrUpGenQzKW2hTdaBiGTWmM59mc/+fi0lD7++fG+VoXic9kF/ZKBYLQWx4wBAABKhYAJAAAAGs6vzSROSyoWyqidk8CWET25c595tXWb3z0BAAAAAABAiSQDQfP4i+Onzh67nl0cJdfgxIjygweoS+bgxEj29907O+UGi0o12dHMXbE7t9ozADSyTFX4cG7FkisH2k4fPj96opTbKVYR5caTTVI6WGI0crik87X5BW1dY7eDfoVMMkGDaGq8WZKUGm9WMtKRe5eG/D3Vum/89vUTksJuqCSPqdIdcwEAANQcAiYAAABoON+48erx2OjForcnA8HqD5mkV0PKntikZDMAAAAAAEDdiHaN3Q66V/InvREuaSxusCSnak1JJzu6wRLOLwLAfYFkwu67/MaOQDJhBJIJo9ThEkk6/fyuE/mfvZNPNOkrm1+XpKgso/Emt1uOZ/UYV+7xUYV5jhtmK5k0aBCoHsRGL+q/uTJR7OZV/w1SAQUAANQ6AiYAAABAoZo6ERyKz+nBD+953WQHkolFT8YDQL3LDOQ4DOgAAAAAqAXFFj4JxeckLQiX1NT5K6xNarxZM5falIx06IMftCdK8f3268nXh73aY6MXeW8BQAXE+ofsyEBnePKJJk0+0aQfffUB7e95O/cujXku03IM55N1d71uKlb1xS//sLFVkhiHq1XpEFd0672fleTpcsYiHKX/fqOMSwAAgFpFwATwgWEYTq1f/H4NAQAohTuPe+/SMuXPq97JnfuUGt+oI+cm9cg7C8+1v/dw0y3CJQAaXWZiljt4kx3Q8bFLAAAAALBqbiULSfZSK3yjDmR+x264JDXeLEman2oKKv39dk2TFZ+dnujJqYqS+/5iEiQAlNlo9+5ryUDQOXvserTztXnte+hdt3IJJN3csvG7fvchV7EqXz+f35CgeklNMyXpjS9/2vPGlQSa8sYi8rfBsRUAAKg5BEwAAADQiGxJ+t6BnQUnhSMDnb50aEUsI3py5z7zaus2PTUy63mXh9+b/9sK9woAqsoSAzoAAAAAUK08JylOPtGkbBiAcEnjsBzjzutFJzeu+ftt7+yUYqMXFRu9qMGJkdwKOQCAMhnt3n2tfXq+J7ctN0iYo2GDC4fPj57In9w/1rU50Xf5jR1+9OetRzcVVP2Kh1p0+vldL/vRH5TWldaHC8aHM7/f4HIev8hYhIsxCQAAUHPW+90BAAAAoOIsJyzLiMZDLWY81CINSEfOTUpK/3v5h3tu+HWSekmWsdRJShcnKwGgiGQgGKXKEwAAAIBqdPTMXjMUn8ueq3L9zRce1n697VOv4Kf5qaaXJXlNcFz1+b/0RMiO7PUtz9xS866Ue7VhJzQDwALp8Rh9c/fTT7+6ecvLkhTrH1rzOcX8cIlr5P3t2r8ru6+3G70yRv44XcCvjkh6qW/rd+Ye2NCTu+hbZKDTLsX7AT5Kjxc7UjpQcjS0V6H4nJ4amVUoPqez8etKHlvWWELHErcDAADUHAImAAAAaEyWE9aFg46UDpWE4nPZm7rGbgdrYfJxKD6nR965W+zmhh54AIArB9oSB67cKnazWQuf8wAAAAAa1zuPbNSHD26QlFNxd1SSxPcYuFZ1/s9rle2ZS23aoltq3pVq+AnNACApu9jXn9/+nL4xeFPSzaAkff/cE85z33/NKMcmnU/W3ZU0JMIlVSfWP2Qf0sFwPNRi5rRxTFYfwoMTI9FD3dskqSDkrSXGEt4NBG/IOwicZUiJZCBoBpIJ/q4BAEDNWOd3BwAAAAAf2ZIWhEtymMlAsGqrgDz4xic6cm5SD354r9hdOEkJoKH96VcDwXioZbG7VO1nPAAAAIDGlAwEzbPHrptHzk3qkXfuKhSf04/3tUqSnrw9k5AUZsJp4zl6Zq9ne9TcvtrVsj2/D3/0n1uGZTlMlgWAnHDJL//ZRwtuCsXn9J3nv3BtLU8/1rU54dWe+KUNG0W4pGrF+ofs2OhFOzZ6kXBJPbEcW5ZjSAp7hEtcBcdOyUDQTAaCjrNEuESSMveJVvO4MwAAQD4CJgAAAGhYsf6hcGZwvpjqOtFnGaYk8+TOfdr2+seedzGkhKQwq+AAQHqVX3fFXy/JQJBBHQAAAADVJJrf4E50C/z8DhNOG9jRM3sVD7VkL5GBTr3Ut7WnlNv4+KP1N0v5fABQ63a8Ou/ZvvvtO2v6/D39/K4T+QvjTD7RpK9sfl2SopmxILgsw/fXJBkImh/8s1+4ofSxminLcDJBJNSJ2OhF9c6+t6z7ZsYUVvP7528bAADUDAImgA8cxzFKfVGRVcrLsa3M9gAAqH2WEf32Wy8XXVmmWLljX6RPnkdP7tynq63bit7NkYKESwBAio1etHtnp/QX/3L7YnczxaAOAAAAgCr3x6de0TduvLrk6siob5GBzuwlMzF5VecAp9ubhovcxDlFAFiGUHxuTY+P9Q/ZkYHO8OQTTZp8okk/+uoD2t/zdu5dOF8pucESJzXebM5caosmA0HHjwWDkoFgVFJ0fqopmIx0aOZSm3uT6XfwBSWSGYP9my88VPQumfeBa7W/d94vAACgZhAwAQAAQCMzJenO407BDcVKlPtouScdGQgGgDRzcGJEN55sUmSgc9H7UcUEAAAAQDXLTHbje0vjKna+b1XnAb9lPX4zf+X8eKhFR8/s5T0GAGm2JG299zPPGxcJ6i0pGQiao927r509dj36i3dntb/nbbdyCXKlq4OYqfFmzVxqU2q82b3FlFSxkEkmVLBgW6nx5vz+oPaZUrqS0CJjCWZeyKSoRaqqM4YLAABqBgETAAAANLx/869/Kbvy3zuPbNSHD27QTz/7qWA1Tjh+c9ODOnJucrEVsjg5CQA5Hr/zoeKhFo0/snGxu0WXOzgEAAAAAOWSP+nfFez4sMI9QTWJjV7U4MSIemenJElHzk3qf/uDv1Pkf4y/sMqnNN1zofFQS7YqCgAgw3JsSeHHvpi08xcom25vGu4efWv/ap42M+YUbZ+e75HSQYVkpMPrrozzZCRubvFsn25vWu0+cKU8xwmL9Qu17cDse0uNJZjJQPCaFgkWxUMt+t3f21PsZv62AQBAzSBgAgAAACh9wu/H+1r1yDt39eCH99wARzVNOH765M59+hd/8r5nuOTnn153S1I4kExwchIAJMlywpI0ODEiSfpf/83upR6x7BXIAAAAAKAc3np003B+yCQy0OkGCzjn07jM3tkpDU6M6I9PvaJQfE6b3jT08Ufre5KBYGFp5mVygyXFgk0A0NAsx5blhB/725uGpLDS+2F7teGSDM9zjz/5YSD3qp0JuEDSBxs+49nuhnT8ktMvflf1IDOW0Ds7pd7ZKc0Wr0AiSZ7vvUw1uGxo9+iZvYqHWjT5RJOad6UkxnABAECNIWACAACARhbOvXLk3KTXffyvYmIZ0ZM79wWvtm4repdP//yTNk5MAkCBBSGTZazISsgEAAAAgG9e6tv6nchAp330zF65ly9tGZfSk03DSz0e9W3mUptS480F7Sv9Hvv15OvDXu2x0YucWwQAD4Fkwg4kE+FAMhE+dOFg9NCFgyUdN5r+1Ma7SgcVwuzvsxbdJ1UqHFlsOzeebJLSvy/2nfUjO5YwtnfRauiecsce3GDw61/+tH7/6OOKDOzQ0TN7S9dTAACACiBgAgAAgMaVXoHKePL2TGKxu/k62dgyolpeyIWT2ACQLz3AZ7srj8VDLcsNmfgfLgQAAAD+f/buPzbO+74T/GdcKYplxaRsaWNpPKbsRE3zyyuxe6hpuj23uTt0TZeru9xMEGBxKJZwdt0Ch/y4A4HrYW/+OB9WC8QpFjBalHCxKHq725ldgGUr/ZfUaKzQXVxIbZwmTZzElEZjuitHGie2bEVJnvtjnqGGw2eGpMTffL2Agcjv8zwz3/mhGc7z/b6/H3adqfNnY+r82WL6b0ydPxvDjXmTTVnOir/D1vOFysn/56dDf/C734g/+N1vxODMmwuTIFdzPQC7TRosSZ56/kJxcObNyujkyKrHjXqGIsqJsEK79LzuVz99d+bm733grsyw5FqbGBuoZlWX+3ePHfN87TTpmHFExI3jP13JOEKm4cZ8PNZ4PU4fOxmthQPTf1cVTqvnCxXjFADAZhIwAQBg13vmn04/sEzIZEucJH7q+QsxOPPmZncDYHtpTsSqtqqYzAz2rWSFu8pr+cJFAzgAAMAGy5qsqsribpd+r+2xx4rOXaaL6Cz6nvvU8xfif/3K38VwY/42Ogiws41OjlSeev5CsRXMe+r5C/HU8xeKqw2ZZIUiZgb7Ikbe2h/lXLJ2Pd4hyklp/Ldnck8/9/DCOd3WAkJ/9fihL21EF6ZOnSl1VpebGeyrTp06syXGDVljzUX/YnxuNmYG++IHD66skkn7eMP43Gy82H9ft12XHW9IgyVJum9FxXUAYLMImAAAQDlXeeZ7LxXufOidJZsuH943na/XNvVE8eljJ+Mj/+knvcIl1Xy9ZiVLgG6ak3FqrZDJxNhAvLrM4FASUYhm0OSL699BAACAHtLJbuxi5aQ084F7/jJr04uP3duzOnObzEmN77y68P3YZFmADJ///R880jk+kwZNVrU4Tan62qWLD9x5/erBvQthiXs+ceVmyM/nfaapU2dyE2MD1dZlZrCvtJEBj6lTZ1pBz2pElNLf2eHG52ajcXDvsvutsGp6S8/3jKwwcDQrrntvAAA23J7N7gAAAGwBxYiIibEHlgQ5Dl++PlTPFyqbFeD4Fx9+/P7X9u2Pj8SFrvsIlwCsyBeGG/OV8blmcO9f/28fXFhxsJck4vP1fOHzERG5iFoS8VK6qdoZQEwHeu6PiEu5iEeS5r/3JxGF9NhLEXHJ+zYAALBKJv4T/+bU8XcGH3gzfnm2sXD+cmJsIGYG+wqfuv2rr0Y58ToD6FTOFd+z7wOFrE2rqTj/wuMfvng8ovDAxeZCZwevvhn5py5FNNammzvdpoY6yrnK1M1J/8U4nyv5zNyxqpE+18ON+Tj9yfsioi/z/3qvYMmrd/ZNR8RQl+u/FSqtAwAbTgUTAABInes/0u1k4KatDvPavv2XBmfe7Fm9ZCP7A7BtNQf9qsON+WhVMpkZ7Isv/8bhFV9FWtWkGDfL0yftl7R9KCKK6b5D6b+tY4ei+ZmSvJYvXKznC1+z+hgAANAm+zyPSYykWpMZn37u4Xj6uYdjZrAvYoWTDi8f3jed1f4L+37+bFr5E4B25VwxIiqHbrybufmV4wdWVEHqhcc/fPH4K28tCal8bfoDt9c/1l+zqkzn52wlfW2w0zT/5l74m+ixxuutMO/CLjODffH0cw9njicP/vjyDyOi9IfffuFLWVf/m1dqPd8zXjl+4JEu7SutVgcAsGZUMAEAgDY9VrLflJPFv/7CG/eXqq9txk0D7DzlpBTl3MXhxnzhn1zujz8//GD8x08eiYONn6xqxcG1kAZOChERaTilGhlVUQAAgF2l9X2g/TyUif8s8dTzFxZ9j63/bqG43PfJf1n+0KXO45qBlYcLU+vXVYDtrBgRUbj/Slz5zr1LNh5/5a2XljSuwsA3r7fXOKgK+20tzYWB7l/4m+yeT/ww7nzondavxbAA3M5UTqpRzk1HxFBzsaqI02MnI8Z6H5YubHVvenxl6vzZOH3s5ML2xxqvx3BjPrMaUsvsibsvZYXRfvy+X+h5HADAehAwAQCAtpLHW82vv/DDXpur+XrNgAPAapSTB6Kcq4zVv138pbcbcfrYyZgYG4in4kI8+Oq1OHj1xmb1rBjN6iYRESVBEwAA2Hj1fKEYEcVNO9+SVl7clNtmy5s6daY0OjmSdIZEUpV6vrDcd8li6/tvRMTXT/YvWpEbgGx3PvRO3PnqO/HOD+5sb77t8Zm5j9x5LR9xJiJCuGRl2qtBr+ffa+ntLBo3vPLle+OeWBQyYee61PphuDEfv/T2g/F3d/X3PKBVNX2Ztp5j0X/1+KFLH/z+2xlh4IHqb62g0wAAa0nABAAAmivaFz9T/9bn/r+T+aEuq9hPb3S3IiIOX75+qds24RKAW5RRyaRV0r7LRJ2NtpKJQQAAwBpqn0jYqjLo3AtbSjlXnIqI+sz93fbouZr64Myb8cuzjYXvvwCs3D2f+GHEJxZ+rY6eeCJicqQ4derMsufv/v79+6rHX3nr853t//mjB//LsGDJypRzlTf+8vAjEfsWKjnU84UkX6/l1ukWM4MAtUv3xC8+VI8QCN7pFi1M+K9f+VqcPnYyzvUfydx5uDHf9Yre+cGdceXLbRWQJgqVHt8xqhNjA8XlqqUAAGyEOza7AwAAsCWUk+qTl+cule84F3/225knCIfq+UIlXclyK3DyGuB2lJMHIiLG6t9eNAA0MTawVSbbVNpX5AMAANZP1irV0awwuFXOA0HEbVRgrucLldaCCn/wu9+Ip56/sLBt6vxZ5xkBsjTDH4veI//kxw+/8Rdf/2jxD373G8Wnnr9Q+dJnf+Vry13N+//+evHiA3dev3pw70LbVz99d3yu/z8PRTnnb43llHOVK1++t3h9/ma4pGWjz5++sfe9ERHVtOocO1VGVcHxudkY/PHlH3buOtyYb69UUk2PL0VkhEuaun7HmDp1pnr0+rVFCx4evX5teurUGUE0AGDD5ZIk2ew+AGsgl8tlDX5EkiTrtWIDrLtur+tUNUms6AKssXIuaa1A8z//p/n4xFcuZ+214atXZkxysIImwFpoDuBWIiJOHzsZ37nrYGuQcMHgzJvx333lcvQ3bsTBqzdu9Za+m4u4M4lYMgi6AiqZAADAOksrlmRxDoato9wcM7ny5XvjnR/cmbVH5vfHLgGq+Oqn747C/VdjuDFfDSvoA3TXPIdY/JMfP/zrn/gPVw51bq4Uj05/7vf/5tGsQ194/MMXj7/y1qJzgvmnlhSuLwksdJF+9n33r/Nx13eyp76sRxWTv/itjyVZVa7/svQPvvvPv/T1D6317bFFNV9/j8TS8/rTUU4ebb0+07Ylf0+98Y/+wcWsYFR0+47RNl7RwXvENpPL5bp+vzTPCYDtYs9mdwAAALaig42fdNu04atJ5eu1UrqaTbH1+0b3AWBHag7K5KKcS1qrjHWWup8Z7IuZwb4lhw7OvBm/PNuIB1+9Fq8+uD8iIr5+sr+1b7XbqmLpxJ77cxH3rzBwUqnnCya1AQDAJrh8eN/9+c3uBHT49iffE1e+3BftE19nBvvit/7im90mHmaez/wf/ubv454DSxbiBqBTWs3ggcc/fDFr8we///ZQVntWuCQi4mvTH4hHh77f3lQMVet7emPve+OuuL6k/ZXjB2rr8bfaxNhA9am4UOz8rD3z3973f/7zdbg9trSsc/hDUV4IEHQN6l6f3/dSl+O7jTX3avceAQBsKAETAABo81jj9UUTi7eKdPVBJw8B1kcp0pXBxudm41z/63H62MmeB3QLnqSKo5MjNweYmoGTasTSkGA9X6jkIh5ZJmxSrOcLRZVMAABgfcwMLp6s33L48vWher5QEfhmSygnpSjnKqePnSzGWMRTcSEOXr0RSTQXQXjh8Q9ffPyFbz9wC9fsuybACuzd+7N7s9qz/oboZeCb1yMyIyl0c/Hj+5qPW4cXfu3ewuPrcHtTp86URmOk8lRcKEYsLCy0cI4X2hSjnKusshrcal9HG774IQDAHZvdAQAA2EKqw435GG7Mx8TYQOYOrxw/UNvgPgGw3spJNcpJLtKBneHGfEydPxtT58/GoRvv3u61FyOiMjo58rXRyZElA0H5eq10tF57IBex3OdLJa1mBQAArLGJsYGeAXJ/i7NltE1e/PrJ/njw1Wvx0KvXIiLi+CtvFer5QtJ5yI/ft+e7WVd154PXIpqrbpssC7Cccq5y+GfX9mdtWu240YWP7ets8j7cXTWi+Zh1/r2W/r5uj93UqTOlibGB6sTYQHVmsK/UrWI1O9pKX1+Z3xXSkHrnddxKtXLvEQDAhhMwAQCAluYA7fT43GwcuvHukpDJzGBfPPvZh3qtMA/Adtb8HFg0WPPHf/uVGG7Mr8W1D0UzaJKMTo5UOjcerdce6LztDEImAACwDo5evzbdbbGRlL/D2UqqERFPPX8hc2M9X6i0//y+H//0Fzv3mRgbiM+N/Mr0KlfbBtidyrlKRBR/8dfqmZuPv/LWpc5zdn/2qRNf3H/tp/1Z++9/6J32XwX9emk+NqXxudnqnQ9di4mxgXj6uYfj6eceblUUWb/PsXKuMnX+bDG9VKKc8/fgbtN8/d3W/8+nn3t4IRw1M9gXTz/3cK/b6/Z69h4BAGw4ARMAAFjsUkTEh96+unCir3VZZqIBADtBcxBn0UDO+NxstMKHa6SYVdGky4pmS45dq04AAABNf/jtF4bWKFgOG2FFkwzToMmS75CtSY6v7dt/ac17BrDD5Z+6FO95/086m4eibWGYP/vUiS8+9uIPP5+vv/u+zh0vj/48Trz/tVpETEdESdBvBZrVp0vjvz2Ti+Z522pErFu4pJ4vFL/9qw+8UZ+4v3jly/e2bxIy2Y0yFqXKkLk9XWiqODPYFxNjA61x5mLWAlRtt9eqtN66lITQAIDNIGACAACLVSMiHmu8nrnRZAOAXaA5aJlLB3NqEc33/z/+26/E1PmzMT43uxafB62KJqsNmRRVMQEAgLU3PjcbM4N9mdsqxaP3b3B3oKup82eL43OzceFj+7rtUuwWLomI+OXZxrr1DWA3uNq/N7P9J++54w8iIt7/99cz338vfGxfnHj/axERhWieG2SVpk6dqU6dOlOaOnWmVM8X1rzac3p9lbt/kNwbEfHOD+6M+sSiPwOdl92NMhal6rDaAEjv11E5KbVdhEsAgE0hYAIAAO3SctvDjfkYn5tdsrlb8ASAHaqcPBAdA0Stz4ip82cXLrdR4aTSuWLZCkImaz54CgAAu1w14mZlh3YTYwPxV48fUumBraQ43JiPk81Jyl336bVxuDEfU+fPmrAIsDKL3i/f2PvezJ3e85Of31vPF5Ljr7xVyNo+8M3rnU3O792CNFiSRPPxq6ShyrWSeV3f/ev8Gt4E29LiRakWKumkbZl/Ux29fi0zpH70+rXpdewpAMCaEDABAIBO5aQauXi2NYF4uDHfGnSN4ca8gVeA3ebmCmXTkVY06dSqcNL63Fhl2KQ4+ucjX2xvWEklk9XcAAAA0FM1ovl3/cTYQDz93MMLl25VTWCz/Zvf+KWYGBtY9XGvf2Rva2Ed3ysBViJdmCxWX6VgkYzKU96HV6lLha7iGodMlmgLFRkjpBU2KaXjBl09+cZcZvu9N95VHREA2PIETAAAIMv/lXwh2iqZtFUzcfIYYDdqDho9GuXkgXSVsmpkhE1anxt//LdfaQUTVxY2SeLzXSqZdFNUxQQAANZIOnH0V370X9/o3NRadAS2kGpExLn+I6sOQE2MDcSVD+fWpVMAO9rNCeW5f/X0h25pnGj/Q+90NhlvWqXLh/d1m5i/JudJl/lcrXarVAFZnrw8d2m4Mb+obbgxH89876XMKkcAAFuJgAkAAHSzeFWqnmWOAdhlmgPKD8TNz4laZAROWmGTtqBiL8XOkEn0HmiuCJkAAMAaKSfVx6/UD7VXs20FyGFLaa6WvfBdcaUhk5nBvs59necEWK1yrjh1/mw8/dzDcfXg3hUfdnn053Hi/a91NnsfXqW3D9/xD7PaXzl+ILPq9Gp97wN3TXe2zQz2xflP7X92uWoVkGV8bjamzp9duKTfLfzfBwC2vFySJJvdB9h1crnctv+PlySJ5Y1Yd7lcLqvEbUs1SZzEAQBgiyrnKhHxSEQsWo3sn330N+KNve9d7ujS1KkzC4NM9Xyh59/Fy1Q6AQAAVqrcdfymalIhW83v/enQxZcP3FOIiHjq+QsxOPNmz/0nxgZiZrAv0hBVyUI6AKtUzhUjYmFxmGdv/DfxqX873+OApgsf2xePDn2/9WstIl4K1TBWr5yr/Ie3PlL81X//oyWbZgb74rf+4ptrMoflS5/9la998PtvD7V+nxgbWHSuFlYl+/uFv8N2uB7zAs1zAmDbUMEEAAAAYK0trnCysILeH//tV2K4sezAc2V0cmQhUCJAAgAAGyb7b2/hEragZ/7p9AMff+tKLaIZHpkYG+i6b6t6yXBjPoY/+5oqzQC3ZtECML9y+FJMjA3Eqw/u73rAzGBfJP/4WntTIYRLVq+5mE/xwsf2LancNTPYFxNjA2v2eH7u9//m0d/6i2/mWhfhEm5LOclFs2JJ6yJcAgBsC3s2uwMAAAAAO1ZzsKjavsLh+NxsPJ9/N/788IO9jixGc8CppRrZVUyK9XyhIoQCAABroJxUo5wrxc3VyVsTwWDrKecqz0QURk88ERHpBNsYiKeevxAREVcPEwPKTwAAIABJREFU7o2r/Xvjy79xOGYG++JDb1+N8bnZ5iRdoSmA2zbcmI8XH7ov/vXgB5dUkrp6cG+8+uD+uOcTV7IWm+k878cKjc/NxujYExFjSzatyeOZVpKOPXf/9P73f+r1Sz4vWRNeRwDANiRgAgAAALDebk5U+2JEFMbq34439r43zvUfyd4/F4+0/5qv10rpAGe3kEkxX68ZmAYAgNvVDInnNrsbsALFiOYE59Z3y5nBvnh68OHMnQ/deHfjegawS4zPzUbEbDUNPbSft6tOnT8b0cg+l7dB3duRps6fjdPHTkZExI/27Ku9fOCeL9xulZF6vrCwOFBExE9/tCe++9f5+MVyLolmxRkBAQAAdpU7NrsDAAAAALtCOalGOXkg0hX1xudms1YwbEqiMDo5UmlvWqZKiYFpAACAXajnd8vUcGM+nQQNwC3rHjKoTp06U4qIUqTVz9Lfu7FIzOoteszG52ZjfG42nvneS7cdLomIeOX4gS92tt31nVx896/zERHFtDo1AADsGgImAAAAABupnJQiF89GLDsRqNgZMgEAAIDUwoTa1nfLziolh2682xkusQo7wO0oJ7lIQyTpZbq1aerUmerUqTOlqVNnSlHOdatE7H34VjQrzLUCPBER8eaLB5+tT9xfrOcLST1fqKRVSG7J8VfeKmS1v7H3va0fBUwAANhVckmSbHYfYNfJ5XLbfoJQkjjpwfpL/690O1lT9ToEAGBbaxtoHj3xRLe9Fq14WM8Xev6NvEyVEwAAAHaSjAnMp4+djIiIxxqvdy5oUEuragJwu5a+/94MjnQPl3gfXiNpmCRr3k0pX6+tuqJJPV/InDx34WP74tGh70cIBrFG0vP71Vt5nbJ95HK5bhNyzXMCYNvYs9kdgN3IH4sAAABEOem1mmFLcXRypNIKmeTrtVKPkEmxni8UDU4BAADsEs3vlYsmsLVVK+n00vp3CGAXyD6fV4xyrrJMCCGzSgard/nwvs8dvnw9sz3fVuVkpSrFo9Ol6mtDne3JP74W0YiIW7hOaNdxTr9YzxcsFgUAbGl3bHYHAAAAAHaxakTPCUARzZDJwqD1MgNPvcIqAAAAAMD6KEY5V4yIR7psF1JYI28fvuMfZrUfvnx9SUhkJT73+3/zaKV4dLr1+8xgX3z103e3KoGVopx47rhlXRaMKqbtAABbkgomAAAAAJulnFSjnCsNN+Yr43MRp4+d7LZnMQxCAwAAsFQpIpafoNh7VX0A1oYJ4+utnKvk7vjA/qxNM4N9kV/l1dXzhWJEFEsRQ68cP1B79rMPvRQR1alTZ5yLZb0tCp20B05UNwEANpsKJgAAAACbKV0BL10Rr5tFVUyie9jEwCcAAMBu0vxO2WsS4vQy2wFYnVs5/1YV9FsD5VwlIopf/fTdmZu/94G7pjM3dJGGSxaqSxx/5a3CH/zuN4rCJayly4f33d+lfeH12lblpBjN6ibJBnUPACCTgAkAAADA5ltJyKTSCpmkK5h1DnROR8eqZwAAAOwC5aQa5SQXS78nlqKcPNpa2ACANdB8T13d+6pwyZoan5uNP33mcMwM9i1cKsWj05/7/b95dJVXlVlx5o1/9A8urkE3ISIi/urxezPbG/17749YFC5ZpL2iCQDARhMwAQAAANhszUHm6vjc7LKVTFo/pCGT9sHpoWiubmbgCQAAYDcqJ6UoJ7m2i2AJwHpIz+WtcG/vxetgfG427vnElfjWJ98TL33qfbVS9bVLaUWS2/bde+8upNVS4Lb91eOHLs0M9i1qmxnsi2c/+1BhmUMtJgUAbBoBEwAAAICtIF3JcHxudjVHZQ0yCZkAAAAAwPoSMNl4ix7L4cZ8/I9/8l/jd8YvFaJ5nrTywuMfXnH1kc5J/x2KQiaslYmxgXj6uYcXLhNjAxHp6/mV4wceyTrmleMHahvZRwCAdgImAAAAAFtHNSJ6VTG5v+N3q5gBAAAAwEZrVonqFR6pRURJNak11HwsF6rHfPev83HXd3KLdjn+yluF8yc++LWVXN3XT/YvaZsZ7Iuvfvru2+8rpKbOn818D/jNK7VaRMTsibsvZW1/4dfuXa7CCQDAutmz2R0AAAAAIFVOSlHOVcbnZounj0Wc6z/SucfQ6ORIMnXqTC7j6AW5iMxVzwAAAACANZJWJE4rXbQvBFNd2Mbaagv2vPb4hy8ej7eWTMI/fPn60HJXU88XiqcO75uOiKGrB/fGqw/uj4hmpYmp82fXuNPscsWp82fj9LGTCw2PNV6P4cZ8ISLirx4/dOnNu/fGL882YnDmzYhovg5nBvuE0wCATSNgAgAAALCVNEMmyfjcbIyeWBIwiYiI0cmRytSpM6VorthX6dyeRBTq+UIlX68ZyAYAAACA9SRMsqXMDPZFvsf2er5QjIjK4cvXIyLi4NUbcfDqm/GnzxyO8bnZmzt6XllDi15bTa1QWnVmsK84M9gXMbZou4AJALBp7tjsDgAAAACwxIoGj/L1WjWaIZMsxXq+sCR8AgAAAACw3V385ffcmdX+vh//rLbMoZnnTJ96/mIMN+YjmudmhUtYb9WIiKnzZ4vjc7Ot115ENMMoU+fPFrseCQCwzlQwAQAAANh6qhFRHG7Mx7n+pVVM9v38Z7/R+jlfr1Xr+cJG9g0AAAAAYPOUc5X/5X1x6Gsf+0AMfPP6QvMrxw/UHn/h2w/cylV+4xcO1x4vv3FLx0JXacXyjC0Li0wNN+bTgMmiKicCJgDAplHBBAAAAGCrKSfViCg91ng9c/P1O37h3tHJEdVJAAAAAIDdpZyrRDr5/tGh78fc//6z+Oqn746IiOOvvFWo5wtJr8rOM4N9G9NPaCknuWgGSlqXUjoG0MuKqpwDAKwHARMAAACAraicVIcb8zE+NxuHbrybtUexLWRSytohX69ltgMAAAAA7ASDM4341X//o87mYj1fWFIBop4vVAZn3lxyHTODffE3v31nIco5VSNYH+Wk1HZpD48IkgAAW46ACQAAAMDWVR1uzMcbe9/bc6d8vdZc9SyVi6hFxHSvlfoAAAAAALa72qV7MtsvH973ufbf03OlSwIkP3hwf0yMDcT43GxEREXIhA3VDJt0hkyqUU4sHgUAbBoBEwAAAICtqjmItKIVzNpDJklEISKGorlSn5AJAAAAALBTLDpf2m1xnsOXrw91NGUGR37hrp+1wiU994N106xqkmu7CJcAAJtKwAQAAABgKysnpc9f/C9vZG2aOn+2sylr8FPIBAAAAADYGZoVH5ZdmOfqwb0rurpDN96N4cb8GnQMeqvnC8V6vlCp5wtJ+q8wEwCwJQmYAAAAAGxxj1+pH+pYRS8iIkZPPFEcnRxpD48YkAIAAAAAdrZyUm1VffhXT3+oOjPYt2SXg1dvRDqRv1jPF5JuV5Vx7IoqSsNqpGGSStw8h1+MCCETAGBLEjABAAAA2AaGG/PdVtIrjk6OGIQCAAAAAHaXcq4ydf5s8VuffE/84MH9mbvkIv5dt8NnBvviwsf2tTdV0wopsNa6ncN3bh8A2HIETAAAAAC2vlJExLn+I922F9v365Sv1zLbAQAAAAC2pXJuoRrE+Nxs/Ox92bslEXuy2l99cH9MjA3ER9++Oh3NqiWlKCfOo7LRimmlnaSeL1SW3x0AYP0JmAAAAABsdc1V85Yd3MzXa537reg4AAAAAIDt7D0//9mq9r96cG+Mz83Gk5fnhiIiVC5hPb1y/MAjK9itWM8XVDQBADadgAkAAADAdlBOqh9/60ota9NvXqkttOfrtWq+XstFM1wSEVGx8hkAAAAAsJNd/Pi+Ve3/rU++J4Yb861fi1HOmdjPunn2sw+9tMJdvQ4BgE0nYAIAAACwTTzzvZcKbYOeC+rvuWvRoFMaKCnGzcGoopAJAAAAALCDLKo4Urj/akyMDcTVg3t7HnT14N6YGBvI2mRiP+vq6ecejpnBvpgZ7Ov1OvU6BAA2nYAJAAAAwDYyPjcb43Ozi9pePnBPYXRyJGlryhqEKtbzBYNTAAAAAMD2V06q0RYyGW7Mx94PvHvtP/5PR3se9n/83x+OmcG+JedYYZ1VIyImxgZiYmwgXn1wf+ZOrxw/kFnFHABgIwmYAAAAAGwf1YiI08dOZm4cnRxZrkqJgAkAAAAAsDOUk1KUk1yk501/79Wv7//v7/lBTIwNxMxg36JJ/DODfTExNhCDP778wy7hkmpWI6yFqVNnqkevX5uOiBiceTMGZ95css/MYF88+9mHChveOQCADns2uwMAAAAArFA5KUU5V4lbDIrk67XSGvcIAAAAAGDzdJwvHW7MR9wTcXpsySI91c/Uv3X/k9+fG8q4llJaEQXWRzlX/MOIoXd+cGdc+fK9Szb/4MH9MTE2ECHoBABsAQImAAAAANtJOSl9/E+HLr584J5eK5lVY2kIxcAUAAAAALDjDTfmY+r8fKTVTZqaQRThEjZLMSLinVf3Z25sHNzb+tFrEQDYdHdsdgcAAAAAWJ2hN1+/1NnWHDQ9W41YqFRSiohqLqKWi6hFRLGeL1Q2uKsAAAAAAJuhc6J+t6rQt1QtGm7F3+3vz2wfnHkzxudmY+r8Wa9HAGDTCZgAAAAAbDNPXp4bGp+bjeHG/MJlfG42om0wNF+vVSMikohCEtGqdiJkAgAAAADsJN0qPhTTqiWw5c0M9sVwYz5C4AkA2AIETAAAAAC2obZQSZzrPxKjJ56I0RNPFEcnR9oHoLIGo4r1fMEgFQAAAACw/ZWTavQOmSwXNOl2LKydclKKiOpXP313zAz2Ldo0M9gX3/rke1q/ej0CAJtOwAQAAABg+6lGRJw+djLO9R/p3FbpCJlkETABAAAAAHaGdPJ+l62V6H4+tJQGVGD9lZPS+37+02cnxgZiYmwgZgb7YmawLybGBja7ZwAAiwiYAAAAAGw36YBpRrikpWeAJF+vlda8TwAAAAAA20dVuISN9jv/7BtfOHr92nQrWDIxNtBerbyanvsHANhUeza7AwAAAADcgnJSismRZJm9qrE0bGLQdJPU84ViNJ+P+zs2XYqIar5e89wAAAAAAOxU5VzxDyOGMraopgMAbBkCJgAAAADb1MffulJ7+cA9hc7237xSq0U0K5W0hRqi1baBXSQWgiWfi+yBw5ZiPV+IXEQtaQZOviRwAgAAAAArVE5KUc5VYpnqzm2ce2MzdHt9FsNrEgDYIgRMAAAAALapZ773UuH0sZNxrv/IQttwYz5+5+LLC6GTNKRgYGoT1POFSjSrlfQKliySRBSieRl6LV+oHa3XHliv/gEAAADAjtIMmXwtlj8fV1Utgi1mpcEoAIB1J2ACAAAAsI2Nz83G6WPNnx9rvB7DjfnM/dKwQ0S6EppKJusrfbxva1AwiSjU84UkIkqqmQAAAADACpSTR3tUMqlFxBeES9iCvCYBgC0jlyTJZvcBADLlcj3L11aTJDEhDgCA3a1toLSzkklElKZOnalGdA07CJmsk7UIl2QQMgEAAACA1SjnitF+nq5sjgFbQDmXNWGzJPi0M+Rymc9vhHlOAGwjAiYAbFkCJgAAsALlXOX0sZPFjnBJS2nq1JlqWgUjc7vQwtpap3BJi1AQAAAAAMB211w8qqUqXLJzCJgAsBPs2ewOAAAAAHAbyknp3ORItwGLYkT0GphabjurUM8XFq+IuPbW87oBAAAAANgIqukAAFvYHZvdAQAAAAA2h2oYaycNl1SW3bFZhSTXeYmIai6ittzBr+ULF9PbAgAAAAAAAIA1JWACAAAAsM19/K0rmcGE37xSa7VnVSlRuWRtLRcuaQVLMkM9+XqtdLReeyAiStHjuUkiCqGSCQAAAAAAAADrQMAEAAAAYJt75nsvFYYb84vahhvz8TsXXy5ELFQqaQUXqtEMO6heskbq+cJy4ZLSSh/vfL3Wem56BYCKK7hNAAAAAAAAAFiVPZvdAQAAAABu3/jcbJw+1vz5scbr0Rk4yddrrXAJaygNenStKJKLePZo87FflXy9VnotX7iYVizJUqznCxVBIQAAAAAAAADWioAJAAAAwPZXjYji+NxsVvsiHYGIVjUTwZNb1zVcEhHVo/XaF271io/Waw/U84XkFm8bAAAAAAAAAFbljs3uAAAAAAC3qZyUIg2TnD52MkZPPNG6VEYnRxZCCBnVNoohpHDL6vlCr8oltTWqLtLzOur5QqVXPwAAAAAAAABgpQRMAAAAAHaCclL6vQ8+UjvXf6RzS3vIJCuIUBRQWL30Mat02360XntgLW4nrS7TK2QiJAQAAAAAAADAmhAwAQAAANghXj5wT6HLpuUCCAIKq9c1XBLLVB1ZrRWGTAAAAAAAAADgtgiYAAAAAOxy+XptTQMRu9x0GghZU+l1TnfbXs8XKirRAAAAAAAAAHA7BEwAAAAAdoiPv3WlltX+m1dqrfasIIlwyS3IRWQ+1hFxab1uM1+vPdpjczFUMgEAAAAAAADgNgiYAAAAAOwQz3zvpcJwY35R23BjPn7n4suFiGYVjHy9louIanoprUe1jZ2sni8U6/lCkkQUMjZXN6AaTK/rFzABAAAAAAAA4JYJmAAAAADsIONzszHcmI/hxnyMz83G+Nzskn3y9VqpFYSo5wuVDe/k9pYZ4shF1DYgXBJpIKhrKKieLwiZAAAAAAAAAHBL9mx2BwAAAABYM9WIKGaEShYFEtIQQqXt9yRUM1mpzABHEvHSRnUgX6+V0ucsS6WeL3guAQAAAAAAAFg1ARMAAACAnaKclKKcq0RE8Vz/kXix/7740Z59tZcP3BNTi/fMqlpSiYjcBvSStVGK7OcxwnMJAAAAAAAAwC24Y7M7AAAAAMAaKielvzx8bPr0sZNxrv9IvHzgnkJEVEYnR7qFERbU84Vl99nNej0++XqttJF9SSuUqFICAAAAAAAAwJoRMAEAAADYYf4o/5GhjObiCg4VWOgiDZdkPYbT0awmAgAAAAAAAADbmoAJAAAAwC7RVsUkM0iSVsUgW7eAzqXNetzSqimZt60aDQAAAAAAAACrJWACAAAAsHtU2/7tDCaowrEN9QiZFIVMAAAAAAAAAFiNPZvdAQAAAADW1nBjPs71H1nSNj43G3FqoVKJaiWrU43sKiZb+XHsVnUFAAAAAAAAAJZQwQQAAABghxmfm43hxvzC7wvhEoGDW9alUkg1DesAAAAAAAAAwLanggkAAADADtQMlMwubiwnpc796vlCJW4GT6ohNLFEx2MUETEdEV9a7eM0OjlSSX8sRi5qkUQh/feliKhOnTpzq497ZnWVXEStni8UPZ8AAAAAAAAArIQKJgAAAAA7z0Kg4Fz/kTh97GT83gcfqY1OjiwKIWQEJ4qhyskiGY9RRMTQSo8fnRwpjv75yMXRyZEk2h/fJApt/xYjojL65yMXb6WPaYBkSXgoiShERCW9DwAAAAAAAADQk4AJAAAAwE7TrFRS+svDx6ZPHzsZ5/qPxMsH7ilERKWtikZEdpikWM8XhExu6vZY9HyMRidHimmopLIQJllOEoXRyZGkMwi0EmnIZLrLZs8nAAAAAAAAAMsSMAEAAADYicpJ9Y/yH8mqtLGSsIFAwu27naohldHJkcotBE0u3cZtAgAAAAAAALDLCZgAAAAA7DIdVUyWyNdrpY3qyzZQXWX7so/vChUjF19cZcika59UpQEAAAAAAABgOQImAAAAALtPK4iQFSQRLmmThm06gxvVfL2WGeZIwyVrE+ZIohBpNZOV7J72qVvIpCJkAgAAAAAAAEAvAiYAAAAAO9RwYz6zber82YhoBhLy9VoumqGEakSUugUndqN6vlCp5wtJ3AyMTEfzMeoVwlk2xJG//nYcuvFuHLrx7kq7suJgSNq36S6b16KyCgAAAAAAAAA71J7N7gAAAAAA62N8bjZOH4s4138kIprhkvG52YhmYGEhSLJMYGJXqucLWZVIhiLiS1n7j06OFGOZAMcvvd2If3L51UXBn3P9R+LF/vsWnqNuRv985GIk8YWpU2dWEgC6tIJ9AAAAAAAAAGARARMAAACAHawZKJld3FhOlgRKOgIV1Yio7vJqJt2qhiwK57TpGS5pVY3pNNyYj+HGfJzrfz1OHzvZ/QqSKPS4bQAAAAAAAAC4bXdsdgcAAAAAWDdZYYQlbRnVOorRPWBBh7R6SVdp1ZiehhvzMXX+bBy68W6v3YrL3VbEQkWaJc9zLqJWzxc8rwAAAAAAAABkEjABAAAA2KmalUpaYYPmJaN6SWSHSYq7PIzQrVLIovY08NG1esk/ufxqDDfmV3yjf/y3X+m9fy6+uJLryQqZJBGFiKikgSIAAAAAAAAAWETABAAAAGAnKyfVKCel0RNPxOiJJ4qjkyPJ6ORIZSWVMGIXVzHpUgWkmq/XOtt6hjXG6t/ubKrGzdBPLeuYnhVPkiiMTo7cbkBk1z6vAAAAAAAAAHS3Z7M7AAAAAMD6SgMJ7aGC1s/dqnRExELIYldqVfnIRdSSiJciO1zSU0ZQpBTlpHUdN6+rnOt8fmJ8bjZOHzvZ7aoFRAAAAAAAAABYcyqYAAAAAOx8WYGEYlsVk6wgya4Ml9TzhWI9X0ii+ZgVk4hCRERWuKRXJZHxudkYbszfbCgnubZwyWLlpBTlJBfNx7wWETHcmF98/NLbXknIZFWBGAAAAAAAAAB2NwETAAAAgN2rGNEMT+TrtVw0AwnViCittlrHDpIZxmlVNGnJqAqzICMcsrKwTjOA8oVIgyGPNV7vtXdluZBJ+hxmPY+7MjwEAAAAAAAAQG97NrsDAAAAAGyOqVNnFgUN8vWa4EGX0MhK9zt0490Yn5ttbyp1rVySpblvNcq5ZLgxH+NzEaePney2dyUicr2uLl+vlVrhmFzEI2lFlmI9X8isygIAAAAAAADA7qWCCQAAAMAO1xF4uNlWzlU62+v5QrGeL1TSy0rDFqQ+9PbV9l+rqwqXLFaNaFZD+aW3G7fVp1ZwKA2XRDTDMZXOqiwAAAAAAAAA7G4CJgAAAAA73HBjPqbOn43hxnw0q2LMxnBjPiINMbSkgZJKNAMIuzWEkFnFZUl1l1zUsvZ7rPF668fpKCe3XhGmeex0RMS9N9655auJiEifw6ywkAARAAAAAAAAAAsETAAAAAB2vmpEs2rJonDJ0uoaWWGSXRVCyNdr1VgcMln0++jkSHF0ciSJZKEayIJWgCciIsrJo2vQnUsR0f6cLTE6ObLbAkAAAAAAAAAArBMBEwAAAICdrlkNoz1MUl1NdY3dVMWkrdpHNV+v5fL1WikNnbRkBm4+9PbVGJ+bbf1665VL2rU9Rz1CJsUVhEw6g0QAAAAAAAAAsMSeze4AAAAAABsgDSuMTo4UI6IYzVBCderUmZWED3Z8QKGeLxSjo4JLPV+o5Ou1zrBIZsDk0I13Wz9mVYa5HaXOfmXoWWUmX69V6/lCNWO/tQnCAAAAAAAAALAjqGACAAAAsEuk4ZJWhY5iRFQ6ql9kBSOqHRU8dqqskEbxFqq3rO1j1Qyr3PZ1pkGZakRM5yJqaXNlN1WnAQAAAAAAAKA3ARMAAACA3SMrTLAQrGgLIbRUMyp47FQ9q4C0/OI7b/5lVvv43GzE2lcvaalGRDzWeD17ay5qaXiop/S5HEoiCm3NtxKiAQAAAAAAAGAHEjABAAAA2OXaq5jk67VSvl7LpZfdEi5ZkdHJkcp37+x7sr1tuDHfCpdMRzlZn8crrWLSdluLJVGIpdVolugRJFlRuAYAAAAAAACAnU3ABAAAAIDMqhv1fGE3VbfIDIe0QjZpeGNJEOOxxusx3JiPiLi0rr1rhldqw435+KW3G932EhQBAAAAAAAA4JYJmAAAAADsEmkQYknb1Pmzi9rSYEkSEZWIKNbzhaSeL+zo8EK+XqvG4pBJ5++Z9//F/vvWs1udXoqIuPfGO7d6fGaQqEc7AAAAAAAAALuIgAkAAADALjE+N7soZDLcmI/xudmIpeGJrKolO7aSSVullkpEVPP1Wi5fr5XS0MnKNCuMrLdqRLNqyq3ICNFEREQuonZ73QIAAAAAAABgJxAwAQAAANhFxudmY+r82Zg6f7YVLllxOCINYewoaWWWStwM2bSqtyxy9Pq16azjP/r21enICG2si3JSjYjScGM+sxpN4d23fjg6OdKz0kxbyGTh/iQRn6/nC5WdXqUGAAAAAAAAgN4ETAAAAAB2j6wgxGrCESuv6LF9ZIZmOsM0f/jtFy51hjrG52bjyctzl9Lgx8Zo3tZ0qxrNoRvvLmyqvffAvRFRGZ0cWUkQaKjj92IsrWQDAAAAAAAAwC6yZ7M7AAAAAMAGaYYTclHOVX7vg4888vKBewoRUYnJkWpEVKdOnWkFJaqRETZIq1/sOqOTI8XhYyeL5/qPxHBj/mbll81zqfXDG3vfm7V9uaBIt+0CJgAAAAAAAAC7mAomAAAAALvM6IknIg2XtHRWr6jG0molq6l0sp30DM2MTo4UI6Jyrv9IRESc6z8Soyee2Ih+9bIrgz4AAAAAAAAArC8BEwAAAIDdJ6tSRTENU0S+Xqvm67VSvl7LtV12aqgh635V8/VaK1BTyTro9LGTzR/KycYHb5qVaKqPNV6/pcPb7lunnfocAwAAAAAAALACAiYAAAAAtGQFT3a0NDhTiptVW6o9AhgLfrRnXy02s6pLOSkNN+arv/Lm31/r3PSZ+remV3ANnX1f0f0GAAAAAAAAYOcSMAEAAAAgIiKmTp3ZVQGDer5QrOcLlUirlKRVW5YEL7KOffnAPS+llUQ21e+9+vX9w435+NDbV+PQjXcjIuKP8h8ZGp0cyay80pJWqcnl67VcpPcxfSwAAAAAAAAA2KUETAAAAAB2mfG52ey2cm5JwKCeL1Tq+UKSXir1fGFHVDlJ70clblZtKdbzhaRzv8/Uv3V/Z9twYz6mzp/d9HBJy/jcbHznroPxxt73tjcXlwsjexPnAAAgAElEQVSZRCyESoqtS9ZjAAAAAAAAAMDusGezOwAAAADAxmoGJObj9LGTERHxWOP1GG7MR3RU62gLH7S0ft4y4YrbkBm+qOcLlfYqJk9enhs6eON6vNh/38I+aUCnGJv/OFQjoth6HjP0DANlPL8L7RmVXAAAAAAAAADY4QRMAAAAAHafakQUl1QyKSedgYmsgEKxni8U8/XaZocr1t3o5Ehx+NjJONd/JIYb85mVXzZVOalGOVeNZYIkt2BHVKkBAAAAAAAAYHXu2OwOAAAAALDhqrG0+sZqKlbshABCz4DM6ORIMSIq5/qPRETEuf4jMXriiRUfv2HKSemjb1+dztp09Pq1zPYV2Br3DQAAAAAAAIANJWACAAAAsNuUk2qUk1KUk9zoiSdKoyeeqI6eeKKYhiqWla/XVhNG2aqyQhTVtvtWyTro9LGTzWOXVnvZNE9envtSVnWVu3/6k6FlntNu92HL3DcAIur5QqWeLyTpvzsh5AkAAAAAAGxRAiYAAAAAu1SrSkc0K5IUI6IyOjnSHqzICpLshHBJ5Ou1ajTvS6uaS3UlwZlX7+ybjnKy1R6D4nBjPsbnZuPQjXcXGv/urv6Ipc/pgo7HoKWUtgOwBdTzhdbndKT/VtI2AAAAAACANbdnszsAAAAAwKbJmqC6sDJ6GjTItU1kre6U8EG6AnyxR6ikGm2PRctr+/ZfWteO3YYX+++LN/a+N2tT19Xu0+ezmj4elWhOXI5YYeAGgPXTES5pp4oJAAAAAACwLlQwAQAAAGCRzooX+XqtlF52SrikEmnllnq+kGStBP+Z+rfu72wbbszH1PmzW+8xaFZUueV+tYVL2hXTdgAAAAAAAAB2CQETAAAAADotCSvU84VKGsZI0p+3Zfigy2rwS8IUT16eGxqfm43hxvzCZXxuNjKO3RrKSemjb1+dvsWju92nrXlfAbaYer5QTD8b1/rzceuFGgEAAAAAgB1NwAQAAABglxpuzGe2TZ0/u6gtI5RRjO0bPlhRmOL0sZPxYv99ERExPjfbCpdsaU9envtS1nP6mfq31jp4AkCqrQpU67OxklUZ61bk67Xq5cP7lryHv/jYvc+uxfUDAAAAAAB0EjABAAAA2KVaFTpaelTpyAoaLKn6sROMTo4URydHknP9R6J1OX3sZPsuW3k1+WLrOf3Q21fj0I13IyLij/IfGRqdHLmVyc5b+b4CbBVZ769r8vk4OjlS/JflDw3NDPZF6zIxNhD/76fzhbW4fgAAAAAAgE57NrsDAAAAAGyeZqCkozpHOSmt8PBibL8QQjWyJ/627seSbc2QScT43GwpysmWv7/jc7MxeuKJzubi6ORIZerUmSXPbb5eK2VUqanm67WVvg4A6FDPFypr8D5ajIiYGBvIbAcAAAAAAFhrKpgAAAAA7F5ZYYkVByi2YwAh7XPnfSzl67WuAZOIiHP9R6pbPlySBoM6Kq606zohOX1cWo+NcAnA7bvtz4yj16/dvxYdAQAAAAAAWCkBEwAAAIDdqhlIWAgVRES1S/WSlbZtafV8odhWqaOar9dy6WVrB0dW55afl3y9Vs3XayXhEoCVmxnsy2x7+rmHb7vKyB9++4VLWe3DjfnbvWoAAAAAAIBMAiYAAAAAu1k5qUY5KY2eeCJGTzxRHJ0cSUYnRyqjkyMLE2PT4EEubgZRStstlFHPF4oR0QqXREQU6/lC0rnfZ+rfms46fur82e1xf8tJ9Vz/kcyAyNHr1zLvW7s0hJO0XSpr30mAnWNibGBRyGRmsC8mxgYi1qCCSUTE+Nzsot+HG/NL2gAAAAAAANbKns3uAAAAAACba3RypD14EW0/L5oc26ps0aoEss0qXWQGJTrvx5OX54YO3rgep4+djIjmRN7HGq9HpFVPNqKjt2vq/Nk4139k4T60PPnGXM/j2kI47Yr1fKG43QJFABvl429dqU2MDRRibHHbM/90+vbfN8tJabicq0ydn++shuI9GQAAAAAAWBcqmAAAAADQOXE1IqLYXsUk4mZ1i0grgaQVLrKO3daGG/Mxdf5sTJ0/G+NzszHcmN/sLq1WsbXC/XBjPj709tUYbszH3951cKjzOe08bpXtALveM997qdD+OTHcmI9nvvdSIcq5tXnvLCelWBwoqaZtAAAAAAAAa04FEwAAAAC66azakVUFpBIRuY3pzm2pxjJBidHJkeLHP/hI7eUD9xRaAY2O47eV4cZ8vNh/X3znroPxnZvNldHJkdLUqTOruT8CJgA9ND8vZjub167ylUAJAAAAAACwQVQwAQAAACDT1KkzK5rQWs8XsoInW03WJN9qvl4rRTTDJRFRefnAPYWIiHP9R2L0xBM3jy0n2ydgkk5EPtd/JM71H8naY7XP1/a57wBbxRqEQtLKYZX0IuwHAAAAAACsOwETAAAAgF2uo1LHzbZybqWTWbd0ACGdlFuMiMhF1CJiOtrCJanM0MW/+PDj09t05fjSi/33reqA9PHofC47HycAFssMMN7ulabhzUo0P7+KESFkAgAAAAAArDsBEwAAAIBdbrgxH1Pnz8ZwYz6GG/MxPjcbw435iDSU0SZzwmy+XtuyAZN0Mm5rgm4kEYWIGIoVTv59bd/+S+vXu3VUTqrn+o+s+nlJwyStoIlwCcBymiHEhffNaFa9uq33zvZgZIftUDEMAAAAAADYxvZsdgcAAAAA2BqWVDJZOkG2FVhon/S61QMI3VZ7L0ZbyOTo9WvTr+3bP7QxXdoYU6fOlE7/28HkXP+RRe0ff+tKrddxaWCoWs8XKukK+iFoAtBDOWmFS9aKSiUAAAAAAMCmEDABAAAAoBRLV0VfEihoBQ82pEfrb9Hk3SffmIs/yn9k0Q6tai5xakP7tXbKucp4RJw+FtEKmaT3qbDcoWmwpNj2e5Kv13Lr1VUAAAAAAAAANp+ACQAAAMBu11x5PRflXCtkUk3bdrJF9+/Jy3NDB29cjxf771toW1LRZZtq3o/mfTl97GSc6z8Swz327wyXtLerZAKw/p5+7uHqU89fKA7OvLmofWawL/Kb1CcAAAAAAGB3EDABAAAAoKmclEYnR5rhgua/1alTZzIDBW0hhGpEVNPqJltOvl4r1fOFJGPTkv4ON+ZjuDG/Ab3aMNVIgyLn+o/E6WMno/Vz2/O7mudtSegEgHVRnBgbiKfiQrRCJjODfTExNhC/tckdAwAAAAAAdjYBEwAAAAAiImIhXHJTcXTy/2fv/mMjve87sX9GJ93aGzVLyXJP1LOTXQf26exU7u6mwImi0dpNUaRLZbrF9ZlrgbuiuIUMO/4nZ//BNgbu5o8z0G0b51DATeCFr3/EKOCZFmHYrNArcEmAiqIObZZbK5EvtRtRmn2WKiRL1FW/9pS76R/zDDUcPjMcksP5wX29gAdLfueZme88v7i7/Lyfz1K9N2TS0+EijYg0S8qNae1ukWTNUj7njl2BmMrKUvrYZ7+4fufU6YXF7a3dnUtqran8TEOptRpRK1XX5ubrnXBJl87+O0jAZCpDRAAn1fWr5yKuTnoWAAAAAADAveS+SU8AAAAAgKlR1KEiraws7Yz3hEv2e+7EZUm53gmXJFmzmi+7wiURUb9z6vRCRLu7R+XC5Yh2mGJ2wyUdtVbjd+YfX+/zaL991i9IImACMAart54t7Kh1wrpsAQAAAAAAU0jABAAAAID9TGV4ZD9dYZhOl5VWwWr1grF2yKTWOhGBijunTt8+yPp5AKcauwMlu4I5AByfN37/k0/+rW++Hv/Fb/1ZXLr5dkS0wyW7OmwBAAAAAAAcg/snPQEAAAAAptvqlRvdnTwaMQOBk36dVrKkXE+y5ux3JjmA1Ss3qpWVpT3hmifeebPZ7zl5mESgBGCEun42NSKiURTca69zqhwRce5P7sYzf/JKfPwP34+Hf+mnY54tAAAAAABwL9LBBAAAAICIaN8dvXCsVtoJagwIHsxKaGNX6OSxu++tT2oiY1Mr1Xvver+4vRXf+skL5f2emiXlNEvKra6lsOMLAIP1BB/TiKjfScqvZkk57bPOjvf//OOdL2flZy0AAAAAADCjdDABAAAAICIiljc3Ym3utXhu7tFdY/HR3dYjIiLJmtWeoEHhXdin1K55/u2tP1u4dv7irhUWt7fan/vKWOd1rBa3t2L11t4A0SB50XNvoCTNknI6Q/sbYOL6BUdaEeWIqGdJuTrEdbUatZZrLwAAAAAAcKwETAAAAADYsbi9tbeTSa21547pSdac9ruoN6KgmDd6AibtMEkUhWpOkp1tsTY3H8/NPRprc/PtR1aW6qtXbvTbl0XbrzOuyBlgdOoRUaqnj52tNu4UryFcAgAAAAAAjMF9k54AAAAAAFOjqHh134LWLCnX824XUyGfSxoRUYpodj1UdIf4RqdjSWc5cdpFyY2IiGvnL34ULmlLKytLvV1K9jM1+xpgRgz1s/TnX37vE2899MCex65fPXcskwIAAAAAAOilgwkAE1MqlXaKvvp4clxzAQAAot2ppNbz9/SC7iUdeZCjE05Is6TciIhGQYhjbHrmFK2Icv5lUbgkvvLZL5791PtvR8SuziWNQZ97JtVa1W9+f+HV+Gh7dDtoYMRd9AEOIMmajVsXPr3+ydfvLgxYLf23/s/tXQN//qnT8U/+3U/GzUtnjneCAAAAABy3J0ul0sCbPbVaJ+z3EgDMLAETACZpv4AJAAAwbnm3i7yrRRorS61oBwoaq1du7AQLeoMcuc7f7ycZQOj3b4w0uuZVWVlqz//U6bhz6nRERHzz06ea3/rJCy+cuHBJ7sUHH34higMmhZKsWc2Scvs4+EgjyZoncvsAHIf8Otr4e9/5/MIz33slPvXye/HQWx8O9dyff/m9+G8unYlffrP57eOdJQAAAADHrBwH+P95AJik+yY9AQAAAACmy0645CNF4fBBQY5ptO/8X3zw4XLlwuUxTWciCoM/T7zzZrPfE/IwSTV/rnAJnDBZUk6zpFzPknIrXwbeRZHh5du2Fe2fN/VnvvdK/PHFufj1f/DZeOuhB4Z+neXNjfjVV1/8+rFNFAAAAAAAoIuACQAT02q1qq1Wq9Rvicne9RgAAO5lRSGRNO/6Mat6/30xy5/lUFZvPZsub27sGb/8xisD75qWZM1GkjWrwiUw/boCI+mQYZE9gUIhk6Mr6vJ16ebb8Ysb2xER8ev/4LNDv9bi9tZI5wYAAADARDQG1UjldVIAMBUETAAAAAAY1k4R8oCwwUSD4tM6r2mxuL0Vy5sbsbi9FYvbW7F669mhipd7uhzU8+JpYEp0dcvoBEbq0Q6LtPqdrwOCJM7voyvchpduvr3z9fWr5/Z9kXcfb41uRgAAAAAAAEMQMAEAAABgKKtXbvSGN3q/b0yyy0UnANH5vhTRjHawpJpkzV0Bky9nL60XvcbqrWePd5KT1Yj4KGSyvLkR185fjLW5+YFP6roTf6dgOo0IIROYLoO6jux5LD9/ncMTdPPSmYEhk5uXzsTv/mf/eudbIUkAAAAAAGAsBEwAAAAA2GV5c6N4rFbaVYycZM1GkjVLXctEwyXRUyzdiihHtOfZu/7Tr28udH/OTujiRKu1GpEXKa/NzUflwuVYm5uPa+cvRmVlqV5ZWepXbH7QcWDKdHcr6QqN9SPMcERf/c7nC8dvXjqz5/uikMn1q+fi+tVznQBgI2qtif18BQAAAAAA7i33T3oCAAAAAEyXxe2tWL21FdfOX4yIiC9svxaL21sR7UDBnsLjrjvhdwIHE+1k0qNvCKLzOe8ptVb197/zqee/m3xuoeeRnX13gFcTMIHZ0X1u73fuCpiMwPWr5+KZ772y832/MMnNS2fiepyLX9zY3nneLsIlAAAAAADAGAmYAAAAAFBoT0eP/kWuvXfCT7OkXJ+SkElhofRXPvvF9U+9//ZCRM/nvAcKeb+bfO52n4cOGhhRhA7ToxEDzuGiTk5Fvvqdz1dXr9xwbh/RL7/ZbP6vl8rx1Uu7O5k8/Bd3/+LN+0/t+b3MzUtn9nQ3ydkXAAAAAADAWN036QkAAAAAMHWKQhaFwYssKfeGSzrG3d1iqCLcyspSWllZat05dXphbW4+1ubmO51aGtHnM97rBgSFFD7DlKinj53tE1CIiPa1Ou821feczp9fr6ws6U50RL/66ovlPSHNiHjm9kuFN/069a/+ZdFwY/XKDT+XAAAAAACAsdLBBAAAAIDdaq1GRJSiVuqERxr52FTKi6aLgi6NgkLqPYXTa3PzUbkwH/fKXftXbz0blQuX94wvbm/1fU6SNUs9YaLGsB0RgOP3h198ZOEPv/hIxNX2989875W4dPPt7lU6175GZWUpvXT1XDzzvVd2Hrx56Uxcv3qu8209IkrHPukTbnF7K5Y3I56bezQiPuqWtbwZnWDjjrv3/aVd3z9297313/6bfyhcAgAAAAAAjJ2ACQAAAADFaq1qZWWpHhH1WFmKaHesaPQEMRpR3K1kLOGDAeGSap8AhDvzR7vQubvAuV0Ivfdu+90GdDIBpkxPuKQjzZJyGt/5fHrz0pn46qXPj3ta945aqxq1Umtxe6s3vNdojz2ars3N9336nVOnF/KQ51QHPAEAAAAAgJNHwAQAAACAQnm4pDuQsXMH/M5AkjUbWVKuxt6Qx7gKYvsFRtIxzmHWNBa3t9LVW/07luwn72aiiwnMmFLEb0TEC5Oexz2i92djI2qtakTEP//+wqsRUd7n+Xt+5gIAAAAAABy3+yY9AQAAAACmVlF4I62sLO0az0MG1cg7nCRZszQFwYPC4MmXs5fWi8ZXbz076fmOT/tu+EWfd98OJVlSrmdJuRXt7VvPgybAhPV0yeirFVH+ra/9sPCxZ773SvzW134YX/+Hf97Mu0NxFLVWI2qtUteyc41N/sW7A3/mdO1P+wEAAAAAABgrARMAAAAADmpPwWseKGlERGRJuZUvkwwfFBbvPv365sLy5sbO94vbW5F/f28V8bYLnRu//8nz65ULlyNf6nnXmkL5/uzdTqmQCUze8uZGLG9uxOL2Vjzy4Qdx/eq5Qaun/+WNP/m/uwee+d4rcenm2xER8Zkfv1MOAbJj9auvvlgeFAr6wvZrY5wNAAAAAADAR+6f9AQAAAAAmC2rV27063TRW4ycZkm5nmTNfTtjHMaAO+w3Br3n4vZWrN4a7m7/J1nlwuVGFOyzyspSunrlxkE6utxb4RyYUovbWzudLyqXLsdXL30++nUrefyfvftXV5NnIyLizX/yiXj/zz9etJpz+xgtb27EtfPtr9944GNRilJ84sP3ozsEGX3CkgAAAAAAAMdFwAQAAACAQu3i14t7xqJWSqPW2lX0OuBO98dSoJyHS4rec71fuKSyspQ+8eknmy8++HC5q3NJx71YxNtv36RxsO1xL247mDaN6DqnF7e3Ym1uvu/KP/obfzkWt8cxLQrVWtWolerLmxuDfkY28m5TAAAAAAAAY3PfpCcAAAAAwHRqd/p4dueu+MubG52740/DXe37zeF20WBlZSmNiPqLDz5cjohYm5uPyoXLnYcbvYGZe1zfzjBjnQVwEI3oOkc71+ubl87sWfHmpTPx3NyjO9+/+m+cGssE6dEOjzT3eRwAAAAAAGCsBEwAAAAAGGh5c6M7XNKv6LVf+GDcoYR+4YjCDitf+ewX1+/VIt4n3nnzyT7jhQXPSdbcVcCea/TrGAOMUa3V6XaxK2Ry/eq5uH71XNy8dGZnuX71XCxvbuys94//+l8pDKJcv3puPHO/t70w6QkAAAAAAAB0u3/SEwAAAABgalVjbzCjMEyQZM1GlpSL1h93wORA73fn1OnCjif3gm/95IUXrp2/WF6bm98ZyzvVlPs9R5gEplytVY1aqR552G5xeyvWLs33Bkga+XqvRkQ5oh0meSZe2Vnhjy/OFYZOGLGe/dVFxygAAAAAAGAiBEwAAAAAKFZrNSKiFLVS/ZuffvLJnz7wsdt3Tp2ux8pSY/XKjT1Bg66QSVqKeLLVLlxOs6Tc6X4xEllSTqN/p5LC93ns7nvrd06dXhjVHE6K5c2NWJt7LZ6be3Tn+1DYXChLyvVod2yxfZhu7dBCK2LvOf7+X7r/p7X/5/9oxJWIaHfPKC9vbkTlwvyejiU7Xas4XntDJo17tbMWAAAAAAAweQImAAAAAAxUuXA5oh0W6XS2SCsrS/UBIZO01bVutEMmjVF0v8jDJb1dUiIi1iPiN/sV/z/9xmZ8N/ncrrG8W0fkhdb3okZEpIvbW72F5PsGKAr2w0j27zTKkvLzEdEJJ6VZUo7Y53iDKdCIri4mXef4J/LxRvc6y5sbce38xZ0n71wfGQ+BEgAAAAAAYEoImAAAAACwn6JuIWllZSldvXJjV4F93uWhcP1jnEtExO1Bxf5Pv7658NCHd3fu4h8RiqdrrUbUStXIQ0DXzl+Mlz9+Zv3OqdPp6oCQSZ+QT5ol5fQkBS4GhJki2oGThVEFp+AYdM7F4utxrZTm14CdoNnqLR1LAAAAAAAA7nX3TXoCAAAAAMysUYVGRmHfuXTuyN9ZiDxk0qpWLlxurM3Nx51TpxeiHR5qDXhWv209TcfDkewTLumW5qEqmC75uT1gjTRfrxrtMEqzYJ0TExgDAAAAAABgOAImAAAAABzK6pUbRcXLkypI3u99iwutBxdg3xMqK0uFXWfy8YM4MQGTUsRvHGB1IRNmT/e1r9aqRq31c7H7OrpfQAUAAAAAAIAT6P5JTwAAAACA6ba4vRVrc/N7xookWbORJeVG9IQNShHfPuo88iL+ohBDI8mafQuhKytLaVy4vBMAyDuZNMLd+fdz0MDIidie+XFWPuDTTky4hhOnGnu78QjcAQAAAAAAUEgHEwAAAAAGWt7ciOXNjVjc3tpZljc3Imqlwq4NedijERHrnbFWxNezpFzPkvKhCvH7hUtKEc19wyU9xdVrc/NRuXC5EbXWiQhEHNVjd98722d8vWi8a/92GxjymRUDQkwwcfk1tJ4l5dbQXXNqrUbUWqVon7ONiKi69gEAAAAAANCPDiYAAAAA7KsTLOkxqEi5EXvvmp92PTYSrf07TfQLC6SjnMcse/qNzfhu8rnC8X6SrFnNw0Jp5/vjmt8UaUTE2YhYKHowS8r1e2Q7MAEF4af0QMec7iQAAAAAAAAMQQcTAAAAAPZTHMQYfBf8QcGOUTpsSESXitzTr2/e7nSo6Vje3IinX98sDFJ0JFmzkWTN6kkKVZQimv0eyz/rUxHR7/OmQ3eVgIMrumalh+0KNQrd3VQmOQ8AAAAAAABGRwcTAAAAAPbTCXGkERFrc/PxO/OPr//2mN684M79Q3vinTeffPHBh4vG+wYJ7kUfdajZ6B7eN7zT1cWk0xGmkWTNmewMs89xthMqSbJmI0vK61HcyUSRPeM2kW5Mty58+vlPfnQOpNEOuzROUuAMAAAAAADgXqSDCQAAAACD1VqNqLWqlQuXq5ULl+Pa+Ytx59TphcrKUquyslRYUD+oyPggXR72Kfrft5j5Wz954YXuzhwR7TDFt37yQnnYOZx4tVY19haoN/LxvvJwSff+SSNiJjsZdAVlilQLQjO3j3lKMJRJBDqypFz/5Ot3BawAAAAAAABOIAETAAAAAIZVFAwZFBbpV/icDhMyyZJyWop4st/jwxZWL29uxPLmxk6XjuXNjYgJ3PF/qrXDJJ2gyb7hkly/YvJZLDLvO+c+HVn6HT+OK47FzUtnCsf6hfyO048/82Df6zIAAAAAAACz7f5JTwAAAACA2VZZWaqvXrmxJ5CQZM1GlpQbUVy8P7AoutMdo9V/laEK+b/y2S+e/dT7b0dEdIIl9FNrNSorSxER9VhZ6mz6RtG+3ccsBkwOJD+2q7E3YHU2S8ppn1AKHNr1q+fi0sW34xc3tneNRft8G+vxtnHhZ29/5sfv6AIFAAAAAABwAulgAgAAAMBRHUdx85FDCpWVpfqdU6cX1ubmY21uPioXLnceGrZDxz0l74TQG5hID9EhYebCFXk3nIN0Kul0NqmWIppdwwsRUc8DUjBSNy+dietXz+0sERGHCIAd2R9+8ZHfLOqoUk8fWx/3XAAAAAAAABgtARMAAAAAhvLEO282i8ZXr9wYFCjo+1iWlAsL8bOknJYinhz0mnkgoK/KylI9CkIqlQuXhUv66xeKKBwfsA9mLmCSJeWi42Xf4ywiohVR1MmhN6gDh5Yl5fS//e/+r3jme6/EpZtv74wvb25E1EpjP9ZWr9xoNP+j+75989KZ6CzXr56LU59/X8AEAAAAAABgxt0/6QkAAAAAMBsuv/FK+Wf/4m6szc3vjOUFzmnUWoWhgiRrNrKkXI3igvtOQf/Oc/PASb3VfxpDFf0PoLPEwfXdZknWLOXhjI5G3tljZhwlXFLwPBipzjXxZ/6sFJfi7bh08+145Z+eitZ/8F4sbm9FTCLQVSulvxrx9bVfmo/n5h5tD22uRbxaGLYCAAAAAABghgiYAAAAADCUxe2tvKB5o/ehNAYUOechk/WIWCh4OM2SctoJJZQifmNAuCQGvc+QZir8ME5PvPPmky8++HDReGHnmo4jBn6mQVFIZNdxCRO0J5x37k/uRrKQh0v6hPuOWRrR/TNh9zgAAAAAAACz675JTwAAAACAGVdrDRMwuD3gsfqdpPxqlpTfaMXAO+BXhy34/3L20tmDjBPxrZ+88EJPsXgsbm/Ft37ywlBdCbKkXO8sxzLB8du3WD4P1xQdk4IpHKs3fv+TzSGvvQAAAAAAADA0HUwAAAAAGFY19t5Nf6gC5yRrVrOk3Lc5yT7BkoiIxkG6STz9+ubthz68G8/NPRprc/MREbG8uRGL21tFXVTILW9uxNrca/Hc3KM738cQYYk8VJJ2fd9KsmbpuOY5DsN2ZsmP7e7P3zgBXV2Ycne3Tn1jYm9ea1WjVmpFRLz/5x+P975ZJ1gAACAASURBVF8+He//+cfbj10vPx/tQGGns9WBrt0AAAAAAABMloAJAAAAAMOptRoRUfr973zq+fUzj5598cGHyxFRj5WlxuqVG8MU1BcFVIZ1oALlb376ySd/9i/uRkTE6q1nD/0695hGRKSL21vR28lkkN5wSff4jAQtDh2c6uh8ziwppxGR5ttEYT1H9vonT61/8vW7C71jF279ZNLHVjUi6m/+k0/0jnfPtXM+rEfEbzofAAAAAAAApt99k54AAAAAALPlu8nnFvJwSUdaWVnaNziSFxcfqHC/FNGMiOpBCpMrK0v1Fx98uLw2Nx9rc/NRuXD5IG9572oHiHq3cyNqrcOGRPaETqZNdzgmP9YaccDjree1Oq+XRkQ9D5zAof292uMLNy+d2fn+5qUz8fdqj0++E1Ot1ciunx32PFkI5wMAAAAAAMBM0MEEAAAAgKENCJIMVTicZM1GlpQbw67fivjGQcMlRa997fzFWN7cOEpY4t6Qb5/KylInJJFGe5s2Vq/cOGjoYqq7FfR2XmlFlCPihUOGSzrbq1c9IkqHniT3vEs3346IiK9+5/O7xisrS/UhO0dNkzSm/LoAAAAAAABwr9PBBAAAAICxSrJmNSIaeceIQQ7VSaLI2tx8CJcMJw+XdIcv0oio5+NF+u2jaS8kL/o86SG7LOjMwEhlSTnNknLrme+9Epduvh2/9bUf7oRNctNwfh10Ds4TAAAAAACAKSdgAgAAAMBBFBYUP3b3vfWDvEiSNauPZc2f6/N6jSRrlkYVLum85ghf66TrVwReOJ7vp2rs3sYjCwdNgCJ4psGeblHPfO+Vna8P0VFo5LrO/WFNfM4AAAAAAAAMdv+kJwAAAADA7Fi99Wyszc3HtfMXd43/7a0/WzjM6+XdTEbmy9lLZ7+bfK5wfJTvc4/qG7zIC81PRPH4YY7JJGtWs6Tc3fWl40RsE6bHM997JR7+pTcnPY0dX/3O5+M//p+34pf+4PVhVj+bJeV0hsNnAAAAAAAAJ54OJgAAAAAcRLq4vRXLmxuxuL0Vi9tbsXrr2Vjc3pr0vCIi4unXN2935taxvLkRT7++eagAzL3osbvvFYZxhulSkyXlNEvKra5lTxeGKVLYPeewL5YHU7qf3xh1gAr+vYf+vH19q5Umfm5VVpbSiKj/T39jPq5fPRc3L53Zeex3/vOz/9//++jH3uh5ykJE1LOkrEsQAAAAAADAlNLBBAAAAIAD64RLpkllZSl94tNPPvnigw9Hdwgm5475Q/rtH/3R7cqFy3vGn35jc+Dz8qLx3qL3dFo7FuRdR9Lo6jpy1EBI9/OzpFyf1s/OTGhEQdegj//8+92PT9rO/G5eOtMOmFzdeexfe+qFN//FX3mt7/OmYf4AAAAAAAD0EDABAAAAYHi1VjW/c/5OYfG18xfjF959a/3pCU6rcyf9Fx98OCIi1ubmY21uPpY3oxMyUcx8AKu3no1r5y/ufP+F7ddicXtrvy4w/boSTGUxeSdcMuouIz1BmzRLyo1odzOZum3AVOscLzvn1cO/9NOPHq21Jn48PXb3vbN3Tp3u+/jbpx/4RJ+HdDABAAAAAACYUgImAAAAABxMHjJZm5tPOyGEtbn5he+uLNUjorF65cYkCp8LC5afm3s0Fre3qtNQjD1rljc3eocOuw2nqpi8t9NKlpRbEVEdRQCkXxeX/E/HIENLsmajsrKUPnb3vfU7p04vtLsy3e48PNJQ1GH163Y0BOcCAAAAAADAlLpv0hMAAAAAYPZULlxudHe4yKUxZWGCtbn5qbjT/0yptfoVrx92O07b9u8NgPQbO4xBXVxgKFlSrmdJufVbX/thuvT91xcu3Xw71ubmo3LhciNqrdI0XdMKgmg7rl891++hqZk/AAAAAAAAuwmYAAAAAHAYU1VI/9jd9872GV8f91xOhFqrFO0i8MY3P/1k8yuf/eJ65cLlgfs2yZrV2Fs43sjHp16WlEcVMoFDy4/DnXPt0s234xc3tjvfppWVpekJK9Va1cXtrcbqrWdjcXurcJWvfufzcfPSmbh56Uy89dADERHrIXAFAAAAAAAwtQRMAAAAAJh5v/2jP7pdNP70G5tjnskJUmtVKxcux4sPPly+c+r0QrSL21uDnpKHSTpBk5kJl+SO3FVhwOfVsYFh7QlfXLr5dly6+Xbfxyeq3fGosby5Eau3no2isEmnk8lDb30YEbEQEWmWlAdeSwAAAAAAAJgMARMAAAAADmz1yo3CQvpJdQz55qeffHJxeyse+fCDWNzeisXtrVje3IinX99cmMR8ToLKytKuTgo9430lWXMnWJIl5foUdgYpDHskWXNUIZDec2PWgjZMoU4Xk37X3omqtap516NqRMQXtl/b9fAz33ulOyCzYwqvDQAAAAAAAPc8ARMAAAAADq5WSpc3N3YNLW5v9e0kcpwqK0v1Fx98uLw2Nx9vPPCxWJubj+XNjc5d9HWOGL2BHRSypNzpTpB2likrJG/E3uNiZEX7ecCm1Fki2ttkVK/Pven61XMTC/ANrdZqRESjE/IbgvMCAAAAAABgytw/6QkAAAAAMJPSxe2tWL21p4h4rAXD/bpsXDt/MZY3NxpRa03f3f5nxGN33zt759TpovH9ityLjoE0S8r1aejkkXcqOfbgUR4q6QRr0iwpN6LdzUToiUGq8dFxExER//t/+rOdrkzT35Epv+Yu10ppxEZ67fzFvj8TShHNLCmnzgkAAAAAAIDpoYMJAAAAAEd27fzFqFy43P5zZWnid6Vfm5sP4ZKjefqNzQONd5n4/u8n765Sz5djm2dPuKSj09EF+up0wPn4z78fH//59+PhX/pp/CcPvhQ7HaNqpWnqBlSsVkojon7t/MV0bW4+/vjiXOFqrYhyRBzruQgAAAAAAMDBCJgAAAAAcHBd4Y1r5y+2Ax0RnT/reWeRSXJH/CN6+vXN28ubG7G4/VGXmuXNjXj69c3p76JQoCv00Ql61LOkfFzHab+CeYX09JUHn1pZUm79s9Nz8b/99b8SNy/tCWfMwrVt13F+89KZuH71XLz10ANDrQ8AAAAAAMDk3D/pCQAAAAAws6rXzl+sd8IlPcZSMPzl7KWz300+Vzg+jvc/6Ra3t/KAyUb38H4F7tXY270jkqw56Y4yRWEShe1MhTzstHM8nvuTu/HTv/yxuPaFi7G4/WhXB5PWLARM9rh56Uz84sZ2PPTW20UPOw8BAAAAAACmhA4mAAAAABxOrdVYm5ufaLHz+plHzz7+7lvxyIcf7IzNcpeNqdLVpabHwH2eZM1GtEMm3etPOlzS13F0MRkQppnJcABjsSdkcenm23Hp5tvRFeKb2vOoyBe2XxtqvR9/5sHmMU8FAAAAAACAIelgAgAAAMBRNGJCd5+vrCzV48GHy91jq7ee7XypkH8Uaq1S1ErdAYzGMB0U8pBJ6fgmNlLHdaz0dnJpTEEXFw4pDyKdLUWcbUWUo33cNPJj/dj84sZ23Lx0JioXLjdWr9yYjetarVWNWqnV7oD06E5A5vrVc/FbN3+4Z/U/+rc/Uf7imKcIAAAAAABAMQETAAAAAA5t9cqNxje/v9B8sSfo8ctvNr99nO9bWVmqR0Gw5dr5i7G8uREhYDI6tVa1srKURnt712NlqRERQxW750X53fupetwF+QMUhaGOLSAwYyEbBug+jlsfDacRkWZJeT3Jmk8d13tfv3qu8+VsXdPycNry5saT185HuRMy+ep3Ph/PfO+VndX++OJc3Lx0ZrY+GwAAAAAAwAkmYAIAAADA4dVK6bciytfOX9wZ+sL2a7G4vfX1iPjGuKfTLmLeqA7TZYPh5OGS7k4caUSklZWl6qCQSUG4JCKiniXliYRMkqxZ7ZnTWDqKZEm5E84Z6/syGn2O424LWVKuj2CfrkfEQvdAd7hkZrqXdKu1qhERb/yPi38WEX+1M9z1uTpm77MBAAAAAACcUPdNegIAAAAAzLQ0ImJ5cyOWNzfiC9uvxXNzj8a18xc7wYRxawiXjFy//bjf/j3s845NkjWrSdYs5cu4Qh69AYU0Dy0w5bKknJYinhxi1UPv0ywpp1lSbkVXuOS9M/fF9avn4ualM7G4vRWrt549zEtPjX/nrTs/LRovf/DOTyNiYFANAAAAAACA8dLBBAAAAICRuHb+Yt5BZEd9vy4Xh/Xl7KWz300+Vzg+6veir4kFRQ6j00lknN1DBoQOZmrb3Yvy46XeOv632nMsnH77X8W//09fi9p9a33XmSVPv755+6EP78Zzc4/u/IxY3tyIxe2tTwgEAgAAAAAATBcBEwAAAAAOr9aqRq1UX5ubT3vCJR31iCiN8i0rK0tpJJ9b6B3PC5b3jHM0T7zz5pMvPvhw0Xhzn6c2orgwfqwF5Z2gQNf3rYioJllTYTuDHDTUkWZJud4dYOqEmiIiLUU0WxHlzp8R0cjXLXyfn/7lj8W18xdjeXOjPVAr1aPWGls4atQWt7dicXsrIja6h52DAAAAAAAAU+a+SU8AAAAAgBlXa1WffeTcfmGDkaisLO0KC3Tk4ZIIBcsj962fvPBC0fjlN14pD3peXjzfuz8aEwh2FHUR6ddZZNT6fVbH6cmU5qGSyJLy89E+ztKIiDxUsvNnvu7ABilrc/PdXaFm95hpB2OK5p9GrTSucxEAAAAAAIAhCJgAAAAAcGQvPvhwYQjhGBTe7f+5uUfH9Pb3ptVbz+50IFjc3uoEevYteO8KmTSi3TVkajowZEn52Avb8zBN0Wee3bAA/fZpRESUIv77PDhypG5K16+ei4ida1sjaq3ZPmZqrWqU4tsFj6RRKx20WwwAAAAAAADHRMAEAAAAgCNbvXKj+tjd99Z7x4vGjkN+l/9Gfqd8RqsR0e4S01kO0i2mK2SSZkm5NY5gx5DGUrDfFTJplCKa+fsqqJ9i+THabx8N7MLTinjkKO/91kMP7IRLIiKWNzdOznWtFf26HjkfAAAAAAAApoSACQAAAABHVyulv/2jP1rIgwcREbG4vRW//aM/uj3Kt3ns7ntn+4yvn5gi7GnT7pzQCYl0VIftqJAl5TQiugv207zDw7gUznNQSGDUOu/ViihHezuMexswpH7hkjwcVO06bo7l+Hn5U6fj5qUznW9PTrhkMAETAAAAAACAKSFgAgAAAMAopBHtLhert56Nxe2tWJubj2vnL6aVlaWRFQ9/4sMPzj7y4Qe7xo4jyEKPWqtd6F5rlfLlIMX1hR1LxtjJpBF7wwBjLdrvF1qYom4u7KMVUe4OJXV15hmpP744F498+EE88c6bzdVbz44tBDVh98rnBAAAAAAAmHr3T3oCAAAAAJws185fjLW5+YiIzp/1yspSY/XKjSMV9VdWlurx4MPl7rHF7a1Y3tyIcAf8scjDQp2lERGN1Ss3pro4PA8FTOscHbezY88xlGTN6rCdaEoRzVbE7VLEv9mKOF20zs1LZ3a6lzz+7ludbjfTeuweXK1VjVqpN2x1r3RpAQAAAAAAmAk6mAAAAABwdHmBcHe4pMeRCukrK0uFHSC6nJwi7CmVh0u690Ma7fDQfvt2YvsmS8r1fGlNabcQx+30Oeg+GRiOKEU0I6L6WNb8uSRrPvVY1vyZ3vd466EH4vrVc3H96rnep6dRK52sEFL7Z0Wn+4twCQAAAAAAwJQRMAEAAABgVMZeKJyHWRQpj0e/QvfDBEwaSdY81n2WB0o63VYiItIJhkz6hRYETKZMn443fY/XfP2+x3IeLNn1evlrNV7/5Kn161fPxa//g8/udC4pcLICJhERtVb7mu26DQAAAAAAMHXun/QEAAAAADghaq3G2spSNdpdLsbiiXfebCpSHo8n3nnzyRcffLjooYEF8EnWbGRJudq93nGHS3JF80qzpJz2Fvwft55t0D2vepaUjz1sw8EcdH/kx1MpS8qdLj8RnQ4dfXz1O59vxIBr5fLmRvsL1zcAAAAAAADGSAcTAAAAAEZm9cqNxuL21p7xL2cvrR/2NSsrS2n57rtfKnps4e3Xbh/2dRmNov3dK8ma3SGKNEvKrXyZRHeGiXSE6NMZIyIPvYx7PoxefpyX8qW6T5CpMFzyyIcffBQumUBXKAAAAAAAAO5tAiYAAAAAjE6tVF/e3IjF7a1Y3N6KRz78ICIi/vRnHlqorCwduIg+f069eepnHul9bHlzI55+fXPh6JNmGN/6yQsvFI3/wrtvDRUeypJyPfaGO+rjDldMuFtIv88qYDIFsqTcHX5q5cfsSFVWluqV31t6td/jj7/7Vixub61HRDVqrbF22gEAAAAAAAABEwAAAABGrnMH/jce+FhERKzNzUdE1CsrSwct2C4svO8EWKK4IwTHo7F669mdbb+4vdUJ+QzbRWbc4YqiY2NajxcBkwnLg06916eRdZeprCyllZWlVkSk0YryPqsLzgEAAAAAADAR9096AgAAAACcKI2ISK+dv9gJlfQaSbF2+7U3Ou/HONRajaiVGsubG937sBG11iQ7gvSVZM1qHg5Iu8cmOKVBHMeTNygAdaT9U1lZSqMUvxGtwet1Qlujel8AAAAAAAA4KAETAAAAAEanHUKoxt5OAIfy2N33zt45dXrPeN69pBq1lgLscTpamKQRxUX8x7YPk6zZOM7XP6g89FKPru1Qimjukztgso4UiqusLLU7o+yzkx/58IPucAkAAAAAAABMxH2TngAAAAAAJ0yt1fjX/tVffLvfw3nB9b4qK0v1O6dOLxQ99gvvvrUuXDJb8u4hvfuskYdARipLyvUsKbfypZ53MpkK+XaoliKaERGtiHJEpFlSljOZToc+PnfCJUO4mv1oZO8LAAAAAAAAhyVgAgAAAMDI/eqrL76QdxkpUt8vZFJZWdrV5aGjc5f/p1/fLAyeMB6VlaW0srLU6lqGKqLvCpk0ShF9Q0hH0dshJP96agImuTQPluySz50JGBCAOlTXnoOESxa3t6LnetkQoAMAAAAAAGASBEwAAAAAOA7p8uZGPP7uW/0eP1Qh/RsPfKxTiK34ekL6FM6nw3am6RTstyK+HnnnjhEHK4rmkU5TF5MBZmGOJ1anu0zkIajDhktyA4/pU//qX8Zfe3c7ljc3Ynlzo/uh9ai1jvK+AAAAAAAAcGgCJgAAAAAcm0c+/ODAz8mDCoWF9l13+RcwmZDH7r73dw8y3qugw0jEeAIgsxDecFxPQJaU0ywp17Ok3Ir2cXLUcMlAi9tb0fjhP47/+sfP93YuiYi4fVzvCwAAAAAAAPsRMAEAAABg9Ia4A39lZWnPHf77dMfY8Rel+96LiGrUWgrxJ+QTH35wtmj8zqnTC0O+RL+gx7EGQI4zMHAI/Y7fszPSaeXEyLd3d+gpjYj6YfdDZWUprawstfo9/siHH/R2LOnW0L0EAAAAAACASRIwAQAAAOC4VJc3N4ru0N+RdodMKitLaZTiN/qtvLi9Fd98+Y9PC5dMpwH7edyKCvSnqmg/yZqNaM9pveehhThCuIFDGXXgqe/zFre34h/96R/0e3hduAQAAAAAAIBJEzABAAAA4Hi0gyCN5c2NeOTDD/qtlVZ+b+nVyu8t/S8RUY9WlPutmN/1X7hkwr71kxde6A2TLG5vxfLmxrD7pt96I9m3SdZsJFmzlL9eIyKqeaBjquRzut3nYQGTyRtpwGSIziVPHfL9AAAAAAAAYGTun/QEAAAAADj5Hn/3rXhjbr74wXaopG+wJGJXd4ypCwrcc2qt6nKtVF+bey19bu7RiIh2uGTI7gtJ1qxmSbkeewvx0zji/s1fd+e1kqw5qx0hBEwmb+Cx2N19afXKjWplZSmNiHq/9R9/962i4fWI+E1dmQAAAAAAAJgWpVarNek5AEChUqlUVHDU0Wi1hiteAgAAJqhWSiOivjY3H9fOXzzUS+TdMSIiqgqxp0h737b/zTZkuKRblpQLC/Lz7iMH1ie0MtUhkz5z7pjquZ8kWVIu+k/yws43fYMkpXgvWnG633us3nq2+9uhA1kAAAAAwOwolUr9CnLVOQEwMwRMAJhaAiYAAHBC1Np/tz9MyOSRDz+If/SnfxChIPvE6VPUH3HIYMWA1ysMCkyLAfOOmPK5nxR50OdsRNzOhxr9tnvl95ZezbsuDeWRDz+Iq9mPurswrUet9dSRJnwCFQTOBKwAAAAAmDkCJgCcBPdNegIAAAAAnHDtYEhzcXsr/sPXXz7QU69mPzqeOTEylZWlemeZ9Fz66HfjgqmQZM1SKaLZ5+Gpnvusy5JyPQ/4pBGxEBGRZM2+oZ7KylL9IOGSiIjH332rO1zSEC7Zq083ozQfBwAAAAAAYIzun/QEAAAAALgnvBAR5avZj+Kvvbu9byeTnrv+614ypb7ygy89H6dOL3S+r6wstVav3CgN+fRGjCFAMQtdEFr5+VHwkAL7Y5J3LendvmmWlOtFx0weoDrw/lje3Oh8ue46VuzHn3nwNz7z43cKx5P2dQIAjmSfbukAAADRarWG/X9tADjxdDABAAAA4Ph1FVYvbm/F8uZGPP7uW4WrLm5vxT/60z8QLplyX/nBl56/0xUu6R4f8iVGXTi+Pob3GKsBnU04PiMpPn3kww+6wyUREbdH8br3ks/8+J0DdYsBAAAAAADg6HQwAQAAAGBcqhFRj2iHSPIAyX5mOiBwkn3iww/O3jl1es94UeikSJI1G1lSrkbE342I7uekWVJuJVlzqDvGZUk5jfy46rIeEbdnoXtJRLvLSlFHjVZE+SDbgpE48jWnE6Lb9ZqCcgf248882EwmPQkAAAAAAIB7jA4mAAAAAIxHrdWIWqsUwxVwNyOiGrWWgMmMGTI4FBHtkEnsDpfsyAMXwyhab2FWwiUd+XyLurAcZFswvKGvLZWVpTT6dDb5a+9ux+PvvhWPfPjBTnCuJ1zSFC4Z7Nu/9vPfuHnpzK6xm5fOxLd/7edfmNCUAAAAAAAA7lk6mAAAAAAwXrVWNWqlekQ8GRHlgjXc7X8GLLz92u0XH3x4z/77hXffKgxJjFuWlOuzFjKJiNt9xgvDDRxe3kGnEbu3baP3mMnDJYUBn+XNjWECVUIS+1i9cqNRiaXGpYtvp7+4sR0REdevnmusXrkxa+cvADMkTf31CgAA7lWNhvtaAcAgAiYAAAAAjF8nQNIOmnQ0dCyZHU9/7eWnHvqHj7Wem3s01ubmI2Kn4P43D/hSvUX+ERFRageQjuLEHEuldkcfRiRLyr2hkT3Bki6F1aedbiX7EJYb0uqVG9W48tH3vzK5qQBwj6jXNYgDAIB7ValUmvQUAGCqCZgAAAAAMDmKr2fa4q/dKS3WSvWIjc7QYUJChQGTVkQ5S8qtJGv2/W1flpTrpYhmq6ATTpI1ZzFgcuhtwXAKwiUREWmWlNODHDPtUNXGoFWarm8AAAAAAADMmvsmPQEAAAAAYIbVWtWu5cChjryov28hfpaUC28vnY+nReGSQa83zTrbol/Hkn7bggMp7EhSNF5ZWUqjVNxJZ5/uJY2otX7uEHMDAAAAAACAidLBBAAAAAA4ssrK0k74YfXKjQMFPJKs2ciSopzIQP2CAtUZ7V4SETvbIo3i4Ey/z8zR7dq2lZWldqeT1t4VF7e3YnmzsHvJekTc1rnkCGqlehyuExIAAAAAAAAjoIMJAAAAAHAkX/nBl56PdoF+GhFpZWWpoCx/X/0KytPezh15AKOfkxzCUHR/fHq3beFx9MiHH/SGSxpRa5Xy5SnhkkOqlepRK7Wivd3redAEAAAAAACAMRMwAQAAAAAO7Ss/+NLzd06dXigaP+BLDQpPpJ1QSf5n3+LzJGuehAL/wm1RimiOeyInTX589G7fxrDHzRsPfKx3SOjnqNphkt5ATypkAgAAAAAAMH4CJgAAAADAoX3iww/OFo0XhU4GSbJmIyIGFfnX7yTld2NAuCROSLF/17bY9XlaEV/v7ebC8LKk3OmGk0bEer4MHS6JiFjc3ur+thq11ok45qbUSe5GBAAAAAAAMJUETAAAAACAkespxB9KHqzoqxVxut9jpYjmCeleEhEDt0UqZHJwXZ1vOqGFhXwp3M6rV24UHktf2H6t82VDuOTY2b4AAAAAAABjJmACAAAAABzawtuv3S4a/4V331o/5Eseqqi8FfGNQ77fLNLZ4eD6bbPC8crKUj0iGj/7Lz98b3F7Kxa3t2J5c6M7OGUfjI4gCQAAAAAAwJQQMAEAAAAADu3pr7381Jezl9a7O5Z8OXtp/emvvfzUYV4v70Jy0ILzxn7dT06Ye+mzHrc9QZE8XJJGRPrP/9IDp9fm5nvDJRH2wei0O8H0bs9G1FonpiMRAAAAAADArLh/0hMAAAAAAGbb0197+amna6U0YqNdrH/EwvAka1azpNwp8t/Peh5KOYkaUbwNzo57IqOUJeU0ItIp2W+7gg1d4ZJdrp2/GMubG32fxxEJkwAAAAAAAEwFHUwAAAAAgKOrtdodB0ZUKD5kJ5NGkjUP1SllFuRdWYq2wUIewJkpWVJOs6Tcioh6RKRZUm7lSz0PnRybAWGWoYIia3PznS/XI6Kad90AAAAAAACAE0XABAAAAAAYmcrKUr2zHPW1kqxZTbJmKfaGANYjojolHTCO1YCgTTpLIZN8rv3mm0ZE/bg/T9ex1FmqeYhnX4vbW50vbwuXAAAAAAAAcFLdP+kJAAAAAAAnw1d+8KXn49Tphc73lZWl1uqVG6Wjvu69ECQ5pGPt+jEqeXBkmLmmd5Lyq62Ibwwb/DioIY6lRhTM9Qvbr3W+nIltDgAAAAAAAIehgwkAAAAAcGRf+cGXnr/TFS7pHp/EfO4RU99J4wDhkoiIaEWUo93NZCJBjtUrNxoRUX3inTebnbHlzY3uDiZTv80BAAAAAADgsHQwAQAAAACO7BMffnD2zqnTe8aLQiccWGFXjWmWJeV6KeLJaAdGDqMeEUfufnMYecikEbVSbzimPTUnRwAAIABJREFUEbWWbjoAAAAAAACcWDqYAAAAAADHpqvzA4eUZM124GG3RpI1py7skCXl+p2k/GpEpK3Dh0t2XmtE09p5vaE6o9RKaVe4ZD1fhEsAAAAAAAA48QRMAAAAAIAjW3j7tdtF47/w7lvr457LSZRkzWqSNUsR0Qk5pFlSbo06hHFYeXijFcMHS6rRDm4MkmZJ+flRzi0i6gO3Wa2URrt7SieIspAvvQEfAAAAAAAAOHEETAAAAACAI3v6ay8/9eXspfXujiVfzl5af/prLz81wWmdKHn3jd5wRDpUV45jlAc2DjKHapI1G0nWfCoiqqWI5oB1F4buPDL83NIBIZP02vmLsTY3v2f8MO8PAAAAAAAAs+T+SU8AAAAAADgZnv7ay089XSulERvtYvxaq7rPUziYfiGHNCbUYeOw4ZLON/nXjTtJ+dUBnU86r3/gz1iKeLI1+DV3VFaW6nHhchoRsTY3H4vbj8by5kbf9QEAAAAAAOCkETABAAAAAEan1mrEhMIO97CJhB8OEi4pRTRbEd/oDpd0a0V8I/Z2Z+l24M+Yz69faGXXPCorS3s+y9rcfFw7H52QiWMaAAAAAACAE+++SU8AAAAAADh5KitLaV60z/Ebe/ghS8ppDBH6KEU0I6LxWNb8uX7hkoidTiYj63hziM4qhdbm5jtfCpgAAAAAAABw4ulgAgAAAACM1De/v/BqPPhwOSKisrLUeuzue+u//Tf/8KlJz2vWJVmzWhCcaCRZc2TBjGHk4ZL9wkPrEXH7sQPMLcmajSwpV4teuxTRzJJyOiikcgBDb7Mn3nmzGRHfyDvzAABMvWp1919zGo32X2PS9KO/QqZpuut7AAAAAOgotVqtSc8BAAqVSqVBdxtttFqtsRbQAAAAsL9vfn/h1RfzcEm3X36z+e1f/Ts//MYk5nTS5AGPv1uKONuKKEe7u0ZjROGLYd5/v/9Urh5lLvsEWIZ67QEdTArDJZWVpX7v2Vi9csP/PwDADCv6XcNJ+x15o9HYWQ6iEzS5V8Mm1Wp11zZL0zTq9ZPZhLETPOo9Rrr3/Un97NOi+xzttx9GfT4W7ffjeq9+799571Ffd/ttz3F+voOa9P7onUt3AHEazv9p2j4HVSqVxvp+B9ln49yus/KzZtzX41nYLuOe4zRcw4vO21arNZKTuVQq9fuhp84JgJkhYALA1BIwAQAAmD2VlaXC/3B84p03m9/6W+s/N+75nEQDAhhHCnYc4P0H/afySOYwKGSSZM19f9l7mG1UWVna0x1GuAQAZt9JDpgcNljSa1qKi8ftXgiY9H7G/ZzEbTBpBz1PRxH8Gna/H3fIrLt4d1TX3UajsadTUz/TEqKblv3Rbz6TPu+Pa/sc9Pp3UN3H9DQGTMZ53M3Kz5pxX49nYbuMe47TdA0XMAGAwe6b9AQAAAAAADiQfr9ZnWjVTCni2yMMuBz1s6QRsV6KaHaNDQy/rF65UV299WxjZxEuAQCmWKdAbxTFswcp9mM2NBqNKJVKBz4+Rnlc0S7cPej27OyDw5yTB91/x7m/j+OactDtcpRtOQrTtD+632Nazu9p3D4nwTi36yz9rBnn9XgWtssk5jhr13AAuNfdP+kJAAAAAAAnxxPvvNl88cGHy73jyb94d6YqACorS2m0QwqdoMMsBA7GFTBZj4iFnrHGY1nzG2N6/4GypLxzl/LO7QKH6XoStZ67m9dKraiN5s6FAACjtF8gZNCdnvsVBHZeU/eK2XfUwFDnGJl014dR6r1L+TjuEn/UIuHDnJOH3e+d95nmfX6U7dkJVYz7803j/pimQu1p3D4nwbi26yz9rBnn9XgWtssk5jiL13AAuNfpYAIAAAAAjMy3/tb6zz3xzpvdXSPiy9lL67/6d344FeGDYVRWluoRsTtsEJFWVpZa+WPT6lhDPFlSTrOk3IqCcEmSNUdapZK/XtHnGfgZu8MlBeP99YZLdo8DAEyNQUWBaZpGq9WKer3ed+k8XlSkN013tufw+u3DzvHRu/Q7FqapEH3W9CukTdO0cD90xnsdZD/sd13oLP3O/1Hu71HfgX/Q9uzdloM+37i7JRSZxP44ztc8rGncPgfRO6eia+ugpej1DvL8fkGHcW7XWflZM+7r8Sxsl3HPcRav4QBAHPwvuRaLxWKxjGuJdjFPq89Sn/T8LBaLxWKxWCwWi8UyYPn7Uc+XdOJzOcDyK797uf4rv3u5tc8y8X+T3n7sbKtgOdZt3ec9W8f8nvXO+2SPnX11v8/Yvf6w8/yV372c/vrvPPnqr/zu5dZ/9T9cbD33m/Ot1t+Pj5YpOC4tFovFYrEcfin6XcMsK/qdSZqmh3qtNE0LX+9e0fv5D7sdp0m9Xj/U8VH0vIho1ev1Mcz6+I3qnDns+w37noc9Jw+z34veaxTbZdTXlX6fbb9j87DnwihM0/4Y9PqTuvZN4/bZz6h/Th7HZxnndp2lnzXjvB7PwnYZ9xyn+RreZ/+O6t8f/a65E/8/ZYvFYrFYhl10MAEAAAAARq/WqubLzNxeLu9Osvc2eXullZWlYdY7NknWLEW7m0dnWZ/UXPbtDnIEeSeTakREK6IcEfUsKdezpHzQ7V94HOb7sf7igw+XIyLW5ubj2vmLsTY3P/B5AACTUHSn6DRN+97JfD/Temd4Dq/37t7DHh/91nO38IM7ynl62HOyaD/t935F73XYLkbVajWq1WqUSqWRHzNFn73fdupWtM3H1aVp0vujaD7TdC5P2/bZT+8xeNifucdtnNt1Vn7WjPt6PAvbZdxznMVrOADQJmACAAAAABybr/zgS89/8/sLr+bhjamVBw0OElqoT/oz5eGLiPa8FyIPX0xgKsf22908SNL7mfruq1JEs89L9Ztj4es8N/fofs8DABiroqK6o4RLOoQKTpaiY2RYaZoWFhpzMEc9T/sVfA96v8Pu96L1ht3npVJpZzmuot9+hcnDmsQxPan9sd+cpsU0bp9BeudbdExNg3Fv11n5WTOJ63Hv+w1rXNtlnHOcxWs4APARARMAAAAAYOQqK0tpZWWpdefU6YW8O0T6ze8vvDrpeRXpdLE4xFMnWlWQh0l655AeY8ik8Le4SdY8zt/u9tvGe8azpFxvRXy9YN3qQeeYdzCZqQ48AMDJVlRQN6oi10kU7TJ6/e7Uzsl2mK4FHbNYvHvQY3oSAZNek9wf1Wp1T0BikqZt++znJHcv6RhFaGDSx9U0mIXtMg1znPZrOADwEQETAAAAAGDknnjnzd/oHXvxwYfLX/nBl56fxHz2MV2/8T26kX+ePLRytuChvb+dnoC800nh5z5kAKYhXAIADK1RbS+1UnvpfP+no/vrRNEdp+/FgEmj0YhqtVq4TGrO0zinWdW7LUul0p5tOs1GFQQrKgzv99mPcjf6futPy3F71M/W7znHeRxN0/4o6r4x6YDENG2f/cxKuCRitrbruEziesxus3gNBwA+cv+kJwAAAAAAnDx515I9PvHhB0UhhUnrO6flzY34Zz8zF7/3yU8VPl5ZWUpXr9yYtt+6j3Q+fTqlNJKseey/0U2yZjVLyq2Ch3o/46GqK1ev3KhWVpaGeX0AgL3+tNEOkhSNd/58KY34XBrxC4cPgxz3HaeHfa2iO+EfpuC2VCrtef/9XqdTKD2o4LXz2LiKqIcJkIx7Tt2m7c7pgwzalr3jpVJpJ2DV7zPut28ajcau43BU++c4Ow0dl36F5fvNe7/Hp6k4PU3TqZrPIIfdH0V6f3ZM+7E4jFFun0GKwjknYfv1c5TtOs7tUnRt73f9nvT1eFq3S+86s2CWruEAcJIImAAAAAAA96zKylIaEQtFjy1ub+0sbzzwsVibmy9arV5ZWWqsXrkxidvnNWI83VeK3iPNknJ6yO4gB1WNiJ3fipcimq1ody3pev9DB5dWbz3buHb+4s5n/ML2a7H4a3f85hoAGGzYDiV/2sjXqx8pZNJr1EWBrVZR5nawwxT7Habg86CdQDrhgXq9fizFk50uG4d5znEWKfe+7iwUjh5mW3ae12g0jm0fz4rjDp8Nsl/hcm+QbJqMq+NFxOTOw6JwyaTPlWnaPvuZpe4l496us/izZhxmYbvMwhyHIWwCAOMhYAIAAAAAjNyXs5fWv5t8bk9w41s/eeEbk5jPAIVVAovbW7G8ubHz/fLm/8/e/cRGct0Jnv9FoQT9cfU2XVYDYlF00wvvqkeCeosNGKtSVgPtm1FJJXiJMAbwodGNldvSpbd1IAwfnIcR3BzA1l56LWuA6QV6FlhHHEzkiIW52cAURQHGmIUutLyNMSCOKYq1sLqc45FkCdWY2AMzWMnI9yLjz4uI9yK/HyAgVTIz4hcvIh6Zmb9f/A7kz575rHzw0COqp7fyjezK8VF0vLKaLjJppLPIhC8NdPqYFJF4SSeVWGRVThf/eGU1mMShLBKaG9/QC0XEnz7WZ48P4zaKhgAAgAvyFpekX1OyyER1V+o2hGE4kzRe9M7xqn3Jen3R4pL0a00XIJQtiEheW2dRRB0J5HWea1XGMlHHMa7CVByqccmb4F4mBu4OX582joeq+4atBRI2nq8uFZfo1DmurvyuaXo+dmFcXIgRAADYgwITAAAAAAAAAMZtvPzu8/I3X3grKTLpjU/kd/77P39PhrFrWSuBePKcxPJXT330a/lA3cWkNdPFJMcrq740WOzSYCFL1r5lZXpUKbbhG3IAAKB21pGkhHcio11M2pBOQK1aYJJFV1ySJEgm202SqVXPDYKgVHcWFV1BRBLHdMJpUzGZpIu3zu2ppI9v8tzk+enXqcYzfU7OK9IylSBrQ5cIEyg2sUvRDk6q7iVdZvJ8VRXndH38dOqaB5r6XePasWv6d3AZLsQIAADMocAEAAAAAAAAQC02Xn73+Y22gyjp+viuiEg0KYiJZOitXh/f9fcsKzBJJN09Jv8fi9lOJukuKcljTSqcFVBx//nGHAAAqEUV/sT4h0hEAhE//93QswoabFC0YCRNd2d4VRKjqvBg+vFkG6oCBBN3oNcVu8y7k3mdMZmiS0qvK0bd8dVtb954pgud0udJuvOOiL1dCXRjg/IWKSE6va82dfhxAddevZr+XVNVU/OxC+PSZoyLNIcDAGATCkwAAAAAAAAALKw/+Ggs/+9nls491hufSG98EskwfvDN6TAOekMv7I2fmCkyefH4nf1GgtWYLi6Z4h+vrPorx0eVv4VdOT4K0h1EmuxeUpfBTt+XqzfO9qk3PpGtw4Pkn3x7DQAAZpXtXJJeR8XcxDYTXsMwnEnWL9rFJJH1GlUyYZ4kRlV8JqiSTPMmbodhOFMUkayvjWOZThDN6iRSl7LHN3meqXPQRlWKyroyBglVx6Si2kxMbvp4pOcZ2zs42BZbV7qX2BJzHb9rmi64qKPI14VxMRWj63M4AACLjgITAAAAAAAAALUa7PT9Zz+89907ly6vPvvhvaNXv7b/eRtiEpFQFMUlU0UGM7YOD2R77fT///Ezn5UPHnpE/uEzn732xk7fH23utvWtp+4bXV8qFkpMilfO1tVWYcmkyEVVSKOTud9nx3/K3tKy7C3dld74JJh0rgEAADjvHf5EEFEnDOZJhMybJKgr5qgSX1W6biplY0rW2XQicJ7iG12nmDoV3ZZqPF2nOu9Fss+1ro1BHkW7/+jGqI4uQm0ej6rzZhNsP19V3RlcYOO42vq7Jq8y83EeLoxL3THaPIcDAIDzKDABAAAAAAAAUJv/89/+4Xfl8upf3bl0WURE7ly6vDrY6cejzV3ztxUuRvktZJ4OFqdFJuvywUOPiMhpYYKIhIOdfjTa3HW+s0dCUdDhH6+shi0XmbwlItfmPDVPIYzyW/DttfVotPm+fdkZAACgW6JAxO9OUlye5FbVXcB1iYG6pM686uhwoSowKSJJxDRd+GKa7/uNJGymx8/GBOMmRVGkvVP+IifQ6q7lvNdzuqNHl6XPn0U+b8pQFZcs+rxUJ5vntjbnY5vHJVEkRuZwAADcdqHtAAAAAAAAAAB013+4vPpXqse/9e+u/bLpWPLYXlsXEYk0HSyi5DmTopK0trIPdN+2Vv0WVrU//vHKaptZFu/Ne0LFAhgySAAAAOZQJRYWTQDMSiysWsyRvMbUXcB1iaZlYrJdFEXieZ5yn01KElSTxYWxqUOSyExxiZ5qDHRjlkjGdVESkymOqM7E7x3k19TvmiJsmI9tHJe0ojEyhwMA4C46mAAAAAAAAADAxDMf/XpfhrH6W85hHMnQC0TT/aQtk84e6W4jwcrxUV3fxPpSvXjFVl3dLwAAYJOn3U9cVXXjqKtopEyib52JoGUTj1Wvq9pZxVQMqseCILCywCG5+7nrspJnKS55QNX9R+RBknP6nNZ1QOpqAYHqeuDcKYYCHfNc+13T1HzswriYjpE5HAAAd1FgAgAAAAAAAKA2vfGJrttHq3Rxbfzq8LXMFw7j6Hf+7R9+T0SUnVnaknTtmHQX8UUkPF5ZjSp288jcVhsmxTRxxlNyZZqNbt+MttfW/elzoDc+ka3Dg0g2q0YJAAAwxzPdS4rLSvgv0gFEl1jYpjqLGZouMNElgiZJ6umiIRsSfxPJeeR6ccm8u7JTXDIrDEPtuM07H3TJzaqk5iLnli3HKD2/1hmXq2M0D4nr5rnyu6bp+diFcakjxibmcAAAYB4FJgAAAAAAAABq8zv//Z9nijF64xPZ+tOffb6lkGSw0/efeugRefz+J/LBQ4+cPb51eCCSozvHS3/2968c/7tr/p1Ll1enH3/x+J39OuLNa1JcMv2trn+8shqvHB95JVcZyfmuKMljbdN1kSlSUONvHR7I3tJdubX0hIjkP/4AAGCB+aHIP5T902rCQHFJ00UJKmEYiuedH4u8cRXpdGKj5K7bXZIkcKYTQJNk0qbOt3SyvAvnQ16q5NxpFJZky0pQ1knGVFXkluZiZ5ymO2+4OEbz0L2kWbb8rrFtPrZlXLJUjbHuORwAAJh3oe0AAAAAAAAAAHTXS3/296985d7R93rjE+mNT+TZD+8dbR0etPbN4GCn74tI+I+f+exZcUlvfCKj2zelNz4RGcbzYxt64au/eHs12adJ5wvZ+NXhtZrDn0f57ffxymqpb8UnxRqBnBZcRFKsgKM2K8dH0crxkadYCseWHLtJcYnIbEENAADAeVULRJ4u9npVwp4tCb6qDgBpqgROkujt1cb5FgSBBEEgnuedS/q15Tw3IdlHXYeeMAxLXRc2JB03KQxDieN47n5XGdMqmjwe6fPJhQIlG8/XLswzNo7rPG3+bVPXfGyCzX/zJarEaPscDgAAzqODCQAAAAAAAIBavfRnf/+KiLzSdhwTM99O7i0ti8iBSMHOFVNFCZ21cnyUFJcsikXaVwAAUIYfikgg8g8l/mx4xi9coNLk3bxVd3IvktynKzBJrxP2Su5Qnr47eR1U59w80+ePbUm3OlmJzKa7JbgyJlVNz0vTxUi2JSM3fTyq3OVf9dq6x7Pt81W1fdvOoTLaHtc8mvxdM63J+biMtsalCBMxujKHAwCw6CgwAQAAAAAAANCIwU7fv/Lpx//7+w8/dk1EotHmbuvdMBLf+uJzR69+bT9vPJGkOl1sr63L9fFd6ZkPrYiZuKo4Xln1RcS3oWuJccM4kKEXyvnxinJ1sAEAAHjaL15g8ow/KU6pro5kwzLrDMNQPM+bWY+LRQBFmExAbTuZtS3zikvS45JOOq2SSN+UrH10oduEK8okhaue7/rxqDLXFuk+0CUUQC4O5mN7mZrDAQCAeRSYAAAAAAAAAKjdYKfvi0j4/sOPJQ/5g51+PNrc9TJe1pg7ly7n77AyjCMZepGI+HtLy7K9ti4ik04oO/1QTotn2sikUxWYRGUKRI5XVs+KL45XVuOy67HR5Fz05eoN/8qnH+9vfHAoG786fI/iEgAAkNszvsgzsUiUs5NJxeKS9J2iRWYLOeqQJ+FSdRfrJK6u3h1exL79mL4DeMK2GKepEn1tuYO8KTbfJX8e2+MryvVCt64dD9PKjg8FJtlU4+Ha75pE3fOxC+PiQow6rs/hAAC4igITAAAAAAAAAE1Qfmv5Fz/88luvf/XHzzcVRG98cloIknps6/BAZLPAioZx8ObffOGtN1aevpb6SfLNdOPffq4cH0XHK6vBVAxPllnPdHHJFP94ZdVfOT5y+lvdpNAp+ff7Dz927Y2Vp+WNlaeDUYtxAQAAR/mhyNORyDuRutDkGf+028kz1ZIXmygwMZW8ly42mZYnXtW+ts3GmNJUiaO20hWXuJLomkcQBMrz3/Q+qroIBUFQeDuunDu243hks2l8dPOQi5ocV5d+1ySamI9dGBcXYgQAAHahwAQAAAAAAABAaz53/5NSRRBlDHb6YS/12FlxyWlBRaFvWt9Yefo9zY9ay0qYFIBEkyKRayKlOpDo4i88Rhbq8r4BAIA2PDMpIKnxL8Csu4ibSIitkmirSmxNlC0wUcVXNBE0nVDatQKGtKzjYLuuHRtVEq/N+6i7s39XqOY3W4+FSP7jUeUYudy5o67z1aUxqEPecXXtd01T87EL4+JCjCquzeEAAHQJBSYAAAAAAAAAaqfqHNKkwU4/FBF/Ooap4hKRYZy3+MJ6Xe5AUqPFziYBAADWa6KLSXp7RZ47HVsQBJUSom3vGFI2NtVd1OM4NhGSdns2JmHafGxNaLq4JH29FB1fmwtMoiiaSS6ues3UvW9NHQ/f90vviyrJvKm5wpbz1eUiG5U2x9XW3zUizc/H02wel0TdMbo4hwMAgAcutB0AAAAAAAAAgO575qNf76cf641P5NVfvP1KQyHMfAO5t7ScFL2UKi4Zbe4qX/fsh/eOyqzPoKwuHXnoMhG6nAnW5X0DAAAdoEoAVCXuFaUqehCpnsBnMnlXdQfyos+vsn3V2FcddxHzSZKm1udC4rWtRSqmz708dB2O8rL5eOs6GuVVdO4wocvHwwQbxqdK1y5bNTmurvyuaXo+dmFcmo7RxTkcAAA8QIEJAAAAAAAAgNptvPzu8y8ev7PfG59IsmwdHgQyjFv9pvDvlp/aLx3D0AvPOqBMTIpmVk3E1paV46NAZgsugi50Pxndvqnch6/cO2q7KAgAAGAu00UmusS9onezTj+/alKnbj/zqqNgJv36toteym5zHhcSr00U99SljW4gVRLLXTjeqmsvLxPzW1FdPx5V2Tg+XRjjNsfV1t81bXdnsnVcpjURo2tzOAAAeOBi2wEAAAAAAAAAWAwbL7/7/EbbQaS8/tUfP1/l9b3xiYxun5gKx5RI1N1Kcn+LOyky6SJ/dPumbK+tnz1wfXxXeuMTp4uCAADAYvB9X3zfn0m4S4pMkp/nkdW5pEwyoyquKutMry/Zx3mJhXUVcqj2L4ln3vpVRUBlxzlLGIbieV6pGJM4VWNXR6eV9LHNS3fe2sr3fWMFMVnnvmpMoyjKPHZNHe+qsq69LKpzpal96/LxMKHt8XFpDimiqXFt83eN7rrOU3RQ93zswri0EaOLczgAAJiI45iFhYWFhcXKRURCEYk1S9h2fCwsLCwsLCwsLCwsLCzllhd+dMP/+v/zJ2+98KMb8Qs/utHI+7u//tv1eLK9s+Wv/3Y9jr8tfun1flv8+NsSK5bW37O+d+XJ8L0rT8ZTS/n97NLybQk1xyxuPTYWFhYWFhaWWhbVdw2u831f991J7Pt+7Pu+8nVhGGa+tsrYzIupDN26wjAsFEPemOfFqVt/1ut0r9HtQ1VlYsw6L+qIMwzDQsd1Xox5jp2pc3KerGur6jKPanyy5oK6j7fJeVe3b6p4dedKXce8aMwqTRyPaW2PTRy3Nz6qddU1zlnqOgZNjWtbv2uK7F8b87EL49JGjLbO4Zpja+r9h+78af0zYxYWFhYWlryLF8exAABgI8/zQlHfcVVEJIrjuKt3UwUAAACAzhrs9H05TfI7Z7S56ymebsze/3El3vm9NXn8/idnj20dHoiIRDKs8P5y6J3tz/bauuwtLcuVTz/ef//hx14bbe62flvM45VVX07fW/siEuXpTHK8snp2fDrXyWSo/ayh2nkAAACspfquoQvfkdfRySHvHax10nfFTpQdb1Xnj2lJrFnjkLVP6THMcxf0eeNeNSYT8pwbWR1nEnXGmdVBJ033PN2dzVV3U593J3RTnSJ014AJ866jrOslvW+6Mc3TBSCv9FhUmXerzgWm9y0P247HtPSxWaTxUc0FbfxNUNcxaHJc2/hdU6SDSVvzse3j0kaMts7hqnMkjmMjJ47nebqThDwnAIAzKDABAFiLAhMAAAAA6J7BTl/5geSVTz/ef/2rP36+hu3NFLRsHR5Ib3xy+o+hgS8Oh57/rS8+9907ly6vpn4SjTZ3W3vvOikumfkGduX4SLnPmufnKkpxymyRCcUlAAB0WFcLTETMFZkkyfVVE+yLJjjmMS8pMcu8xMcyBSaq15mMyZSq50bdcZY9rtPnaVYSdfo45ikMMpG82maBiUi1cTWdvGuywETErn3Ly9aYbSgwEWlnfLpeYCLS7Lg2/bvGhQITEbvHpa0YbZwPKTABACDbhbYDAAAAAAAAAIDP3f/kyZpWPfMt5PbaevK/Rr7QG1y94SuKS0T0N01oivIb2OkOJSmqeP2M57vptJgkEJFIKC4BAAAOC8OwciFAkrjXRNFDGWXjq3Ofyqy76XEuu62m4iyznenXFC2IaiJ5vmwhlEllxjWZR2xX5ZxpS5ePhwltjE9WJ6OuaHJcbf1d0/Z8bOu4TGs6RhfncAAAFh0dTAAA1qKDCQAAAAB0z/b/9Ufx3tLyzOPPfnjv6NWv7X/e9Paa6Jgy2Olr37+ONnfru2XiHMcrq9q75am6khR9vmsU3Wxa7TADAACa0eUOJmlJQuW8Tg3Jf00nMNZ9Z/gois4WFVOdWIqYN+ZtxJSWJ8bkv23EmXW9fux+AAAgAElEQVRck3hUCaa612UlpOru2N7FJNay4+oCF/fNxZibxPjUo8lxtf13TVtcGJemY7TleqeDCQAA2SgwAQBYiwITAAAAAOieN//mC2+9sfL0tenHeuMT2To8CGQY6zPhStIVmIhIMNrcNbI9ReHCmZYLTHTvqxeuwCTjGBk7DwAAgJ0WqcCkbenk/S4m7QMAAMB9FJgAAJDtQtsBAAAAAAAAAFgcGy+/+/yLx+/s98Ynkix1FZeInBavqIxu3zS2jdHtm8rtbB0eGNtGSaoxzSoWUT7uenHJhO4GFotz20wAAICaqTpJAAAAAAAAwC0UmAAAAAAAAABo1MbL7z6/9ac/8/aWloN3H/3d/cHVG+Fgp1/LrY0fv/+JPH7/k3OPTQo/TGa7+VuHB5IqmtEWtzRl5fgoktOikUhE9j2RIxHxJ51Nsp6fSP+7i8h6BAAAMCAIZv9spMAEAAAAAADAPRfbDgAAAAAAAADA4hns9H0RCd9/+LHkIX+w049Hm7ueyfXL733h7LFzRR/D2HjhhAUdS2asHB9FxyurIiJh/OBh/3hlNV45Pjob6+OVVV9Oiy18ye5y0jW1dM4BAABYNHQvAQAAAAAA6AY6mAAAAAAAAABog7KLxl/88Mtv1bX+7bX15H/NFhWcFqucW+f22rq8+Xtr+0a3U55yrJNOJpPiklAedPPwj1dWY9VrXDXa3A2ufPrxuePx7If3jkabu4tSSAMAAFAbupcAAAAAAAB0Bx1MAAAAAAAAAFjjc/c/ebLO9X/ri88dvfq1ffNFBcM4kKEX7i0t+0khy97S8rU3dvqhiESjzV2bO2VoC1A608lk6Pmvi1zbW1qWW0tPiIjI1uHBqgw9X4axzccGAADAKlEUzXQrUXUvocAEAAAAAADATRSYAAAAAAAAAGhcb3wie0vLjW/3zqXLr9S17sHVG5E86AKSSP7dZhGDKi6R004li5L554ucnne98Un6cQpMAAAAclIVmKRRXAIAAAAAAOCuC20HAAAAAAAAAGDxPPPRr/fTj/XGJ/LqL942UgCSKiI4M7p908TqdXSZdG1n2GVlAIYi8k9NBWKhto8NAABAp9C9BAAAAAAAwG0UmAAAAAAAAABo3MbL7z7/4vE7+73xiTz10a/l8fufyN7Ssgyu3jCSjfb4/U/k8fufnHts6/BAZAELClaOjyIRCTKe8jnFY9HK8VHWa7qC7iUAAACG+L4vYRi2HQYAAAAAAAAq8OI4bjsGAACUPM8LRZ/4E8VxvAiJLgAAAADQaYOdvi+nXTTOGW3ueqbWt3V48KCjyTAutd4C25/5wPXKpx/vv/7VHz9f53bzOF5ZzfVhsCdydOX46PN1x9O44cznDJEM+WwBAICuU33XwHfk1QTB6Z9QURSddSuhsAQAAACu8LzZj4jj2Mznxp7n6d5skOcEAHDGxbYDAAAAAAAAALDQlJlog51+ONrcLfOF28z6ttfWZXT7RKTubhVDz99aWpbttfWzh3rjE9k6PLhW63bziyRHB5dY5O0GYmnMWdHR1RsiIvLsh/eOXv3F229TXAIAAFAOxSQAAAAAAADdRYEJAAAAAAAAAOtc+fTjJ02u71tffO7o1a/t111Q4PfGJ0kxi3VWjo+C45XVrG6hnaPqaHPn0uXVwdUbr4xaigkAAAAAAAAAAACw1YW2AwAAAAAAAACwuHpjdTHG5+5/YrTA5M6ly6+YXJ+rVo6PAk/kKOMp0crxUZc6e+iKaRamyAYAAAAAAAAAAADIiwITAAAAAAAAAK25Pr4789jj9z8pvT5dwcro9s3S68xtGAciEil+onqsNbHITLHNpOika8UlWSgwAQAAAAAAAAAAAFIoMAEAAAAAAADQmt74JNo6PJCnPvr12WMfPPSI3Ll0eXWw0w+LrGuw0w8/eOiRmce3Dg9EmioomBSZ7C0ty/baugyu3pDB1Rt+0X2p08rxUSQiSTFMJCLRleOjzy9QcYmIZUU/AAAAAAAAAAAAgA28OI7bjgEAACXP80LRJwBFcRwvUuILAAAAAHTX0Au319b9vaVl1U+j0ebu3Pd/kwKOc+8he+OTpLhEZBh7BiLNbbDTV33wmmtfYNZf/PDLb73/8GPXkn8/++G9o1e/tv/5NmNCNccrq+nrPZgUTgEAMEP1XQPfkQMAAACLy/NmPyqOYzOfH3uep3uzQZ4TAMAZdDABAAAAAAAA0K5hHGiKS4qYuUHB3tKyTNbb6Bd3Gd1KmumiggeGnv/6z39ybevwQHrjE+mNT+TVX7y9KkOPY+EoRXGJiEh4vLLKMQUAAAAAAAAAAKjoYtsBAAAAAAAAAIDOsx/ee67K6/9u+an93l++T2eDxeWLyFlxSepxzgs36QpJOKYAAIhIEJyvrY6i01+Pvv/gV6jv++f+DQAAAAAAACToYAIAAAAAAACgdVuHB8rHX/3F229XWe/rP//Ja1VeX5Iyyf3Kpx/vNx0ItMioBAAAnRFFkQRBIJ7nSRRF55bp5yRL8twgCM49Z9Ek45As6eIcwKTk2kufd8m5V8f1qNpeXdvSbT/Zrmm68Wxy/6qqc3yS9bs0Pq7FOy19Tde9VPl91eZ16crv2en4TcQ8b+63dVyYowAAWGxeHMdtxwAAgJLneaHoEz6iOI7tfKcNAAAAAChu6MV7S8uyvbau+mk02tzVvgcc7PSV7x974xPZOjyIZNjw+8eh5+8tLYfpfXnx+J39jZfffb7RWBbdUPvZQvPnBYz4yZ/8i1/+T//5w9X047euf+57X/3h7VfaiAkAYDfVdw1d+Y5cVUhShu/7EoahoajckU5g7NI4mErO7NKYtKXodZp0GKrSZSjv8TexrSzTScmm5t0kgT2PuvevqjrGR8Se459XE/HWPSfWlYBfNI486roui85ztv5uMfm3QdHzzrZx6focpbpu4zg2cjF7nqcbMPKcAADOoIMJAAAAAAAAABsEvfGJ9MYnqp/5g52+8ttEVXHJ4/c/SYpLpKUiAj/ZfrJPo9s3ZeNXh9daiGWxnR7/9LfWFJc47Ht/+T+u/uyPfvfcYz/7o9+V//tfrswUnQAA0GVJkrWJhNkiCdsA8itzJ/bpDgBFFZ0XTM4jaXXMKUXHpcpY1q2OmGw6/nVsv+14u6DO67LMPGfbsTRRtJusJ+kqV/R1towLcxQAALjYdgAAAAAAAAAAIMM4kqEX7C0t627V58tsoUDy+DkfPPSI/Pn4rohIq1kkGQUzaMCkKMmXqzf8K59+vL/xwaFs/OrwPYpL3Pdv/vz35X+T/yIiIv9pfUnSBScAAHTdvIKQrDs965L0knXadOdslEcy5nnpu5Q3cZf4qkmxZa7JsgnByXba7mSRpcp4JknjNu+fCa4d/ybjZU6sR9XrUiT7b5ammSiqqFq0a+O4mOLaHAUAwKKjgwkAAAAAAAAAOwzjrG+lZ7qY6LqaiIj83fJT+3PWVx99AQMZDQ2ZnBtn3W3ef/ixa2+sPH1tcPUGx8B9kchpkcm/+fPfny4u4dgCABZCVuKi7/sSx7GEYahdkp+rkvRM3bkbWHS6pGvf98+u0+kleTytSKLyvHkhWXTXv8m71Zu+43zWeKbHMmv/bJnf6ojFpuOfh2vxzpM+D+ctaapzOWspUyDX5HWZ/L2RnufSbOqgZioO3RjrjrGN48IcBQAARCgwAQAAAAAAAGCROR0/wqSoZKqAQOn1n//kPcOhFRWIiOwtLcv22roMrt6QwdUb/mCnzy2hm6ErPuJ2h44bbe4Gz35472j6sa/cO/reaHPXjmwxAABqpkqwmy4sySNJ/iSBb3EUTX6uksQMdYJxct2pxjR5XJdonGd76efp5oW6r3/Ticm6fdONZdbPbCgwqSNx26bjn4cN8S7anFjXeZeWNZclRSfpn9lQ3GpqfIqc24ms+aqNcWGOAgAACQpMAAAAAAAAAFhj6/Agyiwy8eS784pLtg4PRNruZjCMIxnG3vbauuwtLU//hCKTdlFg4rqhF776i7dXR7dvSrK89Ms7fyVDj2MLAOg8XXFJ2YRXEvi6iePXrirXadlrUpfoXXRbZROagyCQIAjE87xG7nqvG6dpqjFvM2G7rvERaf/4F9V0vIs6JzZ9Xeo6Mamel9ZmgYnJ815XDDeP7nlNjQtzFAAAUKHABAAAAAAAAIBNokmBiFosq5JRXPLUR7+W3vgkkmHc+jeOGYUkJMK3p/XzApXRnQYAsJCy7uJfha13+Yc5eRJ+YU7V61SXVJu1PdU286iS6O153tlSV9KvrrgkL1XCe1PzWxPjI9Le8S/Lhni7PCc2dd6pFOmi1tZ1qWK649K0Iuda0+PCHAUAAOahwAQAAAAAAACAPU4LQ4LMLiYZ+v/0yw9kGC/m7SlxZrS5qzsH+CYaAAA4SZVQZypJlgQ+wF1l7gyfsC3RO4+i855r+1eUa8fftXihVqWQwiZBEJzblyr7oevqsui45gEAcNfFtgMAAAAAAAAAgHOGcbQ19GR7TWRvaTn3y3rjE/mTe8cv1RdYYZEouipc+fTj/RZiWSxDzx+JyPba+tlD18d3pTc+EdlsLywYobyuhOIhAECLtn/6HRER2Tu+JSIivZXrIiJy/cofn/1/VapkTpMFJun1R1FkZWJk1l22TY5JETbG5Kr0WKrOw6pde+pkqhAsDEPxPO/cY0EQ5Oo4VKYAw9br30QSu+o1urF0kWvH37V4UQ/VcWxa+vdN0m0qPfeiGq55AADcRYEJAAAAAAAAABsFW4cH4eBqvgKTP/hoLFuHB0kHFCuMbt+UvaXlc0UOIiIbHxy2E9Bi8UXk9JyYfdyacwQlDONAhl4o54tMIpuufQDA4tg7vnVWXJJ+PPlv7/3rlQtN6r4rdt51qe70XSZJO528mWc9SSJoVkJq8rOycRWVHg8bYpreZsKFJMyssUw/7nneWeGObt/mHZsois6dh6aOT52dhuqi62A0L+55P287eXxaG8nsroxP2ePfljLxujgnluXKeVc2DtXcXnb+Tv9tZfq8aPI8KzMurpwrrs1RAAB0CQUmAAAAAAAAAOwzjCMZesHW4UGYLtBI641PkkKC2cy7dvmnsYncWnpCRM4KHq61GdSC4xvoLnhQZCJCcQkAoCXbP/3OWSFJlr3jW7J3fEu25JvGupmImE9cjOO48GvKJB+WScDPU8iR3obneRKGYS0JiFEUKYt+8rymjY4mNidhlhnL5HVRFNV2jF1Rd/FZlnkJ3TZ3AWgicbqJ8Wnz+JdhS7w2j1FVTV2XNnQgqUJVXFL1vEi/3vbzjDkKAADMc6HtAAAAAAAAAABAaRhHvfFJpOhCceasuGQYe7YmmScxZu0HGmPlOYIShnEwWTimAIDG5S0uqfqahC13X1clIxZNMFXtS9b+FC0uMfVanbIFEdOvdTkp16QqY5mwbTynO6tUSVhWjUveO/SX2SYJv93h2vF3LV6ozeswpnr+tCaPaTpWUx2skvUki4l96uK5zjUPAIA76GACoNM8z/PlwZ0p0+86kneNURyb+SI6Y3tn64/j2OjdVD3v7G6Nqu0Z2zcAAAAAAFoxjIPe0AtHt098EZGkm8n18V3pjU+SZ9n53ve0y8LZraCT2H9z8eGjV1sLqvsGO31frt4QkdPiHifOFQAA4IykI0kZt97/j0a7mLQhfdfyKIoKJf4VSUDVFQ+kk/eTZFHVc4MgKNWdRUVXEJHEMZ2g2lRMqhh1j2clAKv2oW5ZsaSLM6ZjT79ONZ7pc3JeMrOp5NU2OtTUwaaiHTTPteOfFa9Lc6JLwjCc6XCR9++BNrtaqH6P2zJnFy3SWWSMEwAAzaDABEAnTRV6ZL0bPCsE8TwvkgrFGDm25089N55sq1KhyaSwZN72Ku8bAAAAAACtG07eQw+9cOvwYPq98L6IvHf2czsFIhJur63L3tJy8tjqYKcfjzZ3vYzXoYTBTt8XkbMMkL2lZdlbWpYXjx/e3/jV4Wt0uwAAAFVt//Q7pV+7d3xLtuU7svWlb+Z+TZuJmHkULRhJ0yXvqhItdV0hph9TFaUEQWAkSVhX7KJad1MxzYvR9/1cXT6Sn3ueZ+xu7vO2p4pVt91545lObE6fJ+lEaBF7E8d1Y4PySEZeXK7MiS4Kw/Dc7/WkeENXaKcr6mmyMC+9bVOdRqrSFb5w3gEAgDZRYAKgc+YUXuj4MinGKFr4UXZ7k9cVLvzIWTxzbluT7QUUmQAAAAAAnGZ3IYnaMI4GO/1IFO/jBzv9cLS5694+2U35eckbK0+/t/Hyu3wuAgAAKinbuWRmHV+qto42kyGr3LU8Les1quTfPImWqvhMUCXF5k1MTZJw051fyo5bEWUS65NE1zoTW8se3+R5ps5BG1UpKuvKGCRUHZOKWqTiEteOfxvx2jonuigpgEgXmSRjnO5ClbWOvKocg/Tv4bY6TqXn+HlddPJw5dx0bY4CAGDRXWg7AAAwqWSxx7Sk8KOJ7RUpEplWdpvhpDgFAAAAAADYgffpzWGsAQBAZbfe/49th2CFdIJg3oTdIs9TFXPkVTa+eTGlt1EkUVJ3N/c26DrBTFPdTb3umOp8vgt0Y551rBapeCJR9LzUjVGT53ddXDv+tsZr45zoiqRApEjHkkQYho0VRlT9u8IUz/POjUtWZ7Qu/J6z9ZoHAAD5UGACoDMyij0iOe0U4k0vyeOK5+cqMpmzvUCzvVLbSm1TJUptK9Bsz41bFwAAAAAAsBj4prU5jDUAALDG9k+/03YIRuVJIFQl5uqSO3UJl3mp1ls1yVFVYFKEKnm5jsTLrDuhx3EscRyfJfWGYXj2b11ycF0J1dMJ3W3dRd4myVirzjNX7kxfB921nPfaUY0pFosrcyLqlT5uts6rXSouAQAA7qPABECXKIs94jgO4jieeac/9biy8KPk9oLJemfWOXlcVWji5+ksMnlO+nlJYcm5/YvjONLtW5GCFgAAAAAAUN1X7h0dFXkc5Y02d3XZHmQVAQAAGGKigGPeneLzPjdr/aaKF3RdJcrE1IZ5d4mfdwf6OiTbTJZFTaZNEtZ155itSdBNUo2BbswSuoIdQMTOOdFVybVYZlzmXcempLdhc1FjFEXieR6FTAAAwAoUmADoBE3RRKQqLEkrU4iRsb0875yNFbTM2z/NvuUqaAEAAAAAAGa89Ms7q1uHB9Ibn5w9tnV4IC/98s5qi2F11mhz1xOR6NkP7x1d+fTjfREJRpu7ZIEAAABrXL/yx22HUFnRbhxVikbKJIJOFy+YLmAou642kpWL7LvuubYluhbpYGGzrMRsikse0CWDTydiTy/JY9Pjqnq9rQnmqFcX58S2ZM1f0x1i2uwKo/p90ebcmrd7F91yAACADS62HQAAGKLq7JH7HVccx8GkaGR6PYU+Vcq7vTiOI8/zoiLb0nUvyRlaelvJ9tz/5BUAAAAAAEf0xieTApOD6YfJaKnD0AtHD8Z2VUTek00+BwEAAPborVxvOwTjshL+i3QA0SWrtqnOYoYoiozuXxzHlV4fhqF4nnfuMVuKOZLzyJZ4ypp3t3+KS2aFYagdt3nnQ5LEPa/IrWjh0iIeIxfHqMtzYptU50JW0cT04+lrOSmmqON8Sf/90fY5qdt+Mp5NjQsAAEAeFJgAQDlliz1Mba/WghYAAAAAAFCPvaVlubX0hOwtLcuzH947urPT9+muYdDQC7fX1v3r47vTHWN8GXqhDPPfjAQAAEBl60vflMFxv9I6TBSXmC5KKEOXdJsnrqznuJC4m3RO6CpVMn5T0snALpwPeakSiKdRWJItq8hEJxnTPJ0AutIZp06LOkZtzom2Sl9TReYv1bWcnFsm/7ZRxdj23046SWxNjAsAAEBeF9oOAACqmnT3SCv8Dl9VsDHpalKHovFVLWiZeb5m3AAAAAAAgGmnhQ3R3tKybK+ty97SsoiI3Ll0eVVEwsFOn/foBgx2+v7g6g0/GefpsRZutgEAAAypWiBy/cofF3q+KqnQlkRXVQeANFVCMkn0dlOdc3kS9MsKgkCCIBDP884VYdhynpuQ7KOuQ08YhqWui0VLOg7DUOI4nrvfVcbUJa4df9fiTTQ9J9quSFcyHdW1aXLOT8+3rhTw2fw3XxmuXvMAAOAUHUwAdIGqu4ft77IafSc16WKiisH2cQIAAAAAoBuGcfB3P/zyWyJyTfFT3qNXNCnSOZctkBSXTDqZML4AAMCIrS99U7blO7J3fKvwa3sr1wsXqDSVnBdFUaU7kifrmPcYyYb2a/Ocm2c6NleSbrMKS0zfUd+VMalqel6aLkZyIYG8Tq4df1fi5ffWearf62XGKN0Zpu7zoUpRkOq1dcw3yVg2OS5N6tK+AACwCCgwAYByImmoSETTRYV3XgAAAAAAOOb9hx97T/MjshWqU47haZHJQcOhAACArrt+5Y8LF5j0Vq7L1pe+aWT7dSTolVlnGIaSvsFZFEVOFgEUYTLZeFETl+cVl6THJZ3I60L3gKx9dOVu+i4ok9yuej7HYz7GCCap/oYIgqCW86zK3yJd/DsGAAAgDwpMAHSBkXd0qkKOOI7zfjrpe57nF+ickv7UqtA+lOzQ0lhRDAAAAAAAKIRvq+sVyTD3ZzwAAABz9Vauy2hlV7Z/mq+TSdXikvTdrEVmCznqkCfJU3Wn7SQuVVJmVxKUu7IfbVEVXtTR0aNNTXUtqYPt8RVFgngxrh1/1+JF90x3Ukrwd0J9uOYBAGjGhbYDAICq4jiO4jgOppcGtqnaRq53MRZ1JOFdFwAAAAAADRrdvql8/MXjd55sOJTOGW3u6j4PorgEAADUZutL35StL31TeivXlT9PCkuqdi5RJdKZTpg2tb50scm0PAmBNiYN2hiTy3TFJWEYdmasgyBQnv+m91GVwFymuwsFGG5y7fi7Fi+QV1JgMr2Aax4AANfRwQQARMTzPF+KdxUJRGT6HZE/KR6JVB1GprYxs52SHUkAAAAAAIBjRrdvyvba+tm/r4/vSm98cq3FkLok/VlNlFF4AgAAYERv5fppgcmX6tuGrsDEVBcTXcJ/HmEYiud5yp+ZKjAJgqDwncDTCf5Jcn+XpY9j2f3Vdd6oS9eOjSq52OZ9bPp4N001v9l6LNrg2vEvEq+rcyKqq3J8yvztkvW3EKrh+gMAoD0UmADAqcJdReI4jjzPmykykdNCk/Trde9wohIdVyhGAQAAAADAYVuHByIisr22LreWnpCbj//+0astx9QFo83dSIZeIA8+h4lks82IAAAAzPF9fybJzlSBiW57RZ47HVsQBMrX512nal9tUjY2VVeLOI5NhCQis3GVKcxRrUfEbDKnzcfWhKaLS9LXS9HxtTl5N4qimSKBqteMLftmimvHv8l4XZkTF1WV4tZ5fN8vvS5VoUiZ86bs+dY1rs1RAADggQttBwAAbfI8L+k6kparq8jkOYGoiz50HUsSQc7iEufeHXmeF5pYROS5tvcFAAAAAACDzj4/2F5bl72lZdlbWpY7ly6vDnb65jLLFtBgpx8Odvrx9tp6uLe0nHweE8rQc+5zFQAAABVVkqIq+booVdGDSPXkvTJ3AM9aV5GERF0HibJUY1913EXMJ0im11e2kMPk2NXF1iIV0+deHroOR3nZfLx1HY3yKjp3uMi1499kvIs0JzbJ1LjmWbdLTMXetfPNtTmqAc+ZyqfyPD7zBADUiwITAAtr8sd2KLMFHGW6iuA839Cy2nTgAAAAAADUZhhHIhIlxSVpg50+tzYsYTJuvojI3tKybK+ty/baevJjxhQAAHSG6SITXfJ10Ttup59fNclet5951VEwo0qobbPoJa+i50add5Q3xURxT13auNN6leRdF453lWR2E/Ob7Vw7/m3H28U5sWlVC79E2vud2KQyBW5dPN/avuYttCrm8qmcHwwAgN0oMAGwcKa6lug6l+R+9zu1njJ/uCddOgAAAAAAwKIYxsHe0rLum1S+GCxourhkmqqABwAAwHW+72sT9XSdSHSCINAm7pVJ3pt3F/mi61QlledJYK0raVWXUJtnzFWxlx3nLLrCnCKJnKqxs6nTStHzvG2+759da1WXeduZlue4664V25J3yyaz687nLnLt+DcVrytzomtUY1Ck2FX33DzjGgSBeJ53brGl6FDX7Szv+VblmrR5XETcm6MAAMApCkwALJQ5BSFlikuU65msy0sWEQkmj6f5XSwymd73KouoxwwAAAAAgK7ifTAAAAAyhWGYWWSSlYyePMfzPG1iny1398/q1qKLXbfvJvZJl9Q4L/k/q5CnDlkx6sYta1zrOB/KFOuUKaJqQzq+JEHWxJJFNS/kmQvSbEzczUpmV42L7me+71szv5nm2vFvMl4X5kQXlSl2nf47RbU+G+efosr8nTBvXLrAtTmqZpGpfKoi+W0AAJThxXHcdgwAULuMYpBE0eISX2Y7oCSFJZmf8Gli0W7f87z0RF0o1qztToo4rDXnuJUaBwAAAAAA2vbm33zhrTdWnr6WfvzF43f2N15+9/k2YnLVYKev+oxGRERGt2+KiEQy5PMDAAAWmeb7kZaiMaeOZHtd8Upenqf+2qnseM+7I3oSa9Y4ZO1TegzzJKDPG/eqMZmQ59zwfb9U0YIpuhh1Scuq5+m6U6gSled1szCV3Ky7BkyYdx1lXS95usaYLsBIj0WVebfqXGBjcYnJ8RGx7/jP02S8Ns6J6ePf1Pg3eV2K5BvXqsey7rmr6PrbON/qGJdFmKNUv7NN5VAp8rwS5DkBANwRxzELCwtLZxc5/cIgFJFYs4Ql11tpPZqY/Dq2lbXNto9PyXGqNA4sLCwsLCwsLCwsLCwsLK0v35bw1mvL8V//7Xr8wo9uxC/86EZ867XlOP62xK3H5uDywo9uhMk4psaTzw5YWFhYWFhYdN+PdILv+7rvUAotvu/HYRjWEo/v+5XWGYZh6f2at0/pePPGWmXcTYxz3TE2EQVVaAMAACAASURBVGfZ45qcq1mvVx3HeeNR9TxNmLgedUvd42pamfiz2LRvJpgenzh2b4yajNe2ObGtY2DLdVl2v+v4OyPNxfOtjnFZhDlKta3Y3PsP3f7wWSULCwsLizPLBQGAjprckUrXASMSkSAu3wlEtb7cNNvVduoosm4AAAAAAGC/3vhEtg4PZOvwQEREttfWZXD1hgx2+nbdVtUBo83d4MqnH+8/++G9o2c/vHf0lXtH3+v95fsenUsAAEDXhWFY+Y7qyR2h6+yoUUXZ+OrcpzLrbnqcy54bvu9LHMe1x1lmPKZfU7TjSBOdAebdyb8JZcY1OVdsV+WcWRSuHf8m47V9TnRV2d9tyeu6en2W/X1v+99kVbk2RwEAsOi8OI7bjgEAjFO1O5+I5LTlYOmiDUUrw1ItDDUt2WfaLeZ9nqnt2STjOIrQOhIAAAAA4Kqh54tIuLe0LNtr66pnBKPNXW44kcNgp+8/++G97/4P//zp6vXxXemNT5IfBTIs//kPAADoDs33Iy1FU68kwT2K9H8GJUl9RRP0824/vW2TYx1F0dmiUqbwoKp5Y95GTGl5xk2kmSIMlaz4smLTvS6rqEB1js57javKjqsLurxvprg2Rk3Ga/uc6KrpMbX5d2LT8vydkPx3kcbFhjnK82bTpUzlUCnyyhLkOQEAnEGBCYBO8bzTBA3Nj438oW6qwCTvuigwocAEAAAAANBBQy/cXlv395aWVT+NRpu7C/+ed9LNJdIV20x+fu5zg63DgwdFJkO7P/cAAADNWKQCk7alk/e7mLQPAAAA91FgAgBAtottBwAAhtXStaSjGA8AAAAAANoyjIM9RYHExOLcslBhsNN/S0SuTf7pD3b6IiL7IvJaUmwy2On7ohin7bV1Gd0+ST8MAACABqg6SQAAAAAAAMAtF9oOAABM0XS7iOI4DlwuLlFVr0/2tSg+xQcAAAAAwA3Ofo5RxWCn7w92+rE8KC6Zdk1EwknXEhE+5wAAALBKEMzejJkCEwAAAAAAAPdQYAKgEzzPU921ktaCE5PxSVvIZBUAAAAAAGwxun0z6o3Pd9vojU9kdPvmwr1nn3QkyXNDDX/y3HkWbgwBAADaRPcSAAAAAACAbqDABEBXOFdcoulCokt+SD9e9FP5mee73NUFAAAAAICO8LcOD2Tr8ECe+ujX8vj9T2RvaVm+9cXnvpuziKITBjt9Xzz5boGXqLrYishpgY6IRDK0+3MhAACALqF7CQAAAAAAQHdcbDsAAKhK172kxk1Gqe0Z+4Q8o+gjvU3xPM8vUCTS5PgAAAAAAICC/vEznz37/zuXLq+KSDjY6Qejzd1FeA8fSlx9JVc+/Xh/609/9nz1NQEAAEAniqKZbiWq7iUUmAAAAAAAALiJAhMAXdB0dw5VsUdYpGNK0aKYOI4jz/PSD/tZr5mOTfHwIiSnAAAAAADghFtLT+h+lOu9v8sGO/23TK3r9Z//5JoMvZDuJQAAAPVRFZikUVwCAAAAAADgLgpMAHRRpCmqKExVNDIp9pjpYpK3yGRSXFKm6EO1zcwuJrpClpoLcAAAAAAAQB7DOJChF4q+O2qnM/MGO/1QRK5lPCUST56TWFYLrLbTYwYAAGA7upcAAAAAAAC4jQITAF2Q/pS6iU+tZ7qYyKTIRDQFHFPFHqr45hZ9xHEcTNY//frQ87xIVdhSoZAFAAAAAAA0ZRgH7/7wy2+JutCis+/hBzt93WckiWi0uRtMnptVhCMiIr3xicHoAAAAUIbv+xKGRu4BBwAAAAAAgJZcaDsAAHDRpBhE1a3El9Oij3iynP2/nBZ76IpL5nY+SZ6r2ubUts4W0RSX0L0EAAAAAAC7vP7VHz+v+VEn38NPikvmZR6e7fuk0EQ7Fr3xiWwdHhiKDgAAAFnCMDzXpST5/ziOKS4BAAAAAADoADqYAEBJcRxHnucFkp0QMa+bSpHiknnbNLotAAAAAADQkKEXjkRke2397KHr47vSG5/4stnJIpPMzMPR7ZuRiHxXbp92ihWRJ0cirw2u3oimX/u//tf/7+NvvfufHku9nM8+AAAAakYhCQAAAAAAQHdRYALAaZNOHa2ZKvjwZX6Bx7RISnYTKbnNgM4lAAAAAADYbevwQPaWlmV7bV32lpZFZN2XnX446eCxEHrjE5Hzn3ck/39tUniSjEUoIklxyZGIvCcir8mQzz8AAAAAAAAAAACAsi60HQAAVBHHcRDHsVfXkjOGpDNIIJPCkYynR3Ja7FGp4EOxTd22osm+kFwBAAAAAIDlkuKSFH+w0y9yUwurZe3LH3w0lq3Dg6yX+yLyr2S2A8qqiLxHcQkAAAAAAAAAAABQDR1MAMCQSRFHo4kMbWwTAAAAAAAYF4mIf2vpCd3PfenA+/9JcYm2G+2//s9v5VnN/6x5vDNFOAAAAAAAAAAAAEBb6GACAAAAAAAAAG067bwR/Obiw0eaZ3SleEJbXDKncwkAAAAAAAAAAACABlBgAgAAAAAAAABtG8bRnUuX39b8tAvdS7TFJb3xifTGJ1U34fwYAQAAAAAAAAAAAG2jwAQAAAAAAAAALDC6fXOm0KI3PpHR7ZstRWTGpLhE24Xl+viu7kcf5NxEJMM4KBoXAAAAAAAAAAAAgPMuth0AAAAAAAAAAODU1uGB7C3dlVtLT5w9tre07PdajMkAbXFJRveSQIbxaVeSoRdnrp3iEgAAgDNBcP5Poyg6/ZPK9x/8Seb7/rl/AwAAAAAAAAk6mAAAAAAAAACARZKCi72lZdlbWpbttfWkC0inPH7/E9k6PJj9wTD2zopLTmUVkFBcAgAAFl4URRIEgXieJ1EUnVumn5MsyXODIDj3nEWTjEOypItzAJOSay993iXnXh3Xo2p7dW2r6/tngk3xTsdhy9zn8vikz/m6lyrHbHrf6mDTcczS9fnRtDrmDFfOFQAAFpUXx9k3fwMAoC2e54Wiv8tpFMfcoRQAAAAA0CFDzxeRcHttXfaWllXPiEabu069F54Uxijf249u31Q9HGV2JBl6Yeq5fOMMAAAyqb5r6Mp35KpCkjJ835cw7Fw981zpBEbXx6HuhMyuXDdNK3qdJh2GqnQZynsumNhW1/fPBNvitW3u68L41FWsoVPlmE3HanJet+046nR9fqyD6TnDlnNFdd3GcWzkYvY8bTdm8pwAAM6ggwkAAAAAAAAA2OC0WCL4zcWHjzTPsOsb5jmyikuSLi0K2d8wD+NgaqG4BAAALKzkbtgmCgqSdQEwq8yd2KfvdF9U0Xmh6jzS9f2rysZ4TRQlmsL4NK+O3/U2HkcT23VtfqyLyWvClXMFAACcosAEAAAAAAAAAGwxjKM7ly6/rfmpa9+oKotL/uCjsWwdHqh+REcSAACAHOYVhEzf8Tm9lF0n4DLP884tTZzrVZNiy1yTZbdZ5nVd3z8TbIzXpnme8ekGG4+jye25Mj/WxWQcrpwrAADgFAUmAAAAAAAAAGCRr9w7UnYwufLpx082HUsdPnf/t+ofDGM7vj0HAACwWFbSoe/7EsexhGGoXZKfq4pNun7ndpSXVZyEWbpk2KTQK47jc4uuAKxIkvG8eSFZdNd/kSTiru+fCTbGa0vCukj3xid9zs9b0lTXTdYShmGp/TP9O97G46jS9fmxLqaLS1RsO1cAAMADFJgAAAAAAAAAgEVe+uWd1d745Nxjj9//RDY+OGwnIMM03Uv4phgAACAHVYLddGFJHr7vk8DXQUkBkYlFtW7kp0suTgq90pLHdUnGebaXfp5uXjBx/Xd9/6qyMV6bOgAwPs2rY/9sPI42xNn0/FgXk+eMK+cKAAA4jwITAAAAAAAAALDM1uGBjG7flKTQ5IOHHpE3Vp6+NtjpW5/ZNdjp+4Od/mxWmoikC2cm9mUYdzeTAwAAwBBdcUnZ5H8S+KCSPv4UlxRT5Tote02qkoDnbU+1rTxdjLq+fybYFq9t3akYn2YEQSBBEIjnebXsn23HUafr82MdTB8TV84VAABwHgUmAAAAAAAAAGCh7bV12VtaTj/sO1BkooyvNz7RdS95rd5wAAAA3Ke7+3PV5H/V60neW1zp88z3fWXCK/SqXqe6pNqs7am2mUeZO+Z3ff+qsjFem+Z0xqdenuedLXUm49t4HFW6Pj/WxXRxiQvnCgAAmEWBCQAAAAAAAADYZBgHIpL1jWmXMrwiupcAAADMp0qoM5X4TwIfEnQvcU+ZO8MnVAVEtl37ru2fbfEGQTBTNNYmxqcbbDuOOq7EaRPT1wTHAAAAd1FgAgAAAAAAAAC2GcbBu4/+7r7mp05+m3p9fDf90NGkmAYAAMBp977+Dbn39W/I8cqqHK+snv37t2++aWwbqrs/L2KBSRRFEgSBcmkrZhtjKsOG4pL0WHqeNzOmNjNVCKYae92+l70zfNbzdedt1/fPBJviVXUkartojPHpBpuOY5auz4+m1XFNuHKuAACAWRfbDgAAAAAAAAAAMOsPP/qn/fcffuxa+vErn378ZBvxzDPY6fsiov3muTc+Of/AMP58zSEBAADU6rdvvin3vv4N5ePJfx/d2JVHX+jLoxsbpbejSiw0eZf1vOtS3dW6TOKh53kz25+3niTpMSupMPlZU0nCeQpImo6pLFVSaZN38s8ay/TjnuedxaeLcd6xiaLo3Hlo6vjU2WmoLrrk3bxJvV3aPxuYjDf9u8PWfS6C8ck2bx9sScwvexxVc3udv19dmR9NjYuN14RrczgAAF1CgQkAAAAAAAAAWOilX95Z/W8XLsre0vLZY73xiWwdHrzXYlhZtN9cbx0epB+yI6sBAACgpLwdSn775pvy2zfflMs/kEpFJmmmE+viOC78mjKJqmUSMIt2AkmKB8IwrCUBMemyUeY1TRdu5NVW95IyY5m8Loqi2o6xK+ouPmuba/tnU7yqRPG2x47xqd+8uTtd4FmGTccxiytx2qKOa4JjAACA2ygwAQAAAAAAAABLnRZmnBZnbK+tJ//1t1qMqaje+CTdvWRfhnHxLDIAAABL5C0uSb+mbJGJ6q7UbQjDcCY5tehdpFX7kvX6osUl6deaLkAoWxCRvNbGogjXikum1XGMqzAVh2pc8h6XMjH4vp/rOuv6/tWhjXhVHYls7aDE+HSDK9dl1+fHspq8Jlw5VwAAAAUmAAAAAAAAAGC97bX1c51MBjv9eLS5W/3Wk4YMdvrab4ivj++mH7K1AwsAAMBcSUeSUq/997tGu5i0IZ3kV7XAJIuuuCQpSkm2myRGqp4bBEGp7iwquoKIJI7pZMymYqpKlVTaVLGG7lxIH9/kucnz069TjWd6H+YVaZna5650QZh3bFznWqJy0Q5Oqk4EXcb4dIMr12XX5kcXrwlXzhUAAFxHgQkAAAAAAAAA2GgYBzL04nRxSWKw0w9Hm7utdwKZFJdob22Y6l4idC8BAAAuu/f1b5R+7W/ffFPufV3k8g++n/s1WQUNNihaMJKmu0O2qjhDVXgw/XiyDVUBgok7ceuKXVTrbiqmqtrqjqM7vroxmTee6UKn9HmS7rwj0lynlqJ0Y9MVXd+/tqXH1qYOPzZgfGCzNuZHrgkAAKBzoe0AAAAAAAAAAAAaw9j7zcWHjzQ/teUbX21m1tbhQfohbjMIAACcVbZziel1tJn4p0rKL3sn6az9UK0zT9JjXUUDqqTPMAxzbU8Vt667SZNs616S99iZPAdtVKWozIWk4K7v37Sm400XX9neUYHx6YYmxzAMQ4nj+NyS93eHC8e67PxYdlyaviZcOAYAAOABCkwAAAAAAAAAwGJ3Ll1+W/Mjq7OoeuOTdPeSiO4lAADAZb/997tth2AFVbFEHkWepyrmyKtsfPNiSm+jSKKk6rltF0WkE1nbTPwsuu0uJqlGUaRNLtbtb9vnUBFd3z+RduOtOm82gfHpBleuS1fiFCk3P5rYZt3XhEvHAAAAzLrYdgAAAAAAAAAAAL2v3Ds6+g+XV5WPtxBObtfHd9sOAQAAwEr3vv4NufyD77cdhjF5EghViZO6REbV+ookWIZhKJ7nzayzSpKmqsCkiCRJdHo9bSZeqopLmizaSG+riwUjRWQlF3chCb7r+2eD9PgyrucxPrBVW/Mj1wQAAJiHAhMAAAAAAAAAsNhLv7yz+r/85gO5tfSE7C0ti4jI1uGB9MYns1Un7YhE5FxGmKJ7SfI8AAAAOM5EAUfWc6sWc5R9jY4u8bOodIFJm0yMcRVNF7TYKrmDvK6oyvWE367vny3aLhizHeMDG7U5P3JNAACAPCgwAQAAAAAAAADLPSjYOJDttXW5tfSE3Fp6wt9qOa7BTj8URXHJ1uFB+qmRDGM7sukAAABa9ugL/bZDqEzVjaOuopEySY91JmaWTcJUva5qZ5UyXE8s1SXkuiYIAu1+dKH4ouv7ZwvV9cDYPsD4wEZtzo9cEwAAIC8KTAAAAAAAAADAEdtr62ddTEREBjv9eLS562W8pDYFikv2ZRjP3vYZAABgQT26sdF2CMZlJfwX6QCiu5N3m+osZmijwKTt7iVlJeeR68UlWYnFIu4XX7i6f0ULl2zZh/T82nRiehYbxqjJ8QHmsWF+5JoAAAB5UWACAAAAAAAAADYbxoEMvThdXJIY7PTD0eZuGwUcM5loe0vLsrd0d9Jt5cx7zYUEAABQn8s/+L4cr7xZaR0mikvaKEpIC8NQPO98nXPeuIp0OrFRFEUz++4K27uXpONz4XzIK0nO72pXD9f3z8XOOE1fz66Nke3zHRaHLfMj1wQAACjiQtsBAAAAAAAAAADmGMbeby4+fKT5qVXfBt9aeuL8A3QvAQAAHVK1QOTRF/qFnq9K/LMlwTcdmyouVUKlzUnmXWfLuTMtCAIJgkA8zzuXhGtjrGUl+6jr0BOGYanrwpbE4K7vX15Nxpseb9sLeEQYn65w5bq0Jc665scycTR9TdhyDAAAQDl0MAEAAAAAAAAAB9y5dPltEVlV/MiqzKutw4Ppf1oVGwAAQFWXf/B9ufd1kd++WbyTyaMbG4ULVJpKzouiSHln6yLJh7oCk/Q60Q7V8Wkz4Vp1zs0zff64UoCSlVhs+u7xbYxJ1/eviqbjLXo9zXtt3fMD49MNrlyXXZ8fy2j6mnDlXAEAAKcoMAEAAAAAAAAAN0Si7lbS+De0g52+LyL7InJt+vFUcck+3UsAAEAXPfpCv3CByaMbG3L5B983sv06EvTKrDMMQ/E8b2Y9LhYBFGEyIbTJ5FKbin3mFZekY0snrVZJim1K1j52oZtC1/bPtXjTqsy1eV/r8hg1MT5AwoX5kWsCAADMQ4EJAAAAAAAAADhgdPumv7e0LLeWnpC9pWUROS3o6I1PfNlsrshkUlxy7tvwx+9/In9+/HPpjU+mH36vqZgAAACa9OjGhqwcb8i9r38jV6FJ1eIS3/dnkvnShRx1yJMAmY5tOi7bOmaY5OJ+2FRgokq8teWO7qbYfNf6efLE1/X9s4lr8TaN8ekGV45j1+dHFzCGAAA040LbAQAAAAAAAAAA8umNT2Tr8EBGt2/K6PbNpKCj6W9WZ7LpPnjokXRxidC9BAAAdN3lH3xfLv/g+/Loxoby50lhSdXOJapEOtN3jza1vnSxybQ8CYE2Jg3aGFNRuoKONuhiCcOwE2MtcrqPqvPf9D6qCp3KdHcpev13ff/Kci3epjE+3eDKcez6/OgCV84VAACgRgcTAAAAAAAAAHDMdCeTZz+8d3Rnp++PNndb/cZ1e21dtg4Pkn/y7S8AAFgIj25sTApMqhWRZNEVmJjqYlKl+CAMQ/E8T/kzUwUmQRAU7hiSTvBMkjtxyqYk164dm+TanGbzPurutJ/1/C7vX9vyxltlH2zqZlQU49MNrlyXXZofXb0mXDlXAADoIgpMAAAAAAAAAMANkYj4e0vLsr22fvbgnUuXV0UkHOz0gzaLTK6P74qIHInI23QvAQAAMMv3/ZkkO1MFJrrtFXnudGxBEFRK+FXtq03Kxqa6q3kcxyZCmsumhGmbj60JTScXp6+XouNbJoE6/dwu7V9VTcXr+37p/VAVBTaVAM/4dIMr12XX58ci2romXDlXAADArAttBwAAAAAAAAAAyGEYRyIS3Hz89480z2jqG9b99AO98Yn0xiciIqsUlwAAAJinSuSLokjZfaQIVdGDSPXkPZMFDao7ghd9fpXtq8a+6riLNJcgWaVDja1sLVIxfe7loetwlFeReLu+fya4Fm/TGJ9ucOU4dn1+dIEr5woAAJhFgQkAAAAAAAAAuGIYR3cuXX5b89Nav2Ud7PT9wU4/FpFr04/3xieydXjw4IGhZ8ftGQEAADrGdJGJrnCj6N2208+vmmSp28+86iiYSb++7aKXKlxPzjRR3FOXNu60XiV5t2jxUdf3zwTX4m0a49MNrhzHrs+PLnDlXAEAALMuth0AAAAAAAAAAMCIum/jq8w0PFdc0kwcAAAAC8n3ffF9fyYxLykySX6eR1bnkjLJe6q4qqwzvb5kH+cVv9RVyKHavySeeetXFQGVHecybOv2oTq2eenOW1v5vm+sICbr3FeNaRRFpe62X+S87Pr+leVavE1jfLqhjeOo+h3g+76V80dT86NIuXFpEtc8AABuosAEAAAAAAAAABwy2twNJp1E0lrJtNpeW58uMolkGLuT8QUAAOCYMAyViYTpZD1dF5B5nTdsSUYMw1A8zzv32LxCGl3xgYl90hX3JPHotpFVyNMEG++onjWOutjynLs2UF2XTVDNC1nnpq7zUZ5iqax/16Wp/TPFtXibxvh0gyvHsevzowtcOVcAAMB5FJgAAAAAAAAAgGNGt29G22vrZ9+sXh/fld5fvt/Kt9fXx3eT/41kGJu5PSMAAAC0dEUmIg8SGtPFGXnXWyUm3TbLrjfZz2nTRQZJomFTBTNZxT3JvueNadELTIrczVy3D6oON9Prz/t83Wtco+tu5HnezL6Z7F7UFNf2z7V4m8b4dIMrx9GVOLuMYwAAgHsoMAEAAAAAAAAAlwy9UET8qa4hDx6vt8AjEpGZb3N745PJ9ikuAQAAaEpWkUlRSdJe1cQ9VfJglXUmd7ZW3cVaZP7dweso5Jg37m3E5CLVuSIyf/ymz9Osu8XnGWOT56oNsq6XPONqS/ciHdf2z7V4m8b4dIMrx9GVOLuMYwAAgHsutB0AAAAAAAAAAKCcvaVlGVy9kSz+YKdf5zeu0WQ5c67I5bTwBQAAAA0Jw7BywUKStGdrcn3Z+OrcpzLrbmucbS2iKDMe068pWhDVRGKqrhCqSWXGNZlH5un6/tXBtXibxvh0gyvHsevzowtcOVcAAMApL47jtmMAAEDJ807vyKr5cRTH3BkVAAAAALCAJh1M9paWZXttXfWMYLS5W/1W1vrt6z5UDmQY17ddAACAElTfNXT1O/IkwTHrTtBJUp+JjiWq7ae3bXKsoyg6W1RMdWIpYt6YtxGTa7KOazJuquRS3euy7nSu6z7Txbujlx1XV7i2f67F2zTGpxtcOY6uxNllNhwDz/NmHovjePbBcuvW/QFMnhMAwBkUmAAArEWBCQAAAAAACkPPF5Fwe21d9paWVc+IRpu7Rt8zD3b6vkzeo794/M6TG786vJbepgx5nw4AAOyzSAUmbUsn73cxaR8AAADuo8AEAIBsF9oOAAAAAAAAAABQwGmXkOA3Fx8+0jzD6O2RJ8UlSWKm/8bK09dSnVMoLgEAAICykwQAAAAAAADcQoEJAAAAAAAAALhmGEd3Ll1+W/PTSPN4WTO3nZ7qnEJxCQAAACQIZv8kpMAEAAAAAADAPRSYAAAAAAAAAICDRpu7gcwWk0STx2s36WLiy9AjcxAAAGDB0b0EAAAAAACgGygwAQAAAAAAAABHjW7fjF48fme/Nz6RZz+8dzS6fdN09xKt6+O7yf+SPQgAALDA6F4CAAAAAADQHRfbDgAAAAAAAAAAUMJp55Bw41eHsvGrQxGRVREJZegFMoxNFppEkioi6Y1PpDc+mcQRN9IxBQAAAO2LomimW4mqewkFJgAAAAAAAG6iwAQAAAAAAAAA3HQua297bV1ERH5z8eHvvnpaFGLEaHM3GOz0w2R7vfGJbB0eJD+muAQAAGCBqApM0iguAQAAAAAAcBcFJgAAAAAA4P9v7/5hJUnOw4BXL84WISlY0Qx4Bo6+WAANXkb6BBhOucbiknmRAkWGAYcOLnDgTRRc4NAOHSnxTLJY4BgaDniiIh8BQTIc+cyzdQpo4gLCsOGgHEzPvtl53T3dM/2vvv79gAJ5b9/0V1XT/U1vb31TABTsi+fvvy0uqX3w8vWL/ZtPPh+t+OOdY72q9vX/O4y8UwoAAIWzewkAAABA2RSYAAAAAAAU7OfPv9/0492oRSavql163DFFYQkAAE/sdru03++v/yIAAAAAq/Vs6Q4AAAAAAHCDV/khpeMOJlP6d//+H/6bzz78aJ+OBSa7lNL+bBcTAAA2ZL/fv7NLyen/55wVlwAAAAAEYAcTAAAAAIBSvcpVev0iT3Hol69fHItJvvvB8b9/9H769Ksv08fffpPS424mAABsjEISAAAAgLjsYAIAAAAAULaHph+++eTzxp8P8GTl4GcffvT4H3YxAQAAAAAAgFAUmAAAAAAAFOzNJ58f0rtFJpf/PaqzIpPDVDEAAAAAAACA+b23dAcAAAAAALjPm1/+bHf2n7uU0iF9Mk2sP/r2b1NK6ZBeZQUmAAAAAAAAEIgdTAAAAAAASvaq2qdjUUlKKaUvnr+fPvvwo316Ve06XtVHYwHJx99+c0iv8mQ7pAAAAAAAAADLsIMJAAAAAEDZ3haSfPbhR+mL5++nlFJ6+aP39+n1i8ObTz6/tRjkVGByXqjyYOcSAAAAAAAAiEmBCQAAAABAAOfFJWd2L1+/2L355PPBRSH1axSTAAAAAAAAwEYoMAEAAAAAKNshpbRrKC452aVbC0VeVfv0ZrkinwAAIABJREFUuIPJseDEDiYAAAAAAAAQ0rOlOwAAAAAAwB1e5Yc08k4jL1+/2P2rP/vJr17+6Ke7zz786PTjXXosNgEAAAAAAACCUWACAAAAAFC6V/nhh7/9zdctfzqo+OTl6xe7lNL+L3//ux+klNIXz99PL3/009Mf79KrSpEJAAAAAAAABKTABAAAAAAggD/941/8ID0tJnl488nnQ3c32Tf98GInEwAAAAAAACCY95buAAAAAAAAI3hV7d48Lf7YpU+G7WByPU5+GPV4AAAAAAAAwCooMAEAAAAAiOFtcckXz99PP3/+/fTF8/d3P/yzn/yq3t2kr0Nq36VEcQkAUJqvU0pff+973/t73/nOd3536c4AAAAAwJopMAEAAAAAiGGX0rG45LMPP3r7w7/8/e9+8PL1i/zmk8+rnsd5UmDyw9/+5utPv/ryX6ZXedzdUAAApvdBSumDX//6129/UFV9b4sAAAAAYFueLd0BAAAAAADGc15ccu7l6xf7Pq9/88nnh3TcqeRwan/6x7/4geISAAAAAAAAiM0OJgAAAAAAMTyklHoVkVzz5pc/O/3fXUrpkD4Z46gAAAAAAADAmtnBBAAAAAAgguMOIw8ff/vNzYd4+frF7p//h3/y5y9/9NP9Zx9+tKt/vEuvqjxKHwEAAAAAAIDVUmACAAAAABDFq3z44vn7Dw1/cnjzyedNP3/r5esXu5TS/m9+53d/klJKXzx/P7380U/Pjl2NsjsKAAAAAAAAsE7vLd0BAAAAAADG8+aXP0tfPH8//fz591NKKf3673wn/d2cf9zjpY0FJJ99+FH69Ksvx+wiAMBscs6dRbYAAAAAwCM7mAAAAAAAxLL7+Ntv3haF/Nff+4P0l7//3Q9evn6RX75+YRcSAAAAAAAAoJECEwAAAACAWHYpHXce+eL5+0/+7OXrF7uW1x06jnlIr3z7NwAAAAAAAESmwAQAAAAAIKCG4pKT3gUmP/ztb77+9KsvFZcAAAAAAADABigwAQAAAACI5aZikDeffH5IKT38/f/7v3/xw9/+5uuU0uFP//gXP1BcAgAAAAAAANugwAQAAAAAIJJX+ZBSevj422/afuPJTiUvX7/Yv3z9IqeU9n/zO7/7k5/++r9/8OaXP9ulV9V+yq4CAAAAAAAA66HABAAAAAAgmlf58Omf/OcqPS0m+UVKaXf+g5evX+wvf/bZhx+lL56/n1JKu/SqeufPAAAAAAAAgJgUmAAAAAAARPSq2r355c92n3715flPf5JS2tVFJSeNBSQ/f/79zj8HAAAAAAAAYlFgAgAAAAAQ0y6ldwpF3vmziyITAAAAAAAAYOMUmAAAAAAAxLRLKaUvnr9/7fcOTT/8o2//tvPPAQAAAAAAgFgUmAAAAAAAbNTL1y92TT//+Ntv0sfffpNSSg/pVVZgAgAAAAAAABvw3tIdAAAAAABgEg8ppf2nX32ZPvvwo6Y/39XtHf/sf/71L/7pv/hv/2jqzgEAAAAAAADrYgcTAAAAAICIjjuPPHz87Tfp06++7P2yv/q9P/hJelXl6ToGAAAAAAAArJECEwAAAACAqF7lQ3qVq4+//eYw/LXVfoIeAQAAAAAAACulwAQAAAAAILJjochu6W4AAAAAAAAA66bABAAAAAAgtl1KKX387TdXf/Hjb79Jn3715eQdAgAAAAAAANZHgQkAAAAAwAZ8+tWXnUUm3/t//+e8uOSQXuWHWToGAAAAAAAArEKVc166DwDQqKqqP08p/aTlj79OKf3FjN0BAACAIv2nP0k//sf/IH1w+u8vnr+fPvvwoye/9+aXP0sppfRffp3+1x/+2/Qf5+shAAAAAEAIu5af/yLn/I9m7QkA3EiBCQCrVVXVr1J6XAADAAAA3Ga/S2n3h4//fV5k8vG336Q/+vZv3+5ucvjrlB4OS/QSAAAAACCkr3POP1i6EwDQx3tLdwAAAAAAgGk9HFLK//rxvz/+9pv05pffLNchAAAAAAAAYHWeLd0BAAAAAADW4/BXS/cAAAAAAAAAWEKVc166DwDQqKqqX6WUPli6HwAAAAAAAAAAADf6Ouf8g6U7AQB92MEEAAAAAAAAAAAAAABg4xSYAAAAAAAAAAAAAAAAbNx7S3cAADocUkq7lj/7H3UrwWkMX6eU/mLJjizMPBz9OKX0Qf3/D0t2ZGHm4ZFr48g5cWQeHrk2jszDkWvjyDw8cm0cOSeOzMMj18aReThybRyZh0eujSPnxJF5eOTaODIPR66NR86JI/Nw5No4Mg+PXBtH5uHItfHIOXFkHo5cG0dbm4cft/x8C2MHIIgq57x0HwAgtKqqTh+2h5zzw6KdWZB5OKqqap/qB2o552rh7izGPDxybRw5J47MwyPXxpF5OHJtHJmHR66NI+fEkXl45No4Mg9Hro0j8/DItXHknDgyD49cG0fm4ci18cg5cWQejlwbR+bhkWvjyDwcuTYeOSeOzMORa+PIPABAeZ4t3QEAAAAAAAAAAAAAAACWpcAEAAAAAAAAAAAAAABg4xSYAAAAAAAAAAAAAAAAbJwCEwAAAAAAAAAAAAAAgI1TYAIAAAAAAAAAAAAAALBxCkwAAAAAAAAAAAAAAAA27r2lOwAAG3C4+N+tMg+ccx48cm0cbX38J+aBS3LE0dbHf2IeHrk2OOc8eOTaODIPR1sfP0+5No62Pv4T8/DItcE558Ej18aReTja+vh5yrVxZB6Otj7+c84JzjkPjswDABSmyjkv3QcAgM2oqmqfUtqllFLOuVq4OwCrVVXV6S+rh5zzw6KdAVgp95YA18mVAP34ezjAde4tAfpxbwkAULZnS3cAAAAAAAAAAAAAAACAZSkwAQAAAAAAAAAAAAAA2DgFJgAAAAAAAAAAAAAAABunwAQAAAAAAAAAAAAAAGDjFJgAAAAAAAAAAAAAAABsnAITAAAAAAAAAAAAAACAjVNgAgAAAAAAAAAAAAAAsHEKTAAAAAAAAAAAAAAAADZOgQkAAAAAAAAAAAAAAMDGVTnnpfsAAAAAAAAAAAAAAADAguxgAgAAAAAAAAAAAAAAsHEKTAAAAAAAAAAAAAAAADZOgQkAAAAAAAAAAAAAAMDGKTABAAAAAAAAAAAAAADYOAUmAAAAAAAAAAAAAAAAG6fABAAAAAAAAAAAAAAAYOMUmAAAAAAAAAAAAAAAAGycAhMAAAAAAAAAAAAAAICNU2ACAAAAAAAAAAAAAACwcQpMAAAAAAAAAAAAAAAANk6BCQAAAAAAAAAAAAAAwMYpMAEAAAAAAAAAAAAAANg4BSYAAAAAAAAAAAAAAAAbp8AEAAAAAAAAAAAAAABg4xSYAAAAAAAAAAAAAAAAbJwCEwAAAAAAAAAAAAAAgI1TYAIAAAAAAAAAAAAAALBxCkwAAAAAAAAAAAAAAAA2ToEJAAAAAAAAAAAAAADAxikwAYDAqqraVVW1r1u+aKef72aIN3qsnv0578d+xGPONr4540Ue2xLxKMuW8+UUubIrxoTHD5tPIn8WUJYt58q6P6Pmy7nns44ZNp9Ej0dZ5ry+N5Arr83j6PevkfNJ5LFRnrnvhaLny7njRc8n0eNRFveW8+XKKUTOJ5HHRnncW06TL+caY/R8Ej0eABBUzlnTNE3TtGAtpbRLKe1TSrln26eUdnfGmyXWgD5djn8/8vEmHd+c8SKPbYl4Wllt6/ly7FzZEedtjIn7HyqfRP4s0MpqW8+VdZ9Gy5dzz2dL/0PE2kI8raw25/W9gVw5ZB7vinVDzOLySeSxaeW1OXPlWbyw+XLueNHzSfR4WlltznwZNVcOnL/OMU8Yu7h8EnlsWnltzlx5Fi9cvuxxzKnmM3Q+iR5P0zRN07TYbfEOaJqmaZo2bhv4EO3Jw4QZ4032D6ctD/duipeGP5g8tXv+IWeWeJHHtkQ8rby29Xw5Zq4cMu4R+x42n8wZT67Uepwjm86VdZ/GvLecez7D5pPo8bTy2pzXd+Rc2XKc3uOTv7YzNq3MNmeuvDPe6vPl3PGi55Po8bTy2pz5MnKuvHMeb4odOZ9EHptWZpszV94Zb/X58srxRr/uoueT6PE0TdM0TdtGq3LOCQCIod7y9t5tTQ8554eZ4j3knA93vL5RVVVNNzi9x9XjWH0NHt+c8SKPbYl4lEW+HDdXXonzzthzztUIxwydTyJ/FlAWufJorHw593zWMcPmk+jxKMuc13fkXFlV1WlBxD1uyc9h80nksVEe95ZHc/1dfOx40fNJ9HiUxb3lanLXTbEj55PIY6M87i2PRv438Xv/Tt57jNHzSfR4AMA2PFu6AwDAODoebB3S8UFSdd5OP2/4/V19rJvjNcR6aIm1rx9WjaZP30c41qHv+NYaL/LYlohHWeTLcXNljzhz5fkQ+STyZwFlkSvf6ddYx5ltPs9iNik+n0SPR1nmvL6j58rUft/4ZHxnc/nkGEP6EzmfRB4b5XFv+U6/ZjPyvWyTEPkkejzK4t5y/lw5psj5JPLYKI97y3f6Ndax2opLDulYgDDadRc9n0SPBwBsSF7BNiqapmmapt3f0o1b7qaW7VKvvKZxu910ZRvVtteNOAddW78O3RZ+cF9b4veKO2e8yGNbIp5WXtt6vhwzV449Xz2OGTqfzBlPrtR6nCObzpVdY7klzpzzeevclJJPosfTymtzXd/Rc+Wt/Wx5Xb42L7fGLCWfRB6bVmabK1fWrwmdL+eOFz2fRI+nldfmypdbyZV952OkvofNJ5HHppXZ5sqV9Wu2ki+bjndtjIOvu+j5JHo8TdM0TdO21RbvgKZpmqZp97d7HwQMff3Qh28Xr2160HF14ceNx735wUjTnNwxl30WtswWL/LYloinldW2ni/HzpUt89P1Dxu9x993/u9431aXTyJ/Fmhlta3nyo7jzjIfY7w+cj6JHk8rq815fW8wV85RnBI2n0Qem1ZemzNX1r8fOl/OHS96PokeTyurzZkvt5Arb73exnz/7njfVpVPIo9NK6/NmSvr399kvuzbz6HXa/R8Ej2epmmapmnbas8SABDB5Za6h5zzQ98X1797uSVq4za9LdusDonVtA3xGFsCj7atcL0N8JM57fnyxi2W1xIv8tiWiEeRtp4vRz+nq6rKp1Yff5LrJno+ifxZQJG2nivHOkbbsSabz5Ri55Po8SjSLNf3VnNl3xfeMr7I+STy2CiWe8v5z+tR4kXPJ9HjUST3ltPqfX85VOR8EnlsFMu95fjnddOc3nzd1dfxE9HzSfR4AMD2KDABAO424CHTyagP0+oHfOfHuPcfCp70p+/DyRsfFs4ZL/LYlogHgyyZLyfIlXOLnk8ifxbAIAHvLecWOZ9Ejwe9RcqVTYt2bhjfUJHzSeSxwWCR8uUC8aLnk+jxoLet5coJRM4nkccGg0XLly3FIEO/8OFS2xij55Po8QCAjVFgAgCFu/fBz0nTA4eWb2a59ZswzmM1fZtJU6yrGr6dY9A31bS4d4y9v61lgXiRx7ZEPAqy5Xw5Ua6cW/R8EvmzgIJsOVfWrxs1Xy4wnynFzifR41GQma/v0LlyIZHzSeSxURj3lvPmywniRc8n0eNREPeW7i0vf7CifBJ5bBTGveU8/yZ+QxHNaVeY89Yr1sA4a88n0eMBABujwAQAytf07RQlfLvTWH28fAi3+NgHfltLUfEij22JeMxuy/lyylx5+Q8Hff4hYXbR80nkzwJmt+VcmdL4+bK4+YycT6LHY3bFXd9pvbny0trnMXQ+iTw2FlFirkypnHy5dLxO0fNJ9HjMrsR8ufZceffC8LlEzieRx8YiSsyVKa07X959feScDznnh7M2yXsSPZ9EjwcAlOe9pTsAAFAb/MCi4RtebvlWlWvHTGnCf3iYM17ksS0RDxY0KF9OkSvPXfuGrKqq8r0xoueTyJ8FsKBV3FvOLXI+iR4PFrKWXHn5+kmvtcj5JPLYYGFryZezxYueT6LHg4WsOldOddzI+STy2GBha86X8ol4AAApJQUmABDBKA8Lmh5ErHkb8jm3Tb/xAd0h3fgtH3PGizy2JeKxepvLl3PmyrlFzyeRPwtYvc3lypQmzZeLz2fkfBI9Hqu3+PU9t6lyZX1tLboLSuR8EnlsFGFzuTKl+f8uPle86PkkejxWb3P50nPLJ4rIJ5HHRhE2lytTmi5ftszDbEUK0fNJ9HgAQHwKTACgcBMtxFi1+kHaVNumT2XuhzNzxos8tiXiMZGt5ctCc+XcoueTyJ8FTGRruTKlafNloPmMnE+ix2Miga7vXtZ8b9mw2GYpkfNJ5LExoa3lypTmz5drzs8toueT6PGYyNby5dS5qz5+28+77h0PKa1moXnkfBJ5bExoa7kypSLv9eYWPZ9EjwcArJgCEwCgbTHG1A+n7nlAcfnahzm/UQXYrsLypVwJLKKwXNn02lXly4XmE5jBAtd3uFzZtthmJYsCgRG4t1xdPGCl3Ft2Hv9Qf1P/tT7vUkqpqqqc3FNCSO4tO71z3LMdTlqL8uRJAIC4ni3dAQBgFZ5sgZvaH6Zd/nzwQ7G2b4/q+drLfwQ4TPyPpnP/g+yc8SKPbYl4bEMR+XKBXDm36Pkk8mcB21BErqxfW0K+HDKft/7eGCLnyiXisQ19r2+5su7HRcvpvhx56+/fS26GYdxbriNe9HwSPR7b4N6y3S073u3OFlcPETmfRB4b2+He8nrc3Vnsrv7vqqrKcuUm4wEAG6DABAA27OwB0aVBD6hueHDUtj1553GavlVmgm9GibzVbOSxLRGPDSkpX86UK+cWPZ9E/ixgQ0rKlfWfrzpf3jifkfNJ9HhsyBj5cmu5si4m2V20S4fU79tcI+eTyGNjY9xbdpshXvR8Ej0eG+Le8maHs9amT5FJ5HwSeWxsjHvLRk/6drZL6JDrceu5cgvxAIANem/pDgAAyzh7QHSpczvbnPNDvbDj3K6qql2fB3A9tyFvc9nf1SwABOIqMF/KlcDsCsyVKa04X946n8D63XJ9y5W9yI8QiHvLVcYDVsi9Zau2/rXOy9li7svX7qqq2rvXhHK5t7wr7slpvG3jkSsBAIKxgwkAbMzZN7Tcs2Ct6Xf2175R/54HaQ3HnmUbYGC7SsyXciUwtxJzZf36VebLkeYTWKERrm+5stuuqqp8w7fJAivi3nKd8YD1cW95k4crC8lP89bUJ98UDwVybznYZX8POeeqbg91q3LOVWrJlf5ODgAQhx1MAGBDrjzM6r1gLed8qKrq0HCsXf1NLpcPlZpiNr2+8eHYyrZNBzagxHwpVwJzKzFXprTefDnWfALrM8b1LVf2XujnW1OhUO4t+1lhfgZm5t7yJg99F2fXOxY8mWP3mFAW95Z368ybda5s2hmm9w4vAACsmwITANiAHt+SMnjBWttD9tq1b2Q5pIaHaR0Pm5baBhjYmMLzpVwJzKLwXJnSyvLlFPMJrMPY1/eWc2XbPJ0tvjkflyITKIh7y8FWlZ+B+bi37K/+dv17Xv9QLxw/ZxcTKIB7y1H0Ksqri28eUkORSWopoAEAoBzPlu4AADCdHlvwnra2venhVMd24V1OD+56PYxfwbbpwAaUni/lSmAOpefKlNaVL6eeT2A5U17fW8uV1+ScDy1zsquLT4CVcm85XEn5GRiPe8vFlNBHoObecjSDYta/22cXFwAACqPABACCqh9CtT1IO6Tjt4/cvVgt5/xQfxvUtYdNg2M2PAic49ubZ39QFzTWFuIRROn5cqFcObfo+STyZwFBlJ4rU1pXvpxwPiPnk+jxCGKOfLmVXDlQ01y0LiyasiMLx4s8NgJxbzncAvk5ej6JHo8g3Fsu6sl8NCz+bvy9ibm3hAvuLUc1ynXY8IUP0fNJ9HgAwAa9t3QHAIDxdXxDyyFN9G0n5w+56odGu8ufj6HlAf7Nr+3Rv7m/ZWXOeJHHtkQ8ChQ1Xy6QK+cWPZ9E/iygQFFzZX3s2fPlzPMZOZ9Ej0eB5s6XkXPlUDnnQ1VVh/Tu/Pe9biPnk8hjo1DuLfu/9lr/Zo4XPZ9Ej0eB3Fv2e+1Uzy3r+8tbXho5n0QeG4Vyb9n/tQ39u/w7dLplvnLOD1VV5Ysf71J3EUT0fBI9HgCwAQpMACCQ+iFW28Om2b7ppGU73Gv6/P49D0c8WAHeCp4v5UpgFMFzZUoz58u1zCcwvjVc31FyJRDXGnJlSqHypfwMQa0hXwbKlUBQa8iVKcmXAADEpcAEAGKZ9Rta7rS1h1uRt8aNPLYl4jEP+ZKU4ueTyJ8FzEOuHFdJ83kpcj6JHo95lHJ9ry5Xnn/b60nBBXeR80nksTGfUnJlSivMl4FEzyfR4zGPUvKlXDmtyPkk8tiYTym5MiX5ckrR80n0eADAij1bugMAwDhatgA+5JwfVvggbbWaFrLcuAVxr4eFc8aLPLYl4lEu+bI80fNJ5M8CyiVXjmuu+YycT6LHo1zy5d12DW1SkfNJ5LFRNrmyPNHzSfR4lEu+LE/kfBJ5bJRNrixP9HwSPR4AsE12MAGAAJq+8TPNuP3vUE0POFr6es9DwCfzccexBqnfj0uTxZ8zXuSxLRGP+QXNl0XmyrlFzyeRPwuYX9BcmdJC+bLA+QybT6LHY34lXd9rzZU554eqqvIdMRcROZ9EHhvLKClXprTefLlAvLtFzyfR4zG/kvLlinPlk77dOn/uv8qLtUQ85ldSrkxp3flyrL+Pz3XdRc8n0eMBAAXKOWuapmmaVnhLKe1TSvms7SeMtbuIldfY38s+DonR0L9BYxz6+jnjRR7bEvG08pp8+eT4N+fKW2OM+N4NOtba80nkzwKtvCZXNsYY895ysvlsiTdoTtecT6LH08prc13f0XPlPTn2yhhb5ylyPok8Nq3MNleurGOFzpdzx4ueT6LH08prc+XL6LlyrBw75JqLnE8ij00rs82VK+tYofPlva/tGGPjPEXPJ9HjaZqmaZq2vfYsAQBFa/umlqni5YathYdsudrS37VpGuOQPg99P+aMF3lsS8SjIPJl8aLnk8ifBRRErhzX3PPZdvxA+SR6PAoy5/UdPVem8eZN/po/1hLxKIh7y+JFzyfR41EQ95ajuhzfrX11/zV/rCXiURD3lpMYI2f2fU+i55Po8QCAjVFgAgDle/KgoOmB18juedjU1N9VbVvcMn+9xtjyYLHz/ZgzXuSxLRGP4siXBYueTyJ/FlAcuXJcs89n5HwSPR7Fmfv6jpwrL+0GLoqQvxaKtUQ8iuPesmDR80n0eBTHveWEhiwI7/j9Td5/RR4bRXJvObKm/gwsoun9u9HzSfR4AMD2VDnnpfsAANyhfgBw/rBgtL/8tz3kqhd6XD54OFx7KNbQ116vu0VVVZc3OYPitPT1oetB5a3zMne8yGNbIh7lkC8b49yVK2+JkXOu7jhW6HwS+bOAcsiVrbFuypdLzGdL3JSC5JPo8SjH3Nd35FzZ8tqUrlxrZ6+VvxaMtUQ8yuHesjXW5H8XHyte9HwSPR7lcG/ZGGupe8ubxhg5n0QeG2Vxb9kaa/Z/E69fN3huoueT6PEAgI3JOWuapmmaVnBLKeWp2pW4+4bX7FNKu4bf3bX9/ozzMjjWkD7XY2yaxyfzsYZ4kce2RDytjCZf9pqT0eMMmauexwudT+aMJ1dqLe+1XNlvXnrFWmo+u+a05XeLyifR42lltCWu77Zzsen8SgXlyo6xdR6jY4zyV/CxaeW0JXJl7jgfI+TLJeJFzyfR42lltCXyZeRc2dLX1vFdGWPrHPad0454xeSTyGPTymlL5MrccT5GyJdX5nboGHtdd9HzSfR4mqZpmqZtp9nBBAAK1/JNTKPIHd8y3/LtFudO34zRthXrar+Z7+wYXWPssyXy0G+ImS1e5LEtEY8yyJdPlbaDSX280Pkk8mcBZZArm92xg8ki81nHDptPosejDEtc31Fz5dnrm75589Khx+/0+nbqOmbYfBJ5bJTDvWWzknYwqV8fOp9Ej0cZ3Fs+5d5yXfEij41yuLdsNsO/iad0fYwp3bcL6WWck+LySfR4AMB2KDABgMKteNFal8kfVIz1D7Vzj3HOeJHHtkQ81k++fKrEApP6mKHzSeTPAtZPrmxWYoFJHT9sPokej/Vb8cKWNqvNlRfH6LMQsEvvBYBnMcPmk8hjowzuLZuVVmBSHyN0Pokej/Vzb/mUe8v1xYs8Nsrg3rLZCv5NPKWB+TJ6PokeDwDYhmdLdwAAuF39cHwx9YOih/T02y+6FPWg4sYxPtw6xjnjRR7bEvFYN/kyluj5JPJnAesmV45r6flMKXY+iR6PdVvy+o6WKy/V/Ry0iK92SDcsAKxjhs0nkcfG+i19LxQ9X84tej6JHo91c285nbqft9xfHnLOlXvL5WItEY91c285vVvHmG74u3j0fBI9HgCwDXYwAQBGUX8zxqldOqT09mF+seYe45zxIo9tiXjQxfk4ruj5JPJnAXRxPo4vcj6JHg/aRD8XzxYQtX3r9GnhxOGWxX8tMcPmk8hjg2ucj+OKnk+ix4M20c/FK+NLKcD17d6y3POTsmzhfOyZM0f5u3j0fBI9HgAQlwITAAAAAAAAAAAAAACAjXu2dAcAAAAAAAAAAAAAAABYlgITAAAAAAAAAAAAAACAjVNgAgAAAAAAAAAAAAAAsHEKTAAAAAAAAAAAAAAAADZOgQkAAAAAAAAAAAAAAMDGKTABAAAAAAAAAAAAAADYOAUmAAAAAAAAAAAAAAAAG6fABAAAAAAAAAAAAAAAYOMUmAAAAAAAAAAAAAAAAGycAhMAAAAAAAAAAAAAAICNU2ACAAAAAAAAAAAAAACwcQpMAAAAAAAAAAAAAAAANk6BCQAAAAAAAAAAAAAAwMYpMAEAAAAAAAAAAAAAANg4BSYAAAAAAAAAAAAAAAAbp8AEAAAAAAAAAAAAAABg4xSYAAAAAAAAAAAAAAAAbJwCEwAAAAAAAAAxc5hPAAASnUlEQVQAAAAAgI1TYAIAAAAAAAAAAAAAALBxCkwAAAAAAAAAAAAAAAA2ToEJAAAAAAAAAAAAAADAxikwAQAAAAAAAAAAAAAA2DgFJgAAAAAAAAAAAAAAABunwAQAAAAAAAAAAAAAAGDjFJgAAAAAAAAAAAAAAABsnAITAAAAAAAAAAAAAACAjVNgAgAAAAAAAAAAAAAAsHEKTAAAAAAAAAAAAAAAADZOgQkAAAAAAAAAAAAAAMDGKTABAAAAAAAAAAAAAADYOAUmAAAAAAATqapqX1VV7mj7OeNOEQtYlzlzDdOqqmp38T7ulu7T3MwBAAAAAMC8FJgAAAAAAEzn2kJYC2UBeKIupDgvDDrknA9L9Wcp9ZjPx71XZAIAAAAAMB0FJgAAAAAAE+i7ANZCWQAaXH42bK645Mzl2H1uAgAAAABMRIEJAAAAAMA0+i6AtVAWgLeqqtqndz8bNrl7yUnDLia7eo4AAAAAABhZlXNeug8AAAAAAOFUVdX74WvOuRo59uXi5EniEFu9u07TefSwQHfoqSX3HLxv5bh8D+XuI/MCAAAAADC995buAAAAAABANEO/Wb2qqr3F36xQY4EJMJ2Gz4/N7lzS4JDOcpLPTgAAAACA8T1bugMAAAAAAACwdU27BimgeNQwF7t6zgAAAAAAGIkCEwAAAACA8bUteG37JnoLZAG4/Cywe8lTl3Pi8xMAAAAAYEQKTAAAAAAARlRV1b7tz7q+ib7rdQDE1rR7SVJg0uRJgYldTAAAAAAAxqPABAAAAABgHoeL/wWAkyfFJTlnnxcX6jmxiwkAAAAAwEQUmAAAAAAAjKttoeu1AhMLZAE2qGX3EvqziwkAAAAAwEgUmAAAAAAAjKSqqn3LH739Jvqub6TveD0AcT0pjsg5PyzRkRK0zI0CEwAAAACAESgwAQAAAAAYT98FrnYxAeDkMve3FiLy1uUc+fwEAAAAABiBAhMAAAAAgBFUVdW6uLXh29a7djFZ/SLZqqr2dcst7fTni4ylqqrdlT5O3r8+8aeKXbqWeRs8Xz3Og9nP1559cn5syFLv9dg5aumce+rDlMcHAAAAANiCKue8dB8AAAAAAIpXL2xtWjx7aCgwSVVVtT2cbfz9MfqSc67uOOauPuYtC4TvGlPf8dzYx0Pdv1F2DOg4D1rjX85N07lxz3vXV8c52UtbHwe+f20LxHufQze8BzfH6uuO62dwX1rex5vGNNZ7couhOXXAcVvHNMd1dmms633AdXZ3jrr3eGmknLtUrgQAAAAAiMwOJgAAAAAA4xi8cHyk40yuXkB8z6L9Xf0t9pPuGJJu6+MupTTKN+vfWNiw863777x/dx2jXnB+73s56vl65/Uz+bXTZsniklOMlp/v7pyPtjFNPZ4nWsYxSrFbU6wbr4/GHHXP8dJIOTc1zNVSO2cBAAAAAEShwAQAAAAA4E5dC1o7FmG3LiJeywLZegHxvbtBnNtPUUwxUh9vXvB8x0Lrk9PrN2mM92/k8/TkrkXwI5wXl32ZrRBpBcUlqd7hYtRCvI45HG0Xo4FmyfVX3s8+3ikyGeF4KY1XZHJpFZ+fAAAAAAClUmACAAAAAHC/tgWtrQuWryxmXssC2SkW7Y+6Y0e9QHnMAphbjjXKeLa4k8kY799ExSUnN50TIy3AvzTLbjdrKC45qWM15crBc9Fxrs06pgtP+jN2X0Y8F3f1LkFjntt3Xbctc7WWz08AAAAAgCIpMAEAAAAAuN/gApMrf774Atmei7cPKaWHnHN1avXPro17N8Y313csdD6c9+msb22L1d/p28A+XJunw3l/zvowyqL5kR0aWt/fu3X3h7vG27NA5Z33oOd7cW6KoqMnfUo9z88pdzhaU3HJedyWnw+di9ZxDexPadqKappyZJ9roTHnpovPgp7n9KTnMwAAAAAAw1U556X7AAAAAABQrK7dE+oFtl2v7VrM/XBll5PBfbrWn2uvH9q3a8cZsT8nvRbAX/sG/pH6dbUvQ3YC6NunMd17Hl07TjouPL/8+aGO0auQ4d734Ow4p0KVm67lsft0z7VTVVXTP/zcez4uuctH5zl053wuNq6WPt3cn555cpTz78LVz4OxrtMBx170fAUAAAAAKJkdTAAAAAAApnG1AOPKotxFvtW9x44QvQtf6gW+rb878m4dD30XFNf9b/3dAf26a8F0zvnQc9eAqC7n7yHn3Pt9bDnGO8fqe5D6vWg9X/ueE1eun96L3uvfG+Mc7WXNxSUpdeaSq7v+dLwni49rZkPPvz56fR5c+ywAAAAAAGA9FJgAAAAAANyndTF5z9e3/d4iBSZX4g7eVeXKwuKxxni4oV+HdMeC545F7bcsWrfw+oZz68p7cOuc3vtejLZLw73naF9rLy456ejHrh5Dm8axrWBcbbv6TGKCvDT0mp3zs26pz08AAAAAgOIpMAEAAAAAuNFIC9zn2uGjr64F8jctfh5jZ4gex7/FPYu57y0semuuQoIVG1xcMpV7+tG1e8mt52hXUcUtx7tUSnHJmUHz0ZFf1jaulNJ9598Vtxy36zW3FvWNboXnKAAAAABA0RSYAAAAAAAsaC0L61MafVeOJ8do+fm9C+Vvnr9b575jt4R7i3C26J7dRhotOJejFR31ef2VXTuuKrC4pKsYa3eZvzoKfkY/54aau3jwlvfyyhwttUNQbwsVaAIAAAAAFO+9pTsAAAAAAFCwsXYrOLQca5RdCtYg53yoqmqK4y6xCH7KQoIw73lP98zZaoqzaqPuXtIz3j1FUkUVl5zknB+qqsoNf7Srqmp3VhjROL41j20io18nSxfoAAAAAAAwHQUmAAAAAAA36Nrt44bDtRYWVFW1n3FB9NQL5BvHOfMYx9A2TwpMBrpnzjp2s1iTu/tXF1Q05ZvNFZeceUjNY9illA4d+XnNY1v7uXyyxn5uLncCAAAAAExFgQkAAAAAwG1GW8w61e4eI1njYuKTNfVtjEKCNZ8HU1jT+5dS6iwcm+R1fY1V9HGluKQY9bXSVFSwq9+Lpvx8sPMGAAAAAAB0e7Z0BwAAAAAASlMv0m50x0LwtoXPs3wr+9QL5FPqnJtivnl+jnliGR2FCfdYTUFDz+KSXVd+W5OB+WRtO7MUMceFM8cAAAAAADdQYAIAAAAAMFzbwtV7FpO3vlZRw6aspiAhsqqqdlVV7c9aThMsSF/Zjhl980hJC/P7Fo2s6X0AAAAAAIDVem/pDgAAAAAAFKhtAfauXqjO9ljAvjL1Thzn1+qUhRNrL8oY0r9dVVW7lRXHNMo5H6qqOqTu8R1KGAsAAAAAAKyBAhMAAAAAgAHqRetzW3LB99gxry0GL5IF7MPlnPvuPtHb2W4/4c6xCTyk4zw1zdU+pVTN253b5JwfOgr7DlOcZwAAAAAAENWzpTsAAAAAAFCYpRauLxJX4QQlqKpqXxcZtBVM8K6H+tpuvb7PinVK0DYO5wIAAAAAAAygwAQAAAAAYJhNFZjA2tWFEPdcH6dCi4eccxG7dtzpVFySrhSZ7BbasWmQa+9/YYUyAAAAAACwqPeW7gAAAAAAQCmWXmxdVdVu7h1Fqqra55wfRjzk6hesU46BxSXn185ho7vzPFyOO+f8UO/+0mSXOnY5WVqdk6+9/7slcicAAAAAAJRIgQkAAAAAQH9dC5nHXLzcFmfVi723bIJCHK7oUVxy2qXD+3L0pLjk/M9SSk07fexWfm73LS7ap5S2sDsNAAAAAADcRYEJAAAAAEB/bYuZD2MuwL6ymwBs3pWdKw5p/h1KDh39WYPO+cg5H6qqahvDKncAGbh7jSIwAAAAAADo4dnSHQAAAAAAKEG9mLnRBIuWWxdy1wvrp7Dk4vFVLVxf2JqLFNaks9hrLcUQE16vU+ias1WNo6PA6JBzbtupZFfY+wEAAAAAALNTYAIAAAAAcJ8pFrLPvtC7Y0H+aPG6inRKYQeE1ejavWRNRrl+qqrKTW2MY5/UOaA1D6ysOOPa+992na4lB63tPI3IHAMAAAAA3ECBCQAAAABAP7Mtrr6y+8Lsi7xXtrB8re6eowgFOAs7LLVzyUKFR6OPtR5H23FXcX7W10nb7iWHlLqLZVxnAAAAAADQToEJAAAAAMAVXQuSJ1xY3rp4fMKCj6l3MWk8ToG7gli4Tl937/yxwHnVlXsWPcfruWwrLnknj3TklbXtxnKyxj6VwtwBAAAAAIxEgQkAAAAAwO2m3C1hiV1MWgtMJlwkv8iOE3cavc8dC+eZ0Z0FFFMXaPWNd5eu3T/S8sUZQ/NIW5HJ0sVgJea90phjAAAAAIAbKDABAAAAAOiw1ML/epF3m0n6c21h+a3HjVY80fHe7O4oUAgzP6Ua4TwdvSijq09XcsRdruwqtMi52lWk1jYXXTltyd1Y2vq70p1VVq1tzqa8PgAAAAAAIlNgAgAAAADQrXXB75VF2GNoXSC7wOLom4on6sW/ra+bYQ6nMloxQT2vFpbf795CjruuqSsFWvsb+9b2mjkWz7ddm/cUUt2ko9Dm0COHrHU3lqZ+yQPDNZ4Xs/cCAAAAACAIBSYAAAAAAN2WXOA9+yLZerH2KDt09Fi0X2pxybV56l1MUGJxyZI7P5wZbaedejxjjanrmh1UZHLl3Jg8N1zb0Wjm4ozW3UuuvfBa4c/NPQIAAAAAgIAUmAAAAAAAtLiygHquBd5tplzc3Rm3qqp9V5FBVVW7Hov2D1fGV4JrxQR95ujyfSx9TubSWQTVp/ih4z1oPG6fTl0pZkjpynlR92tfVVXuiDnntbNUDnqrY756z0NXQdiCBVN2MJmOPAoAAAAAcKP3lu4AAAAAAMCKtS72nXmBd2M/qqra1wunR5VzPlRV9ZDaC0R2dfycni7k7bNA+jBFv+dWz1Pr+5OOxQ65/v/n87TkrjhjaNzJZs739Mrc79Kxj7cWRzQetx7zoY69a8sBOeeHK4UrbefFtX6lNPO1c22eu+ZhDB3zeMs8LDaOJvXczhkyqifvaYDiRQAAAACAxSgwAQAAAABot3ghQL1YPV//zdHjXiueOBn8jfsRiktOehQTnPQqHFhwN4Unrpx7a9hp4dr5ObSP196DU+HK6b9bqwNGPC+e9HHg79/tylj2qWMe7lHvQjNaDr6S0yYbxxVP+jNV4WBELdeq4hIAAAAAgDs8W7oDAAAAAABrVC9ubjP3Ata2eJMu8q8XOY+50PmQcw73lf31PN1zTqx5R5fVLtaudykYa97O34NRxjzCeXHukFJ6WHBnhta4ExZFtRaX3DoPXe/Jmoq7AAAAAABgKQpMAAAAAACatRZvLLjI+4mpF0WfLeK/d8xrLqK42x3FOGufl9Wc601GOD9PhRtv34P6mGMWmdz7/h5yzksWl1ybk92VgrzBOnZMGeN6mW0c17SMZQ27A5XiyVytPJ8CAAAAAKxelXPb7vYAAAAAAPCoXnx9an0cUtregt+OxfHnDqlhJ4a21y6580vf933p3WkGnp+N839xvM73ceh4z4rBel8/W7t2tqjlPFu0oKgE9fV+WWDpmgEAAAAAuJMCEwAAAAAAbtKxe0rnwv0taZqjrgXQLYvNV7Nouu09X0v/Ts6KTS4NOjdbjnP3+d3Rv9XNJdNSKHEbhTkAAAAAANNQYAIAAAAAACtRVVXTQ3uLzSGwput+6R2B1s6cAQAAAABM49nSHQAAAAAAAIANe7LrRr2zCQ1a5sbOJQAAAAAAI1BgAgAAAAAAA1RVta+qKje0uxaEV1W1b/kjC6chsJYdihSYtHsyN3Z5AgAAAAAYhwITAAAAAAAYpq3gY5IF4TlnBSYQ3+V1rsCk3eXcyJEAAAAAACOpcs5L9wEAAAAAAIpSVVXjw/Wcc3Xj8XYppaYdTA6+mR+2oSGvuP4v1Ds9vVNgcmveBQAAAADgKTuYAAAAAADAcI3fmF8vfh6ko7gkWVwOm2IXk+vsXgIAAAAAMCEFJgAAAAAAMFzboubdkCKTruKSjhhAQE0FZbcUrUXVNBeK8AAAAAAAxlXlfLnbNgAAAAAAcE292Llrh4FDSk8XQJ8tku7cnSDnXN3VQaA4TUVncsFRVVWX/6j5kHNWiAcAAAAAMCIFJgAAAAAAcKMeRSa3snAaNqohr2w+HzQU3hzsXgIAAAAAML5nS3cAAAAAAABKVS9wHnPh9yFZTA5bd3n97xt/a1su50COBAAAAACYgAITAAAAAAC4w4hFJoecs+IS2Lg6B7yTB+pdTTapYewHeRIAAAAAYBpVznnpPgAAAAAAQAhnC6F3PV9ySOltkQrAW3U+eZtLcs7Vgt1ZTFVV5/+YeZAvAQAAAACmo8AEAAAAAAAmUFXVLrUXmvgGfgAAAAAAAFbl/wMb58k1NVrGWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": { + "image/png": { + "width": 500 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "# Plot 2D along track view of\n", + "# Ice Surface Height Changes over Time\n", + "fig = pygmt.Figure()\n", + "# Setup map frame, title, axis annotations, etc\n", + "fig.basemap(\n", + " projection=\"X20c/10c\",\n", + " region=[df.x_atc.min(), df.x_atc.max(), df.h_corr.min(), df.h_corr.max()],\n", + " frame=[\n", + " rf'WSne+t\"ICESat-2 Change in Ice Surface Height over Time at {region.name}\"',\n", + " 'xaf+l\"Along track x (m)\"',\n", + " 'yaf+l\"Height (m)\"',\n", + " ],\n", + ")\n", + "fig.text(\n", + " x=df.x_atc.mean(),\n", + " y=df.h_corr.max(),\n", + " text=f\"Reference Ground Track {rgt:04d}\",\n", + " justify=\"TC\",\n", + " D=\"jTC-0c/0.2c\",\n", + ")\n", + "\n", + "# Colors from https://colorbrewer2.org/#type=qualitative&scheme=Set1&n=7\n", + "cycle_colors = {3: \"#ff7f00\", 4: \"#984ea3\", 5: \"#4daf4a\", 6: \"#377eb8\", 7: \"#e41a1c\"}\n", + "for cycle, color in cycle_colors.items():\n", + " df_ = df.query(expr=\"cycle_number == @cycle\").copy()\n", + " if len(df_) > 0:\n", + " # Get x, y, time\n", + " data = np.column_stack(tup=(df_.x_atc, df_.h_corr))\n", + " time_nsec = deepicedrain.deltatime_to_utctime(dataarray=df_.delta_time.mean())\n", + " time_sec = np.datetime_as_string(arr=time_nsec.to_datetime64(), unit=\"s\")\n", + " label = f'\"Cycle {cycle} at {time_sec}\"'\n", + "\n", + " # Plot data points\n", + " fig.plot(data=data, style=\"c0.05c\", color=color, label=label)\n", + " # Plot line connecting points\n", + " # fig.plot(data=data, pen=f\"faint,{color},-\", label=f'\"+g-1l+s0.15c\"')\n", + "\n", + "fig.legend(S=3, position=\"jBR+jBR+o0.2c\", box=\"+gwhite+p1p\")\n", + "fig.savefig(f\"figures/alongtrack_atl11_dh_{placename}_{rgt}.png\")\n", + "fig.show()" + ] + }, { "cell_type": "code", "execution_count": null, @@ -841,6 +1184,7 @@ ], "metadata": { "jupytext": { + "encoding": "# -*- coding: utf-8 -*-", "formats": "ipynb,py:hydrogen" }, "kernelspec": { @@ -858,7 +1202,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.2" + "version": "3.8.3" } }, "nbformat": 4, diff --git a/atlxi_dhdt.py b/atlxi_dhdt.py index dbaf924..3132072 100644 --- a/atlxi_dhdt.py +++ b/atlxi_dhdt.py @@ -1,3 +1,4 @@ +# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: @@ -36,6 +37,7 @@ # %% import dask import datashader +import intake import numpy as np import pandas as pd import pygmt @@ -52,6 +54,14 @@ # # Select essential points # %% +# Xarray open_dataset preprocessor to add fields based on input filename. +add_path_to_ds = lambda ds: ds.assign_coords( + coords=intake.source.utils.reverse_format( + format_string="ATL11.001z123/ATL11_{referencegroundtrack:04d}1x_{mincycle:02d}{maxcycle:02d}_{}_v{}.zarr", + resolved_string=ds.encoding["source"], + ) +) + # Load ATL11 data from Zarr ds: xr.Dataset = xr.open_mfdataset( paths="ATL11.001z123/ATL11_*.zarr", @@ -60,6 +70,7 @@ combine="nested", concat_dim="ref_pt", parallel="True", + preprocess=add_path_to_ds, backend_kwargs={"consolidated": True}, ) @@ -362,3 +373,177 @@ fig.show(width=600) # %% + +# %% [markdown] +# # Along track plots of subglacial lake drainage/filling events +# +# Let's take a closer look at one potential +# subglacial lake filling event at Whillans Ice Stream. +# We'll plot a cross-section view of +# ice surface height changes over time, +# along an ICESat-2 reference ground track. + +# %% +import holoviews as hv +import hvplot.pandas +import panel as pn + +# %% +# Subset dataset to geographic region of interest +placename: str = "whillans2" +region: deepicedrain.Region = regions[placename] +ds_subset: xr.Dataset = region.subset(ds=ds_dhdt) + +# %% +# Quick facet plot of height over different cycles +# See https://xarray.pydata.org/en/stable/plotting.html#datasets +ds_subset.plot.scatter( + x="x", y="y", hue="h_corr", cmap="gist_earth", col="cycle_number", col_wrap=4 +) + +# %% +# Find reference ground tracks that have data up to cycle 7 (the most recent cycle) +rgts = np.unique( + ar=ds_subset.sel(cycle_number=7).dropna(dim="ref_pt").referencegroundtrack +) +rgts + +# %% +# Convert xarray.Dataset to pandas.DataFrame for easier analysis +df_many: pd.DataFrame = ds_subset.to_dataframe().dropna() + + +# %% +def dhdt_plot( + cycle: int = 7, + dhdt_variable: str = "dhdt_slope", + dhdt_range: tuple = (1, 10), + rasterize: bool = False, + datashade: bool = False, +) -> hv.element.chart.Scatter: + """ + ICESat-2 rate of height change over time (dhdt) interactive scatter plot. + Uses HvPlot, and intended to be used inside a Panel dashboard. + """ + df_ = df_many.query( + expr="cycle_number == @cycle & " + "abs(dhdt_slope) > @dhdt_range[0] & abs(dhdt_slope) < @dhdt_range[1]" + ) + return df_.hvplot.scatter( + title=f"ICESat-2 Cycle {cycle} {dhdt_variable}", + x="x", + y="y", + c=dhdt_variable, + cmap="gist_earth" if dhdt_variable == "h_corr" else "BrBG", + clim=None, + # by="cycle_number", + rasterize=rasterize, + datashade=datashade, + dynspread=datashade, + hover=True, + hover_cols=["referencegroundtrack", "dhdt_slope", "h_corr"], + colorbar=True, + ) + + +# %% +# Interactive holoviews scatter plot to find referencegroundtrack needed +# Tip: Hover over the points, and find those with high 'dhdt_slope' values +layout: pn.layout.Column = pn.interact( + dhdt_plot, + cycle=pn.widgets.IntSlider(name="Cycle Number", start=2, end=7, step=1, value=7), + dhdt_variable=pn.widgets.RadioButtonGroup( + name="dhdt_variables", + value="dhdt_slope", + options=["referencegroundtrack", "dhdt_slope", "h_corr"], + ), + dhdt_range=pn.widgets.RangeSlider( + name="dhdt range ±", start=0, end=20, value=(1, 10), step=0.5 + ), + rasterize=pn.widgets.Checkbox(name="Rasterize"), + datashade=pn.widgets.Checkbox(name="Datashade"), +) +dashboard: pn.layout.Column = pn.Column( + pn.Row( + pn.Column(layout[0][1], align="center"), + pn.Column(layout[0][0], layout[0][2], align="center"), + pn.Column(layout[0][3], layout[0][4], align="center"), + ), + layout[1], +) +dashboard + +# %% +# Show dashboard in another browser tab +# dashboard.show() + +# %% +# Select one Reference Ground track to look at +rgt: int = 135 +assert rgt in rgts +df_rgt: pd.DataFrame = df_many.query(expr="referencegroundtrack == @rgt") +print(f"Looking at Reference Ground Track {rgt}") + +# %% +# Select one laser pair (out of three) based on y_atc field +# df = df_rgt.query(expr="y_atc < -100") # left +df = df_rgt.query(expr="abs(y_atc) < 100") # centre +# df = df_rgt.query(expr="y_atc > 100") # right + +# %% +# Interactive scatter plot of height along one laser pair track, over time +df.hvplot.scatter( + x="x_atc", + y="h_corr", + by="cycle_number", + hover=True, + hover_cols=["x", "y", "dhdt_slope"], +) + +# %% +# Filter points to those with significant dhdt values > +/- 0.2 m/yr +df = df.query(expr="abs(dhdt_slope) > 0.2") + +# %% +# Plot 2D along track view of +# Ice Surface Height Changes over Time +fig = pygmt.Figure() +# Setup map frame, title, axis annotations, etc +fig.basemap( + projection="X20c/10c", + region=[df.x_atc.min(), df.x_atc.max(), df.h_corr.min(), df.h_corr.max()], + frame=[ + rf'WSne+t"ICESat-2 Change in Ice Surface Height over Time at {region.name}"', + 'xaf+l"Along track x (m)"', + 'yaf+l"Height (m)"', + ], +) +fig.text( + x=df.x_atc.mean(), + y=df.h_corr.max(), + text=f"Reference Ground Track {rgt:04d}", + justify="TC", + D="jTC-0c/0.2c", +) + +# Colors from https://colorbrewer2.org/#type=qualitative&scheme=Set1&n=7 +cycle_colors = {3: "#ff7f00", 4: "#984ea3", 5: "#4daf4a", 6: "#377eb8", 7: "#e41a1c"} +for cycle, color in cycle_colors.items(): + df_ = df.query(expr="cycle_number == @cycle").copy() + if len(df_) > 0: + # Get x, y, time + data = np.column_stack(tup=(df_.x_atc, df_.h_corr)) + time_nsec = deepicedrain.deltatime_to_utctime(dataarray=df_.delta_time.mean()) + time_sec = np.datetime_as_string(arr=time_nsec.to_datetime64(), unit="s") + label = f'"Cycle {cycle} at {time_sec}"' + + # Plot data points + fig.plot(data=data, style="c0.05c", color=color, label=label) + # Plot line connecting points + # fig.plot(data=data, pen=f"faint,{color},-", label=f'"+g-1l+s0.15c"') + +fig.legend(S=3, position="jBR+jBR+o0.2c", box="+gwhite+p1p") +fig.savefig(f"figures/alongtrack_atl11_dh_{placename}_{rgt}.png") +fig.show() + +# %% diff --git a/poetry.lock b/poetry.lock index a6303fc..4206c21 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1771,7 +1771,7 @@ description = "N-D labeled arrays and datasets in Python" name = "xarray" optional = false python-versions = ">=3.6" -version = "0.15.2.dev98+g4ce30073" +version = "0.15.2.dev190-g6f6aae7d" [package.dependencies] numpy = ">=1.15" @@ -1779,9 +1779,9 @@ pandas = ">=0.25" setuptools = ">=41.2" [package.source] -reference = "4ce3007362af4e22dbe5836e95bebd91cde734b7" +reference = "6f6aae7ddcd73d8c8e067c32a4320b15efd9e4c0" type = "git" -url = "https://github.com/Mikejmnez/xarray.git" +url = "https://github.com/weiji14/xarray.git" [[package]] category = "main" diff --git a/pyproject.toml b/pyproject.toml index c425095..a024d20 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -28,7 +28,7 @@ python = "^3.8" pyproj = "^2.6.0" toolz = "^0.10.0" tqdm = "^4.46.0" -xarray = {git = "https://github.com/Mikejmnez/xarray.git", rev="4ce3007362af4e22dbe5836e95bebd91cde734b7"} +xarray = {git = "https://github.com/weiji14/xarray.git", rev = "6f6aae7ddcd73d8c8e067c32a4320b15efd9e4c0"} xrviz = "^0.1.4" [tool.poetry.dev-dependencies]