-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathData_Augmentation.py
153 lines (116 loc) · 4.74 KB
/
Data_Augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import os
import argparse
from PIL import Image
import pandas as pd
import multiprocessing
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian
import matplotlib.pyplot as plt
import cv2
import torch
# import clip
from PIL import Image
from tqdm import tqdm
import json
from random import choice
import numpy as np
import random
import shutil
coco_category_to_id_v1 = { 'aeroplane':0,
'bicycle':1,
'bird':2,
'boat':3,
'bottle':4,
'bus':5,
'car':6,
'cat':7,
'chair':8,
'cow':9,
'diningtable':10,
'dog':11,
'horse':12,
'motorbike':13,
'person':14,
'pottedplant':15,
'sheep':16,
'sofa':17,
'train':18,
'tvmonitor':19}
def get_findContours(mask):
idxx = np.unique(mask)
if len(idxx)==1:
return mask
else:
idxx = idxx[1]
mask_instance = (mask>0.5 * 1).astype(np.uint8)
ontours, hierarchy = cv2.findContours(mask_instance.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #cv2.RETR_EXTERNAL 定义只检测外围轮廓
min_area = 0
polygon_ins = []
x,y,w,h = 0,0,0,0
image_h, image_w = mask.shape[0:2]
gt_kernel = np.zeros((image_h,image_w), dtype='uint8')
for cnt in ontours:
# 外接矩形框,没有方向角
x_ins_t, y_ins_t, w_ins_t, h_ins_t = cv2.boundingRect(cnt)
if w_ins_t*h_ins_t<1500:
continue
cv2.fillPoly(gt_kernel, [cnt], int(idxx))
return gt_kernel
def aug(version="Augmentation_One",size="2",image_id=0):
# version = "Augmentation_One"
image_path = "./DiffSeg_Data/{}/train_image".format(version)
mask_path = "./DiffSeg_Data/{}/ground_truth".format(version)
image_list = [i for i in os.listdir(image_path) if "jpg" in i]
image_list = [i for i in image_list if os.path.exists("./DiffSeg_Data/{}/ground_truth/{}".format(version,i.replace("jpg","png")))]
# image_id = 6000
# size=2
for idx in tqdm(range(4000)):
list_image = []
list_mask = []
for x in range(size):
image_1 = choice(image_list)
mask_1 = image_1.replace("jpg","png")
img1 = cv2.imread("./DiffSeg_Data/{}/train_image/{}".format(version,image_1))
mas1 = cv2.imread("./DiffSeg_Data/{}/ground_truth/{}".format(version,mask_1))
for y in range(size-1):
image_2 = choice(image_list)
mask_2 = image_2.replace("jpg","png")
img2 = cv2.imread("./DiffSeg_Data/{}/train_image/{}".format(version,image_2))
mas2 = cv2.imread("./DiffSeg_Data/{}/ground_truth/{}".format(version,mask_2))
img1 = np.concatenate([img1, img2], axis=1)
mas1 = np.concatenate([mas1, mas2], axis=1)
list_image.append(img1)
list_mask.append(mas1)
list_image_ha = list_image[0]
list_mask_ha = list_mask[0]
for i in range(1,size):
list_image_ha = np.concatenate((list_image_ha, list_image[i]))
list_mask_ha = np.concatenate((list_mask_ha, list_mask[i]))
# list_image = cv2.resize(list_image, (512, 512), interpolation=cv2.INTER_CUBIC)
cv2.imwrite("./DiffSeg_Data/{}/train_image_2/new_{}.jpg".format(version,image_id),list_image_ha)
cv2.imwrite("./DiffSeg_Data/{}/ground_truth_2/new_{}.png".format(version,image_id),list_mask_ha)
image_id+=1
return image_id
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--version", default="Augmentation_One", type=str)
parser.add_argument("--size", default=[1,2,3], type=int)
parser.add_argument("--number", default=4000, type=int)
parser.add_argument("--select_file", default="Augmentation_One", type=str)
parser.add_argument("--TargetClassPath_Image", default="Augmentation_One", type=str)
parser.add_argument("--TargetClassPath_Mask", default="Augmentation_One", type=str)
parser.add_argument("--OtherClassPath", default="Augmentation_One", type=str)
parser.add_argument("--OutputPath", default="Augmentation_One", type=str)
args = parser.parse_args()
# assert args.cam_dir is not None
# if os.path.exists(args.OutputPath):
# shutil.rmtree(args.OutputPath)
# if not os.path.exists(args.OutputPath):
# os.makedirs(args.OutputPath)
# targe_class_imge_path = os.path.join(args.TargetClassPath,"train_image")
# targe_class_imge_path = os.path.join(args.TargetClassPath,"train_image")
# name_list = [i for i in os.listdir(args.infer_list) if "jpg" in i]
image_id = 6000
for size in [2,3]:
image_id = aug(version="Augmentation_One",size=size,image_id=image_id)