forked from ajbrock/BigGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubmit.sh
executable file
·253 lines (222 loc) · 5.81 KB
/
submit.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/bin/bash -l
# Default values
DATASET='small_E256'
BS='34'
MODE='long'
NUM_WORKERS='8'
MONITORING="sys"
PARALLEL="false"
SEED='0'
# DEFAULT TRAINING VALUES
TEST_EVERY='1000'
SAVE_EVERY='1000'
EMA_START='20000'
G_LR='1e-4'
D_LR='4e-4'
LOSS="dcgan"
# OTHER VARS
ENV_VARS=''
ADD_ARGS=''
JOB_ARR_LENGTH='0'
N_NODES='1'
# PATHS
PROJ_ROOT="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
DATA_ROOT="/ptmp/pierocor/datasets"
OUT_ROOT="${PROJ_ROOT}/tmp"
WEIGHTS_ROOT="${OUT_ROOT}/weights"
LOGS_ROOT="${OUT_ROOT}/logs"
SAMPLES_ROOT="${OUT_ROOT}/samples/"
SUBSCRIPTS_DIR="${OUT_ROOT}/subscripts"
OUTPUT_DIR="${OUT_ROOT}/output"
# Create outputs directories
mkdir -p ${SUBSCRIPTS_DIR}
mkdir -p ${OUTPUT_DIR}
mkdir -p ${WEIGHTS_ROOT}
mkdir -p ${LOGS_ROOT}
mkdir -p ${SAMPLES_ROOT}
print_usage() {
printf "Usage: ./submit.sh
-m <string> mode (test | long | test_arr | full) (i.e. 10 mins | 3h | array job 10m | array job 24h);
-d <string> dataset (E256 | small_E256);
-b <int> batch size;
-w <int> number of workers for DataLoader;
-s <int> seed;
-t <string> Monitoring tool (sys | usr | pt);
-p Use all GPUs with DataParallel;
-r resume from previous checkpoint.
"
}
while getopts ':m:d:b:w:s:t:pr' flag; do
case "${flag}" in
m) MODE="${OPTARG}" ;;
d) DATASET="${OPTARG}" ;;
b) BS="${OPTARG}" ;;
w) NUM_WORKERS="${OPTARG}" ;;
s) SEED="${OPTARG}" ;;
t) MONITORING="${OPTARG}" ;;
p) PARALLEL="true" ;;
r) ADD_ARGS="${ADD_ARGS} --resume" ;;
*) print_usage
exit 1 ;;
esac
done
JOB_NAME="${DATASET}_${BS}_${MODE}_w${NUM_WORKERS}_${G_LR}_${D_LR}_s${SEED}_${LOSS}"
case ${DATASET} in
E256)
DATA_ARG="--dataset E256_hdf5 \\" ;;
small_E256)
DATA_ARG="--dataset small_E256_hdf5 --load_in_mem \\" ;;
*)
echo "Wrong dataset name"
exit 1
;;
esac
case $MONITORING in
sys) RUN="srun python" ;;
usr) RUN="export HPCMD_SLEEP=0; export HPCMD_AWAKE=10; srun hpcmd_slurm python" ;;
pt) RUN="srun hpcmd_suspend python -m torch.utils.bottleneck" ;;
*) echo "Worng monitoring tool. Available: sys, usr, pt."
exit 2 ;;
esac
case $PARALLEL in
true)
ADD_ARGS="${ADD_ARGS} --parallel"
JOB_NAME="${JOB_NAME}_p" ;;
false)
ENV_VARS="${ENV_VARS}
export CUDA_VISIBLE_DEVICES=0" ;;
esac
case $(hostname) in
cobra01)
SRC="cobra.env"
GPU="v100"
NGPU="2"
CPUS="20"
NTASK_SOCKET="1"
TEST_Q="gpudev"
;;
raven01|raven02)
SRC="raven.env"
GPU="a100"
CPUS="18"
NGPU="4"
NTASK_SOCKET="2"
TEST_Q="test"
;;
*)
echo "Host not recognized. Available: raven01, cobra01."
exit 3 ;;
esac
case ${MODE} in
test)
N_EPOCHS='1'
JOB_QUEUE="#SBATCH -p ${TEST_Q}"
JOB_TIME='#SBATCH --time=0:10:00'
JOB_NAME_EXT="%j"
;;
long)
N_EPOCHS='1'
JOB_QUEUE=''
JOB_TIME='#SBATCH --time=03:00:00'
JOB_NAME_EXT="%j"
;;
test_arr)
TEST_EVERY='10'
SAVE_EVERY='15'
EMA_START='17'
N_EPOCHS='2'
N_NODES='1'
JOB_QUEUE=''
JOB_TIME='#SBATCH --time=0-00:10:00'
JOB_ARRAY="#SBATCH --array=0-${JOB_ARR_LENGTH}%1"
JOB_NAME_EXT="%A_%a"
RESUME_CHECKPOINTS="
if [ \$SLURM_ARRAY_TASK_ID -ne 0 ]; then
RESUME=\"--resume\"
fi
"
ADD_ARGS="${ADD_ARGS} \${RESUME}"
;;
full)
N_EPOCHS='100'
JOB_QUEUE=''
JOB_TIME='#SBATCH --time=1-00:00:00'
JOB_ARRAY="#SBATCH --array=0-${JOB_ARR_LENGTH}%1"
JOB_NAME_EXT="%A_%a"
RESUME_CHECKPOINTS="
if [ \$SLURM_ARRAY_TASK_ID -ne 0 ]; then
RESUME=\"--resume\"
fi
"
ADD_ARGS="${ADD_ARGS} \${RESUME}"
;;
*)
echo "Wrong mode: long, test, huge."
esac
JOB_NAME="${JOB_NAME}"
DATE=`date '+%d%m%Y%H%M%S'`
cat > ${SUBSCRIPTS_DIR}/run.sh.${DATE} << EOF
#!/bin/bash -l
#SBATCH -D ./
#SBATCH -o ${OUTPUT_DIR}/${JOB_NAME}.${JOB_NAME_EXT}
#SBATCH -e ${OUTPUT_DIR}/${JOB_NAME}.${JOB_NAME_EXT}
#SBATCH -J ${JOB_NAME}
${JOB_TIME}
${JOB_QUEUE}
${JOB_ARRAY}
# Node feature:
#SBATCH --constraint="gpu"
#SBATCH --gres=gpu:${GPU}:${NGPU}
#SBATCH --mem=0
#SBATCH --nodes=${N_NODES}
#SBATCH --ntasks-per-socket=${NTASK_SOCKET}
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=${CPUS}
#SBATCH --threads-per-core=1
### Debug and Analytics
# export NCCL_DEBUG=INFO
# export PYTHONFAULTHANDLER=1
### Modules and env variables
source ${PROJ_ROOT}/${SRC}
${ENV_VARS}
### store job submit script using a unique id:
if [ -z "\$SLURM_ARRAY_JOB_ID" ]; then
cp ${SUBSCRIPTS_DIR}/run.sh.${DATE} ${SUBSCRIPTS_DIR}/${JOB_NAME}.\${SLURM_JOB_ID}.sh
elif [[ \${SLURM_ARRAY_TASK_ID} -eq 0 ]]; then
cp ${SUBSCRIPTS_DIR}/run.sh.${DATE} ${SUBSCRIPTS_DIR}/${JOB_NAME}.\${SLURM_ARRAY_JOB_ID}_\${SLURM_ARRAY_TASK_ID}.sh
fi
### print modules and basic SLURM info
module list
echo -e "Nodes: \${SLURM_JOB_NUM_NODES} \t NTASK: \${SLURM_NTASKS}"
echo "\${SLURM_NODELIST}"
### RESUME variable defined for job arrays only, if not empty
${RESUME_CHECKPOINTS}
### Run the program:
${RUN} train.py \\
--data_root ${DATA_ROOT} \\
--weights_root ${WEIGHTS_ROOT} \\
--logs_root ${LOGS_ROOT} \\
--samples_root ${SAMPLES_ROOT} \\
--num_epochs ${N_EPOCHS} \\
${DATA_ARG}
--shuffle --num_workers ${NUM_WORKERS} --batch_size ${BS} \\
--num_G_accumulations 1 --num_D_accumulations 1 \\
--num_D_steps 1 --G_lr ${G_LR} --D_lr ${D_LR} --D_B2 0.999 --G_B2 0.999 \\
--G_attn 64 --D_attn 64 \\
--G_nl inplace_relu --D_nl inplace_relu \\
--SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 \\
--G_ortho 0.0 \\
--G_shared \\
--G_init ortho --D_init ortho \\
--hier --dim_z 120 --shared_dim 128 \\
--G_eval_mode \\
--G_ch 96 --D_ch 96 \\
--ema --use_ema --ema_start ${EMA_START} \\
--test_every ${TEST_EVERY} --save_every ${SAVE_EVERY} \\
--num_best_copies 5 --num_save_copies 2 \\
--seed ${SEED} ${ADD_ARGS}
EOF
echo "Submitting job ${JOB_NAME}"
echo "Submission script: ${SUBSCRIPTS_DIR}/run.sh"
echo "Output: ${OUTPUT_DIR}/${JOB_NAME}"
sbatch ${SUBSCRIPTS_DIR}/run.sh.${DATE}