-
Notifications
You must be signed in to change notification settings - Fork 17
/
data_batch.py
105 lines (80 loc) · 3.2 KB
/
data_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- encoding: utf-8 -*-
'''
@File : data_batch.py
@Contact : [email protected]
@License : (C)Copyright 2017-2018, HeXin
@Modify Time @Author @Version @Desciption
------------ ------- -------- -----------
2019/4/18 14:49 xin 1.0 None
'''
import numpy as np
import cv2
import glob
import itertools
from config import color_key_dic, cls_num_key_dic
color_key_dic = color_key_dic["wf_small"]
cls_num_key_dic = cls_num_key_dic["wf_small"]
def getImageArr(path, width, height, imgNorm="sub_mean"):
try:
img = cv2.imread(path, 1)
if imgNorm == "sub_and_divide":
img = np.float32(img) / 127.5 - 1
elif imgNorm == "sub_mean":
# img = cv2.resize(img, (width, height))
img = img.astype(np.float32)
img[:, :, 0] -= 103.939
img[:, :, 1] -= 116.779
img[:, :, 2] -= 123.68
elif imgNorm == "divide":
# img = cv2.resize(img, (width, height))
img = img.astype(np.float32)
img = img / 255.0
# if odering == 'channels_first':
# img = np.rollaxis(img, 2, 0)
return img
except Exception as e:
print (path, e)
img = np.zeros((height, width, 3))
# if odering == 'channels_first':
# img = np.rollaxis(img, 2, 0)
return img
def getSegmentationArr(path, nClasses, width, height):
seg_labels = np.zeros((height, width, nClasses))
try:
img = cv2.imread(path, 1)
# img = cv2.resize(img, (width, height))
# img = img[:, :, 0]
for row in img:
for cell in row:
new_cell = color_key_dic[tuple(cell)]["cls_num"]
for c in range(nClasses):
seg_labels[:, :, c] = (new_cell == c).astype(int)
except Exception as e:
print(e)
# seg_labels = np.reshape(seg_labels, (width * height, nClasses))
return seg_labels
def imageSegmentationGenerator(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height,
output_width):
assert images_path[-1] == '/'
assert segs_path[-1] == '/'
images = glob.glob(images_path + "*.jpg") + glob.glob(images_path + "*.png") + glob.glob(images_path + "*.jpeg")
images.sort()
segmentations = glob.glob(segs_path + "*.jpg") + glob.glob(segs_path + "*.png") + glob.glob(segs_path + "*.jpeg")
segmentations.sort()
assert len(images) == len(segmentations)
for im, seg in zip(images, segmentations):
assert (im.split('/')[-1].split(".")[0] == seg.split('/')[-1].split(".")[0])
zipped = itertools.cycle(zip(images, segmentations))
while True:
X = []
Y = []
for _ in range(batch_size):
im, seg = zipped.next()
X.append(getImageArr(im, input_width, input_height))
Y.append(getSegmentationArr(seg, n_classes, output_width, output_height))
yield np.array(X), np.array(Y)
if __name__ == "__main__":
x = getSegmentationArr(r"G:\xin.data\rs\mlw\fcn\FCN_sample\training\gray_gt\5.png", 13, 224, 224)
img = np.reshape(x,(224,224,13))
img = np.argmax(img, 2)
cv2.imwrite("test.png", img)