From 1da77c59b9669a44d41cc517af9268d60a238715 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Wed, 20 Nov 2024 17:11:38 -0600 Subject: [PATCH 01/16] 0.6.17 a1 --- autots/evaluator/validation.py | 8 ++++---- autots/tools/seasonal.py | 1 + 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/autots/evaluator/validation.py b/autots/evaluator/validation.py index 4b80a26a..a029cef3 100644 --- a/autots/evaluator/validation.py +++ b/autots/evaluator/validation.py @@ -21,10 +21,10 @@ def extract_seasonal_val_periods(validation_method): def validate_num_validations( - validation_method, - num_validations, - df_wide_numeric, - forecast_length, + validation_method="backwards", + num_validations=2, + df_wide_numeric=None, + forecast_length=None, min_allowed_train_percent=0.5, verbose=0, ): diff --git a/autots/tools/seasonal.py b/autots/tools/seasonal.py index 48696166..817fdbf7 100644 --- a/autots/tools/seasonal.py +++ b/autots/tools/seasonal.py @@ -751,6 +751,7 @@ def create_seasonality_feature(DTindex, t, seasonality, history_days=None): ["dayofweek", (365.25, 4)], ["dayofweek", (365.25, 14)], ["dayofweek", (365.25, 24)], + ["dayofweek", (365.25, 14), (354.37, 10)], # 354.37 should be islamic calendar avg length "other", ] From d20db474fc138f919453d461f8ecc0cdddd74fe3 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Fri, 22 Nov 2024 17:45:45 -0600 Subject: [PATCH 02/16] 0.6.17 a2 --- autots/evaluator/auto_model.py | 1 + 1 file changed, 1 insertion(+) diff --git a/autots/evaluator/auto_model.py b/autots/evaluator/auto_model.py index 4e158568..e6ac804f 100644 --- a/autots/evaluator/auto_model.py +++ b/autots/evaluator/auto_model.py @@ -1669,6 +1669,7 @@ def _eval_prediction_for_template( ).reset_index(drop=True) ps_metric = model_error.per_series_metrics + ps_metric["ValidationRound"] = validation_round ps_metric.index.name = "autots_eval_metric" ps_metric = ps_metric.reset_index(drop=False) ps_metric.index = [model_id] * ps_metric.shape[0] From 8f365d2c7ea44a0e209f7fa135955add8aa23124 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Sat, 23 Nov 2024 22:50:23 -0600 Subject: [PATCH 03/16] 0.6.17 a3 --- autots/tools/seasonal.py | 1 + 1 file changed, 1 insertion(+) diff --git a/autots/tools/seasonal.py b/autots/tools/seasonal.py index 817fdbf7..02a4e63f 100644 --- a/autots/tools/seasonal.py +++ b/autots/tools/seasonal.py @@ -782,6 +782,7 @@ def random_datepart(method='random'): 0.05, 0.05, 0.02, + 0.02, 0.3, ], )[0] From a13f3e4aed4b027f3bb67b64a5df25d83a746ffb Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Sun, 1 Dec 2024 09:54:25 -0600 Subject: [PATCH 04/16] 0.6.17 a4 --- autots/evaluator/auto_model.py | 36 +++++++++++++++++----------------- autots/evaluator/auto_ts.py | 4 ++-- 2 files changed, 20 insertions(+), 20 deletions(-) diff --git a/autots/evaluator/auto_model.py b/autots/evaluator/auto_model.py index e6ac804f..c3864ad1 100644 --- a/autots/evaluator/auto_model.py +++ b/autots/evaluator/auto_model.py @@ -2361,58 +2361,58 @@ def virtual_memory(): ) ps = template_result.per_series_metrics template_result.per_series_mae = ps[ps['autots_eval_metric'] == 'mae'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_made = ps[ps['autots_eval_metric'] == 'made'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_contour = ps[ ps['autots_eval_metric'] == 'contour' - ].drop(columns='autots_eval_metric') + ].drop(columns=['autots_eval_metric', "ValidationRound"]) template_result.per_series_rmse = ps[ps['autots_eval_metric'] == 'rmse'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_spl = ps[ps['autots_eval_metric'] == 'spl'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_mle = ps[ps['autots_eval_metric'] == 'mle'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_imle = ps[ps['autots_eval_metric'] == 'imle'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_maxe = ps[ps['autots_eval_metric'] == 'maxe'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_oda = ps[ps['autots_eval_metric'] == 'oda'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_mqae = ps[ps['autots_eval_metric'] == 'mqae'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_dwae = ps[ps['autots_eval_metric'] == 'dwae'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_ewmae = ps[ps['autots_eval_metric'] == 'ewmae'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_uwmse = ps[ps['autots_eval_metric'] == 'uwmse'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_smoothness = ps[ ps['autots_eval_metric'] == 'smoothness' - ].drop(columns='autots_eval_metric') + ].drop(columns=['autots_eval_metric', "ValidationRound"]) template_result.per_series_mate = ps[ps['autots_eval_metric'] == 'mate'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_matse = ps[ps['autots_eval_metric'] == 'matse'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) template_result.per_series_wasserstein = ps[ ps['autots_eval_metric'] == 'wasserstein' - ].drop(columns='autots_eval_metric') + ].drop(columns=['autots_eval_metric', "ValidationRound"]) template_result.per_series_dwd = ps[ps['autots_eval_metric'] == 'dwd'].drop( - columns='autots_eval_metric' + columns=['autots_eval_metric', "ValidationRound"] ) else: template_result.per_series_metrics = pd.DataFrame() diff --git a/autots/evaluator/auto_ts.py b/autots/evaluator/auto_ts.py index 19401791..bbd9ea2b 100644 --- a/autots/evaluator/auto_ts.py +++ b/autots/evaluator/auto_ts.py @@ -3557,9 +3557,9 @@ def plot_validations( if subset is None: series = random.choice(df_wide.columns) else: - scores = self.best_model_per_series_mape().index.tolist() + scores = self.best_model_per_series_score().index.tolist() scores = [x for x in scores if "_lltmicro" not in str(x)] - mapes = self.best_model_per_series_score().index.tolist() + mapes = self.best_model_per_series_mape().index.tolist() mapes = [x for x in mapes if "_lltmicro" not in str(x)] if str(subset).lower() == "best": series = mapes[-1] From 1bdb4c89bc553d0621136a94937ac5a60f993fea Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Mon, 2 Dec 2024 15:09:09 -0600 Subject: [PATCH 05/16] 0.6.17 a5 --- autots/tools/transform.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/autots/tools/transform.py b/autots/tools/transform.py index 9d8ee566..523302aa 100644 --- a/autots/tools/transform.py +++ b/autots/tools/transform.py @@ -2847,8 +2847,8 @@ def __init__( @staticmethod def get_new_params(method: str = "random"): return { - "rows": random.choices([1, 2, 4, 7], [0.83, 0.02, 0.05, 0.1])[0], - "lag": random.choices([1, 2, 7, 28], [0.8, 0.05, 0.1, 0.05])[0], + "rows": random.choices([1, 2, 4, 7, 24, 84, 168], [0.83, 0.02, 0.05, 0.1, 0.01, 0.05, 0.05])[0], + "lag": random.choices([1, 2, 7, 28, 84, 168], [0.8, 0.05, 0.1, 0.05, 0.05, 0.01])[0], "method": random.choices(["additive", "multiplicative"], [0.9, 0.1])[0], "strength": random.choices( [1.0, 0.9, 0.7, 0.5, 0.2], [0.8, 0.05, 0.05, 0.05, 0.05] From dc0510cad3f8b0fdb2f3b097ec82b9eab637e660 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Wed, 4 Dec 2024 09:53:42 -0600 Subject: [PATCH 06/16] 0.6.17 a6 --- autots/models/basics.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/autots/models/basics.py b/autots/models/basics.py index 2546763e..4c4c6227 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -1141,6 +1141,9 @@ def looped_motif( if point_method == "closest": idx = np.argsort(A, axis=0)[:k].flatten() else: + if k > A.shape[0]: + print("k too large for size of data in motif") + k = A.shape[0] idx = np.argpartition(A, k, axis=0)[:k].flatten() # distances for weighted mean results = y[idx] From a30b50ab2c7375e54949d846f579a5b0ccd13e97 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Wed, 4 Dec 2024 11:30:59 -0600 Subject: [PATCH 07/16] 0.6.17 a7 --- TODO.md | 30 ++---------------------------- autots/tools/transform.py | 9 ++++++--- extended_tutorial.md | 2 ++ 3 files changed, 10 insertions(+), 31 deletions(-) diff --git a/TODO.md b/TODO.md index 4949a4d2..a2d0aa50 100644 --- a/TODO.md +++ b/TODO.md @@ -13,34 +13,8 @@ * Forecasts are desired for the future immediately following the most recent data. * trimmed_mean to AverageValueNaive -# 0.6.16 🇺🇦 🇺🇦 🇺🇦 -* export_template added focus_models option -* added OneClassSVM and GaussianMixture anomaly model options -* added plot_unpredictability_score -* added a few more NeuralForecast search options -* bounds_only to Constraint transformer -* updates for deprecated upstream args -* FIRFilter transformer added -* mle and imle downscaled to reduce score imbalance issues with these two in generate score -* SectionalMotif now more robust to forecast lengths longer than history -* new transformer and metric options for SectionalMotif -* NaN robustness to matse -* 'round' option to Constraint -* minor change to mosaic min style ensembles to remove edge case errors -* 'mosaic-profile', 'filtered', 'unpredictability_adjusted' and 'median' style mosaics added -* updated profiler, and improved feature generation for horizontal generalization -* changepoint style trend as an option to GLM and GLS -* added ShiftFirstValue which is only a minor nuance on PositiveShift transformer -* added BasicLinearModel model -* datepart_method, scale, and fourier encodig to WindowRegression -* trimmed_mean and more date part options to SeasonalityMotif -* some additional options to MultivariateRegression -* added ThetaTransformer -* added TVVAR model (time varying VAR) -* added ChangepointDetrend transformer -* added MeanPercentSplitter transformer -* updated load_daily with more recent history -* added support for passing a custom metric +# 0.6.17 🇺🇦 🇺🇦 🇺🇦 +* minor adjustments and bug fixes ### Unstable Upstream Pacakges (those that are frequently broken by maintainers) * Pytorch-Forecasting diff --git a/autots/tools/transform.py b/autots/tools/transform.py index 523302aa..e5906e69 100644 --- a/autots/tools/transform.py +++ b/autots/tools/transform.py @@ -6644,17 +6644,20 @@ def transformer_list_to_dict(transformer_list): transformer_list = "superfast" if not transformer_list or transformer_list == "all": transformer_list = transformer_dict - elif transformer_list in ["fast", "default", "Fast", "auto"]: + elif transformer_list in ["fast", "default", "Fast", "auto", "fast_no_slice"]: transformer_list = fast_transformer_dict - elif transformer_list == "superfast": + elif transformer_list in ["superfast", "superfast_no_slice"]: transformer_list = superfast_transformer_dict - elif transformer_list == "scalable": + elif transformer_list in ["scalable", "scalable_no_slice"]: # "scalable" meant to be even smaller than "fast" subset of transformers transformer_list = fast_transformer_dict.copy() del transformer_list["SinTrend"] # no observed issues, but for efficiency # del transformer_list["HolidayTransformer"] # improved, should be good enough del transformer_list["ReplaceConstant"] del transformer_list["ThetaTransformer"] # just haven't tested it enough yet + elif "no_slice" in transformer_list: + # slice can be a problem child in some cases, so can remove by adding this + del transformer_list["Slice"] if isinstance(transformer_list, dict): transformer_prob = list(transformer_list.values()) diff --git a/extended_tutorial.md b/extended_tutorial.md index 118554fe..44c0c660 100644 --- a/extended_tutorial.md +++ b/extended_tutorial.md @@ -76,6 +76,8 @@ There are some basic things to beware of that can commonly lead to poor results: What you don't need to do before the automated forecasting is any typical preprocessing. It is best to leave it up to the model selection process to choose, as different models do better with different types of preprocessing. +One of the most common causes of failures for loading a template on a new dataset is models failing on series that are too short (or essentially all missing). Filter out series that are too new or have been discontinued, before proceeding. + ### Validation and Cross Validation Cross validation helps assure that the optimal model is stable over the dynamics of a time series. Cross validation can be tricky in time series data due to the necessity of preventing data leakage from future data points. From bc215f4215e7abebf780191b7a15cf2c700308a0 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Wed, 4 Dec 2024 14:02:08 -0600 Subject: [PATCH 08/16] 0.6.17 a8 --- autots/evaluator/auto_model.py | 8 +++++ autots/models/basics.py | 54 ++++++++++++++++++++++++++++++++-- 2 files changed, 59 insertions(+), 3 deletions(-) diff --git a/autots/evaluator/auto_model.py b/autots/evaluator/auto_model.py index c3864ad1..20277073 100644 --- a/autots/evaluator/auto_model.py +++ b/autots/evaluator/auto_model.py @@ -2017,6 +2017,14 @@ def _eval_prediction_for_template( }, }, }, + { # best on VPV, 19.7 smape + "fillna": "quadratic", + "transformations": {"0": "AlignLastValue", "1": "ChangepointDetrend"}, + "transformation_params": { + "0": {"rows": 1, "lag": 1, "method": "multiplicative", "strength": 1.0, "first_value_only": False, "threshold": None, "threshold_method": "mean"}, + "1": {"model": "Linear", "changepoint_spacing": 180, "changepoint_distance_end": 360, "datepart_method": None} + } + }, ] diff --git a/autots/models/basics.py b/autots/models/basics.py index 4c4c6227..f586b871 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -3158,6 +3158,8 @@ def __init__( distance_metric: str = "canberra", k: int = 10, sample_fraction=None, + comparison_transformation: dict = None, + combination_transformation: dict = None, **kwargs, ): ModelObject.__init__( @@ -3175,6 +3177,8 @@ def __init__( self.distance_metric = distance_metric self.k = k self.sample_fraction = sample_fraction + self.comparison_transformation = comparison_transformation + self.combination_transformation = combination_transformation def fit(self, df, future_regressor=None): """Train algorithm given data supplied. @@ -3203,10 +3207,27 @@ def predict( """ predictStartTime = datetime.datetime.now() phrase_n = self.window + forecast_length + # fit transform only, no need for inverse as this is only for finding windows + if self.comparison_transformation is not None: + self.comparison_transformer = GeneralTransformer( + **self.comparison_transformation + ) + compare_df = self.comparison_transformer.fit_transform(self.df) + else: + compare_df = self.df + # applied once, then inversed after windows combined as forecast + if self.combination_transformation is not None: + self.combination_transformer = GeneralTransformer( + **self.combination_transformation + ) + wind_arr = self.combination_transformer.fit_transform(self.df) + else: + wind_arr = self.df + if False: # OLD WAY x = sliding_window_view( - self.df.to_numpy(dtype=np.float32), phrase_n, axis=0 + compare_df.to_numpy(dtype=np.float32), phrase_n, axis=0 ) Xa = x.reshape(-1, x.shape[-1]) if self.sample_fraction is not None: @@ -3222,7 +3243,7 @@ def predict( else: # shared with WindowRegression Xa = chunk_reshape( - self.df.to_numpy(dtype=np.float32), + compare_df.to_numpy(dtype=np.float32), phrase_n, sample_fraction=self.sample_fraction, random_seed=self.random_seed, @@ -3239,7 +3260,7 @@ def predict( tree = BallTree(Xa[:, : self.window], metric=self.distance_metric) # Query the KDTree to find k nearest neighbors for each point in Xa - Xb = self.df.iloc[-self.window :].to_numpy().T + Xb = wind_arr.iloc[-self.window :].to_numpy().T A, self.windows = tree.query(Xb, k=self.k) # (k, forecast_length, n_series) self.result_windows = Xa[self.windows][:, :, self.window :].transpose(1, 2, 0) @@ -3273,6 +3294,14 @@ def predict( upper_forecast = pd.DataFrame( upper_forecast, index=test_index, columns=self.column_names ) + if self.combination_transformation is not None: + forecast = self.combination_transformer.inverse_transform(forecast) + lower_forecast = self.combination_transformer.inverse_transform( + lower_forecast + ) + upper_forecast = self.combination_transformer.inverse_transform( + upper_forecast + ) if just_point_forecast: return forecast else: @@ -3331,6 +3360,21 @@ def get_new_params(self, method: str = 'random'): k_choice = random.choices( [1, 3, 5, 10, 15, 20, 100], [0.02, 0.2, 0.2, 0.5, 0.1, 0.1, 0.1] )[0] + transformers_none = random.choices([True, False], [0.7, 0.3])[0] + if transformers_none: + comparison_transformation = None + combination_transformation = None + else: + comparison_transformation = RandomTransform( + transformer_list=superfast_transformer_dict, + transformer_max_depth=1, + allow_none=True, + ) + combination_transformation = RandomTransform( + transformer_list=superfast_transformer_dict, + transformer_max_depth=1, + allow_none=True, + ) return { "window": random.choices( [2, 3, 5, 7, 10, 14, 28, 60], @@ -3343,6 +3387,8 @@ def get_new_params(self, method: str = 'random'): "distance_metric": random.choices(metric_list, metric_probabilities)[0], "k": k_choice, "sample_fraction": sample_fraction, + "comparison_transformation": comparison_transformation, + "combination_transformation": combination_transformation, } def get_params(self): @@ -3353,6 +3399,8 @@ def get_params(self): "distance_metric": self.distance_metric, "k": self.k, "sample_fraction": self.sample_fraction, + "comparison_transformation": self.comparison_transformation, + "combination_transformation": self.combination_transformation, } From 38c1267f8f0ab434df0ff360f3a78448996caffb Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Wed, 4 Dec 2024 21:19:53 -0600 Subject: [PATCH 09/16] 0.6.17 a9 --- tests/test_autots.py | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/tests/test_autots.py b/tests/test_autots.py index b3e24b51..2aaeac16 100644 --- a/tests/test_autots.py +++ b/tests/test_autots.py @@ -495,10 +495,17 @@ def test_subset_expansion(self): id_col="series_id" if long else None, ) model.expand_horizontal() + orig_param = json.loads(model.best_model_original.iloc[0]['ModelParameters']) + new_param = json.loads(model.best_model.iloc[0]['ModelParameters']) + diff_mods = [x for x in orig_param['models'].keys() if x not in new_param['models'].keys()] + if diff_mods: + details = orig_param['models'][diff_mods] + else: + details = "" self.assertCountEqual( - json.loads(model.best_model_original.iloc[0]['ModelParameters'])['models'].keys(), - json.loads(model.best_model.iloc[0]['ModelParameters'])['models'].keys(), - msg="model expansion failed to use the same models" + orig_param['models'].keys(), + new_param['models'].keys(), + msg=f"model expansion failed to use the same models {details}" ) num_series = len(df['series_id'].unique().tolist()) if long else df.shape[1] self.assertEqual( From 96a519dca4c87cf6e466b3ae3585200548193962 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Wed, 4 Dec 2024 22:36:00 -0600 Subject: [PATCH 10/16] 0.6.17 a10 --- autots/models/statsmodels.py | 7 ++++--- autots/tools/transform.py | 6 ++++-- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/autots/models/statsmodels.py b/autots/models/statsmodels.py index 12ec7911..fd240cc1 100644 --- a/autots/models/statsmodels.py +++ b/autots/models/statsmodels.py @@ -550,7 +550,6 @@ def predict( if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() - from statsmodels.tsa.holtwinters import ExponentialSmoothing test_index = self.create_forecast_index(forecast_length=forecast_length) parallel = True @@ -566,6 +565,8 @@ def predict( def ets_forecast_by_column(current_series, args): """Run one series of ETS and return prediction.""" + from statsmodels.tsa.holtwinters import ExponentialSmoothing + series_name = current_series.name with warnings.catch_warnings(): if args['verbose'] < 2: @@ -616,7 +617,7 @@ def ets_forecast_by_column(current_series, args): # joblib multiprocessing to loop through series if parallel: df_list = Parallel(n_jobs=self.n_jobs)( - delayed(ets_forecast_by_column)(self.df_train[col], args) + delayed(ets_forecast_by_column)(self.df_train[col].astype(float), args) for (col) in cols ) forecast = pd.concat(df_list, axis=1) @@ -665,7 +666,7 @@ def get_new_params(self, method: str = 'random'): seasonal_probability = [0.2, 0.2, 0.6] seasonal_choice = random.choices(seasonal_list, seasonal_probability)[0] if seasonal_choice in ["additive", "multiplicative"]: - seasonal_period_choice = seasonal_int() + seasonal_period_choice = seasonal_int(small=True if method != "deep" else False) else: seasonal_period_choice = None parameter_dict = { diff --git a/autots/tools/transform.py b/autots/tools/transform.py index e5906e69..95f63805 100644 --- a/autots/tools/transform.py +++ b/autots/tools/transform.py @@ -1207,7 +1207,7 @@ def get_new_params(method: str = "random", holiday_countries_used=None): model_dict={ "ElasticNet": 0.5, "DecisionTree": 0.25, - "KNN": 0.02, + # "KNN": 0.02, } ) else: @@ -2238,6 +2238,7 @@ def fit_transform(self, df): def get_new_params(method: str = "random"): if method == "fast": method = random.choice(['butter', 'savgol_filter']) + polyorder = random.choices([1, 2, 3, 4], [0.5, 0.5, 0.25, 0.2])[0] else: method = random.choices( [ @@ -2253,6 +2254,7 @@ def get_new_params(method: str = "random"): [0.1, 0.1, 0.9, 0.9], k=1, )[0] + polyorder = random.choice([1, 2, 3, 4]) # analog_choice = bool(random.randint(0, 1)) analog_choice = False xn = random.randint(1, 99) @@ -2262,7 +2264,7 @@ def get_new_params(method: str = "random"): elif method == "savgol_filter": method_args = { 'window_length': random.choices([7, 31, 91], [0.4, 0.3, 0.3])[0], - 'polyorder': random.choice([1, 2, 3, 4]), + 'polyorder': polyorder, 'deriv': random.choices([0, 1], [0.8, 0.2])[0], 'mode': random.choice(['mirror', 'nearest', 'interp']), } From 9ea7affeb468d57a3457ec1073d6118635298c30 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Thu, 5 Dec 2024 09:15:19 -0600 Subject: [PATCH 11/16] 0.6.17 a11 --- autots/models/basics.py | 16 +++++++++++++--- autots/models/sklearn.py | 10 +++++++--- autots/tools/transform.py | 4 ++-- 3 files changed, 22 insertions(+), 8 deletions(-) diff --git a/autots/models/basics.py b/autots/models/basics.py index f586b871..c733aba8 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -3260,10 +3260,20 @@ def predict( tree = BallTree(Xa[:, : self.window], metric=self.distance_metric) # Query the KDTree to find k nearest neighbors for each point in Xa - Xb = wind_arr.iloc[-self.window :].to_numpy().T - A, self.windows = tree.query(Xb, k=self.k) + Xb = compare_df.iloc[-self.window :].to_numpy().T + A, self.windows = tree.query(Xb, k=self.k) # dualtree=True + if self.combination_transformation is not None or self.comparison_transformation is not None: + del Xa + Xc = chunk_reshape( + wind_arr.to_numpy(dtype=np.float32), + phrase_n, + sample_fraction=self.sample_fraction, + random_seed=self.random_seed, + ) + else: + Xc = Xa # (k, forecast_length, n_series) - self.result_windows = Xa[self.windows][:, :, self.window :].transpose(1, 2, 0) + self.result_windows = Xc[self.windows][:, :, self.window :].transpose(1, 2, 0) # now aggregate results into point and bound forecasts if self.point_method == "weighted_mean": diff --git a/autots/models/sklearn.py b/autots/models/sklearn.py index 43ece341..ca110962 100644 --- a/autots/models/sklearn.py +++ b/autots/models/sklearn.py @@ -291,6 +291,7 @@ def rolling_x_regressor_regressor( cointegration_lag: int = 1, series_id=None, slice_index=None, + series_id_to_multiindex=None, ): """Adds in the future_regressor.""" X = rolling_x_regressor( @@ -327,6 +328,9 @@ def rolling_x_regressor_regressor( X['series_id'] = df.columns[0] X = X.merge(static_regressor, left_on="series_id", right_index=True, how='left') X = X.drop(columns=['series_id']) + if series_id_to_multiindex is not None: + X["series_id"] = str(series_id_to_multiindex) + X = X.set_index("series_id", append=True) if series_id is not None: hashed = ( int(hashlib.sha256(str(series_id).encode('utf-8')).hexdigest(), 16) @@ -1148,7 +1152,7 @@ def generate_regressor_params( "n_neighbors": random.choices([3, 5, 10, 14], [0.2, 0.7, 0.1, 0.1])[ 0 ], - "weights": random.choices(['uniform', 'distance'], [0.7, 0.3])[0], + "weights": random.choices(['uniform', 'distance'], [0.999, 0.001])[0], 'p': random.choices([2, 1, 1.5], [0.7, 0.1, 0.1])[0], 'leaf_size': random.choices([30, 10, 50], [0.8, 0.1, 0.1])[0], }, @@ -3442,7 +3446,7 @@ def fit( n_jobs=self.n_jobs, verbose=self.verbose, timeout=3600 )( delayed(rolling_x_regressor_regressor)( - base[x_col].to_frame(), + base[x_col].to_frame().astype(float), mean_rolling_periods=self.mean_rolling_periods, macd_periods=self.macd_periods, std_rolling_periods=self.std_rolling_periods, @@ -3485,7 +3489,7 @@ def fit( self.X = pd.concat( [ rolling_x_regressor_regressor( - base[x_col].to_frame(), + base[x_col].to_frame().astype(float), mean_rolling_periods=self.mean_rolling_periods, macd_periods=self.macd_periods, std_rolling_periods=self.std_rolling_periods, diff --git a/autots/tools/transform.py b/autots/tools/transform.py index 95f63805..dc8751e6 100644 --- a/autots/tools/transform.py +++ b/autots/tools/transform.py @@ -1200,14 +1200,14 @@ def get_new_params(method: str = "random", holiday_countries_used=None): else: polynomial_choice = None - if method == "all": + if method in ["all", "deep"]: choice = generate_regressor_params() elif method == "fast": choice = generate_regressor_params( model_dict={ "ElasticNet": 0.5, "DecisionTree": 0.25, - # "KNN": 0.02, + # "KNN": 0.002, # simply uses too much memory at scale } ) else: From c565d67bb999e6ed44c6037792f4feb8ed09f059 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Thu, 5 Dec 2024 12:28:09 -0600 Subject: [PATCH 12/16] 0.617 a12 --- TODO.md | 3 +- autots/evaluator/auto_model.py | 12 + autots/models/basics.py | 596 +++++++++++++++++++++++++++++++++ autots/models/model_list.py | 14 +- autots/models/statsmodels.py | 12 +- extended_tutorial.md | 1 + tests/test_autots.py | 1 + 7 files changed, 631 insertions(+), 8 deletions(-) diff --git a/TODO.md b/TODO.md index a2d0aa50..4f8fb179 100644 --- a/TODO.md +++ b/TODO.md @@ -14,7 +14,8 @@ * trimmed_mean to AverageValueNaive # 0.6.17 🇺🇦 🇺🇦 🇺🇦 -* minor adjustments and bug fixes +* minor adjustments and bug fixes for scalability +* added BallTreeRegressionMotif ### Unstable Upstream Pacakges (those that are frequently broken by maintainers) * Pytorch-Forecasting diff --git a/autots/evaluator/auto_model.py b/autots/evaluator/auto_model.py index 20277073..10aa4684 100644 --- a/autots/evaluator/auto_model.py +++ b/autots/evaluator/auto_model.py @@ -48,6 +48,7 @@ BallTreeMultivariateMotif, BasicLinearModel, TVVAR, + BallTreeRegressionMotif, ) from autots.models.statsmodels import ( GLS, @@ -732,6 +733,17 @@ def ModelMonster( n_jobs=n_jobs, **parameters, ) + elif model == 'BallTreeRegressionMotif': + return BallTreeRegressionMotif( + frequency=frequency, + prediction_interval=prediction_interval, + holiday_country=holiday_country, + random_seed=random_seed, + verbose=verbose, + forecast_length=forecast_length, + n_jobs=n_jobs, + **parameters, + ) elif model == "": raise AttributeError( ("Model name is empty. Likely this means AutoTS has not been fit.") diff --git a/autots/models/basics.py b/autots/models/basics.py index c733aba8..39dfa32e 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -38,6 +38,7 @@ from autots.tools.fft import fourier_extrapolation from autots.tools.impute import FillNA from autots.evaluator.metrics import wasserstein +from autots.models.sklearn import rolling_x_regressor_regressor # these are all optional packages @@ -4506,3 +4507,598 @@ def get_params(self): "mode": self.mode, "holiday_countries_used": self.holiday_countries_used, } + + +class BallTreeRegressionMotif(ModelObject): + """Forecasts using a nearest neighbors type model adapted for probabilistic time series. + This version uses a feature ala MultivariateRegression but with motifs instead of a regression ML model. + Many of these motifs will struggle when the forecast_length is large and history is short. + + Args: + frequency (str): String alias of datetime index frequency or else 'infer' + prediction_interval (float): Confidence interval for probabilistic forecast + n_jobs (int): how many parallel processes to run + random_seed (int): used in selecting windows if max_windows is less than total available + window (int): length of forecast history to match on + point_method (int): how to summarize the nearest neighbors to generate the point forecast + "weighted_mean", "mean", "median", "midhinge" + distance_metric (str): all valid values for scipy cdist + k (int): number of closest neighbors to consider + """ + + def __init__( + self, + frequency: str = 'infer', + prediction_interval: float = 0.9, + holiday_country: str = 'US', + random_seed: int = 2020, + verbose: int = 0, + n_jobs: int = 1, + window: int = 5, + point_method: str = "mean", + distance_metric: str = "canberra", + k: int = 10, + sample_fraction=None, + comparison_transformation: dict = None, + combination_transformation: dict = None, + extend_df: bool = True, + # multivar params + holiday: bool = False, + mean_rolling_periods: int = 30, + macd_periods: int = None, + std_rolling_periods: int = 7, + max_rolling_periods: int = 7, + min_rolling_periods: int = 7, + ewm_var_alpha: float = None, + quantile90_rolling_periods: int = None, + quantile10_rolling_periods: int = None, + ewm_alpha: float = 0.5, + additional_lag_periods: int = None, + abs_energy: bool = False, + rolling_autocorr_periods: int = None, + nonzero_last_n: int = None, + datepart_method: str = None, + polynomial_degree: int = None, + probabilistic: bool = False, + scale_full_X: bool = False, + cointegration: str = None, + cointegration_lag: int = None, + series_hash: bool = False, + frac_slice: float = None, + **kwargs, + ): + ModelObject.__init__( + self, + "BallTreeRegressionMotif", + frequency, + prediction_interval, + holiday_country=holiday_country, + random_seed=random_seed, + verbose=verbose, + n_jobs=n_jobs, + ) + self.window = window + self.point_method = point_method + self.distance_metric = distance_metric + self.k = k + self.sample_fraction = sample_fraction + self.comparison_transformation = comparison_transformation + self.combination_transformation = combination_transformation + self.extend_df = extend_df + # multivar params + self.holiday = holiday + self.mean_rolling_periods = mean_rolling_periods + if mean_rolling_periods is None: + self.macd_periods = None + else: + self.macd_periods = macd_periods + self.std_rolling_periods = std_rolling_periods + self.max_rolling_periods = max_rolling_periods + self.min_rolling_periods = min_rolling_periods + self.ewm_var_alpha = ewm_var_alpha + self.quantile90_rolling_periods = quantile90_rolling_periods + self.quantile10_rolling_periods = quantile10_rolling_periods + self.ewm_alpha = ewm_alpha + self.additional_lag_periods = additional_lag_periods + self.abs_energy = abs_energy + self.rolling_autocorr_periods = rolling_autocorr_periods + self.nonzero_last_n = nonzero_last_n + self.datepart_method = datepart_method + self.polynomial_degree = polynomial_degree + self.regressor_train = None + self.regressor_per_series_train = None + self.static_regressor = None + self.probabilistic = probabilistic + self.scale_full_X = scale_full_X + self.cointegration = cointegration + self.cointegration_lag = cointegration_lag + self.series_hash = series_hash + self.frac_slice = frac_slice + + def fit(self, df, future_regressor=None, static_regressor=None, regressor_per_series=None,): + """Train algorithm given data supplied. + + Args: + df (pandas.DataFrame): Datetime Indexed + """ + if self.regression_type is not None: + if future_regressor is None: + raise ValueError( + "regression_type='User' but not future_regressor supplied." + ) + else: + self.regressor_train = future_regressor.reindex(df.index) + if regressor_per_series is not None: + self.regressor_per_series_train = regressor_per_series + if static_regressor is not None: + self.static_regressor = static_regressor + + df = self.basic_profile(df) + self.df = df + self.fit_runtime = datetime.datetime.now() - self.startTime + return self + + def predict( + self, forecast_length: int, future_regressor=None, just_point_forecast=False, static_regressor=None, regressor_per_series=None, + ): + """Generates forecast data immediately following dates of index supplied to .fit() + + Args: + forecast_length (int): Number of periods of data to forecast ahead + regressor (numpy.Array): additional regressor, not used + just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts + + Returns: + Either a PredictionObject of forecasts and metadata, or + if just_point_forecast == True, a dataframe of point forecasts + """ + predictStartTime = datetime.datetime.now() + # fit transform only, no need for inverse as this is only for finding windows + if self.comparison_transformation is not None: + self.comparison_transformer = GeneralTransformer( + **self.comparison_transformation + ) + compare_df = self.comparison_transformer.fit_transform(self.df) + else: + compare_df = self.df + # applied once, then inversed after windows combined as forecast + if self.combination_transformation is not None: + self.combination_transformer = GeneralTransformer( + **self.combination_transformation + ) + wind_arr = self.combination_transformer.fit_transform(self.df) + else: + wind_arr = self.df + + ############################ + # fractional slicing to reduce size + if self.frac_slice is not None: + slice_size = int(self.df.shape[0] * self.frac_slice) + self.slice_index = self.df.index[slice_size:] + else: + self.slice_index = None + # handle regressor + if self.regression_type is not None: + cut_regr = self.regressor_train + cut_regr.index = compare_df.index + else: + cut_regr = None + + parallel = True + if self.n_jobs in [0, 1] or compare_df.shape[1] < 20: + parallel = False + elif not joblib_present: + parallel = False + # joblib multiprocessing to loop through series + # this might be causing issues, TBD Key Error from Resource Tracker + if parallel: + self.Xa = Parallel( + n_jobs=self.n_jobs, verbose=self.verbose, timeout=36000 + )( + delayed(rolling_x_regressor_regressor)( + compare_df[x_col].to_frame(), + mean_rolling_periods=self.mean_rolling_periods, + macd_periods=self.macd_periods, + std_rolling_periods=self.std_rolling_periods, + max_rolling_periods=self.max_rolling_periods, + min_rolling_periods=self.min_rolling_periods, + ewm_var_alpha=self.ewm_var_alpha, + quantile90_rolling_periods=self.quantile90_rolling_periods, + quantile10_rolling_periods=self.quantile10_rolling_periods, + additional_lag_periods=self.additional_lag_periods, + ewm_alpha=self.ewm_alpha, + abs_energy=self.abs_energy, + rolling_autocorr_periods=self.rolling_autocorr_periods, + nonzero_last_n=self.nonzero_last_n, + add_date_part=self.datepart_method, + holiday=self.holiday, + holiday_country=self.holiday_country, + polynomial_degree=self.polynomial_degree, + window=self.window, + future_regressor=cut_regr, + # these rely the if part not being run if None + regressor_per_series=( + self.regressor_per_series_train[x_col] + if self.regressor_per_series_train is not None + else None + ), + static_regressor=( + self.static_regressor.loc[x_col].to_frame().T + if self.static_regressor is not None + else None + ), + cointegration=self.cointegration, + cointegration_lag=self.cointegration_lag, + series_id=x_col if self.series_hash else None, + slice_index=self.slice_index, + series_id_to_multiindex=x_col, + ) + for x_col in compare_df.columns + ) + self.Xa = pd.concat(self.Xa) + else: + self.Xa = pd.concat( + [ + rolling_x_regressor_regressor( + compare_df[x_col].to_frame(), + mean_rolling_periods=self.mean_rolling_periods, + macd_periods=self.macd_periods, + std_rolling_periods=self.std_rolling_periods, + max_rolling_periods=self.max_rolling_periods, + min_rolling_periods=self.min_rolling_periods, + ewm_var_alpha=self.ewm_var_alpha, + quantile90_rolling_periods=self.quantile90_rolling_periods, + quantile10_rolling_periods=self.quantile10_rolling_periods, + additional_lag_periods=self.additional_lag_periods, + ewm_alpha=self.ewm_alpha, + abs_energy=self.abs_energy, + rolling_autocorr_periods=self.rolling_autocorr_periods, + nonzero_last_n=self.nonzero_last_n, + add_date_part=self.datepart_method, + holiday=self.holiday, + holiday_country=self.holiday_country, + polynomial_degree=self.polynomial_degree, + window=self.window, + future_regressor=cut_regr, + # these rely the if part not being run if None + regressor_per_series=( + self.regressor_per_series_train[x_col] + if self.regressor_per_series_train is not None + else None + ), + static_regressor=( + self.static_regressor.loc[x_col].to_frame().T + if self.static_regressor is not None + else None + ), + cointegration=self.cointegration, + cointegration_lag=self.cointegration_lag, + series_id=x_col if self.series_hash else None, + slice_index=self.slice_index, + series_id_to_multiindex=x_col, + ) + for x_col in compare_df.columns + ] + ) + ############################ + test_index = self.create_forecast_index(forecast_length=forecast_length) + + # filter because we need that last bit + self.Xb = self.Xa[self.Xa.index.get_level_values(0) == self.Xa.index.get_level_values(0).max()] + # don't include a certain amount of the end as they won't have any usable history + self.Xa = self.Xa[self.Xa.index.get_level_values(0).isin(self.Xa.index.get_level_values(0).unique().sort_values()[:-self.window])] # int(self.forecast_length / 2) + + if self.distance_metric in ["euclidean", 'kdtree']: + from scipy.spatial import KDTree + + # Build a KDTree for Xb + tree = KDTree(self.Xa, leafsize=40) + else: + from sklearn.neighbors import BallTree + + tree = BallTree(self.Xa, metric=self.distance_metric) + # Query the KDTree to find k nearest neighbors for each point in Xa + A, self.windows = tree.query(self.Xb, k=self.k) + + + # extend data to future to assure full length for windows, forward fill + if self.extend_df: + extension = pd.DataFrame(np.nan, + index = pd.date_range(start=wind_arr.index[-1], periods=int(forecast_length/2) + 1, freq=self.frequency)[1:], + columns = self.column_names, + ) + wind_arr = pd.concat([wind_arr, extension], axis=0).ffill() + + dt_array = self.Xa.index.get_level_values(0).values # Datetime array + series_array = self.Xa.index.get_level_values(1).values # Series names array + + # Flatten windows array to work with 1D arrays + n_series, k = self.windows.shape + N = n_series * k + dt_selected_flat = dt_array[self.windows.flatten()] + series_selected_flat = series_array[self.windows.flatten()] + + # Find positions in df.index where dates are greater than selected datetimes + pos_in_df_index = wind_arr.index.searchsorted(dt_selected_flat, side='right') # Shape: (N,) + + # Create positions for forecast_length ahead + positions = pos_in_df_index[:, None] + np.arange(forecast_length)[None, :] # Shape: (N, forecast_length) + + # Handle positions exceeding the length of df.index + max_index = len(wind_arr.index) + valid_positions = (positions >= 0) & (positions < max_index) + + # Map series names to column indices + series_name_to_col_idx = {name: idx for idx, name in enumerate(wind_arr.columns)} + col_indices = np.array([series_name_to_col_idx[name] for name in series_selected_flat]) + + # Broadcast col_indices to match the shape of positions + col_indices_broadcasted = np.repeat(col_indices, forecast_length).reshape(N, forecast_length) + + # Use advanced indexing to extract data + data = np.full((N, forecast_length), np.nan) # Initialize data array with NaNs + positions_flat = positions.flatten() + col_indices_flat = col_indices_broadcasted.flatten() + valid_mask_flat = valid_positions.flatten() + + # Extract valid data + positions_flat_valid = positions_flat[valid_mask_flat] + col_indices_flat_valid = col_indices_flat[valid_mask_flat] + data_flat = data.flatten() + data_flat[valid_mask_flat] = wind_arr.values[positions_flat_valid, col_indices_flat_valid] + + # Reshape data back to original dimensions + data = data_flat.reshape(N, forecast_length) + # (k, forecast_length, n_series) + self.result_windows = data.reshape(n_series, k, forecast_length).transpose(1, 2, 0) + + # now aggregate results into point and bound forecasts + if self.point_method == "weighted_mean": + weights = np.repeat(A.T[..., np.newaxis, :], 14, axis=1) + if weights.sum() == 0: + weights = None + forecast = np.average(self.result_windows, axis=0, weights=weights) + elif self.point_method == "mean": + forecast = np.nanmean(self.result_windows, axis=0) + elif self.point_method == "median": + forecast = np.nanmedian(self.result_windows, axis=0) + elif self.point_method == "midhinge": + q1 = nan_quantile(self.result_windows, q=0.25, axis=0) + q2 = nan_quantile(self.result_windows, q=0.75, axis=0) + forecast = (q1 + q2) / q2 + elif self.point_method == 'closest': + # assumes the first K is the smallest distance (true when written) + forecast = self.result_windows[0] + + pred_int = round((1 - self.prediction_interval) / 2, 5) + upper_forecast = nan_quantile(self.result_windows, q=(1 - pred_int), axis=0) + lower_forecast = nan_quantile(self.result_windows, q=pred_int, axis=0) + + forecast = pd.DataFrame(forecast, index=test_index, columns=self.column_names) + lower_forecast = pd.DataFrame( + lower_forecast, index=test_index, columns=self.column_names + ) + upper_forecast = pd.DataFrame( + upper_forecast, index=test_index, columns=self.column_names + ) + if self.combination_transformation is not None: + forecast = self.combination_transformer.inverse_transform(forecast) + lower_forecast = self.combination_transformer.inverse_transform( + lower_forecast + ) + upper_forecast = self.combination_transformer.inverse_transform( + upper_forecast + ) + if just_point_forecast: + return forecast + else: + predict_runtime = datetime.datetime.now() - predictStartTime + prediction = PredictionObject( + model_name=self.name, + forecast_length=forecast_length, + forecast_index=forecast.index, + forecast_columns=forecast.columns, + # so it's producing float32 but pandas is better with float64 + lower_forecast=lower_forecast.astype(float), + forecast=forecast.astype(float), + upper_forecast=upper_forecast.astype(float), + prediction_interval=self.prediction_interval, + predict_runtime=predict_runtime, + fit_runtime=self.fit_runtime, + model_parameters=self.get_params(), + ) + + return prediction + + def get_new_params(self, method: str = 'random'): + """Returns dict of new parameters for parameter tuning""" + metric_list = [ + 'braycurtis', + 'canberra', + 'chebyshev', + 'cityblock', + 'euclidean', + 'hamming', + 'mahalanobis', + 'minkowski', + 'kdtree', + ] + metric_probabilities = [ + 0.05, + 0.05, + 0.05, + 0.05, + 0.9, + 0.05, + 0.05, + 0.05, + 0.05, + ] + if method != "deep": + # evidence suggests 20 million can fit in 5 GB of RAM with a window of 28 + sample_fraction = random.choice([5000000, 50000000]) + else: + sample_fraction = random.choice([0.2, 0.5, 100000000, None]) + if method == "event_risk": + k_choice = random.choices( + [10, 15, 20, 50, 100], [0.3, 0.1, 0.1, 0.05, 0.05] + )[0] + else: + k_choice = random.choices( + [1, 3, 5, 10, 15, 20, 100], [0.02, 0.2, 0.2, 0.5, 0.1, 0.1, 0.1] + )[0] + transformers_none = random.choices([True, False], [0.7, 0.3])[0] + if transformers_none: + comparison_transformation = None + combination_transformation = None + else: + comparison_transformation = RandomTransform( + transformer_list=superfast_transformer_dict, + transformer_max_depth=1, + allow_none=True, + ) + combination_transformation = RandomTransform( + transformer_list=superfast_transformer_dict, + transformer_max_depth=1, + allow_none=True, + ) + # multivar params + if method == "deep": + window = random.choices( + [None, 3, 7, 10, 14, 28], [0.2, 0.2, 0.05, 0.05, 0.05, 0.05] + )[0] + # random.choices([2, 3, 5, 7, 10, 14, 28, 60], [0.01, 0.01, 0.01, 0.1, 0.5, 0.1, 0.1, 0.01])[0] + else: + window = random.choices([None, 3, 7, 10], [0.3, 0.3, 0.1, 0.05])[0] + mean_rolling_periods_choice = random.choices( + [None, 5, 7, 12, 30, 90, [2, 4, 6, 8, 12, (52, 2)], [7, 28, 364, (362, 4)]], + [0.3, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05], + )[0] + if mean_rolling_periods_choice is not None: + macd_periods_choice = seasonal_int(small=True) + if macd_periods_choice == mean_rolling_periods_choice: + macd_periods_choice = mean_rolling_periods_choice + 10 + else: + macd_periods_choice = None + std_rolling_periods_choice = random.choices( + [None, 5, 7, 10, 30, 90], [0.3, 0.1, 0.1, 0.1, 0.1, 0.05] + )[0] + ewm_var_alpha = random.choices([None, 0.2, 0.5, 0.8], [0.4, 0.1, 0.1, 0.05])[0] + quantile90_rolling_periods = random.choices( + [None, 5, 7, 10, 30, 90], [0.3, 0.1, 0.1, 0.1, 0.1, 0.05] + )[0] + quantile10_rolling_periods = random.choices( + [None, 5, 7, 10, 30, 90], [0.3, 0.1, 0.1, 0.1, 0.1, 0.05] + )[0] + max_rolling_periods_choice = random.choices( + [None, seasonal_int(small=True)], [0.2, 0.5] + )[0] + min_rolling_periods_choice = random.choices( + [None, seasonal_int(small=True)], [0.2, 0.5] + )[0] + lag_periods_choice = None + ewm_choice = random.choices( + [None, 0.1, 0.2, 0.5, 0.8], [0.4, 0.01, 0.1, 0.1, 0.05] + )[0] + abs_energy_choice = False + rolling_autocorr_periods_choice = random.choices( + [None, 2, 7, 12, 30], [0.99, 0.01, 0.01, 0.01, 0.01] + )[0] + nonzero_last_n = random.choices( + [None, 2, 7, 14, 30], [0.6, 0.01, 0.1, 0.1, 0.01] + )[0] + add_date_part_choice = random.choices( + [ + None, + 'simple', + 'expanded', + 'recurring', + "simple_2", + "simple_2_poly", + "simple_binarized", + "common_fourier", + "expanded_binarized", + "common_fourier_rw", + ["dayofweek", 365.25], + "simple_binarized2_poly", + ], + [0.2, 0.1, 0.025, 0.1, 0.05, 0.1, 0.05, 0.05, 0.05, 0.025, 0.05, 0.05], + )[0] + holiday_choice = random.choices([True, False], [0.1, 0.9])[0] + polynomial_degree_choice = random.choices([None, 2], [0.995, 0.005])[0] + if "regressor" in method: + regression_choice = "User" + else: + regression_choice = random.choices([None, 'User'], [0.7, 0.3])[0] + + return { + "window": window, + "point_method": random.choices( + ["weighted_mean", "mean", "median", "midhinge", "closest"], + [0.4, 0.2, 0.2, 0.2, 0.2], + )[0], + "distance_metric": random.choices(metric_list, metric_probabilities)[0], + "k": k_choice, + "sample_fraction": sample_fraction, + "comparison_transformation": comparison_transformation, + "combination_transformation": combination_transformation, + "extend_df": random.choices([True, False], [True, False])[0], + # multivar params + 'mean_rolling_periods': mean_rolling_periods_choice, + 'macd_periods': macd_periods_choice, + 'std_rolling_periods': std_rolling_periods_choice, + 'max_rolling_periods': max_rolling_periods_choice, + 'min_rolling_periods': min_rolling_periods_choice, + "quantile90_rolling_periods": quantile90_rolling_periods, + "quantile10_rolling_periods": quantile10_rolling_periods, + 'ewm_alpha': ewm_choice, + "ewm_var_alpha": ewm_var_alpha, + 'additional_lag_periods': lag_periods_choice, + 'abs_energy': abs_energy_choice, + 'rolling_autocorr_periods': rolling_autocorr_periods_choice, + 'nonzero_last_n': nonzero_last_n, + 'datepart_method': add_date_part_choice, + 'polynomial_degree': polynomial_degree_choice, + 'regression_type': regression_choice, + 'holiday': holiday_choice, + 'scale_full_X': random.choices([True, False], [0.2, 0.8])[0], + "series_hash": random.choices([True, False], [0.5, 0.5])[0], + "frac_slice": random.choices( + [None, 0.8, 0.5, 0.2, 0.1], [0.6, 0.1, 0.1, 0.1, 0.1] + )[0], + } + + def get_params(self): + """Return dict of current parameters""" + return { + "window": self.window, + "point_method": self.point_method, + "distance_metric": self.distance_metric, + "k": self.k, + "sample_fraction": self.sample_fraction, + "comparison_transformation": self.comparison_transformation, + "combination_transformation": self.combination_transformation, + "extend_df": self.extend_df, + # multivar params + 'mean_rolling_periods': self.mean_rolling_periods, + 'macd_periods': self.macd_periods, + 'std_rolling_periods': self.std_rolling_periods, + 'max_rolling_periods': self.max_rolling_periods, + 'min_rolling_periods': self.min_rolling_periods, + "quantile90_rolling_periods": self.quantile90_rolling_periods, + "quantile10_rolling_periods": self.quantile10_rolling_periods, + 'ewm_alpha': self.ewm_alpha, + "ewm_var_alpha": self.ewm_var_alpha, + 'additional_lag_periods': self.additional_lag_periods, + 'abs_energy': self.abs_energy, + 'rolling_autocorr_periods': self.rolling_autocorr_periods, + 'nonzero_last_n': self.nonzero_last_n, + 'datepart_method': self.datepart_method, + 'polynomial_degree': self.polynomial_degree, + 'regression_type': self.regression_type, + 'holiday': self.holiday, + 'scale_full_X': self.scale_full_X, + "series_hash": self.series_hash, + "frac_slice": self.frac_slice, + } + diff --git a/autots/models/model_list.py b/autots/models/model_list.py index f7b807d1..2b2b0830 100644 --- a/autots/models/model_list.py +++ b/autots/models/model_list.py @@ -50,6 +50,7 @@ "DMD", # 45 models "BasicLinearModel", "TVVAR", + "BallTreeRegressionMotif", ] # used for graphing, not for model selection model_classes = { @@ -100,6 +101,7 @@ 'SeasonalNaive': 'naive', 'ZeroesNaive': 'naive', "TVVAR": "stat", + "BallTreeRegressionMotif": "motif", } all_pragmatic = list((set(all_models) - set(['MLEnsemble', 'VARMAX', 'Greykite']))) # downweight slower models @@ -136,6 +138,8 @@ 'Cassandra': 0.8, 'BasicLinearModel': 0.8, 'TVVAR': 0.4, + "BallTreeMultivariateMotif": 0.4, + # "BallTreeRegressionMotif", } # fastest models at any scale superfast = [ @@ -174,6 +178,7 @@ 'FFT': 0.8, "BallTreeMultivariateMotif": 0.5, # keep an eye on RAM, not the fastest at scale but works... "BasicLinearModel": 0.6, + # "TVVAR": 0.6, } # models that can scale well if many CPU cores are available parallel = { @@ -212,7 +217,7 @@ best = list( set( list(fast_parallel_no_arima.keys()) - + ['MultivariateRegression', 'GluonTS', 'PytorchForecasting'] + + ['MultivariateRegression', 'NeuralForecast', 'PytorchForecasting'] ) ) @@ -261,6 +266,7 @@ "NeuralForecast", # mostly "BasicLinearModel", "TVVAR", + "BallTreeRegressionMotif", ] # models that use the shared information of multiple series to improve accuracy multivariate = [ @@ -287,6 +293,7 @@ "NeuralForecast", "DMD", "TVVAR", + "BallTreeRegressionMotif", ] univariate = list((set(all_models) - set(multivariate)) - set(experimental)) # USED IN AUTO_MODEL, models with no parameters @@ -337,6 +344,7 @@ "DMD", "BasicLinearModel", "TVVAR", + "BallTreeRegressionMotif", ] # USED IN AUTO_MODEL for models that don't share information among series no_shared = [ @@ -388,6 +396,7 @@ "NeuralForecast", "BasicLinearModel", "TVVAR", + "BallTreeRegressionMotif", ] motifs = [ 'UnivariateMotif', @@ -397,6 +406,7 @@ 'MetricMotif', 'SeasonalityMotif', 'BallTreeMultivariateMotif', + "BallTreeRegressionMotif", ] regressions = [ 'RollingRegression', @@ -417,6 +427,8 @@ "Motif", "ARCH", # simulations not motifs but similar "PytorchForecasting", + # "BallTreeRegressionMotif", + # "BallTreeMultivariateMotif", ] # these are those that require a parameter, and return a dict diff_window_motif_list = [ diff --git a/autots/models/statsmodels.py b/autots/models/statsmodels.py index fd240cc1..e59789dd 100644 --- a/autots/models/statsmodels.py +++ b/autots/models/statsmodels.py @@ -388,7 +388,7 @@ def predict( parallel = False # joblib multiprocessing to loop through series if parallel: - df_list = Parallel(n_jobs=self.n_jobs, verbose=pool_verbose, timeout=3600)( + df_list = Parallel(n_jobs=self.n_jobs, verbose=pool_verbose, timeout=7200)( delayed(glm_forecast_by_column)( current_series=df[col], X=X, @@ -616,7 +616,7 @@ def ets_forecast_by_column(current_series, args): parallel = False # joblib multiprocessing to loop through series if parallel: - df_list = Parallel(n_jobs=self.n_jobs)( + df_list = Parallel(n_jobs=self.n_jobs, timeout=36000)( # 10 hour timeout, should be enough... delayed(ets_forecast_by_column)(self.df_train[col].astype(float), args) for (col) in cols ) @@ -853,7 +853,7 @@ def predict( # joblib multiprocessing to loop through series if parallel: verbs = 0 if self.verbose < 1 else self.verbose - 1 - df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs))( + df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs), timeout=36000)( delayed(arima_seek_the_oracle)( current_series=self.df_train[col], args=args, series=col ) @@ -1137,7 +1137,7 @@ def uc_forecast_by_column(current_series, args): # joblib multiprocessing to loop through series if parallel: verbs = 0 if self.verbose < 1 else self.verbose - 1 - df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs))( + df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs), timeout=36000)( delayed(uc_forecast_by_column)( current_series=self.df_train[col], args=args, @@ -2062,7 +2062,7 @@ def theta_forecast_by_column(current_series, args): # joblib multiprocessing to loop through series if parallel: verbs = 0 if self.verbose < 1 else self.verbose - 1 - df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs))( + df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs), timeout=36000)( delayed(theta_forecast_by_column)( current_series=self.df_train[col], args=args ) @@ -2308,7 +2308,7 @@ def ardl_per_column(current_series, args): # joblib multiprocessing to loop through series if parallel: verbs = 0 if self.verbose < 1 else self.verbose - 1 - df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs))( + df_list = Parallel(n_jobs=self.n_jobs, verbose=(verbs), timeout=72000)( delayed(ardl_per_column)( current_series=self.df_train[col], args=args, diff --git a/extended_tutorial.md b/extended_tutorial.md index 44c0c660..b65a1154 100644 --- a/extended_tutorial.md +++ b/extended_tutorial.md @@ -878,6 +878,7 @@ Currently `MultivariateRegression` has the (slower) option to utilize a stock Gr | TiDE | tensorflow | | | | yes | True | | | | NeuralForecast | NeuralForecast | | True | | yes | True | | True | | TVVAR | | | True | | | True | | True | +| BallTreeRegressionMotif | sklearn | | True | joblib | | True | | True | | MotifSimulation | sklearn.metrics.pairwise | | True | joblib | | True | True | | | Greykite | (deprecated) | | True | joblib | | | True | | | TensorflowSTS | (deprecated) | | True | | yes | True | True | | diff --git a/tests/test_autots.py b/tests/test_autots.py index 2aaeac16..05e89de5 100644 --- a/tests/test_autots.py +++ b/tests/test_autots.py @@ -646,6 +646,7 @@ def test_models(self): 'BallTreeMultivariateMotif', 'FFT', "DMD", # 0.6.12 "BasicLinearModel", "TVVAR", # 0.6.16 + # "BallTreeRegressionMotif", # 0.6.17 ] # models that for whatever reason arne't consistent across test sessions run_only_no_score = ['FBProphet', 'RRVAR', "TMF"] From ce90f49cc8d15325e63bb4a74ae88ffe15c62ba2 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Thu, 5 Dec 2024 13:05:50 -0600 Subject: [PATCH 13/16] 0.6.17 a13 --- autots/models/basics.py | 14 +++++++++----- autots/models/sklearn.py | 7 +++---- 2 files changed, 12 insertions(+), 9 deletions(-) diff --git a/autots/models/basics.py b/autots/models/basics.py index 39dfa32e..b767d66d 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -3278,7 +3278,7 @@ def predict( # now aggregate results into point and bound forecasts if self.point_method == "weighted_mean": - weights = np.repeat(A.T[..., np.newaxis, :], 14, axis=1) + weights = np.repeat(A.T[..., np.newaxis, :], forecast_length, axis=1) if weights.sum() == 0: weights = None forecast = np.average(self.result_windows, axis=0, weights=weights) @@ -3289,7 +3289,7 @@ def predict( elif self.point_method == "midhinge": q1 = nan_quantile(self.result_windows, q=0.25, axis=0) q2 = nan_quantile(self.result_windows, q=0.75, axis=0) - forecast = (q1 + q2) / q2 + forecast = (q1 + q2) / 2 elif self.point_method == 'closest': # assumes the first K is the smallest distance (true when written) forecast = self.result_windows[0] @@ -4786,7 +4786,11 @@ def predict( # filter because we need that last bit self.Xb = self.Xa[self.Xa.index.get_level_values(0) == self.Xa.index.get_level_values(0).max()] # don't include a certain amount of the end as they won't have any usable history - self.Xa = self.Xa[self.Xa.index.get_level_values(0).isin(self.Xa.index.get_level_values(0).unique().sort_values()[:-self.window])] # int(self.forecast_length / 2) + if self.window is not None: + toss_bit = self.window + else: + toss_bit = int(forecast_length / 2) + self.Xa = self.Xa[self.Xa.index.get_level_values(0).isin(self.Xa.index.get_level_values(0).unique().sort_values()[:-toss_bit])] # int(self.forecast_length / 2) if self.distance_metric in ["euclidean", 'kdtree']: from scipy.spatial import KDTree @@ -4854,7 +4858,7 @@ def predict( # now aggregate results into point and bound forecasts if self.point_method == "weighted_mean": - weights = np.repeat(A.T[..., np.newaxis, :], 14, axis=1) + weights = np.repeat(A.T[..., np.newaxis, :], forecast_length, axis=1) if weights.sum() == 0: weights = None forecast = np.average(self.result_windows, axis=0, weights=weights) @@ -4865,7 +4869,7 @@ def predict( elif self.point_method == "midhinge": q1 = nan_quantile(self.result_windows, q=0.25, axis=0) q2 = nan_quantile(self.result_windows, q=0.75, axis=0) - forecast = (q1 + q2) / q2 + forecast = (q1 + q2) / 2 elif self.point_method == 'closest': # assumes the first K is the smallest distance (true when written) forecast = self.result_windows[0] diff --git a/autots/models/sklearn.py b/autots/models/sklearn.py index ca110962..3a07ba04 100644 --- a/autots/models/sklearn.py +++ b/autots/models/sklearn.py @@ -328,6 +328,8 @@ def rolling_x_regressor_regressor( X['series_id'] = df.columns[0] X = X.merge(static_regressor, left_on="series_id", right_index=True, how='left') X = X.drop(columns=['series_id']) + if slice_index is not None: + X = X[X.index.isin(slice_index)] if series_id_to_multiindex is not None: X["series_id"] = str(series_id_to_multiindex) X = X.set_index("series_id", append=True) @@ -337,10 +339,7 @@ def rolling_x_regressor_regressor( % 10**16 ) X['series_id'] = hashed - if slice_index is not None: - return X[X.index.isin(slice_index)] - else: - return X + return X def retrieve_regressor( From 04e14e652e6b3c8a97c25c042ff14a82bbd30881 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Thu, 5 Dec 2024 15:35:23 -0600 Subject: [PATCH 14/16] 0.6.17 a14 --- autots/models/basics.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/autots/models/basics.py b/autots/models/basics.py index b767d66d..11356871 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -3343,7 +3343,7 @@ def get_new_params(self, method: str = 'random'): 'cityblock', 'euclidean', 'hamming', - 'mahalanobis', + # 'mahalanobis', 'minkowski', 'kdtree', ] @@ -3354,7 +3354,7 @@ def get_new_params(self, method: str = 'random'): 0.05, 0.9, 0.05, - 0.05, + # 0.05, 0.05, 0.05, ] @@ -4840,7 +4840,7 @@ def predict( col_indices_broadcasted = np.repeat(col_indices, forecast_length).reshape(N, forecast_length) # Use advanced indexing to extract data - data = np.full((N, forecast_length), np.nan) # Initialize data array with NaNs + data = np.full((N, forecast_length), np.nan) positions_flat = positions.flatten() col_indices_flat = col_indices_broadcasted.flatten() valid_mask_flat = valid_positions.flatten() @@ -4923,7 +4923,7 @@ def get_new_params(self, method: str = 'random'): 'cityblock', 'euclidean', 'hamming', - 'mahalanobis', + # 'mahalanobis', 'minkowski', 'kdtree', ] @@ -4934,7 +4934,7 @@ def get_new_params(self, method: str = 'random'): 0.05, 0.9, 0.05, - 0.05, + # 0.05, 0.05, 0.05, ] From 7b40208386ba98759f6f7db884b9c2ab3ebc7853 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Thu, 5 Dec 2024 15:55:05 -0600 Subject: [PATCH 15/16] 0.6.17 a15 --- autots/tools/transform.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/autots/tools/transform.py b/autots/tools/transform.py index dc8751e6..013d5755 100644 --- a/autots/tools/transform.py +++ b/autots/tools/transform.py @@ -516,7 +516,7 @@ def _hpfilter_one_return(series, lamb=1600, part="trend"): def get_new_params(method: str = "random"): part = random.choices(["trend", "cycle"], weights=[0.98, 0.02])[0] lamb = random.choices( - [1600, 6.25, 129600, 104976000000], weights=[0.5, 0.2, 0.2, 0.1] + [1600, 6.25, 129600, 104976000000, 4, 16, 62.5, 1049760000000], weights=[0.5, 0.2, 0.2, 0.1, 0.025, 0.025, 0.025, 0.025] )[0] return {"part": part, "lamb": lamb} @@ -6510,7 +6510,7 @@ def get_transformer_params(transformer: str = "EmptyTransformer", method: str = "DifferencedTransformer": 0.05, "PositiveShift": 0.02, "Log": 0.01, - "SeasonalDifference": 0.1, + "SeasonalDifference": 0.05, "bkfilter": 0.05, "ClipOutliers": 0.05, # "Discretize": 0.01, # excessive memory use for some of this @@ -6519,13 +6519,13 @@ def get_transformer_params(transformer: str = "EmptyTransformer", method: str = "AlignLastValue": 0.05, "AlignLastDiff": 0.05, "HistoricValues": 0.005, # need to test more - "CenterSplit": 0.005, # need to test more + "CenterSplit": 0.0005, # need to test more "Round": 0.01, "CenterLastValue": 0.01, "ShiftFirstValue": 0.005, "Constraint": 0.005, # not well tested yet on speed/ram - # "BKBandpassFilter": 0.01, # seems feasible, untested - # "DiffSmoother": 0.005, # seems feasible, untested + "BKBandpassFilter": 0.01, # seems feasible, untested + "DiffSmoother": 0.005, # seems feasible, untested # "FIRFilter": 0.005, # seems feasible, untested # "FFTFilter": 0.01, # seems feasible, untested # "FFTDecomposition": 0.01, # seems feasible, untested From 71be485590878fafe647c9383af9e87abdfc7b94 Mon Sep 17 00:00:00 2001 From: Colin Catlin Date: Thu, 5 Dec 2024 16:16:09 -0600 Subject: [PATCH 16/16] 0.6.17 --- autots/__init__.py | 2 +- autots/evaluator/auto_model.py | 19 +++- autots/evaluator/auto_ts.py | 26 +++--- autots/models/base.py | 12 +-- autots/models/basics.py | 83 +++++++++++++----- autots/models/ensemble.py | 18 ++-- autots/models/sklearn.py | 11 ++- autots/models/statsmodels.py | 8 +- autots/tools/profile.py | 6 +- autots/tools/seasonal.py | 6 +- autots/tools/transform.py | 11 ++- docs/build/doctrees/environment.pickle | Bin 10529510 -> 10643325 bytes .../doctrees/source/autots.evaluator.doctree | Bin 968861 -> 969877 bytes .../doctrees/source/autots.models.doctree | Bin 2711664 -> 2787256 bytes docs/build/doctrees/source/tutorial.doctree | Bin 211047 -> 212922 bytes docs/build/html/.buildinfo | 2 +- .../html/_static/documentation_options.js | 2 +- docs/build/html/genindex.html | 14 ++- docs/build/html/index.html | 4 +- docs/build/html/objects.inv | Bin 8810 -> 8830 bytes docs/build/html/py-modindex.html | 4 +- docs/build/html/search.html | 4 +- docs/build/html/searchindex.js | 2 +- docs/build/html/source/autots.datasets.html | 4 +- docs/build/html/source/autots.evaluator.html | 6 +- docs/build/html/source/autots.html | 11 ++- docs/build/html/source/autots.models.html | 74 +++++++++++++++- docs/build/html/source/autots.templates.html | 4 +- docs/build/html/source/autots.tools.html | 4 +- docs/build/html/source/intro.html | 4 +- docs/build/html/source/modules.html | 4 +- docs/build/html/source/tutorial.html | 25 ++++-- docs/conf.py | 2 +- pyproject.toml | 2 +- setup.py | 2 +- 35 files changed, 265 insertions(+), 111 deletions(-) diff --git a/autots/__init__.py b/autots/__init__.py index b320baef..333690ce 100644 --- a/autots/__init__.py +++ b/autots/__init__.py @@ -27,7 +27,7 @@ from autots.models.cassandra import Cassandra -__version__ = '0.6.16' +__version__ = '0.6.17' TransformTS = GeneralTransformer diff --git a/autots/evaluator/auto_model.py b/autots/evaluator/auto_model.py index 10aa4684..c4b322ad 100644 --- a/autots/evaluator/auto_model.py +++ b/autots/evaluator/auto_model.py @@ -2033,9 +2033,22 @@ def _eval_prediction_for_template( "fillna": "quadratic", "transformations": {"0": "AlignLastValue", "1": "ChangepointDetrend"}, "transformation_params": { - "0": {"rows": 1, "lag": 1, "method": "multiplicative", "strength": 1.0, "first_value_only": False, "threshold": None, "threshold_method": "mean"}, - "1": {"model": "Linear", "changepoint_spacing": 180, "changepoint_distance_end": 360, "datepart_method": None} - } + "0": { + "rows": 1, + "lag": 1, + "method": "multiplicative", + "strength": 1.0, + "first_value_only": False, + "threshold": None, + "threshold_method": "mean", + }, + "1": { + "model": "Linear", + "changepoint_spacing": 180, + "changepoint_distance_end": 360, + "datepart_method": None, + }, + }, }, ] diff --git a/autots/evaluator/auto_ts.py b/autots/evaluator/auto_ts.py index bbd9ea2b..26b9d551 100644 --- a/autots/evaluator/auto_ts.py +++ b/autots/evaluator/auto_ts.py @@ -428,9 +428,9 @@ def __init__( full_params['transformations'] = transformations full_params['transformation_params'] = transformation_params - self.initial_template.loc[ - index, 'TransformationParameters' - ] = json.dumps(full_params) + self.initial_template.loc[index, 'TransformationParameters'] = ( + json.dumps(full_params) + ) self.regressor_used = False self.subset_flag = False @@ -1974,10 +1974,10 @@ def _run_template( self.model_count = template_result.model_count # capture results from lower-level template run if "TotalRuntime" in template_result.model_results.columns: - template_result.model_results[ - 'TotalRuntime' - ] = template_result.model_results['TotalRuntime'].fillna( - pd.Timedelta(seconds=60) + template_result.model_results['TotalRuntime'] = ( + template_result.model_results['TotalRuntime'].fillna( + pd.Timedelta(seconds=60) + ) ) else: # trying to catch a rare and sneaky bug (perhaps some variety of beetle?) @@ -2094,9 +2094,9 @@ def _run_validations( frac=0.8, random_state=self.random_seed ).reindex(idx) nan_frac = val_df_train.shape[1] / num_validations - val_df_train.iloc[ - -2:, int(nan_frac * y) : int(nan_frac * (y + 1)) - ] = np.nan + val_df_train.iloc[-2:, int(nan_frac * y) : int(nan_frac * (y + 1))] = ( + np.nan + ) # run validation template on current slice result = self._run_template( @@ -4753,9 +4753,9 @@ def diagnose_params(self, target='runtime', waterfall_plots=True): ) y = pd.json_normalize(json.loads(row["ModelParameters"])) y.index = [row['ID']] - y[ - 'Model' - ] = x # might need to remove this and do analysis independently for each + y['Model'] = ( + x # might need to remove this and do analysis independently for each + ) res.append( pd.DataFrame( { diff --git a/autots/models/base.py b/autots/models/base.py index ceec7ddb..d0c79777 100644 --- a/autots/models/base.py +++ b/autots/models/base.py @@ -490,18 +490,18 @@ def long_form_results( value_name=value_name, id_vars="datetime", ).set_index("datetime") - upload_upper[ - interval_name - ] = f"{round(100 - ((1- self.prediction_interval)/2) * 100, 0)}%" + upload_upper[interval_name] = ( + f"{round(100 - ((1- self.prediction_interval)/2) * 100, 0)}%" + ) upload_lower = pd.melt( self.lower_forecast.rename_axis(index='datetime').reset_index(), var_name=id_name, value_name=value_name, id_vars="datetime", ).set_index("datetime") - upload_lower[ - interval_name - ] = f"{round(((1- self.prediction_interval)/2) * 100, 0)}%" + upload_lower[interval_name] = ( + f"{round(((1- self.prediction_interval)/2) * 100, 0)}%" + ) upload = pd.concat([upload, upload_upper, upload_lower], axis=0) if datetime_column is not None: diff --git a/autots/models/basics.py b/autots/models/basics.py index 11356871..e0610157 100644 --- a/autots/models/basics.py +++ b/autots/models/basics.py @@ -3263,7 +3263,10 @@ def predict( # Query the KDTree to find k nearest neighbors for each point in Xa Xb = compare_df.iloc[-self.window :].to_numpy().T A, self.windows = tree.query(Xb, k=self.k) # dualtree=True - if self.combination_transformation is not None or self.comparison_transformation is not None: + if ( + self.combination_transformation is not None + or self.comparison_transformation is not None + ): del Xa Xc = chunk_reshape( wind_arr.to_numpy(dtype=np.float32), @@ -4615,7 +4618,13 @@ def __init__( self.series_hash = series_hash self.frac_slice = frac_slice - def fit(self, df, future_regressor=None, static_regressor=None, regressor_per_series=None,): + def fit( + self, + df, + future_regressor=None, + static_regressor=None, + regressor_per_series=None, + ): """Train algorithm given data supplied. Args: @@ -4639,7 +4648,12 @@ def fit(self, df, future_regressor=None, static_regressor=None, regressor_per_se return self def predict( - self, forecast_length: int, future_regressor=None, just_point_forecast=False, static_regressor=None, regressor_per_series=None, + self, + forecast_length: int, + future_regressor=None, + just_point_forecast=False, + static_regressor=None, + regressor_per_series=None, ): """Generates forecast data immediately following dates of index supplied to .fit() @@ -4692,9 +4706,7 @@ def predict( # joblib multiprocessing to loop through series # this might be causing issues, TBD Key Error from Resource Tracker if parallel: - self.Xa = Parallel( - n_jobs=self.n_jobs, verbose=self.verbose, timeout=36000 - )( + self.Xa = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, timeout=36000)( delayed(rolling_x_regressor_regressor)( compare_df[x_col].to_frame(), mean_rolling_periods=self.mean_rolling_periods, @@ -4784,13 +4796,19 @@ def predict( test_index = self.create_forecast_index(forecast_length=forecast_length) # filter because we need that last bit - self.Xb = self.Xa[self.Xa.index.get_level_values(0) == self.Xa.index.get_level_values(0).max()] + self.Xb = self.Xa[ + self.Xa.index.get_level_values(0) == self.Xa.index.get_level_values(0).max() + ] # don't include a certain amount of the end as they won't have any usable history if self.window is not None: toss_bit = self.window else: toss_bit = int(forecast_length / 2) - self.Xa = self.Xa[self.Xa.index.get_level_values(0).isin(self.Xa.index.get_level_values(0).unique().sort_values()[:-toss_bit])] # int(self.forecast_length / 2) + self.Xa = self.Xa[ + self.Xa.index.get_level_values(0).isin( + self.Xa.index.get_level_values(0).unique().sort_values()[:-toss_bit] + ) + ] # int(self.forecast_length / 2) if self.distance_metric in ["euclidean", 'kdtree']: from scipy.spatial import KDTree @@ -4803,13 +4821,17 @@ def predict( tree = BallTree(self.Xa, metric=self.distance_metric) # Query the KDTree to find k nearest neighbors for each point in Xa A, self.windows = tree.query(self.Xb, k=self.k) - - + # extend data to future to assure full length for windows, forward fill if self.extend_df: - extension = pd.DataFrame(np.nan, - index = pd.date_range(start=wind_arr.index[-1], periods=int(forecast_length/2) + 1, freq=self.frequency)[1:], - columns = self.column_names, + extension = pd.DataFrame( + np.nan, + index=pd.date_range( + start=wind_arr.index[-1], + periods=int(forecast_length / 2) + 1, + freq=self.frequency, + )[1:], + columns=self.column_names, ) wind_arr = pd.concat([wind_arr, extension], axis=0).ffill() @@ -4823,21 +4845,31 @@ def predict( series_selected_flat = series_array[self.windows.flatten()] # Find positions in df.index where dates are greater than selected datetimes - pos_in_df_index = wind_arr.index.searchsorted(dt_selected_flat, side='right') # Shape: (N,) + pos_in_df_index = wind_arr.index.searchsorted( + dt_selected_flat, side='right' + ) # Shape: (N,) # Create positions for forecast_length ahead - positions = pos_in_df_index[:, None] + np.arange(forecast_length)[None, :] # Shape: (N, forecast_length) - + positions = ( + pos_in_df_index[:, None] + np.arange(forecast_length)[None, :] + ) # Shape: (N, forecast_length) + # Handle positions exceeding the length of df.index max_index = len(wind_arr.index) valid_positions = (positions >= 0) & (positions < max_index) - + # Map series names to column indices - series_name_to_col_idx = {name: idx for idx, name in enumerate(wind_arr.columns)} - col_indices = np.array([series_name_to_col_idx[name] for name in series_selected_flat]) - + series_name_to_col_idx = { + name: idx for idx, name in enumerate(wind_arr.columns) + } + col_indices = np.array( + [series_name_to_col_idx[name] for name in series_selected_flat] + ) + # Broadcast col_indices to match the shape of positions - col_indices_broadcasted = np.repeat(col_indices, forecast_length).reshape(N, forecast_length) + col_indices_broadcasted = np.repeat(col_indices, forecast_length).reshape( + N, forecast_length + ) # Use advanced indexing to extract data data = np.full((N, forecast_length), np.nan) @@ -4849,12 +4881,16 @@ def predict( positions_flat_valid = positions_flat[valid_mask_flat] col_indices_flat_valid = col_indices_flat[valid_mask_flat] data_flat = data.flatten() - data_flat[valid_mask_flat] = wind_arr.values[positions_flat_valid, col_indices_flat_valid] + data_flat[valid_mask_flat] = wind_arr.values[ + positions_flat_valid, col_indices_flat_valid + ] # Reshape data back to original dimensions data = data_flat.reshape(N, forecast_length) # (k, forecast_length, n_series) - self.result_windows = data.reshape(n_series, k, forecast_length).transpose(1, 2, 0) + self.result_windows = data.reshape(n_series, k, forecast_length).transpose( + 1, 2, 0 + ) # now aggregate results into point and bound forecasts if self.point_method == "weighted_mean": @@ -5105,4 +5141,3 @@ def get_params(self): "series_hash": self.series_hash, "frac_slice": self.frac_slice, } - diff --git a/autots/models/ensemble.py b/autots/models/ensemble.py index ebd062a2..123c81d4 100644 --- a/autots/models/ensemble.py +++ b/autots/models/ensemble.py @@ -2188,15 +2188,15 @@ def _buildup_mosaics( f"Mosaic Ensemble failed on model {row[3]} series {row[2]} and period {row[1]} due to missing model: {e} " + mi ) from e - melted[ - 'forecast' - ] = fore # [forecasts[row[3]][row[2]].iloc[row[1]] for row in melted.itertuples()] - melted[ - 'upper_forecast' - ] = u_fore # [upper_forecasts[row[3]][row[2]].iloc[row[1]] for row in melted.itertuples()] - melted[ - 'lower_forecast' - ] = l_fore # [lower_forecasts[row[3]][row[2]].iloc[row[1]] for row in melted.itertuples()] + melted['forecast'] = ( + fore # [forecasts[row[3]][row[2]].iloc[row[1]] for row in melted.itertuples()] + ) + melted['upper_forecast'] = ( + u_fore # [upper_forecasts[row[3]][row[2]].iloc[row[1]] for row in melted.itertuples()] + ) + melted['lower_forecast'] = ( + l_fore # [lower_forecasts[row[3]][row[2]].iloc[row[1]] for row in melted.itertuples()] + ) forecast_df = melted.pivot( values="forecast", columns="series_id", index="forecast_period" diff --git a/autots/models/sklearn.py b/autots/models/sklearn.py index 3a07ba04..558b7dc4 100644 --- a/autots/models/sklearn.py +++ b/autots/models/sklearn.py @@ -335,8 +335,7 @@ def rolling_x_regressor_regressor( X = X.set_index("series_id", append=True) if series_id is not None: hashed = ( - int(hashlib.sha256(str(series_id).encode('utf-8')).hexdigest(), 16) - % 10**16 + int(hashlib.sha256(str(series_id).encode('utf-8')).hexdigest(), 16) % 10**16 ) X['series_id'] = hashed return X @@ -1151,7 +1150,9 @@ def generate_regressor_params( "n_neighbors": random.choices([3, 5, 10, 14], [0.2, 0.7, 0.1, 0.1])[ 0 ], - "weights": random.choices(['uniform', 'distance'], [0.999, 0.001])[0], + "weights": random.choices(['uniform', 'distance'], [0.999, 0.001])[ + 0 + ], 'p': random.choices([2, 1, 1.5], [0.7, 0.1, 0.1])[0], 'leaf_size': random.choices([30, 10, 50], [0.8, 0.1, 0.1])[0], }, @@ -3936,9 +3937,7 @@ def _rbf_kernel(self, x1, x2, gamma): if gamma is None: gamma = 1.0 / x1.shape[1] distance = ( - np.sum(x1**2, 1).reshape(-1, 1) - + np.sum(x2**2, 1) - - 2 * np.dot(x1, x2.T) + np.sum(x1**2, 1).reshape(-1, 1) + np.sum(x2**2, 1) - 2 * np.dot(x1, x2.T) ) return np.exp(-gamma * distance) diff --git a/autots/models/statsmodels.py b/autots/models/statsmodels.py index e59789dd..c4970fbb 100644 --- a/autots/models/statsmodels.py +++ b/autots/models/statsmodels.py @@ -616,7 +616,9 @@ def ets_forecast_by_column(current_series, args): parallel = False # joblib multiprocessing to loop through series if parallel: - df_list = Parallel(n_jobs=self.n_jobs, timeout=36000)( # 10 hour timeout, should be enough... + df_list = Parallel( + n_jobs=self.n_jobs, timeout=36000 + )( # 10 hour timeout, should be enough... delayed(ets_forecast_by_column)(self.df_train[col].astype(float), args) for (col) in cols ) @@ -666,7 +668,9 @@ def get_new_params(self, method: str = 'random'): seasonal_probability = [0.2, 0.2, 0.6] seasonal_choice = random.choices(seasonal_list, seasonal_probability)[0] if seasonal_choice in ["additive", "multiplicative"]: - seasonal_period_choice = seasonal_int(small=True if method != "deep" else False) + seasonal_period_choice = seasonal_int( + small=True if method != "deep" else False + ) else: seasonal_period_choice = None parameter_dict = { diff --git a/autots/tools/profile.py b/autots/tools/profile.py index 72b6ddec..df59d17d 100644 --- a/autots/tools/profile.py +++ b/autots/tools/profile.py @@ -129,9 +129,9 @@ def profile_time_series( & (metrics_df['cv_squared'] >= cvar_threshold), 'PROFILE', ] = 'lumpy' - metrics_df.loc[ - metrics_df['zero_diff_proportion'] >= flat_threshold, 'PROFILE' - ] = 'flat' + metrics_df.loc[metrics_df['zero_diff_proportion'] >= flat_threshold, 'PROFILE'] = ( + 'flat' + ) metrics_df.loc[ metrics_df['null_percentage'] >= new_product_threshold, 'PROFILE' ] = 'new_product' diff --git a/autots/tools/seasonal.py b/autots/tools/seasonal.py index 02a4e63f..1e3c1769 100644 --- a/autots/tools/seasonal.py +++ b/autots/tools/seasonal.py @@ -751,7 +751,11 @@ def create_seasonality_feature(DTindex, t, seasonality, history_days=None): ["dayofweek", (365.25, 4)], ["dayofweek", (365.25, 14)], ["dayofweek", (365.25, 24)], - ["dayofweek", (365.25, 14), (354.37, 10)], # 354.37 should be islamic calendar avg length + [ + "dayofweek", + (365.25, 14), + (354.37, 10), + ], # 354.37 should be islamic calendar avg length "other", ] diff --git a/autots/tools/transform.py b/autots/tools/transform.py index 013d5755..d81e54f8 100644 --- a/autots/tools/transform.py +++ b/autots/tools/transform.py @@ -516,7 +516,8 @@ def _hpfilter_one_return(series, lamb=1600, part="trend"): def get_new_params(method: str = "random"): part = random.choices(["trend", "cycle"], weights=[0.98, 0.02])[0] lamb = random.choices( - [1600, 6.25, 129600, 104976000000, 4, 16, 62.5, 1049760000000], weights=[0.5, 0.2, 0.2, 0.1, 0.025, 0.025, 0.025, 0.025] + [1600, 6.25, 129600, 104976000000, 4, 16, 62.5, 1049760000000], + weights=[0.5, 0.2, 0.2, 0.1, 0.025, 0.025, 0.025, 0.025], )[0] return {"part": part, "lamb": lamb} @@ -2849,8 +2850,12 @@ def __init__( @staticmethod def get_new_params(method: str = "random"): return { - "rows": random.choices([1, 2, 4, 7, 24, 84, 168], [0.83, 0.02, 0.05, 0.1, 0.01, 0.05, 0.05])[0], - "lag": random.choices([1, 2, 7, 28, 84, 168], [0.8, 0.05, 0.1, 0.05, 0.05, 0.01])[0], + "rows": random.choices( + [1, 2, 4, 7, 24, 84, 168], [0.83, 0.02, 0.05, 0.1, 0.01, 0.05, 0.05] + )[0], + "lag": random.choices( + [1, 2, 7, 28, 84, 168], [0.8, 0.05, 0.1, 0.05, 0.05, 0.01] + )[0], "method": random.choices(["additive", "multiplicative"], [0.9, 0.1])[0], "strength": random.choices( [1.0, 0.9, 0.7, 0.5, 0.2], [0.8, 0.05, 0.05, 0.05, 0.05] diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle index 78d548b78908abee9c4f19de0c4319ff54e7d822..defe686e1ab0c96f55c085d4ec9dbc1b0f83fcf0 100644 GIT binary patch delta 1323755 zcmaf62V7Lg_V!*7kO2X87Yix~qQF)JELgy6ul?@(x^1gwSJ5YySLB+%plVxLJzwk8W-Bx-WyWoCD~C{k7H*84Tv9%5Uh&-0 z$yMc(D~hXTZdENXtiT#JgufHMqsylDVZ^f`ywk}hx%d~>xgq@7Yj*kz z>)jCE{a_~jg>`QTpE`K~{e`t|2wz>ekp9A&H-wLSc|ZMCkIF5a`4Ihu0c;4ruR{G5 ziZO2p-;nh^_^jwa=N6=o^c~vzBQfWeB~XYeD7zp4#!yU-qzmN$0^=bh7hvmKEQrk2i|Hgj(A{Mo+US&6=s9;p=UX{gNRj`I!a z(vavkLeLL%ZUrLJ8*HIw#L#myTl*ys^^EXgi2HK}`+m+$_5Hm|d*AU6Hs9MFBPr}> zy5{;Y^j;8p*U+iO3rc;*(mlS^T(@stw#_%p)hJ@}{=sUW&ecxus28ag|-=XYi6zzM)+t62=Gnx{zrgKYw zLf&);UqOe)qT(-@%av9sTm6PC zfA@im8TB>nVfP*C)B=34_K95^`+n>($e)pQ-gdr4-R!G03|;j`eMJ3bk??vs%ke02DPz$X+w_2Cl+pK$m@z^4IxBH<(869u1W_%wu1 z418kY69=D0@M#R6CN-aowC$Q8vmU*>rB6)Gkmc)pM#%K%d~xf}9JRs6UUTMX{Kc)h z9^$(+sjnP*p)^8v>(jK6EW1!@tATGrQZ>D1)9j`p%Qb!7)^D2DZ2hL$g0}FzeoXV4 z`Y|nzw1e+8IW6Fm0H2odX;o8`(>h}f*e|@$8a|2eNrF!s_$0$81wL(SF1(PMEr7e( z8>#vn@J;B@4nFPSlU9?^A$`GV`Ei7|yWIPE{m7aRBQh?2s_m6i_E$HPpMIGUCnvu# zu%Ybv+1-s|6HBH~UIbly^1Ov}OXts;CW}*|TGk|gmGOwKt(Ak{7})v-eiHoJ%dRhE zG?#;-3Kq+k|C>=NFK=>q^@eTax!m-L`qd=4>en=z?7T+H(i7Uq%FAh0Xx!Q*y+D?I zn-MQRXizXy&u%00e@>gIdF8nuGII1@RCd+SmtQ07a2vpZLFfPO@d?BGTlkl zA7ymW%M8Bhif^%sMw^a|cA5B4NUFZpV4ThvW$cA^v-Lej;hn1R6Gq{ks_@CfG3_*? z>`q?x^M(cM_4kdkCso<=M%k09Y(?6z6#bG>_#`jfTFxJ;H%O)|==GCj?IuUI9-pj| z2!F?IcR<`KLm8vx!@p$2g$zgzkx9QM z43we2W=yqDOAe`5=8lBZZV7(#sBbc^Pe#9*SANY%*YpL+^2nnZqeCj7+~MCdTFDu| zW$e)_l4Zn|jMwxnin__&So#_qrv+Ns75JwN-H$X&Y8leLY*Wp+-!sOCgdISiN97BD zWDIOI7r&R`|Muhm_QL-bmR+e|uO3b=4#?y`Gu(Fcxs&ia7naovRoJ67GylxkA5#Bg z02j!I#nf){?EkeETCyxkNVmz-5XVc}k1{#bkq7^jggQRge@~X)sElFqu*)7Mchz^q zic47A)UprYA6dN7mgf7sFw(c>hx+nTeMfh#kvtdg=p@gct`J&^VqG8RDAg||%T=)% z9c9Jd`jOHT?wF=!qG!)YcM8z~tIS`yIZJMtZi|$yA{-f^h{#n>*UylPBOLAq%eJZ9 z6jHg60VyG}IJ;33xur&rmVb`2#p)AMq_=@1QJbV<$V;#b47q{a-M|s9k4uqT9qIYn z0C}l}qbF7oNkB+nV1i`l$=F#fTFUz)9WFg4rRMEO$KEh)pQ5^SE<94(Ef2>zE^5!q zU5y+|;h(0B9p6MgtHR$691#9Y`R;*cVe;MrTLI%>ZtaX*>jF6~TA4Gn7xKKUWhNf9ao5pCs>3`c=HZg+%hp>kDx-zV-QP{ zJkrWh7|~4CLp&?=2?oVjlOk_!bhMoJQetfA9E_~Cnby>ZY@UiNqPZd{Q>Yi+?5;K6X>?;^H zCT^1}z7pj!u@nx58L2WR&2e5YH7G|Il*`jB$_vG|BK>ZIa-*U=`;T@F<&ZD+xDbpp ze@ARHBhGyo=WuBKyu|MfT-%$p2-7;zx@jq<*^)`B9l|oL;}3jPXJkQ* zni{g$~MWoJcmQy1Oxs(rJd!sG1J@2icukvvhYfV z+s4jJuo}g4)PWZ?SsXiklpOkOX_#D+?}!P(ZZzmkkczG zUMWqiIoi`PxxVIBfI|U^2W$;w;=f95^7;Ob`?Y}z>}Qpd+CazCTB)*6wd^&;1&(N4 zyGsGT4j&iX3^NFqYSoMMrH(^1UL5 z6zAH5C{p}ySvkxxSbW9|Zw_-jA%0>8^oYM?8SvXxOxF+XL*$mHY*XS{aSr-=Ov{#& z`}B>GZ;o(8$%7*t*&-?}uxeWa%V3q2MI#-D1cRizr?ZoMZ@iV|ALA&{MIj^9+#`C55zJ7u)H^~i zOq2QJ9R;Gl1ym0xrO56Qvn-=LRWT`D4$X?|VrQ;?fiu%&ZRd^&^7jdjRIw6^r;ss`3H7IMH zymeAZtaRI)_2q`Cj+S~&nk=60>}S$^z}zVvcY+R>gNiR0Q2e^vU+<61ZWcK4Np`$^ ztHjY>)Jtc5VT)(B4s0)w@!!p+HnAN+T@hEpfj7wK(q|MeW^QJ2(pSy^)Q5p+GqQ3xuUWvm#2qhJj&i1pyI848 z)Q8a+`jV!3w}}Ut1L@mq=sU^*)CbEl)OVcOsXi=F?6Ao#r#<=Np9}?+Gi1eY;mM}d zcMYiq(?#ZMGLh6P44|eo3PfaBjb#?d|I^u7*cm`7F(yN0-19I6PoD1>E!@nDq-JEO zrtHQ6kg5YvJQv!yfB{q?mMC@%6B8N08*?lagwBct`QLeRBAJ_6o)oTO05zsrqmKb* z30jxB7dbM;K8B)BEkmBW!%>Kxm1GY7ZEUpczu1v4o@bt<^%+C!KRAF|0f<}b{cEUT zKlP1snE09%I91-s-*3M#q=FyiN_PY`4gjPzmI0*IEYXSqq!j>KKH@@JI2cM=pCPT< z8kzT~BVKl1?ieciFrV5d`;OEcszHY{yB9^~J5-Rx44^6jpaxyQ0N$YGP!Jo`B-q6K zkU-0qmp0+3$Lu81Ebtfu%o^$N%)7&pE@~J`9T(%_9XIybaglQHYDca($y}*L-*(7- zUqT<_cGL=XYLJTzpqc@o7X5<(yhX1VT1|qc&cGJc-d0*unVqzn1+o}m)(8!nEqXG5 zWI~AmnVmK``iSw&3l(ak<*6-@+gaR>3P(HD(Z%f47Ne!M0~Q5&u@T+GoeX3mq5H&b za`Z zI)CPN)Op?rQg;P4#CayP2?Lo>J=Udqu1VrzexwutQreXPq|_`ikO3t1yacH^VhppB zN+^IT%|kP(+A%^@GAHV;b6x7#T)_cU2>><4CI(P|Si*l|*~8GkoLF`mT1~3wn6pVm zTHjy*X*ElnW`J3u=m)1=ddA+GEG{sV6k}-oFm>JU7%8qYFOvK}m#nmB=0v)!=A+RF z?4-CU1E^8}Xf#S^03VG~-KtGZg5J!}Bp{u`7(hDB5>pspmN@cJX1vTRnC1}k7)m-Z zAVX*6G?!iGKj0WI)-f;Ad52py?REwf>BC3DnnWFB+>TRNC~)dP&Is`|1F%u6pNef` zP8NfQwES$v&6RyFiRBe?a)p9#sHEDC9DoyE*g1QgW;U7p+^Z! zV*O%^eqN( zp>G&Mjq?9tZf1EB`V#|4s8K-kT1{aVfccPJE`QR|R>Uxrgx(t{^gZaZE4ySa7VViM z2~F{;7R})Rjz$1bck9gnsu+M11(|kv>HVSKjAVdWf(C+V3?Q9QB0%TRAsy$7+n5*WT%4&o&jt?Q zQLk#$i0}?ptB}5s4oaVm1E?=VdQXAAWM-%8pa6{m*$m*LfVYDh z?u_z7n44Li^i5;{=`#w{KHZAc@Brz$LzDNHofyVQyx5lK3?PNTN~T7iKpL_^+jj&@8Kos2w+3 zBEQXoL2gB}iJ~QQB9YCqR6AyH0FOri=y>eR0IC!K805yu?w`{5#s&5>%1jO}g8+_i za~VM6n_1#k24F2A{j!Yl?M{XSk8fH(xP!^jQXc-XxkEGR-p~BacrmN;?(-Bc9rd7r zChB$g(%|+E11Oixup)2uhaoNe3+crEqhOxS9EtgSmfZK>>>lE024JGK^8pN%cJDBo zwd=%p+$zVXC+NM>Zo&*bIa{81pktb7i`>SBtJ)cSJ||aC%9h#% z*mrbiOHYz3D~ckBZa`7Vy+3v6EDH{oxN+Ar%eWZTEL&Z2OdL`_G9e#Hc_?;P%f87S z?DC;699KktW`$kSLGs#>5)YBasp}lP*tt;Wtzsf8;cb>PIBFak4Ea)<+TlI1n7LGb z*k`a_l`U%v(_4rt1{6)}Fj;J3hRU}y2kRR^!#f#sTHKAmd!TlGSrlq!>g9=AM-!y< z_DgRbK)H2XkBneLy!8B%-7dhI-`P1>tCVMdboA8cWy|9J=`MMA)TnCl8jl9!K4HXt zf&mow8D^lkKg^b=2Bmk?9+1VqIb1D1xmozYOyP583O~pYFSm>xRUo*P!hhKxe$o$) zGa@d>>Oz$9=p2>tXa+#!xp-Z!y+~zN3?HtCpSuDVl`cIN7i~&tk3KhQ0jPo`@G3|` zkO5lY32!&Stt255>$F-R_R+q3#6%t#w!m0J$5;kX3(RK*l2HCv2~{_f0PG}zvy+4% zL%jSWYHDA>tt4SopoC)?{dbDTcwi{uAw$AL3;+pT0sZHf?G+)1AZNF&qBUFJ6m0q9hWW7?Q-VpqhX*Lm!2QZ#sa)FayfLm zeD`RHT^?@bY%Jfp>hK16oIB8tb8Tw4lyv;p>Ibuxg5g)I&b%t#f@Pdg}3O4=?tWKB$T3gB+#z!#) zq(PN!h;w)e^e;=8z2(OW-P_iUGLFh{My`#)yg~U8c<`Ua(+W*%H+b6+nc0+a}>=R?Z}( zIqUrlIG5acq-I3$IJ27tU^A(gc$NWlJYZghX~WbM{~hXJTXrVA&X&Kde`O8Rzxd*&Z%_`@jY6@_%xSAKtud2W;pbrc_6;*aK_5LPxSj-tY$bJS1UWKOmql=&18%FHfxg*U97%CY~fuLTQdd_8vwN1(T)K`34lpSXDOCTe{0@qbg>eD z7keb#*)p;}a2Z|f+Sn0Sb;u3B}F}$BmXX;k{eZWOg#Nwc{)yYGhXf@!F z&~A1ynBhly<=!TyGXtHsrlEn(TM*vXPVSj<HgJlDb5O%8o6+|yzQg6t%QdIL^k%ettO80V&wSdam(!-w_l5)cAShL*~GUT05z zQ5UJ*mVH#b%Y(tt-&CQ$$?P<<-rKHYmbk#I6#7{Vy*u2tl$hmowfGOhHwykuBY4hE z!E-}?>7d>sz8=E! zbx~7_DUhH+?(w3ERY5(k5)Ee0gBeqH&E9)DM`~gXbA&z(cf-D?*Vk`{Kyjv02{qyr z7ij5rUA%cLpqs1dN|TUCJ3Cr}j=>cDKo^>?*biX)(#U!ctEG|kU@ncUQT*&A_epmz znTWJ(i@;9{cL2czG$rH#nAy~p#I~`+7lZc&Kko~F;cbwHyosUh%Tm*1{XFM%Tb=h_ z$(4D|b>dBy7rKe-4a?vU1aIQHYu=1v8B;tjRv!BI*l-!!-x(@@%6EDND}Z-ky&}G{ z7}PCSU!sAJIJ^jLLUcct+C^Nxez_1e#pC7ZR;~5Dol~Nj)x1^9-N$*mCYpAIdVj~e z(EcsyR;@&4z%z%|R3?pf_LM_6HH{Qa80amZ3jOUZX9t*oQ^HJTX9iqJ`8WLI@IoWTJ+8v;OQ!-Wi>vmutiS>`$h zz%0|aZ|l-lPks64AehJ90R(s!G>INy{w5L4E)O$+&R1rMmlzKxBkO$l6uaN`V$9GDgY!^>t?kl)rTceYGVe_w*7r_)fdi0J*JzI zXc9P?pGiOxa~VJq%@P9`V3x3M-WttNl6cN9k?!59U^q#f(@nMJat?q*ZH_!O#hD{E zGCNiW_7js~5lgpj?PegTG;ZB8q~52bnncesUy2)QKGnBlP9(FVP}Bc?W;gxm&aLwd z0Eu%nP=IqLY(@XoyWg1;>HO8u*`T}CVz}k3{i<}vGdt=06?Kl68KpFz;%(TryK4My z!A082xH2a!LA!>w76lBXt!=Z^SO#E4A#J-GTiY`j0`(b}?u=|galCYAhP#USQg%Qe z^_#mHK`Im8jI=|+Ch?L7Jr+0nZ>DFoM8ZU3!}cTncXY^-NG)9AMf2( z{K8PuhvDo0Jy$>Q!iEPOM95w-La_j$7q<-?Dehxl)SA_X&__9dLIEJ5&oF>$1%QP9 zg8^LVtArD!1>oKOQT(#CStgsKB66p$*6Djde^9mGx|H~DqEcCwyGavK$g*Y@AQz5tlNa>gV?95 ztVnVt$;VbZEA-5Kb|q>Yvhk4IjNU5>+_J~n1*c*W@>sGf zESeRC8Q-RqM$VcB>zw;Fv51w1*=%oFF+44@Nx8r3Fg1@{01{7q*V<9j=T2v~F4nVB zxUbU4DiEp)tU=M80=?xW*?TsluOBurueEuHC-+9GBp9aVMcSaMSxPzmYam5`1ggK<%fTS>?G zARTVG|6b=^;vkO>#XN3^d7J?t#<(c;3bUdZ+3NvkW?+-Nc2g-(1xevmkdz=pyj*<0 zvyb3blJbaOihhiaynO9Nb&TONwXmadb{F)zN0n*I>Xm%Z#pNJgp89CF^ESbbMtKh2 z%7N>#udNa|(vSlYg9$qaujRV6wxoX%2Nz0?IOPcPa@w=)9& zDiId_G`z?6!r^^j6bFcjmh=kV8>W=fh}Eo@+8dtxuybS3@JyHg z@*Z(MF79CwP;xgjLs3zI(Ih7yb)FHAF^KZ|P%kyjso?;g{Q;n}|7#4OQ!xN^_WzIp zc=m6ELm$7~0w*mT0QG+X6V7|EDx7!i1Ht%k%J+YRVfc5(LIM5SORWJK^tQST%?$vc zxqdtY=skiKP*f~96FUG;U!d)ydJhjWq zhn?F*KC7J0qg&pCo4ocOhcOlM+tRqLqdW6jaMZa#AJ$ubebiYjMlb-oQ{y3MplXf1 zn4!IK>#U<({#A6Oo$>gU4CyT^AA$EdR8++{?JP*Y14yO5R)N&i*DCQF^|i|0)YsVM zJ?LxdV4gB~aHw4Nv~ylv{VektcqD8C3!eJfT4vC8cFt9K*iz%%F7`2qnsrxiS@ddV zp$5_8HG$`X@uz#MW`BbL)a(FIv!7-FH9G)tf6qWhYIPQjKNUNmHn`NRt&*o+fGrYe z^VToIwY6Vl?-!ke5_TXXZ}K}>6;qPsDms$=3Fb1kXL%TjGx-gt_ozq7h z)BQPs$20&*?Q?P>nVk-4EPxw6GZ}zO&+8u2C4JN(4FzeCxSbU=8EJ;Ug#px@W{KSl zFiX%i)W0!++8KkxVI#AT8u?i|{Eg!6qZ+!IJaJkzbjUxP>F{W{>mSas30|b+4V}R1 zpo^#`X*`4)X>n6JLvzoksP z?5;1jtZN|Tq?etMa^73c9s&I({~hOT>U!$bx1FUTqHj=d31tTGJ#S|Qf1vihDqnw4 zz67m<@SePlcDe5zXVY+66SeCr-+tFQG{KIHJbfCgg07%?n1Rw)FSv-4dDLd-^lD=L zZ3R{Rp|e2m*H@1D$XQfpp6c~gr^CljIV}*l zhAWFFwsti}tI_Yn>}WYFLWkT$X1Mz^*bZ}^hS597YL~Z-PmhxqTDc18d=m44Gf}%= zdOmRWkuzGmT0lKGiimN6WOf<#p|gkmAX=%99KvtZM-KH3zL??8XBRWrYSW)ISkutO zjGtf}r;8cz#o&F>&-Ln1PceY9dnpy}t$gNF*yjI{L6BYJ*=$z8FQ&Gy+U9@eGiP^EuOA3u3RKV;4{llVs2O- z?A}`7ox|)n?3w;cncb|9_BCGl(%DI@XDAMRP)fT5!&$?AxV0ZI|E%9TLVo@g9QFH{ zr#ihFLJx5Oh3-;9Ut)F&beBB&jdQqokJ%_vSfe`R*kY53RgZ?zri z+||!|Ly~CBP|~@}uQUHqc#v_+=s6AKweOr0g@bvbPOZJveu4aUVRkyLwC^wBIiSv> zKLd!my{!FHrI6;Fd-pbjG4+yjnkZ(TL_JYamoqz2Pc*2PF@UHi`l%`EPkwYx7uC#( zSnpA+4>CKk-ea&HWdO0><7cIS3okoIino{(vA&^LKW27feZye=iUGv>hM$#U{oAh) zYrO$hBN6LW#oCbBiS??%n!o^Jz3OMB>oVC4M?&2@KplR)IDiuo0QNoZ%!y=n>Lysg z|LEg1hQcuzcwuJp05t=F67)6z=4&$11mrFTkQgXHQo#$mIg!*CA@X_f%pKuwiH23qY$bpc@26~|Dj3sAGJt;69C^_)Ly3EQAort@uB~Dlb0Y37 z2KNIDAZ`Gxq#R}_ac>Fao)PU@ApVaz5%+5b_lFE1ZUAW1`40n#_O(FTFJfFJ;t%FT zv{ww;sDhw&1b}FpGk|EX_-Xgu3ir1SZ{(UNIxr`qbr+}>%x3^a3jom$VF1$V0GK@k z&NFuTLKD|wF_U=_Z;8Qs3j>H30ODQE0OAF}E4#>|$QTd#}NJfC0n{0ImF< zV*v32VDeIL8~SeZFj>>g)ldABxf1!i2KiYA5IF!u{yhVT9Do4wNn^AqX-{ws7vY6g zI}v$Ep~|$40YnY}ktZ_%pU~0@i5s3vh4Z>`o#HyP8rsNuyRW)Vq2p5*|rk#!C07tZY0cOm17_Y$J=5oWW*RLO}B zNRG@+cX{>Rg(?rL(_PKI7lGmic`#lC_fM-L%7cv=Sk2utT!U>_(U&rC4Zl$au3a|+ z!yK+Xb!DL7!Dg{CF~SuoVX+n=o2R+r^d^JkT&Js}unz)Ww&<`mvJ5Pm_Aban^q}i@ zl7e@t-9cUB1D7jVOOr{tt|kdqXAtT_Sd3MRN&+*mYVUPJ5;~(VC7}y`qa?sBupR!= z4QSu#pvQGvT}g;3%V;D&{}JB0SOhH9qC7d<*)L;6?b21TU&fFkO^*Aj@@UU4rkfOlztH zZw3~5?wP12a^B#XcCm$pLb5kn1{O+T4#-|tr|c75T+QXbtM|mJeG~H__#wyDRNEh% zfW|5TcUqND0$MYJRV(a*4!{Me{Ox$YHnlw)$1k3?e7l}xsZ;t!Rd%s>3H3$ zL-hw{uqu_ubD=+6LSNEfi{D6p?RE9Q|?_ZL;}m4H|_;42BFfOm#a&Bzy}PAHpny#UeL%cg?fa4aN0< zexwbip(E(S+@!gB6+o7-%iG{wuU3{yI+bhld)p&_~yq*gugGo*2guF zWw*7;(pal%d2UTtPjz3{DzSzcgOY2!sPuN`fys?$JX``sH^6p3dQ)b1;Wx_cF3POU zx__Bvwz|LTgSy7Da(h(kkf#R2WW^qpB%Wb0P#TX~1|EYklq9P(UdKs(`zWOGi8|BR z^e%T>GmX^+u1+kA$tsJ7teWXCj%NlQip+f+((wg)Q#$^G-zXjbp>(jFN=S#A(A@H- ztBY(n$kns1jL1Q7cD*WJ802av{$N31KH{%fhJYace4@b|Tb-aR8VX10ynF@K=FRnb6i*_m(zgo4bA&nWVFtDZqyJLu%2`7G|OgM)GUrh3+!ad5x$Fz6H zxEje%id;?V%1p;$E{EQGh%6lj)4aaO&ZalpotBB<%L*=K3Rkg|wGgz@;bp`e+^rfD%5Wi7=7Tz#F6Y9uC z%|A!E;xw_DRgC>ZY+#1Ci`_d_|IgjI24r;7#6t|CHQ&A=YR&f~18B_$0Im5>FaQ^n z@Y3(NNw77t3&O>#-WBaUqr@5JM6@3mv|lrTXaOMFUl>5N9|Y1?O>$L=n4wnl60I1j zqHW0lq6L6xGZ;Y2UjS(NYlb_-;ki@vW?sabXYdYV0PzAqyi*uJyZ|6C>_=BjbFCIj z7*31}4aRj0AVvU)aXSNu5de!ZULMbCA11@6!w$ni=1JU-8{984fVcr5?l&1g+yIza zIJXhrGm_V1<`8j#c@gjD25&6`h!=oWx1{HaKNnbtpD;E6Snu<9`}>E`^*MbF zv_9O)5(2AF39|!!a3vPuQp-5F?#JH2m)YxBccHr%Zk^*=FVc#v{y~fDEgx>6y8zuX z_Vemwd3KB|+_;4ymAQUD*VR*WVg|YgFt2^rNIP@$2j8)%X3spAvw;{CT!d~L?1)y1 zwYM4w1{A@itB;}+McAXCwr8g?*iCXQdffU$mh(JZicy{nZb{uxw&MQ607wtz74K3;>#eOMpmRY73qtpzLWHHZ5PS7jHpc2JvX}U5m$n^n7i?d01Jw0 z@;157=^|=aK))Q!sx>CR5i)jvK++Ans?jGBgBVz4iDrsx&Te(xs*B7ZS5{dYN+-1sDJxZRr&m|>P9$N$7MrdMrP*E0vM-^Qf9D!js<%jHY-6!q|qG1ta2S!lS zYPahLO*|M>fYsYk71$eGuVFXqZM@HwBE$B%x{GInxL9j%p}ecC*%{`(2yGXF)VfZJt@7k?+qQboG(%KIl3uE(H~0b@x<-E(X_a*v-0!KkRBF zLWf`X;4lWz1?rfj(Wy9ibTUTDNqlq~Pse-{`Q9VIpK^WvJ}S)djDJ8dzY#-U#^1E= zvjQypPW(Q;sce-W)<*OSsx`qHY5J;K8HuFFp+~VIbZ7T)G|(Cp&X;g!_l%m}2V8Gy zqLMk%{n2xWtNWwpGJx)nUds%4E3SUWaC(_X!g>VQJ<*9cn3>z$bXOyA(hazrlWxEb zGT3Xz9CA(91UKUyxO&-e^*HW~;p!zx8;-cX7ccXG@K)mIjnJQGfOTK=znGQcKRKKp zDb{xmSNC?GzNrqVfOPN*NJo$%UJjh-nJc)JWYkzPPCe~9DI!N$-IbCbHbNyoi~*K{ z*33$Gb|=VF$6Ve00+JBFVM72v3E=!BAjkl}-}tPntKe3;6B_0M$6Q{#IbDaQ01a;W zzvo>0#3&vaHpMVQ$S?+2LS{2737HuvWbRFc06z)g{2;`^GYWqjI=C0<7!si4#7nOC z#REJhl(5^7u$uuSfgVt=VOEmxRG@_CZYlxzNdo7mwg@uB%dxXOlLfbu2KWgt))w9Z z&%5G#9u#W$uc6_;3?L1AL)|$dWF+f;ctqD58F)n0M~54BD5!u$@CryokRe`1yyhwp z+)5(83J^i>d@32P9*7?f2MazBKNJo+e9pct9GN@2L3s_T5zP`VTZ2WSIwMWFqRZQZi^5xWB({3caHS$R_x-TE?#0kkYN^Du`2W(iscFJ%C(SGCu% zwn8)Qv~}TQKG-(e-SXTQt{kzC*{Qa>N2$g2AqLPQ7yw!X8;$wQ8P^@+AIynb{8ezm z#{7T-*q8v2>@OHVA^@Ow>i)t2yln_yu6@09>OTS-KAT{&#*PkbSnXA%t`)PBIw){t zF+BLq>}C}7(wQy{Ak|R7QoU9TXE+HSGFk~P<^T!?fCQH_fT{w31g~PiO$9FlHWX~K z?qr3LRfCz-MQF~)n4JVefpg325Da$O>v)Y7Ai)4wg5j8bF>R>$j5$%~IiqU3$m~?x z8DPaXGGAc;u>!zZS9}9YvBqPpMkCf3dG06Bki_i78Z$<*x*0&M0C3g^Ux8TrGbdv0 ztyo7fJF)gQSW6f{tN<|9>etgs#WKrh`;o$tit#SXD2Z{2!FVqNh!FtBC=Xt8O%+F( z6UBK@u^wl3Vm)ZEzRLh&1%R_2ZjewazG6$8On;#8GH~L=nM|R=yB8U zuDEuH+02io#WTjLY4HpOSksu5%t}+SW%ATj*W85L(avTsDfoB5x&(M>_QH8-_7Y@> zm;DnG1_*AY*-Hslq^85gW7W#!mp@<=>scNV&cmKE1U$t65&*yXmnz<2Rub?g@^;h9 zw#(WEZdby4h~H2M@RJbEPeOtW@C&sXoO!vGgdF*+kPmhD>-u(WyGKuyv0XDM^_3D9xA^HR<+o>IF`QrWT0bP*c5eN)zWNO+g0uU5YUGvjJg{ zrfYxI^lG^KF)@@!hB^wBjzVT99W>7`WmeKLHBiTlo9ZYubZ~ys5oCy$e~)wz65NV9 z^a114+Slx1v9IV~iTin2C}M{av4h!3#PVo&x;VnDB;sJ8h$n9*I)-GAS7TE)D+ig+kXz#K4U@=-BesbyL#O%qc00nM#_TG~S;v zYXQTDTktj(Fl^KhI*X*}+sCQ}%yt}KXaTbpBc%n*+VR(2z_e}Y-W{}nIW=OL8{d!s z*G4+K;$+?z@Y~!QF1oYi##U}A_A>prris4aGQiDsUsR`?4=*1Zug-|mliX7i4q~nRjCijVhPq3naU1vJ;vdXP zC$=5ITpd7v?6z;{T>$i%85hYY7Edej7UwX+oiXpRB^%qDH}Pj70b za4?i6DuCidMUR*u>EVc|4yltwALd0rv1V`&XLjPwpCIYYRg1Gy(?u~ui5pOpo8IfR zEIYMIEM;C4_$>zcdIk_V02KJOoYcOenxRAvs7Vg5#0w>g zwEoT&K0zG-m(&4ZUh~Y1Gvcf z*wBb*(T+LMJgx^b&`{bH4Og*uL0~YC`&5i$E;NN31y2CsJEBK10EWrQqMRA%+%#vR z+E%VafXxt+@NYhS(?-eKzV1LuIw$cuzz{E=&2>8hYNpY2_(XML9Xio?^L|(No#GK5 z4o=pLkd(;0Hs%4-6my5tAT3V@x0c_2H}xKOLZ(0wU4jh5~+20ys4Z2r|UWnZ4ZI z1hrbO91V@4w|TTU%Nun;O=YZiE2{z9~LPc^XJiE9`m(>VCegWxmeS& zpC&27^H7mNXw6yp&;sEYa~3vM1&w$q*f(j@bv5>8I<2;z4BzOq+In(ba~ALD)idND zL*0Xe<}CDs%Dy6Zi6%NBg>fX%=`_nS)Km_4N9tmTWsx|pYXvgD1oqG;GCPgy1(Vgd zKAQnFt^+{hdOwH~&p_|I;hrc~GcP(_tOPII%e#jIu(bs*d^<88>f6igv9 z^HFApIp+H7?c%}vV=1)6h2Pdmt+4mVh?@KfaoM(0{5OQ#`u_=3rAyD;=H)VCG zhu&*w=!u+SrQXm(d2Pz0|0M!Qo?IhmH08oA7tvmSyWTk!R{S2V)WR^I> z0J8*bo*rWW>4p*ky5Ic3Jy(3hyh!)^;D!C{OAerL07&@H44?`D@c+1-2rIUl?S|b= zmnSNq+cszZ#HJUk?$(|G)ZL5%In0g)LiA#zyY*(s&AS`aL%)D$%9_MVo3beLa~MFG zhZ5()U=x?w%>vZn)-!+-4+YG`7nQr0ihaz1a=xor<@^u_@Yvp^lJpX@Q&m_1pRj+A z0XNFF{uX2v`k6`i4J&67lGtAvKu4DmLH(&#vzi6yhtLmq4rwnMGn5o#eEbkQ9M&yd z-o4P>M>v=(X>UJOtv9+bfYJ;AJWAYDCaznMB>FRyY5+8#hR+tcCx~L^MdT9=@^S_c zIRLQW$QR2PK)e71@D?t04;9tSi+Jxbcpqc{@d5ySz$PEP)!j)PWhjvY8bIzD)MJo% zi+K_G8wUBu3?Oml7 z93--t7x8+h$)cI?)HbsdE!c^+hyg?kfJv)v480|6h$v%TL_2+&>KKa|K)e7D?^*^B zF90SlJt~{G);&Y)VP3?$)8KuA0mKUcU4(go0mKV{$x9~;`hmCinHLp5IZge*+j$01 zg#ehvY2C)=5dK+A-^ps-=7y7&d9NxxDWI3oMg=`7&==3A*Vvmgz3c>wYq#n>JtO6X zyWEF`D6tx!)^BGYTV~#*iW@PB1+GvzW|O<2h+v-dLqCbkKoh!_XrKulL|L@ieO}}; z7h1%1EKxJ@jtroA>`-Q)dF-GPwTK&r09!)n_%~m~>A*=7Sk6fk*dRl^T(;Hi72HY_ z*sKyY1NWAwRov2h+;@oeJRY2ZuQnoI%>asg7c)@g_razd+uhNEa6$vq>qz8w6GElvEw zAky+vke2`5R14HXT6is_CCCsjKYti@Pq>w|oC(r${t=k7Ij6IJj#|>D%dKDKBt$Yh zNudjOJ(-nM^q3xaRP;uN8y*$FPb$(F6{!d^#LGt?cXtrnN-9#P2llB)4!9SIC5(&? z?uFCUQL&H#B!k`MIKvF2;KLvVpWIXdaFYVgO$vexO=Z+kcVoe=q~PTs1>YWZ*NC_o zLER~OhH8jt29SbOW*`O0GXlF(dvv&A8vr*c;M}Aj$Ph0tKJ6YQxRn${&Is&E4Qt$c z#Y7$#w!v6K!B_@RSEBR8d}bvX%?Obv|1YeGT-h)sNz_~i&K9o*A^JmxejxCld`bV%^Ywd*kC>J8pAOQ0 z1|4qLj8FmT=M|8CZXl%(SW0Q{&Q+qe+FHVy61Uo#m#7~-n{1^x7obhHwlm=yZL+nUS=S~Ty-wip9pPaz`S0$kpq(~)+sJ2scYh(eBMskZ z>%t7$oSt}hWA~b)ueuv*VkCoTf?YIItrVs)pm@`ik=jhPP^e^fn$SZ5nvoBJko`Mu z8<-c-t_3gL3E9B`+zA1Ic0wLz04<6Euy#V8W#|pp=1&=PZ?ghOr#&U7yaih%XPBLC zhcpX(%>XPA^3+UYE94i3+L>}CO4qIF>a zWgZInGwSp7wJ9&fvkd^C2mLAXvaOrD-59e z0I)h-RGHOmH|lU&ggkcv`c)$HC$@+(we{v=0ByY)1-ddj76^$bGy2;=hTOcrK|R#p zOj#wYv?+`7KA!=UceBJw2ACzN!);~&B_2uyB>uqX?lSQR^PFH;@vX%659+9NgQ;O#s=1*~-GE)9411RN2f%>zpHpK!Vr_7W$X2{J`4)xIH zx}nF(3R4`A0LpkS12E%e0tPUOr_D&X}5z7n;nx+f$&iM8=0?`GB0J5yfx(LGb>bHL3wW7FL*yMoL8$;;snzA_?z<3O0yIL(lb z8mBpaqsD1IhZ?8OyJ2=gIlLPt^s;+-z?;qRmEh1u{cECsap!9yi-k#7@I2fAzR zy+{)U%!(s|)=%bNg)wq0vs0V&o1@xf1_P)~0H8MM1wrEo|HLizCyABJi)e3Cw40fo zXm5ibQ~M-4Ueb2@{R|~;Km)k*{@yrLUcLqc(9_J7DmbDlc!k-if+I%Urx-xo0GQmk zX}W!)r&RoxIT7oZiuHfYPOM+fQNIowHrMJ5#0r4PO4&H6dq#`a%nNDt7IU%Zw{Eb# zrSY;(U+qhF;bd-93%J2s&FwNP)Z-Mn45g|7HLIc*FLtf(87D?CFRE%NRh2EKGJwbd zfP>5?UkURxk)<9ymEbJ932gIlJ6?ZaMs%DK*jbs2-0{|V%4>5qq z0Wis7Gdx~i+7mulyv)3a_j!Z&Z3Yl80K|KS0mKUcXNyF95X3-kSl$3xLT>=M8q8`Ui`ibJUoY4xKq@ zOlyu~T7nwRO6RF_M*l{ho(Vm%&+_5S$vQC&XQvx^J`wX+JT#m+g3HZj9&~dbBjOR# zaJB}WX*gSp-)J~nJMa3#nPU#V|LM7ak?h2S1JpxZfA(}WlvQ@m!(uOsfkw0YnIX`B z+Nid(?F{yZcyJyiQLC0mntBR#cq)tD>~zdX8ok-+Aky-r-OK8sq@8Kz$rJxzR!Z8A z;Bv1q4|PYRW#AF1J0cOIq@BfYl(e%qNZJliV*ZMUjlG@IPh1Nx!%vrq37$mzcYf~g z{oLOxZuXuee4{(9Si@R+%7fnMj*Hcr7h8H);NI;#Bj$Mwuwq`v ztQ7O=O0@+&q>?U$#@$(W?7&K~b5@Ey$Ph0b`JSbMTPgP0L9x&8>DeS+=D}d>&l|Bn z&j2g-e=#e?eljTb({;xVtQ0$ErPzZE@p5z@$UC=E>@|V0*9_?ENzp{)e5+GYX9=6H zI!hP>DENwLjZ;NyX2syO1erg~WBl@Rb!-I&X=d=bx7diA<)UZyFhYlL1!j7nqe|KN}SLf6(EtBMGol?3|Ti4>B0B zb1TLEh7~)#P^EcQP)D&>sg7c20EJCg4&BU3VLPeR?syUZ;P#)4JTVq>kl|{Jh+ARJ_3=hc%1(=_&CFv%*iLO_6iUJ@InE*r?|6{z}h4 z@d3kWrNavN<33$QD;?>c+%8ORn(vX~A}dDI&9AG}TT8x>rxw7*PUu3AV~jG0!^6f& zw|fdTg6;C;k(e;~-4pP3(1ajIz3Dg3D#h!8{w4M&ErUPW*C36s7M7P* zcpejIIdz)YS{N&e$+R)~xqztg9DnxYM&oY+&N8(PAyLp12)u9;8JW^o1mua+hbZxR>EL zTG&_tf6O~%;zrmbJH&kH5IkTs$V&{M1_1yX#3ui<$wIcE;=@ufeW{e z&3CZ`wbOg}joRtG>$lT0yF9DvYNzG9J zoLvoD$Xv z*v*7mN8)|V>W$AbMqkeXPq}!4L3AWCUw^oNTda=6yuW$A5U;QjbR-@#a`^(b>3s3; zVEn_ya#aG{)xzvJe8R6LB|QawV8|hlL;T7>8k|3r&@j2xD~C5yJ%uJ;u}dI7ygNlL zQK#Zo44|PI0GfR{7(lZx0BBA}!P@1yqcBzN!<^_f1qSPIW+&GCCF%rU%m88qz+g>! z8d9*7;gq6V494{gAVvUa%23S!Vg$fqjF)?B;7yN*m=n<+Flb+50MPX^KXZ?!wKjiY#-|U7m@9d{P=lKX2Rdl$~(Vg%}B!=Gw|MIb^hOx zjynHU{6?Ms>JsYw!umOnH)Q^co@AJam%iwkVfzfJR5$RG!glG4p1Xut>W3t}V12MH z!ZI-5GcS3bj1GY0iS4B`onH_HogI`hKSCW~i_qd?|T zUB+F2RvgIeR1+4!W}LtP-i%{zQ_X0UzlFJ(<*6N4Gk~NS1@2*Xvp~^2XRg@G0Fs80 z_@%*J9QQVvE}mmfr0;1%-y0l2eNQWWrz4Q_|{4E1W@LNjo-o{!tagBkz z>;7g4Hc8@_2emB#C(gl(515_wngu#Afb;?Yw`ax6-?w&jh@hud7K>on+M;x#2OQZaw>9vaFNx^)s4-MGl1^0 zH3~e->{v(0>gC3b&95^AvZ!8RVGQQl>g~nemcH2I8D^|!nYS4$b{=`~4~mrz5kuG2 zI(%s=7`eh~5X_)93aar|e;CrjJXO*2$H~l%+Nbpj_587y0hD0?um$whOV!rXb*2k6 z-|Gn{ZUm5rvEKlu47mBILwBjSVRJ{+FL6oq_(>*z?J~**O=k%CDCfL%rB$ z@I$#X^eHRki3d8SiK#4JHK)O!$epx8{Y37Z73wE)DFS*vc=1xX_ooh><<&>3+E?q| zVfv^Q?6-24BO8xlIHSjxlx{!meO#d!QJU`==+!}?e9x8T*Y@>dM9u2Edh#$>L3Bpot0mVl%m9B0H} z9uZ!_8@N(seINtqdJc zUH%#CZ4y+99mEB_e8`+=H2K#` zweR*GykF>*tUJUH!4BU-_F>Eu*BC$p6aX~9iB+tx;dK@Ol74p=!kc_(Yn;X9U(UP> zwT(|t&}&xW_%uk+&_wTbw8^dUUYl%Km>sS=R>`DvZ@kPX%#McFYF(p#=LS{MPdQdtgUz(%?+lJ;}RCypQ!5qZW1PlgtoQ zYRb^A4~lOYPQCdn$O1m&_ZtUrjs-y68And!?N$wRM#loUGHAwt|7Y#W18uCncIRB< zeKWh4xaE=xna*&p44Eoa2pRLslpzwAD9uDEQRYpfp;T0clte`XrA%p{Qf?(p=BP-0 zYd!nj=Y7sW{`vlLt!J;b*R%FKy+@~4rM08xUptUt3gwh>pPgWeA|`DyQgjy4UYZer z_Tn_IA;4+KgzGZzdIB)lQs;D}|6c0G`daNXC>)7W`_7E19yvF>LEMps6dGmrRgXkM z_n7P&k$zdtCoh zPn$?A!atRZz7VbKVSf2GZ&+R`1?+|VT>srtxylV5#+ ze_JO~$mHG8u8z60c4UyZlH5fddX)qxs}9Z}JV9r@*&3CgE|#*kLETt4QY*AwgIeA^ z&@ZQ~xhN8eWUW`z9NuM=*Ra;tPx10efbcF&Rr!WeAiQKF*`KR3{?xRH>|gp9BKz0r zBfIoI`=;imEnO-|Wc#0LD0wL!dEP5MR;+QmD^7wbbsPHOUK5WLHZKp#+2d6w9PRFc zv9{gSV?f)T0B9yx5P(WA0G6y>2++CzX&c_PVo6tanw2(+%46+-btf5sFSm`g1J*+X zpaBXnEF;n=o#bd{B6k+$`S2uf2_=BV7k!Iw5dez<;C<-F1i+*K&LqY_3TUEGv&9`9 z1B(hVTg!5qMrwrinqEyKU9z&(B-bsE@)+~ZmG#Z8&o6n!J4#Z_e9yb_;p(Po^T>7H zVS;c4)*BZTGlse%DnKI?UvLF>^zq2!-i4G-$GcD!v$l04%d0|inSV7hYpx5Q?=>VT z#=J|$*)i`@1!&CMtNtX7c~!>QF^>&n%u5lJGouT&XpodY#=J`7?8GZe)_r&7Ec0$* zSJd&L*72bv$HZ~YMfKv|gCvFH_m8s|k=l*3Uj&+PMgl{90-ON|u%KDLHkW%z0=>63 zIPe|!8kbxhS>e6SE-8UkmcS~Kg8*()eM(Xg*qTD%^D`1yU*#8BC04Dykt9b?-m7z@g8B9t>B&!Yi*)y95-!7~y$qH~S_zUf?zblpe_a=8 z=RK3G*7tN8aspAYVAr9_qjJyORp#X`kv0h$Ma(s=T2!z*^>2_t^trD|nd?mM0|s;- z=`}N~MzfEaAf@CFdl-`>PfXoP5}^IO z%kw;vJB47sz9ymA=y^?xp!u|2cc+JznPE?ebJ()Kg3{r5@&U{AT9RWotC=~NCro>j z9Jw|Vg~X2iErbf!@YV;RTXA1#H=`AOHiN`lQ>SKGAm9 z)En+?p+qRtj~_5|f2^CE&T=i%k1f&PNRHejJtpV>5WwYm%%|t;mmi-}o}v$W7ZLz^ zzCxVjE<KX$k_otk-}!pm`EG%Z%PT8e?Dl2Wy;4s9}3D$`<}4K!LmF7$Ws8YtU&;=3}5(= zt+UR+<&@4D0L=~rfTq*vMS#;lY4(~~rII&BNU&r%sY!;*aKxzTGmD%|fZwH!k-aaZ-tr%(sQodhUFr|>Ju!BFy(&jmE` z{vrV6)Nkr{c1?XyH9ciBN>IeU^(D zP?iFKnR;9cYD}YlbaaO z01AKr-cCTX1)VyD9>y<$dJmHvQw;q%P{H6bOhoJiRNr#{_G(GRb3|E1_ zYS2SauZr4n0zC<>Imw=c)+WHNt@I?c#w2?ZddVbv5(+o4EwbQ#dlGv6Ti4dnBa1fX zp8Yw6!c`{GdFWMYlijIAndo`wifQvA_k_ImBo6k4vOkQpHYMjpihHbvbCCX|fX$&B zRDdPAto*P!v_wx9$51*PhTJ{L9){dafb3E9^k$L(+Y{4-h@6R5oTUJ53{eEk+EBD? zSWMz9giT^sB1PbzD6$m$LU&BE+Y+};GIN*K`zoCs(F4T|zRMd3z_tnw6u&1a{N6Rm z?h7rNgnglkyU*mm*oXgYAO5EZ`~yXn!vFPw|M)y~gO?+>dKDfCsu=>G`G^gCCIQ02 z-`iptN${X@1;7{`1L#|Q{GlzEiupk5Xz`DmhP%-x<_yMp5XRTg3%Wx?jb zAw^Km3@p}Qs>f1r_=7o^xnJhKoz5<4DYSUhHj5Sn2!ozpPZFSA|1WU9a=ccpioMU| zy_kmgY#QFD2;>6@Ya?|$ma6yR%j9Rl^+%+nJxII0!!({AsqD>Ux0JwCpTJZCf+AQ% zQm}YFg~dx}Vj=dyg6)GvilCg?^<*^HV<}iX8nD2o?}$lu)At7HwRF?BmkfV;-GPP} zcio}R`pAPRa$IQmXMN;0ugK(}a^d8z014W+zxoohW^<&yse4|7`@Kp8VNOtSvc1Mo zZn8ZUs+XD|HrdXruOL9D8KIcjdPG(x+0Uk3=v_-7<|v}2Q;o2g#W@bSR873a@R%uC z>N(E8kJ@vb1?JCb}Q!rdgmcs+S@WW09=Nij-K zB>_h1M^)h5z-@)+C<&VMd||G?$Tyz=+*Vjk0#v1y!cqt5w-lgeJVO6(rzm!S7L%w# zY!X!{Mc`jnU@5B590{wQ6FfTER+)*D?PUe#D+&F}3KXoApjQoVooqMqx2lWS$PZ7E zzp#-Xo|1Z5L8_$PaqsonT@~y-1=$Zj$ArI#T%R;0`uDE?p}Ms&P0N@PX4kLvVy4FS z$P6z_t@BZ7c@m^*t*P~_7b6@swayf~RA|P4E)@j8QsEi`FoRYNU9I;fKxXa_mePq6 z-%(g#OXqqqq^oyl@J`Zm1~G|$hyYBvorWR6Y2b>&vjkv)RL3kW9K~(M@WoT?*DEO^ ziQ=j;#kP^s;+mdyE-=6BiqsFUn_`;&6sctP)XFVy{+A!QG^>VYz%3<%a>R{=%_NYP z(l)DXs>;Wd0v{mbNfqee!>$6Y`61$&?8XgZX2I^rEnaA9N(DMW-kz*g(B#E(`)5+31cMS& zZA|}2#I)#7k(_Y$RE_E2tP+|LNAehDgm1oGdQQBTSDpMpIRDaQtal-$Ksd<|JA-gG z)x-#AGyMzUY&I3`@RZ^F%Ma(3hdb*X1wWj_e~olL)i_b&x5yIjI`T)yiDI1tfebYH zk@M>qS?IJeSx-M*)U4SX+3gJrQrK^<-8|Jc!h0FeMkoLp;Uogk0tB$Ty9CH)(jC=i z6!t%M`Ow6odAB#Xd1&8}gZoV%begvLxY*aWsSfCt*FaObntTd#&4$Pj^Hs^H-ljz_ z@%B_ZTy3T7&_o5ma{5~WFjNV^7TYz=9p(K=iD343-)y02QaFA$2D1X-CPP^Q)U3H- zc(f5-x(}3$|E%6VGb!5s*mI*_7269t+q|FqBN7egOta1V*dLLWSvRULT(7Pr=Yk6j zjmZHFgxTjet*aw{3tOJq$0BEY4Ji?>He5>rjEn75fCekR1y>t}P&y2bgQnTRaS#E) zWNR!*F+z@>W=F{T6`&C^NB_?wq}as>$#yY9rU?A24J^e7IbfQdD)yabuQse=Pjr^J z!gqWH0pfT=gS!n|ND9X{PO}sBS<~zq_7hF;Uj)QH2(Wz+U;(Z+BnfnyyFBncxY|&7 zx@73rI7B{ex{Z7q0U&_84Ot`wfpexO6F5&3{1*YS4+3l-1X2Y4)drTL1kReCC;?1! zdrz}-mUhBUr@3t;Kzg^KH+hPx*Fy!a>e1bX;gnEnwtu%_=yYqghh*oQ4em8?JrCwX z)Nm60uWf-%@p?Uq~N6qg|~A1rXzStnatvA1)ixV;&X(Qnj?}J;ULMK z0?%$G-o1)~mSqc)b6GYQJ)Jc< z{a%#L*9XBNB*(NyJy|Yab0WE)9``&ZkX-r6GvLr=(bigs?T6O7)0=GsFvhlCJMOFZi3jm^fEv6UuI?y3Vu%~ z_@Vf4!=pAO0?8W27GEO@<; z2w-mC``ny?(5#da5dh>$5CC!ll=@uG%1I7xuY#MIv#NNucQJurC`!aI)6~v=q>#Pa zaXBRg*QT>Zbjj3@RsttEDfBE#BZn@bhMJWK@ z(vlqPoI;EMml-a0G$R1S)C=xNakJw(N(FYEXWJ6IkpX2V02&g>k)JAPNBSTE%y8Un zTY!=d(V0i-oB%YRFsJxxHisi<=!E6R0!=95x_&?#$oI*U>%|U!neH zd4nsw-INea^L?g=8BnGIz|+uUDPS`GRsIG=en58#ITP5^sQ8F+UeK2iE0GPTQ zuOt9W^DR?c?&v}wnC2%jMem9W9(j}yOb0(^^Sy@v3Bu1mOOG(@1+f zxwz6cKjz;*C`E{5m~^=#Eb6#_Al{+WFQ&xKZIoJl0uVi?(UJhCfv|QW08LOdlA0iH zb_}6Zi0h!oZ4lo*Z+)HVl5kzSc0f>^*c$@&IG3M494ZRl#Kot}XR|VzQ1TszAM>=*l zUr!9S0pIc|ZXr$71_40v8v>A*0HAn)fK-aV`4pXz^e2Pzc1A$4JOQBSG%h5-X<+{_ zP5>y1hNFm1@zHy_-s`oYR4B?TpESL@%2bHuT9PW)U&KX(^yJ?(~!EJVX|Z0s+gN+1(QzENTT@mxUPBLc2Wn$PbHNuaDQY# zISK%dzY~BA1<)^Jc!iz{iibIdpR$S-2#2Bq+J{sl0JX+xr)VYdJh8XaonB2!1)kNOwmcg!pgaWt&sGE=R{_BDIs%wyXHit1&cFyt=L~@7 zeFT7~)0j+vYJ{qp_OHuCu+Fb7v%RMX1W(aQ;#oVb!=0x4ilC=^#i#f_X`;>wpcKud z*O3^`i45#^Q(|V9@3ZrDy?-g4GXQqQ<^-js>`c4YqlHcXn`_qfDiWkR3YD|$suQH_ zOxnt58*CbEmQH-rn_WkE%_#|ru<;yQgzXs6A`}2c*nr;~bNr6rWkOEs2t*wnf%E+XN~~r=jm?<%Wl!sK zlB4oCg&zoTWYG~EA^;UfqreNLwiP=RHA|lDI>qzm24#m37oKZFd=3K|VgU|rtCO2f za%3uUbg=aa;A)gJ*A`71!l9^u#Eh^x~WNPudj<;?ZtdK)1p#Z}Z1S8)t=VhSa8 z9;4nqO#lMxG+rXWX&|tx2tZ&(BQ>y(d7n}$#B_@v)9)D2m(Dzkd7k&Ar*zBkd_?Kt+)3ir9wz&&$HEZ5d#`h0T9xa1Rz7zNbCfEMCeI9!Fn;F z-MTZin-V)yAbXeqkaZfN`9ZNc4cQAWZfRYseWG^QG`3Zpf)0qISKOKC zVN22nLziPG0>DrJED3HP01Wpg7^335l+k&*cNZlB!%@%JiZg)$WhlUyPvk3;Bu924 zN4;4{0N0xZLQam!_TG^ zi2w*`Ndgd3r*R$ujw32fO#;yKh(=P+GroC;TfHkN6&@NtYeRZ1$w9Q)v)04j1Ry^F z5Yt--;Fu15)|A>Sn@a=_%WB^#B=$6-Gf0k%Bt1egp8!>m(3oMxLOI@20!|93Xd|G` z-H#}-a~A>KK>z~kH1-hSG!W1u1R$WI;R4!TCv`XFbs6OqUl5caDrx!x8__HVw2}${ zqBRIWh5|@LI%_ z+x)ohW0AwftYHGpff+F&3>ejIhD$7qcgzlF2(1b!w=YtaS6)Zh0*F3I0Ej9DpQv0V$TYv)+F`i&8l?i!Wj@jO7*L|iEYVL$4x-B}(d+_M zTBH*uJYB~lzj1;X{Yfxf-6h<$-zoG$P*&RSIEAt#SB11)&-+cK3L)H7@bzplt8K-3 z+=$X5TcL=MUPS;x>Qn4Wa;Jc%(w_i?RD(sUNSS2ieblX--T;!HPr1Bk1#{xw4o$s# zNewZ+^95U(CNZGA?=<uZP4S5x27B8m6-aLON#--4BsW`<`$>-cR3Wj^6Iv9Mkur4~ zJ!4+UsciK#C7I_BHTA0uXKioI36&pXPQOp6I+j zon8X((|d7v3A{mV>VMr!VEy}~m%uwU{Rz2IcXh~Ktb0QR$MuSxd;(ct0&gbY@J-|$ zi|k9_uLuZU0)Mf{z69RA$i4)I8@NQgZ@PU6e7sRdyaZ0VQaEgXPMPrLMf5264>ix8 zeN6euqu>nFx`k z;D{TuZ`O;3w`30-a?6N*z58Yl?JvoPC$4X1w`naY`t}=aewr5$EzTgywXSq3kfYg0Ph zOs?^wy_sBt0J)jm)4PlWxRl)VMf<6{D-@v1$VnxspAD7!O6~Jv6+JeI%g8AL|3x!P zaT)od7wu)_sxKORBl%ADM6ZM2=KFjb0k}<#C(V;d3dbkCXm3+@6?^jZF>C4>3CM3~ zDFL<*0x1IjNi$19U_?M5c+$L{-BK3s`YhfhKv>9==Jf7W(@6*tJ5oq|b4C*HS`us? zBvJ(B?2~4eg2bADMDU)u%u7KvL-i@~lC3@^2(TpdbBWbR3KkcrLbgx zo9&zdXru`I2hA)6jk8}$R3^~CYv!KpmzG6$pGJ2A0vaPo3L3*wXxw^68j=BMa0Z}} zA}D9@o|&bf(KSKCf6TmyeNqa~`4pZbAfT{@q@eI-3WayhNI^0H1m|v{ndBu{g=+oyiH=cac-?S^<@cfz8TMzS=Q-JU!dI<^e8;tUqkfg~$rSlq8 zHILM2{fze!C)LkHt$*1*k$(4O`$YQt)CAv3VNH^akAnnYO82d4HbK8huTP}^B@oj$ z(Zc*o&FUSNyxOgA_R22~>L_MuWfxo97ZQMZodB2?#tDF30i0d=DzE$$@RjMedu=Ec z>|W{H?M?vf3IMwU34mPzoL$TpDWuiJY0MAa5ia_qd(q2y&vpf-iugQz#gmH*4>M}_ zA2?#VolQ=V98dK$!!+F#DO={;lMT!)mwRs3I~rG>!@Wd-#uM>r!~}Dpp>K7^r|r1{ z%-j+w=S`-Rm8vEKU`kew)GpKbk~1`U4MPYX<`9q)uo14e!bzoqcV3#S*(N@4|pAS;GQgkFXyBSk0-1UNpXq09ipk zSX!sP{3hKM{VifiPbQtkDWvEuqW5{40JLPM@e%<}1CP>I5r8JH&gqJ>*%JFAJt;1J zy>Gh2Ht}lWmpoZLH)!G)o+9W{B$;N{x}pWke=V7vvUTsOm0PJywNvOyfmO?Dsy=e_ zzL=cGyY}5AkmlVst46BIca#DTvB^fFh6}II!syi*niduNg#Lw!eZp33dWVhi2;D#p zQEOGZxB2;Khs3k?lPma|QH@Vi!SiIyOIm^*JUiC^q-Ic}af8dtR6RwE<`k>f!z;Hm zxjuVkNN_rPGT`U~c}kiH#RW^vn8nd^LrYUjxXLL!C=qQ~u6(X!c*?>Jm8@6sl#ag? z&#jtuf%?gXTap|Pp4vAdDN49Rs$L^Xff6P|Obbu#J8NPTaTomyMcid+>Qnomh)XQB zMO?Fe>%>$0lZ&|Wq0<%d;(EDNQo1k9U}m2pnw2ie?P%`HY2U`|8qmI`sj(RIT1;UE z6UVtLt~vS1% z;ml{bY<-1AL2r(krf|?JD>C3FeECSFO3V^-I8U(0GIig$oVXQTLOw7VAqeL*< zWSJ?|M)vGT4yz)Eqdf_L)g}q6!5nN9C4$uvzOxSy0J8$X>~sQPc0|G~reIVh61Dsu z3ARqb2AtG-E1jag^=j6zZ24Cun^U&ll9lR}FH`vxYQ5VvsGN0=mJYYxfmB?kC8uoN?~J4#%#cG{tZeeZyi(zfQr7yVf_!orweTAixLQbGDmX+5rKu3xwHf3A5F#*;9O{z`Rf_I^+}|9azz$c(iWVYo;dr zi8j6ma3u*a6>YZMeh=VM0z!}1?`y7kH(JsZDjmJS>p_q`1BjPukVy&&F4r%&zqF8E zCfe8=oUGRObQ=14f5lH_qSeCQeWaotw7KMqSTp^wjLhiGCi}N~ZTfDHl{W{b7i#1! zAr+m*`-l5x@Q&C7(M0O2zl0U-+0CmvV)eWqNeL-#`zlt>yk8;O-20s%?eR^GuVZb( zcPuyU+t(W96?-*^Cmg(dXW-zM_HP)>`^GugkW|>gQQrm*O6tO<$F5id@fcq2-37DG zRADnAKUUJz?IS;n_eQ?mX;a_oerJ8dyZu>|5q#_Nec;<(`!@`Z{Xxi1{;X~@Zyl+K zZ;2y2J>xbH?+zRs^kX7|Gxr3p$=~HnUgkwr&E`FUS6BRGy}~sa{GP)3ucd^o|IdMI zf7`#|+SFfSJtPJkr^kK`+_?R>gd3*B-oTG%_lh4S7H3^(e%TxN(QBVyazks?G+!KU zeU0~WiXY*Hui07HY6f)qC;+Bm8wh}hH}03L@I$^|6GSKF;q9WTlP_oDD5X;q3Shlh zU_}rW%sK>ET0$OTklZQAY$Vfs{b%b7ylg^IL5m!qaN}KkeM*9PPR+X(NW%elnOl8_&h&hKzRxPp1TM@t^x$N+71y)RWQ8I*DmyWP+-tjK+mts5}3#Z@fl_EnVFxsB*{B>>TN8vO}y8ko_JAOO{8Tful# zf74g{IJDRUPhNYEH;IxVv=6;*tI*>NC{+Ov+7}2wj;f&>EvpEisD`Ah3dZfbPG{pY zO6qKY=l2AFr)ac)Sw4?Ja;G3PGfc@}>NocOB~-b}2TMYw;;j=*7hf5@-z&c|C{!>l zyV5efkO5^X0GP%Jz&ANo+N(1yST4&m_mPw4zTS0&!&wEi`rJqWs*eD;zfW>iNNc{* zuRY@kNv%Dh=4S1Meqf!;Pf>c`WyJMGk|VB8;SBPY{6c2!Ja|CEf^1i2ES#4Xb!Q;ZRgS;~F6VadjF^2tZ)H zH~hf1AtW`hVNpl3R4NZh<)gIDVMKK#0TR_tA)nz`k~;-NbqWE9>dvI7;&fte_h@%- zAtgjq7rbG%-jeJJn2NkvD;Y{CJ#rLz@E~J5p+Yuk_z!<7LDU{zG*CQ;D6umIwr8yh ziU)N_G%ELzyh-j9gst4L`n>4{UKXKBS@Ur{Ji4LRS2rB!P`F?%0NkuV0CE)o7v5?TpfToW8r4?YI^~SCptQ~ixOOA} zT%ATA0-Oe3sOJ#?vZ9eh7MHUgqExVZ|7v?V%MhRe2;FbCUS)?0Z1kLFwS$eGOP15! ztRcF7z}>7BYEu8}?q=!VC*94uUeog)P6HJjr@L9J$u-=~TDRKX&H8`eZs2a#kmdGnR?nmLyW8d6bEBfgLlS|e@rdd5T>R{5*&PdJ{h(&qqm`5o zeyHKITSd+LmBiRqYB(x-hsTL=f_K)N0Uxa0PpIDCN>G-I^0W1uy^53sn@8o|#1@RH z)jF=1+hy;fr&pH~>E(f1Z`v)Rr~X1_G(t=_U*i>(L{2L2CU^d>2)O^*~BH=L1%WB?kR0cfNM{F_NE z1&u4-auwgdnKX-iQVP?33eyP)D7-{cP*|8kVeuI$NCu$58Gu5Hz`vQqQc#$ZpkUi> z%i|3edq1#WN@JH#V;2FaOMj67434HSIDSS3VjB$DHW;J`WFO(51|2+>g2B!d20i|5 zaM-K+c1mlg`L?Y~H3<*~4GlJVuOKOCG=Dp}Nwm}i|JfuY1JK|MKqEy^&O8}zc)!O| z(5U{lt4sQu5y4ffyVx}?i%~w4Q3M24YBEW|WKs%~sb^#&8Gs3A046B{|Ed*B!DM8> z1l`l~g&Y3pt!KZK#=Aa^cL}gG^a>~m!D2@Wi*L@zLhOSD+XssjK{-=;UUZ7bQm|MP zu)u|};&0jw_Y-#f$AiIer1-;b)^mz4~i{+KIE$91`HS z>t#E+l&M|Oc;@kv=_9>%gk!?ldX2r~)oP8s`9KB|+siH2*ps!oYj7?emI=+T&qr&9 z^VXOt`T7Bm7osh)TB_v}GQDt@-J_J%l+SBjmq`LPjic%NG%Y087|;LFvv+9q#N^nBCs#poN}ljHz`Gn)h{3V*&79pNn}9Kl)Q2j@jU zIAkEfV38l3X+d!IEsn;+pZdXRuq4_!Ymr*!;LN0~aNhsbl4w(JCrM>$*EVZLs@|8B z0_Xi?h+RTZf7iqa>Jj}5K|NxFN>@5i=P)mvvBsYF4~;e|VhX$x9d)XD_wFmvC0_Bh zV$Yu}Bedxxz^_I($u!qxlyy27zON$}a>}Zn1>=5y1NUet6BLu*#07+(dy?jS` zv+31naWi>c`I2VKpy*ZJbEJe^6a(S&5;47tY2LASF{g|3GUz1{mW2Lq_)r8>%A#s` z$2;~Yc!&CkI-CBk{DnH3{_bh(?Bp%ciAke|yG`Vm!GW#PwClcID{j8oDk-a~P448f zNpLFFl2scn@ETGgRNH#*+O4xI8ThS!r_j50N2d$Pv9+QKx`98C0NK%bu(YnQ`KF|d z!zh@3VoA3QMG<>MV@c6j#P-e<0?;s=#?u5i4cwG`i2&`bLiJ4k^tk;@W9(f!WuUMm zN-FxUZ8a6dCAloAQ-(=jM(cz(2{&yupMDu_ofTE%+-lCH+;GM53ld;J%t}@Hlu}?o zBpd7v`nY|X81-ep{)PIo-`1B?4v1Or+5vIP&gi(LisNq52NkD)8M-TawyFC?ypFjb zGgit-WrD1bsr_xVtylEDl*&|)1g9}KJd+Y7$dr4}hW6hev>P*G6%rX1DU5BfYVT>J zugfZ@`EZcKlyPv?FhWv9I+Utcn^I_`GssZjoSCyY-a12*BFwQG}@MOLG+M~X$*g*i=tN<9y_7H%HgaE!pToF9${h-Fd z;@`f-;sn5=0JtKUMF1=c;9JD-NYP9bc%EMyy9q66=pOcA@$jL%S^HzOf~|~~zHgg- z+QDe!tUPs`Yh-s~5?r5aLEd1*ob%{}>QZdc%e4SAyvqp3ow@ELz&P1e1sEsA%izx3 zt&~m&%g}HWSryOnhLb#42R}?w444nTZwJgt3ebRgss2A{z#RU*9WdE22Fw(Je`SuP z7%+#vZ&&hz-?vxh-ep(RaaozF<8PB3TM_t0pY0@tT>if!>%~9rzyHm@BbPa`Z=3OjEpdcADZ500!7hsY+5XsJt$j!G)UObPP(p z7%LlEXG?(XgFuSFzc9yAlt7Vni4wrteW281ox*e#cKX<>lLSaF$_*q>QT6((z*RlE zD0c@XluGSil)G)6HQQgZ^UVf7>BIFrm>yA^Nok8!!&1PwDK|$87~SxE%@*D8{B@_D z9!)G5n|`XUbwHumecozvT)Wm{uLlCzs>m*NX|DbPwLc(sFB&Ute%sY}a7I!xKO`GW z`*rbi!>_DM%nf!FiPbWTGny6(exn6AQsX}nni;eLLuNMnEA50^Gyf!%Qoks%gazho&!A)^| z%|4WgKh2z_1#>bm_0xvNALS4#-)QBbIn1VAGiX zw9~{0Mtl7W!Dzq!wDn;@so1zv1!Gw0*kErEWsIS=KM4}^nVEHD7vPIBu@T-FhBY*I z2cfy0LPKT}{*SVu3H3I;cEsE2Tv8@H7l-E}GUd#BgS|4QYG$l%)+o({!*c`Witvzt z%_BUoXkvtCx&DRlEI)mC4wQ>Mk~AqCS|K*UJeG59ZPVb_H;DF$19xRukgrV88Zj$9sv|F{Em&Zul8d)sEz~suZ>HdTE&y zstJyAEBv9ov|OiF>=G|CS*`EsH0089)`}vvV>uyH;b)wnqGnb5&`#SMkQrQ?5J0Ex zru8rOxK;0gYGPeqUq^{`eeLdzbrv0+q5Hbt2ui16Ft`64ujk!IQmw?M#4mCGL(r26 zLfpg>8s(u_tdaK=p<2n!JHN;Rx$1}Zrt=CyLG2Zv+WQRXibMcVYkVZ2riqo>Zc5D5 z@_lN)uJg7zPNO0LP9yk{v+9JR0jooL^+o96vUGDw0D6r#*ph3< zfYK8H3$7jnAVbwieA_mUP`&lyK7NFo)Oml$3z>eyYh9KwHi42mW8gcB0PuC$FCf5a z;Fr#p69B5}mroUaD{f$Kq*UPhq0jd#29&P=;QKQH$WS%3Opg=5W%`FGYISu6GCm55 z&KUs5^9cY)rx78*X<$dZ2?5}!zW5yRb7x&C0qAx7$QEaR29%xvpf`d5L^k|N?PNO9OP9wP6-HA{T6*Wh6%C)g! z-VjOvj)Ok7g?SeP%25DtoIn6FRE*uF;q*gB0*2yhw! z+g*f$t-8j|6Zg{oqEs+`o1VYr z6lq;vdsuA9U8E-UzwTa|{(aKDw8EO6XDUAgIoWT9)g;$&FD-YYy_a?g0e0xsduj2F z_Fh`^jrLv|+`u+P`48>Av@Oee$v4Av1TWG%Ry+C_tHA5S@x(p{5H?O{rS4TA9-?FPYk0%U`rr#FWL*c*6qqurL7 zrvU8|FK|@V&y29xFXS{4^lO@3RK_Eroe)_Ny|+L3=JWacfgyc996gsiwFc9ZuV zQNptG8xjn=woXGcx=N(_%#pFDyuS#so!lmS!g_F%-IOl1Ij9auP;9fE9#$d%{iXoe zl&(d9cDv^D%X09{C3Mh4a->@s{e1b#ndDNU_dFnZ>N)FklI6A{lDvs zQJustS~S~5gGdqhhpa5s+7-G(bGyXk%_*239=O@QyX|jfOIj98Pa-c0{$VS{GNnMO zh8M~AIp2;~&0M6uVm14<{)N@-*McQq5RlqxujtghFZKYB0W0J>(xoBqsOs`2+9481 zk_Sw$E;)0&Vq1b_sCh-V*ttkW26QeW0Olgq3BYtfHFVzGkN}-Gm(~%1k5Q$jA@udc zlFl@p#ZIK?EMiJ>0|BW0PGcAWP6NlN_Y$DZB2-kax#zSF7u;fxP$>wB_!rn>8^mv$ z6Aj|LiLsjDIa^HYiLw7>6;PYpAof!vaeDd!<%;c$eVT$*7ElUoXOInc1lt*FG%+f` zTKx+ZVC|OF?F@8RXgm8h+f%)BZmM5ZT3<0!d~_l@6M^QYT;vBOyOy=sr<8A;vjrV zrh@~~w5^iNuc!##wp6{dC$nx7tS5jR9$7p_V59 zx}02Z0Lf9mMFDG?+X=ww=jqzm$gQ@GX-+yDzig`=X`UnlaAo#ZJJKv70BubGj5I3= zzyx0aXABd9e$^ zB|b52=gHP%b2ZAcfqlZMW}V5$kxW?e+<;$F2x@ zk5fdj-9DcL=v^P*hVAxZCIDmw@bOdqaMW7UG;M4On1-ujeZ1F$6vi(7b=N&f&o7k~ z+w87;>u|^^9Yf?e4x?PG;Z_NC{fKJQ=$nPZ2QArL~s-W|- z^iL(2e$C6 z07a+q5dlsk*oEIgC^)J^K1b}rAEE@{xX7MxMqf6eCvEg) zeP)YOG!U%@l-QZ7yh@(ak{nz$>uOT|BzNg`1K!*;1B-bORCj!W!QT7bf#!^*tviK2 zv*q}3AjSu7LbsdVGi7o!o8-voc2Uq`TtomD<8zjo(|@0mIenDkHUgBHQ^+T|Du}%D zlkzh)`auwOxfLS=o_=Qx)EReIWj%(i)YNZ9Yv&hp&`SGB_FcHLL%1rwaP_Nv8@cG(9gurmMgoeDO;p1IRs`Dh!iRb6&mb-Yo>! zsfC^@4Bc)|74F_{PZi(>76Bh@(^G|KLjyq1lHlUPiT$q_ z31yliJDLs6Ge=^*yhW54>)Pi?5E&0*+s4;rjaWpS6v~_+m01tnv{^4 z(sXcUxZDo&@bOqQYo!|J@H|7g;q^%Nj-a??_T0wQy<%K-bKvh-EAL!_u$!4f0;~t4 zD!`OnJi&T!&G_Q|y>^ri>%rDL?0T>@0oc;)M*=KI`s}bv!2t@;LaLnp-_-)_sfkT2 zL)a#kAt?fXJCmhYhFrPBE(Kfcu!k*8!|^-3C)poeP0jW_pG`op9$ZFJxW9OZT@T)| z!>$LHYl8ozAsK)MX8;;0f^w!^)2q+-SPB|50~%OOUADund!i!O)l{7w_9+Y(X0YU; z>X1^Ys)mIFmOOVT2P}EgzLdYPpnBAT2Q6xUxqXuW1ZLB3H1J&cT%>MLv zS$s^~JW@1%uXnDR^Lq-kzH>;Bq_y0O6NE0l?w58XYtDdn@dDTx1p(;dRYSY@J_KkN zUs`(@-nEr}1~sgQSkj?Q6_?9&k@TEF%u*&0U_0h7?a#uJ+$mtsb^!tC?==VQ?`wW( zH*F~piDJ33R2&^OuEUpZ(W0Yiw(OeBqU*)*#5DbHMUqlr;pe$u~CUw*Rng`Q}jhM?=n_|oo2 zHpz$&N~$=Ka`91S^p)4wG2Juc|MS9MrBs)H$SXGt7|HXvLl8X&tsfc`MeRKKv`B^13XAa?U$~oBAtw9bVj>j|^>s>@C z5Jxh^9wUy;G%@1XT>nBGn}3zMuN%bim>f%-%~y7G{e%ECK>;wj?jiuA>zaf`Y~}t% zI4mCVEf)S-Vt(9yvNCFJ)?N#u%@)yU0t=^%O4nzA*U)!PmCIW)3-f<+w06FGsJH9`l01b>v zIC*>*!x$LZFb2jHfxp$uQVfhYer?D1eqYo0zMB2f@%?q*{nrTy#`moxh5MVnw&VNk zukHB0O%wbl4aopBI0Mi~5%}XfOF`q+6dFsej;!#C?38T%%861au+x@80Rng!Mc{AzvQ(*rLYiyyuoMVpDt*4TGnMwj zP-iM_B~rTY+lRbGRqUyPzx}EhZ2X$yN3r~sN^bXj&61-z_3im|&z%XI!LBb?`d|t~ ztth3fR@K;G3N%}b8C~%c>I=H!Cw8Xp`u3IeSmMLbvfLGZ6{ZPLiXicX{4; z3I!QdGEDia;?2EV3B@E%J<>_s-#hJg@1v9eBp>!kKFNTR6aXX_5daTWLr9t@3*_qU zBIdUe{HB#$bFr%9tAVG`#{6_Q0U+q|J4}GfFWBo1eH#=K2&y+eLG1NbpadY8`K>L* zY78hr0YEU9fc!ljJB36cvDe#*Kw+A6;W~V|SkSq+v($$Y`FSHhiC@RG>N+RCCi=u1rN9>JUqkBeI%atLrvWpyCW~_W4OVL~1Xka|S^0 zH~}E&G>YyDipy!>s&zR6z)*d06?JH>JH5J;0OV@!vgO#A0c9tEc$b?_a%3fPOz(OS zz?+2EiJq38)z9%pQ95S;>>eNh>_nr~VEMK*$(@2UMgOApJVL=xv>e0WqV+0D1)3{- znjbQtGzCC|A~`Y@IcWY&0Mp#POE-hgDLf;LAE%!d8dFzop+M8}Q;J6bP%cFPC_9Zx z1i0*jTgbHt1!qx9;{5)eF?V<^D3x-SFA2}Bk(=vvBzgY%^2LaJoi1mXtA8HT*y}?e zOgGO@Hk~(Ewo2}#R4{#;HT@9D!RNMolYeu(pJxbwSpl5KbH9)s-?DqhjPRCFDwuuI znthApF#BS@k;QbTnXzw7E$?GOVOvmV8#UmG{bO$Tc2g?UfP6`%Cya*~&>A2BN-gwV zN~x(vqQ@#j=t(_RiSKNkccyAlVlB>4z9rU>b7`SFOO1z@!;<)<9irT#sYxxL;{ej0I2j&5x|xHF`uV1@H(YS7-%6U93%%% zHQZX7HpyLj)I}Tsd`GCz92^q=xp)5IZrL&;$S(}raPAQ!U{GbuZ!PDj0lK`gxqG@B}aqnhAQJ(6N>!tPk z_-nq6kMbU%RA74F_qIHzGoa-u0GQ4r0J#c)Z*VUsfXj15;CX1c>I}v|9 zXML-d*{S7}m427lbea*L<^4!f>}bemiT`I3mP=X7tc%l%xyNblvGD8-{r+ecFvYq9R z_N?`;AN3OhnPy4R^h>=bQd7+eQlU$w91{B%cm8M(1^WJoz1XmHS@*vjuN_|fqj~k^ zc(1HG)hKsN{V5lG?STYr6&v@PG%r<(`y)Y_J!WmbOlnAu zkxS$l_+kV!>)&l~XpbGZ#2}(f9wp*&)Q|GFHp(8xESy-CHFH_N`lc~ z>>fKBj3ofa)=!W?JD>1u36p;6@F@kTm3GwsyHOE?fY?MUWt(WFDFXl4nx)!G!=oke z`kkPmdu&S_ECr{ZI%L9<(0_eH5lktTs^O)3?B?cD^%2$eJN*mQ^*g~%Q(Y$y=v=`3 z`*!@Ul7N1x)W+gJ z*_NLEldY~bQWISGlbxttLICQk0I07m2*5;50L-++Bq}WVR84Y6MJOuS>2-=jdlKEk z+w0=h!vlUYzpRUQ&MK-#xq|-A#PmbNBw(xP7H(H<#Q6^W3vs^Vr_;xIOSGC!aw?ef zK8#=GQBNz4M}DdnwSM&H@q(u5hIqRDxMYnD@rmAawa($6OoCIX;^UHwC=trwISH7q zjaM?DD+>XzvRF?5rroNcYp5Lr=o+fDPKEe@UAkMeh0ny2ZVNe!he^>{#MD3Zb3h5j z>@-Rc;52Z=el7the|1imQ}chaN9+`oYGNGaKhH1!3F4PNxDY>gd=jq{Zv3-J-xlwa zHBbHH@}EQwAAIr3SG<;#t#nXrvnHmhTuv!)1WY#A5mcETniy54r~ZX1)AMIk89GWw z)c}EsKiQ*n`Kn}9tvkJvstvxKglbdrxu=Vno|9uy)8h+SKi^J1p}~$ML5kMC;`Ih) z5}xpR{Li-W4E;F~yd^v07l&v4Y7LB%!HlsSG`Zj9|Ud_3Gh`& z?dew3{#L%D;{8k*TG;NNZ43K@0cl~O-6sDr*`zD@i@5DKWK?cZz|y@O0lIWQT>}f1 zF`?(g(8ZJA{+2@vd;f3YLR8UoOj2mq6t2!KfeoJm|2 z*h2|m@_XOp5dvUR09+MF`!y&)m=wU7#2`e~B~g8M`R(Y#pdH<`FJ3KN^;g;IjCai1 zrL~3I(MME$f@=V^C~r)a^c$D@TG?Rml`1KBJM`684N8cs0L@8&nNkxKpnnnHf~x@6 zQ#wqSy8UXWOWgMoDW`o9c7o4!69Mrcr+`W9l7OvZRQ*j8BNTh}FN9*R4Fx@bTP_=(dKF^yeTBV@ zos!PhzJxW|fRmYa)wHI&{r7M3hi~>+!tAk=BCMaAi)_1WfGOqW3_R8Qx3yl*IU%pi z-b9WDw;?K$zz%?W?QMt>1jrS_zGhB0Q^HKGdPyIzEDI^CSRnVFDeFX67#XY9k zI{)-SlCEtmr!JJznZQuIkN^y3qJZiC>jXFr88|b{?-@Cby>*0Qs8g48KyJO)-iG*= z5`g4aKFPfdC`kd3;c)`;jl8n*Nfz4|lrE7B7u{!96QX}`TbVr1K*xILaD&^pwBjKe^53!8xjC)OA&w! zRYR-n`2N(o4!l{owJ1&1_UK3g7g6;bv8ioa{@rnY5YKd(~w5#--|dz zC|HV`V;P)Qc?W_rgYm)#>}l0G1Rw?iICV^4Pt&zw4<%h%apF-?Q*FvPt*Wm!^}p`4 zO8-9Tw5pD#=OOBB75Fn4oK`g^-*8&h>VQ41x{3hXZR=@Oiv#wws^bBBS_L;S$85US zo>pzHcU>Jbx=&66)2?_<5mTaGPN8t)19Vu`Uk$TQ4JjuaRy~^|pO?9rq?mU)8azB(JBpj0Bk9Ef&XhJ94=KG_Omd zjV&0liFqB{#Jny=;Gapc6!W^72kg{(+5tL``i1?`+3Al5%+?{XtaOsY@qbAG$N!du zZE9Q^UVp&OtV0LSL_kb~z>j1K1X2Y4Q4~u-;QN38j-hfjM>khi-=ha@)T0DoYK>#4 zt4Rt5tqvwLXmdsek^vZS24IjP@Q&eneb%*#~VWv~-yQF34Sq;@e zcUIG@ZQIP5@kn7a=Zc)-X7m*~EmKlqtD|^}oWb7nL=@B3XGnm@I$Lsc>Y1j`KV8VY zRXXyp_cr0^JyspGbJrCI?GpWq)CAik()zm;y9q#tBmkD^hY3J`CIC7lF^LX|d`isD zUX$!}Q}^kEb~-E#{_xc~Rl;QtnKdJF%9@K?=ftyKQ_I}A=TcU|C&11<6jTm0?gQ1U zR5z2`uz;8+Sn_d$R962v+2rvR%&zluizn)6y4lz< zr&Usy+P?kOmuTnRWM<_^WAj<3oC)4)HSV`#)YsQZkVtRZb;()cZ6gR(b+ZuHz3+Sm zbg&lyBlUg)Fz%{`PG>@ggKTv=Q(C)R-uss7hq5^#mUQpiS*%Ek&LUbvbpp^DoJKtY zoCfy3uOL91Nk~5YR-|6*@JCV|*4JvENs&mD(uPB}l`Iptbn9E(9NiX8%8+Mv|Ask}5gz4EY=WLTbxPH|9)hFjhZ!Womy7D9mQnU_C zi4DpmJmK!*!#0BEa3X>&`{h&*ukj=JK);;kS&P*$2k$Y;DR@ctAxSlY7tBu4n-Rhd zQ+b`Uj*=pjWRZPCD0gXMgfd_MLMZe9Bb2ib+feoz*0w^@IFW89-I$X)q+qbf7?|^{ zcZ{4uK##IuV~b17oLh6QvOknm>UZ(PZ>VT|#eTPquMz{=_yj=Xt3|++^RMX?`rXd7 zn~)sa;-_nS4aJbQJ-Hu4Z2tXSY03*`91YkrGz?sCR@hnOJ zlhb{Z3kZNo0kCPjoB)^{vDX} zNs5s!`-mOsE>M6*y3aJbq>)YxW29rl80k_3{thuqG13)2V&_l=j@TXI?(B-r0=xL0 zcOd|?Kriq+oKI-g`IdQMr+%ISy=;Oe{{V}gYbPY`NOx{ zDq**kwR@`9Vtps%^iA0x4IN8wu%g7nIcZ_9Hw6a!qXS8RsYLIic7ODG0`NL`&Y!up zOw++8-JEwwmdPi&MY?06T;i1_6urCpv$t03&{4ZhT8nTntp0~(*pLBbC;%8k_f2xq!C;gF7A(^yKDsKhAR1^@Yv;Ise83DkwI00ZPz?l2x19Kz? z(dCwCUgkwry&439sQP7z1{u2r?uU$%ygBmj8|0FL7cAdca&qNp=bXJ9U+a|Xb2F#)KePUB4ioJR0U z>?1;zrZAX0K$e1!Nq3`M4-9L(mcd+rMb(edDgL%vJgNnrpU{rPYYe{ zl_r#GYPk3@8>9;fSC2!*O=x62*@I|Qppq9S5C;fOt2qIxl~(+iek?7N z>k{X>z7@J$8F7om#};4~203kg7IMZ*v6+&krqH??yg zDP-1+iL~*WP)dz&xZ&S+@M^<=1US^tRGut>?@n^$DGKQRZYF@czkz?F`*Zr^DVfs; z%NYbHOQ$fO(Q#k{r3I zf{x995+FsH__?>=eR{rrX<2}~vU2*MmrVfZ`3kj3?iAL3ozui?L;%WAJ)zNS_4fL= zc%3K___aS_i|+;ow0#JG3DPhEke_NO!LbA|!Fxqfhc8LDwUb;bpkz)T1Q!v|ds44X zAwR>FBzFq336g1c@2r23x1Lb2RCg>(dA^rvzFFSj3U3!B0?V&`mirh`mI8p~-vl62 z0Z>be{}YrC*V6QVEK6sg8l`gvKr@#BG)AX!IRQ>X8e@k2$YlpY!Bf<@H1VeJCQ1a` z1OBn6w6_z000`h~uWc?rCl#zyco~M>qOP(?N}SO?q6u+EJ6kR4f880a{(aIJ?cJJQ zLYa6`c%2HQpAswf=cJw@&-9Eo^t@R!uU-vrA<6A}QIBXB{9})3m;YmrXyFAmc^)}x zk7!Ho&lwSZ>K{6jU8k1VhsVjZp2@Cg^GE&uA#Wpzv9E=1A|3xc(wQc3FCQrT-10qZ=%;53%)2IaI-qx0F?oHn@_w zD+myxpNVYsNi^uf34#!$WJ)_ ze}r9kfK)~Dc80u7TEZ@2QI?F7mM}9LSXhD}!V(um2}_VHf*?vz!Jp|A1w?2Q0xF&v zFkwPLJ#zrhbewu{iaFt#G5o5&em(D-A^DF>eO1-n7#mIKohu4@Ad*AjpeF5J}K zLsIa#^H3i59g~NY0Ulfic%%t}%UYI#$BGmlXo|nSFIa5;%h4&B4+AnE5+G!Pqtc&A z3Nms8uDyvH<=119kupGr%K(`)LAHJ4(Y$Vkr640ObqgD1+wQA7SB;ns$5l+u0@|@6 zC)%CQ#B_B_s(^v>_@J62!Ck2WyGeWxemjZ@r%0+%O(Y&*S1!L=!B zpwQa(d@SB8>W9S(H482@i#RByu)tARKynO?6(m6P%Q^avjgJ=mvgbO~bD^_agq|kI zwkt9Vni!TM^m)n94`jp^N3UODXPejw=6McEqkqOl{|w2)2G~PVPOz78&rO!gsNhi3*rrqDy9aHLFIa9$ zNlBO0$N;IN(ER1rCfX9Od5-`jGaMiR=B;nER=c}j(Em?C8tg(axaJYcSOvvz-jnf0DSpw}xFC%7 zU9WXMAw>Rlr@sr~RVN1M zCK4Rce(#R4n40Hw5T2P95EZ zaps2agkMDM?kf5Hk{+v82s@AWh*=cT(!FZiPVaW@U^6?%&NSCh)aY4PvfvQY1zChA zS=}s|NHYIMF0pfdh|5=)ezK#x##&XsPh2fGgU+0P&h$w(Qaj$*-qAI7QqIj<0$29s zRAiXp@d!y#}0qFc4c5rFY309Nf;1YlSS;9c%s(nGSX2Ns-XE+sAaT^9IVO#u7~FyYih{k5fa z+L(<5!nc6l_kkMSht&^jF4^io20ija^hkpzcf41ju2y+{dv-}-r3%kftZ1L;9XloG zNAwlB_Xu_E3BSqq;6+kGD#%_EV0-X^3NWgr+-*DCw~t25 zK~lo<`g27)^!I|C43dXi(%O~6E`cp+jY@WC|6a3l>L@_VsxVC3ABbNpt3Q)tEURgP zAPt12SXO_K7Sm<*KtjuTK)5*=OHzb?dL_3zXj#ea4#ppoh7~qRazXAQDHz<5#^9b~GLQnmfC~VF zG(nIH!cs7}I%J^xo9H(c?W#ud{|}^LWN%Ypk96*mk&R9_-%zaRe_yH~?0*YSEsmJK zNJ+YO@LR#(E5T>vOIuPU5oEXSk&(GS5x4lDEqC^C(?p|(2P8I4(!|&_wbTMJ9k;10 ze_=XqQyB{&Wr5rzCwR#$5IQ|ex|LHVWP!B)E64(oKLWqql7726zqA?CU&&2qUNY78 z8XX&TxGa#pqhsGhY{$%mCMY8TWTd(areVysrImFSDzQVZZjfOH5ISK@;bi;W7x7BA zaBOUnnMsf=0zvKv86?Tf5RbM`j_oln*2XMMHJhAu1dCMzy60@GIzF~PVpfm|rq`<~ zyCq~D1G?1{AhNwrEQ93WBy#NZwiCdo*^fzty0H^IEJ5#*o_Bza-F^Zvp^HUsh5W;o zs1v=t^~_j16R8r`F=l$P!c2d8WxH&C!SD)eDjv7yK#jV#=7=T@Oe4|;-K;8(ZW{)a zt^m6qkitoh7u;5HZ2Oa(+4d2$D*62*RUFxgq!yTi>l~7Us}zUYxsZUs09=s;vYbHW z8p*N~7AFc<@7S3cRl4(}QoiewxX5fGMbO+>#qKnzY_Km7If~s$251xkq*d$Nm2Y<{ zG5;h~$fl%&MBf18eo^o0Yf|>E!1*8n;Os4`RSlcaTkPJ|Q#JrIsx>#+go5>8 z^vSXtCO4dGI*}qsx2x*fwwM8JTLHj&AOTu%q@CT_F)`eXBRMzj=~Zo{o-}S?em?3@!?VlXQX=nI`{dN&W;bbp-D?56 z|1hBJUUTJrO>&ec24MFW0o;ZM1A2jd!;G{x6noHXO#s?ZfUR#8#4DvV7YeL(=uF_J)ZzASqw^g$;iBtR6nvpHOrp6 zHdbUt69}qel|uC@8(V13AuV*>*~Sgbr3@%n0Wb$$Lx2=oW=l#v(+vbM)0+dP-o@jj zr!FGK5q**5AnFa?As{f=w^Z&dp13*I*?df(5|xkQM1~~>>N>jn!~8SMAB2PAuK`6< zJ#00sp#p$nLjq8*zbeV$<|LAHpKV>;wWPQ2OL}S_6#y+coB$B?783~Y7P)`+%v$?- zw_I~Jfgt#6lHh@=vgAB{n;hj_K}ukGNp;tdYZ=gn6aXWOIK+d_{n_z)G^`&R9$H8=>g1VwTcj|8-Yvrm0(l8cmaKYSnN&a~Tkx za)F#VMP{asBuAlQuurB5$KDX`!>Utm*cvoo=jfqKOlV zS`gIxDA5a{BRm)3La1+LJ@6f9$A8tW>cGYNOoH@{QR-9w>C-p#??cizW~e@&3iVR~ zr*Dj**zgnkDK+iJ(&Dye8UgN^PxCh>*R)%&DLS>nIW^@FCbvVE8i)f491?)t_`fa* zyQ5{%8Sde6+xA$^=$M)|b81OR&L!%QV;M~);HUMmCu1*~t4N9ys{GbPV?uX^t#Eg> zfedgsuucUy91!|;gDGhYW*(D)6aWTX02rhRg3Jw;g2AAWLEcS0I@*H!^A?y59GB9#IiPVf0YW24 z+jy9ypz%N&jcv!IAq9X27XTV*f^7TSmb^T}QqZ^|q=Ea-pSR}SWxnFLl*VTPjn4=O zX+&yM&(o}pKhtPbP=%xRCn*3lxB$>d6J*;j9?BbGSPB~ZLmIokFSyGjI3#5tAGN|2 zbXNjG27^e7h8R#gbwmt4CIcw|47dO=ND~CfGb{yzJSkBRY5kbq^;q5>a|y@wZr{O? zfW=ahhb(R&DOjvcV{y|lSu71$Z~x#c^q4yc*DWl>nhJ z-s~qqW~8U`)%2gJpO`*9CINAcW?dQ}4g!uIGyQnW|=%v3s^RpF@PLJ9yKE&z1W1VK6tOF^f;l*qkm+<)b!ZYsy6 zG$sW!CJ_+QSVB_JSeQoR!ei2q0ziWc0F5+3wmoHkY@lH&Xq2bXnD9yLZSx?>Z~Aq9X27XTV*f^2*7=dmS*rJ!+d8jY8~h<$7R;<%K? z!GOj=0z8e@8Fi=&YTl^0yhE-l@a;xFOtMtzsQpUH023|)Owt6|w$eAT#fGI|@=M4B z7c%$PbQdz~WJe+wGSM4lhchO>qz3K5e4^H?#YIirE^YgFvEnohyfdKJ0l7(-OGI&< zd=?3Y^ehT)9j^F3w#r;VkZzmhZeA+|$yrP5xNF`GX*$uH1(1^!d*3~{_rPXcWJ53S zQbSg%X?2iyaXfb5xQ4AZ=Ob1ss@HW>SakxBo7Iv87%$E0y8Ufy1*mrko8aDcab>r^6`$x`>=V5!O%S|j zhNb9T)#|$5^h+I=y7Z$qr+kXIU!{x`>Y^N^E>XR4gXk?>q`*cVNwmx=(6Dg{H&g$@ zCEQFQFPTep2{&4{z~>ZCUHfDIN_Nez&drlOHNzfUaC$BKZM}F6yZ5hH^OVO6d~{(; z&3J6hlK9i+QmQ$0-DMyLsJV~=MFLZTqLEQknsY(ANjK6!It}?qi*G>v!K#d|GerMF*BN5V zUrH2H{t~7-jJOM=sWhAB!s_wasomtJ{9xKDuMxk+%%B+1Po|InA7jPEs_4qs5e`nA zS}%l?A)deXr9_iRx!w16qO^iOSifH@enN%6)vIX#tQGH_bH18zRZR+g*f9O*T9Tr^ zCZ^l1APudr`s64jm{aTDrK+f{yY(;B*4;<0t%>zqZM{|}KJ9R;!IHZ1o6WOSJgVwx z5^QWN-zk@*-OhINJ?pF49bf0|H+u-jn0iM(G9sCPw!>@Tm=f96Y9+A@(!~G}IgSRa z)|dE$POV3SM;uZW>$@Q(hUoNf)^m$aJ92=9Nj~AQTMp?8NRE-!roKxp>Q4X;kp%D_ z!_=Y)qy@KQo!hfX4!2|LCo_xeZ~p{wcon(#s_R*Os?B6$?ncjgJnUKD93RiAa7+D) zw#EtZ?m4@)(zs_mNwpZJ5&fM)!uqwoyi0IMbN@Z-Gi=k}@~WHLNeO90Pm%!3*<&ie z;F5BKG@^G&2?rkk6tXF4tjmKS(@iT4YH9ey-FtxT#!+Yv4@@z>W{;#rY&f;IShy>bv}*N2FIHf9Pcj6&>#d6@(oR z`9uFECF#>a{?L0_&gTnRZqxFJm7)^%yW=OB4C;E=v*110;dlwhTs@1#A-QokH=0tT7^kgIsbtVC}2PfLhUlP4s-cTz7@k5L958{P(`R(zl z_P(1N*0r@y&+Bjck&?{xK?V_-CaImA?J|gJ6vT_{%im&l)3qV%2+Bwv`l3M2Sj0x~l0FNF|{s^a- zszsJNzk4j>FuKU2*;^9tX+9uSC-R8A`urEU`H8-xvo?W6$U zb=I#TFOh*)3sPoYO&d5~fvqVfJ@66$yuLUX^76{3A4WM$5Sm6Ph{+ouJ+WkR&@xiO zvUh=<`OU{FgIv3p?Xhb=loiwxqpGeJpom*z^?lxQueMu z^~7ktX3e1qz4HFUD2Hi5|05KOu|}&u`jJKqbAqZjqz2P_zp4%0{-vlA3PdA{4AHeA zWke?cTC#uuYRO29279b`Tp4hTv7LX-# zbkWt0nAyaDwxR%t?m+@J_MTK0Y3O!m{~$SC+(vdfa^Czuq!ySfH}f^g(R|+EAOV3v zGXKY}uNCqW1J6$~$+PV0GvX6WvqotRcYGt)aI-SQh7%d66_YY5UH~-Q5CW*-q5~Vb zA?O{OZU0N@{n(voh`Le?(qhH=#9&c{%sUI>E3(su#j)E+E=Y;q|b03+b zv`c`9O zh6I4Aw`fg3vPexk>@hFi(sUyfT%S(iiUg+(j}%t2z30crnNrdQ;Q=|WVaG6_garWM z83dqo0fcanTe^f$ZDL+OBInzoo$}rH!M(S&r0>0f{p|#Ry|;LP0B@mLGIsN=jdINn zLNVQnneWc~BE?yD^rHCr=3k@*)^7)_KV?8!3jo$X5`a<#2w7KY61HJF>u7~0u4j8! zxuon}fpSLzGN+zV775DkPI7O68LHzA{hOOp2?b**$1`5_ZyCT>EsdXRCX*Hzmp5_k zd=3N3SO5$_lA} zcL1(^2>@4bF`NKzvG2`3aWjDc(3Ia`5Y4UqB~$vnDU#*FpV zb;HU`r4z!|0a5t?3VtA0mjNXz0Ep%ifKmlOdv+m!+Ed=*o_l&QMR^~CNY(oQ*E0wJ zS8p+$0B?aQs>kJ{a?N>!f~%ONa2-;qWRzJ+THv}o;Cc%K%2fb2%m_fK0)XpN1Tfdf zL$2P(d!*`pfa@m&fUCFofdFqI>u!)#9Bmr57`TdA3Rk3mH6|@M&u;4G8l-=EIzL)Q;_;Y}o(bA?a z1#E#jH|ZoU4+>Rn#{E9yfyx zUG5l}=)sU#rve-doopv`%im?5APtu}*3_NqZ6iPq#Uyi#1UL_St!a=srT`t}aeW1u zV@=&T82iLISen3Rj!{WC2YaY#kPpz5Gskknc6OO#xi0dG1R(MzBtYbia)XQpX*Xn! zslrhiRLpe@*f$uY34G=ll?VnADG?bBU?7=eq=4Xu1i=p>0B4adbBv^5FeQz_OjS54 z11SJ!kz4>6qzQcH7?lVHgHjlDux~ybzs6pDu6r)g)6|;-1~-$XFz`uZBn5*9(im(z zCIcw|47dO=NE2k+yC01g8J2><4QUJ>cr5;R^A*RXG(HPxd`19zQKT95H{^?@F{q#l zM{NV~4F>ER4AKPI_O>VEqYX>JV1F8e7q`c6FbR%J8FX#t#z9vC(3Ox-GKi#Thyl$~ z2gBfF(vSi`g9`wSG(on#Z%2HXVJT?jNr~ZL=wM&jDR*U;a9o-+7O+@Kaa*w%ipJ>B zJheAd6J*;xug2qsrJzw?O61=3!E5n*%ruTmX-sZzbF;eVWRN^$ zaREueVo@54i;l@c{DZ}0as?J?f^7TFu6SR=Qm~j1vdH_WsH6RCclq@eM98jV*};i!!v1uWaxqcK+#Sa5+N$hL346+hXq6fEuwSs*X>)3@V0 z&2cT#y43H@?Y`T3q_@R*Q=b)ehON^gwKHX_!cpTF*Jy^{sVYDqO^|KBe@_kvSqcKb zh6G%OSW|aBwocY?+b#2f8%8$)|-8iaVnkiDpO5Ts3WzHe?NEVn)0=$Vt{MJ%OmF;`u8(n4oMmYA} zm$tCELwcSXT_)A0?+DqLuCPu3Jw)D20QU0&$YF7z*-ii+2L!<5fV$KaGKwjAqqVe! zd$r7TJK=x%gDUEl-M0O2yjk?a7WTUz;`Qys|HixJELGRMH=aplA!+PW5@1`5cX!CP zxS##2Z&_vYG2z(V{!Rj1d;Y2d>~5trN*~K?nbreqv~-hN4FZrp)`|oeLd{#cO>P?n zsOx>GMFkH9Zj&oM(e>CTx?Y+fNFQSd7rRDW28j$0$B&V+KBh))u#vy# z4>zxnTn{|z=+gz~hmFd1)&D|EchD0!wBt61=i4GfzyBXOL%;XR*KA2q#%ru)35%3B#=?FdTy$9v$yY}*too$a_CFl?UT(qgSHx>f2ohB{^)Ny5}04Oy$iTIChm;O#;;5q;!*&q=6bFA8FwX$hupV zQG@sBU#P)*j#7h@T4@bVw732lUwoL^J~G}O_*34vzT~g?HRd@A1eLdg1amg^OXw*> zku@e!&6Zv_vZ3ucbnL6<-=u_*^=>P7&h|M2diEp$hS$#oV0gW2mpvxKt6FPe6m)Vu zdOG6ps?^#IFL8)L@XuCmjcHE~5K7zDZmbm&fUzb3)|gWWz#1cfcNr#&O(ZS&9T)hW zLje2=fJ?ItGbXpqAP~L<^uDovQS~O<`OTo)J>j~Y(PO3=NP(8jf^nX z0hYGMRe%91MF**5?~xL=hi^$$Xhzms1cckeuStrv?TglKZTnUMTHDs^zx~>_^~pp% zd66xaHuj69Elm()lCcy^+iqz)-J-wV+MVB&w~Ak4TDFl={QRn0^xQTs`dk9AM@K$c z0Z9>kyp7u&M%%bUoFY{?5)1r*Q3?PJE&w!GfPAtPf##DPFNFmR@G`2o9E}ElRuKGI z1R!`kbYDhN1pj|&!C!IA;H3Zr&jld(G(nI{#!|GwjF16#wy(5y+l|MiP4s0{+gew2 z$z-oktmt|#svzuoNG5xql%!*yV)t%uRyoqfxqPt=T-v-><=d2ab0_!ja1TRch6f|| zFw&~n!$h?pOum)c%3qj#E459}C6na~xny+qoAf9NS1y-K&U0NZnI12~Wu2tUI)}JS z=8`?rG%@mUxn$#W6VJ>0r{2QO0cm7i)Lqb{anycNTb+G^_fNGZ^n^d#CDv|9bh4{j zBqo{ugvcTgB#)7Pl1o2vsIQ+&G+Eusj7&9~oOJ{XWRQ(%mDnCJv&aOq>a@0Q;aJ3g zE*t`2;kbf;NRQ5C@|i5Xh_W631>SrIwN`@D1Tt^>(4nT-g*`)Z%;4T&7Xd+8nAu-% zmpIXUNFb(mvBK0oxvk40`P)2&*0eDU#0B!0m<`Up7 zl1XLeB0@n_%skOBv+R1(LYrO}5WRx|B`N@jK12XY6+rJ1?TQ0vPr5>kJ`-^CwtEj_ z3y$9q0FK_`cLIEA$;2{~(JpKza1^s7$K;Epnv)hdp3u%UW*!5|Q2=o4K>$h>0C%NB z2_T}8K{gUCXkt6PKct0pa5X`J^{?~J+NF|d&f!Y1HS?xP45CME4B|? z1}uG{bqMel!ZNrJZb~SqikYX1jD|CZC1#j>(gM|P?OlWRV?e120IFpKpi}{pGm)7} zs0`86>1a}WH%`@JZX%XJy518QuOI-7#Q+JlB=-iGd9Ql1sGYfoP!LutO>C8QW#>E6 zwzYqnH{Lu)S|Ge5Ap9l+N>~68-b(;V6##AfJpt6V(Qn$@$WtZ#BY}PO4q^Lwd(dn| z0BHIW+YsO_!iJ3z3Z7!-c_M>j{kX*GW-w`i=cyfB!;WP@c`BfzjN~X(ihYm(ZxPbmNhoNFSqjY?pDmha_K+56z7x>=i~*%7 z0EQXKQK-oG*+P6Qu(;8h3jRapxQ4IVF>E?sa4L3m3~~t1{I*w_B(-F|QqawuNOEjc zyg`D1z+mHu?lE&R$)%vwj|PhI)+)vQltIZmJ!2W9>lvV;XA^*m76VlD5(2yhp5U(} z0Cg-DzK$_ut~e_(-rPo7sN?k=U02%5fYz}9DDY_lP@n+lOS=i6z9ebyC2b2_zM}W> zC8>HJp!q8Spy@5DbP8L`TcAJTU3B#c1y?ciTxHl?ZaRX$kFwty5@rK|peR;EvA#tP z&|{$(M z>hnoV3l#)UVaWgaief|l&ri}q`U5C@J!BmkHHGreN_ zj{5vo`?{2(zv|@jfa>L?#q>Fqggl^^Un_dVG*-1BQk)J=tJuDix^0;1HqE;Jwu#FU zMUfgOhURhywQ=I?rgqme)2i9mcNNVwokP${Un;guFHKa-?kdut2Ic4P$GNPb6Z7o- z|ChM(aQ?=>S#*x+dstWfj^L{2rHN67LbLL`f6D5nBP!*zRX=E{3a()0g$td@R1%IJ zCa3^M57Nx;RaY004i3E*=ec8}#RSO7%Xo7g32^ALD$kvFtyO?dinxK@WrFy`VGH}j zVN04INLXSi4qML8bH_#J=261Zs~nG>8NC=p{vrX0d>;uA`G?|9-zaleo;&OM=$H(| zHyE&QFh~;w2}>*mgMXwj*kc-W4*M#qyy? zKcA%Fa_(WcEK;STa*;yNB3uZ_qzQz~Cq=^zOF?FAl1%QWMUR@z9F_K_djb;o5D+%V zb0h_corfXu{4q&LAt1qpfJB-g+dg$eqKjcENZgquvGLYKNBh)`iEGS34o#W-+}V9t zf#hLp)b2tZQIiB}bV(f>byVS~Eg}9v;%6!VB+>-g_UEsQx*L{)#1Balb8ks}Z2ECT z8h`IDZfNu-AS5t`q!`?z(+G?^CIKk`1h@bYNE2k+^&1nD4NH|kw5OD)r`a+vq#1Ua z)f|#CSP?K-L4YtAZ|)=kg5Q)D{N2Y4UVI~X_Ko1v1lji9O^HIoQUt#|3?2vB=j6Fl z=Ls^`YKq1<8SR>)L92^@iBI&-#JDs$@-O~=XJVqM)HUo_xQdIAVDr0^^}x2swlA)I zsmUP(yPXDIUFJo-uI^T>Yq~-w0W|ZX7XjEs34lHI5CU`)7U^V%E-Dxpsi*%7a;Pbw zyfT*$$mls8q{<3 z-@%^DE!pA|-HLspTcrtt^b3}vTdnJgZWLLr6&`#@<8R_qx>5>tQSM{6Y^-SNht?Y2GjU>8m{ZOz?belv>r%+-k(F^PDdS;9l<}a^rkl&kAnM6xX)S^18+&SX!yt)DfcNc4G_UfkI9pz^)NUCi zFZcRkN1{zmYjw|qqYjmam-M_!0vQ~oIhpAuFOde43&=-WNCUDyQf2gzkM%F~kdM2i zr)Qw;F|snHGW9JzuRfcYmC_~j)dVs_<=GndudiaNPD%3}QsRaqQ6a#j8mRAv2_6H^YiDm?RY z;wCeSB0%*GC&A8D@QPH0M?%;lODsQ zj2}q}ZVv=*E5yT=gj)ghh!sEX%_I=655RR~ivF)~ZLCj&`k~)stDYJ3xzbp2%;vo# zW4LqN4t^(5lyj!qa9%UVLIB~qYUw-2Z@__Y? z3lc$)gTYd)ZT~IuxO*;rLlut7 zLJGh#%>{r43y_16BG6sy){p^mFe)abuweQ?@W&-w)gMOyf=3QULy~In^0u1Ddbu*1 z^GlQ5B!R}NbW{RT2ncW?Adn^q@-SG6cK9P?f$i(KxZA!Cl6KKNi~;c=4`Up~i|%)Z z3c~KEc^G!!Em$I@XP;tME~q2lj1o$#=L~EtdxrWZl5kt%0n)1aL9jVzU2M4jU@z0O zUWJS-8azA#v6+#^#b#!WHZJDZ>opS0uh&bJr+!3LmMXjI$ILn3k4`q5Jo3mwc6&9WhT)g&`l~c@kg~@l-|nC90N-70Y~yplA};D0LhODV3K zlGTf-!E}HI28~GW4P=0JGi?X}L5U=VVB_rkp{9hiK(Kp}YsJ9~D8cS__lwesV@aO* z-l#G=_f5Gs>sh;McXKvD0mY%a3v(kyt{DRde~bDHFzZeArNP<*k-9=J8NL|sQBFFJ;wv3?)Vu+yoL zzUDWAs1YMSIm?>e!#2{k5P9uaq|S0kj*_4s&mb|H?kA~xy~a)uAfrCz8e4n{McncF zfQONKo&+p4iY`-5a#U$Ra5l*UeLV6kAvtRE#bj;bk>~D9uc&2D_&$+ge{Y%J$E+cB z)a$D5uIt>!fK+T$fMwfck|R0ziX5}tvjp%g_q6l@O`sG#Oj;k1o_7GIUlM@1+*|xg zfVaRmxPCq{zq6@Q9JUt-ud@3-EO75-(Ir|}Fx>SvB}MqpDR%48kYP(tvg7s_=u5g# z2Lkv(hHKs<>3Tf^M0w@9bEI4YGL|Mf6c3ZA9BsRNA>w}Z<`8&Z4s_{hf~nF z<{ew?u6f53fIZxfvZY0lVt30sy*Rk#MHqPClJeax@2&^RJK7DrE36qEUhJ-T7pqf_ zX9$&oE8Ys7^Y1kmlN67ic#-U!E$gc$cbYZLA*SoQ#L2!S{QamI*R_q>DA1S8$(;7X(7DwdOdbr4|5rD{>kpPjO&;!q@kuU7B&k8!^ zv{3wL1mr`NLw_u2Y}hm6PZI>Urz}PMm8CqrU~%#9F{3#ky(gfMI`@sCEhNVhEUf3yhmbZG>$V?pxIPQ3` z*d2G=DkEEO>(D5UF6-9L>mp|}$%%5n%=`>n?b*q-?8=ANS4jdHw(;Qn zdNpV!6m#6^Ef}0X(`=?1!0GKhB$zwAW1%f?A(uV!(4T29Jo8-nnRapQbIkLkq^n%y z8Sub|IiBi?6IOdo)k3|Sz#_OuWO}&z71?3g6aYJo-w43oQ~)fS>P>%EO<^Su6t?$t zhwgXubO)ecChX|4{M=~c61$`<|KyzQ>XcWYJE;`hUt(Vy zl5gzN#a$|!TvEa!l1~CGA~6+U5s@P4TCbE8F(V8palLT>0l3ziL;}nR|5*%v!kl8~xdg(hQZoB#!1G-%m04c5{ z$KFxo*sfOX6&9`A)jGP~^L?N6O#OXbq@ta0VxddN6kBXzn~|+|im}p(0F0Hu!sZ;0 zf#sEP={Jy+F@8i@#?OH2YZgW#$LW7F-Yjv~e^f2W7TjIpM$%&?$&vJ*srl`qXZ5l* zrsa>x*{#fZBt1!0f!|~=pa5hfmF7H=ZZeNFa8pG-(gGQfb+sy^3tgjsp$lEpEB&Sl zlN!d|6H=Rc>DO>({)H)hX5WgGKJ({nnI!+yF|V@i^lsMUXyXWSgf4CK6`Z=;;kMtH#JkI{0 zi1w`>C!g$)2ZFWdNu#nX5?JoXikUb)qB7nSEIfLXFZX(ChbQu8{S^{{F@<5nn z=PW9{$gC$VxV!)Pwy<$4~ zkpS@X78Ux0?ddJ_K-b+&5(x5Q<;i1Rrp8b9zFNKAF!;p{1A`}7WZcxZ8#k}du7ao9 z&VB5^mgSe`)Y8CsQ2a*yDR=FV7fm4rp{w-T4dXhcbh6+#;tA4o_md=W_me8XgdwH+ z`$_e*(bQ0ls3WLWS@%eH{#>S(%ns}AnbbhjriH5BpusbP)7Q~W#kOIYDi(iuAE;Z zBRW7DHF-UmTC2gnj0O#lLw7wX*19iSqn7S^QVVw1lTzcU*ORgu;Fscbe3bMkS9rLd z{6fxza6Ku11THrvU2ZzWW%7D*q?KbE`Im3?ZEx884pH+I)q}g2B!SLJk*BmWGkhpu=pDRCdfovT?j-;Wy~Q^Kcni9RBoynGm|@*gj^RCIKWZ`DL-un-n=>Fp z^=q6n3u7jaCz=6X`x+j4(Q&`fYQC$(S4HSdMBu4hnv?)%5C~`Krt}>jMQ+U z7%=>a<;pP7uh>6qj6h%ZU-IkH%{eVi9Rfj6LiYse29mTuuyudep7{(YL3yRe1=61V zNRIYwZRaczila$R*E-R%{;m}R^LeC(Mv?Mx0ZDQ+VxYf*eY%{UhqM z5y`!QyMH7A{KQi#zi0ConiA3izwW2FHXO`=@QVt7$!9D9xDY%g`NPvb=4=9k&WbC@ zQ|#Ptx_04Qud0p0>vboUV;1tqWOv^1N$B6#ZeF~30CLClf2 z<(nZS#%$;HKO!K|$HU11l53sHrL2@C$p?LH?v|1)+aY#MWxHcp-XN1PAZ#wwYvlo` zSNqo$?wn4mRAgY;ij=`p09;xp2nagO?wjJdkpXVO^7g|>&D*2XloJ4g-eNWZY7wby zH(sYRYrW-7%@P99bHpm8=RA3N-b}NGw7_tcV`y$;Kxqnq>qn9!N|C$kM*?_;dpe*g zdZ?xkNY6U}%`XW6O>gll0ie0c(R_b--ifBlsbLd=rdWBJc(cIv_wvs%O-Tzhb53;w zqyqy=QvifnL;%7R06a?xV4ed`bnvKh_PuP`*GP`UcI;16@n@VL)jL0Gh)H zK%oMlB_|WWEm=O$wWN1&A?bMs;JKUt@bnfp5}+25&UWX$GB9g@A=~FW2?S5E@;s3t z(Dq9?VB1Mr;JH2E`33{ZQvf%x2tb$u;B4eu0)%JE_m{p5xOykm28Gq@oq%gL0pRK_ zS`q-R+rbqlAzcUqRWb5Z!@Pijqy^Xg2WbNZzX3m;P*jAV>Lc!>%Qh7R4=hL!xQOCIg23Mfxdef$2yjnV z`aAH;2e}M^HG_f-0mR{sJo*M10^@(mUl_e;kV^^pySm{BmXKdf3D`F1=lm%Vb3cjo zz{i?j^A{Ob#y!llq=skg9V);x_8u*NVdvM)hoplehCPGa5yKt= z+m4T71xL``OWl!3)lzq!(@T|)8oang@az`BrwOv{%F!cFH7rH&Eu=)f3wOcqG3QZu zh$(o5v0 z0|rkMAPjdf z>p*6(>p+HpkVXrVf=2G()UMP@6^`1KqyW(10ze~8kZq^eD7eg`70?((fQ|z*hXi17RvLqIj>$lL&s`~RcPCFEz-5Ub+pfqgXku6j0wY2K zc{lawXq(C!pZrn%-^nQk#%%$S+Xx8T;|Y?2&7)~-wyVNX+d~RKdvF1ulP1Wvd)IZ2 z8J2?1hL8@rRp+dNkInZSm$t_@0gZ165E_LRhqhIQP%qS9qgNb~+O4Xo!cl2R0ieMJ zfJT}i+fHm)aE)OpXnYycz@hE#LGI9YhfKGcVXII_+T5@fSPXV7B7eE=GUu$zT1I~# z;_f8Abh2Gd5-p>j4RLuQ+@9hfxR0Q2!5s|u5kdv`5nVJO+($gAf8jpjNx@R{M3%_r zQGffra#!azn*CARR_jzSB4szYaoga;Ho0{+5%Ug_#2|c=1gfVOheK`osBRm~*92kw zeLmDZe;s5%o=YO1+hzZjh}D;K@Xy!jsAVp)TWtsvy}GAB)b`o=qY{lVkn$ z{DO|rrNeZrPt5sPYk-IO8&oCumG|GMR2k-_Ij^UiTt*tmR3IN5hdkK~$l9RF=nEV5 zFZ6|t!_pHzFhgTzczvi#_}KM9=N7J4^zB|SB&Ap6O)o=hm)I>m3aV?uM@KuNxL~?@ zf&xPy*+zmCt8=mlO2+)sFgHhc-TQP=1NSo_0`zR>h(oVzxH|V%a^RsoPuhuQBU|SuZH=NG?98yV?@|3u&8IK07F*_4^l7MkP>#p zEk?Liy#)c`j<`EXu{IWra7%j+1!!siR-;K-+Ql)}M0Sj&JxvhgUa%C4V(tjHv>!i$ zmiBWw9$nh!2I0>oAY9t7Bq_qbT%79CK5T?r+Ls@bh7hfg2Ce<1MKA+k8peW3~3lm zz^F1JNWf@Zmev6qs37cs_;L84%0-%^EPeYF``sJSO3}7u&Rv5t_h?W>>O&JRc094v zWKbUuH##(OcvxbiBMpm<&M>VO%)@0G1m@wgvh>6YS=?OWMR+Wi^th+5OT4IB8YEuG zAA!q>NtY83ajA(HdH?J^)&Aqmg6V0$3y=JkQLydYDFyYT)z(CVx3k)!Hz05kC7GM$@(pNXGGXkK>L$#!L}!kYH%83mKf^#sY{5d1it43Y$`c+?+7vdk|blau5`Q$o4+543Y=> zVM@kh1cIL!CHW;>tODkbFHLxt9SYDF8@*Ljc-Q035j^DdV_NVI%2ED~pVB&3YBdxmhnC<(k#oZz8?G9xNXuIaqpwodoy-lc^bR5D1oH4i3%p)xjJ^M7*oXZ$cq5^>E3IgWl3@wYC=6G%-IrCf>@bvaikX~R9nlF(Y zG`+#Q1Ox_1(Adv%IXuz`QweH<#-F4Gg1-d>tB(#F3^@}5fM6p6P^|*^SA+L4?Fi*w z+h(-0?nyYT1;ER|O9?=E0+c*0KjS93H$aNU3<9L2WQxYd$(@_ZmwD#)k$0SJsa@Po z8US%$Li#>#)ag{hN zHE$21cM_mPy}=_S_Xb$f&RrWTGS3l;R+VsktAgbjcNSb=J|Hcy{8zy8O9qtXzZ}b7 zNsdCr04&WJVLLI)DrY#BfqhF-^Y&obg#fS&3`$7u4Z!m1`wEK8U_!xC!XcJfw(n)j zFEZ0e3oIv};o5Qm1KMo`aKnp$oo$QDB;y%({A)=rEK~0IuXRk-$FjD?u?$iTT!83P zBuBp${kg;CTMQ%*^pz(r`1cS7nquQ=A}i&8qyUEB1`H!(!e+rlBmfxJA^`O&00w3* z0X#69jBx`~^mcX>dZgyz`2DAwU0KppxKzRay;JpMe!8^sUTXFwLVE;U+d3z9iivSQ5#}n4c z4wK~GKw2>PG|P8{D$U3ud*GrX_xc8zcy{k7xZG45OO2&Dzm>*1lGzL>NdZ8zB>^Z? z01U@C0X!VLjCHN(9SkKs?*J^v69AUp;w%EZ1qNh|=L^P|#e||Y#mu*+aLlrOUMR5U zI?_UGt{iLU_K;4+a^)#L9koLWIkY5!A)i?X`xm}k8|B;CIecn0wBVL1Yq+#&QxX<5HxD_0Lf9S-rz3+0t3`)jqzb)qE^Kq zrB?Ael~$w$x6R}eu*tNku7sk_1@%5~Gp6J>I2JEmPMV)krD}X;fwZDHs_sSCAOT zx9eiv#w1T?oKwTLxQ<;%Ryeu6Q3W_Slj?9;RgaPm4sIVB?+$JsB0$a!$D7wkfFr|~ z$GbDzHx!^VTdoLqVJ1FtRLDMYRG20RvZ`2$qr$D@-I?wE<0-4EQhC^bh&)p6B99Ot zk(X!CzY%zLxjU`>ue3r&Vf&mMRX8dEaSa0O8U)e=L1q<8LEz660(;C*4oOdI2L-VY zA^@kg$gG+|QZSg5#$ehp8At(Ozy*LonjpxmVksC5kPo_i@aYI1k z1_ID|9v}f2Y))hF&@mZ^Z!lorV2~!rwznN9SZP=a25UnG$PN3PL(<^)2f^dB`Aq9X27XTV*f^54kT6n2pDQG+&(l|87t>MJ9epP>>>sR#&2>Vrg zl7h~O6I1(DM^!lLBr64g4i^AAX@VffjisPdM@r-=>dq>KpP0!Um$piIK%<<1kj6ri zg2sY08jFufLka*5E&w#r1lhLEt({jHmV(CEkOuC>?iuecvTl^cPjlR?ET)>{M$5g= zaVsw^m4llOg(uj9L&w*$XFsq$%YIs;utAzG65UR&SvbqQLv(TF|0W4aUTcqc2A!n4 zml}3`t-_V&Yr?UC`+TBHblWdcYoc4FNny8vLS&M=N~uc#HiiOVUztk)_LTx)PpB^S zg+UZk@{;M}iSD}mwTUk4<<2sDQoX`v(O#46;ChAqb3WEMd1Lhk1&-vlQ>j>NslIC~ z-)7s(8vRKNd#Z90U{5tx1=v$bnJ&d`G3j7RK5r6+j$Qu>p4*Y#wvv_f zrCV3qeLolF*)8W)DayH4K^iQ*^xwhW(ru~4rS>xKQac#^?ef~ZK)Y3BzPeA?T@U9O zsbEZ7$ZC6$VudS2T|*+*(#+qjjNH*)Vk!oBIj+`?fgoARMUPemFN9tUdJ z^3H`7?YCRkSGQZnm3FpQH7mT*^w(lI2d57Sj%Z&#r08}to-{G?&X{b6E|Xs(vRof$ zMIJd*UfD@a;*al?PIn(#3y80J- zRNXVvv*R$gV^ZlUb*ryK+CHIM3-`dcsY79DO1E0osqp{YOOQ5qESzTAt6%OyZAl=y zpJ$OE8DHUwy2&s$ z+0?#Q7WqgEWI)y|RmRXeOaDSeopqFoYI&xssPeg`jocde@~x*}4Lsh?=~h_paBJWz z-3m9E%P1JdlT z3un4fCWaURYtD2l?YHCrv3x0jCcXVZ07jbtSZU3auxDUU3E*9ZNpCGk3x1nUaeg}! z0KWnx&)jSANnxw#gei7GN#T&3>y!z1x{HWfnA|pl z%EnSYXMsB%sb$B;3v0Pgo=hbrl!o__}ad%CM zLf{_-fqz6HhRgczBt_uAiaX6{dv1zb(*Har0Vx0kxBw7H69h{-OF>|7NB|jaU8YJE z@q=y0sjlif5&#DHbxMDdf}Vx#k%HZNw|7qnQ+wl7G1r@l}~mL=r1(b;LzqojSQ#|rm6o-OJ{-_}fi!Tf zApq#UO#n(30CYbkfa!h&x~psNI7ywuM`U`~oZbic)*=9Wy+soOyao8;V<#sO3cg~N zqA;-+Md&0(+*=mn^pjPho0mpROGk}K|7m)l(Ybd^GgCyssL!MgnukSsNs+Ezj+xQdzQ8m6|LPFmnPa)xW*X$&Y=0l;+u z0Vq`fZ11ihfUnIjnc;SGqBryzc?cslZx5bZ2mnuC;!^~83)$UeS-g4ZRYJj2%#u8l znQi+?3q1D)Jpadl@)W=gxS46~Apm&RC4hO>n(26Y2kl7@VG97Fg#>`800%b8V=KwM zfehGgW)uOSCWI!nj;D#3gC{Tbfx9t`}sqaQ_46Gj@9M%Hh zdUpo_mjbDpZQ3D<91hK!+VTL*T;-ntvD-eFVw1MS%&~` zfro>p1W2{cibwI+IcoF+vO|pufX4fh0F)#EYV=nE4yjR5LXB#;`fkX& zv(s8q0MuwM0jN=L(UAbpP-?U&gXE}CG4K^ChwNE);~AaLFe6C|6*_FTtI){|XoV{9 zwNwnrQJl!b-N+?`3fGj~NOb9JHz>sdTyG&|?`qYS-YG?ZsyBH2Fa}t)zJ8}?OYE1sX^iUh z1fW)heX>?{O5gBE;Usf6X`xo{INNojM;Xvs6#%vRJOLr@huwLZd>iYyIbo}y_jrSv1o#rsdmekDu%*c%RC$U!sZhKrL07MRk>ZOoNChPG z<~WkQ84!|@JiF{l31ukBQKA^2=S(6Xz2`*6JLB_6r{vSFWf8G`rJ$R+l;qlPy#8vE z2m0tW8%dttYog=l==9UymG}f{`f$-_ULruN)bo3nEMk zcLOB%2B^^)1RPSMVyqK-B#8ME()BT;POl{Zbs89KAh{ZdBh=~rBuAYJ`DC5yr|cHL zUU-^$fwWMk&(3vS^lb)o914JO_z?jJPyk8ulqZ3QYn*I;BosB<^tr5LuIGWkMYVIn z_JRumP_x+tpk}>AO9H$Fs=VSExsYZTcCD-C*Y9U6>HS44?SyMTB{0x+HFAqYS&wICP2%LEVsLFmFb`-$x*pt z;4Ak)Rq1N2_7+Ysqe)9EHzG%Y_jQ+Z-tmzW%v1)og3IQ)3O<(ra1{W*8n~PQt=qK^ z)lPQY|C{HQlCpVgB1N$b()2DsbTa`Us=k-X{)FV-Kpzh9vw>F#1X(fiWMvV_vb{bj zTwp#XEs)(yWWQ%n$?grv9ydR&NdyS@UUdjXZ<_OKmF7M#yXJgH*}G~-%HSXXNEZ+Q z(gN(eQl5xN?hUYdF2220OEZ#Cuof%Ndey(>2L>RU%1%(MoQrMQ^2$8xnV0}+zJ4mSp=X^0kFQcAt1eFBQ5Nz=Vh-^ zL^?2Taju&t1`wddd4tnP?hPG5 zkwS8BfEoC10#K(vg>|aS+cgIZr$h>08EzK(*M&pQCmz65}$ zw-`=+V0RLoL{{#AErEnD8GXrWm|s$jd|eAlv9FraJ&0Nb?$plAUw zRPQ7peW>0ZF!oNKAzkkTjCTVlR=}oVuOcnLdPvztQQr(EUcIbfNo= zPIbhDw2Ma5?9!G+_eT>8-7j&<)d9!RjXdHT$G5dADmGI|id2*Q)K?M@1$HKfKUoo87X|Wt&NB4DM8PV)WobySP))X*mz8 zQ*Mn7RLZJ%+Mk|9f;6uKvT7_6Ya}z&)W49-P;*gw)@Ckmhwj)*MwvCCt^oPziI7SP9z`Mduu@5*FkaO*L0ix#&fg zkpNlZOPl4j)tabmYvvc#u&);s%{LoK33akAsFNFlIw3E~=&ujzWLa1z&lMFli|$-x zKPxKgpL4xBlP1;sxwWJr{a^e4+fR_v8&7`n46IgTW!S1ktM@AOqo9aIyYI5UTi1yEsEtFR2E#n zpAaqN%}=C2T(aFSu`zbngX@ibx~F!4enpkdcv3>z{COlm#?yQiAmd4jqz~;bCq?9~ zT_KTa!rc`FXac?ctum?)xn8#{c4>CEsS@RQjn;qr`5rmT;tn}p><&3zX@cO*uq;K6 z*QJY*e$<$*bw(YfMNzq8A%k$%w-FF)14 z&@Vp~EcNxN!GyK;$NrVwv3d-#EP}!ya64dM*3LR$Idk8B$csHZ3ixm$E3~ zoyC~yF-S!z_}=c9rA5n3WQi2YliVK~MIboT^dZxL4A8afEpZ#CRt)IINdRn|x)OkI zfG%;n#FI&`yTm%WLUXRUtPIj_^&(5$u2K9Uv4+e7ci2JACOL+WFMkOEfdTT&uOvBE zFEPOCReOn>xTz|V%~wmXo`p>!i!pE42!~a@5hLxcZHamoIp+5)v3HLu8kkc{%iuBf z8&xlI%pamCuzaG>~IXJ~%GfkPXOsMV0@bu2i25tLv?vSJ275flU9&xD`htA0JR^LB1e z{X^#JRaMuk4%5@y(}U);+gzbJ?Y_sq#~gD8^uTk{rp+Gni6z^}9&@Krbxv+T54FRs zu9#_HX}a{a**Jz(4tDP^v$GQv9R|ZMNgyBf^O@cpCOi@S&-d8d;pg`tt);!RmX*;; zPw8>V`6Y@@kk(ODvb_5DORDJ31F~yp{%nfkRDHo^C(dInEtYPRMv9O4?G$Ms#pK8r zWL~(AQAUdEnk%HZ?u5cqd_?+zN%5ZYZE7Y`9MYMeTvA3)UN0Yck4?`mq2K&=P?c17 zoW}-dKdhn@AClaG1gop&IdeHUsyih6dvyij=%u|T*j_r60qLcIUb<)XNNaU7$?;$! z2KZrbIsxW~y+V3vh2Z1~wwsC}deLPQ>|XVCOCV<(i{t^MwVcY8uOU*B@w@xos zE+{Iv^SwbT=%NC+&b?jhhe-=1eBzYw9RX%Y(Dmv>D(U@;qT0hw_zx4{?P!0IqzL~xacXw7Pnc+TwC5Xzf2AP>fCd); z8Z5x~agzk{wq5W6j{!Ebf6vjF;JGkai?#OB<95&Yl2;ENcAe+^y=K=51u zg7*oW&Fm~i9enLEz-IO?6Ya+Hi=X7&~noz3iBC|0z+jz-|MJ#1#bl9XilbvCp2 znPh!-oMbn%w~(YHHnVdh$7~9l*{Q>D*Ti&6Y8KO}2_~l)oF|)NF*r}2RLFEnKQ|?N zV$!`1M_tP>T3x?7HT!Y(Acc-`cNqy>-RWVHCIVYG$&ML|CSlA_-k4EIpM6yhb>2`h zRxG$#&>7i%GS?ZuJUA@jf@WlIQaee2o7jDRlWnAdn;7}0@$yM$?tCgD`}&CBGYfzHZomK8pk@cd1}^EcLWDbI7_W5N?>XJ5}B z6V^Y@&VE`2CQDG>wAAj|SAQ9Yj?~`urnhXT8#QjJ^uoE>WrP1r(yQlYH&A7ht%rum zFcEZ_$+m)iM+G@Y%luboX)Q#mBNw)8pjr_w?M&#JV`iF7wo6!%$#w}VSZlIwwJ^J9u>NGTa23;UFU&5Z z>X5CS9(p18$TrZEzfZ3n9%w93_k+w8>VD8<^bubTojp|cM%{gJ_HeGD{2hz4*9O#G zRIZI#zSXR5Bk8dv**ny15|}O&CXGaRv!pIo#4>fqrP-&{O0vN1{GrMA;aN|1wxceS z)wq1W*7H8Ctn1|b;(xT9H@MHQ`ktq{c&q%(d2V@jH+9ml_0?oMPx*xaJXi>T*-4Qp zl0A2%Hb0jLfZ2%&v`%h#*=N(bt4vY?n@Urh$9)3eRsi>uH`SIvOnd}%U1NX#x)s^u zR8P`^@9vK8fds&}0LLcF$3nI|+`5GtMJSvL>N>}dSuIy(N7cQg1?N*8=l2r;=K>@G zf0RJ@7SQ$G{I=W-y)oFWsGjm@_O)sYsiJ^PUP05})GdoQBoRIf@Ge;gkf@O&ffW1f&-h3b$JeAk?6tF$En@GXG* zD~!JBs>F;lC~`MsOgane6XuQPv6IaW#Ewtp=9;#M@##8K*4)W@-&5I*GG`ev4@2Xr z&B`#;Om}%YyT2Mn@!=kFv)}G|(!gLsj*@yShWjh3*9uQE7WRf~uIvq0Xv_LVIBB?d z<^?xTwogM}ycsQ_=RKQ!lkdeZb3nxtk@eXD^#H}<4KPbdI<9xq4jSu^nH#f5s&xcm zs3F}%@J~#&LrsHC*vX<>`%Baha*P5tQC zI_0#AKM6pq5CG#xXqqI9#}5I}ETr^u<2%acu$Qv0Qng46G1i!7TU&Di;8y@?ZO$o* zQ9{v81a+OGlYjEEjG|YO7M%BSoZmnIoC^Tw(Fu)fs9Okyb3t9_J3f>VwfdIq!D>Ef z!TD^*`9lQ2xd7IeaN z#1#OKxMv99y{q3#x#p;N*Fk8yS6{9JJjqrf0DN4Fx&*iuUKO<>6hy@=iRgo`XOCCi zNee`~PPat+Ghm1c0HVVQK&b+FZ?oJ@DE~NnyJNkOa99g~oog!yzz!Gza9%vgT?1@M z*-U_xl)NQHjIkxf4f=gjc7sN8j}d_6x)!Gia4pcU{vrT*6$>}77;Xz27tCfc6>8eK|uG+t!-BD3!S{}~2F3IXsG_!^A zgOn7p1sC8|;)CoGL3JaQhg*U*&{NK4R}P9NJWR7EJWTrp&H;uj#l!T%8FoQq z-V8dx@GFkOtOG{ zDwZPdZC>1~A8p%IzxH6;1*-f^U!y5K(>9vY1b9iWM^Xe|duDQ@X;MpyL z_X#reZ$D(`D3&64CFMAc#vG5e>~!`!Y5)gg65r2>y&nNy?Bhv_*vI-}zqOFq#VulI zw}{;*$k3&Kl5GhrMeJ85$F8sVU-k<16h~u%U+V~=R{2IEhR&BM>5j`& zdmKZteMXw@8L3z&EEmqRN!eL)g=dqpv;2#JCGOIzbh?BPt#-F71sw z;rz5ddMe`c>z*`Ag8Zq;R( z9gKjd6l`4cuk7V2uW*wzd*@^m><^mrclLr(Bz5-(4g4qj3pI-T;aH7ZNr3s(s99#( z6xU_-bXC#=#Yi<;wU=)~h%c(^A`q-VDHHD8H(KbUis zTJ9+rv!R7qV0~zJk(?uHJy~Ev{M0P_K(v(r%oGKX+4e8!+`Mlv0;eCD8S|12_eRx13JuGoW4EZr!3So` zev5c*^$?-9ftf{8J=-plK0ezyiyHx9--kq^$JK0-rLTUvR(&0to!(BDX_`|_-@U3= z>EOcIcJp7p@ye0Sqhhf6uYUQQ>FPC-VlIE?k7Du>#U!7KO)+(SpR6!--ERb#x=KcL z&0CA#sE?nY^QHQc6fwCvCADR?zMLY!yU7=s<7E$H_IY#c?{h^BK=(&ZhCR4X9OG`o zjxlWe1R47LN;%_`%Ez#MQreffQy!mfr?b5)=RBY~a6IO2(`JqhzYPIi_&rF9@Vn2k zxA{tQ?C*2E{*#6j02*8XX!ryfx_xF&AH`D8XeA{wjegZ~UQshSE<XfUKMzilv}2IhjWOT{Uw80iF4SU1~HG_Bj;xQLtW3 zd_z)D_}WL|)PGWt0ziQa00o~QL%&-)=RUX7V5A@N;{)u$Zu~IWCRrFL6_q*P6?JrH)b9K4T zBRv!bPwd63sSlXK4>!&U6}f+Inm!QBsj1b4Ih`_l8$UcOMLfqEn;l8uD=9C$)+l39 z_6c)^iO&;r{S%*gG6b4ku-`Swc_dXD_czU%qPA1HCXH$<3C`wq!>p!-mL%5Ie^>5P zTsEe+tDtXfo-FfE$#2EO z<(ivV;5$uZO+D2HBhWw&i(2t;%aK3VjoZ7 zmOF2OuGt_o$W%jh{c!u7wQ7u~gti>KX`apN1Okv(0lYQIxrAbNASh-XH_o%0;!+eo z;)Z#)fnPok4cufk6v>GcdB)A^$VkqB%o~hrPH0am3kfBGOU&_|7kO6%xA5 zCX{}(ltBWg)Y0@J;Yp^Qcs!^y$2p}=E*zJ;6E1fbsH04o@|a#SE}nCPZ!(RKuU5~^ z$tkM7CN7vw|3CuFroToaokQx55qkEGq3A>%bhD`?s?v-)IA7v(=16wJBfqeQ$uvPt z4v@x-`tz6tp_+Paubei)9**sBQh}`iSX{oH04y%M7BdKNEwH-0gn-2Aa`49addEFEH3B{K z;L1^ZhMF7qvt(dA1uoF5%SKzPEhI;Wa1Guiz%kfVA)2i|A~^=13ru0%g4N|1?`Ws6 z-f&gUV0DI+kk{{>y#CFA$*Ta!Ysm#(b%Ut@c%7;`0m5{aOEOqxf&GEP_0X0S5%Bkx zVHc8vp=;2G0LMTWhV}Q$O0-tj5omr3O_0QoFn`LI;MLuv0+P2cu#IOn1BRpkAgKue zNddgyCY~fTiRt4D>^t0q!&>BMKJO8L<|6>g`-A}30?p?n0R@^*P|We`gd28Xp|5TP zz^@Z!2taCGi)sY8MDgoHBLXnOiUmekX+Gmx$HU83m$*xHA|*-eW#yKpIUjenkNUBN zHqX6S&*WJEY?3B9N*6iaL%f*)p>00{<~ArfRpx9nr`L!95;%_xTu)&BAOT?RTC5|$ zwK%q>U09bKl@nJl5eoWZ=F&&+x%`O|gVjFLLc@B`A$*ttLs$UB`5gf$RRHhIhQ9~} zZF3@qOFMYZ@lkG(ua*Ts^Qu7rnwM*FAps~=05q=-1QcvuqJ`$=2H%&o-QbbrAp{`F zuEjV4TnjX>NdzFjV&Uc&9k<5D5)Y~6q=o$6zsNSIwG5d23V{5+KmZC90Hgj}1Qcjd z!JUrzr=$gQ0g&2n2taBD!0~n@cMXu)w8dT}70j%$mV;apVOJ+@H*93KF#*V|OSC-! zt_3oC2?5BgSR`e(!R8Y8sllX$%wD_LW_An%CbI${vl9qFfdU}23kfKg*|{)p9U>)I ziyVpFL;w*qb|xiQiyV3FNC3(c z0Oj>0z_mbL2NF;)uckaR7Pw*GN!o7MNbF1kkXYAZDFLnpGP{NVWL7NP%*Knz)}5>m zN=#B)Neh{Md5LYYyBIJnRsb;lm;e+g05W@ufP$Gl;h6tTS}+#?sV#ZGuPR-ODg?L| zNNs%r3Z_=fkyB7bx!>k@ z2?Hj-Q|`x^K_o_*qK{YjpC`a%*PJVom>q1m-_Ei{8FjRWlwB|2`WXS>>RNnDfNLRK z!}cZq-v~8?WzXT+JMH5H_+Ivv41Q&00_Z*qf@;a7mTGkd3{?RTW@7?Sr~qd0TbACp zv;J;UG+n+9AY8p+uf1c~%Wo(E8qpvE&_7*^(FC9<0nmuIH{@lc z?uLxaK1KjC>smZVfNOzPw4DGXwWMA>g_4^4eTfz76H-D_4>?Ia$$&|!07&XD1fVps2+HTy)Yik0~VqJ?) z1h^JcrgoASdA)!z?1_Op>}|S4Ruy{uUE*eS6KNr{H)@;NI~g#U6#$u?NdU?d0At<* z1enYwjd@G89rIi-&y%w21w3~U0G?ujlXyw)8hAtAVM0MxtX#4f^QNVxk5j*r7RdhO zkWE|elMig3TyvxixP~S}+#?&8Q0jDA2X&Lx5|6W^^3^1)GtW zqZzqz-$UAN+(_>n0+3$UVmSe>1v=yk3k5?5Q^lB75%RFd#)?~o&6aZm1B>-Ux;N3Ulgi5t~O(@4P?@J2hKEATAoR^Ol zG=$`6L9W3#0vrQ0ph+Yz(0~FtdebRq`O6Lb0Wv_g%IHmdWYPEuk|Vuh5O}$LYd!Wo z%&c6JruAsGJBn{HnaQ2lpNe)^vVBK6vtE4myPVDHbMj@l0LW-#0+3PHqCEkw1yXtm0R>VT6m!!j zEv020+BQ?yk-l+cpf+kONs&*N=tKgb-es?BDa(4iNL@9LAk$d&|Lu)-H(A9kq-&G( z$?9=ZK}%izklvx>Ktqd-s?w{jw(-NZUq%=(bOiw2ZUmrI0YG;E z0R`#ydsqj~Z+A(+@p1<#yI#QdUIM_@E%$x`j76ZaK6_jSpaK@1X;0i$;x4@ z6V(<{0MC4f=erCTo&td9M+6{30dPp?w*-KvIes;93;WtJ|BJL>E&#fVTH)0ix{GU3 znE=-U-K8D@1-pxw;}+(|9Vcx!Ze;dy0+3nP;#vZXMIhg17Cq)B0+Cs6@Fc$zh{(u1FSb)JR zI<*dw+%+&M){}n0a9c3DVubBu8S! zz)dVhBRLqa;54{sz_|tM{HvIGhh-c01`W#0E8(3rto(YU=o`&g}?m~J0!VY zmXfmT1!UI{0J6q?zI-!+>SNLZ*AE=7Cm1kX1pwEd z2|%F&c!wnyTj^C8S`zoxKu~WwKW2aPb=_r=f$I*Wn-Bofu0=Khu7zQ(|EeCTukr{5 zZ839cqn`h%5t*)rkQQhUTxqL#90P{70H8gI0DJ~uC9z&iU_sXN!CD`^YINhkO8Y_< z={wHAc{9nu*)9ET0*ry)R6%Y$kvc;75J4a;HVMMFw7*0BNDAP3%HjGa1BR;r;2K)x zRU$Gh0DkArBtUq2)4)orY*QA+1JB9LoAg`blxN z+Kwx5eXqL5)zv**P}h64`8xu^Rjd+RTSV?wX{)_@0nPJPTbkt=Ff;`K%`5^?5dz@x zr3C>=k1tJD+nRJebR$LA1KMgo0#Kh~aqLg|CKSnC1FS1Fo!+I6x{Xk96srWs#3#@e zk`{>0b%?HDzz`JxZ#a@1g^C`weFh9g0nn#Ne(YqQzJW(A!%Ik>#ITdt z6_+XCqn6-xr03X!-&m4^pOlA;OeDZDz%aY&pRx_rJOT~LKv?f+5lcKZ4W5^Kq3-e6 z?5ot{qzIm?AGPy)mK&NPN3lByKwbqvRlZL^648AidU3+T52WaN0M-8^094&F)7N-a z=32&9#BfPxczBZMLef|@1~sBX6GbkNuh zS;)3A?CSqq_U)Nn{pHQpB<$)RU|gC%-Ch0Wy1=gffYIk2eMe|po9ybJrG`*wvZMdT z;HWiv^<|L;Y77B(Z=2c7f72Sfng7l;&SrkZfzA99fL{H-mTmQ4KlN*B-lV~Hxe|Io zuSl`rkTrHQ|6Jph0~$odU^D;e9+3~!eI&(Z{?QM0ZRYc-{HFQu%}rkwP^*(|FRQ*P zQKs|eD;df@GLHenHdWlSNDDc?c4MOL8_R8+wLGrKC8Ww-StVz2pD- zSIYn5>PVxa>ZGsqOt17(wsi8MCBqf-pIV;Yv6%X$aKnlP4e_!>`eRag&UQzsw0tV`n%zg4yBUSu-$y)FRFTx{u0B1 zUsRU5mSQm5b!%Mh2@)GNy)@R)i{DQhno)?7KK*!l)nK2;%sc7LN{v8wSQQi+TGh1Qh z?2b0}+|eGRBh6B!r0gH+g0wZ_N(VZ(ucaQRV33p5o`8dKI&UqTlR}jAck3i452wt@ z?C+vAO-`QqF4~21Qp@J#5wBF66B2M3y2DeFllP4_a`J(>LQXzNk&}GMNrgbcEaa;n zsJz4m-i&WOX;PuppH1(t{?7yPI$WXJ|2&&MGMw6#K5%O!GkDx4sB}`JNz;edr)L+D zcBC^mq)(s})w3x&LFLPy?EV$KzbROhpf@%OH3>I*+|5#BbA>E5e!Q@jGvkiPeT5G^ z$7&a8rC05qTU?i!)GVwg-x(>N)=|9b>XVu^SDlT2Z#(qRaNHAcY~AjPjLJxjrRl7` zO{xa7A5Ybv8r~ggYT8c!yCc_8Vj9`RM7+W@4)!W>Ph^%FK~lWO>2>T2t=)~JVNTS^ zAV(B6BI_ESVzklbrkX2cbE?fIou-2^2m|A)HTE=}2S-P9^!kaB&IOxcdtGX*tgQ8z z6e(ZifyZT#%1>{o9-^pBhs@BPAStRTFH18^4eE1Kq?z59GM78{Mk?r$n?vWDgjSsr z=|u@`Y7=w6SE7BPg#;9WDJ3ubu2Du_c9|>WWml?JHm*Z#m<~;g%t)1ptgYz{(~gM) zy)PbZq`smEkc2Nh0Y#9e|Jf=@NDbzwZP0!eUpGAy`oo80$SPxeD0NI z6F>qg-jt9RF1OZAKzVb81e9M}SU1}+GjdO=1U$Gsy-r#KaiDWfhU%(D#ufFbjC!7c zB1qF?cBGFi6uk8H^s2I#e(*i9=Ds`Bf!Cw8G1lz;Ep#a*pp8vHZLc&t9FriacqyT4 z_-dn#CeY7ZAp`wVW#HJi5orR~Pp_N_j)jrTzz8J8-zrw#5UOWd#jypEK9rOWHYp>$!fdM` z0hMkF$P2GF%E-y1<_bA^G*wP;+kUoEEUwePYg0y_o)waVs;k7x>%Vf<`Kb~!`jZA# z^s0B$%Lg~Fl@oI#P1P0(%%r78z9*o-Bn(WzqxK$Nh?4$(mo%E^Qs$>wAJx$0XW^1a zKgv(k=H~^kRNH7sz+s>SdyD$km>^51%oVb9s?aRWSQ=TGDkB%}O}|4Gc|sg`J;t6( znemSoQ&I?x_N8B{$|ai&EmZr@eUg$tkdpGrH|_IAd|E<3Q)zj_5T4HJ8&ogcpWeE8 z9dTaZvCO*%b+S48(~HmMj08ymn-EOSO4)-VTbt04xHjeriEHyjVS`TogOLYPC9ci; z>9?vL$yu<83wQIR6o+2?aHNYG;9>S)fI^gaJR$?|#ZTal?(b?>9ZGM30Z5WnOK&`s zUbgwo;`U!Mc8SecS1KH@rjdXnmBPD+rx|6WX}Y;Wnx>~p6K+n2Rz{|$O4F)Ukvz46 z%9T#$r0D@q%7u?v9qFT<@-U>SMrvh=3*EBYl6a>I!TVFEtLCTaxL@skG*Z9$YvTA{ z64lKnY8e%85>jpg$sclBB zd!LBZYM#FCUvt;P=I)qRikVW@(C40r4A=L}!+H>&fGda}`vfd~S|6)iq^gb_P0vZI zD{|euLs~t3>64MFs*zE1MkQHMmJ^mw1e@toPe!VgUX7df=@L#&>6*l2BsaT9@B;XjO*zOg# z8D(_N?dA&k*`6Xl(l-a`tZ%YPr^-*{`ADlGAFNB$>rbV(Q6EzIW&#mD=n1&|<}XAB zQ$y%yqu=K#+j$WQ*t+_Q68$em8PWf0t`PmNsiVJ9H-9N|XR7E+{FvTJm3dO^{Wtuu z@}yk$EBTR2RHld7!6dbEnqGNY29sh>rg{{e5{XvOCC{Xn#m%e6ne>{?n~B?hspA1Q zOC_jqQ^y%3ph#`ubf=FQJ0vV_u8^?!lZD;s55E$bohoC`Zi#eL{U`*lKV0ESDGohx zYvd|*qlejyrB;?hoqm>#^|TrD-|CBi{F1q*>yH$y{UAh zj06;_EuB&}*VrLt^UM`eHm}f>?bsHXk}74_{FZ)+dYnQ?q%32#Cryf@;qU2}tLHq> z=BzO7e||TMWvO%4?_7FabI;naGg7ztTjKFwvUP*a)+1CdvPFWVC{4LGTW9XCSEr&e zL$W?HS4h@Jg(gedR|!4z|I*9pITIsQblEKtIl1Sl`_uJ?|4UE#v?2{JU03)sy`wrq z@p-BI-jgN;`T3veSE|1}(5A95?UMgUDo>_Pr8K`Ph>@r0(i9ssFZa~H=5>V4>$emH z@=AiFkR^z2;hN&prt<=Gg>+uR`Nhqufx{h6Fu( zUfNa)W!1R4+K^DSc|MEFX0>PWhLeR#b{fSeOJpuX*8zjWU|w3Uh^gtw@zGx!r$}Dph|L z58bR@q9V-=Og%>e`5FXHaoD5wkQ7;Z*Wv%BlckNJ&`s)Vzt%BN3t1xP2|jN)S$fvX z5^fcjeHbYdEc&z__+jLd%r}f@PSpk~3aKK2&vjnKjHlgHRWesdRVCeghks&(NqNVQ zBNJ1lt9_Z!FxA}HbECSD1kH!{MY^)}qOzgM>Jo-z3v95{)3#;Bp0>x1kZmI5=+kI3 zf%^3)8T7e*m;{Mn9(6d+1?M8> zcc3H3A}xc@Kdmc#85xoJsByv+=aW}ZB!SOsUd1apluU8LUocV)s&Dr^w%0hNX;PagquK$diod)I#*=g`hicwcq zAiqnMlxMO+(^amq>^O@NWSn1Xl+_CK)Kd<` zoS*&4d4f-mXY5$p?wQ0`yYF4mR=FFb6`@#P@^KB zOEY-3VW@xRd&UhDe2M&mAPIba^TIzGWe_}Vu0Zf~p#*)uA%Au*R5=yjx)+AtP$ixf zf7~?EJVAcexyayvs^Lj&)2RBaKCnFAE%2=U+FBbw-ckVbwYAO!U<-)=c(tWB0oa7n zQZGIn>lVxq$M?t&NBg^m?o=a534L;y!J9y|C06g z*Z#1Hmm6?^2%rIzz~?nD+|PuC2Hf9Vp#k?_pJE)tFh4pJz1`Phaqd-P6&)2&w-7~i z(Xk{*4DtC3b3^k2YA#{O;LP=QT${FDOQV>q*7y}xIw{^n08%UfQoM}-q*wrKhZC3a z8?&dWk4XV#e&Dz~K>%C|0GB@#0G9%|F1;R6YJ;yeq;IgTp(+9JD**g9AOL;^aQ%8+ zBA2ufZ^ZH2g8=vy0DcD$0KWnx{C*gnpl&AxxE$}eoIwCw3ILZ&2!KlgT$hVKi$0{D zAqBWx=eT@@0JszYF5e*lE(LI1qL1yWE`E=Z7W^J|{GKL2{PqnvZvP@V+=@Yx+b@nr zA5-CtzRD`U(N$ zZP-m!PTG)n?84|QUAAWPCi=U^(RB8^e#geS-s-Ecq!Hu;*sUrr{=5P(byfSssK zw@+%Qsu7BG3W{`|+h`w5sH6nv-#6NH9^Hs^Vg`a=eIuLfufD&V@HmxUdGYGA&vboW zT}*_qWb!Z(8=?x=7THQ&JAp5tHprAo9J+@`*8^WZN2zTZto47HX675j-5LD2M+D6M2 zS-vSvcNrxc31%AioV}Z=ym8&GU947<0NESoH+h6KkUjF@3nwr9vQb9%Hk&JCZ}Y!o zZ`>xkD`!H7=pDXWCpHXj9UHn<9i#}5wY?-r+&T4vZ7W0ittTc`(ai=I?GYxWM3_gN zti9`HO?vMI!Lyt6;}Pk&M~!37*LzeFIxY!(Uh~35o^#2knJbV_lV9!&bX@$pIVTpq zG8N_e@#sNS%{busZDkUy&cD2^p8RJhM~{6xl%~f{izt2JWvYrEdwb|3)rvGR5H@?x zj^Mcjp!*7dfv^Vw=(z%*=QfsqkH~R!JlU93+jvi?uX=>E5blG|>BSp6whoaTZbgp4=J~GC#_AP9;agDGH}>{#=&VMl_el%B z_c<{iBLL0?kW@Iw%$z0^&INUy%U2MuQzf4FY6pJPp0~LO69B&gAjP!_fJ*^fmnIj> zwnh7^98!YYc8=Ri34mJx;Pz?);8pZnvzkVQ%h1tX@9!Z8y>Fit8l)x@gdNMvNr2yLml^>!=1FPxc=x(j zL`SRVNfA4iH$3m`SeA=Km%y*FO|Ohzpje81%+E;9%yH#UKChcU6m6=jUlqMgeNMJG zH2&k~?WyY@6Cgk44pe7JfMdRYeBPcH|33rJdGU9dzn%T|_PluUiQ~Q5Cyw{_2{QDN ze$nQNrHK5H7rFVeivFyB^m^6c1&=i%uk(V9ybb|4rF`#4_3Nt$NhSQt125R);)}gt zkBg5P{9jp!f3RTxVBr&F=mi6!RTN9X;sPnr$-iNdf6KsV^?k8@~@BLFnU zJ`${}w={|47=Ya^E(^}|QJD9i6vQ_uuy0WC38W&fi*8pe1%=Vc6!eG5|Vit)N&62Cw)Se0O8?ol>PrGM}E z{hI*z6##xqzLaP@8lQXh+$Qc{bw~$ZYrbToZAk#U3IMNh0uZeLZnX0B9M*mBijGnJ zNDF?iaQqG<0Dc9)9AW?6@}~K1gu=O?u5($Pn4%Vv0{qT({H`DXeg(isfd@^Dwop$K z3crH7e(^jya#D1ndV{p!e7ocPAOUbLfH?1}juHUB0=RxLUn)9PCJEkR*rosAYis10GZko8LF3KgXQFk4u(uenSl%q+I-Ou3O{6OJiE9}-~7(9;MoWso9ud~4{0 z8bdl5lyAzngV{|4;I{Je>}WSNounAirsUh3`@IIBk*u}(n{Vz##GxL1sMq;=!10=dBlCE=Nbmc?#9_phtpb_13x3CTcxtps1(w?cn)9zP%G~{I4Q|!UcmTbHU)r z0t}PG#J3qHua_{)2j%{mADyL+aRla;d)Ud%VFHkwRcTFIt6xcqfdA(U`1k(|SPDSE zTmS<03FPx^Z-&|^mV(Bo9u0TuR!RS}I66RG__EZ8^EiZhZt$|L=LQ7erj<(q(1^aA zocB&f;oqt{D8501eS?NifO%ZH-gtkszG4Vm>PoRrm0&Wr@7>TmbteaBs^nIO#;pW^ z#sU(6##|qbMgK*ki1;)uw!K>G_a&uzt#$YEXfu`XS9!r#+~)r(&QL+tm5kt*ID7m7h#v&{X$$Uw*@E&%qfQtvB12+nNB-xSRy2@@_sF zJ^z!2_y!I34H`ayL*viYLW3dDXeq^V%l-Dz=n8c&2WMzZb!bc_05l#V0cb4u(OB`H zG{iS(uy4@t2{QEl$EESI6bvT$80=mvOZx{oF2i82!(cA~U~rNIU~t^W;M@OXAilwX zeS?8dAYTYQ9BQOk3I^|a3^4D#F5k|3d*<7D?`1O5nt3nZG{w;Q;v?OF`BsjJuiSnx z@qNII=9u`leMPP?@ooD`VH4l4pNaZ+uM8eKv4ej4S$Rb5X&mrcRd*6#_lmbxRd(wA z#dT;y^rkQ=C4wCIik)v<@=9X9@qZhlb&8CAB~4d7F56ND8qYk}$fKgLK1Twd+r02p zqYTc|%oR9KE0nXm8P;A8uURtXkI?f^gg#UcQ{kBKFDC(3a}&gu{T?c+`+pNUr=BMr z%-=S=VkgNv2*CVJ08Eni5rC9 zt2g)+!1arH?B*Xrcc^Nl1;3TI*mxTe0KW#<5}m8s5dgmexPGyG){7M2@-oNeAOhf0 z0E9Z40Js#ub(whlm`O@-JI!&slmNID0B+Y10Jj3TZjk{TDY2EbVE(e05ARS><4B2J zgrZbIT_2cOQ=>?<$ful!zQk+jcmwd%mNbnw0G~3I#tnTb)gl@?34Ctz!hf2W(9r)f zS7_*eZ7HmC%RA~llb>qyf#-`jUJAFVW5!|f8s?c)T%tpEu5c>>^80Cv0R)vNDPyGaRd-`T2H*OD`8NDi+e zhu3cifL8(7>%b49H>tp@UOm9;Urw-P2!LAw;I%32*J=9I41g|$bUhgCTUIjqJGYNoO0oZM#}qBeQ#k zX&g$7eYK_gzaFg?*qWF+;Dn14uh|nWYMYM618N!Sd03^0d>`$iPE*lXrP!E0tAQ@t zS#{Qf4(VdL#}Cm`>U&Z$N9E*C{2@9bp#CN?eoFnz2vDYT-VGaKjidZFY9p0fUskG& z5nzo&0@hQSPaCG!o{26{7m}iV0N&<2023gyS9v+CUr=5|BPph^(QS62qmu#XQRsvT zkrz6G4Yt{-YXfqDsjE+rp(p-N);U;;scYSB_VJ&;{izkbX!oSjx0x$#T0zktj$k2U%i#Am(1O8a;lG zj!^Kr$b{W0ibc)xoAK28A(CoV;_yf|4Bm%01YkxG+2OuxA_8I)l>~rrMF9- zc-465o6=+Pym_T*>X?$2*dbS#l9t#} z*pzfbdMsC;`=@tV9qp{-!1Yk9Zt@IOV|PgPh?=Ns8h`ZoS*n^RkmISc%H<5xlcQ>O zI7#k|vQ2mB=A+wH3+(WI3ZE2Hjf=!~$g7w!b!}!-OJaRtR4_nsYg?-rGmAbB@PW(J4Y<_g4(`~Y z^DD-#$-LV*<<#9krQl$o0pZwawTq;xUdz&<{1Bo2@qR9&%Gs;N$m*xs7|I(&B z<^HYfci0_Ba^y$E%n%8P-Ha>JTCxskV<#$TKPK(5h zr}R!+30VZ75(Mxnp$Va=1VK>=Au&&Eq%74_4N(`9DoW_+l+c#|lpsK25;%lF6d+)t z05h*jV&(LZ^qqE1<|pbRICo_FPJ8Z1y79`@{Ii!EjhWTQHDhPgd@39>tE^hFxoQqc zF(Z1E1o+iwr4e98Bn9amSE`TItE7Y3#AYFx+penGOaO*g%q9+!6vOMjopv(xfdS}l zHr@Q4G#L`d7*^RahE*0|0DVa+z}(HA-)W~k3;U~as@Ut|kZ-@i*KMFd0=z)0k`#ef zdfncBPwuqSo@z$n-vX9{ou?d+S5@pE@v;E%{^P}q6~>J_?TEip;x{Ay!@}H*_*_94 z@h7*6sfu0=C;FeX6AbtgD+c_NCYk7m!%WoZhr@(^>R;CDHHoEs@$yWQ*hDpj@`7=1 z0txWLdRDX8uWC6-(JAhK-TtJ$=ymf^dO0QSiE-`KM!(iGo)#W1$a#X?!q;slxa0N2 z(*@4$dZuOU{382bPt&j5pn7I5G_JWP+(l(!(S`&*-+AFLjWQDUmAOK~zA7|f8!w8b zJh$qS;p%$zCzXqY{Z0aJn`!ACD@*E+E3}l)l)ND&(ugJB-st&ry!o<^ic}3KTy{ZZ1#oJ9p@@(g68K!_g*zK-q^66x zLTb9ak)kch#>yX(?x5HzDMz4Y>q%qO88wJ_A~DyHAW2u=i;TpcRJRju+EieCA~C@+ zZ)o!(jsD_hb)#D7Qw+|1!;bkY2*8Le0M@BC#$&RVfKUv{f?`M(=U9OpaI3mjy+K-N z+1nlG2MK_40TRRgQ3ByxK-YJ<@$%)xUALKtjo_b-m`;%|Cw0=@-6;AQt_HV6?2 z-vYY6(TgatiRv8fw3I8}@Mc?|-lggnY5iuJE_%1>n>pG9!_DMsiVjnT%j>jUprTYd zrVLm4?XpP&QwDP6izhF9g;7THy3$;sd0qJ?npesx!&PtCDZ{i&W6M%a83uKWtx{tt z0!$f3dIFg;#JW{=rVKxJkF8cSJNY zI2CC+YefP<=};}yv&5qB?rwp4C4{pU5Y@oG33$Pm(3uP&e4EjaisJA$j|&OFC?fzynZ*NRjnxW5G0X^xVMd%|m`NGhTlR+3;VqoiU9PWjg0s3` zGgp1z(qjh4nq>Aee{k*RP+_513J`m0|_2h~MJiLigM)pgemv2m*8 z+Y&3??1LrVwqs4&+xpm@u^y_nUm?p=SUoP*w)oN_I3rrG-W-#STYl}fp7z;NIlU@+ z@p<7mRdmFuqTh`Us^}Wy?f19z)Df}fnZFn@SJ6?=mu|kHRsX_$+Zw8PlW~U{8fmUj zLnC#$YPo!Pm2@an(5i{CvU>2y*o~=bsm!R@Of`eJdbKo#rF**AUWHnkHCig@eum9y zPNbj6$db2pU_~rbqlTU$3*3{}Iw^hBsiB>Ih1Waukr#e0^mp{qpUx;i?7cn2r-BqeR%v-=TWB zge*`mo!+rMC-#o*IfMKP*LVu3mpl9lw|EMum%?H&^-|>>TQ9AQ6V%IcbJgk{z3ZM> z+sx+X53ZL?Dh%~Pf+T{8dU?WFpkCIQE7Z%nLhD8P%k8P^MY>8^J$h2?cC~{d@cPTE zEKTY!A5E72vY%m7FQlIcdmq=!39>-FeCcHMh*K|r`xXB16i_eWcZDvGiRIt5H7g!a zFNMWm>g8ppUJja4P%o{GyMynT{!&H%G9y+obDzPua$cd3P&p(>VwtF%&c-P!r;E8l z<#c&BMW>0+jGanVFE`JM-LD1`Q&h>=t~nh-B-}C89?xUCONRdSo6%Kt)j6>|HJWtL zUHW^1M8KoowcVxI+}Iszx~JeQMmkBo=Uv-f9`-9N_Y_bqFZdNUdJ1?v%2^PLsoj39 zciy$Xx|1Ap3z2(Y`T2%W%qAU1=?7Mp4;@Cx* zql}nq`zk67wM~Mg3Y7(E2~R?9ciNCq=_?E|s#sk+pf2W82A6-D5Uau2iA9p!X`H&&L{pERjnSw|j@MbrjXGGiTC zC4yg%+)h((k}}e|!%6F_yEMAXVZXvBo&sL}7&QI*qWaR6(wl$rtDfCuC*(!mlax4( z1)W9!{3>6L0Q46D&|jo<^q0ayHsk!C~m74orVg04cWAfZW&rUipGS}$=O&*V(R@V?&uS%~XX_CSDdfkf^ zD(Z$$#M-NyND1AAtP-J*c+Ym1qU&OF)D*HX^%|I<2M?4ds5{@Y)%t)RUz)%%2=;g? z)<&sOL*0#Km>*afJkWA)V@LQ$)NqE@AFEIcf~K2}O^eZssusSc+>p#(wQ63{4PEoT+e4L8KPs;Z=l5;AsM4h;xE2?C%| zwjlt{1#q3CQ5Keb(+M8QK^Qh zy)VX=tA!MX*QV!^bX@PIUMG;vF8R`~9w8jfnG6!auh?yybLW@kw*LZIpcXgowxjDBnMjGH|HJJ#F(t~*%Y^}5`9NJH;?J@%}+&oj~JLW_-nyB?dIeIvHL z6bWSA%N(<$%jQ*1%m4Gu*qs6OA~_5+?USosB>_Gx_aZ7Tu6xX{6jGZA-SE*+Ib7k7 zcwN2VO(A;Xo!B+%AmNFg6DF$!(F5XEcgoaXy(@QuqseAN3$ri}{`s%%iVY2@U&+KY z$-qx~@r2xrWiM6D3hkAgIBgmq_x)*){ZLDiGe5kKB0rH`~nfldRuPdv|ei~2H zPwb6V3uf)LpO|zVMM>Xvgttw*6M+8UTJ$HtwU8NhJ2jjDbQG~bNBMD&T@^fjAl6+? zB`tKoiF@t07Z)*LK1wJ6K1%oq0Vq%a@1wUH3H81g+GelbaZgT-;4=H93_stgF{K)Md-+}5fA z$x)~nc$7O3T99&^eW+pARbNteU4iis0t{owO^0}%e@b0Iv5P!N{Lk_i8NSQcoO zlNKuZeuwZ{1`Of*E#VhPjzYx%Um$;rfC5|tvQNRJ>r+yK^-i&Vul+^p8v;!KaSeVY zxod#$kEiYTYD$W`LT}73(lY3_CUI-NknILtos`|6k=n)tAhiz5_9S-=aF4l!0Ay9@ zyIDPULKam9lL8WY?S9*W#xP)djR5F169_aFV#2{R0a57@!aHExx{82oYx06*8F2LWzzAX(`rnOF}X z6ePurNiOReFQfl&Pp2;GcG3jV@ds>u&S1b06#zt+5P*^ez=;1i0r)hl+gevUY+VoA zNYV8GwtENwTi4<<0$ht@2RpS<-x2_#V&M`!ds+N86+Gxw3;6x*@GHxJ;U@t2RVM&t z2>^c02uR}B_@J##*FzpDx*ovqDgwaIwYY%**Fru$+eY0&0QiZ8%Wujp?Zdj|Ke3@| zK52pE?1Q!vA7a3e6af8+9E|yfMF>BSZ*T#H7NjE>j46iTI(K%rt9H5Qgl6l=s5yF)U_!7fmau< z1#Zlr|K3dwdmt1{#mr@j$CN^*u08igss&{7_;VZi;_J*IWz1Z$T(>XHoD|P1t&Lyv zr~9pAb6wy|2nUQlPu|xXfirV88v>VXxHqagP>k}u;|uiIEvj*_^9QjJ8tv)65A4(Mf)DJ|@Op9pg{M3PR2G$xc+Qyrf&Gp9whySb1{KQ<1;5;* zpQsYQAh`Dfy+12{zW$<0yjA9WQwB4?g9^oSCJB6nt{E}3O98oPkNc}+(Ad$b4An;H-PUObw@jF$yLsGW;{9`80 zr4HFdrXRA4%H$wHp~NAZr?aW@v@R=NH`x4;$y1Na62?8J=zkOsQbYou|GaQVV~rGb zGFM1Zr$hdyaA{Q72tpkq;Ypqxy^SC}6YhE?-1V~VXd}qYdu+zvt`)z^_dskmg5=*& zJ3cm`ZZaO6yy01RJP9y%+;qr{4)$5N)Qui04S(_-qnn~PEy`P-u4DD$*Q!~bg82xD z^Wn85GiTG$Oz~?Th9mXkP1Levv!UVC7WrrE$L9vrGo+19vF;G=HM;ak+mp-yEHVth z?~pPG34rPCrvxNT{yvn*inqHs;o)aebUk1I4u0q*4+F4UW?2GU3p>O8@zRE>I-wYV z#S8=RV~6bH??uhx_o_Ce1(Gd4v^Uhw3>c;YfN5_6P^ti6dOZP2Ob35xnYtb(k)rEi zN4XBILnH@L*We)nTmujtdr>@FJxM5tikVAvT9e`#N0zlI#F`MMB0cielalEn0BNQ|x z9+#$h2$kovzG?_5f#txDZFP=gz_eZg(0V5k5I@*gtd2`*d1;Nc^i+1W3_BH{IfjqK=^@c~Q)YMzbcElNq<}`gVaJk`;>_;*LuTu`M zKN&E*1OTtlCtfWfnF3&vn@K^czuc5acq2yiX%L^g;3 zRGlfp{BrM(u9f=6^VFTB1&+6VVpsQP5`Y2)kapqxbg-0A<2-PyK3211w}fvz3auw4 z__!~=Tja}^Dwlk!9|y=cBBNJ7kz4ZUd({uDFAr(B>;sA0G>Azki>Jyr?#Dl;@NR+ zTZc%`bpW0V2>?$qIIvOfTqJi5@F=u>d#5_;X+qIfjFrkiTE+B^$Y zUv4G}coy1i9GgGgXCb-PgYW2Cp{h~giR4h4TqGWU4p3a)pLt!q-)Hu{t^5Czf%pak z_6-I;L56HDvxD-GtjOhsJlFu0ZgFu08bU@+dt;Ew-f zAifV2?OZiPoQxCs5G=3q#qfz=WH9R?3P+odavo7V*QjKg0>}So9;Qsf@st z$t>ngpfb%IA{U#kdNoq*UNsz$%vb8?5@5`2#TZVaGwv3E?^1f^- zx@($!3BRP>pm#^)BRCrt#!KowOXDH^?EHAEq?_ya^W&#g+7Yj8>6n7HDs*1hN8f(jz5hW+g(i>*ce5Qd~xN4#~WoV zvE5>>u*7!D5&xbjG&;r!Ls-)wSXc)`sa{9)Mf|O zA)VE=Pha&I0Z9HTC$}pk`TINe43lMo!^2K)ryog?+tUxkvx09N(d8bDcglR&xaS}&E;R`7*eB3A_tzVlfr1fi?)(r0zHZQGGnywk0+$BuY z+JsYC@iQ-h7wPv|nm#+U>;+-DaJ>JN@cxtao?;>M$cp%YR12BY9*N5b)YKQ^ix)C0 zkN`7(^@W++JDYln6FT^s4p>iauCHA!OPKWu@|G~kAVH{}cr;6xIs3|nbc1_JmDRUC z8n2>SCp#EgF{Q0ud}GII`OVhEuM4PdWPxUL$rtwVtsen+tPucPXoeAhCl>>lCznq0 zulXv=inX#rF@?0?cY@=0Ap!6!0G|H-c_LmztsoT61$CX{C-~pj#k;GQNDI!NbDY0H z0GtcpIX_4!oC}(8ZhkTC_O#r_z9TI-Kj}C>M*y4);5jdT)N2KBE~x8Vj)JVB-+xxp zl0{l@o_W-!y9ohsE`T_%s9SB2X+$=m#(5x9ubwCm|B`a?Jzn)C9Bz9$Zif&sc>bWi zfur_KgB9Jo)>7jLgx8+%8tA0Uj_;VES3Vc-rRIXzz}f_YLVPEK!sqdNOM9#a7%)qw-%X4N?_ULm}Pkt17?*%0IX8n zKmZCAz|hn`&cdQu62n`L*#!#M_`Vdzpty#MJz;aCDc$fLAnh( zu@HHPltA%-L-8vH3`GGz@hkx-Q~^b@ zzw%Xq09Z(?Oh6LBieFiRu7{SSXsRS|(o&3*928xH%Lzao3V?wZd#bM`6hsA05KXKY z-bPv=dh=JdBBwK8hzbCr_Yr_n1pv{<2uLEj$|34{c#RZY4`{8s2>?^q;!^@#3vbQv z8$!WU%v`3JKBv6fe_^K2)dFA83=i8U+M3%LmJHL6%a!@lT{1M+1-4JrGx|IOOfv#! z-ji5AENy(b!o>E8O2_T`VHHBX^~3OSyM9>vxU+tUfUtfjk=XUa?RB!7n(fb+DV10@ zwN|k}X&v9uQQixw4O^r$c5FQ`7AT+8Sj(OEOvriZT(sguC+Y3H3c;*TQozit%orN#{LI!ADF zsW@Q5it~LNI z7;ygWN~ZY4Q!4w!Q>stktlqE`3kK7U+vTUp$L&fcmY+W2c+9i*`%dKV6M)FSCjlb= zR{WWj%omQ^mCPUilY#gK1NIFDK7qr4rC_k%#{lb3wZ4|bIjtSJukp3beGLM<)q=Jp z1&xcoPNvb`DEw{bNUpT=-prXp@~Xxv1AM`Jok zL1T)K#=ZYZLka*5E&w!q0*3}mL1UPY1{R>Ua9oB)zC$CQ0FTCgl7hw_AB}_mNka+% z4K4sQd;(_$ilw0Of{zB4po*XHHL4;fY@;ed0BH1hE?7H6La?ZOBDqafHwypSro=y3 zuz#>%fwu&eBsHH%IZsNIHWip`2e?K3iiLs`j$<7vFw&9TQYsW2E?v;9MbTL2u0{PY z>*BC(8qBS%PmUQ-#$1)rS%1ch>dDjZIzMSh?h&(l*m%!+wCI_tgnzG zU!-~AZ;dk6S5BELtgoDsh9>9W(W`u@D%^B#K4F)wc4c?2V(O<)Qmw46numpq7W(^M z%S$XPlDkNyofNmu*of*mj|2tui|Q{R51T^&}Rmu zWrWFLf?oNP&T65*B7$wd&?AfG)(W;isTUW^&C4urO5n8rMd`zeR!54#E)*IKHi?mj zT`2T?_(IAH_cO}Kcz<(+jQ2l@jMIvim+?POI4fE-(MmX#1t6?wy&!WYtZ2!F<9%4d z`!MT0#fnz5Gq;EIoqd;=*1tX=r@O2U<#tZ7z@;x#xu?_=BAHl~QWHqJxMc3}xhK_HvOpa_iaHKHa?*Zk@MxLbih5s}+%D=hzve3m%_((c zxA=eya(k%{{YnRul}?uvr62uDr#vOIqrB>q@v=G;Y*bEXJ{fPIihUzlbs8~34C)=< z%EF6;h=-_&Psg+LmNBxUSFZ9@b-#KQPu;|Mc|{4KwO^?PD_yTH^Wnj~Z|p&FUx=4*601pNN;K9HR^OZ`u*XTyy;Qk^}2A+;;d z8kxa6q?VKRYL~muq#X|%+l}M;i?fZT*nFKJuF! zS6FgIteh@ZGxvT~`deRX3F#@nb?mTY`;KyY@^2lB=^1r$%iG3U*ROg(DpfSuh+nn6 zUv+%ja{h*Uh2N-`->6RRU^UvO6&&%cZEE)rfOa7O+Ql3K&@Kcp?ZWcwJTkkx;yg-% z`gvRS^|ilu3>AOcxcK86{aXFp7JBvX9jnT=GE>*;OR4}dtY^-$D`ihKd&Ssb?A&6m zFm`T{kmPPfZxhSQx6a$d3-{QQb~~B{mAt<=`)RU*Q=ABiG6MOgb{EvCrgbD{$rZt zj`8`!nR#`Z=Ki2Ur^MX5lR9VS6(cELkUzRNx0xQ>U&izYAIq((t2NJUqbidU24%8J z(5ZCFz9s)l^W5K5Q?kHN(dd+&AJvnQQpT`lfd;+Q#eSuZo{}s`%aOKE<_=W@{aXEf zT0dTtJ5*mkh zGPY4+#&6V75Kt5m@Y{Qxd*5B}64W2^ve(}G>~(s(_u}c`NOe2BPTW25=({_O419Ok zSL#UsTCH!9B*3=_-Z(UhP;JwZ&%rv0+KPzC6R&BJmj|lxoipFF%QXTa1 z3)Nwx|Jl8TMeTFztC%Z)g}|445BId9qD#zT3Iba*yC1x)t(_c`0rMh)u$S{*tmrQz=LmeQus2MP1iN@m%vb$z=s5 zdGn9ft;|~_)g@TubuF{=>%60KT6rz})-F5Hw?XvrZ{2!}y zWUIRGyyl%TnbFPPy8V;~1{FPJDt{;G@oq%)JGXF*5)g#lh@@CK*8k3}9RKqzHdX30 zR)uon7q?h1vRlL-66DwiPcJ&xuoUtCc4GXWmlfS>MsPs7elPRlFC!p`e+Eer|I|?Y z=bj{faf|rbE#eOea_sBFiv}8&V%0ua($PH>Kl48vQFN2JlcUk#Z}Wn`jQ|8+yGm9Y zvyG$({?SnIkDnxXaf{&DErJgTa_qLzMa>OM5xfn8*9#+&zoIbg(kB;WMsJteB$q}a z>zr&y-3pm$jZYkSpVpu@%>4nDB>(xgq8;8pt7W$Q@CNOQd*v4f?TULbXw!`Cm2ceB zLcg6+biUz%vG8B9ncKfOv#4#voT~OGjDQVEs>)WB>)7@8$f_Z8f;@8Hfp83dWRQxw z{od`eBB>oQG15l2K47mK`1>8O*7`sT1Jm0N7tJ!ygtfK@TAlw?^k?&4SmEtJK_~TDuYH(oZJ&RBQKyI*Mkc6q zL-x5!S0exFL~8e8DgK#Zt*L>QJIhN|&81=0OG(wQn(M+!HwQ{V)qFIp_1BOVs^&k! zS}z4!LDk$H*7{eVg{pZttng!?05@}6=Z`V9zYhum*;V~}w_Z7w0L**@kb|>6rab{z zuLyv3tYmOuh1e}7K?(=9B}YfTcazJJB*$wx3hmCac!8Nha!jQPzqd`V=r_U4C%~Uv zHcL(8<~ZwXNNHZ~a7_&_0l9_bNX^r~o8+E8-T|_OKRa9nj)zE8@=s}u?jT?{#cIL=iT3bxLu&S$C zpdaa`ztE3#+kf(Yr1?I#A-e3(Mc1VD9{BPH7GrZJt*dJ9pS&*9wtKs%oBhW%ML(D_ z3M|-r7(~+Y>@VFVE4p3Fi-wtrq=`<3OjE=r>~|}=zpW@bVCIvBHk!yByLxgQAJK@; z5`rs>t~S?&bfVYncg^5d26Rm$0M<136M#A*0FK9>A^^wZ{z~R?P1dbsd?)XbuI~gj za}NP%&%VX?1o#%X&r$ojMorBzLQy}(4E0lZ;++`lZYr8=vJV8c2faw01CDG929&G- zAlroiq$&WeAH@lfc6hDd-lGE#xJwVdhqFl0_W-7|2>?^y;t~RUi(Sw6%(0toQG0VO zp)M3rzoV!1b4#2|%g>poKq20Q?Hz`^6jT@^3GiY5qxC@cXXk z_e%ocR{+^Jav%FVNFaO*==;W=;>oJA_8xJmkh;p8q(zM0qwYcZHEF-S?9QT|xf4{( zy+<)sg2X%L-hiwX9T^k*@~mGCJ!obQzrwp1jLQO552| zG{yd9W6_+nF2moy>AZdET}7uw%wUQn=p>3snzFEBfl2S_W*p(@8pt3;;LL+=zH1v^ z6zsdqKImp0GY^KRy4R9Vl=M}k>dz-Ogq7|Hl!E!hlVPpLLRy$lyc5=XBhU)w6JLk5 zz6`W5pE%`*ptKS9(Le!pt^B-khew46U0s`?si3aqsk;dWZPm@Pqj9E+xvs@28q9T< zY?cGCRulpTsaV*qIcZ>!B1cqU8kF~Chkj~-8rNTcp~m(9;p8J$yN= zwKJrJdiYsb>*GKxsE3EbS_c9x)WaG-N-=r84(egGAJZvfUfVLP)$~W#Pj@8%{iy)x zrwa){Un&6lQpq~ZYsZlS5+3uT8{}p(po5$M807v$00tZZFtfdufD>l6(W@lXsq!2( zDZyIgnA$!>0NxKN0MdJs0N(QTA2vqTeFPxye4Q`*oPKt` zefssHg{CuwfKFpr*sddKpwl2nY0WLwX_Tl1I*n5Og-)aN(8)WEVL#X{Zx(%*)@kU+ zDz;0fu|8tXp#WSj(WIykXB|FlA-couv&&^K#_p2K0vDzmP0gMZ2vSkcJLJ~JE8i`u z5i!>W8m`G-b;xEmFB%d#6LvFt3dpYGN$!V|MqmBuHT3M3-)JoqXmjK@)nAx62 zD5|EIp=vHYWVe*ahqyL;DjNkc($YpB8DQsal11xqmJ3;t@7gBvNhC*_1AcPz+Ia+| z&1=v9$sLS%4z43T-+|J!wYFe(p$z@R?k`7I-d>VzpWa>6-8@bx2udhEK}_9W+fy{% zyhU0d_?jd5FP1Aoc?Y}_{2$2?-)leFWykuAGDiu}K5gw|wNs1r=wXkf=Op{*P+5u- zlw}J7z|>)~&ux`K`rs&zQXKVs>FckGCYduy3qAMfpIve@2td^l z0R7fN0@QCrE{#7E9}@NJ#;E@l%{4cW65Ou%*|mf_7|@m=09wLB1b~YG$h>C>I3e?% z{Moex-^)Kq+4q9n`;q|A@huJ#;9H~?5vLpu3IkkMq_|>Ucd~v(yXZ5e?aLY>cY(HI zbkR-KoBruteO}qvPSK_I;sZtXa_6ZUci9uD^<$p*$$_FfO>2q>UH15}T?^7cmrah+ zI=@tx-Cr%xWe?C_=&}bKK6#ftUOF#bS&aWtu07Buy4p-C8CV9U|8Kq6~eo3e3CV644roVWT zJOa=V1aOl)0?=Ow;N~NTy-6M^pgSC6H@+p^-b|KjlOFSnH^(CYO-leb$0IuHI z9pY6Ism}38Nv$JSX>vLCoxT;Dn1={-^E@xjCka5B;?2$T2#_>Go0y{I=6Rl*-K6b@ zj(%hx0mwd|>`?-I3pdX@5|kJ6RV-5Zig{j8;%SvzJCUJ>y?LJMxOtwsJNK|{StHgV zce;wX(-w0r5ORU(Od&|8ak|~#wi%AQd!Xgzu!oMMyK~`$OEc(i9An2+fWr+* z-EMifVz;%mW6zlJq=(z-V~@D=;IRY*=c#i^iX+MMkKpluIu|NH=fLfbxN~fAH*eK| zMjQ@KBH6tNa%_dVv5|(QIEfr}#67AWJK`QyA9%!l+L`GFCytbjTqHPgy!wcD;wV47 zZu1HKg>Lf+A)WqlXaB_Um#o;0<#d+z?d;eW=55N2R9{)+^+2j!tA1Zyt|;`dtLn#A zna=}I-#|DuJ5Adwq0f%EK5}P+*vIBavcQ>(x8 zF|taJ$1>Z*7Mq{R0(I;ML7$do)UWRAXmrinTidC{_V*y=X(bSaTC26y>U@J~00MuXgxrMI*9;0Mi&~vA+7NE7t$04vKZE zdi&3>c0q?&yWHI>=3;$4@P#{t*(3-#_jc6gt3MR$0{w+zU2ybd#oDh^Y)N^=S|LC7 zzPX-=2F1FZq{BPMcAGm$fFdM~RE)Pv{_A%)-|Z6HX||FDitv%6t^;^T3ZR>m@oQm) zzaMpT`;QpViGTo@+y9pUjEw@|j@)4aPMiq*C`G3)C>3oKp#*^X@mr7B9Fu!YGLS1# z{bPvYme&)w;iu_~2lRWF&da#UK`GF>L80;_7Ed1O> z=X{$CKsL67KYkBLOBuV^x63kfiJG^ldJQEiem75woFr$K7mb9s!sQ zZK&9(z^ouCW<%E;ceA0D3eaq5z;QPl5_hdhNYMeU2xppDw}oO zUFn-XBzCL$8%LqH%AWUvex86}3ilyN5%l}wRG*Vvf81T^`}icmi(3TGZV`M)kYkI7 z#`+nSBKT)Q!4DfIS1W4%COPHx2gvb^-&~Go5D*04oTLao@3-{eTdG1iIWKMzJiA5k zAwiDqFfx{JSc>4QNIH6-&(Ha`qhf2#IF3ehevB9V7y^Re=a3Y^&khAY?K8FcaM)+A`d;7Rj)tp z&8p>xH$?7G5*Q+PNN$ur^O-v?c6E6}WZ&_z+swz5O~DZP0ZH+hSJ^zyx6~*e!-g%dYTIodSYonIsg$au zsu`(c^Yar0rUl8-h1NO6W_C>WFut za-_QZ-*0yE*|8qEU#XaT%6Ewerl}-IW1gC(o~`~cpE*Z=p|H-82uGCkE9cT>_o?MC zfy^|?#7l{3s<3KY6iCySKq#)a#>qdFwIK>uj95f{R9aTm-?9yK-hg~Nv2Wd1J_P$wC*J<<4hT1~zpVrmgzG-&shlu%> zLP-^k`HH0F*xK9Y#Acc!q@;~0hpbX8emSL*&0J#|ZNF!3?1hM_9SNADIaQC?U5%yA zSB=<>e@N+PTQl&hH^W+qrCZ%{x7Thq;vY&T50R zZL3RUdHx(JB6FUC=kDfp0^nMJd8a3H?3%@~R_0?u;s2>L|KQhTk?=c6itxYB^M6V- zC>8h@0HN0;0Iv6)=(^&P*q=>nQiSW~QCnECxV!1jfX?d>N?ss199%n#vR{(@qy+Tl;NKk;xUlXIusRU^D@^Mw9p)H)4a2M-*M?Fd3cLc6U z0>IU`7)5|@(R9Y(e&%cfR)17DI}+ks=Z4r#W-%#&>Y@s+A}wb?sR{t9mH?zD0H{7l zzzJ0E4XFB#UL<|r5vcAW093_d&mGd@N$wkf>0Sa*w3-AL?c~L+Dq6EFzQk0n7!(xv zMk{J>(%sY}0Er5KHrb2-w8^NQvMuON(A@W~jZHIsND;1kc&X|Cpyk68Iv&glA78_HrmKsnP%nRR^c?WjX+IR zK%aS}s&-5xvdbTW?CMcvCywEDj_Lr0G5kICEPvW5XUFQ=VRy!w=gPp9K4^bQ!yV4- z^4HYQu>ZI-cAoi|0>i=Gf5OK9Bn=$gkvAGE-H5+ml`-NU&|etw56E`B%)GLKH&zA@ zBK&7ziwXysirB64;UN#w(#F01Skg?i-@{^>pqcqcYx~wGE*EC1~eK05Y6KRpzW*0%gGVu6#^uZ)J5LNi!KPyfxT=odVb#)ZT@?* zMeFfXJ4S$SAuI_WfK&xQn;l31 z{0iXvU42V(cy{^K!A{v&EDv)^4CzzmMoI$BZHhY9Km93lj@|Y8`Yf9)I-_2$)Ti`@ zSAoc5lV{Dg*pp@k1sB@n@oRB?GnJIK#QI!nE+v6(@>IWA1@6I3sTIQ$Gwmf$#MT>2 zdf0JTQ`zqPFww}YAz)9z#EZ>eNr3hGgO%;PO3B%EA5nld8HBV{yUhAgaaH(CqG6gV zEY#Vz2y*PjPswIEOR-R2RoU)&B~ci?zOr52uB4;A?&;Y5=1UGkcNunj0q-Ut*k$;I zq=@<_ak?qlFS@g`9lolxL)~9b7QOgI^z0YWhXgtHlILRQ7?vXX&w}VPzfTrMS5&r< zSBeXx7fYqD7E|F zj#i2esp8!BsRFmrKZ*PAlRfOC#g#JBsztDcLG_F}H@j?OX^RRwB`Q3MC_lWu`65jh zee*?CPPQuUx2s}xTl+=H2VRZ&SFZE5zpZJ1d{L_NO~fMTpl={)$m))lWnHt8aCFdQ zkm9hRigdh9Ub6TNStX+FZpJJ}VvKo3BWHdpoT4dZ2|?Uw#^{)n6-Fk=E+# z+^z1=>c7`t@~3^|RXK5ysM4GHb(Ai~*A}nER+vL1#n8GUYuI`^CQ6Y^Qw+LQtz0sgt@)w61mxMbV~fmSGDe{m zS9OIdZy;FxaOv>u@}0TjYAn>#i>rsaLvhX0U-GAYYnK$4B%fYfO(n~*cVwdgZ>?PUvVl&Fy_)EMWTVigebc2Snillhu3O4?BzbBg^kA4svWbP&$ zSxg40Xzw~n7C%MC$l}MnEZ*W}arw?%7GHNl7T>Gxki{SCFZt6x`%$cQt|XtH#n)51 z$YK&u&@PL=R%K-IH~I@%{LM+Tc-bfApDK6%RMue8YU1F8`h1+CkyGWDO=h~<)Ev@C zg;%?pn;qW&S?mhankuj3RyP zya!}o^>mVBsnEx+zFX#llXu73oACq=FCH^nzW0uqizI|Tto%@2iT!dyiPcqaD6vcR zm;7n_|2uYCu8>PFv0o{VP+}yYEO8}vom!*BR_ZU5*h-1B{0-L1UrJ-=QDo1WvwCjd z@ntMKV(wG>6AJ7ulB%*55OkZvl@$GoC@`75atuagCe?iH`-UaUrA z$A7|FUj$mgO!U`~R^(?_qSZ128Yoe@K6-Z|$FAyoeya?^FcL_Eg96r@eS@tW&OVPA}2*6e~uhANIx`G5skTj7oQg?fQ@gMkR7YIqYh} zXjMi{7^A;X6UJnmd{nx#nj4imMdDTM%Kfp0<@J^&2V&QoITS|FTh1cso*TQOX7sRM z>`xn-{(Dd+1DBH~DhipVXk3=z+W4D4#I7+nlLacustmjHe%bJ2xvZojt8C=2i2^%o zORx?S)nG~YH!?V3Nf&)S!yc$#TpSe>H0+fbZnP^uK35H&&U7hxJE8KDww%-@4ruq=kr3#X>~3 z`vyKEOB!~GnS4l)V@DmASqe*aCLhVsG>W2?4QAL8*{6FW(bG+^nRhV3rc9)|<0jZ8 z#+zWv53em;tiR9}E;c9Y6{Q7SR$k@*ArimO+(fw&RQ?-C8dUyGZ?3PkwpP5do0dIP zA)YiFNfC9QEK~7sFs|;et{8vNY$pq?`;l!ZhP5A7XcXOSbkiZn{#Ge|zIi*O7=7Ki z-H*>0(ESDhu;1`40oVZ$py{DOBg`=Z_(770+_Zhe+sqZ+Wyi`2GOA04dX>-jfqjRT z1YifiPqixnzQw#Pvdvyd0J>wf&@Bg{=@tn=Sd>?;9WEE$^mcf+YNH*Vt&ZhSd$fAI zORnT@dON%>aO>{CUQ#3eq?t+4q_xBT)+^WQW*X_BDPBebYz17R0yM=9QdYVZFsXL@ z3A2v$&=ha3?waDw1O!cS6G^eMeyFpp)szuyI+yUctdsU32eWtUR<93{XdRHHwE^1q3ElZ8M^Y8s4VC_f0ZL)$>~9spkD(jf@uYbTJ1f0da9Nuc|f08Z)nI`U{y}t>(!xeM75wc@M?dGg`;j znP%#MC*i9ep57;egux>*`&z|o+2{>&RpDrxcrVkLl#u(U27*+?`8C}@^Ut>Nn@n+_ z;GS=hnH!GL2h?;6spt2tF!q04Ps_9~>|4>qObY9d59zmUA3w(|3Tw@;>2`>(CII7u z066GcLjZ;W0Wb_m94O=RnYc1;AiC*g+*RG7j33iq@~6G9Q@nkya8EDeMwBkfm;{t# zC}aE9*9m^HtAA;~Z|8WqH*lj};@6wcD1o2_eN0lEm&}uTF;y2j5o-w}?2 zB!g5~-wG>fM!9y!%QfrU+eX#Ow0Sk!PBqb5LH$9iI_{Ox5y?y4$SL0$^3uNWU80C? zr|i=}kde*QtNs~mwXg0R&$90p#OvisDCzn7Pa=SPB>@p|ZKt!kM%(G4ztDEN$brfU z>(_bj^q*<3?ipWD-b`&^ulP%5FmVsEyO^Z%UaXlG+5KH_sjA}$LQa!zD$p})xhAu} zPy9tQmn@LIvun92*X0c8luH0ixmFUOlOK5neeGXmIf?_PI|)2-b#hxRtWLyYtaW(3yzE zvMXePNOIo*$50m%pq)(Q`BbiAPvP$+@fqeiQbMj?Q`;5qtqf?k3V>|Ap8%vM0J8Nd z0@AYeanJHiQh=oZ$ktB@K(_i8-w@ziAX|SX;Dl_As=0spM50^WR%%IRs7OVQY;8gS zveoC=fdHQ;^0f~E=)BcJ=J1i3n!nzw@yl;l=yW1QcFS*x!l2u!GeIjPx}6E?TmH23 zM#MYjN<&QVXW~?IgXQ$u6cDEI1D}#B-Pp_D1enb)PyuH1XV!AF zc`U4NB0bFJZ^(4B`5OobX7l%x6jS1RGTm(cK?P_wFNED}Ui@Jy%>FPH4hg(fHA{6W z9K9~no$g(m=}!0ld}e&H`GUjHiTtNt)SnU{QBN{Ik^li85Py2G_iUz{!~b-$z{Mp3 zXO{>(B#@ii6XKl=OA+`-p}>nK%Jr6ZbtIeo3AzT}x{k~4)&wB%fh0iS{pzF#UZe`; z<+!*+;Or8ChXnF?>AeH0+1iuitqntnzJ;WwhpLk8Sb|)g>6Re!YDXMP&Xe-RvEOQ^s=37 zU%b;eIV5_hj+^|H@7hfy-xjLr6UlEh1$0D>>&h?r(_V63{IpyNCcPut6@=m*^CE#C z+j;+$3Z^%4+p8~3csl4WWOIkQC(Gud+2zhJw^uzsJ~m>K>Va1a!@6bmHbo@G1hevQZGbK+CXXo8U0q??L#R9(z?wvU?|9~m*T$OL2JjJj@>a86yiYRA4?{g=nP=1N;k?`sB7jm6@M1k{3EUvr`QLSHjqf1$6LFLBD^ioR1J=YigLD!%;2 zzOf>HK~}lnsjx$@lQr!X%v-)lk+UQaq|*Oh9>r+#V7n=H)5`b=LmGC@%Vj<7hMtKI zcFy&(JH9?JmZg5jvfMjWz>l1;vAk_RYx{s3;$x#`)5#6J*X@T4v$r>09nXuHXHITd z#ckfPA-;xDXHER98YC5Rks}$sw{Kq)mxmEPCx?+vql(ObNr0*H=UF!L-O$1269Vu- zFv*AR_N%pWss2}jcInN^4V5PJ$qIz2oIN6?x2rhU?zQpurdqaSR?z)V&7l;?!h3e& z>2>iZBBlx1pr$v+IYT0U`w6;2O=D5AfYp&RBFD1hPvi%!OaLT)6#>45G`}p{bA3GD+(ana zpqlCVK~A1RGB5No>0*|zDTM3d+T z9#7xP52T2&1pv`VPEcYX>RZ$zz_%Fw>(D~em;i883yDt>@fq$}bNUTtCnLHS8cU>yYZWhTw)Hk@806$3( z-LWIy(p*ER5*2rkUM@=-?c%x)lh*?5jE^xJNC`ae@OVDLfbtXoJf9_C%J6=pBOcAS zNS;RXHIJt6;A>J;2ae=VEY<0fuU@fXP!e8xI0CLia?raYMGu>ue}5%@u4zX~px0WS zG14xs7XwO90MIKY0EN)nW?mzYy6wMN-kNwOfoYX?bVFB^zL)u=h>{Tim3A2cC`$pR zv=~;9L2}<<%e1l_``F;M&^mT0up*`<@wq)W+NE8=8#;`wvrqtJVPgVNZUUf->qJ0WU1^u= zvd{NWN{YUR1CyotlN@w>gJ}f#2B<1{P5yjBK~&AWOhjG5LtQIL3(l{V4~61cPkpNE zHbRjNg8DwN94min?3QC6$fWu`x#+ZeR9P*Zz1A2tbIy7Ck=*l)PUNsGds-9FKfNO` z{668U^hb2c&dZk%gE_ojHM!QjK!NTYH(^HfRS9(A(6;7v0(Rlys;3M3L|(DO)=3xf zL9SiacUZUThytIYH`#V)-(kJ%s?E#W*tvBReQoQn<29o%M zYs4NB$eq`oQ#jq3%N+d-+uaH)Nn$-KZ_!e_J$E6Ic$G{RG47~eZ zkCGHLHic+x{X-g(0BCRmpb-+}*zVE9EW=XJxH&{)c7?=p^A*RXH2&k!_zwX=gE&f3 z(D)@pi+P>bl)#MP%x1fV{Z zkN^x4P10M$AXWI?79qaDfPI5ONRVSYW+Vm~mV!ZhNs;SQ+$3HxOE@kqh{Ya*#RLTP z>1L9G#_AA_wSP!M5&#WO05n2^96P#ZVnhv+%GTbNd8_j5`!%J2p5#dMUf_lU3o;C8 zTX8Dy&#IMZoF+w9Tohyljsi0qyED5}8oM*QW4XAESc67b-B&zRak|}mZE?0;Qjln1 zznXJaE&E$uqOPrUceSjLF22Y+xlUr5sgM`c5t%wnHNR2hxTGf|dV$?kH?hhzBwb9D zvh(yfXGkQ^o#yO#t@8z@OIWF6o|~`^Bmk2z0kG*%MgXS!9c|}-iPt*%kGlnsMNy@8 zC*?f(on+(aktXRgu$mQQs%87sPc*DBC$Ew{qkf`SZl)%|Q<|g1a@lj^*P4qc2+U^I zPwtA@47eNb)PEsqVNP>B2{5Nwp#sclG9_1@PTp?rA{C5FcjmcPcqajPl6N}^P<WrDcHGJzsVhIyLk4( zITwr?*>U>03nopSvS7;1ZrN~!B)GDQ2in!=H>_vxYMp4A+d>23%3O;g!?_L#IFjKb zN(N=$tjZ{lTl5#o;}(f7{nDIQ9`^cSwHn&p%?qlyPUSCc6GiD0dwqCEdWhb3N85z4 zyT9$x)!uem;!3lbVnV<2FbVL~16l3pa9;+&=v)5Q)Gg=VXF%7Y0?eBy2LdF=x=;;t zU-3r*bc?2rt^ih6oqKWbb7oJOKmTS~eOa`b{Y~A{R1C4Wt=TN7TE54P*PULFL2}dx z-{3R?d;{6CiJ6`RpsJ{au1cSms-ib3DKk<9^juRLxnXeQNVulB?yPH~r8!gFdKJRX zeX3%v-1$tj%Y9Dya&>rsGT^{pOShS`DIA=X-5)lYL>hQljC^o_s6iL2GHTEz`U^Ga zl4htu^awKsCv=4O3$cR42V8Hq?9Ja$gW+z5>0Dt6K6sD$?V)Y+h+An$YZXW2xr*!l~EB zgJVR7y{F2^u=n*BGVJ}|$*`5p+|zZh^-Ww*UPrj3U*aLNmm)ykeM15~?u~(a?yy8H zn>Qfwi>cUL()O3%@@!D_l;(Ec=+XlF+mU3ohkwXZMBZC@p2iBqEkTG*LoiK5(Jwc>Gm`Y+YQWq&K}Wq1Fx=QdM9VPJ-}`@zfF z>h@DVE0r|MBnZci%84Yv+-jT((53v^Y`Z)kC1d?Xq=U)Tf);LawSa(Nfp9%ZF~eHX z!p*R5RDfn!1N85-8J0N442vCOh7}Uz*rk<|y$wq-!q2cNfG{s;#BWe-qpfwApJ`fewT(M02-VCXt1Dg+UaqVCeVwa z&j$<&Zy5f6c4FOPy^)1%uhG(FdySS7fY-?&?%I`Fway?R!fxI&J?u8B@VjA)e}v8c z5q3zBV>eW8HHZ^L=4VKPy110g$BJrJ3%8;gCx7cZU&glZE?3T?P*LY*s=%vrcszFd zhMRh2M9ih6D7D$UU3qa!=XYjHw^AF6^t_k8a0SOaI{*DkO;*rWxb5kaSz4-?Lf@sO zit*!KO%>zEy)DC6ab&=it2jflKMb~wQyyi16&_`SYhG??^XwAc5`)LBDUVxE@F@3I z^m0$7Hs{@uRmpBYCowCh+}k~}_`LLRyYBY;%NJC&AAKVO&g8q~bHUe7P4qH5DWBv4 zxw4$+13@Z0z4J5i7rFD(|C>3r?dDI$SL}t-Evz4IU;E#?!5Yp z8#>iUfT1DM%H7a8Mv?4X-M6Q0a!?*dK6O@NhB=jNcKPo<%O-C^`1ol2&sk6qvsMJW9~Kf?Z3>d zX1|}C=n$RV%FUd8AJ>tp?*rrOtps39@-6Nsz_*YQHp}*(pXg#9Cln)=n(6$xcPm`Z zu`jej*8_&Hc?|zWMtJr?05JR?0Z2E=U$hUXjc)A+U< z&llIjza|6ZsT%m5i(cP~oEDT4^7NROr?nW+JQVzE>c1%-s#bMlmVqD z0O&nW0D=<$8yD{okVfwf&+BLarG1e3DT|ke_Q)Xli5-AiyAGhe za@JRgw;=;R=shnFEnr8;P>-eUI5o&nk)b;sK~7L%RM~GA`l{6OCy#Cu?XXP!-%FIW z@~^IR)QJ(UuFO}r`lo+&MSk1PwJOxpD_=a#KEl&qy{vK(1%%5gSG0GRRjwjnmw#C$ zy0pC=zD{O%H?()RRgf?i;2m4J+bXA?U)(7*sjgbpUAVufy}PrrL7j3u3n>+x)NCRF zR(21m04qD0b>sHQKS%|u+Lzk9Rqaaz$f|ad`HTcu(SFk2?IV1l0Ig)xXkgb_d}1Zb zKCzMw3B21UEX7iGXM4AleO^-3+b3BaBt>t9f}k@yxS%r$K+va=K!c9REND@2XS@Hw z%o@>ylK=9CmE88K^m_#45^2-RiyIkskN86Z?*HU5aa(P2?>QB=YYE}%@|$aEWI zqQ_w(0d6~?N>&^5Cz685{Bnp~^oK+yIwG6~h=c^*B@~u|$hZ)Zml7A6O&pmLdC(*B zAORpU_s(c5^EZ-$$P48VdFc;{Jm`pU8Xyu9Ok+B_%^kl+)mDYytx<hXnHB@+U@gGb}~?2UGE5Z|9lz zZV%?6_HGa6{`T&)oO%S=Zs;tp__Q0UPtCGle3Qtu&;BcsA+Ksm^s14rhJ*4BZzZOh zS;SMit*K@P2_m=m!h*k-eftAB2D^OP!n(Hh7iZ5kSCA5hu**BTv&c(2(uVPEVXd`t z1g`Jke}DiC0RjXY#!nE6K3`Du`QjWKyA)z-i{avquFpSPbl*!1%|l<0bI9t&7f!o) z*0~F&=|QA-2Kiw}oA-XAZ|=pK6!))FDQz5}? zeUG1$q3;oG<2wS-HhhaC1o##>maUpEx#>IE>COiPh42ufboz0iF?g+6ajMZDH6!xcCYPu2NUfh=6w=lhpr?JUuI6&%O2Cu?NK^IaoTkGe>BBcDd2R^&wkiZrvUx5|E1Hva}fdHDF8PAmJ=YI2{!*u+M!(C z*>Ux~-c82pH8R%G+d^{C^9^1gzz+kvfo~E3%4*?dr;fi_RN|>R_quBnkA>PqKDCM3 zseyRzh0~^(3M|257w8Mh55- zyCK%6viXs4oWEA@64WLP(A89cPUZD{@BFnj>0tHIyo(#5n-d`OMDN0HUy@>&?$yN& z)BP2oVOpuC57Xip!!$d_FdY(j=dUcqFrC-Mt(zKmq4U=T9FI;g=6d1JB>?kvoWCw7 zDZ>A=IMwsl;a%M7>AF9pAqjv6Cjc5O!1-&MKqngK2MqN5)$HJCH27z|;GZQRSZsVi zQUw2QDEJTmFnCD-!E*u#J|w^?Y^h->%HXMhflk#U4cERROTlVg+#zh`F5V$*!>*x< zm!kr&;_)GDJ5rP??H$6l>FOqAIbGd^tg`q|eR+dxc`z%Z785koe0OFlWvjEYtl^qH z7$in%vKS;r*=27O_ow$E$ha#;BuASS zgp1YG95P5nzr3q^vrE&4$^H?uflSbu-_aH8n#el4^9$Llo!q5@9OPcSptpH4toc~F zW~au5Vj{HFK{3_`jPa=bF<=32B#lZpRY#5>&DYM z=i5&Tl2@7^DHKfJ=ZEbMkj9=H`^K^YKhz(&_tcmINff>d^^jy4lp6@-4g@H(ABW`y%FbvO&XorNAv~K4w6dH3DE+^A!Ogr53tJ@(Te{ ze%ILbJx;4;KiOJZ#}*HkCtVH|xRs3Ws9ukta{7+2HPVa#bOpXeJ^{Xke8;z+=}!Q9 z7`4#u;l%>?I-Iej0GcCvIGWQKP?`dO=6nJ)t;k3_{7CUgb2Z6@<+ai3J>0FEWj!1{ z-@$rPM6d#Y-X;P-&$oDn0N(<)ZeAq-^wh$mhd1H;n-oCrbC2GB29%xvpm&@A(ED8J zW!qIBK)0Z3W^ zaBfAwiJY7Da;59L8A#f`8*nZo0G!2Q+1QeT43hf>pnT(!9!<@8go3iB!zKLl^yD?> zO40(`CB0k;uVz3?SOBnHPXJOCU|CjKpDMRRa3j)oUR%=AY$2@^sc-Upy-Zs0B>)c7 z-y;Bd?OE8NIVF0R*jL6)n(s+j((*1R`He^|{hKsChibipqVzc+t8)lIR*S`y74p^z zlKTdjA9f`GxvWWWF7Ka{Tw#Wg7IL|yx69>m3}`MZpl>lFInookWb#?&5&}-l*FW{P zQ*M-sK}xU|IkNQ*0+6i&pimzoz_&o&K1sldd8_7r-b#dU^)6ZXp(Ag16M($+E%p)M zTOf0f5`fHA3omo^EmQWo(@-0brI~$PmNxGblr1<4fWSHvfMnD{htn7V!Z8?V2J~?) z)b}uv6nzh%Hj4mI^DQnWz_$=;-V3I#AyoOvk@?Pol0Iv8?99~hbhTbnntWf$G_!#e zLG})h>>~_l{Sg3UpCthALh9poe%~TF?zi~O13Y9JRRc6KkxUR$YQp7{%5sI!_%&>>`7+*o>ov_NyKNAo2H zl%@c#SrLFB1;CA^F9}Gax!bcmObW0R0KGxwenE+$rT7;02=Fb?8#E)}#NI&7{ocS2 zyDwSzVQb#nB}p`0WUH@yMo2lbRr9s4eYhC9$WGM_vNOwKNxOs$;c;<4TGC!mC^B16 z-v^Gr%b&fwCGD~TyK!sjFq`-MpsGW*>%<%D*-h$G|Mc%W>F*O>)pMWf^E&NH6?n@; zysBp_#fIBY&q{3is-EWw*p<5d^mIRW`{^J3-0dfXfm7=31@87!?eDvH()D8xd)ckY zn$fNO+`Xqy)E!5%nf&XDaqVr=6Ye1)w*Jp*STfaLGSx6_gQNMMNFO`@Kd1o9XIU@d zu2g3KfH5}yYxH*;|1}7}1(8-Hz`k?y{%+5|jRLgipGF#I!QvD9&FmBV%^`tzSBjjQ6 zD8*6)KQ;(HxGD7z$E6JJ^BCMm0QUUxs-71}3L4LbXzct$8j=8LZ~~wa5_s37SPB|< zhiKG(Ai3WB#BnK&gC3281fU?y0IFwtX|1YVc0q}EY0WQ;8mjcWHA(z~1^Wk!kRZn% zuYPvYuoNu5Ph;__DdMn{K>q=*`u8V52zcjSV@ayz5Rrp}6Ih)2hb$x!VbLgqynzHK zDgt>|;UlujW9iO+P8_O97Dc5k;F?s${_d3IhkovqWPd+*O^P}L-JH>vicH>;oLVDY zF88AP*y>x8lg(okjC5#I&7&kZ@X}Q5diAse-dkVEj^CEN&b&^zcH8ovGR+HoqwvK6 z^oEB2gcPG+3~JR^tSnpl^c<8BQ zb<>KJ(ChXm0eam&DnPF*G2%khNK!$sJ9MC{c0&okg{YY%K+B&t(Dl0KDL`!{PyhCZ z8uYs26K#ckqMC&S-i0WZqOA-W=xSDO>$vcvlqz!31?E>Z+uU4tsnNN=AGXL$yLTo%I~rhn64_&le`L-N_dkg6M9v@+BjZd-}Kl zHJs#VAL?6YT^|l~H=rm3Ql;@vDb7`c8rvz)l?<;Sb0gdHwPdsCg@ty)Ysr$_e=1FG z3_FQ8?msQ2M6pY}BW!XJY2dC7`QR{cSLY^GMrBx|zfc+06o&6Vp|?WQ*&*TU{imv@ zm$b2$zL^}vbz}RkHpku+MDI~E=sjvm?_q}@ zo>;f4I9pjk|I&9*tlgDtp8JgY=Ulsw65M%s;!RwF$h3RI7VnaUWLhjM_?v@6o_(hn z@@%jELZ0pYojkj@&@Owt^v`zXj${oxu698!J4Ys+Yu`^cK5-c6ZKuAUyvdqcxLqy@hlJil8BfL{S{ zk!S}2@GF4t7b_Xc%v9mlD{?jOn5%hFX_=pWk!%#*Q)G{Pk?fsYPn~id`z@#;R;~qo zXZ}aYVwlS7F)3dc8O82K&{u@xM$m60zzB6z1!!jVio6>^4P!w?zz~%kb3;@%0m00u z6G<^nwU4=RsJycrs$PZ)ysF1{f=(qxsnp(`phj`$H$ysM@oWEaYe^Toqi%&v!<8JflDv8q zGP0?yaD&6NM2Z&ElDOs$devf06TND293v6k2$GQqH-c!3AmvdO)9@(k7`&FDkFI{; zaa79VDCd!`1l5-bf=+ap?W^w;pJP@KE~BHnRFq9tDL%_3R{g@rM@N#a%(`^5sX66ac!#O$e@(WG znn%b6UFSn_H#$7afQ}9VV03tm0A&?<$PRy?#Cu!&zX(j*0sbiNh6UftPo#*v5dbr+ ziU}zZZ&*W@?OW6#z_-}-ztiQFj?v;aCXY~b=xV0p&wX)soZ5>NlxRe*fNUx$FvToa zp4}6U=V$_uo&cCn&LAL-<2eb((f6>76nziicq0Mes22YiT#!L>-vFnn4-)`(YT&WM zY3fU)0CqbZyLVZx>~?tUb`yZ41i(?-K>~zb=pc2UN6~jvJsFgi?*Qq z3ml{t5CD#9k>V&D_@C7(o?(WP7V7KZq^qwJ8BnGIpuWx`00|19Ozn-&U^a6i$%~V& z9DNVA91kFQF99IwTWll1PZRfwb`k)RYT=Q@Y4I;v(*8doEs*@DNAhb1l%xP4`4a(1 zPyp=RS1k?-h&Qz(744P}OWgNceJ9OG*LMP*`2>KcZ_%Fs-$JfsW!wC3i<_7sgo3P^ zF`HV#14>o^kX=RqQWZdMsmnX|U(D`r))0!a&3h@knSbRWawBNl z+6yA>Bc8iWWZ=64?Pmx8Z9jll3Ggk39~zu(TQn_hZayRwwAGAhFX>x)rtR>qTfyo> zKHqtakCP?N5d;9^>Lo!bB0&MrT2Cb)ts-x!d1hXu#MNWpOHWevy?|(v01)*pMiJm! zpdO!1!0L|*XKP-16o==^Cp5O+9M8757nL@$&s9kDG>b_cWxS}wmGN>0w2TD+V@m*1 z766PNBp{7((+fwX82escBxTvk=^*2)aMP))XXz`3DkmB z@N@5!QHL3QOTe&>#Uo7R(xA9NH(KiG)?+~F3IMvz2tc3$fNnPe(&_4_tny1;3Hxr! zNE_it?XGp&neyhpt!JKQ zR+ABUU+?i=&w%n40K7L5fb<1Gzx4tE+;2sn@hGe7OJ(DQ^uYLf$M`FfgR!6DAp-mq z@qp*|rTv?l3WI`@18p_)XyX+5tlq^FO)hDHXZ=C0d{1LQc?tlYJqbXn0-$^c5pZJp zCI`9l6>WSko0NSosLmG>0JeU*O9}8TrVJ<^U~V7)MAd>jsY?bHFEsa)7Kq;M5q+Ei zB`N@jzDNKP6d>rEKOhurxo?i{^4R*mz9((p7w8@%0Car|GdL(d-$M2gvh4kd;_0RV zq2R1$%z1bHp%rcZZ6($1LuI9;(Y(G6Imk0I1HB2}rBX69&5y z_B~ueioOSMzLo%R_AS;D;9JOG)XUsM0O+cPUzhdWG|!O&_&w$Edz}I0r+_v#k|QaV z>lW*`1W36C7eBu8=!qgSsM3&70SN$lbqN4H-=Zl2eww%rfiH`7A`~3e%;%W8^-)4v zAQ~Uy3UUksN>l(eG?F7xk)s^{L;#gzUSxf>g!w%INL2vvjGP{nlh1R?Wr-9|-$5hN^BqjN zTzHZkJjG!3Z*rlE=4Ev6qdTFR?bVu# zVBy)*ZmDF?uiCb;edqFwd|hZ`=d}Dy2e)%NHBNUxZqqFQ+yNP_{`F7)4v79f;SR`h z)#vTi=_=qmAmb=b+yR+d=I($@Ctz3V4#?SM?heS@GIs|AVPM1aws`6dI18iW%G}M5 zE7S?6KbE}e&5!L>FDPyssj)l|`wt78HK+J2vpSFm4+|8n5$OpJ3#f~QXP{N{Y#e)Mo@rk`q_KCgFkifgG!cy#oepKf6qd$-o^|ng;p+SX;B+G_I zhT7rDvfK<3BjiF7Amsi--5zu`G0=DV#8lyTLvJ(Gh2Dl-A@q>IyQ{)dgx*q8)c5O3 z=)ql;i^v%=eZf$d=?e(JZZz(yTu)NaSP{@D99-71k>bD0Lj0ou*gsf=1m0B@mV(8+ z5DQ#Yd5Oc)J@p+PiyZ`@96lxi2>df3fO7cs4;hGWFks(c5E6LTR9FfI&!sVV)zlsq zR3Q{W^{tyST7%RmwU15N-8LIUrO3QNJDnxyE}Bpe95 zTjn*eh#HK-5puc^qlZ>ERjczw@p%Ztx8R}eMnbElfiNr2b)NdMBy z_Fi3VY={1}uQs<5j=}wwVeZX6tB27Yl`UbdO~c#_@&y7ggb9EV@J#|R0t$c;Q2b)V zqQFuc>#K&j5$j?}TkfdjVz9y;m8wGuN5$xp%0BUOV{y0KRhkSB4~r>XTvGX&1UUV} z3w!)r$TU9^j{7OqhX<7j-E1`#pqrKWa6hFfsi3|!9`5Q}V*>Pkiaj#86fY0gH%4_G z?z-5XszkMGpGM%1faqey9cmZ5L+uI)ysIfJMeS-h+|{OP!(DBvJltJPVXmSWx5L_x zGFd?ea6#b2X0Y(mt0{vuWSrPss=sgsbm{Q$)s(R^@au_9@HLgW4;MGEoz@i>r4MHM z<{p$l*}CFd?rSQYZY^GF)>8JN_TEGSyt#+0^vyk+7}rg`2Zi|$#RVBG*O{rvF*ALY z0L<6~z+&oC0(3D|M+ZK>uOhP(l+B03-J-+yc!&&rk62t)7$G^uXDVW`x~;@Ua^C>g zR+Rn1Lvl5BQe31mQo4`w=-@CnV@}BlUag&VO#DkZ2__oSD4-~h^U9N69?-o!xcy-U+BtYKH51VWt z4LtoD{LMij>z-B&S@(?oLe@R=J6Sh>gu4wSpH^w8xi+f20mJ;Y_;&Mtkg7$Fy+eY? z>>@N&d3DOB;xEj%1YxZBYJ^(|{=$GZHv!Pxs*IFqy*7ZlE&!Ig4G7SM;7OZX)=1af z)T6eA|48xtIgw@Y5w?EhMFWcTvOA~Bf^9I#F)H;M=|-h92|yDQfZTdFTP`FmxV^x+ zT}pDeyqmc;>OFHB*2*WnhMYg|2@LH@$xn4V9@(= zq#N|UBp{e%9V00wSw}{?;qNyEX!uiR>BFBm#_-3EG5m!D-i;TQV))xL(oL>DA4xY} zx{s1%ysC)sJCAbVcP0SSbli9uL{fxbJj%@x>x^=%jUlS=yEG&L(BK3>g9W(pk|xj_ zFC8T@ogNAU+;~~W(dg{_GB5bc2te?-@v@er2!2f{_;r66yd;3&IROM85_mUWSc)>Z zBw&CE?x!Q&l;kyOiF)JZm66_!mrp5HRK1T>;8i`o@$wxhN>%o5ynHjt`Tb~=o9etG z{!?$k;d+kw4lcb=BjLt~36GR6COmaCF?6_DqvaPm+^o^zOD{53;nEB3iKINrk{lj& zb^6e-7FoI|g2QGhhs~VBa_+ozd9%3O_Xm9NX7R-l(?>mcRT+0)VkFRRHqysVSzOwA z%{#L*?Xc_XXP6$Opzjf|&%aZAfjNVu()W8eUPw1ZW~@ZIt9YQ9o^CNUr+j7avdc~H z7SEMW$dC<2jf+ORQDX%II%)`jQDYqe7&X*Fcf21WAZ^F{zR_-!@IAalioOR-%HAaa zUAS+tn*iTJUKx;MpZch{mDxwAcJPslkiodjzhJbx>r!P*P%7YAVT|LM#enh@06d!$ zfHc)Yd3Gm&c}C>LaH~q){Q=*}P}23Cfa*j7K-IUHMSyRC3ojQFu&kn-FH4*{<_bgH zce#mhFucKIxPbv>C;%8fLI9Ey04H!e2oQ$p7hWRI1~h$7pOAs?2{gYZ05pAzp9t_R zaOb7s*r1>=TC0V}6LX7N|1F+o8j}{tHW=%QvmFCURsfLgMF0{M0AvRfa3a}ayYtS{ z#`e*J4cp5*`rv6A8Tg(+c0K_h>!-bp0N*0G6LKS=sJ;#Cfpw)rv|#7GFRx{4_g(RL z^8hJ<@I4;kCm2w|0wBzn2tcB0q4oEl1fPWF?o?*v?r69BG$venNB z%FnluJ%_Bd(+71i4G9F*ds0+Uw*G13Xw#K6!MD>Hu7C>}P`(0y?@$6X;fTC^_x@6O zU-Pw<`X9xvTHS?GThmP-)7MQ-{G5t3K%2WU_-A@2g6#z`5U+o~Mc)IMo<;ze`W8J2@GWrem?Qus)gtJDy>rJ&qy>`W$GPG>p8+K)07xz- z00|0!bI0omNF%x2v)o7uuoM92j++U$k-nUK*stOk?}#9`4-r9twn%lY-GG9=N>wg&K^A=9yxDAig4XxJRLn25Q>}^ zRLdu_0Mj13^nvG^~s5<@Kb7_0AnCzR8 zsOxJ9J~+r5$#Ll-d#J}?C;?bx;~;M)NkL;;h{kz;NJA0;4Nd?wLIUq3kENh7Bt!!z zdFweYrE$AQ<8}g25RZ`n47P+AJn@GN#5WkQZ!ic6ypueZg2B2p2CtfLIV27KD=+x3 z2$10W+IL#bZILmN>YN_2919VMs>1KqB=HXd>>mU|0`DM?r6BNSKmhw3o5s8Sh&#r+ z{fJw~yMsLH2mFIPdEUIK9XPP0hJA6_poaF*qLPYsa_5rzHPUtQ4Em1FC6moWqAR`I zRC6W?{AbX+r5shXHM^FqGz&-xo%!5}?j5$X?VkV14S(#Ut_&+(JJC(pZX*B#g#Z|8 z9v}c?xBwW#XHRqod=y-2A7R!+H$IG-h)woJ7#iF|=%*Ksp!2;~C)#a2O1k9E(p0$b z9Ye|DeD7Tnpxebm=zeA*531Oj#eFNAw@DLS@mC~3SNx?4&=pIdIO#h|D(KY?PjtQ7 zVFK_ZdgfW_by2-jN?mQ4bGI zboK5_DIVEhi|&y^*3WY=X;Jh(&q2A!WrGc?R%f{_uvQu~cC5zgFKmI0Ju7_XcZQ6- z-s9-)wKA8bjd*yvT*{)pt=+V9M?1K%WQmza8HHMWJ_&q-C(X4aMYX-^EI0dG%Ye@Q z1iiP5w)2fI(nm${*tg3d>=_OUxmX)kBV<;HZkP$2h>sNAT zdZd#IcuZDH0;X)?}zeN;FCcrFkML&Ggl;`WjGQbLzL&v)_H* z=e(}+k8{_v*4q2od+q7n``s@oq5VBKz_q`37|`}7z_@X8=^x1v_aes%^M3^B;_G3-Q48?^5a;s#_DYTCa$ZeCeO$&*`Z!MJ? zw(=HHvKZ+6YwTgwRWJ)k2|IghNq{kKwF=NAw+#q(_MRsl4078G-5|G}08F}eT%1wc z>?bLvjr$7SqT>SvXq20yf2WOd;uxbGJH{v%5d=GXEX63dwb0GmHy6^*Ub%siOb{8! z{)q!!_D>`L^LFg))gdXeUu&RSetcJmkvhX#(BvD8`+fHo2K#+aQC<;{kETBi_VLfBNd|jK>GMiO#)}Kx)H}!#|wuP*dXeh}n)*IyU^i(^y4sd|1;( zZ+v)Qbi+@^Gi>*Uz1xHdCOf-^=&$E zO|I;rRU9O~f)K}!Uo{dO{IYkS*dX_k`^h9xuIhS13GjFfT`Pf0x)){ zg-+dWA|UOF^Nc}mtneOIkfQg1dD?mc(2aYGEd+RrRnv1jn^y=x|E?DLbh5`Fx6}6- zDS+Q60l&ixC_e$f?=J$7mRcyka+ik{%lu*|+Etz7ZYt`XG$38?1QgF902IANHv+r` zcKUh~0E%i6P{dZ>C{h5$D=&9dcs&D3Q2YWJp_0QZ1sIg0C=iJz!Ou8GnU^{&eocrn`?e0RWSZvz_{e#u!`^m zSO73CPXJO?3$4_;1aPHh)Eex9)_dqgirxd5CJ6vjvA~_#B=-i`rLMUsx2_pZDA;N` z0o%wm;Wv^h*iIYl>USXnTE7B-?Fs^rv;e5zM+rElelykwl)anRNZY#s<@X5yWpD8% z0p23KC;TTu!CB3?hQkfNvO}mM^{{B>5XU)(0p%P{4E>1IknYFnx^xq$&WIeoR0b)As|W-or1X=skdGiJ@WTfT_1Qg#d4X-M*Rx zfTUW4O*Gi;YeQNf*>WhV(@vWZ*CX`kdPN3)eMuQ<34o2hVFaY{8yr|pCWW16bm${b zRj|)DhvZ1g8!RIrFu*q7106l%x&9R>{a8<~I3| z6)Zl_8{{_mc0X1qcT0be+uGjqTyEKnmc!ik-eu~NbJL8{knO!nw#Uxgd1eSnvHV_9 z*i3Gb^X?2=;py@uGQdLTS`}cSBeQI5^erJ3tXvlkb1T<{1jsUPfLTWZUE#&nILdgs z{IG(wU`?Zrr_16Ot2_3K)m=moZ1%BKS9h`bNNv&XzS$YK4s-i`pK*?KiTX*9_fH5w z-hUwh^8P=U_rninXJu?3=Jx!4`&SO)zh<{yRWivNC~$fr2)6uK3JM>lQ3!Ya&bl&; zJ=8&iD_tElAOK5k?E0NYQjqCnXIP27G%{UP=^raZ5p*@xKz0L_mZS0g;Fx*a&1Ph-^QJNdGx%kX=G15O$wH!3|OZ|BLvy@YM_m3(9^=l$GsBD#3t@2>ZAFE{5555reF z#KERH3C3M;w%kkoLGG)j2T9S{Cx*LC!0vX&+IX-DI5ets`Ed7$^%?>&KnZ|x=tcrC z4hb->Z+?DkxZ4Ay%%mPMbQ|u5kh6#5p?p=09@qmcbN=~#({=&xA8wa?n%gp`n!>`e^ zjcTSxYC+l^oCSRQggFPZPmjn?jy^h)*+TbRDx?~$L z!p-r=kqxG60_-_2uVp65JAc`{k8s0UW+BOSEpxJtk-P;clLW05JM^)5HGAN~(GA5C zQ_Y9SGVq8=+h&rZO-K%4@Dc%m0k;44ksNJB4Rp@de*|9dt3c(Dsv|jt_GG+j#yWcd$#L}ENNlmWH=0t_@oVYI%dog;V^L@A$Fw`qj36EC?cGQMjAYYQfQGhg zWU#lloOCdh-8sq)Wp@$~PNp6wDaNynquhA*qyjXa4bi{T#xrq@@r)f~Jc|f|y*-v< zJhM_Ux(Bv+6z%PO!}-y<;Fm%6za#*&bL{P%Fj{gI^dQLoQE{sGRKGmREi*Dy;U8&8 z0-(VOfCdY&iY%ZtD0L89tTErj)>v92J7eJ}%roSa3S%%-o>KI#j zFKcL^>wQfVMc4b<=;&6S3`*F_qh}8(kFq|8M_HU=D{s55IpJ}C%Hw|Lv52j_i>u}p z`SRY;s(JUt%n>RGY~}q%0(7iLq)_z2>hB1^OMB&N=8ZOG$4FknK{D9OBi$5>tTDQm zSJl?2l~>#3q?-+{RJ29#=HBPE^6re8reuS@^QTxjpga}OEBQzcnwyE{Hw329{4$^^PEc4S#)dVCObY;-rw{;| z-l8S}-U9o1XA=O1n^O$2otH~E7506?Pw@*(Y+P6|{vk5%;S1;m=2b`y*_HHg4IjxtFVJsAa<7kT zU%L_jdg92_!wgC9E;g5u7U*3(&eh>a1~f_qK!8mm00|0!N}NkTv=Xal%pT{Oqj&QF zX?r(_(-4jTGTat><`Df3dxbY7+~emhydSCahv2B<6S=# zIOtA#-T?^rApnE}gUd`vf{bQO~up998v(eo5#BdIM!xBISK%dO$b1GYN1=q=Mf-r8(v}C@oLvJy@yLl(R%>L5d?svx0pzP zx4_0LwwPxT3X*E(Nv5`#SCSTL^X`D@BMc~00l;)C0r-sY)vhw%Bzan8z8Vnq4!$DA zzyWyv%yN9VI7qShHDPT82B7IaTudNnYBB-MaDVws(gMwT*SHF8&4AJr05rQ3fWj33 zL3DC5~mV@t-m#MR0#C;J%9i zaUlU}A#X=W@wPKpkQ_xT^7NwhpEV{$c)orDZ9mT=6a_D+hGwjRPF>yG5EYAFq_{_Y zUyY_M=xRFYcAqv@zxt=&g4W;1Y(ZzKK0lH9FDYSeqlnUN4-FJQ7BjzAU^)ZpvFC5Fe zHF+l6-BHVC*zNe4EU-ZTQ3Y6_%lgoL*U_=hI?m?G<1_n0D!0C`L?z|0`j z);%4nuK+z(S+9wB_So$ZpLjCCKJjECA_#V%S&AnUnb*3fL!~4|eB+q2qM5!p$n?bo zAk*VXfJ~1SSNO*9weFeFHUFA<@r}&0Z)83q@ZUJ56p{IUVdle)=XIooCvy)33?3i= zPlwz$j!6m{TO%}fs=`0kfg}JLoB(J<1i_{=OF`ql2o3j*W6qaW#18?D9|%B2nCmFc zbg!)Rb?Ft6r3(MZKzxG%`v!xEz<=MEvH%8$(iq71jX6u2`3~2)(C2Z<}trH!sU>UzFD}D_sNcn6_V>C*L`yj7je%-#I2h_>Sp~OY#<**9bxv{?c{s z?%3zAqbK|SiE4d%oqNo2gaC{W0^rI1-vnURA^>JB;up{0DNm`VUC+stOsl%*WIQBk z>-UW@BDhyedlz)0S4(S5l&?+X$@h&l74CA^Q?l;+#uLMUMQQ=(^b93Q*&yp?`B1EB9t+k4aQ9>=L0B z5%}*JQ$lDP`4e3%wVmi<>70pfKbiT8V(>lVu&lTS@YHmQaKrbEH3d91eMEoZIqV}7 zqx;DlWLQnTKq~Q>G!&Xv-UprO-W`4UK3QJ9OqoV>?g|B)MECTV`81SR1m%Yl-DLJV z26RFv048*Q5P;7Ji-9gqvL;EcgK<$8CnxKu#(TyxvSVy3Gs!Jhyu*5A7&ydKs|Cps z@M3`P7?V8Eci%B4Iog3HptJY)CI;Uz4s)KWg?FVIRKZ-x>O_?nB0usziMwWjMV9^W z|C)YbsuGUoblUZJ~vYQ5#n@n59LrDwSzdXqPANLk8}X#-xDEZwNBKfdFLQebShu$ovbD%)hD% z|Co760Ga0mkokzff6|yz1cQe|2AGOwO?K0VKc(5}3!lGTA8Zk4O_8hwT@FGoQw2fj z@fLA4Qk2N{pERE0{ANyZ(~{rBf9ictj&saS+*ggmHp2}Mlanq|t~xpCqI}S?cGqOl zv38#l-6WQw2b;w7bRgwXme26mR#v1rd9^FH)x`!p_D*^1?K~E-N!;O!JYzE|#~avh z-pgxK#G9XX*S%qS`o8Rgt=uep+>VW(ZFo%Wya%MQw9!o^CyNgN7N`M-XOdvWu> zALK1Hw}%RD)-->LJ0Cj7_WDDi)ucQuGyhl+}N|K#T%RFqMFa9 zYaXi9xvlvis`PHUQsJkX@TZdS4^hqU(>1#v$m?k`r%EOGVAC7HOWK256D{qOO$mL8 z1RZ$EsTNmb7A~z--P9!m^x}e|7oRi5tu=}+I@gO2o)SKS%ATtE!y~Bf>T~K8JK;Zh z4RWNI(|hzQh{wWr8(mzH1XMY;^Qw4$#lGqaLDf%xAx!&84$seRUvyB7iGC~5aq?bba*N;3QGZWV3rfxI4OR75X!r5*T|Y!+Tma>V_W(UWbAy2F0UJJ+f1!!G_pQ|D7t?IwXkM)x$ys`dzd@Oc-QVbJ`}EPgt4%A)2No!=N9~%E z2G)1vh|0m$R8o~uQ$6$-YO2Td==u(ogE9a0X}Urgw4_{oSfs1cml~FAkIyp0DE+X` z29p$DGFtgdUMqWcMm%Y*B?uKqx~U9LnC?2MYQ^H?%sjF{W!w@}#!b_s^|m^yx++xN zQ#L-#Y>O&v4i!+bMd!v<>;OqGRk0J*6Dsy&{WWpA?N};aFGq5oUaNby=sW#|3i{4fP!U5&@iOsoMbwMkS|#kP>PsBNU`^U4DkErK?YjKWfel72K?(-VE1dYR`z)(s@zU zj-e`Qsee?VU#Ni2^yo?Pgc%>z8Z*N!FJ};d-c$gbfjIj3=$hs>LeZNFir!Q*DmQFb zv=^KlpJ3LK7J}~n!1+@Iz_|ceyY32@sp4k;-1L8%o$2 z=MKrSzvRTPG{eXQr9Suu7o3GRxZn(DFw>)|lOw8_!7PhvEe^H9X~D***2AF|s;=mq zyQ*s=Sxfacz10({ZnysGeS`h8X8iOVVVPca?I=a`HYA|3alOr_s*I{TpubRc2aa2H z&(V};jUu=G(bfr#$wa-r^m8u(S|F2HGiz$7hBoI~8LfBGx) zM*Gv*5^Yi^>CyHB)i0ur1XPnQ+I~`NMBC5$3(@xTjmPUKHZ>`FY#Y;5!r`Qu;vkHm zAleK`F|gsPyi!f$S@zRr@t&p{;pjKWAeGyyGfUW2tIo`^dz!~DGR?^Zao2dJi@Sz1 zUEHNs82M4n+)xuuz39ZWsaK7Ovs6p3p^i}YBlTB}nRZtz>7*rJ>1AJ<5=7aPfY`XQ zzh0G5_LKD&%6{_9?SFvAjFXD-x00jw$~~V%UC7b>*RcQue; z%gWl19&TLD9{uXF`leabKB{-$R(u4ChDr2l>=5>!hZEm5gU^O#8YIief zU^PRIC_G$HuT*6O^(y^^pk8&;@mDkRXS&_0`tkTRY2l5Hs!8$qNw!l#yo9}T*12cd zzKQrxW(#E}4DU@W)y*q!+S|O!kUq>K-BkWxxyglhi)8#8bAT)~&SD>h)wBPmVCMW| znG*J^9`Qo+YgGGx$7+`?*S(@`cvZ)8R(`cKMRQvT~wZkU*RaE=)G;K7|q65h_(MKgtQsc+# z8X{<-rDw^n*Ke|mE{QkFk)TU&qEApLp^2JH<8f0~ZGvb)6MZ~tXGjB0lpIlryCzyk zmC;1&>Mu0Wy0eboL?6G&HPLeh#0M0$O!#C#{BF~cauBx4wj{-4qQZgkb4`+@7;i`| zmD_?@u0ftRD1L((Ocv<)3un0@{}TCMA0bSRDqI&T;C+D=gX4Y7;;7bwS#EK9F9BHR z2_Wk{_eG?Q1Y)fxAl7=4I0EwUeJzXIazo`g$}6Obe7-Qt&bYm2%S@8PzsPYO{tE)& zTLAA{{;y#l$-1RBF1D^%bRoH5YbiNN1zS(`iC`-^TYmMNWjha#*UFIsO%JwnC~Ztu zNI=!#f~JDHLeNyyUkI9tvyV4fiH(d8jfBd;!BgAH&DZf6=4^Fv%tY}_l7`2m+W)z% zw5>im-pzC%96>_{sob`o9V{?QjgbXrZ!$q`^qlRYCV#ejkluW(JSH9))fyIRp?cRh z98%WyA5gxWm0xwu%&7i!ryt9=2ixS!<*NE^m!dQ0Dy!~ns;o}x4V87j{^~T_RvI6# zngxGJNvp3q;YtS63JSsz{0ngoK25s3sgxIt3NJ?O zt|twQ3gn3D!NtrHRYuG#)nAC2rNT}&3@U!8+P@c*dz!E=*B_2l2LnIAb`NuQjrR^y#=U29`-576Zo+Ty34_T%1z3moR6V~jKWAB(5A8y_u z69mxipypo}3OC8N)VEQEuR?{QCL+b>NFi{noiNA6nmEMRUv!>aEkAGzweTI9GHUsB z^||8~yMDH`aLIpqEw7~*tNEPcb;sl89Mc`6qN?925BLg* zX;@KtBn>NS>l~@5d2^*ZzJzep5gDX%+kcL0<5$m8t5WEQv>2<>IpTlPJdlC$If0LH6Xc5uYqoq;+~c9{uRQ%iIS^;&5EG{ zp3z^ZfM%EnpcoGa#s2Y9Sy`96RY-8SpLnYacdwOtrcytud3r?ixXXb~QOkCrWw_$F zFsju%)RI?~uP|ey3L|fIJ@-@sFv$`?U&^x^?yX$Y%q3L1?vZxfwfXrOLJzNT^}I(G zTdPS0MYSsM{5S#dEI{gYznui?m=If)a*Z%8x`teszDi+Q{d27;gz0DMQvVEI!I@j) z>QPtN*uawIbEIz5gZ6c*UvwKJponl$dqf>0YJbpQh}s`+JzlqQ!M*VjMfL9`?u*}I z%v^DB%q*@HNpX2vr~BixO=XfIYDq1X$J6Gz&f?0|@iC?`S)eK!&UNuve{L`#NNo$} zMpe5+RC|6i+SpFt$PRL0RP~aGs$CoJV6Ka5T^-R{_Mo(w1yQZJp%&`BXpUA+rB;mz ziB#{DqmEGR8}(PtTzlO^@%lMZ9O)HZoDxJulYk1*RrGdMMn&(?U#RFEbB|Zi9oEN> z+5W%AR(&MC&U`?rhMm*9B$dwT5%V<(P{X8=%G_5$4KLUzjqPu;Kn?#9l;1D%zb@%2 z&6A9CmvqWJ7XqSy0xmiU*RXa|30M0@lR^o%QlI)~s$oqSXlE3Zs*odjOE2!dls`FvY95Met%+!*MwREIn%hH7nVwx@K8z~77b+kciq5l(h9Q!vRC}AIo)8Ux=&xz> zZ0l#`jDYY<4}hVRBH9}Xs8n1#TjI&8F5b#IuW;VdN0k{ETHm z$EJPcPF>vcGnnL^-)ICf9qb+VpKI(}ugK%sn+Q)ehl*sCDz=$YVSBpg*xj$ncd!?w zn+>j1v_){=&wa1OOBXW_k_}qL>iO=h|0V|Htbc5^oiRVZrFntmIO?wk`s&Pk1jws1 zv+Rmi4a#UNoNQa|k^2ny&UY6y1b%)Xb?*mn%$#sr7%o`N1_otG?hOX+mGc`p1Ym_L zIl=>}RdR*#JMrsG3sL~bCbv0`=P{t~GYEk98F~?bwA4aLUQPfmFZl0#i|Z!_+~(e2 z5XB=~<+dQw^A5o7Rst|D^GV)8fLg?w*qtk65#M-FlZIvufuN{X`kI7L#AQD_NC6bL z1{B|9Kq(3UiXRbx914JYMZPCMCkY85^Z0NRAAufmY>20@AATngy;ZMG+;n zh!njCP+Ua-D0+(x1b7R1He1o+9*S**f}@&wj(QJ8xzA1;V%{Y!5Pdr!`Z)tiRDegH zDuSrU@eWS$g<%!pjsjnoCoFVC)xj-YTbOF3h-?c0q74ZEQE$o|OskJkbeNyxmo(de|)yL3-W+c%DlDc={xJ65uUTtH#R+1lO-pTn{cP zm~XBn91O?b?ke&o29%)yu4NH`c`7|4|2@?W1JjvyE~!i^3X1xq6G!2vCdIczbY{bnZ1)7prUP z5r}4@RzWktBj5%ZiP5GLX`yu6Epm-BNx-y1#hh z+?ctBwBUAJ;PyrWz(oMvU)uCT$wX#`Sx7K~K`syryvyd*6tj+S_+5>t~H;M5`2Fc`2LOn_!i*N3Hg<5+nZud%^!rq_lN1e z50p*JGUXSCRS4hZ7Q14uMF4yYfWx30dsVM#8WV~-6f~_4$7Lt3H+iH5=Uo@uBZacp zMsoNTxt6v4_2fi1GlWq17S#Jjp`2DeF~&?KE%=_a*tNd73~1{U0Ily%0uaV(p(EqN z1f;dTwUXUayLX3&>gT6r+dDuzc!wN-k9fxCLP_oo@YeHT0zgso$W5R|Zr`q^%#yHf z;I_mPx?H9bp(p@By$>w6ik=O-<<I1ae&!K0=&q$eu;aD^f3kK z1;#Ymc6>APIm5Cjc4|L2#oCOF^TNq^Ng3OC8`P()ml=%bru@ zZ~dmhq$Tb?6AHrAeJ07IJQ{x`Ucv4@PaX_ZZJcPIm9B<8qE(F(!^{K3R9e)Aprf70MdQ8HAe_Q zwLQqA!EXbWso`)nOby4k~@tSD~R7bH%!_z=kd zb&-+h)Mb)J&|PV(%qkxWq?I2m!dSltV$KfL@K#XlOgpYvfpjt5=hVn#OeZ*JE^`x{ z1Ob?C2%r<3B^?X&#bBMfQO~!q9!ks26h9;M=FXWJF+VjulSiNBYOU$zYsnD5jyEdFwjS%4=K0I9n9M{ zutn8W2xZ!bnzlR1{kig!6(#K0-icDS(X0K+^Gsw@uU?7MV&*7iPb0|uMgmcp<*t7r zX)4p^4p)XhM$7QR-ibOHId|A;y%WhCb4R2Mf2IVmt{FHtqxH05PW zTlvDo2Gf_ahC)1_1ahZRFgUjTRK6Y3afG~rT<+@Dr^qY$&A&3ENE2h_m3O#x#`O$n zGZX;pj9UmmLl6L$XWm5sE{8c@W3+*%4P*dM0$|m@jR36ry~S$;cnhrh-zOlo>OXF8 zpzh=;fcs=|keMIJgQtZaA$DgN8R!vwL7YT@x4=B1Dgo#b)IxiNA$QRHqa|sf;(Pio0@z%rL{fq?m3T} zM=2|q-*lRLJr*(j%_9WiDx4QdfLYD+DnO4k_>SNzoP(r;8O_Icx*5&K1jytdxEJte zl45f3@B%Y0Y^gMb10j<)$^}E;p^|stW(eKoS50P5=xdf?!(1QZT3|De4+P7~m?L zNt`8}m`w;6OdtRZ^eP-%rJ;*!y-;#)B=ZaZHS^*dnP=a~d_)l3g2PhHyv;kapeeq> zD7nX^?43K^r0jY5Td%>{ac6K1&O4NQgxww$1YyV5;Cw-f63cmZ_oKs0#_odK*dA%j z1x>7ege7AKl5Axg|9XqzMjFofwABQ`zzq;{KB-{L`HUuq!KUop@(Y7a*}J1#zcOm$ zA{=^}k@6_3et4ACFD}A)L07-oL7>`mChpPoj10$eSB(SRAes|tGA)k z5{FE4^%Bk#g9B!bSsEl=de(v4w&`zft5}%rj$U-~7 zSRcEpS%G`Ws@L7F^ZoSW^WtV)RB_ZXii>I-Jk2(?Cg0o=RhAbk$m_yPS;p>ImNU() ziYR8>bGPf#HxPghSO5$a+Xz4hEC4!SpWDL^R=LHzOIqmH-wynKP5}H00KY#F0KWpH z`90^>#0X>V39AKuOWou0dl~`oD*%R|73YRSkjT7Cj1@)K4(4bwzmIh;Xli@TPt?oq zs(HinxLi%9>)m$t{6wQ1smSyJqY-hy@dpx6^}FK_{nQmA_Co!IHgKV2P-d=l{6Y5m zgX0g)=i71%630LO5bHUrg&q6BMJL%p`Ruy=Y(XM!hEl2M$%hJqLqRG-hwPmT6I%>H z?tnw1<#NE`wc8U@&CJls9dNi&1w2%;F%BwJUYxi#i=?`?(%Iks#R+THkiR{t)0_8^ zbnNQxt?gNwfl-SS<$_OtKZ~@>tgEQ3?!mFYF zLU=V?j_{%maj*oOc8H_yku4LdF1-V_^(Lu+jF{=B_Q!OE=aLi?c2Q2)vsNbhnLY$* zMO7l*R6ctzcfDZGH!GL7-!vFe&W>$dt*;qDwrJo(m%ArnmoIl~)1rO3byd6N(W33A z?ohP1>aTvwZM*vtO>!jh^rG!Z$zqB1^nHopW+6$j#Oe^Wn@<{8Vv!@F>RS9-RYsLO zsJ~Dp54tL;6drg&EntY2)NIX;(@&GLPc!bZ&#g{eRiVhUPd4v?#0v8?WkuV1r6)r{ zDl2+U>XE|H1MTKDi9v=mEKZ(|$;@wW?^>JqpV=20yC(mR3OE|s7)`!#U1D+;N%f(r zo=vL#P$DF;xGs+EJl7^?hYsYk2J?TlK9P3Ak9>FQIXVA^vbVrr;+}9 z#iBN*cDmW%N<~`)r;$G2nCO^cT9XaJuf+VmG zi=Rxi&$xVrd#vNlZy+sijz!!80x+P7MU$6htB&N}KnA)B_Qy?$4(4G(F^XzBx{zzK z!W~6=ffPV+XFzZ-14>W;5Ijf#5>yK%_#*+>rJJ9U~QcqFsA85 z)mywufKL%*Z~L%W9kZX%CM60-%G(Z}Yj_Ij2rKCaj=l?M{>^~W6aX}{?hUIBi3)(@ zIn@bZo*7l{busHbv?fLG0YtkK0HWTa4*}i+=a4QZ02QhhL52E*NR@2KeZ4L;lSvg7 zdfmOQLgz4`Oa%bbWdtBq0l;(}0clJh2$*^gyGYS{0MoY#08?*qfB^?`dHUUUf0Gvl^K>#)~wjwe8p3XUWBZcokqaU`GXd1T>pjl#W)02Hpb zc#r^ZA?>AICdp?M?>sVw)G&JCAkxb9S-s6}QbN(bPDT3(gIct&2L<#k0Z38+#L!;^ z_!#Q7{(>6z;0oyzy!om3hxO^r!Lcp@;HVaQ_KoD;0AJ}lmjHy08iXySf-P()%ePJ6 z%JQv0siLLyyWb6*R}z3k1=#an39pmBPt-Tp5{eWAO-mvBP$Fp-kQSWJz2D+PnIwmA zk;}GGB|GYHqM>=1Q217qb3gt_;!5)ZX~Fl-Ame)pfO7#bd->{zL??5QP&gMf&3Vst zor>F%|C1*zzmqCb_&G?S^y;vpkb(fXHlQK_a4tZa^T9tSt}thl7W|&M+7)?w0^nDG zoxdd7n*;&yD?pmx{lChwuEC@QzlDL{s|bK!0npEMoYk+UnNBF23+kQYj)q}>BrY{~ zkQSUT37oGX0L}$Kob3Hm;^av};apJf9L;Ut(ZuEEP11t%R|DrC5dh}`NT8f*yZ@ay z)BKlEI9HSdmgYT?(N#dmTR7Wy1lJbe(C%=I>*NP^)7X+fBKVP`umuZVC7YxS7}FRF@=+0 zD=C9G3ARo$s3*Z5CSXtMB-q*q+)1#f9&jhYkPU1m)LG$9f_2KwpKNotWM*Zoe83$7 zds#hkChj5EO-%lL^A-u*)=BT0XV^|B<_|QiivwfNotVGUe3EXE%=tK#MsfG54BO!# z$q!_LXWxfZfQ7Xz6LDlLYmG>F-=fSKw{KB~0D0;^z|G6?P zYurA|xPQ&O_{LTR`$py?g5by)OOg2t!pw(9#vb5&DT8|h2KN$x%@!OP+d@*%csfF3 z+rQF~1hOY}uaZfgz=9JLL2zP>rNW{|EJ9*i<@{^R59CXC>xzB9MlO21vR+jqKT=Tz zr-du}RZf$lXugSfeLN?BnW?fiw8b7^rL`_1D-nRoZA=1`N~5*umD^Mm{wXqxiBCIl z-}!A!Zq%2gDs#bV_Q0*Zvh7*>Yn)^c$^FcB{;OFP%tcYA&HRL6DT=PVq^P@h(j*X7x7W(wXcln3G^*wXMK_lKMAd

(w=@Ns98jH$r30 zztWHdK!XzijfkLhDiK z!>)WJae-FXiFWLh^-7vgNC`vT&m_Q5_oE6h)JZP!F*vg>j0tosrPjHQr4#`;E?I*F zXc$%3xuLF>0@R`G*F^kO07ISlM1x?TXb=%Wa9on5Xb{EMxeezZwdjKl=fe_@EAu+1 zkrw6PfFTtiR}8j>TL?q_>PidEHy*oRp}+9h{fc$bosfHE8icLkKduQ57_PV=znZ-* zo}X#YYM8KDVp8_{K<@=o)h7if>x_gC z7|Og2m9=vn9tH)j%%@}*_`~}4JCb9z8zh}|n3Kl2!ZHs@@%rhMH2RE1Qp!5zzipk{ zyGbjBAVBA@bIoXi=mv9NZbnt@xMcn*u6zqO7cZI7;330cRi2W)k5GV(tz|I&qK9tluVmqtzIkOoSMd~j}1QunJeN@}(KLP@RuhmyMVAy-lj zd*#oKG&2lpfA`AYVV2=!QYeppthsI9cApLE9y%dz99cgvyYT8#O!&gB z0Hc8b7-EhPfHj~12;w&$N)3pkP3FTwEC_Y@E%~tXdny6&D**h~B>;W}Aiu$RxQ?U+ zzik7*1q8sa05}lWpMYN7`;Lr7++t9?nv~#nY~c0=0^n8vWOo4p$gTiByI99k@uvdd z^&lLdjD%y&0r_<^9(~y64ao1A^STx=hvOzHacpaofL$ZDp4WUKwsz?+#MUm!TKcI8 zX@xjBM62JFCt3Vqc#uU9P7bxw={h{_NqO9Jj7Qnm49;P^z1$uhm_PYATe0&8<>Gz8f(FC<&r>En|P?IVNpFEd9&E4K&xrwX{}*m%Z}{11#- zFB(Byq9unW!Icthf^FM|L-Pk^k<@S7?i-q4qF9+FC!FBUKiWs{JZ+3Qi~M63w-f{Xlr`QFJd&{xw2?b^Bp^^DbO@eHs zjk`lv70FYo@Z#&;M(?-J-`?0ObTFk!y~TN7Bir=CIHg9 zmjI+C0CsnuAVBB^yStv_#(<-D^CoF~Hz4^D0U+ru{!4(j!0zs^1Sm=QU_s4V$$YIr zx5qKP>m??81J#ypA7$BIwUaGPb(ZTyFv~uAhR7R{d|~Y#ePSDI_8(n)n~o$`mP?-~ zS1ZGlY`ekD00SQvk#67v6o-;rDf%?8A$g#W5$Q&fqZYF^q-qg+V|SB+)?!TFq$?BtB@#^MV0<}SSqu)u6)LxWg zx~*GFQ+i`qCz4vQG3E?8;tQ4PENBNZ)501=^SZ6llP+1IfJs2IG7JP@+-* zsdk|U0)~(R+Qq<)u3e00K-+}?XcsdGKw4^{&3+L9T&5YfZFJ4vdst73-UH}uAplLn zTf9Pmw-A28k%0FI1xYmv8b5ZB3+|A|Zih(=OuyaeCSHFLfK&yLt&Wc7#7DzwTex5L z6eDi;-X(79kP_V1eAKyZMgZIj0Joh9Kz0T2*~QnFE?S;{mARO-;J0t!cNhWiD**gX zAOL;^@P5%he7G{dzqyUH;P=)?U4`GnfL6EwsPKmfK;f%}R`@mo(kguOqpre5G5fN- zmYJmI9iYCyAOKW+l0OpQEwGdL?03x?n%HAuy@05ig+p0Idvu#@s${Oo?`tZPD%e(h z3~cSlZWswMo{0=ZTaxm@FMIciJ?8d#b4iYU-k{~iy4YAESyjF^+OeVN!p9)e4Say= zSdxRPPjo5)fdMx0c05~6uF)hAOw}rk>64Uk<_ZpWGG24ue@b?;~A%7QfiAnOgvJRa7ZH$Xf7;M96` zOeI3WR?Pyo(*0Mo)qW_rK9iI{w&CM0emgLrWCcJj^9ewrYN7Fa83AeWd-3Bge!Yk5 zNYQ&ht=>!khaeN>l(eGm;}s zk)u|>CLpa=ar4d>0a?*TaTR+aQbz)SY&HQP>n*Ai;1kCEB2|B%Ueh!p6l~QjU@Lck zEHvFn0YuN04@(s9-oo@|K#2W1nMr!y0XW`G zz`@$B`^172*OA;CXfs`U(seb>(*%N{=9BC5#}}lP?jbGEd?TRwDFaGV0N1<-K%xSm zLjNWptwOUqTv$W0jGIopm(!k%)TaR8T8{wKrvR}sGOs7OPZo`I{kQpb%z1=@tfs?c z+q|B?)?7kbN;Y<(&Avt^WW!mmTrYgmalMWJBr3p+3dzgN90Jm~B6x3p(j9FjCAE&- ztjPt_wTB5re=kNg|F74vJVlP_+RJ1hNk*n?q9uHD&=E=|aXAbb_{^h-4-2j|71kDtS1q`Bd+(FttwUOfrJ7H&3fEh_M1Z&G zRVCSuX`pP?fXjCDC;5xb_hgN-{cljVe=?wDD*(u5ZVKxR=?Q?hgmVZ;>yA#{Fqo(w2w0l@h(0+6%- z;5?RqV>yp}+Hv-7=8(3!iFL3CS4t1OjO3u~4IUuCr;B5UPY?jMY7wwqs3)!qP3Ixz z4blS9R|29RGN42S0MV}rK!O5b6#s*Ov}W^5z|niCusN(gaD2satW9!o^af1`@JXUt zKl)XMwvL2?sG0>t!{gQ$k`{>e-t21h3I>#@03dob0Z3H<5WSfICMpkh20opviXp~3 zSxLIy31avW0zlSVY$d>3;KcQ-1c0YngyAb+3Y>P@rRG1R1)iS_SKQcmAVag zpm#E-_pmX;^&r6T{`y1~#{iyC-}oLeSXMaPX)mXI0nS*uLohV%MPkG0&gSkQG*|$41MZQH4oG4^9cW5fie0ZYpBeF%Q?++O4Cje)^aH8-C zNkQZL2#p_A;doU58j=8xx^M!Z5fKDO3Rwyo`=T^6J%PsB@ zUY#xO5MHe&AbTu4bD04=^Q1gGp zRJ!KD<}(uDV^P>2?b)E;scRZunK{B5@6*##YP{--(S0pe4l zfP-!QDQ%1m$;Jf}&4naI4?C6w=wU~x06nZ^1Si>UA{8`}8QWYVnLz+fvfW7nM3>#> zdf2-apmuS-{_RIZG;i^VsA8Xps)!&s$;Q%Nu|Yjz+guQhl9JbxoWr-dLu|}fqAxha zMuo-2j#CO7gq$8?+n`y*DTM?23+EmVNcG9N2YQ|VDVYf9A+|Xmb*-5mnVEKdD;c6G zJoOd-U{`)+{en#UW~+je+!3}%&MCOb{I1CavknC8&m<_)R1dIaKO0&hD6^h*)9UIB z=yX#6OadDbfJvYj=wscEB$okv_Q^U7@;Nq%K~z=SXWf#?JG_Vt1BaLk4kbC7g&6dz zEmuvEJkZB!wi`)~)}jgMOt8$e?lc<}NUGXOKkGh1FEtZP1gmCY0*EuAr*=En_9~P& zWDdMorbNd5&)UhI3wr02)`Yn6{75B@lWglLD>&8hgKDtJI?}-TEb_sb!x@@gs*G5A zL4P5ZUJ!EWcjh5f(DHteXx5W#)4LR0mli?ty=ji1zq%F39U1R6Kg&Mawcv8|Ddhhss*Dn>uD?)%)wdtN1mAnsmEcK-yH<|2%SMTU_C*aFk0uJ% znsX>uD8uF?D7X0>F8*XfMxwJWm9sT+S>BhX2Wg@yCbqk#cqs$g6a_$296^9Cied@d zt8|YG%oLLA!tc0EapHE@6vg4VzWMpF?KE7iA}7esJ=@)IwSfS%O93!kZ6g2;P=LVg zxcNPon0E<>$F~E5pEIBY1;7U?NDh8)D?j;0!iHE!Q+!7lA^KcKPf8q@=m|R9#$% z{6bpjnoEkZx{z}~O-}C7#MW3^BRgZs4)>10OqJCxv!s$g zpP1eG+Umt-?2w!9_KxYFNttgl_u?K#{|+LN@4b6~^d#Ez?BTaEN@U!((@o!Q--+p4 zY=%pJ$0^0K)1ux@;j)IB3Sm>?Mu{1m)HP;suWN{4%y>%^#hCHd&gjWi8Fg*vUV{oM zgb#gE9_1MWJj!AlCs#-5Dit0-N_qUqd89ev$8wfc=Y$)^77Q=yoM+*k zu=6Mh&_Vqqh4O8WggHWhU%0fjg%b*fn3JEA425&X;QS^Tq^M*+=gx0lac#jlrbfEi z;7UbX1m`z9URN-^m}yBi+WE(t+Evwiv@~5)lBD?XFcbRa_%Gr zP~7GyzQuB-xGl)x#{?if0l@JP0cjk+2{?KWWu6Z!(0c&KN(6wTSm2p2$-M!NayBCX z>@$YafV^fQx4t^>Cn`&+5nsal-y zJZjN9Sxm~vucQis_Y$B4y}?G3djlNfe3k$Z6i=RDc#iWu(gMr90n0BKP?mcg%O6P& zmV1?DFh?n|E36(rM@cc2Ywa{%y`$=+i;PRkVA_ZPFbz^}OLA|38A%=iU@D$GQ=I1< zL<%5z*)CU=V;NAAm)RL@q$;P997&16D*f!z0s=Tt<>Rj~yq|Cw&fVqq7#<@)_ZYmv z4w8EV>@mDafTR>T9UyLnVUC^t#)S=C%3qPbIua_qI`?R4w|4BIXR%R`0lVTagtg?^ zVM2Q{0VqhJ?F(|D9^*Wd6i|@$UT_83ngOL(&mQS61=*eC$W=W%uB$}L%2Q(P%|!%q zVP^Ds!9_~oWIX91zmh5mz59vBfxsI_HvXu=(ceP7n_Q&lNM;b>}Y+!a;5dM zqxBWbyMPvU6n`f<(~AA1O2Yy zKxyCds`44heqUqNcf>K#-K|c#;_PEAJ|pY#t&l zkX++PZf3cXlzTXoGNvAMW!XGB4nGs;zG6y0~)ddU=B`lO;qRXS4sFR*w?tT z8BE}@R13ueCgZOJlX22U{v`=TH!Bf#r`&4>{3a^EAiNei(%@uBK2DESmKo*-2fCSY- zyZQ475Vom>YpkPPHLpiiyK(2phOxlOrKIbffaeGTz|$u?kpORj_fuvO0G?{WJfHkR zc&;QZ@Vq6ihN_k`_qTd)-xLYX+3003g|&0FK=ZMH<}L=5 zrU0&45r72MLTP?ZKpIWCb=}kSPW~cY?*ueYe1j@YYtvg)Ccs-r+r;Y{O-+45K~~MU zPS1RPTp2rIQo+ggnG2d#w)20LhcunZ2;AGh;i|X?1Ik?haKDrQOu?J1_e0zmf`ol! zG#~MX8{)j9TSyygfj3;QZ%K|?_6Dm72n^hup5!2|226a~Uj@C*>!byyF9%FNU_hA) z0H$9tpwnYvDyJ-FmuzQ#Cn#-l_H#he`zZfrSeKYI2PA8e93;I#V*&yLknBKmkW>RE zc|-B!HKreFf#d~my6POlfRYpdB*zngm=XX>vYQAlCKb;Bx4uY*b6=IQ3IW>$Y(t|+5`90D{H^ZOg1#1kv7PF5|BO2fRYseWd9-n z2@8OQTDiBvYDyz};#_^1fYDqMVZ}Um3a%4ZzTebE#G}%`TDFkAp@Uv z6mUlZP{7`zfBX23(gL8BHXOla~ z@)nm8;4KhEBM3M)iq5dHgE9qOS+7*XSdi?p{ z(#5L`mz|j$XkI2Q6zr}&E{@)1K;uXN6zt~&AVIazIQp4@v^e@X@D`YxwIKjaWtWy|s;S^CK+*eT?kvE!vJrU9S@c@E5rnho{nfqx>Cd9; z?_Q3XVFIzuqSmEeV81%SSEX16W(@b(UA@8+t+%| zokc(T!^Jp@-q!YPkt~~0__jNoJzL#zPA(nMRK&cjimmV;bnGr-((itnPaS) zwMzbMmZw`KbM8r{792ijI~-Jej7)IWVS@^=!z_E7I12s-som1i?{omSTtf#kbulhv(mRN5L!al@$Gn z1wA8Baj(mBMFNoLvq^wFH{9#aHvA%0tluMVq6+_*dGU?Rvu|WRA_$IxvlN*>MN-tm z$CCN*DEJkeFJ&+&U@(XPoN~ZX@astm8rMZ=O!-$Dk^pFM0-zBQ1V_PH3K|2VH1sI= zW1KIg@kl`95dy-)8ZVI)GlE9zgYiB>{n>4n= z!ilHYP94f!WoD5QhOZmnafiUCy+fz!Rz$V#ddIC2*AsvNM*s|-TL{45DF6mf@ryx) za+f-;G4&lcs0Y2OfD=8@)0{?;pX=ls8KHGdo zIC|ONNq}DV7ZsqFl`P>n_(}UHZZyKoKG$Oz0&pDsbP{MAiPf~()p}O7W1l#=hVA)6 zsm3{VRf9t8BTdbZPUvsNIT{H&M~p=T!MSjjYK+B7BgsW$^Q+jgD@$Z%{PK=Ha#rHp znAELaa>@lD`oZ~dDo3snoCRtvZ1sG2Yt1^&0u9$+I9)V+U-W$Vr7}3{S)lMM>hk(R z1^d>e$@9~O#_Vr9;ACk#yYjN+Yi1^u93pr+3DR`S+roY=R+_sANAOxHH@ytvK?Zd0 zB>?7Ln+U)>NG){k^$Gzx_c~bzK|TjAVW?FTlik^BJ#$kI|3h}(A*NzS2tdp5S@@d( zZ-JBGS?@}T`ax0eHB}3lZ_3rF2%wdZmS|CtiX>G@x9@Y!W|HW0vzb3M*)Zd*ckR}p z$xCu>*JQcbOrd<>_;)KxUz$xaXL8h}IcebVGWp=#;P7%%l@TgE^cO;<$Gg$P%jnI} z(kAb7hnMlmbRREe$}EZblXn|GTXCvAd};DzJ7#n;_-;CNhN%|~5KYBZskEKeRX(m+ zVq|itxsvjZ;2J^#|Dpk#eqXlL@QS3AB6#h)uDAyX8DHE6Q(kxa-j4fxMP+v*^Xzx+ z)X~Y_IoE1hT=;`1ahx1qNCFi8z^KW5(m>&p56&A3f2}H`@E_D)DEtTiq3{R3>k3~! zvp%V)5vJx<$%oBzlmisuvm}sDX`Zu5UM^}HGw+ia&2rznu33J`fHq43&@6u<0Bu45 zJpL;6p5)#i_0u!q$7z-s#olvEB=x9kv_0?A@O376L5AwR=Z3G=1fY=$fZ?k<0T{jn z@P2VBypR;&@{;!)$I%Q3$JixyPxGEF&19BOIloU#QqrsQ=964Ho}sq!_&&9>i|%|f z<~Ww#=UTFD;(Vg-d5Yvp%j@qVd7zICySGUWwnE0U#b8YpoeH(xK{MD)%^*X1$x$XfDwCRnb~L9-B|@K?8+OHwassY;|zHA{xB{u zVwY6``jOr524}zaN-E<{Q@#fQdPdfX^o>vVW^M z)i-AQ3Ta&?El`Djq#+4l&cO+Q1`BWmJWZfSz^@7!;0X8&oEx1i?F=%%lYnql@c~JZ z`S&83|L9*cF9{&?oB%Q(5d=rTS*mqlf9c<|_0r-QnHf?En3Y%G?`Gv?WwSgkM2lzF!M=COb1sYt5ojiz3)EryXDU0A#*=jpl@FJzFX7W{k|I%M%|qp zVzx%Lo{nf8&TCrLR$hN@w*7m1{(0t|sQ&IyA2%`nxjb3ZHmn*iXa889Oqy?_`d@|m zIKy+|O4%wZ{(+RU4<|XgmvO=e_DD6^OeHx+CXwT+zxk_@HBAjd(P0aU4qF(a!!Ejv z+`MIiRHJ`ncbdOGVu9uskL)_D?*;GM0rw@(&XICW@4v4jR`O)->`m|Amt0cJbf*lV z13!F5t)K(f>a3hL26PFPWo5hbk2>Y;f z9r=-}CFxe=5zE8L{)VO6i^OJWw$9C%`GM=m`>jttXf}~4I`YRqa2@&M1YjK67;k+# zS34Guuc*r=cH_0B+MV*IT2LP@H6=&*vro+sm+1Z2C3?SzppxyjG1<^7e;K$qHr&f#5JG!eQv~ zIEZ_2VE5n<5yFdzReAUzv!B%AcHc2>AA2@=sriodWX76T zY`Cl9hW7UD$!f(?QTcUHjSulcf+n0h3o@`L3MI#2@aw>LEO0`#q3Uw;Vk6^@WsoBC1+VZ35 z5Gps=%Me;!zLoy_!?xM;$&uBI{8qXqgAQw$UHC(VM)u7%RZH9Xw{|IIw?EmVlx?_6 z)~024$;CJG$MnP{>w10vxnXgnvU$jE*p+Ocj2m_Lb3;`i6|+;i`(I=8~BSMSz)*`+Grl{TB;$wluMT68xv{@5;f z2ElfCbN^TW8F^_{lIm`xesKNouZ_I4thtpO>WMDf<1b)@kGpJlXSo)$&eVP~abFo5 zV!!@kUhryuiAg2<%9fFx%zDyHt`oAzJ{g#G;(LQ^tKIq5$b9pBs@dc}u-G{9?U6T> zHUA@RtPi$sclU0)7|{Du0dRkMkO17Ds)cSFML$XD!FVZuO}pu-SOt6Wdm~SY{=VJa zmU>5xNZ&icE!*h?;Ck;Z&LBW7K}iqyn4h>??Wai& zg1*3)2?z{uwCf#`yPHy}VZaSXyY`a;xa|qJ{lb8969COv@zb!i5PboV09~H|+=SzB zSHLimY1b^3EkEz26DfNyXv2I0K+#*o2=Eq2gC0)+II2a!5oew*BL#50~GLE!q*_EkLyW{6Wo4PeL&~)XYzBon#W+w0S^@DJCs2E!g2&bP@x~ zQ~)rYNdQU}08FnVAcg5QJ6wyZhu5SO+Zro55?1=skdE+1+8&fTvh2Jx%IDa&I6P&@9_$PMgN2 zF`?k8<#2;G$c>FP-AD^OJMVT4I*0*j&`4)H@1Ts{B9fy}F~I%8c?2BachA|4M)h9i zlCt*#u8RmzuHIlJ$-MzSk+Jxit~usmLcvukmBO`M*Vtv|CDH=d7liAv)HrIJ%FDAr z^)u2(nX0dg+(QKTMQ&+9qDdqm8Q7aI!*=ubAX%RPkPHl3lH42Mt3B&%zc!`|p&%*M zNg-LmDVBrT8}_N8mkaSSNSVRrM6(x4ZT9EFMjp2Gf>0Bum5l=REoE55YzDh?Uq zTr4L|?*c^cBLGB$G9M?o8c1Doj>^YCM%HR&HW3DzQlAu>xA%|5%}1mKn(qZP_b{L| zB}+$X{y=inQ4EA;mR)}^ySJ&hCu}No-ie2@Pfgy=m)+w!uXANjKZ4yH?*&ZTlY^R5 z#ulScJN{@=Q|h4Plne~~e!9$(yR1gJ%1qRp*RkY(Q+85>~U zClK`1il?6MVzGr_(0zme z6evJQ_jy8(r~9vfuJ`pJX?tIw`y~OO>n*+~z*~TBbYIwRpsN-EUHQsXUEA`4*m}8p@$&iwP<_pq--yK23I^0>dwK+^E8bwg=15dvH;8_7aoUlN4$Ac%| zHQXkBpH;C6$xkS3(p`Q$1FyATe(Asd*oyu>?%2vY)#pbpx2Pa^n6JlH?3T8e-Em?i zXTLkK(o}u>l(yuFmB#zsiIukd-H8>{0BJ^>w!0H6i_g2Pm0kVH$j+upl0^g$ir5Zm z)EAHm9w45l0z8+Lr!_dNGM`lBp>iy;U!N&wXOLJP5uR;UkN{6&m+yD!Sa&HvPmxpN zgxu-5``x41x#R+mV$%e{SrwMzQS6-k?osS)DN#RLu#NoSIrtXTxuMxY04n_@2~g?J z#g!&uJtmE-NmyU0!bvMHzVRHHeWUVeg5azQOHujP!^($eRT_OQ#RfeN4C;UFp5)gj zKp%!%oK@*aQqXAsbt;X{s&G;oQUGXh0icm42+pdo6g0A=M134CZQy9!5PQyC!1dB+ z`sW5T&LsdecD&ZIg}Iufpm9|ijkzbIv2F5*I+1_{`v;3OL0$XM0@*KMDOjA7#^R%! zW4D;6xLV3$L%?DK0U?XmNvbUD(!m8C?ZJm?R!#P*H&4a`Lqdu`b8rzL!U9R{t7n(| zl%HXrT_pQnDUhZpJeJ1h;l;68Ch|>M*E$-oIZE{gn;Da8w=h|(uBUHmf0Np^>Z!s> zyOtCHE?fY(qzUTUiK~iEcLXfX``F@wxao&EHS2$_EJ4Hm3v_D0(sI%O= z$Rqa#_LVzg!>guhAZ2g#ir5VE0+HON=ZXGJf}M*yb+hXqj^*2b-zjVV_X)yP`JHcE z#@$=rP#X4ubgg~gxTVAq0&vL}04s)!1Ju3rVctF)i4_cwyrqA7EWc)Yz0A-wnHsR= z8<*(z^fxEC+*gds1$D@(Sc~ZC2keYhv3T|tb-~xpe}+CS4it5!Y9PC9_2LDmxoh!~ z=VNtjk2SHHCYO|OIUGs?Tn-1R0GC6lA<}f#m%q7@?Yp&FRXh6rSS{P8!>RRc-!`Y7 zY9^2^rtC2XT!$P(0FE2|g#_q}GY+^b(}Yv~Gw4-!fDL-gx>>o!^fhaJhz zJH$G>F9A9@d<{mD+#BE=(KrII%$BNQiM;E8`=Ufj5P}}L^MD&O{}tWimdF(imc}^V zl4EB+6w9&k$72!|8D<3i@iP9s&t8JD|N8J*=G{e{kQ&$sCZj4-`n(7hquRlhHB@l&w{sf*r?v76in zCI0<%Y^wPuRRR;=lO$NPG4^dH36iyvw=FI&XcT=+Dsa;HHPZOiwP%01s**b+^g$5B zvCqT?WxuLLar`z=**GY)g9HfT`gD^|NJE2|Nj_4m+w9gFt6FCLr22^C&-x2-{P`qt zT>q_$WBX@g^V7y4t{%TW8{24V9u!wJ@=R3{Y`)fCJ$~O3t1J_sq)W-iBx>9EXPv(? ztw`hW`X=DM&(?1f3F`6~dGM?-BRoq0E|)$IuM?mak!CjMnu4C@ zLy}`g5QC+|2M?E$kYljv_1x*^5Gf(--yC#T=VJt50{X^zt$HYIVt5sU(5ob84DWuq zX+cWxdg>wPwKD-AApi~|^&>#tMozVnCbreu$9e9+Bcl_Y#89f1w( z(&uB@ZtzVyIz9lPg-tAVC=b^jg}%mt)`B=mVC zz-r)X6<}hLnj;B)^|sg+vy$|1<-g;QyYk;bfGkCWb4wdYip&3Fhur1=2?gl#KS}@R z%fEc?pytAYhKBv(>Ypa4Yd8K+W<{3b>VNwotUx2n?93Yr+S|U-&a=&4u8ppvcL$Z< zO#s%>IJNXUNm2RV#HZXa%R6n?EGcN0UFPtgaoFuRuzPSw6V$cwzGpTyECq*MsT|gy znY+<+(L(udIrp$@fLsFHy?}llZx~6zVesJ;4#WS9Lsa}@8OHuWB25sSU1BLnw37nm zRzMm;#z{B3WK4yO=;A|InnkV-WS3UWh+JiJZY>yR7E^`M5pPj}?})lA-MD($85t3? zniQp<2M3t$KI|5Kw;aZzPrOR0{Zjfn)_m*7TwpT8@x#LuOTJg7XULK-^HuEwxcdB8 z%fr>@zqY32WLN!IjqvSExrj^F_3$j(U`slbttB{=O%^@5l=+x$vcTc{Nr&&JJCt;0 zaj0qBXK%M#K95b!JYgEQ9r;CUq1jD=m???cb$5k=WHr8(^s&QO*KSyQ?gjSp?Pt}oH+~r#X`j-6}b z1j)iF_$~(-B!dTKa1Wulh-xviCmxwe2@T?CjfFYo*_UO2Cu*LG@lA+ zdN=QqHfY{p=WUeM+(~lK^akG&;LAlW_fZ1CQ!R*RJl6FRll4PdOV;|q@odI`@Ql>5 zIscJ*bR;>7Qv+?t0R*HpWZxg$eP!Ta0_k}NSVc}HKpFZHXOr9;Aa$z7y6ooWMnb_- z>ccGiuBdaKSwl)_&AS7Z>ljd$cRQBPksM`;0TPPdCIAUVz8&8PSOyOElAd<}mOl{y zmVrU}AH#<524IQLF4QIzETuloa{a8_QKk(kfn}>7U0Zf%Kv}l3kvF9+hmag)iUC-T zAs~fi$&aor0|%Fqo_7G2*Af7hfx!}zdjq5$-$MWhN>!NP4|U>G%tlfI!6yQOuP~ql zpKt` z+lSIi?jX5RO&0k80lrA2`qj9(VUBr{P>|JfX!>b<`G5-cvoB}I%ofrF+5ZM)KW0G5 z3IMWu2|&qep_9;W1f)ztKLupHhs>YD_5<1fI?%T@eTpr0wcB04Wn|* z4no0G&4g!k>UY@P$UNct*Om@QG>W#CwUcgcEcth$+3<XH^}5wIW8aPmK@{$W`D2vd8P|VvBe@^2Nlv^#|GIMz2X%N zTj5#DFfzbR?O+w)rdIAXka}<~sbFKJ^jCLZUrK=7*Pm@>lK{8$m;Z`Am4<&+fc8{~ zuPxnHSSKnjm)0EGFoPW6PM(VpL6CaDQryW;_|-ks8!P2$>cQjW2UUJ7sPbb3pvwOt z0jm76xYE>v#nMEQdeHE{s&KNZi)-vcuxr#kO%P-ruoQJ)8`eF{JouffrTam@1_XX3 z0DCFOJgEJfRMKy~;N^_JrLxFWg_E%m|9Ceexd#a@&o#iKxxEZaLE@)05_N~i&o#ri zR!U;fZ?5AEA^@#$HVM!Q;L7=}BsE>uE2cZ?7 zjK!Cme`YqLV%?p z&{7K2eZ{eE4##J4NB`>f6$d-nl0!3UMhE=rQVnQQ_NfM2CtOn9zVJ?>x;;30MNQjx zYCOZfe(%ugw(p)*r`QUAuUw~Usudm}O&=e>*sLc0a>bc!R)&J*eTvUhkG1UE6QpNs z3=#M6_K71d`(WJ>dcN^?y4D*<+>?k;2*71r0AwHRCjb{}0dS!fzjzEmRZ4DcJ$A%B zhOnZmSL%ba;*FwmIUF}B-aK06sLj7jjwjwZDc&{vF?G+^!WC2=@(wbOhP?%sLHAm; zb@47q_NJ!WA+1HKxFWVD0j`KGRe&p^R1xnq?L#WKy!1HgI%5w4kYrFq0(8cLqwb1W zq5yTmD*C@$0k|uoxI`ypm*|9Pg5XW2EJY{mcGPt^`6gu3LRkW6hii7!QcN7xtd-JerwAxJjFi$~q)cv$H1=%{{KyhC)t?>agrXTPY_cwjtAT=A;XDO5D} z%^yiOnM@kUBp@GL8)On(t;*;J*XS?wgKK_I&m_Q1g#q-4bV|)6*!#}dQ*69fyq=rc z{;&U;)ouLil1jG5*cFXz+t)|c;jUuw3R~GO-)mM-?a*CrCxKUs+Zmnm&dVYwS@8#d zcVS#CmGogWxE(-_Mz$@TD#ve*T@?><4E~A8%FXkf_`vK3wJZ+rGAbN72AfHM@Gea^ zd7d;7Uh=`UM0h_`WrX)5{e|#;bdvBc{oRGP_mtvOgA2#pcBEr#$S*jH0OS`4FmJtVtCQRtAirQ10W$twCjZHb_lf;VNx#-b_MQ^v zfx8L7JRk;`iq;a~EpVNDh5%eA)k1G*Bgg3a`wnR#=x-f!*WVokpg;lO_W%L#D}eWl zm#|hWQz5k-%a*Ym733hpdZ!LGkOUYuPPAW!>rC|Maw6jh*ha~9C>t^Fk`5LhZo5=t5Fdyko@He5|ln^r$p#thjB% zuBvb{0^%P8*gpuc054`u5opeK{YbLzk$)7nvq*55$~Dq^kn;lq=Mw+|efyVhnL$F- z|LU~*U-xJA7x$%v}?<{&E!O>@YkeYvE^m~H?z*Zmy4pLMbBaKK^J zq{FJtA-$h<*I~DG?Y=gC>4_fx|FAaxK-9EQ55eUS5C7Yd08?6vs9lpNI@6p=Ktx{T zw!B5b5Zicte7xyTh+Kq&XaA(1B+@Tx58YavZ5wTf_cH~lW|Qll*rEcS{XhM9{O+ik zLMFJ5Op3Zme-;Be=})qyV`S35j^tn?204=wh30kwc%M7EH0oyfz`;7w^A0e>KSuy& z_`u)|l6!-lD+)91tY>6dHsQ&5#pN|dRnY&MnvX~q7dfq+PWfj??YwH^t}us50elYx ze9M##n@yJt5lP`yzST&M(!~ILn-IW!pEo0)IP zN*PA3w2=$sMo3z)<_|@g7Ek^wm7~_u7yXti=Xho@pleP6)=ZZ5Lo)(ue%r4&QqDDF z9?7{GqaDkk+a?{vNilGMcAP+Ru+*x&I65zbg%#wnArrO5yiweA~@o? z|E;8juDUqjxP}4cC;&LFBLI!5z}lihvzY*XI1_y?An81$)Y&@#$-U$NBz=)T5rC#& z?0Bwzq-qOOzI@n9;3-xqJn`iJ6w(6E29lhleYOn)%2R-Ocbt`%L2}emZFjvxER}6bsK$W}LeASor~!>}Px0RMVrwL^v5YZi|& z=aAeJjZ7?*wWG7UjBwaZs9<;YEa_tA6M$JyfSl)w@-j&74f5kMWvwPaW`p2Fx6FD$ zaXIS~gOk<$7byqTwFv8L1R$)Q;QIu4i<;jT^)O!$fQX8Pk0@q@pZCOHF-J)Y5&b2I zsHqq>7kCPQh}I_n1qyJe(dZ&`Isus8Qy#y!tmwvzcQcT*y&Eu15CEp$qLct{;V#K=}gT zvi&pxDf9i~0cY=FD=B&p;QT28;Os5FCcs;ObKmdd9nG(Vg0t2rxN@V3M-~-cV`^8T zmehBGRkv$ymyVgkawS^5k|Wxl02C^~()UJ<%^u~@r0gq?a0NTE2pT)}8Fg|sj}CRKLhV-^F- zQGjh##^q&@9OX@_jG6X!lBe{VrIlTGdx#WZC;+C~jRc_2c#BsE@D}Jb?-FoauZb+R zOE(s}_u5LGm-dte73l|ccGK-|1R$zv@INugNNWa-iq5um3DBU*y^R#+4#oIo<~LJk z&oCWG5pivk;o{nx0gbBwn0JN~fJ(N>Kwu}3JSDJW0>ev40fqt~uyYAOV7(Ac0CZNdNa?KWUpnJT^9yMqs6S-b znOBd`%P?VcfvCt4(@X+To*Hy48Dm-!AVkCT>!!w8_8-i4i%|r43k3CC z0*()=m?NmZ%GZ##uQFzUg#;j|-r_C-yaj^#5CI6PSfm6M?|FHVwBYx7VS0nyB;!3V zTM0$T1@%7UZ+CleLb6WBu2s zN+qIp+rJaFv-_zE?}#=Iom*r_{XlinSGtrvW@K&hvli>mDeMB)aXuM zuAQ-cYGqqvO>WJyrb-2yo71jSRn!8{Nu?@w&3AGh67P4}x-K5G>qeARi2fkacs`Mz z-AG+?wGLA)kTF%GdBORn8Px#0wOgAPTy0nvPleAQHSCV%sQ|lUvM;mdKjYsvMWllL z&3F~JzZoY0DGC>mK(_`X=h@s3g|B|BB>N%-XsvMS#MFC*?Xv&*r_~qt zs6M+#_0t4F!W2tU{X4n(?d$I+oO3^u#;*_-zhu;+o)BkSNcQ| zc_+nR)8t46DdisN|Iw+_!$9k_(Ia*JiRB~IyB=-^D`;I>-WxUg=%5r!|V5f*E$5i>-X>) znXZ3&VBXB604C?nX}0vM!bZ`Osyc0sG?+2*G&#%W43js8>}b=gV%aX$D%jG`mt|Sg zwpTTKxNpJf+0(RwJVA}78Y7LRH`NGp6JDPY?^ke^=|K=Cs00ZxLB&;o32ItZyXLZS zcbW4^1ryZdYHos>OaRhW=8yo-E@oH5L!<0#6rfQdw1S65ay7u@Bt9`J*e6Csnjpwq zVX2OaXlXS(M~KAj%)>r!WkfZ*bM>hF6w;zRz#i-)Z{Z4~mf9rE%3ipv8lEC#F4Jma z)Bh#?g{KHF+09=S_NG1m!^X~Qo0wwPzmq6uM-45w_C({V$*_WJ%yxCcNh=?cprGK) zc6*w$wjMf(oFjjw|0mfFxW1Qn!;Cx&EAF(F(nziu;_W8~Q z8MfU|a<{s=bVY63q`08EZ8EZFowTOW_mN;On=!7Srd>Z_WJkLyQLxC&qA=+MSaoJ7 z2wr0nnoW%NywBVcDj+2;a-*#gP2`z7S*~{hH_F|*ZZ`je04(MN!0yAp2+$R4ExnL) zo{=9hPgi%hl-}e2$k2Plf^ruD=ndZDAOYS2yAgAj)N5ycClr0nD7fv@9O3&Ur z;FMB3dU>X^bEVBs9=CyKe6BeGlnXKOKAxSLfsCNiZ96`C|Te0 zYq*gYuYr+QF}O??gVFPvPQY44d-&@uabEr>&!ppubwbS()G z(!z9;Ye)kjB_C;39G100l@ZcA^%p{V=Se~;rP&QVyO-Jy&&KLgNZ)?J58H|J3M$&Z zzZYhv4O^^KPMcEjxp{&ri14l>fxh(w!?eb}RT=hJ{UZ0$liOD&n%f!MM&;XwrxY}_ z@va38?CL%PuQacdEoReKYq(qa4;lFS40&>$QIKJ(SM#qJebp|lDr5aiQp0e1wFYkN ze$=5TNskH<(ItZ-A@LYyxy9iArE`Z~0;kcOAQx6cG8vHC<6_2*A`O z09>vk04@daF0nm4WA?~v%xk0tzb}iqK3{mB0iBiwz_k1Y0pK725|(}>KthS#y+4X% zL_QUAO2X|-dB-(sr8TMmn4M1{02IAN8v=Y)u;JI80B{!z&mG&u9d?fzU=pMS?()7f z6j(|C3KRe_y_f*_6~Oxq*T*-K7W~eyWpkgCy&00jt;pf_J_6uY0Pj}*20IHhaFa93 z=3w%B*iC+PIceZ7Czv31m`N4OzEUf=oUFXOxRxD0ub_SQW*v4s0X{>E|hyg^Dxw)&g|STXNV0j?5K;hhZ==i9lz<=$m}Cp|2if34+~ z&A$>L_m;u=iQ2Wp4x(#kTb!Hd=x*&Z6{6L%kWE`Xi)*Z&*)>+rX@cOB*eu08c~_K-HaDdM*Qb?n^Z!p7h!NKxF-j8zcNi?i9mas#F1PD@8Ar+7u1#Do zjncD0l%6F38wfM>KPQRz~e-<8=)Edy(7AmGf`~bMb{&`4br~t)-JX5BBnH^As|(IGmLOTv1eslAkmRtuj?3&i zr(>d?z4-fORqdXFWzEg~sSYOBJ+W&5a$F-n zAONHUz^%((0`%6!zw1OkT_T-fNYX*s%&^CJ2e>rVBmmbCUu0tfyan!5`ae=I(zGQM zR~W63JU5lsB;-Dm2;S*3h?GFHU#43N6fvMY1pv=;2tc6%faj$IFwf|WOm|D>JuD(c z?*T+t60o!B8O8d^OT8<6nB?97JSDTMZ3cm$sr4b6c(KbiQUc8_0nN`CP?`eZnHkAZ zq{xxpb&LRA@g&o`YW5!8L@JDQ8Bs>X>u04ksTSKu9z&~}gv0RqEVm$k zga9naoq_FjZaCsa7i;m?NLLC8^G5UuxRex`=2ncpw!28**A{)}AORXuZ}2m}4LlR&Q zQUbTG^<2{pW#DU>Wa_!GI*Q~dP7J`U>J=&6O6QMgA~qQ3qJpG=G}A~|n}50VhNUFO zFclDu_Qeb=h$M)Pe**?U2U zeUJcf_2oWAfVbFubz-4;i2&s(4-Io}4(FQHa|ezy+ersBKMZK@V?b#N0GdA&fZ_ze zU3o@>u#uEzYR*jq$I^RgM#|m`Xm%t3G`&S%0=$LGxgh{FKTM&y`0CNum?@+Knv)v1 z)||zF&N-88&E+zPt|PgYra33K%JQXejY_@D?F9O6i`=QDj-_|9j`UDvDHSB2BS1-d zgEvU-4bX4D9ojp`d_*Yvt+?ZU`@;OuGt6O90@DKl(=rXi=E3z*URCNCcqboB;XGF2RAlt2?b3tW12_5 zDZa`KA|=r5m+gj05d%6*`q?%2OJ&X>IV#!DmOkQ#$)yCQP@Rzts@};W(nH0iRJ7$v z0(52W%6yolUOnXbPeQ>{oH5UKWecw|+eisKw*)*tV?cRsabEHjRjz;kpX*Pa(Lp#4?= z^xG>4K%oL4F{#PRwTGGogyKrZr%a;P2R`m0E%*=sbHXD8U{3HB|02L!xP>|a$Il63 zjx;V``CX*#E02zJkN}Jsu~<4sF195125y;tO4wG2t{8B1M>Z_1Y}emEdZ}qnnh0^u zDK5mF7|;+4fDq>sfI@Rl!J~-;$$dA%RV5Y}P9X&t3UFwJ?DmozVHG(Rh$Q#=i0V=T zj*qHXBdWf>Ye_q(uN$7v5P+z9i~kVdEfCiC2tZiHA}y?UnggVSi0%s_dV~Rur~rs) zM&q!xP~JWl(QJ~ZM6_OGXV`%hU?>23YHtD%Qg1Pw0B?bqjv?Uqn2I@K>T7%{X$LiS zF};=m#ME0XAs}h-!dX3;J3=Z39MT$7&MGw<$rvGhqOt3wuP~q?6#yZ9mjDze0CpmF z6L9<#u(Pqdhsfw5fLh2)H`jcS=xGj6!4Tr1|dxYlPt<0=5++L8d&Q2^X4oI!y0BEDCMbg}bx3)vl= z2e*+O4me7XzITLvR7wEIN(ni?O2$0Ny#ekP<`94$qy}{J_h@FxZDu(sf$6e<>3s|+ zQvp!H#|c1r%W}|zUM6`;584zMen<*16aYQwO9Ie?yv6qfcnfr)=&51*9M^@SVvZ@u z*EpNBgBrX3)0zN;)LV2Tz*}HiA4C9RDi$2m8~PPqX3i!h#B}VbuJ=r1Kw~Pvp{(M( z43eX`v8N)W3rU_5(wk0oZLx+FU?>1Wx{d&ZRDtFt$Co5>MDz_ZI6k7Hg@{Uh(Fb;u zc2Hp#(eDUAM7>3%Y1m@kV$EHnduEUv0Tlxd=!G*zU1?g85(3(+sS9Wx0~$~P=3OLn z56MxQ$g$^ILV(arJ}Zb8HnnTcl9nJGh9XBmuOI*cRRi5Szn%bZp%JycD;EW4a#A;4 zwI~Er>a_EE$(l=dAaV@&X9++o1wfIn6X4mQcYa6!f+-dpOdRAoL`n$eH$gCuF`&T| z0OeI}mezLPG)4DpO!AcO*|3>2>_iHvr~rs&J^{H$hZV~gY*12+-g#fNSGl2#{7yxi&^GZtl2xFAGW8 zdjZ$G2mn`a@el#t0$0Y31c0VkFwMyq6kcSuk`mhU&4A~p3}|}_fcE^F0QrDOi;A~L z%S6hQkr&GxOyoua&cBlqb1rx^(L{8xF(M927s%@fTBNnE$icV;0buNF(3t=*7C;#H zW=|k2awdG!#fAT8#*#4zk80r>_5uc!umB)@IRPk60PF+bM1YdCDf_^GYvE{mH-9H> z?*=?K5CERu;spY{ML~RYJ$uTm!b4^Yp_KunjLNHCj5$R-}OH3V?Yqj{poA0dV~yxi`Q(SV({rm3CzjYs`a6MPKwl z%J3p`#C0|Sh^wb~BLUt5)8KLf5K^(=kY4=8S+mSKQbI`AwsalnIR-SO0wAPs5P8R(0#atck6OCE<30RDirxb_mTwid7C4H<%;E`o86@`xm;mttfgD1?Q>>Wh*MBQK z-*hJ>@XTxFcn)Dect-MU?)aiSQ$li-DF&DT&nJK<18jy&ZUw5|$+e{Goq*{Q0+gvY zxQFE40Mp+i1c0Pehe=kurEscwg_J;Yb3pQ429)GxM{+00QJffr`)S`1iW!0T(<0wG z7Zpzn+YBzg6&IRGBFH%h#R z_es%vK;QX-0E`lEahL#aA)6CjO_|nV8-b%(gdE43`h>${W^30CaNe^ep-Ns8IxZ<{ zwEX*e?W0d1eI`iEJaO`n%SxYFCp_|*{h((5ARB$K`qqE_k50#x*6Alc&k+Nh_(Uae;!|qkPJHgYXMQW&VRhkI zk>Ma~Yn*p!^XyC2GuLV;6{QD0H~zl5aAL$% z0lsHHy|ko_Ns;Q|yqnTkv}-zIsoBoeQWhTuEIuRvo#_w>K;S?cf$#o|fVc($b`1h) z0{M{O(}kT4OVJGPIRcS2Zr+$N?fT}?ds@2_hYOu-Yol(>qYGq;l@o_mX+rQPZmU02 zcw3qr=UDbVQ#i|vY!eO_oMRbAfPrbP4ZXIQSL}r*e-y+QuY7=xP}UV zW%v;SaPbvDFTPQAsfUv@+lDQQGHbSVE}Ig7wMpJDn{OGcmiV> zX~FfN!1ZVX;ChgA-Q@nVEzEfY!nas?-}1M+ox8kBz08nSvSnWgdd)wm*F5t^;c3wu z+M?Gif3vV>_6usro#x@tlf|LrB~*TR*rLYjf-~*0eXHao`If>eW+5rzLV7<5a3Q@{ z1-Ot(y>QrK(+$ z4fUP2%~auJbr;t-V9`CzQ>3yjT~*ZB?zp+2yE!urj1EaFX2kzTF$fVeK#0-=L5Nt2 z5LIZG3{moMLiCBY?iI23N<+0Q%8#yU>yCAEXA$e*a|G1!xCSIvstHuCPM@osJF@fayp8Oh;wfQ&-Xxb^>5XQQIjLh~f z5rpLMsB*o7>Ougf3jw^xa4H%}T5vn8y{qXs0^nBw_`Q$-_!YqW#Wb|(>C5V6hCGvP z_)1dT{=ULx=ARTC^rI(3f%Ky^yBf`UJYe1qHC$(UqrH3uSKeR9a=lT1!ybA>c0l%% z9JiCAk3$Vd36LB08*A#_1fM&9(9MFsh<|+>d*H8bhp^{)e@oYm$;%))u0?@ZkF|Gaq=TMepKq6FXlvZRqMV&Ex1TbN|>tfxyx8i>OjKC%r!1{70p!?Lbb zWpt_Q^cT9+bsf;9=;%3CkhsoCX?EMB3KQ+#9}AbI^(1|Pfz=g{@-()_ujh2K`9BxV zFn3dp(34h#0_jO=}f~m%(XViXbWui{R zRLzxI1y_1Zla+JbPE$h$bf-xG>@=N50ES8BTs-OPL2}(_`lC_WHSiN7efSXo8+qdi zkd3_Jh{*4gX@kUGANzP$5|G@-`-9TuRKSLpi-si0+)B0q8F!UfLjbN4p8h%lyag^F z&k>*#gsfkrD7S4@KG%jvzuzZCg#4W#dF8 zj%7N!{XXyX6teYBaVc*@0H})v-ds#_Z-BkxAq0T=J1NYua401mkRIRB)_g&>+DVSW zRIXR~IRs$76#(9ud|LN$u z#YY6duK@77hXD8$K>bF_BNle`hVosqXhbF_igFTMeMj9lG>`qYUZQQZQYUvkxclWi`^(~EX92>9MDeMoplj&QObDCSLT4Gbm#6Ne6c^y*jx&f?fp3mPl}9yo98wh+nMJ z*)P`VX#zR7)i^Q7uoUa`?w#B^y=y0T7W!XJ5=+b?u8!W%EC_19fB>n)B1a)n^@0m>vOTprXG#2<;$NzD)l*Ri2i}wit ziyAYUw9FtONPL|};?SRw5cf4p$2Vk0;K0R+AUMv=QgC=T#;&5^BXLbS z$r8pN?B?E&TeFGx&Ni9hK;nUkJ2Po>+?idZ;lh=Cy4CseJ{ahCcQdU31J0_~w4{LY&i@7J%a4&GW6I}IqNMt#Fy4fYgQxLk_JKIA8#y5&| zPFW;%h(6z0CztcGZ&%+urOc(mu%kwTWN5^z%vr;-wyH8hvQ2*>B-{QVBvWi@=fujC z=Ml&L>UR$he!Z%uU2?JMXkY7+_?OvFmB3PF4+)O9DrdL$?)#95c9A;x9;DBWeow|J z`fF!*(fITdbH06HH?poUv1fI06MHK%#>6fF7XRz>`*t*WgzD^WPu*K|3LZ###}j6m z@g_!U@P20CeLMm1E&wi_7ZHHVh5)!6dB5?TP6cK@X~FN@!0$2w;8y_nT}=S|3V_Rz zeARYWk$d%D7DYALw7;Nfv!gp*k1^rBYzw`Yt!uTZ+`a7PF75&~IzLgA{fo8`ccd?< z$s+f)ZEs`EJ1sJ=Q@yad{yg38Kcs=xH91PF<*=-ss*Db}OMjsQ?vjR+Z|R)yhDA!V zIeq31%A&`6NvHDo3j_YW*81LstoQW65qy7}^!=^#O)q%!FJ72AFmd&XUc8VuC?TKK zsgx(ag06|r>eL_s)>4)7+}jt*5iqZujE@dq%i9;G7ZsgrniC|WB6#}(86=rB%X4pE zIQ_`7;igln+2pz>wy1#b>THY;Puv}~4ZaIU$iO^zLokZ`;Q9JMTlz~;o*n)@biqP& zamRi+>FOQ3f89d#FL~}3-PxL@q~{%A4Z4Z|?bwmP;8Bu$0}Ru96N$L_H=*eDS|7bf z&(Cuo(D@%JU?6P`$n9c4_awH0oHF#5 zBe^#KLwrGJ5TRhG^$8f_3p!_$0vL|%>Y8sF1A22I0P>1Sj`Bo~qYVoQ(0hyIOBRrL za+4gd*7JFyja!rlN!z;t&!-5$6y+^mBEVaKC_bdKjZhF3Gfx!Df4m!DA8CQ@mjT@Fh3$q?1wez=BOs+g>vVHWy@!sZ=skdGUjo3?TZ|;YTgXjA@Ropago3Ho zC}>hJm80}^?ZhdGn3+YYpgXghoi|N(v{m<__H{4pTsdU1vyE|qXu^^9kB$PQL zY&7sb(#>`1Y78iG0YE&P02Hi%5^qO93h~xwxMubqhLEE7fMzZs0A$5tX>U1YPjYV{ zNn>5iB?N$`d=8pu%I$HMUEO}vBy%${?iWqHFH!Js1mMJk{ypCKTH zGm@8Mli^d7)+Cjnq77V|pE;Q*3*0~xhh%lCH4F-HkRR~Dm`u8emHWOYw#&05`E zYc^v*c?y8m>_`9#6#zM;0|>wz#W|#rzV^_m#qM2q-qQp!@SebTDgof@EoKwoE$}{p z8wmhevG8Q&+eumWk*ja6Z0|gfonbE?oG5SCzE-Y*z2?691I!w-M0dWsyIX{=BLI~U z0J{s%5rDD;@MU3`ti3id&Ad-q@cT{>*e@8+zzTrC9wq?f-sz6LymCFlCQ9i)WqP=* zW5Qu4a_rr;AOOj#0-&VM1b7SV-t{9unlLR}Rm_pC>MJ~sw1Wz}&|OFXLgy{6Ai!H7 zrq>gIn2JS8Oy}R6INPiuEyVP$9r&xHN*zvk&X<~|LO_m>2{?{tQBTLyd%1*^y%+GDO8|I!i$w%@3-DY?0Cv?@G{*0+D>blqPyg{nq z`=5aCM+_)m0o)KH07WaH7tdb^;K?uYL&#Tjktp6fY(4J-&6-01n$?%uo&ay5*H8B@ zo?e84u$XzmZaJjipeZ3Oa4qcZ+IBJn%2fbxy@UXiDgcfp%qM``Haa)3yn_^ADF9~r z2MEAS?=7Arz*}IZe~|zwD{ZD1bIkNovqRG*ubPy7jS<;>1R%1W>hY`;fmu zzV(SW4&395V_kHIG5Ewz7rkpnzV(OdSpW6;)?M=4Cw7{t3hx(1=uR66*Pl?GkZ`@H zPmplEmk_rRq6yc#rM*%=vGbi6AmJLdz(WS9ic7d2|9s-w=qC~b{jg5?zG;>DKPmwq z*6F)w)JjuD)q-6dJY6~E{F_g+@|~V8Ha>qvU0bb1aW%uH$P>#UD?D8}MFrT{mVFu| zT=yguJY4D4*F9Y6Mga0n3rL`w`jL^g;M(HgJ39#l>8S+M#-}VI-E8T+;)aIZVn;ts z5F}l*RCn~{D7qBZFVfL&ySli&U0+hN+}y+!(q|HX3#$G%0#NmPNPw!}<*KfqsEMA} z*S(K-^`BDso1?()K_N{Lp$hO&GFzez#~l%WM8usJl;y-aZUG*HSC*P5*L`9{IHLrD>ce@U8xZPAoKp+qnemJ zlHwszr+oLM%Qr|jRXACnib?@^)WrpWNt!_RFjkFfU|6b5q7Cxh1G|oW-BX$+V=81s z+AFScyX$=%#F`EH6`kdKEr2D2;D%Np9;Ygc63MW3HjA$ly|ZayOK ziKx=HS5^DgM~M#EYt$D{vA2ZIUE*t{eqm?9gtp}E+z!c5)HLM@$6VHk1enVjr~q@B z)DoZM=}0Q*fbIIZ4%m(Wq>c_I0s7v6et1TlJyZeebH}va!SwAu$s<0|=h!FuT$&(A z=42`Q-0A(?Q^*EVqV%n3-F_}_lL?Drkhe*3<3_>5f^q%a)4_3CXFM%fsK4+eVxf4I zClU0t;Q#u#=LkYSeWoA! zY2+!p;lpD24#(@c)6IM7O4~$9`|9TepsxymzIuoN^i=`SSD(V)U_C(fO2*~Mey+3L zEw4V4Z%0MtdVk8^M2Bdt{;qpY+nX4i{iM3*p1F$3!&65Rq`4lJ)vUh{b#wiNP&e=Y zN1=}Im#2<2Us!#9xKW;}G>Di!Y9CzC5$PTzz;i~?JIhWS)n&CQAqbH!>>n(;8Ni~u zf3WB#z%5AoyBn(c1n8o>mR_hipHYH_FHgK4XQLA|{iDUGGy(V=i8TVX_h*T7x+r_V+$?1ue`mUiMZ*frhcThhR@LGqDS!C_gI2l#H1p}){gG6tZV z(6d4G3`}5BnyqKVUi46O|U&qz3@m}$YDywI=el6e9n)p*;!<0^i zgD}!rBpczE#9Gr#OXQB#gan~3zO6%0l0(M6lv2CCa^H&fg<~hY zHs5|r(H1j@s-a`B>Xo5DuI)%r_e<=0%NMMuxbfgSqa<j! z0=P%^j2e)2z{pMPtq8z`;4Sh9@D`Zy2M~a{KrAp9+%mu|c*c_g=D)KBy0R`J0A&dP zmsb)1mjZZ~$!tjb_H)Jfj)Oe!h%ORK{RYlzvc#k2MK*VHai0C{dFZ0zqKj>~O{6Ok z#J1`m2JqQ|?jGFvGyg}n-YG7OUlE|3B7wn=B=-i`lq)wVY)5dF>Upl%xWR{S8j+U9 zFjC*k)Cy>iRPc~9)`sF3YeRO7wPBhd_}~mn zu{OMAkh>qbX^=fMV(jB)2UkUJ54Q(3-%bGTs8+Y^+S&X-Qq=sgH0Wc6y`s-a`^kZ* z?4MNOqzt40FyI2ffCX}K_g@GP1bEs$_1@A?CQ?GQTH@KkTl3rM8EmqWb~12}O z1!$P?fWxhTG%ykcpVJ1$wQ`ddi)-bk!6#Us;tMde@0Ii@`$F(|USDJ)ou``#aJVJu zaLaKHeJ0X1ZHs27Wg_85xNp0nr_GlX2qYpMAOU8yF9*9sq+KDfyif5IyR~gmrk&oa zsG^<~Umv-7xEV)U@IBi3zL4bb zJv#6`Bd@5Lxq?vm7Bt28^sYtcn5Coz-wU1ZRV0V+g;FC;cz=`txD~*=#e|Q~oS!&e zZngNyU|lT+d$6_D9rj?~(qHndh~)TMju>fU zo|1c|1_B}K=|nu(!`Yvyso+%3R# z2J|jY0Nlm>m4P{h#gSodQ)Lm!byFpoa=Kuc+eGmW{y~bl&H>i^Pm>%Ivp0B|05!1r zzsSy7<+FKJwyE+3(TL4tJ5do;M0C)!9o`95=J$<;d z>`w}?6af1T1q5Kf!CRb7fVaSY!!!b}M&#DK>JNG~W%Ri{eBV>8mRUz>Jqn zU!8GQ6M3|cw;2RZo*-TC1SB^T0Fr^h+ay;5sZDA7k}P}dmZD3|Cj^3{R4L$yeB_af zipH8BNeLVeJC3GYENmF;&mDF|Ymppv6a#G1H6uWYrsO_0i8-QylisB3oq*_Y0zfn{ z7(;Rpm2X@N(d8p+wKC@u2A)zQZcBU)YaS_q=bV_Eb`~?B(~ba`HSQ(=byPre$JP;$ z(q-2=lIo$LoV?JR^t=O*{D1&VJHE)>1b7Q1j^Sfi-w_I)V#Yl2F{~+JGfLMwF#}c2wdXJRQ zXSM~g{G0)er2vTKAp%gI0@`QF7KF``63k-~1HD#x4~%py}`=_1O_3?cL)Sav0|3^1lE310?R!C%U>8!mI8of#lo=F5LyM4W_#K!S%9NhgdDT%fv1WtF_)1NI9^idT5>)E z%25EU)JcvqFDb<6zmMc83|AMr*!+_eU?_krSo1PSj?wQ8{zrf}!0_Ki!12Rh%rX3> zzG#ypq#ab)^_+}E*jR|DSm5pHB=-iG16mM(fQmsF&`cYC@v0ALBC0(SE~+CK(5MP9 zbD^wRNscmmBoNhUBu|Oz1qnN^RPLJyhn>iA7qFNBL{$KU<8A`H1){o^fa9Yo=7_4) z7j9l5?V!Rgs_znjsES4YttVvYcE!FWgMz^&QzOF6-7VwBN`iW)sZ& z93M(CM<|1;nnk4T>gyu8lH`b_H+YzUzySU8pCm{B6ax+=zH_yWln}}-K`1|CKtm}2 zKDbSCuoSub;5GrmGQ2g{5Bu4zSC*8w1D6){S3d|>{o=3@y(4_wkL2L#4Z0BE4cr~M ze&?z`pXE(6+K1wc1jM1T}k94W!@Urpka_FEa)JxL0s1--=14gVKOj^XbO zwh|B+VDx`V^5aLpSY!12>i$gHuDWjYR~QvG5k`eKs6#+tfYE;{$q`90@R9s@^v$LR z;fQ3{Q7)208IV_N+5A;95Jr&{E!K4u;&=hceH``6+s8}K1e`H4DpfgQ3#=a%v)=^nRJ7ix)8oi06Jq}@CnJ)KpY*qS8jsw-r4;GB8(EI za9X+1lp7tk3&L1tvct#@L?{!qlc>SgYJ6t z&=E)MzN8xAh~2@l!4bQ|goIfg2c*SPvpSB50gl+A7D(%ms<N**(;(_#Ts~YQckSq#icudUmee+PrwUInJP0i{cMWvs8nT*-euL zmA&xSvSrF#$aXl%(v3`zI@U!6NF9@B+BlV$AQhx6#>Tn4xflVGH+Qxb@eS?!jkJzUFEvfv*ArUlD+0 zMSKP&GCu4oVDWnzi?XV4(iZs2v0(pTktPTZ;;|GgcBiqxXHdFvwUkBY@viH1CLoz| zX-1F~EQXCwZHw5SvCsmLGs*>k1`ERPprlAOaWr>4ccgX}-$9wr_4;67EE2GoOLBCk z6(j(G!=USIjf({$b+WE&4C4!)joJ}F`Tol64DzjIW8`B&;1em&zZ(!(Td zC%BPh3DDz&ws-ka`rsAa@6icv{(W4PX!HxgAo)-(k~m@|?l5lH9lBkbAUH|LQgpl9 zCb)64bb|YG##dA=)c1>^zF!c4JqWCdYIBDg@H$I(_dA4W< z7fiSkVBQraqfLu+py}DEWwcU-KPv+P;`$>%X@Vd?EJc8Jh5-u4<)R60T+Wep(s4Ok zntb)Be8b&DtOr=UoHgum+@FylEwMt*^(z`Hq~%?%jF3ln`Ps;$Gasv!TLsvihf6N7 zt6mwKW0zb|T+co`u{gud*_Eif{0=!$*<@tTI;krRIcy1J$9{R8@GV8f3(ZoBD2Dz* z66oPfr@yJ~{pKHpU=FxXg0IJ0p8kJ~eR-fx)%SkyHQz%S?=@VZQk3bIAsHefGIM9s zHHE~LF*1Ie%^5bOP#UFZl9W)AN>QOvh~`hxr%!YFt@Z4^-}9XJs($_Bww|@tUeDU& z*?XV&Fdz%w*jm%JVph}O6_R7|DF(RBa)1DRDl4z+2!3JEx8`>S*u6XF@C4a;hZtb~ zB0vWiA3^DXVMFo;*oMXXf>jB{=%exJ`+}_8^vh^e zq{Tot)};M3sES$BFQZA?DvgTAnmZ^=ydv11B9O7BTiWf3CT&RrZ?%z+gqS*~JLv5VHVACMnH*@8BJ|Ip$kXuSlCI_ibx;pR(p%E2`V?9=x5OacwY> zB16l$o&*V2`04@S@yKr)XtOzLVB$EQX0*Ig_L*R*Pwppw^sZ!P49Q4OyGcvqfW$}_5rSZ2nCzue)s5D@Odb)cS?^AM87NZV+hEs-=p;ChNj^0v+E@Zj>pBMe2LQy zqiFpK=#g$k0`!6NZ~I@_eER?@hUgfF2HKbBE+q#T3L59znZ5%7nCS(;Oy7q9^fdvz z%lON4!F8kszazw4hnT4h=nyl)Y(HOynA=GXiei8pI(HKwLyUcm?(c>fV`+M)&ycNm ziectu0x-3 zpXLs>FHYP>z`i{l+(ch6PadH9uI@P`c!crzPjr)2oX*3N=EWICGY*GNnK0_?WVGJlo z0l;xQ0Vq%ate$TnAVPBX5KB@$JeAWlne@B^aD1EqaP&pKK!CRZN4z=lI-%gG0qJsC zIO5fb&qx6rKXn{WGN2p<0LN1Vpg;j|L8IKzuzqy1(@QEi3~!)RLnfn@Rf z9%hiD_W+Lb2td>E7IzciErg_dU*Zu$!Biu1oy0bs3F%qE4$=bCt&Ztl29&7)V0wrE zl&XNPBW+0pP8{9F^ZACAl{UuWofF6tu<4(?%=CJ0pWh3q%JDw-r2= z0VOH`h|VCO?H7$RV#Do=Ba29m;XeN2$fPT4B+YYVy_a>Q?Yw~NW|D)eH`qmhGr(Yv zS4Z{}s9a+M%)VJ!T`;TZPub(uk?%+eRKIpq|6o9=3IM9fBf_dff(5{nX&M2_HF8<4 z@(5e6-b+(b_FllXJpthAEqW2)E$}QlkO1)fI?fYSidRQ&ASLjeFv3>ptqdqn0l;%9 z0p)si%8-X>G~I_t9%;JwJBr@Hc2aZ>!0>I7gP}M0gaBtCwV7h@;>b4yqUDNJq~+qx zk)k8R$^p$YMp~NX8Bm%6fM!hskk&Is;x@#^B#+Q+;0!yE0t^MP7oiBiZ3u5MhyZVa z$-97n!jrd{<2r)7WgYZ*7+S*n{fodY)9h4{&{)0C4rC zzCeJt2)VvaD7cDQge%@8`HZx{^;5_7Bm>G-0B}7;07_Lrxt1FhRu*$jDl^K~s`qda zDS8iJ+MEC|^%flo@D?G{3_`(F%py$pyqG;97)@GWI&ze))f*X5rUHQJ9R#3M0c4D? zWNN-rp_3W89-A_l&kBAmac=x!bh$I%kZ3LdhK8*KU}*3bZxVn41+eRS0tyceqJ^Qs z$NeK|`?!(cr0c>OLVmqPSpvL;UD*?W)QUwUwYa(8jI@y2ORlr2y^;Ya|lX4Z3Z!d;*j_a7lp*($g>tA%OP zZD9GBY+C$Jep3jS_jiyY2ybYq;T8U_qzJB^M%&8GV?enI0InklK%@d-Z8Vht zt=!1kXwqm~x8BQAQubbyuetUObUaY?${SCkjAhYF1fT(ng>S&P#{WJkfZltK-scP` zJpn-PM*aIQ!FT*?h^V)(n3y$71*3kWIRRWMyv4|uU*U&E^EhM$!Sew+g3}{jXKvKICfC2?TOU)-B(o*|5%L$|aO97D8 z|04id^%jc=@D|AGDgp{;Rm_o9AM$3>_93IG?jitL^%naH@D|AGX9OUtV&StI-b4R` zw2;+bTvn5>4{Hld1;9J4Bu9C_j73YmkmQk;dj9pcHd>Pc3^%92y6}LAkFL_^ zXI7W>TX-FPv+ChG`gHZI|Ld=#Zys!~qd%-FeC&R6=v#kn@V4OpC@5SQi#3qgG&!*w@@5a@=$^?nFCZ|W{Pr>%6 zX}7d(@iL3rYiVqU%aQxZ1V^~_ zyuCkALIFCt=A7Bfk>V34*X$D~*9ii5JDsICx&CULy&U=ZID0$26^Ei{@6E^Cpqmqb zpnH)3$L`(7+iL?=$J@)1ef~9g@r~fwH-b+Pxa;XGMet3>bMWqZ`t2N-GPv0>xS0Ul z9>DeVdr1l!cPG$T{jW5n0MOt9KqEom?x(X9G-fBz!2R_79GBAA=VIAf>*ynZ#!bOhH#@UM;?^u~$fQTw$*J_#k6T%_WIya zQp9xl-~{)v8~JxjPT%;)e#aIG>IOR!v}0S%zIxeBgS{ljgtJvrtiOeNhycu20${$n z5C6(UqaVHrmEsf4nhEx@;~f+1)lr#At{$CPC+XA#Gxnj(s>|N&RmQ9womoF^jT-YP zJ~#B{zH~D&Y$+JO+svKnKHU{2WKXZsK`~OapS&Rf#^S0fz*sEtg%{N?B|QwtjVIc+ z*q8uZ{O(EuZHuwaCcSlbbyM(k`I@H3&JvB%x~m2?##2hi&1QCF7UyV;>>Q0TLEvs> zvs4>nEZr74a9`=#New32tLry&T-uvvIR>)`0E4?o00zb}_@#QSq(Kwy2)**3NTjdr zUoke(-d=w)!JC$g+v_hU0I_YSDQ4&YM=?khvp}j61TIx9?HL;+?`LV<_(a98u*WU} zu(+U0HB+#3u;Filce2$PAF`g+|+TqNs@>AQiGHgt~XVjB!A() zRK-b&_oZfzv%k#y#?zClnwq0}oMmJ&Qqf$!xmU8;J1w(&WJPjvM&<%jwwC^;sSL+=sG=DP{NXyYv&A;4SU@Df+pHxa61QB1y$)-$_H zQmaY!20JAoUN~Yi5tMmg<;?pbMy^?Gt-EolO5P zBT%=r^Ajx&kp^y8lZ%94I;Z@i%4i_J>R)IezuE>uSJyFzV62kT^n)ye%nx^D&P|*{ z($8&ZKV!IXUS@66=wRap=8CzQqk{^Qqiv+jS)suHiZi~=B6f39BA^>0YfZMfD>XTu zyH)cu8zx;m+2-!rA<|y|nxEM?t(Lmx1eOlVGPs}Kf&|E5kZ5u#X{?#vqg|!&|Kka? z5p_=Kr5F;}TmM1=drwZh`yVDy3bS|rw=K%NEir-m^WzKd%-kM~3QIKTRl`XTzvREE z(UQyyV!{6rhIx0!WZS_OF(8kju^DDoZ<%6OkzCuh$kTJPQ%s|)V^;yy98@!&q304*1fY!lCmu8WrF9Jd`Vm3$xh#K`6&*+2l83xF;8 ztptF%0G>HMR(OyU@U;J~K~cv^j-uX`WayIZzXZUe0N$hg>+a!G+m3gyDXzm0wjDme z#sFS4Of%^PnU&1ps=Z5@8Iv-KB~_fFV?f`uDcXLx=MUuuwWHIwLG>wNBf;uz;lVrH z>P>pmd1jmGQ6iai_L&~j`2VqPYp4ns3#UxpBgv7js2V9nNPie0mHB0!!W+)eyJ zB*jC-fGPG#dWZtFUaP48A6c)7V=O}0F%}^Sf>blMM(=3>OY!i~VTyeiZ8ybU#ecqL z?}fo#9FH#8mbvhk5rC(-)kPaN4W1w=!hdXveFmB|#je;ks=`0gkODx13jmD-fxC;( zQqWkOKtnI%2cL6XO5>=bag>1YVf1&Bg2pciH2(Zo8d3mgZ~>r^AaFPGSqd7ThBV>} z!lX7+?8W(p(kSGe#v=8mxC{Ahrb=4*LVhb1xR$6N&1|x1^_|U=V?j?+lxFTOmA`EQCAi}`QL)YGgmaU-Ah z>f#<{D+(T~j>nDss=5aNhquNZ-df1v(I3plhq_;5o_bLpWsm+)%x6ZI6FQ4d*_yd4 zSWSt*h5Uy}fT3^oRC^(RB?0ys_npjc=8bKc{el+>vU`U55d$)a6L~>0yf`Dx?B1T) zEqEhpHYD}*7WNA@&+W*3I5=Il}N|*;b-e}65Dfb*n4$mUT^0`sd?&k&95DM3Vvg>nS&&&^Ik`i3s=%Sua z0DKD&`d&#Wd<)9H=f9cRI(UYZ;CrL<{W1aYEkJmoWgnsNEvWiV`T$vX^V#WZ+Ad(t zRNC#{qm_r+>)Yr6;f{}|w;YhjCI)c(w+K_;nTy6rVhr`xn-l4G~- zS`uK0A3n`awAU#>GgO2x9w5afhW1|MLWcHwT!#FAs=4}oc|K+>jO^W~*?G3hG&|1@ z`ylf~a6kD%+^Z0GwO|zin4qxf`y5FT{WH_-JUermooAm{g@0rr1%L$?fC(x=kZRU` zoVh9z2WYGeX&m_^^V{Hi4oRojZ>E{_uQJaLz99f<8UAVJtcVo;z6|~0vvSWI&O8=W zo-Q=}!Gb!iINds}NC2ERKAPFO3`y%0SvIU%4Ri0&%z8x{OqaG>yj}%!_-JPPfRqeO zf1NaROhk%!%1w_})2w5ehk{Hh);2E}PcH)C^ta=gH{!J$?RYXzLlSQZSY;@_~2K!Ph-el>098>=GD=(`T5TC*@({goec9+(#56zV1YV zgfcp(w9_cDhH0;VVNuk6M&hFA#~baoTc`hKE-akU%S_E5Ge-vfh%l0wLjruod-Z=; zonz+yFSAOL|LD~?QbCf&xFn65VYjEqM?Cgx}MO!An#wGO~pP z_}ccuZ@bqwGS9S)XJkLAAS3%+M&5E6As_MB_qdEa8)hW2@+g)PAM_dr=_I+g|w8Md76fT)icfgaZfTcV)Z<88dlFUbs$EbE5#jF zD&)|wo^xYa1qrKXd|bAy?7`FtS(ZTHl7M?{BrXO%TC z&dVxkYHaAyFSweN>?%YT(qtOv)On^|NRKU%)jG(Dnhi-ky@h+TwMWUUgGs>{vO#rU zJJarnO=Cc}X9U3Z%p3whO#o~;-$Q_IImd4kub64KVZ4V;r06{?x=TK)PI9a$y}`Q# zcmphBkDrxwMR0^rEHyPCU20x4)4tjI8!3R}PmW{BSz)zdTU`KfOd$XT3IL9E2#9bz zZl2n?%z4>E%H9jM5kDe8S$c!7NbU_lvd1qu zwV8yH6r-N6$|-?VAubW&?aQ*Wsk-#xtn_Tl^lS#StqOp8tVaOK6ae+ungCyqi%MtI zl$RRP|H!#Y{(*fqsd;;l97X`D(w8`%0B<21eD2-L*@U7lH6B-&;3=;qrkcaM>va$A zCRJ3cabzE1K*k8Z%EHO0MQ!>08wA$9Rzp_dDv|dEGGaQ#lmyMcb!%@%o-eQBrR}U?>N51fO1se znbSlla!~w~3?dXiauiijufP3DiilVMa4d0CSS#S@Eh-Vu1W&Q@JkfH` z`l#ospe1R6=cPBHF3rbBG3sF$y43XiT!x`+(nWEii*Iy|Bml!uwWy^9(TY1aBIe}oQ z;qWMQ#}!!xK`+t*%WgNDMQ7(WO=h_^S&^etksL9K93*EF5FvTv&9+yHBAV=7r06|> z<--J^$$E=t3Gfz}Q=aIU)h2j_P~|D#cU$u-O)4*$-jjk)NC`AQxY-Ur-!Py&1+YDf z02C?!-VF(E32R9kZsgsN61SLr=jUD(b53fLu6F{imkr4Th5vXb!o>(wxYE(i8wRZz5oO-PRegTP(|EBrnAB&RcAidM6u5**O8r ztt1CaZ}27o&HyAoBstow82C1u@S1zsne(!O|B^oVe((6kZVf95Yd!(M_bdXCUj=kl zsYO6!$gO^>CF?!3AVu#1Y&#JEw%#I(0B?ak)WgRs*9e9Z3eIBYIb+P-dVkYl!F19B z($O=|}y2nAJf7oplIKWkM`>Ncu7T>uul%~DNeK&cip`_2@qwMmXb z#UTFrW6+FHZOM`KuDm!07gv)KTwEe9T4pv0atOe@<_xYOxi`S6{R9G}xP)Ie5w|#{ zcabk3Wgj{6dk+D~uQOOja&Lf><;?^jwUUEKYUf{cQE@YHWLA&h9a2S8dh0fmzAB^X z*`eG&d3M8-e76aM@|PAf*Oja*m+9n({bFy~qa-M|%R00`U|{!N`KF8-jkM1@<|&+tzh01KPTB@F8dRA(!a77YB~OuTZg{!*4Z-=Og>0U4hs|bV26Vy^ z00Zz91c0RgcsHpJ0i4gI9@f&#ZJeXe)G!hmy5~eP!Z`1ggPREO7D(ou1QbrDnBx^1 zAMInL?W09HpC>@m8Rz#J0p0=$JwN~wDrH0xidSg9CoLrO8<)^O8PJ3ZfP@Bf!iqwH z3h0bhoq)(7UuBM+(Y%Ldr06|>=w`du%(Wm|hD9V+JOz7Y1ZA6Ccuzy44$Z>Bv|?5rxhXL$kb zCE*pC^%N6cq1iOYy+X5@5W9<~XNk|uNjyt@Sq$(B4WhtVqJ&~!q3JO%YiiPZ$$_3I z?pKE#%%fBSP88eB&srILOj4XEo~V0{ySwA}8P5#Z6eo%&$qKi3zEc5?6lIf9-+(b^ zbwoGA$x6w&_TEm(xuWHEK5>#*iv&1}JA1A@Njz5pI)h`j_A09Q#2Fm>l+&7vf&_tk z`Guu8xhXc+o>3*uwJ*Qqa433Qmf?cVAOJy+X2FDx-D7j@`C-$!_WZEmUt<^7h@D*{ z_5^`@_l2di`nJ~sd+zMrHpzzWUVV9hqC(QwxcJu)5T1fQPf}!lQv!<@{*{Fk02W*T zSR@GCt1m1?4cwbRW5#6{mo;zh={>^K?-{n8|2P`|p@2c-z&%+tgW~hT76lqb=0z)` zq$>PlLy`hOg9`wS1VO49xGJk^z*5lo+R}(6nKgZK+%JHhnqyA@znf!E0Kbt=sV|LC zNAf3teK*W@A2yKwR@HR-bc*I(6Wt5;XgV zNFYBnKFs!?h0m@iW!`!wYi_WEaeW-zI^Q<-=jC5*>>nm791uVo`l_&T^y|3V#HxZv;V;KUtrnV|dBbL2OG z^!*hKQNNw)Eloy8r-D6MMVC#_tdUSlN8&Fm#I;Pp%*?W8!@i3fnq4nu%?a9T*;IXH z+Ju70s|yhi8-l!0&Hi|N)&l#WFoFSn?8-823*@nD63MZ|6a#ED-cEo%CzRJE2EX$n z!v(G^-Mqj)XgY`Ylbv^nX0nk0Z6-c~mq_jnupzh_D$ zFKz(owZOKX%NE23w#lz%HB9=>HI!2I_6f=ib}%Q8h$2$jBef1S|*zONE&$M zg?z*tmW`%!%9#s&!#YdO`P#i%GZXu%-srt}U)HO^YzhIR>2wl=FQ-aPR55>5=~H6Uz@$EuT&>=x`B*k?}S|lEIq8dcFW<4e!B)VOOx&o4;r2dQSJT;vFj4=XWo)VAYt2c(U zP??LxT#r^CU_dKV0958v1gvQ{I3u>m?%VAoxg^uRcJp_`>-I%<7r{IIl#JD><@O(v zf}2 z>7vx9=Cm+9KEJSXrLd93yYIq(M25+V$uX z0_4%ly>7Ffq*#iPNj7P2nf&1_UOR+Ltbf$#Q>aPOx)3TOI$g z*mN(E-8@aQ5FKuhQSR^#KF{i3Xg+relj!rTukC`|cFCqu zsqCo%y;x=NtU9e!c2$$pC*u+`A~}0a@E9c^tonyZ8d{Ypojo$xLJ+E*bmO5vzl5rN zA6cN<_qeM0lmJwX0I2r=5P(_{0JXBaP_-9dD%s#Rm9*5hsfq-^xd3<;LcO0uC`u62 zmk`$b>8aUzzi$cE`->Vd>b;#hesPKUvwZfYX_AI$y+1(2dRE9@7j&XHuw-AGXwrc+ zuw*A6ly7P(1JwdeC13wSQ^^6q7-S`{?#ns9Ili-InrQ`Ebiaj;3{^b zlFr`ck_{ z6fY;+MZG&GSZn`8PSCu3sYRDb&Rv7F2Ag{J$SxHN$`gPlCl+XO%a_`*47Uz1A}z4I zV3}PSH)lX;3ILiN3BclB0XdjQKI)8@dM4%M`jNTvPcUYdoMR@I!Rk%xpqd8qbrdd4OQj0_UaSdOhBQA zI%~P@kD^?wOVqh{0;2253HqZLnG(jIFKT(0n&G`{CdO1%vr+T%z57 zNaM(YmhCEqerRH#>8`{IDH+pUN&O4cUC9-HKix@*X4d*S`DRpB$x`OBE3>bQ%z3d< zSGbk#hO4qGZ)(&bdvz>0M?Jei9dq8ob;DXDlQ3d6CP*g;)7#mhAkL!E3ZC9Nh8lLe zx!npoWMnX)-Km}F`JD_IgGs*TydD{`6?S@?K=Q)V+t?L$+;C17kg{`vrgjg>(WjjL zI+9y`H@j^n0If{I&wn(di$sNmIwrSwND1BPtrfV(#hJwYqPHx???@jFTl6utopBe{ zhiu=)$NWDWJ?Ee*>3Ijr&s_FBhIUYMx=l}`i%G3L0iY&PFg46+{YVMaa_+L#cP#@t zR0t4zP;SzbTyHU%TK|*HN&J?~9D)iB7PsDI2Mck7x$yx~#%(BZuSZEwksO1CH`q>q zGr-LDHpxL#445V+wl7HuG>1%#q*#mun}XS&l5#dfBvEIr#l%%@$VqYq}fMe0}o z*ImP!ThXLnnO)J$$!}9WO@{I4%vX&@t#IZu6dPu~s)=?>NCQuLn))7B3ru}a z=wF!no>=+!Q=b%RpY*1T|Jx_M*T)O7i#lXqvgy$Y*>#EpyD6&hac?I{!^b_?)*Eqt zRde`;?DoO?q=Z?Jtm1?Yu5|Bx?wpccqDb%^*`RHHz0#hYf431?@q2`Bbn7(a_`yO_f~vf!5oKw+tE+80n*p?y-}lbJC6U(D;(>v14st z0x+dGgOMcn2C@g?KDafRP_$NYhlQD^iVtorA}u6jo};>o0i`<6Qe97SP?b9%RdU_A z*GmL4)z}tm{4U{$c*{NZoa+byn4+D*_ayfQIOh7302v1oZk3B$Tmg15r`{XZC%g#B zMNh~(JtRkBo&F^x_xdsnvNKWy+tz6PVPBZVd&1X0RI=l;j;cg-UC{O_% z-)|#;6Pk3>y>_Vc9_}MW?_u9Fg(=31+s88Zcp!UG zFo{%=({Zb9PH$#F8>j$ipoBm?gWgW3QB&|tj9bp&_|9CqN_ zYf}jYSuu-{#Yg;>kQNv(bd2v~KwFIfV7!3~WL_2A#^KpQ*;6nhk zqGJRg&)(t(0=xx!=1SH3U`u%pvF^A;bGvzg|lS5ro5*MhV2S`_an0@_a zvVMxBpy<`N6X1#rmmF^ss5H&6fw?UgZ`)ojNfxZ(NA12OHSj#ctI@)Q6;7F`=w z91<%4o+VQV&?Xdlak>0jw@2W-G$Lj7A{z}L+nVGc>x=C|fG-w1A-M#gKE=Y^ zoS-EsAdinXK?&SZClT0Ql7+0L2J^w;C@YK=_4ws|}rHM^b>L0LWzq0VvB`3?{%^AeUna zD4a_%M=pKHb4c5Vj3Ijk0m!Adc!&VCFhy_9Z52F2QVe99ZqDthjS@eMg0GgpMJi~S zuRmyd-Yh=_#d2+!B1byECIGPsfHCY30)%2@42%6@jx5iuZcbEaQqPB+@=#b|-VsQi zM*v9rqAw=ETVNb(LjW3#SWttJ+cVvpT_5C-7N}-CWSh=43@BFtz;yxvC{O@gbib7V zZaVU@t?hTanaMj@L%QAxcs@Y@c!~u+W=V2yApOGqg3%jtVy&K&=;L--F~@UQ9mFxLG#&7QS5Z%3v*l+zpdfKVp;f94R1L0VI-=JnN{|pW~OGvBFQPl zgbp3-DN2tXqtC0fPN?G$rL_KqLzL3%{{9d}$~EPVj?Xt+&dHe@xjK+OG2dO6lY@{7 zrsjD$$>zci*^P_#E^@{h=Ex1%6*h^iR*@?8YK|Lv{fMFC28Cp&0DnmBtQ(|8&hud`<_ z#T!e2Lx!1?clDfN_O8q>v+3%I*`LQu!M-f{enb7_YUa)Jb0+*l*kiA+D!&d&MQUG* zbu{~4&8@!d$I16EbnCbmbOgJzJt?H7$R%*i)oti$gD zEh31!rJROH;a7PN>qt#K#MaqSXEVvQPkQ}bBzOAZ!OeaGF{VrW=#ri#4sO09Eet(h zJC=Vipe(<(ER!D#t6YZxkqb|GF=1Af_CXqf%rmL-V|LhSL<$&01i*TuH31mZy+s!S zyafjJTmlLW>RO;qkv{72qzo@Y6T{tX0+3oqb0Nv&1~28bWctXeIErKyM>m_u8d-hn zG23=_GN1#x02q(oB>?3qphq{y35cZh$YXXy_a07>qI!ruW%hk6&9cn;u);8)dxL5O z_#(r7l)8k1sF-=8;nB?%qy?g_*IS}J7*L`DfM|aLP-^S-SXUL0Ji>F7GrWluU?>2Z z&Yc9H>8Qn1@_BfYdjqtb#|bFha>N>oD4~t4B8mOW8K#f|3#CD-r{lsyakfll>j7FEFwwO!<=9kX(6eDHrS+&XF!uG0FpYJ02C+yPIQ(K zAWRcZbmYb4QhD}7M+}bKB2T=e?;T-|e1U+mz3QcwSQ^6(EVF%G^~>XNyiQu)JUrcb zpV0JT14qR+M9JfD=OioX;lqC%`BMxic>zGa%*L=bQK$gn;Z6-g3uPdw+D7Z+64HVX z0noVG5|I99=Zu&$=uUEPfVS0-fWmD{+@fvy*e8*;j~)5GnE`PXBk;YO0Pyt|j}YK3uqV2S08kYRPZei7dr1LR`KF_Jhykri z0Z^6S5`ePad=g{tUnKX{*>ipGnlWcr{;7mo{7urMzu;Mu03=iZl+=I#lq3MUM@s@C z-NTh9z2hohY$oZtaBbrmLI9HK30_Ztw?OBZNdS^57V%{20nZ9jKr)v;W!ua{3}`Y1 z0L5nrKv_$lLNa%e+$R&iNc}PlnUrjkpj}$|7n}f0tPgl0^rz-xfC4)bfC2@;u$DuB z5RD9LNg2=BFszi0m{=1$;`WW*})>!;>&fM^E^vx zAo`?4q;K7^TzQHdJl`Pz1qy&;o?`?=8qZW{H$VqjPe9=gqSmtCf@pPrc^7HhaP4@rpX5lY(8Jd=NbdB} zJx-Dw*%W=B&G2+5c~e+b$Y$|PHk*|hkZi`}t*ViEO@s4Et}I2~b8Mcwetao`oYPoi zYutr!q^R*Go6}qZG^gHRILW;MaypTK!Z{VUno}S1LQ;koA&G{1F9DiUXJGCfg+-dz zMLwS=UF1`o_-IbX;8piWD@`Saa*~YLdfabLTOK0C*I@dkjyxt|u)dV6>R) zzVA#1v}X!{A!t4UlI)Dwb9VY#P4dVHw9*+qO$vAm`#IZ=c90x>(;Mt1z!{(&9U^(* zb|lv5n?BxONL%BzX)C@ttRSS#t5+nz(L=qTLvo~33@DwI49>P%kQUO}Y_m;gCkDQ4 zo)Oz@vzbM5ZMv~$CVyt0dkJC$fxc_z-_*6H7`I*2r(=>h$EZhY>ORuF&@gK%oL4gGUK~UjZV1e|a}&K=3i@KYD@t5O(g(+1z^7w(h8sKm{afOoYy?HFn}YUB_qF(!*(OHnVwqU;P5(i+-#j` zelVwHnj9fT4-RY4>BgdiIkyJmC=ML^otKpJB!X1BwMoIU%Zqbhpu=?*o(k=-2q z3rBWyp8xwJJ1NoBx_oApqIE`|`oTQ+LC&buL+Ux9jPK>=AP;{rrim%|FsFZT7f02r zUbjjn6vV^&-n9HE=f!{^)1ytxOU;JHc}+~iCx#X`lRnP5G1wHE8sy+v74Q#mu?PLh z>`l`@$$2^!?EHH}cV^0lCtqpP*AzLNGq4Ov_1AxYOTKK=qla_ujRjwlLwphN1PRbT zzkJ?)5%3rR8z0LbZ5F<}qNv&WSXHqbeeErFjBCb#P8kAV%D9pM405&2*n4FCvARO6RgguX zjOMqR!@rCxW$qZ4Tfsc@RZjI-Z?kbl-c@m5*ONMOBZXkFn@IpVoiBYp0p0>zbw7TS zb78QOQ0qa-RRi9%z&~LVB>$}8VJcjb|aDfj6h71Be$4E zkLT8ieQH^X4`l35(nHJwfMxJPSj}MREvgXUEx@wTp!9md1%!g7?1ed&@?F3sK^wxs zvgHf5PP;LnECoP>eF;E$0$?L{Gyy`Dxe3IzY>6{*%SPqBPfbvGx|48ele^s??5Zkoc%aTLmm3k8lFZuoR?b>3WmE1 zGaPeee(xZY6v439i?%X{Frbww0BBxM0HPECkCitO!0k0@=8Lu-y@z{A(R+v;k;|DR z2UlQ&wpzB{LtRqz9?(6T5g>FkVy?(5N$w4#W}5`P2>?+kf{7NZI5>a8 zI5YFJb1pQu2e}spqsRbshi|o&JB0zID*));MnLTHi!)+d?bgU$B-f6L9bey!mpR7X z$+uTcx6hEL~1|-oc`sGMtkf1hqiDltyx|kM_GFCAU#9f>5y3 zaC8mr+b_0%W|J0JPJhYPHMZN@OlLqz3Shey0VuG>cI@W$Bzc5mS7$hs6ksR-w)4gj zfKfnzS^3ggN$w4>Ww3w%=^pOQcR$#PHMR_Vz>ko&3)sYtMBO8$-eBix4Di7BE&)iX zSooA;NrEpKeM?&K`=#*Im-g@_qu&Tc!Ua_yv0A!@Yhm!2fzz+s?K9)2&zqj(a(l}6 z!UvYDUP)J$cxJ4+L;lkL^&c{-w8ehNsHm#&gV2%iF~ZuUNn&z&5wF22h#nAGqqv;$RupInsZBK>kvFr8HJ zTf9?t*x%xvLV)}h?|@)23Gg$#3wPL`Kwhc<{roO-v|kkvpZNJ*_KBb0O%S-x7qJvS zzdLD%{R!mpJM8C+-r!L5Cy;l!pmz~~pbwJ(L4Sg}X_fTw4*ToJNB=c=@r~fwH-b+P zxbGLS6v4j|3Eq9cDD~yANg?eOUbbnkKmdLMxon9_b%J^%1&z8d+n+%8G#aSFKh}X1 z02*8XXe0>S2aH$>8fE4Cx%wR@TL%rys~vLt27@^+t%w1R#sC6@hWi!m$s`4h2?;c& z{3{J905rG&&`1!Zno*r{(*l-)M&AS)eLCmn22XHYN@Ja)v5o+=r&mY-2HO)Dy!x*U z#5WkQZ!ky@q?%v4D8u^&@+G8xGBxSv zyl8gupYs}U)}V9jrd;l{++;JSa{aT+s=m3EO!50mRZK9zZ+++IhX^JbpJ6K_-U1j_ssT-HuD@j%nZS!+0Cym`{^73;Vr&UnTJc0j3 z)qG?@$K}BkDjRb*K0;V=R8cLEyf##Zol6dv@B^HCIa1 z)^+<%`<*Q&EQ;;ThBZZlbHm(G1;i6PVbDa6ccVl4+$!fps?u%bH_z}^>!WFalKdVvqWpM!2(|ZJWF&T084WL@BrMO0DS;1 zuZu4Jpp&#qe9$TPRnzvtoU3Bip}D64N>^X8dS+k!zD|LqgrWy&Wcn;z=T-YHC(1*-?k;%McAm3djdz|0#^s)y^zy6b^>MkK(=Je_+AmOB%=?`A7()b4n{! zM)q3kU&vnTU4NfFDb0NZYg%r>>86J-rsdupWKjr6Q*RdNHy+U$N6pAR8H^?fJ!<4G z+oNt|K%UNHBh8{V(%A1HIU2PXUss5bRLVm7S3V_YVasfo6f-{&jcwpaTu4GOLwI%LG)@k{J;^uXzG4kFXpwYe%PVgBBDUW<7je(${2pv$|c2;=!e)gs=JZAOU8*t|~xR zl&Hh6`CLnSnEI}H%}#yS5D+fCW|9>1-?Z24{5M+xn*Wq+bp8{^nE%)@=D!4i`>(*4fBiMPa9{eGeV%<=75(9+1%bl{;tn4u@KBt-I|Z|MLW#d}Rnm_ZH^K`*N=f zJ|f8OuE`t7DP$0*^P!}9aYmZic7JZ2;H#+Fkkr##xKsYy*XB-)1*gacgYECqD)nMm znb##Vu61K+CIFUZ)d&C~0kAZyPe9~sqVDT<=I|amlA`y3DIgHUi(E5{K>`<33H`qI;va&K6U=Q5xi1pvo%0#Kj; zINEPVfN)GW+Q0k_Tbt@eukezx_X3{R5&)iJfZtXlxi1ChG zy)sx$TBy*K61sknhULmt=T>yDt<;#xfEIeYN?iRE%Z z)t40%eKV{HXMl5;@+1c}DIh{^PSZ|T1{aYQs9o@;t;gmJC^rF6j~xj>LKRSkIRr4n zScX}1b6@+Koao|CJgIsgU^$Bb)S@qS0Ri43yu@%1q2MZJ5w7(X)=M_G-%zER>G93z zn!&TA57tkZ80TuF-@q~9R`#Veqsj}Z_deK;g7y0|1ys@?}km)=7)s8#DrtxABm zK;70M0DQ$F!gs^V&2I?Wk``FD+GFdsI|E8n0CX;r;{y2}dkJ?8$s?oCwR>Vn z-%|3hjTl8{FUOM+MsxviO_b!`z+R3gKuSqCO;c-Jj+anzIi9p#tVrg5lA{F)H(ZV< zxzoqv!AX)Mm7*U>CC=27-wLY;sVx4MO=V>UG?fA%zVitHO#v{ZUrInEnT_AFBc1oq zixj;FP#j1AD2m0t4f2CfB=-iw(Y;e~BcULw0l6U^Lmf`lmy#BUE^l!6rh2Sy_N>C_3zA|HA&C?9nr|o6 zX4>1fHXAUYBo#O+KPpIalqYg<>_$L@W9PSRWvZe!*Wsk-J%Hmx0>IH(nC~BmZy{+I z==XP$veJvCne@l{+Usb#`dHC7#o#!79Vwz3A94&gGoTCwu>FYu1o+U~I8Oh79BMNL&ODOhK{m&nACnr55InYz}x78sBvzAK0sruLd&FvB#ASw1J=Kq*` zL%_P&ivNbx@I?5f3h+cI&mlNfFTPJC{7js*&ps0;5g^aR1A=NKz~gY`eReCNx&rhV z%pC33uK2`bF#E(~aDu>{sSG-B`k zTT7AxK!XbajRZled7@}ulYph5aV&wxhGKbBf~Hz5_koMwv3=lT0zw*BlN2s8-PXi6#X+NP93Kv)M2NeUYE-i4KF zlgU%H^UgBgrsOqGP{VopsMNf{!Caz?1C!fGPbavVg9b50?gkM5{}X@A{FduU+|u7a2F7Oqx3c;KwE3|o}It1P=MOl zFB*nhquBXde4>r9PqeWFfjdfPDcab1@7d;5K}yu4^s?{SqjV-LitX)>P*V1|2Cxg9 z@t)mR&d`{#4Sb9Kg?;5)#B22QeC=Ml4SdJPSGv=4X`{U(>!fnuwnnRKV_y7qRcW)K zf47TGg$wd#1*<7tXsatpkYF{iN6WRrCc@ERpL)+e676I_9vI{&@wR_1Cw%XcT$j=! z-*{XeKk)X|aRT)jx4f>Z_}E+;A&$+DNZrUgr{3u)vcvjZqCl@GvtRP$COPdD-k=)E zy+L?*UYAgG8F7a$^Td1h@SL&|udK)4vn%ms@5TGemWFxfC3W6!jx@~clJ>a9$o*vn z1&tq2t+~F_O+jxeTRKg*wB?C*JxBwKO zQ#806^e;5H8-!2vL*W=7(Lbe3dxAW(eb?$VKGtuX*Cx^cx3BGl2Ka$_>;xWH(byIc z2d~k^6kO7DSPDV$DA(+_8NYphJmV9Z<<$(H6gP8=we8iZYgFl5gO+1JpXdd^ z6MYQ=&^Hv&jhS=;^pXB=duROvb`wJk(QSU;Zzrz|a-f4ntf$E@)=xfEOY;1A12bX= z?9?@uDQalK_+CQ5B#QN~Gb*`xytr>c>p^#{oN2{y`4HrCB9b*Ndm+58CN6 zRRNkVcd2<~x)jHlF4-}r%LIWtd1oo6%U=)JCD~6>RbBI*47zeCx-9N=&_>>g0Eyh4 zybmHNCi(#f?V|F+gZ7zs$iFg>0>FR^00S1_VEA zO+H*EQTO4liDi=1G>+dd)G#pc*4KhD@Ya9-G|MC$zthH7+@tIh!DFL+IDT)WkMMAK zS=`}eg&g|h_db2|u0PH3`=&De^5o>bH{}8+?|CG^aNGNRd-C2r1Tdzr-kNvCvbA|7 z%~=EUh6V*8YGewy(CE*9r;tsY%$WD>;d`b0yi0@WQL`bbr?)7+bWP=Io4(7>8xsqb zkO`J}3+1DNdiH)F13H5UfEi>10iYxR&M z0LFG->MsO%3#{qN56^2E6#pP>gF5n;S}5vzL-h=EUCFxD&EDzBjgscRZ%^WDkTNJ& z`@mAJ&w&0cIP9NAgQWTN1Ye><10N)7&fUj8KcUDO54Z?%? zMTBCa(}48UMkwMS{!vl@#Rnb5=NQmh6#x;wN&pHJ00;5!6CfND4&vW)M7^6INZY#s z(K9{_YY0TW#hCN(JLRz4k{-LeWb_^(80YJAW0Vq`f{4(BP z0wPs9z*$Zr1^hJphxTOSW|HG%!y7Cnz!~6VV-3lrq=b`AvBt@!#D(vJld_K&dEHF_ z^6D8LB*0r>%iuTxNU2yvQi`+9zeo!y{mrGc^haSuf~NpTX;lJHpaAG4^$3Whw9ZGi zmv|2yNYQ%$$vy;tq_-GEfVaSrU)d+pY6k^`f~iL2x=DDrc{^!=>CGS6#$y=J#v=fj zK0p9URY2F!n+S*;i#_F-iXwiugY>)u5dD+@5ETQQr;%I@VmF&v?fS`c^Q zG{q=F6UUnsKc;%qM}@KfcnchI-a-IKibaIvx`lcDf>or2y1d(wT+e`#6af8-Yo#2aASz~_sB99Zn$64dh6ERq7KonziP_gwewC2r z%2VVBvjYJrQ~|BbYyu)g`+Q<6(|fp{6uk!!ok;+QdW-o4cnehKN&>)9EIh~XRP`Cs zg5Qmw(5dRngdziidLQzyJ5@dX0?6(xbbg;sRcGq@0;j5G34zoeLOs`|qx?o{&RUQ3vHY*A z0xbV!$%%8;j-;YbpRsmk>^1$;f_5aA2cQ8#UlQQiC+CoT?(DAsJ$Eu`yA{~(kbUN1 zpLpg;5V&Jjmg1SG%^~~f*6NTwW?jOeXv_<3%nM15m>(elVt(+Dec~K@$Ubqd``6eP zy4cw_VowmbQ&yHD_IZ)m-6`u~j!OxAYzcf!ay)h7)#d+@6fAy7VDa<6viR7s-~zxR zLEuhVSqc^(ge-6%R`1iWA;vm%>n=Y>weRU()q*-CM-8+k0b+0cX|x8~slq?Do;sh} z*2BILdxF57hp`l~*Zwr#dcr5>%MRHm=DN~|^||)^L-rtvx{!ZGb8r9a&oVE))4QY@ z_-x+bGEohjAti6hyEeF&m}0~4E)t}VkR3ni_1(<;2d7mqZCaPTK6r+4oy#|VY7dgu z%fEV%v?ozvw*Y#O^br9VQw6}P@GAl^BnyDyR9uF`DFqgP0)6aLJDe_+Wa&|o43~er zkXI`y`LL<+VqS-|$J8?qn}&*-^NnmUmvo-JLpe#u-B-J4ShNRjmz>p*{ z;OM9osbE8_`C;3-niGJdqh2IH>*{{kj!AtKpjMTv|L+E3J0^)w?8C56w5kMwJ33-1 zT2<4-wgJ_a614%HbJ!joF=0`3M@N(`PC0fkt~qS?M6S^ov4yc*|H7Wga`75HIy(M| zJvyq{c6wD)b5xI#X4}rZ(Fv_`U!Q3WjZ6zyo8VPB`#k(jvrEj+ujbuu>fh22A107@ zhRZyzrP#?tntGziw)zhQyF(58w&l*lcC~qs0bQU7fCb8N0_o01Jm@qylVnOpfGQ(X2lX#x>fk?QN=h^3rneqs z+FX-SMF;zH%+zZ#%9=L!AlU5&)M1c$f08 zdk~ne;F7QcK`@;EkiE`saDw(*Dvq;YRosRg%1B+1wmH zaOqRQdlU{Pv%Niv*Tsms>|+^F@v7xM(!qhxS0upH_PGks2_?wzz^CYEVdZ0fJL5Au zznwvVte)KMv??UUB$x7;o#d)1K$F}XT3lq36UUh3*fA!#1c5v7VJRlLKabj_({ECJ z5BF+d+9Wle67=MF^vtBI3%@G?SiRzX%V8u%_=7*QE5HVy*){m^f2AP>fCd);8VLgV z&Sjgc&ka}#8l69j(%5iy`ljF>j!S8*a5PpB02(;@d6J}{@k9cRr~j3P6aX4r0B9r# z+|dt9L1S4+!=Axhv?7Q}|Iw45&yU)ZpU;lElb@d{UNpuZRp1*VPJaISDX&>lP~jN0 z#$NT>n}XhTlPet6wuF8X*a_vVV`j~-d9MZMk-Co2g*9s((`+|0do$`LCyAMj_4^v9 zaa!7`);wM&xlGB>v#dw%t(sKReE56bUqSm&j^ACb9>!M2#>STRqp{nrsuaYIne9Jk zU14Ue?alm9F3BX9A5Qo>c$NfqZ$l5OmWI-J^v@i#hgGGE_iY)x5-R8!*O1iH zTevqxzbf8$e=PWrY%n_H0vyTf(>wXNWX?^akxl8M$L(C_ z9h^go-hr+n&3~T5x(suXS8jb8Wh@|XEYr75(1lRURALre(x;0wH~Gxg3IiOB5xr848;H+Zzs7o2+ySs5~>7a z`KIR!{p=@z-x03*^Uo(p2PD5eZni%wKX}M;rYn|3}z$2S`;UZ)eE+$YDuK&PZBv zSi+Jeg9L@$otY&F2ndRZ0RaPofPx5pqNku3&r>mR=&6_kr-1Q?oC))N4V-r@lQyoFG7FWo&&D0qq)^Ta!MJ4gvUw@Xx4rB*ANQ{3Ijco;n3XZ}5DY zL1e7ibtpe`U9lQaYu&@>yKEn7DjM<95rJG*LORMyGKn-(EQcWEcIR3YUr~9fM!(!Q0A}S;tk4XB=;;gzb0Mw zJ8RdSaM(5a4%7MCZUy*)nO3EUauf3PgHxzt9>0KqlzH40glSv?#a4oJU7WVl+)My! z(=+=!0p0@B_&*3hhY<^|$yS5&t_WTsCDi1$?`(&8mjPud0BUkC0Vq!Z{O;Zl1PIO4 zkINsFI?_u)@1^wjVMBQ@=ruJ608ekxlmKsmi-(Q`fTvh6&z%pBE^4NX%o`gFCrywY z{JkZc&w!E@VBaR0F;{$B`eRap?+=Ad^4rqi5Q<6=)VT<+X-<6xu(yM&KWPF8XguY_*6Y$@4q~sELAvTV@OHhlPpPGflr#iWp7yuJ|{vx zVFom|-`*SzlRlvdtijT=H^{4W)FtH_X7SH;FEESlTw2y1%*dH}l}oy(OAeSlm*fq~ zx?T(7SztDmjI8K>5?}&YwIjQYetywa!Go9Pl?lEjCCmbmgJEC8EO0_KFbhb8NRnof z3c6#(gLW3ENC1+gXOjROu<1cN3$#>#I^Gvrh@1WFEFeD7@z^IiUYfuqNm+`HSMH$g zV6dRA`)!gmepTMB zJjZVN^QyeTkzhI12>R#^BoLKbOnh924Z+3AMgRtYwc%aJ z-XctaRwfj~L(DKd)*rMfP^yk(L)>=Ij*P_zZFWzBy>dxjt7wNq<{wM);#s$8EIbsh zqu}u2*&bA^-W+FLn{LvLG?3jRA8COM${eH0=m}%>FZ6`5htLx!4~p3g14l};dC*lm z+ZHq1mgU{RJ;NMXo_CYkdt;snW>XaC9WzKEYCmO?AQ{%xhiv^!Ih3rQnJe>}M{ho4 zZd;jmUe?v>gzIM-c}4c~ZzMqdOiedgOB$#j@{tzEpv*^A8TIp+{)PH^>~3K3S_z1m))SXZf}N~UVqOkVRnDj_UmA8sDY;lg>u8QO03AjKmPV`~MEv^`tF1 zz_4z0*bb*&1YkG`fc0b;0XkqJt<0|T3x-6+BhsB05Dt$MoySWFfJXsv>bRBwc$}E@ z7%osLRqLkzk6bs~7Iw3}cjPsRZaQpA{XK6~)<;@x+|6F1dJOZM|D^JAg7pdbd8gcRmBKOq||OS=!-Wob77vN>|O%^ygL zwdv4dyEgr#0If}%^xr9KlQ_oO#E!8xr3qYalciXjK0Iu9sP9QzC3Bn2k4Q1Db0Pf3 zM{M|w3BcYCxy_y=)$k)Zroy;_T4wfdwdzGn9I^Y=Tva+F6)6N%xDZfD6S({)OO;Bb zfh{$@t8}BNr-K~lJdRIy-4{DL7ZU(F$Z;+wDd;Rc1)Y_DNk<9+9WDfP(gZHg$x_g{ zD5N7_Hjt5)ZR)P8TOqnr29M-A<%ifHTXkf1g(Ckx?DCyEDRyj`-d2I{p!BBOK2nsf ze~vl4BU&sXPgF|7t(iTfrkTB=SVr{iBiOM-{%yC?FgJgeIlD}LU>>YnFgX}XkSqx9 zB{woiQW)}s%^P06C9h#HA=PYB)l*xzykU=j<=q_#=8z4h*_l7s{n$bVbP*8%`>~Y- zfRF%4t=&aHO4i`^AMB#xJ!~aK?*V(S*9pMX?kzqbz+1?ipJ~=TpVuV#f>7+eG$MWc zY}yYteRzx%K=L<7GULavwQxBpK;lNp{*fHzi5wi86Oh8O@sF0HC@#KGZXQX`I{?K| z1c0I#pjzVuc#AN9IEzqF)PNjCBoA*O1yH>9M{UQ{K%(c4iTr4byNC2qoap1Nwx_1C%_woxx?QH1x+#YG;yVVV0+$$ zLB*e_)$}3XvOn2ATbBXtvjQN@Rs?9Nk+NpvwbFfNKN{&7^de9hr~CwG&QG>oy{GY{ zjQ9mW!%igtjJ?G?0=xzGE7uVKvSQ)MO4d8mRC+gWeDHVDLc`wX$o_)?B`W~PZY2O@ zZ?j}qyf&}>{=&@q_Ha;@0H zpKZlnLjcMX02%082}r5bRnGDOQcz2Ixk8GP6Mjz7I>FNfqGG+(D+HiC0Z_5;5^!?G ziWVx?hrOS)eb}hjqXeL0#Uk>K+_C=>wwpIVy=D@ST`WE$A|<&=2-W)F7kO6&tyxJ& z=h?s5(b=5=tycliVFwd{^3MJRnV@`<`z!r@TVr)2zt|rOB{=uKF=IrGj=GTKsL%6V zIV%Zp2B^;4NuE-jt}xW55B4cicEQ?i`Z58iO|if$jU@L5sLjs^Kra=8l!{f(MVhe*b6mSz?MLNk(K zHoqiOQgf1{JTU;x90F2kb~f417Yy|FV@b{1gW)6sl%Y4cnB?97FDNb|00boxPcZzR z?ro%nc3kTS-p_y%Tx$tFMRJt4_BTucuai85-^k^>aO;q=3)fBpEeSwo@| zL{<1gq#13nkw08ZF(H3=*Y7TWxRDThw$c3I-+xcfAO1rOkUvBexTTO#Z2oZPw#KmoeQV76w?knxoxzuSX9yTrji zP2iG-EX9?~f#2cqSqJQkJ^~K6M&e>I(S30%^Ur3k+3Q4ZcE4Oenp%3zseu#5m)z#vz6H%UR`t~45({*s0i02*8X zXru{Tu8^gmu_TSgo|^d^gWVjL()hs9_<(@$9_b)SLF4;08i)Uqh7al}5ckY=5dp0Qyr`5`aOcKT`Wsjw+mPETBJ$Z!lor zV2~!LYGRG^TL&x!gW7+j_9xRI|EgdP$E6HrItDWd2peJvNkQYy_#^3@# zBTe9FuoN_&4rzoL^sj%n+074sx7p42WP;ZWI!(`#5{dj=bc!kSdc3|VH9WtJd8|c# zr!);oo_8~?Tjs}u*2lsQiqzBDB$#t<>(1tI_x!Hr%2xTSg8l?yDeZmC=FNM^|21!3 zkghOZ0Db1Y$A0YjuuBvf*7hq%8Ed-$vLFwM;D2sirf8D4dfkuNb-D2|$HH}|@modffW zY908`({3bHEQec3faUOM6<|4(aFITLhg7f}zIDt_1#c06^!XPgK=0do%r1vtDnL`f z?fP%G_}fIT_(ZQ`pXhaI0+&8#DSF-O$7~0CT1wPMG@dwS)8|ZB6kYn9>XBOq*T%mc zvlr37X^glxZgyP$!bNnm`n-#cXk^5Qk^ z&@G4ApLBg8Cx2nkN1gi|o&G*?PZD^8gTZ)`q6?2bZqF7|8PFZ^STpj3oGs>&99vT{ zz;SUY0eW1lsCyI6t;=>06Tx-IaYyDI-c5GiA)X~BIX1B_fagi>^~1#ae+b1O((v>| zHR`xctWz~4n`q>5JAk?z#{eoF4xoztOk(FXjwfs_*FJ$-ZWh*ZS)HaXm^?Q&J8^Mh<|XboItNHWQr)A^wV$W`-?7^& zninRHtdP}FBj8%EMBGIK@Ve>RLrEJIPUdOB4$8bhl`&eU>R+hvsb{Eg zDa};)Hoinxnt>-TGF{EzhUc#j7E=gVWEPNM-H|7`hT`nA2ZNdRQx0|7q9C)dYmwwTDQG1@rzt z?SlER0<>V}>AzDJOmU0_lO1EhOcS`AK1;D+-t?#4GcT96(ht;r&Y|c=^HUf3rvzZT zjCB65Bt_&u{b_goFGv#)AJa1HcU3qe11SIuxBxI<0X|ThBG3=i?g@hrKTzB1tP;r? z5Ov@DEHkoFyk^jxfN;a#hooT8>nxL9Io>_$7oH9_?V4f(qb_iza&Ln665!NW$%O}K3y{Jl?=aVq=ea6vPn&|>eBp%L8Vl)NtxuBOw8&_FQ~a?^t^mY;5Q=^Oty_8X7!h` z4nZddWDSW5@Zxm>^dkT)1lYJfHYylL0OtqHo6TaiO?i{uBH~=kAx-Zhu}*w1BmgtK zFLWgV-eS%tu}t&uRryVV+X=<|uOYRM4UX1}m1+aW9Vs_1qcg$e9k`y^e z?j!)^2>_Cx6Tl>+pNc}K!U0JS$4Jq80LP4I*tX#4%dAF#w-An141OcFF`?k75jl?g z4vW^|cAXanJxL2hyG3nt4rM@@3b6P}sR5FsP&HT{8yn0dK!~O#@~1^DThT^+-9Xyj z4cM+F0BpU*Jp_1*)$=B0nr+idH3&8{I$-P!v!T80Iixug+Y>hgZxITXuQ`_g$AGdF z0P%fA07?@8?fDx4Ded`_W9U6pED|=G_W*`<2>?TH(Taei#ajuN(aIqdyP(&S9MPOe zXpJEy5FJ^>Hs?eJgsA)`z{cLOj=>y~qf9Z_JS09UxRwB)38}XtUN=$%4e9OwPHNsB zEdN1({@8#mZYxQX>PitWs=iJrx~v3~(q-|D;k~2F(}<-?%L@fgWbs2F57 zPK*!A77d#yr7bgx+Fnqf6ksX9=8q?K2-*;UWT?03K|s>t#wi_xAp}TSX%8o;-bk&@BX@zY2h9X2pj5w!y1}q69&G3FwzKM;F9`Pe}{TKQ3zf<$eZq01AKs zc$5H8Qj6s>ZQ&W3(#29*F69}TNJ+DAYRsmWy|>1s@4cZ$+Yd~`sr4Zqn~<%*9q_j+D$(o`N`c>tbI3)N`Q#`5Lx)hQMJbjK-GGSpm^AL zNek_*)d@h=iiNM*>>(3p1Z_zH-Kdq^PUz;N7X#Xj1VD7d2tZi^V1A1ekW!_2lJwJc z*?YKx6uk%VTS@@C{~{1=B|bA2V$QiEfC%6 zh;C;Jwd;??{m!8at( z+X^G8?aKmI!!`bKQo}Lus0tigv$*f{sb=Ai9WDr}l@zg0SnDaja!Gqeu1tWOkz+wi z65x2;yrdqFbIgcWOSH*qttg$1Qy3p<9j~O0aSCR~I0dH(T!NdWxSyy{((I}yC)2Ve zO}$DJTbakkj$Ic_=AbnEgbP1G0K&h51PK2!gx@{dyQEoME#5Ngs=s6)zQKTfgF%|W zWw}`j1_fyhHmq&=aIl%?6vGL2Z!Hd_%Ww(eA6M$J&0iBPZAwcKj$a=GQQ*21&YW<(P zXQhaecMc0m8O*6uqD^H&Hy%!EC#s?3AEv26Zj%gBck* zmt|#;9BIi0B)}l5n?X}qBSonL3QKp@Dw8*+GVzNZ$d1ti(*!Oz$x`&d5*g@i@*u0U zMz+zHaiTxUFpwS>FndvU`AMozZmaB4iH1cwXOu8Ua?3Tylt0{^*fjkMmu%CdsMJfg zr%RZ~)l)ApVS=*!Zb?w){UHg;vfoI8lDf1(zEOIrOHh{kRuYugQthE@FC>9CI2f!a zDLU=C47+E1fB`)&t~1&9$#L;%l4Elr1~~e^L4Y0?E9&CH2}<8CuZV$cA-%)T$<8~( z{^l?NI&8eb36gsQoVXUPs@5tf9Z046rBcRJRO8c&om-?kG@3jzljyymz323hm8T&~sx1%elfSCIhK8c#P_NgAkD^1%_KTJKk7RO`;-uI8IRBrW+O#e#}`js%jHoNZ^iJHhWv4P@m^V4!KxKkP~xvDiM zABd)LX}hX*CIG9N0=la8CjhHjWAoy_ty?+5tqfv>!{Y?!aV7!qC;%=Mt|R~+C%|K5 zr^f5nNvg|ayY6s3@n6&v8;3nH(4Lr@l)OVqvfVJUw|`}GM~Q+uSv$0Pxf?!1^&KWC z@1-Dh*^~t3RBg}-_FKw#6O31luXxVxC-hb0Eec|!O32vuFZv_<_TU4uL27JQX}j&; zMS$$r+*4%VkyIB<`EZ^ztL&YgtXS9X|M#l~Et*Q#<|qB+EG1ykELl;WpkUGZy|0S)u-7wsip^7k`4v8HZ2+n2H1&Ob}r?SB_l zI3oe^tpvPpjotsPNy+5jnvbkm#vWE|pmJEzuO`pp7&O}HHril10odx}jpA!bie1X0 zw2-g=%aEl2)HxS`I!_b0%p*&&QMtg>?VlixDo-A!P7E4SB z-k{L2V|!Hvt{ZNV9b3;xu$y$GSG)Yg^ zmUdes`NPe>(X#Rv=HF=9Q*4c1%)7Xc{l#*+14#NU8Zqiu&y2YvCN;?Htw#_{>*bPe z%bn!bXCbTBDoD>l>bHNk{JU1c>`2g5J-EJ%EMyxJVDfER)@C6a5+GT~*=9rCf>}X7 zlFAxjUnZ_fx=9v&%eq|TqxA|J2Ir>QP0BpAiRL1+w#=cEeLH0lxt^rpFS}trMylZmU##f%?h))baus#7P z1Z$VG1f7E%((?{La1a3?=nT#yIS9)49F!mukW&Z*K@Ga0p2S7)?RMLW9ACIwhmGDnWb+#Awe z2t>|9tRkBycFZ6-*ol0z*6A1mPOekc@^$KhzlaRrN!X%d7Z8Aobq32xo;1*ky^R1= ztawVPSma+HCoK%hN0e^IU>nPIP(I@7=N$r2o&aI`buXbh)uw#H;J+2^G~`_!C1vkQ zxtbe`#`Pgv3{0<_St+$uH6Waj8WI4W0(hRt>~tpuxa?AiGCP9_#b_1On zE)wV|PZK*+b!%4&o&q+&wdj*%fKB#h6=0LySMIixDV`mqhqK;x`5vP_2DzO8+|B=w z1UPZ*t3>yrUnxo_q!jMB7Zt}iZm?q)fCk$q{!p32;1ZWpb;k$2WwlfIOo6vikCzrs|5<+hYel5lt=HeW z_|~;W-P4>4Zf$BG{0&u;0VE( zR^=nF)#BOfJ}Oc(`fX*pV=7f8>_V7+idC`meN_T5Ybl`fdLsfb-wA*TOZ;NOqR^5j zs&6XWi^*M5b~0^(xyq+a_-(HKRZ5urc?H>7-zW{96y76VVcKLkg@l>Gr%iIDMk)kD z2-bBTw2A>36~OpT**x&K<8U-jcmm|5XVGSP>au=Jurp^@{v0 zvxIqJX~BT3V_Ks;puVOm-q<|*iC`l|Cu3r8!cajF~^~ndvgM0mdsWL8rw(4K# zNn111(C-s1;moRb6pBNvJ>9C(nzoj_U|LvR)vjsx5P%`6fUaqq3Ba%u z!23nwi|>@wNLTgGy|57#7^X(bi>YruT^c1dvM?w^LcFZihy+*_>#G0* zvTIe!iu58qtcp3+?5dbUfb7d$R%8rGv0WZjjke3<6s5IMS=x+)v`FD!H6FCzfkO1!akH%SrxT?oH>bb2+L64|5*XJjA+ zfB_c(1}wlETPXq!eo0F3E<>`LLsAAGI0hdO00zjA93&|ie4obP@Lw{J0>FR^0E0Av z%aE`XZSZbL1AF6k)$HE5el@!{u2aosMA}uCx^(jlx?md>xGv~2B7I3mITE`IlH_goTCtMmIeM+J|OQkWkh(GtY!F0N_x?M3oXFyjB0kC2mCIFiz0kCn4){y#i z{YE!#$sEZEQP7Q=_mD-3-oxVmUC=Ru9bvJ`QJk zdzbpj)yg$3S?{6kDLjB|F9JZ;TMQ#0S!VK0tvo_O_N$Z0KJs?K%-~W|1lc(?ZOdNE zfRYseWLFb_g4H7V&d5E4D(#d@%ex$F@9H^H_O8HsI{{$rEp`*&Ek<56ty}Ol0qDYF z;kz)NLV5qag8bmDtgxZL_LyT^mH}le0N7>`fCAMb$+i`tC$VjwW!u=h8c53C71)j? z0BpU*Bm%qz*j`Kk*ouW`E3Z~&n(ubYk#jj|f$a@hwry`?K-mfaw)Yc&0@WhPb}OML zv3<(1^{(C{W$y}X_YnZL-r^7e-U8dt;{>2H-(YfA#O?2_%E-kF9i{e4^JdmcYu<{r zEa8R>2;qn%3vP*b4BC<$MT$ZAK1W|dIlmFuqq0+3Cy24=w;Ob1C_ z&1zgjx>BjBnIb7E_x3p6vhpF{LHa&q)aye8XuW!ae~~qByQ>MXN9Z%=v@l!Yf(QO2Ps55wn8PJ?vHR96(T)+Dbn+ojn9f_0>Y_PoV$ z-Nb-$6#!fxCjg}i0IshPkivBvxZz#n?egZ(&TO1|8TgXh*At+fdY%TB< z3(qrrEwLVHfoH9HwoO|zpgaWt&+Y`EKmo#KY&fAzHagguPb3AH3xL-W=MaDty|-9M zK+-~2vy}v#yqXP`-}SSrSu*td$-sw>+I@-u)UGG{G66{oUC(wAptUROjTDFV47uy? z2#3e7q+WHh##@QM5vsK=-#_x!$ON6{Ac)lUjdFZQeJOF99`TU6u2x_E(trBYwf=ol z>RL{rsW)INRN#(+NL|-bKVG0OB{r#VQ`gN1NT#kMjm*gRC2`ZHbbiffJNXp2zLrgUY~%cN=EOvtUC=s`qi`rk}=7 z3Ec&3g(P-@3~(<}paR^BJX)QS*jJGruIA>~w^wuX36PtiSg@J|NLbxuc_U%9MnSsL zO5u-$mH5Sl5c|c2P@2Hyuvw}XLXk_gw9e~_Ml+%p*QYlX-{i3LYU@=;;8g-Z;8PNS zfczq+Hr(L{E0l@eSKr>v?fpw4;y=-EQq2tV1|D3V2wc{hrQq?>$vlv{uF@dvbZCeQ z4QxYHAOKf%$Xz!lDX!?6$nCFwRLK)*p$cbg5h(yI!Ucdyn!shRS&A#VvJLDtsWivx z=@TV=(L8o_kl?tqIr1Hid;&n@va@63gLxzcjZ4yK%>PRoQUGXh0ieMG1Ux%DvR+sgvg> z=v~Eb4bA5rVjZ(S(dc+0dxOFabMAd9Bur#=JH-|Rxg^E(bv_9&eT`KCrms(gT=Lb# zS)_+iGrgf5HPZ<|zWrJfprqI)lqDlcr924?fHnT?_i-A(h~G)7zrzo~!Wruj`NCH1Dc zMtz%Yzwy8Q>e&wbkG47G%#O&0dN#98o!wN}-vj+J$NbtWR@r_$b!pGo;@}G{!7YjC z&7YAV#p=o6C_(7WzcjR)s*;UDC)nc%fK62<0oZ2I%uK!CTvl_p+NoIxmtl7^^fgdc>1zNAPMl5DXf4Q*z4 zcf)Wj6_K%IvIoW*1S`emieeZ~_RYl02gaIZ9nsq3ar9rRPQ018jzWS zK!%unaB#>F|5KIGjULgz(2X8xl%63*FTwcR(@-+<|+Z$Rj)L|28W9qe& z^Y^y5vS$T1k`qiAOB$Oamrm=LL2?XLkz-xEj{pot0odz^ULEHLFOU+vJ}cJxjlH)C zfLj4@`MHMxxD^0nyiH^Kh#FOJvWZ(aw*9hN>aCSn!u&vS&CJ&RTI0%JiCca#b3km z==Snz7yi`*V0(#Fydf#VzZKzkkH(tV?fz|l$v_GK11Mj?Y^JfDaP$Uyu}h_NMXq@-O*F0pP<0 zfKQshCFWU*7I{5v5hUiDHnIDfs!i;^rg9UTm~YxN?91qoja1+|q)W_qAsy-OE-~M+ zsrA^XY0@JS^W5jdof3^C9+P-5G1kOwmE;e%#uaLjn12hUn3J|jVN#xM1(JT{~Mq`I4BtY5I(OU)4_9`Yi9!jILYe&yBqs4VF?}ASu6! z1ekM|Hnmy#>j=QsYeS>>AhUCRY-VsTLH2^8eTA-7$skE(Q&X3VKXk(_{eve`?IvZO z+QjDKU%4XoRy25%OfbE^+SINgA2Fa;X96TT%gZJt2Op7RllLnDDRI-db0DgcNsApq?mfZX?v z5B^2~H)!-$XZbKGz)}EQ^*%!YjzQky4FZxDde!?O0a8|K;!+FruVW>{K1>!qY*g(D z0#LP{Xz8=VmP=aT5`h5JtXTM(Me?T|DWFnYpKU8OmjSI*0Z^&K2|!r_V3Z^XNU79( zQP8Qtd$^Jmy$A4HMgaJE3qycfL|U7~AQ>j*9?fbT+)E%hYCt?pkO6w0v_SM3NAy1o zC{Y1G^kV`LrU2MC?OB;1k=85%fM{g`K-62*CjdmBu|zjKT&8i*hCmP% zD^D~`|C~cwAlk2mZP9TIC{Y1GbTR=TDgcOHMgS9yTw>}?O4yH@dMB$%*E<2%y9fYR zZ}Cq8yam!f&k_KhV&QpW-rMlcGNXg{Neeu8I-Z|1pgaWt&%*?uKmour+A?gX6rLwS zp593o>3S!4q>SXC=?yv);0?kraP}t@T*b_Dl>wS*4n7vk4`QSRt`l0?Hl4|Uauonv zuOtAa3V>0%l7N&^x=a-CT$%H5KPh?-Xwat!08?M)%LI4}U9i_Z9qStGA`nD1AU8^L zubq-&o6+ThjO5z`Pd$VD2r35#TLwD$OGRti>XQb))BEV}eUb3xwyivdw!f14>u`5ME6H z3RH_E;d=-@iSS(^VejoZ(pPVhIcC=ta&xeq2j8y=0AI22d@*$8H_S_# zoR{T}{jAnun}PH(N4hKnN?HJr&LRM%szs7?D?-yrN1L~{o!h$_NXlR=Kh~v;$C4b3 zy}={`eA!@pF#%vK7AcI+e=}AXEGI3Hy`i;j;oBHcvI2nY{RE&uwMdfPO6W;spK@fq ztM^FRyF!27M*!G*i$er>3$Q&-0N9E}3foI}#O4K=ZPJ>yVjIi0Ap^=*0I+RKfEFkZ zW#z8WeXxFxpf7+?tf;R=A=+7tq?Tk{rk2}oMtF*5?BV$*hO>eqiS*oS@x zS-_P5sNIJMK<#>qe-Yrw?prNn>)u}s9~{6so|~viCTIncREabm?6+A$=SK9RCg^ z2Y(Gp4+11d(L%mQFp{L;E!rpZ?yS6Lf7ctlOPjYpjkOJ?lO@Pc$+o?1J_AZ#0FYlo z0GdoKl4I*{gr3Cz){wvV_BiQ#Z|DHq2tWmRi+2d{78qXtB>MP&&XPsAUO#75-%damnf~7 zX)=C^H3=3F3W^#}cpS?#rGJf`AFLxSwB{|2=OzY}rvPZp#|c2G0)Xc$1f=lX=6HG! zpOPYo-eQUFCpn0EgQEoaB86xbQ{z~yMNqPR*i;~@0fj`Xn7YSfbAo!L1){au+XijT zfD#n|M7tA!Qq@8SYnx$L3k5#C}U0Z9uy zsz!hmn6@ISU%w)H0{4@JCx9XI6alDcZ}Bn#Y9WuL#otQg1iMI%Di#A@#r9b>Qh>*= zd|j8g@2otfcb)cOwGQ%^{?k9KrhlLGu$o-c zrY4RStH9lX+K1KDj~C!!wGQrKH3IBiuzqKyQ3v}4{dOJPgKDaUl+9BTY)1TrBGYSi zaF3=bl#;X}k9ah#PU-mcU0a62-n)0)0 zq-UQ^ljmdg11s|hkmQIwn??fUMQ-XqX{t4fQktro{@Zi552tmoNfCC8q)3{;Kb%Iz zAt`cc2lpsc2Yxb*v=IKQF8o&sK=_}M0O9XJ`0_AU2lrH(Dx8sl_{LLdciA4%&drMj*K0u?&CN74vDa>_oEMpCe7($PJV=2)~)g)_2{0+5`lK(0U| zP2e9%BQ?+{+cDV=i>JsVX%lM1Hw6jO0*!n}BcA}!*!xD4#=$(2g2p9jH0GPCP)X@PutMk;6H8C`t@x2X_=97 zLfO$EJ|#^9&(~emFn)1Rr&HKDWqO;OLI2)3V}yJ9VR-v^6|{|GkpSIqXD6DBKTwoL&vN~D z%495#(f8Of`d*sAJ!!{M^t~;eY+t*tlkIEwNb&ll9a9%Y_oN-wB{vQ7$KP~v`D6LR zC3>rOmcNicuHN~i{IPU${jg2^gR9(6l=mvKp^mw{T|7Uaj=p7IyZD$$&`v$M*%ePk zwI+e682hoBK_o?Q?BCgL{?21SH-7?P^EZV6?41O_E_Xfwy34Jo3n4#EC%q5L;aoA$ z-MtttzFXd&AvOXl4Csh2p%E8M}SQ)9;N#?p%^V1pKf}43juwUjw&MA zB)OgKXld3tb+pXr9&Z=@L>zRFPtVF#&pc3CP*Hex?kf_=7#WszcDl(Iq=DzU$OlJ* z=emxoG9Capp?{%YoUr|ZzUq&*$A~(+v;Dftv%TW$xJ#JWUU~3R^7w;IyvT;4W-J=>XDz2mcjYF*O0N@Wt9%Je|lP8Vj9QZn$yU2HX$?GjdFfK4f$?yX}sM>kY9 zu_7Ca*%%(}8!sO1)WuFlm9n!dn=kvu+h;Y_^0}fbP(XNqt``YV(dE-kx|0SfntX7) zsOWL3jEX)_|3XEd*X5)K=yY3yiZ0*9R`fYPj;(1h3il0&k3H35a`nLY6TuvcMaN>9 znV~?|rCp;Jv^KNv9^c(yA}wEZLn*W8tG3n6h(Yo9gQcOaeVXpNE_Q^jV?al!02ra0 z2*CId0JjQH6QH*WryZe>OOwb5ja+B;l_|8}XImsqnq0#^CP$bxKI~%Gux|*!m{ma6 zuwMw!Q5pF#-E|dn(G|lM1?9R*CA)bGu7j?YZY>6st^lBWHUXfk7Rjrl?u6=TRNvn` zE$=Q}?abs|k0WF68t25x1c0ZvxP$<2fqSII1YlYci;eG08-i*u_<~kSuW&tWp&LrPTc z-?f`PkQD1?k5xTY;dBJ_x$;OiyA@&oAix4V{FfrohyUtz zCU}QJMF-rj0^b2;8(FK=+Oyo3KeyC-qFwz+@EMs%*LF|;{kNMfV0*V@0eJe4yL`BN zqw$hlGo-`o?oEC&baAc1Mw!L57%UwnbL1~99VK&4v3Cof{i92kq*u9_u+RR<2}VE2 zbDyp?a9btmw#rFv{j-1X&WxY(Ckif`70-_Zt<;0-*Le1?BMC4`waT&2{xv5+exhKO z=|3kvI~Yt-d)1?l{gG~x#h@Jb*x!F1y`^DreyZK1%u}1#pD4(>BtAM4Ttp_A{V&Y1 zv;P7HWcH6-XkM&e*fCg6a!?Ti>_-1ifbK?d0eRbmx)H&3X>;~lNX^@0hJTd+o#DN~ zdnES;xLR&}dAv!mk5J6=8jfy0FUYaa{2e6)5d6gvEZIG5B)#^OUl{|zOp>EKF#y4) z1SAPQGQLivq1n)>aG5F%KywcPSgC!H z-x824GWpq^UkL?KF-swe2mZ?UphnYNNa-GyXl(|Rr~n|^f&i2%fIjeN9_{UkhG~$l z&S+G+kpQ?Wj}w5qa&Iw<02HGZdRKlG0aB@Hcjc<(@5(hW{drz8@BwSZn&bTuFzVE^ zd;C<&y8YWm0IE|ge0Aa}zulyOF7tt_$*&pEniK#v`7;3sOaKgw5pdG!%8w4aRk{@~akWercGtV@9%I^?q zf$8^->2U^>sQ_Ra^a>jer3wJ1wFpRITD_NTQtzP?DS8iJ+K&J*6$@k*N$w5sgkORH za1;a25x)fgkB#wh!4;$hj`Moi)?CVfaufigiR36xNf0VxzWIf|l)N_vSDy$4X- zNdPE%i%$vg7OU@?RMpHLT%vBUpHL7LGfxyV`V;rd9dfbUuxUUvl52@pVnB%sfH>Stj(7Zs!SvDo6c7k z4$-9h2^|Yap^BX^lJB)9h`KsB4syybf`Rx(T`sz=7>~^{fB% zi8}rJq(q%;tWr;MO;q6abV$^_O!46d5#G+ViMkyG*xj2Z>bB?FMBQ$wbp4_P!ocBb zf&}Y+5n*2BWhI$y;`g^Ny{7KyVp-p-Gd@vnBkxGsJ^Ms_VDJM;ajcXdMVMkbJQ1%D zumNs}OY{zzU~6Ag1=!jT%As^!ebU3(vUYEKI;%|p5)_?CfOAdz-gK<&q9~opQkdgV zBaU&XVaGVsqzPQQj-@!%)a-4~X4QIAy6z$lO3!8&y6`U~0O4Op0))R9;dhS?>21%I zOa799_yz;^4F+ifm#vob9G~Nzrj2tktRn5O- zA^yRF{ewlCz@_V03KmbMu|S@yM4zy`p&J$HW4loi0?-awBmjZxeeC((w?l1JIAc!| z-(bML!5~fG@?0zhgR}Z1dlHVvReIagYti2J^cs;W)jSssDxc>n^SWfWQswyJhG$=o z$Aim>8j=H-k^n#4P=1blRHpcw@zud9f-v>3=wq{5OXdH`8^H(CwKny!H-b+SfLT=m z-4eb+02Uqru<(dq%%~Jo@_>0mAA7+(TgvuXt(urj?JqWr%^gJ_kNC2W+5C3AZPpE1 z6wg{0Q`w83o3Ji8NCHe)_^k%LlU>(leNi)Rhs<2xlMZICB7MWIgqiCs6=3F)IK$jl zHPS^#-(cjoH`dga7<+fOg{#Kzc z`d8#ElQ1&v1+2m;uO22 z{bYz8ivZZ;93=q5##@x^CpG96es6)}Ig($Qgkq1gL0fW2^bRRcb6->~$>zGfuN_m@ z_6^5WR0IAjUcY!Jak!$0d2C!xEz@ytyh+yW8W@kIB@`)=V7({?8B4>mu1`1VP8!I~ zkPi;a=4Mpc=4SLSo15vEo}0l;hoN_UUz?j*I55ANY5jV{zpS#K6kMSBq<@;f=oytZue_6>pHWNXz0HzK{w>_G>)}P{Y&HO$=$EhRFv9h#KCk z%BbPT^)J-$<7cSh>HTaChre=-Y94$`K~2n-W!g(MZ~r!4`Q-Jdt7-gQe0{K;!bAPO zP6GM)hFPJX787&63O*+oqxI8%cC;R5Ku43#a|l(kg6V=ZOxSWD9cF1y51tfl|g-|pQ$=x?)2 zEe1#l{uaLfu;GybHu|O{$L?8^OJ>DWxLrfwJqFl)XQ=^p|KCR~&KP^s0XBB_jo4X$ z#8Qet6HAQ-aM&)fG@oKb)z5Xo&m{oCBeArSq+oDk8iSkvl7SR}+UEkmAWh&BODsk0 z&#^QjALyWv1MGwm6=g(4a$>oW7p(}Jo9AVaYkuiniWq%xhYDOD+#*{!`Q_^`NJsj% zODOFfV7KHu24G7bdER=*FJE(4$Cl~vklI0&aNzK`#Ez-d0Jme3KirgDdZ7G;DY^8( zQ|y?KRciA>{{U$s+r5%*<@}7Kk{no&R2rg3E==^*lU}Qzmo!NY(=P1K4Dc zq%&-w|ER>;Tbc*?sdkexPiC(0TAcC1fW#4&<{&& zAwbBc<(i(bjN9D4q(#Je+C>K5Q}!QnOdvT3`=SpJ;0;#$bd%Zfe|EapHWiB$uE;c1 z9z^Y@nWplCEZ6!BC|3c%wG9C%Pyl>dqBjBDu+bjQax5vpQUIizCJ}&6zeu^a<&p3+;B*`aJ_$tpebuut|>6M2_JS3=SJ8rB+J}wljh#qFox1qW1uX?Faxv zZ;?wt(ju968crx^?oOeJ;eyoDR8j=jNrP<{n#X{06=38C@<|<%zu2tDn8;wegSLtn9DwQbBnMM(@E-!aK{D<1F@cyA#L5qpFzxgsX@TV-$1*Y`Y#?-A z0T5+50#LmI;HXfKfE1p!hS(WoavLPy+j_up z_6}boZSN4A-zNZ^y~XDQc#C>HFUT}A`X-tMhY1C7G4sTwbu-QEeu+^*siD+}It>;Z zYKd26K#2=rhZ_MXRR9dwP6VV3*mk0zOStzik`%oMFpUuarru&E0p0?0{ro|R2Emnt zf~iL27B?iKZY2fyT_q%wiKx2?McWJN&2jKM%{~a3sAjT$rheZ%raJ~?qFz$R`cI#U z(!Wp2M9C&B^&oh*3fv|TnW)z(KxCqJ4Yir5_Xw~%Jm_5zaCjeQ5ZY022sPiy7hIUt!j&dpFabqZsaS&q1 zI0&T)Tr!HKI0)4lX3uk3!zdYb2?wRAoQque7ZHH)my!VCUyty+M@I~^htV7Vl7aXJ z1NIFDX#$swVksERNMnFx)C(M!GI-W8c$NU1NRf!b#jRlfX!SJxVp&OMLZo5$l0?-b1NdN-1hTBU4-wyRv;fy^=e1ib{27xqz zOGdF2?ND@hvL_)KRehK}`Ia1JlTpQ_N;MfpgUTnP$~C#VoY`3=w}gH3YTL3zadTo) zqHmfmUcXv4IWZ|%Ky-0IcsU6oGvrkc93bOeB{}ooDT!6Vt%TcIak$M=t&smGuk9XA z)2i`+2;>*!-9HCueE{AT>xO!pM&ntjhT4xS->%)}22x3_t35TJ8-v&WBou< z%y2s!jm$P1rX&Wq$?Xs+*i8F~u(x4yE2;uaZW36SugW4l^vY@@Y_F_F0Pj?pF41TJ62Qgq2GBWxEeI>O~crFhL%F?CUNxhkqh zZV}wP^dI4FUgQsVM{=3|g`1blq?puP)hk17uBy$9`o+xl1|73fJ9dU?H8;^Oppjs* z=OvceFP?X}G;vL^nraRmd}S!uBD&2Y!2_YhzWA|egx%{r&4BK81i)VB6#}sD5CD6f z4++q{PDNd3I6ozQ5DoIK80g-|dpt~r-Xr!tCkVjE@D`; z6fn|MeJKZY@v$LchrynVzOXkHCmqHo_)R;@kQc zGo=k|F5u2aWcjTcc#$VJ^r0#xIybd%dj1Jy`AI2u&rQ>u(= zd|LlPH9mcYYMeFFR^y@@5_3l3Y4?rU#Q zMdNLyC#ZZZc^hu_--3`Wg?yl|Pq*U1W2A)q(i0#OXY?NL0 zJ|jRjV=lk+8%cHTi~OvOSIf+PvSM8`;?)vuvW}_-t$z>czf;yfDFN#rmw@#zP2h4& zEYt)bM2ne2Jf;>S8+(Xx1aAA%qIX0kZoE`QZTqFjlr6~ zWFQ5A0T%!UX#$sRVk!0^mxeTSYb-A}YFAh@dq_<)dqc5|=&Pgb{^TVYFPd)pkU~b6 zd`|_gOS*K^*Q6tz{T#EQR(A2oxpu?z-nmJKczuaGeYoMF0mMTQ8=f-fx($!~;bz?O zqvbEmxaCKmV#5=@z(hy>q+dB6BiAJ75#*Xi=z$6od99?|S|_>nxu#1VOvr;8Cx5)W z#zToUk)We`a9tWNF!dk-HW?j9+dNZS0yaOK_$)Y=1TytEH#@JN+buH`CgUG9x`f&M zzw@)q@&|8e6eL0oqbo)xIVKbP#qwVtNi2^9myrpk(@RF%?b`JW=z1Xlwrgt$01E-I zUAvb6zM6_`G$RY8UzOi>wmQkZOQoz0K+x}c!t^k&aWF8WA~rl z!64G}4nXfb0zl7OOd-Hqgo&lOgo2(1@pzAG;5a2D6X{F##LP1x|Qs^SLRBdcplU5#U z={9CS=?Vb4?FrcRWXCa)u{O2TpX9z-@oax@XE>e|5Uv17Elni=UC3L^BOqy^sio@( zkg`%!OHuXf-(>Pp-$@oOYEDrVJVX4z{0pBXrU%!M7CP+J z=h-P>6$9Fk0-*QYNdO8I03G%*0#Z8c!;Yi(@D?e058(KJ1c0Nr_=*5;fywT(&n2(& z6QN+L5xE|VFLl0fcz#|`=6q^1%^;OJ-!iSqfHD;TOq&saQUyR`b|b(yCT6=%=iAow z9>$QO_W-672>?@XF^2%P(68D)AW5(d&z7wlEF@5g3b^Yhd-OJfwMehMz4-x>b-r^Vm;3{9R6|U=w z)ux{R}n$3Vx6#!Iw5`aJj0M(HMq);6?-ZrcE za3Lvr51@KE0ifzFZXm#0gkRcUODH<9nE4Kj#NZ>O0KX3j$z)>i--MzH1oh@f44!5W z8>x0dt;p!)C6IkXt@cFS2qG`|U-hg1^m#$~+l;(-Zl#*4!Uy)&w0T4-a36()RN(jH zZ7T2p0oaz0&{W{J<83PNR|#BGfhZXV=7|!YrUG|#lAk$l)2pzkS@cJuY;>PAS zGk1>s)T@34AHh3x62_2>)&pApE-!e)s6~3HG*N(_bi?H^JUb z)SqDQChAC?YCe!gmCpyp$`wvclOy+6wtQh>V2B!SYuAt<_wAO*{dF?i`bzFEze3@v z;1R;@#FuAQcb+;Vl1KNauca%!lxJ@{-zNZ*ssg&p|C|6!#{ytJy)Vzcphj^e?*#76 zv$yIuN!iH^pUhqds}xp?7RfgyGYi{i-K(B?;#@^V;eE8y`C&)EOm(hKRjs2pdr3qY?kEQ5nt@F+5Tc-Dpn_K57jALWUl@QS0d=d_iI5uIgnwMJON65nKQFAml-u~74Cn?%0Bm4BB>}RSGfFa^TXiR_)Ax!qQ zClmun1Jn)qGr~ZVeN-pOw%VF+2hhg+)B!Z2X<>tmG2(GW(Xsvd47I5~)3mT@)>fs< zqiGZIN2;%Y0+G=)EbE?hlL@2|IXbXUmCyx8h7{GMs*9V=dHNSR&%A>4Odn=F47z*r zk)m4n^T1j*OYD15hWTUO_?p_OikWx%uMbSix5iaY=~;`5=FK8}R*S;b=8An`r&>W_ zr|BNhZ!{8~q;Y3~t>7gEsTKTPtHL_bM+;2Qy0CZFo$8qDbQzU|yx+e_fI3~8Zt@gq zAn!*$I2u&y4pl~_?$p0fsXNb5sY?rN-mlGq@r{$iGQ*T>TbOgIh2@sEg|`RaQa~7! zU$WqB`A(=jRN@wv)@=(*n(n;{-A@{y6_cRc=*8$fR$xbGSq5};3V_j>MF56|061Q> zB0!H9ryZTmV|H|kAx6z_(qPGS;3)E<0mA)LE0Uocl9@ml_92imM`2FZ zui7r$`#z_J3STyRn*zWhIeT6QJmZ(vhGl}cNE121&q;ta@-r1+xJra!PVhMCVU7G< z$lo|ED}&^+A9E?eit(`Wu}+qY+ja7>>z8ELRFKxmSJZ`HC-*I%Ryh*0%jECm8_Q&x zz$F7&ie>VbnB9;47_*7MK^%?liTlUx`re-a?1_;GjFA+<=OOs+@`J*O$fQ=WnMT^?{9N2CO9aRhE500fW+{0B)v;DJ;E|NKh=;vWRq zKM14=TpEz2Xn~tU7T6IVj@cdYXED2T`L7HRP5&LHNYVQasKE6;m;Q?+!oDP(+r4de zB5pk%h$lTF|HmCX+zZjL;Q@%fP?NaZ3&|gD=54M;V&-k0IK^Hl%>U6jKj~M_!^r>1 z`2+dC>3V{~gx)FXw$n*&eg5zHa|^Fe%m3j(aO3F04Z#Si3VT@~-yaNykW?O+nq?*o zUY}{2SMOiL^d4I{Fo+SZvwbERB%>}!;QcUj_PD~^f=kH)ll+{7eTHzR{J;H$@&h@O z3i|{r)3ug`S`~iPp9#Et?m5A|=~^2@EliH5i3U$;4-nmyr?e|1)E#bPUe&)633KTL zIY<=fKX{@%hl*YOVaxHEBw*5;XG|WF`MxTni9XQ3(DEOgwuuJh7v2z1iq>3Iqg`k7 zSo;Yb&8(s8<(M0nZA^(VMdTOn3Z&5vQ6yobeNWPp?I#5%2uGulK{Ed1uF+cWtXazR zNEF^2R4$bGX?d0hX^vE%WItS7x=@$RD&|nt+-^aObVd0jIVo1SdwQn1d17Jrpl`Zj zuN1|wJLIJ+o|jaNls1uyliXu5ry+v&{_>>uK1;o#y|2>0&MGvsrxbR`Ia9EX3)yg(ivb00y=4pl32M8m%Jv$MAt)~Du7@k9b91L$T&s|!W z9qlKmo&vr3B+~NcI0jx!0Cs}jVi5tTyQ*e$gGrgD{QSb4;3fjGP1I=g6j*7ZeWKug zQUJkw9Koj;P=W%0;L8LcLIFVV0|JnH%9ApNPplK&fV7iu&5I}7*7P1$k)rnirgstmrrzRV0+JTV9QZSY zf~lB!rji4n5xhqVAi2Yl+{b{D6aXX-5r6^(0LjRdu$59s9(N?Yhnl45J%D600zlGR zbRxi8gt@hTgo31)d6F2R9opnB2?|IHOeH;pOSl;fC{qEz^a=t{ssQM?D+oyGxJyMr zr(5sgK2r1^!1PH1z|>p(KWEkqX?Y$}py9lTh6%>0%v0%f3-Nc5mSIRAb2w1Qy zV8@E0jv5P=7<-8YYodvXu_VzH6OA>|7!zxHjO9D$%!8R6vVI?YpE!*M34Yamb0F@ikRb9}=HJqNXE z>uvCr^B)*Xo}xvXr}T2{tTk8WGCenlP915(R}ubHyV*ntN=kimuCc( z4+Pz@^%&uF$JUCMtqX#teekk4lhYND%Y7L^F6%|cF+$Jb+a|85GKvx8E#%O>jXD(T zFG9~mMl17}6!|ziUbgE>PGGwNK|XF_1QiGb`FNNSPCg#ceAG33&IEN0|VO;r36SbO1V72gEuWED=JlR%J@VT_;xfuP`R&j_dB zZ36<>A?X^1GC^GfIw@ACS@47>`3J(L(=p+m1<1;-=vZv1I5&r|`@#*xw0Sq9B$3YW$_9e!NE ztb5sx6X2!zbpp(z>1VflF$!x`teVn(Ls-lM0wC-IwRzR5+3xJ zmM9N;EJ&0GJ;)4N3w4M1z=Iy!X4b1OqUXmo5UWyPOL$NBes1P*iSo3^I@HOZg2%8z z=(NYqv#^i+7E7h&;RYRN!XE0Q*cM_<3asv~;R~RA9ufPa0zbQ)~^Ba$lCk$Jm9*?1DAvVaq>{_ z#tKg*5B3`#&;s|ziE=qQFHtT>AArclBOmOpf+HVcU$nQ2T-8!eWT(Wc;>4?1Pmxu# zySI3+Qd~*V_IhlP(`~rkC%l!|d_6W^shea3DXx|%HCaOBp4Xbm9-@HLJb~ z$sXbiBj|X@EtWumc|D1BaNi-zx(D=E?t4KEPzMK!DJr>Qib|IR?R*GNrKmieB%^RY zwC@OeqmaBd5Mg!68;CYVeot~2k;Ug#^+OwJ*|YjcxT0mx>LXqEM8-h$ zPlF%ioOi8bB^k>{U&VTfHVB6{Ow zLI#{2>KfOxjJige)9hjd-8XuUV~o&q7>7j8GL~*Av=AR{dV&jhNQBjiqrG~Jls8oP zNaq{s+V8P-%|DG4o`1v+3F?8G`CZhU6-DPleq{-?Sl-Mv%M&I+i{(rQw}#FzcqZ#n zqu>=qjgstoFogO>y4{+M#4`-jSm^ZlJGQM;=+JRDJ#+RALD(SsTRl9qrF}hxLt;WnGp}HtJHL86tgBJy7iP$So&-T(Cp3*!w)TPf#N) zhSzKbRxX_m>CO_UW`kX`yv8J`W|I9Y_fiv5CD<#O-1 z8_G0RC=Do+Si;lOmgaf6rnrhGWjRZxA!JFieC*o93B1vOpqc(YMo^FgLC=;SFan<~ z3%$|aOO`hpWTg0Cn9N42drS)%^nEgoRwD7R@k|D3#z0jx#fS~MuYlF{(s_>{CO~~j zpvXK6eMxPWPWN$O3Z3^5$;XVRIgmXLPjg@+4SK8^9c{Nji>oviS0#U> z(#Q8L?lBNbrBP5U8Q(Wpc&Tx|v7)*Y%t2PY6+@hH1HY3VU z8P0_01ju-nK*QizOrZM`EH_SoEM;;u3@%EM!{8!D!2C=*0`fLXrLk~x3L6WzA z^xAnW1no2ya_ux0x+G|aKzJ&Rh4WM7RC#WSJOpx++k?}~Z#DD3WdzNV=@7_oES1cE zO6IpRA5W2!{XbCPUp;^V$OB#gdB79s6o^v-o&x#C$$0G)NS#zDkw2-_NRsq%3}_n;jL{Hq600C~U*AP-y;v|}JVmD-?cDz$-WF5VkAw*2eT%319+pTw?R!v)^XG41=0m4Jd}i4B-n&ENAGq>R%?wY7 zbQa_lKI2mNeZishLO!KiU|$)hQ!^{YMZ0X=;#rWqI+f!(n3TJ$B533GAxog1_bxPF zXwvJ-ZALs;2*28#YH+&F$2p(H zzu+wLo5Sx^kF%MS>MRTO+?7X(QCHx*9XuUJ5=f_!q#Yy3A0TMT)`t;JD_y-n0H07K!j{Mvu{d6B~v@ZFnm*~d`y+mU>p$cQk zPqat#lirl1?Su#>MSeCLE&Y6r6X+)p>EM z9%E$dMsouF1cLlbW(1W91o@f42q!a{}E2f^IdIP9;J*#jrBgXe1uPCit3$Y7G`o9>ml& zX;oE?$?8hT(MF6QM?pJPZX_f09FFY;r6*&_(JS0h+PaQsBIKxLtZdJ5oIpo`pnHv_ z(-(-x%GO-L(s^r|mXe?JNe)m!R_|r9nhtXFU6xL6>KQIDLd#(6Twi4*dWn|m-4bo3 z&_RS>nG`wtSaZ~rW;77(asWYAdNYFR76=O5N{ryHnuF71;OZJ$GC^GfIog#Gw;{Kj!C8Jad^s+S#xTfdd&wSt>p8tS?uJb~c)dZ>z?6YTtk4 zd1>YEGnS3!nHMmD=9xHi?2s5Q9uA9}uKdL0=#l3Ka1Y;R{ecm*B>jpd&}9308hhF? zjRW;;rtRc6t^9#vnrU;zG}CrT2oOhN;#xbEPc!ZB)8y06tu(o{aeZWDuF@2Xn0Ce5;PBZDtS<5yd$j0gVpyVlNCF+3)>)0^B|59;DNT3F@>d) z8xvjJnD(D;Kmp_iFM!-|NeB?n(<5stJeAytc5&lLM&u-AKer3r*rU0zhY^MwAG1_) z<3krW&i$twPyo5X3m`XK5;Qk>D!H-Ka3gb3Vtw)IN#tbZ6}JoB_(yZ&A4V8%l$pT7 z4?Z_&_MPAyRQ@RNuR#R`gk6m-@5%I&7ra172oTA0A{!|@mAv@N@PcA$f%N0e|iB0P-E}{$PJzV>q~(m`%k#Jol(mBMWjCN*FbsbDtg}#r6pNbmSZvF z!UVb0e*k11`;agP*)bPFZd|J3KhcOsTH!zB zny)mIpcQ_mh?_(!{Pj?nmWV>}iq@S%C%W#PP>s`s<Y6xQI0vR(R56r=9I zD?bYs#aWf{u2N$r%4dyPoWN%dAZQAn!w8xVV-EbDOUUWc@Cp%Q;nB)2d|Gv`>I*Y2 zzD)DAnn#vEy>AP#j84_&8LxXd=vDY3a2LPL@ddIEV6a zQn_lpz@sm{R$dcV;5#$t*Tj8dQWkTs@aNtHOQ6q`f}lwgFCt9(B%V@h>=we0}EnhPV$+%0-ri`qT@P ze48 zbI?LZ|E+NmN;}3<@S{bzGWqc&`3lWoCO}U1pDd!r#fN+Hbo3F@$;a`Gpz?qqAF~+Y zDWIP@H!F~X4p2afBEfU;bU$-XHr&9KUE*y>jQ$uj6xQ|%U?YP25JuAZYb zBOEz!oT$VItXR`XEKa@&3U>>=p45WLP_>3n#cB=r zEg*n*3kdrD=&V^+Kn`Xz1>~S!1A(J9MPm!NZlrK1e zjsiiB-ev@q3IweQ{>liaHNnT4qaax65jZ-{XfRy?Ia;0(H*ZDiGx8G)6c%I%%40QC-7ICa7y5 zPq#3FJk@g?V1%B7KGFF;Bgjd}p*u-i6TQxLFE0ML7#F2{%S6f3uQgBaa{@gDf;|0` z5mYJ=6uTbjMpNL5VT>SW^&D*&q3599{`psNb(QXnC6Cc4 z9>3eZA2LO;F)4C3HeELBSWcj`K+tW*(y35Lhu+U$WMr1@pe$poQ`2UrFAsw+s4|)| zXQ#^!@DL-Y0|bJq_B10LIj{r#oDumtKr`yqKTQk)ld={OP-=d+WkpA(&a~S z!;~3JiabrvltHwF6BtB5kf-YzL8Ssg-R?d{I0euy%~M^&c_yf9AWyF_f;`o8++&2E z114etB4T})%F6GIB~Kxn?kPQ27V?Ba=ecK3ay(aRn@-2^5rHzMhS<&3rpq^LYB0jsYpOC`?lpx?mwQcQ2JJN+2V)&? z)@1w@7ilg(UG6%yM@{^RH;}2OU8nHBmB|&?ihNqGTCtWFG-d!L4{cVX-g$@tC^yG zX-lV|n`k!gw$3p>=qsw7SlQHL(F-z$_y3f!cq#3f5cODtSpxM~12BPlEU?RXK_->S z(G8O{Q{FI1jGz}}X0Zf}G-%(jU|U0x`jyf$XbzI>K52!2>peDgSfH1pjO(Q+b4k$N zkKw5pW$-d;lx=J?`Ab9tX3CSIeP!C-&c!{QY5+25@5!**HS+bP7 zs9YNaDWq@n1bk6O&$U;1&M1o0zh=r=iRUas3C+KNpjk;EBWQ*I1kJx{GXm#drEoCe zi{B8E)I!x~$@!SBu>;GfYou99Z${9)qUVTagr0+*mol;gLzQI4(oKXG!hFp18wOIC z$k-ZK$)DAUqrrZiDQ~22XFA_V^Q&3vnitO!N2*zd1pSIN#&4t>tP1HxnU$=3TJgT_ znq@hYpcQYXgIhx@-g{7(7Nz&%6-CY7S+1Ks)a%i0cYUUOQN{?J7d0(yokEA+c7Y(c zqMT!vP^^5!5_GW+BDGPt&7V;YBfps?tL)?~qskPT*Jfu)HE zc@#EFX~FW)trtEUZ@q9bQd3TM9;DNq*N zx#4U!Vl7}w$eg*e<%qSK5p)*z z$d_bha(lk+*wdsLpTW{;=1cF$tYWET{R*N zDNZ#K9Ckd$E9yM5#fF>;1BG`?vX9vF?Lc?Y>m5rm@kMV-n3q#V`EkYZZ&-S}rsKyI zefn5p&B{KbB>8d0BP@aX`F(TcM)59#SkcuQE%v@)DK5V4ZyBb1YB2ZdW<%4)`va$t4kv@<)vVi}<9 zXHukmkEZ+-BS<+Av=4g1YN?`p##mAgtdsJiHcO)NBa^44>_JbhYqib)z{UAEk;f2Oq3u=rpRy)CV-63i4(xn<|c8mq$yDi;VE z>6rN6FqU*5cIc*%{ARRekn)rXk?x0@?pKT;-AJS+HCMdmJGZInp+hazL_`|&9o3l- zsjWO;wp(LHkXj(XZGM-X5B1>8sRdQlz}j0@c4S56b;go%V0GnmPac_J zu_zWMMarW!<)axv%7LI=+YCmKULc(GR-J8$R#q`7(z{&K`!*v;FA&t0BjR7Hq8wx_ zDF;?pej96K@m#p$KV?#+{G6uz8Y4(K5Y(30gQ|uoKQWe+1FI{id-Lac(4!Y!Xfzoq zf2Aq+Wdtcl0(TxOGJ^C1q3flabMNbJ#l#y6Ej^WHOq7&2UI;(z2XDo)bkYs!)K&Fi z1nCAs*G)F>SqwIhWKyIyVWA9>$&4VqK#<-nMvz`0biGv3WtKwdZDdlUcb%qpFC$1V z5ELEnGJ^C1q3fj`wA5u_@7GL<^nS5W&OGjN0(a1Wpqa<7jG&1C5cI@ce38*yw1d_N z266oKv1yT`nPp2`0N(F*E&1Qs?rwcSsbq(8@AZjqdZ;u>+J>W+oZnkIXiV==-$H8|7PbPX)QHC>?e7*1R z)i`l8feDeXV;9TjoXrXJ6$r9&86&7rAgDRFFv6)hH)?)@VAvd6zS@FMDO@@Xt@$a- zPj2cZUSot_BHo+A^Rx}WV@bgZ!g{dMZbTtZ3%Cqp+A2(gVbwmPqqS1E8~DsX8@)<4 zT;ZSkMlW9H+vtUd6z5f%?UxP@>n z$wT;T2=g^phbK6EyO8Xm<&qn7<&N*`do2lOpKQ6=+YGhwFKsZ#Ha7TERLsEd|9`dxcH-`HcTE@yNfml;d$=Zv&c~K*?!AH#lp1G z+H5pS$e;CuGMVudXXCSFhn~d83!GAYu#Q`7q{ zBSa`bDosm_7AKWJ=qjOG@fS~SG##mwV^XBo ze~GMunv6ibCVz422E2?wUkeRqBCxG8y>U>sTyG5d-cl}zBAu4L zOY}+T&@t4OFjhM;-+zf{a?;W`Xf!&=Lux4VnBEvUa1xg5qnSyx20kQTJ|;nH;7k!W zlGeb-qcAO*Ou#EziJ7p(bq$i?sjKP8Rf*paOiur-{yyc%2 zKd`uqmzMzO2l{w-N89Pt-RVN`BavS>4izUZT84?%KTrcu?2KV96Tq(!IA*{94Y$ogQpzJd3gHvulSz0JHo%31z3d|xRi`s+5 z?Vl_{Y0WZFM6_5Y&+>%B|M&`N%LlLm+0Rv~_c9re7DiCq071{mqZvVQ0|dp5u6L-v zwU08NNm1!@G`*`BL3)9pczl}?q!$QXFU4bl4lk4a;%_;!U!)m%ZPY|F@{jQf|I}yX zc%5%X4i)VjuYa(XbA0dP6O=M$<=Xc?zJ^-C?|ochtZY{Ny7^b&TR9jyzXw-vMo#w7 zjJ!5f$Kbe1qD2MkVBzy8oPnABo28`rlVx&l{=2J5=a_z)n|u6jnWj8vsWdmg`MYJT z!ewc0e(`$4;^MtOEa^_vk_IiCiIBf7uZs(RS~e<`mK*+2e;dpablH9WEY%UI^_R<5 z2v}~6P6}3aBFz?q#qMX8VEygNw#!B4Gt01``lz1w66IKVG*_(skEMswm8H@sRn|3M zCniCo6jQ`a#NNd(8ilEMiNP!CU1G!rFMDhDh9y-XO%fB;AZUW=2P%L z_A#(nK18|gDs|mOYML8J{p~9CyNlGj?p9y1+ua(W_^vQ2h>G=EVHAsNqPt622Pm~% zrK&M0H12_iwY0eAVQs5Kx{9`P5xwbY?WYWMmFjCqZP*pWHCHjRn?6Op4mzCr$ZtMv!tKXyEV^MyrutAe{8lVsjNH zMS3d=X>=GPNG}rj@Z5$GsMl0cjA~%-=7>QYkHn{;c3kN}jiO$Cdn8<=67fNOd%%hw zrD}?2^+^B~h|~u5?vCunQuRVs5Sf-G#3(nI60&r%4ARNtZHyqxU{6xBj7GEq?=P({ zO^4{m1Ftlq9mIQsMznLN693dkG`!9?qQQOb+_z?8fIxW-Bigr& zb&P1Huf?T0_At>v9a`ReSIAL~Y@$)^AVi2Zs*N#yhR%kG=(iiIIU#+D2mOf(d53?2 zl|W-!`-;{wBD|tCRC&oLePA0RF4nSoiuDz&B^92PhBy&o&2UOheXDab(W{ZQnMj!i zKd9ciiq%d2Ch3jZaMMAWDjrp`4pyqHG-`&1y^1U$zmj=M3&v9vgs+qV+JzAm20*~f z#$S9@)mlU8$5@JfU@7_=u9T0}tXxO`9JW#ptYudk1FIVa!&O)Tu=$5hs z8;z{xSITGY?X|2^c*Es|)wWhLDethdsabZj1Q1CVuh+HCRnGEMTy^ElTaN-8G-eB&a=@B5ozMM|BjY_NakZ)E+ff z72Y1(wf4vzIHi~n4XxvNqX<({JGz^$D3QzvYM53mK^N;Je!O4BPh{U}80F7+hmk#3 z$+&L1%7|+-bRH$btu@WjTIF>Lx3&%HiQ0MPwcy3!H)t+}!_b_-QmOKqyXLbo393A% zh}%V#mx01md6{@cm6s_ik4+PeV20A~R8OSiCE z3wjcLuZ4A_vK19*0V6wT{4wm!EEQHsqQ%2ma8S2>eEF$0%$%eUyp1aDehXf~skN`Us3yNX499n%nVQ$v7e1BDbpmHj)fY;P=z zDtjYu|z@ zyL1=p7-c3ZFe*@mpFAZeUfcoN|>q zVMtLu7g7$@^JI|KXI;L_Q4`hkZM<5(S`6uKtrD~p|KRmJm6b^K%o4aKRL@UPnCkf{ zUQsiR4PRe7B^#qA3AZl*VlpjJA&3bl6#QH2*$3RO5LGAg`0DxwOv<5l@LMTx%FszHJH z2e0s=tU#)8mcad>3Ll5URN>?CiYk2kn}r4Txqbx)wyi$|b~Y=QdXZk(<1R2#>E!DE z0oIPndLvOrH+la=*;%Yas%)0PJ)z2ej>1&gFYt;g`$eIZojR=G=q@=NqT7EBD99Jx zrC6#F-9w@wx~nk?quYU<*WdRs4fjxHl`1Dx4)4eykBx;nPu=DtrcBQH9S~ zQ&@Bd+X{~EBQ}WcHLP4Cx>p*h6x|sxr_nH<&x!MjisHNoF_g@0<#(F@$h zi`)+G0YTf5;LWid6SO#_=3ohio3c6lN~{H8Y7P&)qUP`rOJ=yP0&0i%SI-q0BdxYV z4)6an5?Un?^=QT8;e9_pBf(MpV{t7RhEzt01u53uN)tm?;IufnF(z>DSeBY1^RHTE ziq}kRxYk_^`KL})A!gMdWt|{r!O|?l3f#YIa35{8CC7}kE=!DAD|U^w_VFAG$zx&@lYLBxHD?10>xCfsp9tx3EcbZ#~#88At_;$=VYtP#BIXimFY&;c` z$=?z(;>v(rTC7%~VBCh-Sd)u>miY}k2kEiTTp`k2S8701R~gOqH> z!YeKT;_va+6sJ^pg`_L4b(GFm?yR-i@3X8Gm8MxE&5fsuK@+WW%^$55Pp81&AFLI( zr^5q%#3bt=^X0W->X&pLFe zsR-#=+>@1GOxmcflNAAaT*}u3T+6R7c2BdmG}k4qk>*|tn%3d`ru9=vKw|Wvn`oG-o9@6&S1>Wz;+Wr0z^%i=+ zf6rLD-$UkGeH5Nr!2Pb3`;Ar~;EqefX#%`HL|AvY%|2)^u+O;FlWU8*0HzJheVxcDBWMQUHou&f65s?1d6sUQZp5JKg zqK^IthK00P{Fg|*Dps|1OyVE#f%&P+691zAY9{u=&ZawpTP=A1tSG|imH?*^icbPC zBb1$6tVp6iLVC(4fJq3a?*p7dnBrHwNa93_ND?6X0uvHrD_m5N`ega1CMEQSf#N!lqcTGB*~#!Zis`Y>r1Lg{FHWbV29{ke2w2 zIhRF_Wsy@^JzUltjdMaE^3 zVOeBT7TJ?Uwq&Ix7Ab~xT~pTY4IHMaexKkK)vpIuclBB#vTfZuX81pBsda5nN_4a@ zG+%p^>Vi1wPpZy5Ima$_#jvi5)i1#&R`4PX(^S%|DZfxJUL&lhFH|Do}0Lt zV=a+RGQ2GB2*^|hA)q}#FhUl>B81Ei0J9Owb_A%1@Dia|Cx8J6LlG_@Ttdj{2Cx$0 zBEnY)UflsoA*8>C*b`w6!UBZT2xk#YJpkMg`XdZM*oE*8!tV&r5L)#FXooNhVIIQL zz5oJY#bAIn2u~1xN2os>pz-i@z$WnkEfC%u0k8p~b`n4XgcZpEYY<){6ioqmcPzjM z2)ok&_9JAD1DK5vIUb-B!cBxb2+Jn`tVW<)s07|o)c{2MwsmWntHB$nORdd?PyC{q z;>mJr+jJ862c}nvIN5*@XoopEBjjZO97i~p32+f%&vbx;2p%&4N+P7r0!Tx6wHTmS zHbAK*0D%a9BD_F|S_;q);qWqm6A0-$b_4E3sJRy)6v1mBKxqU!LJ~r=0|2cM8k_`Z zf{=r-3ZeKZ08a$>_W@LdavuPMAiP2-ei~pP!Z3vW9|0Wx2%F_4UKTwA5QAVtIE`=) z;k%Ck?jcQGj^}HxRx@=;#LU z8bW+2fRPB3O9NygM3(`uAsj_`51~>3Ky`$KssPDVi={({UJWj%Bg9k(up=BpIEhfX z7C;Sz=ZyeNjRCxy0Qe#NhVTrbM>xP62nU-197WjD7GMX$kw}2|5Z1K=*o^QOLi!8D zgB<~mA`I>Y5RGsl3gB~ueZ2wl5R^9nd=N(W1sIR;Ni4wU2(2vu9T2Km0cs&kMVO9o z#}05GVckT4O$Zexr2|%(1dxd^8{rPZeS|+J1H3@EHU;22gz%{VEfKOY?+S#!5MCgp zW&n&s$es?c9D&BqARJGdBm6njRHRnsG8`-*w#2Q7y5-Ex;mzS(=oTK1fNr5}mPa$O zW3{zpI%VR0g9Q~NAVkauh(yRkIF8VB0YD#wYY4aL&&_Z(5Md3%2825Z_YorA0*FLd ziXafKBHTnsue=4Y20|i23c@=Gc?i!CULkaT8=xD)GK5tKHxce2%-RYt55a94fPxT( z&<|k^!UlwU2oDe%ZU<<(9V>JfUcQ4+a|b{@g!u^B2$vDQMQFYgpf$n)gd+&A5Q^;r z7_l2572(!ifFBT2_5q|JoJIH)q0Bn~Wf5i^ECzkUT)@OGM*+Gc@H!4q3L)?m zKrliaLIT1s2!A3>_yAxk!mkK_A@n;9Fa*K=AwUwscL?_oT7Cr37U6~s@q2_RX8*ZT%ty#Z_#5FR!Ws{NjR-bR zfDs5;3cw862|8Zld5M{r zVK%~!HUN7O-fatT8evl;z&3;z21+W95!#sel z2Z!Byi$T7x%UgbluJ5T){F9*$xbgtaRGHX@W< z2~Y;%SA@S2x~~H0jZkL|Km!DNz_qM}tIV}pIhku^V1=%Gy`e~a+gh?A@w~)!m|+t_ z#5#a>2=st_5U)O8r`;%cK{tx`R_ml*#BnW;QTR86zqbOsL>RXnU<$(E9RM*12N8}U z(4+VDopAMRr)KT5o!AE?h>S5k>WbZ#Zf+uX8$36X5HGCSF343I;rela?+~7x0Qdvp zt9JpuMX3KCKx2dlrvRQJ*uMlwLYVXwKnB9_%K%n{BM9#zjJpCb8NrK|2HIVN%i-5F zONU=WOE>kRRBqZl6kCjN=pn!{gtLzTK11037~lXxi6;PF2(;Yr-7j$U>K9G>t6yYa z7&56>J(2uFPq*~fO>(J+HZ8UxHgxQ%cR;Z+lWV&MSuA^{d7tZfId5gnAi^PpV+hqU0BR!)S_m*4VdElz zw-H(_255^=F&m&7!o+O1UQlOv`CSgcJ%o+R0Jb8GS`IKCA#fEy1%&t30DOoLv;&|r zLN2ao30&JcaMX>)+@g3v_w@PQ*3s$2@z}bF!gmm!p9U~}2;lt@fFHtd2+t6DoB?

O zeCI62vZ#(3{=YPQQF8&$1ocJqeE8vyjCWvmL^3>7FJY$32vw2*Y9fS>1c*Q=pA1k5 zAq`;?!nITY`eES%6X1$|Hm~(WxS}5vn>`7x=o9cC&wwlXR`Itp;fg-C8ggz9^q2m62Fy862YPjCE72T!}5DbD>e-r5q z?YT?fir&2)iLcYqTcT(1ir&-v4PRNJH>3jas5iZ(la5z(#=I;ZC8Yz#Tk(ocw>Dh` zS9CbD_j6&-xY!7JK;$HnhN+D~q{ zR=NxSle?h@t#K~<*5G7o=nzHB0>4^0H@kV}WIrx0ZXC4MHP_CS+lNnXyL*~z(EWjrgon?Y5#l_SyQR4PF>m+4Xfm){LiX|0nz06IcM9?v7kXe_`El_%`AsurZ zq>qzs_z2`j)@91E0<#>JW{RIqSe1YR4Rlg+xj-dfXiAQDsauE=-R`Fa=6__^ee$Hk zOU-U|LqXN+v4N^rbbY@tyY(V#6qvv22CCQ)ba_Fsq=aPavezpY(m0wS?Fv-XMl+=R zhyP{B&;s)hl7(Zb8&Na0j@Xr zch`3psAvZnGO*yV(X0QgYgV7J5$J**)+H{uHuxRa9Ax!v>2>9Z|M7l$RiKvVM!{D< zbuGBu#)2X(V57W|+y0LQHz`m{!;KD)cV2QWxL1K$x@!e@_@4?674@h3tx-m}s=E00 z5I2+5B+h+VSi}t0dWs#}{C-kqyXt8BB3#qaTzJj#D`Ut7kjC|54&`Ts=wJMG6lM3i~o8Y>-V{#xr z8k>e`@??-$(kifgPVS;o;_6lFFy-rl$}9TiMmXX>FS|_M)^Dxn&E~rsag=J1b1}(R zbl;ofY5sDfhrAX0loG#4f7MEHreH?92}V=?(|xPt8Y6-y<1Ov3kL>jcHLsh|*j zsRdWxtK!KmYf!}wSK$H9#kIbeMylM=wUbIvfvU=GqGFd7H6Zurhxy6?Yg?U5F1 zO$>08hp%d2FCPhDO)LvZJrc_ikr+gOI1Gak`k$P~!#ayz-&=dA5e|F8H;JdkPdoURztN-gPS<9OE+9pxyt~Dm00JXrm z=d^(jKz(}GIz+Xz%!bYY3rjY1y019o7b9LQdEG}S_pDvKoTNll?4kxD`<``|I+Nvw z_rtQf2hYG1*}`%@z_SY9S4o3K$@|vvs#Efk`_@P5R<7%*cUqj+W|rbEM&-_=Qk#p^ z)vHU1H&fb|EuOdqM8u+1tKpaN2D-bec`S#BtYwe$chaGKO8L;Hyp9j7oz3dUTzpjL zac`JUZ^G}{_~-bHsizmbN*Q~5E0`q63%J35n&9;{2X`4lg+16Iga8<$TBuJ`&Uq3CR zsWbs+$DYOqiRDFY3)LJ~)y%r!LaZwzb``VrHE-H1iWRpFRNrz{!K|w&Rct8KI!(aI zx+M$jk^VgLA+qV9EZlGK=36cCwwtY@|0yh%PBFiaS9FT`{mpc!JRlrz26~*Keu^?f z@Z#%lW#Mz=nVUp+ciU+Hf;(NYc%(gCy!(q^gnEg)<`@I~KV`|fZP1a=OSZ=fpV~0k zs`soV;EU`!qxBtz_3rXiG>kdgsc5*uQ_;85 zJ>CK-H-s3h)?o;=P`A zmAcq>=9^;`qBL(qyTH;Wbz(lPG+!M@YPCsas-G?J|D;t%a1m>z?2 zH;LQ+wxEiIn5Ts#yfOguHg!)vRlUBB)qQVT(wMjXf7HOae7dOy&hQ$*X?6JjUom2L zIa{WBH(wza_a*YWxK`d4=Ih>}6Jvucqot}%4$r@DF-h>T#{|E>8&WYfS#!u!0n zn_51fW~>1Cn&y&{@eM`WCV>@OVYTWj1{MF;2-BLdg4mmvQ>6rUmv9$7r^#=2MO!De zrK8*?Ta4MJ+KeZ+46*G{yYm#IhkT7C>vv1nEpn>Ml^C3y>UQ4>y;RG}HZKuS+16dP zF*Sx60dXvuX`o5(@DtVHH-2g-!Qsv0pk_c7TXU7muc(|HE}qo0H4{oz+cb3sQziS{ z>6pU%T%KFdl%Vx{)mx}b{w1gOmV#4GnulDeW-DJ*UC*=T#wJ%1eQMdNiz8jewpHKe z+$o=wRw86pGmn66kgPRsDO|9l!EOB(`VdpFVX}7C->G1lv~R0z%W|p*k=bQLi@XVS zY-ddBC0-^@-PKQcifQ=>sEuKvCb1tYi#mz19=PEkXx9u~jfABn+BW!P&e!=LK zzj6L(i~I!7$hSS;P)oiI8mKFVphHQs=iAUG!<(oP7j=@t$UIi8POuntgsNSyf%evyf)UqHCtFzk2^((ys2}Vx)PSX81AAkos+! z;SG9*sAoA#>LH)59t?*swtf&eQvHsLk@_2&`X`(r^*2cUidPxc)t8(k?U0RW_gj`Z zLk-yK+N7no$|kMG8PshC20uunHsTB^28JsZxgP}<7cV{zOi{aWS+c#0rhgD;NIx*7 zKb|wB9~g)JZnkpbemmP3HIs{x>ZzLQ#hfA4z~JZM)U});)xhYgeJ8@##eIrr785BQ zZK>)ZE=&5~(e$6@4Cx1k^ncD7(hrQTpF)wUCgUPB>(5-4^xxC;|IHcF4-Dyd-^QAY z^aJChf8=Yn$!Z7}L)E4r5!Eg}Tn*&}Y6fCS%XokMc##^xNm3rP%~0MA9!C0d3DO%S z^~Q06^hS|h(ROS?ErpY$H_Fg!RJ!*!fvM^|E=wiMmL;s@1eE~41*coSg_BgmY@-Bv zxwDXN(3gG{6#6)Pzc#nGt(Nb1*c;Nzoo7(#cU#2O-nJ&eH!+zHI_G$=S*hNLf&M%N zglPf_JuSUpdl_}nv(VRgMbAQCZ<85W&Af8=0WSnx~qhd0Q5?jSV?PXS?S5O9zhBnEX+gT&$$HAw9C!WtxEDBM&|4YF@U z2Gw(O(XmvnuV_EamZwfZO?rh<(@fwgE?IsbZtJVg=K|C!Jd1AhyzSH~B6Nh!Tl|wY z%?GbKs~dP`>Oj_Rm#?0$(ki(SWmL(dLDmuV3sDtS@+rJpxLrJswS@-H!#{W>r|}}6 zp0$UH_&D2K^$btO)vlnit~pN|A~d@YsdmNJpX+1ZQWM?49MnWN@rs)0rfedAe$VLn z#%`D2g8IU0OLuN8nn|s+*=Cv4zYH^A-i$M;-*`&Y!z8U)7nI5^Ez)ayyNQqlo0o^< zt#eT?0jA&XJD^m(sj1z#8r>qd9n@}lWfE;MCN`k#*)#+T8y60)Kh-^+!5z}N5<2sG0tFGfL6*0{y zg62^*N84i5JT6As_e<>`a)Pw)N9_^n7n~r)`whi3vs^J2W|j}Q7%BcyDt^WZQv9P- zTw*6{U{d^}p_qPf#dEwZQLV(qsCj~S%099_XGn9fsAK_?TXBLkLlzpsp}NWB%!y!f zKQ2a^duy64oFUD- zk?O&_=rjK6NY2of2Qc^@e|0ivXwL(fu<9}XA|tbG2X!H*D|u$j7M*=lyv55ZwvyuF zTwAa?OVhKF3z8mS_Fau@qVDAkm96J_mott$^I*mE0%zc1w=b+m6m4YA-6eku2vwIK z9+cyAvW{7IC{&57xL3XQ;*@k6z<6vn!VpQ9$K`QZk<_m6h+B;+NO0nfLo9)hRut zeP(yHIWL`7^xEz+dpZk3jrfaO?q$a~CzJnwJNX|fDteT?s19>c+TA>8j|{#+jDg^@ z2ec5WpZQi($FOu6eW@;$kcJWkR03$GO5mDhCAg;ei&kyC$Ei-qxr^9oOid~>8W=X`kF7AS7iw3imCJ8i8+=xS|Q z3ijE>TJ4W*tK+MSp1W+jRr6jjOApzo&&Tu;J=et-7k6*MZ@E0%gWsMSu9o96G!psm zm6J{>;h&Q_+FR@`W^bW3%qJRZh|;{|N$<&a^|gFro%YIMa{yTdbPS#mLynn(Bp|A=SXp?>*+03a+HS$!XFLw3Gg$2W`XD16+*s@746b z&l%E>44QtCGo%_AU3H~*5&}hoL6cuo?{hIyeOFWcCuc}CF!XDZx9$d3REzIpjY#@| z*7f7~CWda1QIN19exO{Uc!beI16g&<{b-NqeGE1$LpH{j$5qTFPiHj{!$t=VSL<@+ zG-Tbno1qO^5Nj3GT3ld5`^3p=Bu~N7%G6ra+!+ragsEM;y%_$k?YugKi%?fNV4v(N z1~5kJDo3#-*-IqvGk%-B)EJ~$7g2qm9Hc-abrD>n>>^xK;P(Je!OE0VGIbGs_sK4z z_dYpDoqZo{-^R@$+uzb`e~U4^n|qg~O9zgT1Fg)n_sOB^WFbC)X7Yh+mOi+q_={^F z+LBbKWb$F7iw|Ya*e;3CJQ)yV{!`8Tr_4-lzUMnEzG$d&e@6~gy7?+f6wm~qnat;! zrTMNY{_s0SupaA_Oy)mwF+b_N?SdM~Eg~OUy(7b?6=U4RrGHFA)qX5V*8UqV<_{>u zd{9c}bEVRJ*A#y-?Ni%W)hU_GZ}E9V-Y3V%mixqp;xU88_Omjc@NPHX zc}LXR8Q(@Mo*4MC`WH7J`j0N+D*GHIng#<ZQ&s;Lb*O{#&`Rnv1|Aq_{*fniX6 z`dVk;>u4nnpKqX2{FBc7iCa5Y2Z(W1f_;O#pa_2^Y{WgI#burX!g`$0%4IC-rIpJ# zyrPhfJ5X3ipS)k-YX7U!86M*7eOSa_^AqfYPvI3H7nga8zV6>#l>5n6TCV$lI@8xf z41NF_TGeagB_3;k2CDOUPPyvLQgm^R#+bWGI6i;K)2KliBRsuEE zL*%Hb9^n-=)uTe2s^>4Z83oMp%l>LRuDTzD{7$`3QJ&K4H`{I1pQlj8a~a(>zk{;7 z`TTd=616VRLU&BfgR;A+dQi^sJLHpSYe?X4POmsnvy4!ljqrtwM(U7!;scz;MX$eY z1Jtqk#8M5hNL)-zdIpP$3-XE0Jt%MJ)tsTgKnCa3TRB590nDkZmTsnlf^OwPDuqJg zB@c-})I=e17Ow&iio6%LhQWUL2M>uNyhOTvc?zp{iivMfnquM#UQtY3Iat{3JLi?_ zh~yY(mZ#f)R)6JX(~bL>r*L6^k!ZHRp_>sd^+~l=$%+y0s>l)+PjtVMXofY9P-+ zK~mB(Yl7H@hsLQpIC=OvR(UehT0Vv<5|qYX=+@c>4pbWj0dKv zT#PK9sOg{28PX4oHZw^r)7PtfU^Fg@-)~}>}NdetdsJDH$`qVH- z+W>pWQ!e(Isx3ymUM4q4Y(7}JtoX;r-din_2NpO5CC{h3@Ja^dBVYRz)t~2(V||_s z%944q=L*dyQQMH9`A&A<$pIp_VLKlISIyK;`7*RKG8n-%ET7n*JQ=)6oT1@-E#j}WGg2s5K5im*5F%A67;qtkgT5;wd0_R{fHv z(5S^_bQ{0OlcSbW!Jel6#IsP_|DZM0chvT5-N}5IS%Aw}CPUKbkIHc=Qs{qJHfc@H zP?G{<^he>GrX~fNniMRd(WVe*aI`TU6Q?R9G?dFOm(eF`(*CIPa-LXG#a=u33ryxs z`Y!jKI*m3}?KMQhs`f~AD7S|CixaNd2N@zpf8o!SLV46*K#k*gUnhGP!=@o0|5a>RQfGfN*Ku z+%<<~fLyL+U!?BmS*Sht9H!0zHpNZ#6a2-=-L}`%^ZBICI7z!<$reNI#80ZpN|>|C9eW7zVLQC9lG`9b(PUNmqHt*a~WuK^qa0yZ!bX3M&C}&7DFz_?aZPWuUm9)bp|J3YkH2pJ#0!BFL zT4?EF2PeoUJ#8}8S)qy z^7uJtXjdBZ%!iXYse4Rq)RMN_Yrk1sc@G#x|Vqur_{BKL8bGKh_2o3O@rrPGVfYO z^LVCh@eAGUzo`?sCA7y-@ru6305^MebsQIzJ}%Y|EW~f0fwza7>l?;Wc@tN z`gx4etlz|vr1iNj*1uJV^`MmMo-37g@0#K-HV(Ikt4_&e{u~$cH%HqSt5>;2Wd3E% z{L75d_8A_tBx(Kw7xSMMVm>G(^SM%KzH5rVm>6ddQ=O8@{4ZS0A7`K@dw#^~Eq1s~UK-!9_u#Gmc3UpX*wl4ta$;FVNJU>oRHL<5l%$ zyK?io@49mGsQ#`#CZjS(^>@{u>RczyWAC2W350ih50;-B)x@ErqOud~vWhYMFK zt+zp`jbh=th}EOgxcYc)qfCWV-zc--L9}tY&JD6+x<1>XRZgC@JR_8UHQnWiE-OHB z;_fD{%5LQQ2fL~|ONk$}8KY_8xF2oxo-2#>qGa5PMp-p`8X{yXO7TcVaYr#kXyA@w zsJOzI8@kb&u|oG?ABoy1_oBClxF(pK!tp=@BBdfv*fOUm4Nvj^ zKd7H3)56hDV@A3DWM?TE{WQs{dD;*mexi7!qUfjlLIeHuKwP1p9=yO$lQciQ{t;|U zOuZ}PW7i1&#u(Rf{%pL=%wpfky$N9T-UKqoSTRaLPf!`%!1zsat7m!Cp(a%pjv|9LFY2fCY+&k}aCrIA+qsw=PgCNSmQkKNNuI)Y0M!ojQ6` z@Xi;$Np`+xlU##MPR$%O*;U2HzN7}CS7%cS2o2{;r^4oH86~4@si1D=QgrPiwuMTg zFE^qGXB`VE40}q$nL$9%nbQM1^Lv4f&iqSUeZPtCnC`0VTq=H0XU;O&Ae^~vhHC(S zKRJZ)tutI7vddHeoio#lagmA$w`T62=^78u(^9%cRr@-bNfrG{4I&MOevQlm3i>s- zxI(|?&I<0=nVMf=&Kqj-t9Yci4u3w|HItPVNP7Q7-MK`*7mh8aezkrdVB~`)kv{{y%_ZnyMm0vbjo<690Ssrx+T6E-aR~=v5=4K12DBdx?o>Fj8xmHkc z!i46Jeu1)L!6~smM?^$w@{X5}=@%hUtrLeyVNv^NYXOXS(Wx*zk>-kx7YYd3E zxTc75ac!kIxa(U86B8L1*SjHB>%#5gYqR7HLq9{g{o#foQ_YRVEp1X#ZCuR2F(`II0nrT zSJ>Wjg0#1rmstrXPNrqT=Be-F!oMP)8apqVZ~V~}%FDE9UXiz61?ShRsVz7ft)LWt z<+s>YDuAOARng7gqP6~$)vmnUy8+G#@M?;7Rgs;bFzA9KnhOqSE(ijPE?5%K1qHSX zP;|jVaV37rJB&vC26q^h9p#F4ZV?RXj^%>j3q$c_WxY(-N9;Kzi^-(OGOOkjLximU zC>|iAGodxmnT{<$L1)H_D|BY;mf#c0vd#R!74JLzo3*h0GPxDb2MxCt;NPutWwOcw z(^nJmh-C#zv8Z%j?@D2bQ~;exRdn+kY>{2*s||36JUFu#>qPa?d+oN!4%BK3cA%Jm zIQ+n`a7RFC5Dn0O8VXEw-XL++a0_>Da#eFS5I?BH%F(iMxsDDSM#<=~vR2La4H3g( zF%-{NV_|7Ic{9Ltp@mMHA+FGAGhX1dvRmZpuGJP-w@B(V7(w5eTwUzK;hnMDT#UcD zA$vvMaVz-td&4rh!HQf$C>F&x*apIsBcMrKi@Noi+vaR{^<#&q3VLjx=CR-4uXqY} z&kk2pcGXYpk|DPFS63$%vK1OZk1_;$Zb;x!eL!2J>lcD(0M~C4rK0Og2=q-`_=;Vw zlFs#lOkMviwGLc=ij}3-pw|~!l}Z^R#Oo9aO2KXl`83_@F^NJ8y`Chl(CbOO@=m3G ztdYY(@1iP{s=q_+{05%7$K?%{&bhhAHH)<|YyyAl>73YPLe`CXV-b8KcSAx7H{Rb9 zw-2VYA$uY1P8IO|J)5q$YVq>>;J%Smf+h1jUO}PFNwwwsdvfh}jbuY#psDST{5A6* z0B?LkHO1?DGMxuqMQm&ur5msAnGR&XSND9fRld5%uvU9@kEu+|Ep z!Y#o!DF=_YfP=?dPbmjamxPWu-dc6i)r95Q1|{hoOdN0VZYONzBj0MPW~?D%jC>A?2M{=XK}_QUrLxe#QLl=)!cnivcIyHKyBzAR-YVz1>{kNy zM1J}j^e=YRb&0h!Owlrk%_s$XBS`mRT`3v+AQjZ@?Xq3=!E@Ik6O=(!(3h#(`GNa= zTiUj3?{~Nfxsp%(q{eKQ9_N&U9tRHI$kbqL=VI&|%Ek>Zu(8i6fDgC%@_D!6j>L^r z46RtF;qRdw#0QQMuqP=S@qw-58xi{-6+`@+8oq4@G>aYyhz}f$*gTYj(7@55F=T@@ zE{1GFuu@FcM#y#(Hekpm2;^?t`CIoPWV;A54cR8tRt(t#_g%+X4QdXCY-6itRYQb? zEX9MOF!Ue5SPhIb^iBu2WIBtg=kU!dicMS8aR*`x5tL@-LByd%h zE%Z~EXDHypZG05GQRG^WSED#w)nM!W6xJ9D==30#qSL#BtjXzl-xGM~^i$#re)1d3 zGs-&$ieJ?0Jxv9R+};ekdlmbOlELdOdE&&Ol{lMaXci8O zc9&!6gf1;i6|nU})VjaQn-cm5HZ=qgdCHM?u{=G(U4o6X;@F|&mE-#s<%!$+=H;cC zyCj=!m9fpTl=b;bm9^4}<11^0r(878p4(lOZL!MOAfark*S5fA2`qF0Z87Nr69rw+ z!Q=vbS3=V$_xtQFEgk)ETl2$h!l8Z$-$`OiKF7IJo{sB&U_!z_WI_Ou_@THT4wQ_3 zz_#g;589@xpG<j4XuT28xsZF=7yUO+$i_r=;TyF#_|Hb)nJmEdp?%%?s;=NjNX8hjPq^@X1?co-%h~ zw_@H&VCoCUsC7;^oJIs6BIA9`Z>jW~BJmTwnm>*F1Y<=G`y>%}MsSL?vR)p{k$!BsPGaJ8O9Ii}Tm zy-OT#e<@-n?a!9 z68(cNYdW$xIkabSP5KOsHG=s#o1XZ#1c2-aVCN-wmL8Y#Ese8zJi! ziOj^gM|CsgONDz>bVu;43hwHR%5qyp_n)j7(U!T0ctN2}Xi~!6{fbKNF=i~WLdzVM z;4WihjVU5_#Y9TM*U9}k(p{B5f88C*^CYT$1=xnB#5xZ^8P0AOHvNv0|yTmZ`~eJf>ohx z#0R#Hk9)1e2JY6Z1rp<|E0#i8SOafL(2@4s2+MB8pTCw}+3`vbrJS35JUse7P} z{Y|Tk{qHYIfh|%kes&~m9-;rm@c2>gLVV+^b;J16H{1=_T`G#5kSgm|-}xvezL8ltSyA^@1_M~%B?l;;`>;tHX=zh~E2V)F4M)&)QvN6zrje!O&VRXMWR16zzwT8cgau6RlM)x~R z*@zEp9pC7F*Qprd|D)kQrkwf3$9Ayok-ab1@5G0Q3@Sck@#IKWwKAbRtZzjZD^6uo z(!3pPzsuH1pbWIWC~!m%tWP-z4;&NxvkZWr+tux2ovAEZ-(JJ-Lpg{qI0FA&%0YbK z==iWEa`J-R-EG-KDu&SGH0U{$gV2H_pchjPLIa0Dr?Jgc0#P?;sQV}fQ3Xe!o~9f` z1&)r2o_w}*U~6`diXrsB8g%x(#9;_6I08B^J_kZJg`nsz+?+7v-;m**p0!KJX0bv~B?))Z4xP}4?N4Q4f3P-p`dxMQ|XI<72 z&KS4a41ia9JuV1G=2zVA9^^H&m5-#A=IM$%k#(aDfn(rXloAMQiR$jbyi^K@KdPr! z$+K5(4C2cb&d$I0z~1UZswbRfgIB$#sqz7=A$w)6Gb$BcDxT_ooz3x+o@J6oPX#F$ z=cV?52=h{OngBvitrJ&iKu!ZsdBhLusZO-O%Kh9=SQe$=`nRK1X@em`*1r^rvr>!GMdtg{ymSI)EE>JM6mWV6yQ!aPrpPy5Nr+acoJD&?D z&=9*qy@G=QrI41#NLedzF;dovD~yzN`vMOJC;dYsv-k(@2pc;jbaiiIFW*Nga5H92 zerBY5Ci{z$AuM{w5Q1*oIq>*ER}uc`&59A3@gKS);mz1YOupjf&OW)kxwVg5*7s5S zi7^;LY`;&|SYVX#6Dzr2PN6j@2b~TaV}a3_veC7`M%RKZ#sZ@o6+<)L((pZ$gZRKP z78vhSHsS+Y$2S%jpHeZzpRD1}qa4Hs4zBONryPU^jt|yxoG;nlid|7hhcNOyR`17T^vL{p)@gHdT;RlHC5MOWvegVoseBkK#I8M`$BcX&H zYBxlS*gsqlafBV}HGwC7$_};i;+&Z29VbUS&j|_IpZ3tu!~R4mq#*21%>*p=r#HkE z_NO-v1n5tYsuRz(6y41aOn0Zp1%9qYHzl4I+nZL0e?9|pN^jDJFp>`)30XHvBpu3F0%c>MgCYj{Phh&3IfAqY2Kp4J#C&(B z=BNOV@5!Q4aEv-?%5(M<3*oi`-4w7^)`% zkf>;Pr;j=)AEz8~P&~?-KQs1QcP<%0vEE{eI z^WY8QHTjC0aRH3)dysFw=}xk=!rVgkcwS|Rdl}nlwaIDJU;9KVZ9tBOvs#0@mqB*wHkHFen(GJUao%;p(eADeJp>SXl;ZhJ$RTofbxy%1hcj&t z%JV!x!~+wGC=X1m6bG;LgS!$lk;OTR{mMakYH{MAJheD_P~Kf_sjUsD z%#@NLg%4?`7I2{ru`R_F4zVo{S%=t;FzAZAt8J^`)WUywTDb~x&wXgS;Ibu!QZnvO zsKHy!f^>Y^wK?$U#nF6)c-__RDr^9i!o@As(+z+3kQ}1&`~*Ymc&dU!)W?V9qU1yP zD`ws}-oFi7;3qcskX)3kpd1`efCHmOb+(amaKHc#4j2H9Gh-0zaKLyQtP}&rAc2Ad z#u;%n=nx;c)?L>5uJ}O*jPA5FoDM04)E%e88$ueV!<*s?eRVUCue9l~{{jARojWbq zeSyP&fsM#BYJqP8bUY?x-3)llbL4vWx=0g`V;6O8aF1t&4uhoLF>shmX!21d-lnEf zjW65i&TUbgR5EXc%sU(1_iQYIYN8Qhgv(z>kg>V69$x-19F$&|4Og_*?G*JqCT)JyPuKem=%0^T3<9E8dvPqNz-6nokjcM8W(w*+=u}|Pj z*;<=T5K{P&s?mq}{hhE#G9jIN>%(F^eV4m7TR`E^Yx8ao2)Bb)j@{6&O4dbYm)?Tf!2epFO&vk^)KO}D4N%zFF zA}>Z;bO73dqVY2apu~z+EiOJtV29%OjZ%vGDU{&554z)7Vo5Sb z>k0QONgQH6Mg0=HkkQeL!=<%LX#g}T!TeIZ?Ze4cc#o6rT5Jt95c^Noqq^a7KM}GP zd8%PoG2ZsoocVb1Kin(XZX${MA~M>Ql=ko7DTmZr@$#^Q!w}JL6O}kgJoV z{&daNyvz;vEVh_xSv;L66~3XKo=!YXnp4A`dK5QD_K8}v7QE%Y#&*7-h(@vqA%ENb z4LfQTB>~=47u9^s|8*C)vCA*eXdyK&K!rtA@Y;9a0RE9xfz+b4RJf;AIH7LoaDVQF zqZq-2p_K!bu=u)x#Pj!cvwQ9#tk5yiH$~Hv&~EFmsZ~4qzI&LBmAC2=b2>=fGRNd7 z-u$8H3$`bMY zIP>&-4tJ>br(~RY_K)uqHq)sjhkyo;x-mKb%u&kdkkRnt-0CR>?dq}2;x>iZ%z(Jk z>S|ZYu$dGPdk(G-)noimyHeS#6=06-E~{s%1*-JhM zAD%<`C~`Nk2ln!pdMC1jgv2p>wEGy}T+!Qt?Vy~byYSr}*vC}o`)|+5#lylBm0h9& zV!InlRrD$FZ)mLfIZGGjd2=ci*^MnWLTgmr@dAMtBB;dqP%;&-~L0oI=j~$`b* z-p+0n1bte>{8yf_;}aRN4YCg5$?-h>mx%KAcE@?!s!B=Lf$;gLs!DHro8vsAP>oTo?NyBD@eHjjCDPvPxO}iH zT@*mK-A!nTcE1~bJ5Cr_8p}N zr^iqkunc!Ki+QoEOE@3ViJJ1a%-B_}W8G$c#x0HbKkwJ!ON%IjSvswra3AwhifyLHBSr;y z+f-3yL=5HWHjUuLVmwZ}>jc&`0(;rXoDkWC_>^Kw3?CV%`Pc{f*bnkCq~b)9 z^wZKxT7WsIX&Gf(Wd4&-fHp#EV@VN0l4D8!lX5JHq8vE(#a4cU$1fd|kMB<{o0Ino z^)zFZsT58`R8Ox@!bxo+n*OR%gEgQ!I1vTbkrRs!F~?J!uXx{+TYFqIL5UPUtFkeETBA%_BiWaJ60;2n9Atu20MoJ&Cwb)u z>YK?)0tF|y4dP1t)F(J`?KiIQV{3_H~oi?8$@m)R64=!IVmT&y@W3(xZNj% zOmN3f$_Wnb!wD|wq@3WU^c{o~TxINw0Y-^Pb;UV?1h6@zA`!lC(r&%pdZsD(@e7R>gDGQ`*?; z{=vJ}Q>wB06co!^Ur*`6nozP)R{fx5h08@}ZA)228YoTdDSz-@4HWozDh0)|)-_Px zWGW>aW%UYLR)j38hq_2LN55Yk#LHwx91 zxfDMx^`1O3`<|AI&)qB)6kMYuoRp8iMZd0m%yv;hsBW@-`yc$=Fi%moopSJHu2q^U zrQ;}BL-fy0#&?C>z;fTh_einK1_lkq5)5S<3-k@q<{D(XOH3c%x!a3S2!^{JlxT$Vd zC#4n7Su(OBZ_q*cIC2j$N}G-k6B16x;)dcT@G`Z;hp$Joos_EqPGbL1Do&?VPHPwS z@+rCG-Es;Sf?+rtoy^I*J)Tp5&+Dv&+Mk}{i#sdDt2_fdzscybD1YC+sboVPDas$FDIkO(?KSq!l&hA^i&jtlhLzNVls-)uWqv%ljAf_N=5t_ zcB4FUza_Puw2!gmsw>oR6<1GO;VQ1)XW8>vpd+@O_vDo1gT6>c1eNKz*R{`GOr~%MwX_18Qw|mg9Jq_H z9($8=ut4DW>Vhvz@F=ZW1{Fi-R1NwA%0X!0;Ldgu41au9UQ2JHvYpS6VuIiylb__tvzF zid0(WgW<{m8@o%3$F;op(6bn|IE-3(v{U7OsT7|2ct$E;v+QSy{|k+R1#)gm0l3By zf`G@B+0WvkZX8w8s$;C%BG2-o-zxQ4{0niu`A`{ZF5H*z4H1f1acx6kG9BN_P@iJs zlC+MX=8LL!^qhzfTrq*mVU#ZKcQ?rCuVgv!b zLiI&K4!&WW62(kpTo$)GE7y0e&&sb<%>G0f&el+1Y@yX!3#}#`+Csk*x@@7{*h2N} zqtD`7A&Tr15-)5dC<7abmLVI-N^x-aM5O{Vk+C)_EwxFR1pdx`4ocSNC#+4jbJE}0 z2#40DAfe0JIL^s;E9kW;EF@l78z>{XdrIL53I&cR$7rF_HMOTg(%(eJ$~-k!CbQZ! zCEUi^P(Z9rORY9735V9E524H2ykn`2OGv!1Hc$rohL$0HW2HFw)ETgWF_Cfi+jS-k z0H07>!1_i!9d`9*X$;r=vy@mf89`bv0FcjL79@T`pC~g3HtZYcOfjE%oh$ITLzV?K z*}h(D*!6@%8}cIo9n3h<3f0!Gf$B`_{Md^r#Y z$8pIN+M*-d%J8woxvB9iZEq-)bjc{btt9?o-2$r60Nr1%ezGixIB_30FM$4QhT-sX$z z%;hVT9qet&!lm<@=jHCV!+G)X-*?ymKZ*47a{BU<0ycU;Q1GMJvA1%E+V~EaMwlM*KG+rPy}L#WFxoFT>bd|4GG0JkK7fO}k4lt-(7@3R$K40@8Q|mi z-~PPZebj{p)OH_VtykjgZ7%Sv^-4o$dtor$eblElz{6HbA+UJZ`i?LPb2Yuh6^3B1 z3&BEg?na0;{}3F$N%@Kmqt(L@e2-ERE)A3+m}j%{1Dj4+*nU$k$Pk_gW z*it{SZ;6;VxI%Ai^%L84fv6r%XMh3d3~IgJYU3|RXS{pC z=Zxh$l*;yO7x~#8N?+%Afl8e*kQReqxhDjIioVEu5h&=3eBugyk?&$KU;MRGnHsiqpm#5t4kAw82H`gF5in*SKB%#5!M;p{`I4wk~k6bq7-p zwk~k6bpaY%m)fJZL+y*QbxT~t){W4TtZ>@y%3Z0)5%Tl?mLK)Ff2`k-=*ZKLI4ET56JyIIKKoe^3@C zh_psO1TEuBQ2s}yuz%b%#4H18#NS}P?rf9|`&&AwAmyNg1V>~MOH&Ry2sr2pJyCa9AWYy$xD3Q-;mTgC<2gn zt_`M$6z}V7cS-q^b)mMvva==k<+LE&^YD3%>V&e+R0!|St@Mxbb9Vm0S(&BBjm$7r zt;U8?N#EkrJ^<=>Lm6RK=%nrRwLeMDk*(F}+kuo8GR^7pBV^$!j zR>ou4;rN$T_dT^CD;HF&-xIj)z@!zRdfMsvBcpl{_SzGye(kQHly-dX$2G+y-f$87 zOc`Ng9jJv6(8*3iRm;$tR58uzrb@Vh?;|LBzr!?Vdz%VhVWxu6*2(q{F3Th24=4xs z>WOx>05g%HMUw5qF3WIw|FTRDmJCscvSm~oaTi~f>9oa!6UGlbw!Ox?W{33YWJ zAF_wkIIPZHt(opp4mMLnPSqJl$y&o3DGhjd%K46`B=_W06Ih;qfUnP%BHGCf3KRv; zvU!dBo+|imUcI%ma;Y;}f(0YlUj85H#qyMc=G_WcOTy(gsVQWD-*jlt4*;-bLgNNr=OU6-h z(AL6d1D{b7Ev-dSNNbtM*jgLSt#vX+oxn<5fr3fDNw&vbk+Bs=IJC8D5xN{aXV&Az;GO@#{ z%{Y(`5fptO$5$68!-IBgG8M$RbZVn1*?EJRYB@HG@`Mj$KHa1OV?%*iv(>x-fN&kK z_~kGh{NyY(IRMC{qR<%YUKXTwocgLCNDH>-<@AG9q`_>p4EyutFdV#aF_`X5ZG?}b z^em>!y9i^yam3X*f!)xTjbth!c|_moZ89RT$Dri4%JNsi@n34a%yungOYLY z5MLq@?`>^5tF#)Ut+u97DO_!RM=97z7YPb>(&ks?eU2R}s4ljR3PMLrwr4?w;XcQ> zEW*)LP3wiD9XxNdqeKW_-a?iN6hMxp{x8bTBe%4*()6`y-c))CL z-r8$M^0a}PV2{4e&ooebJNFAvI&A!6Dn$$%Qxes=afPmfoEH6XB_hz&ca0Y%6ep6{ zfyrwZ3SH-?lhhh7hlUH$YA;5E=Nl9GsgCc-8+ve<)>}A~PidrvvRDd$BUx)o!A{ju zP_R=$bHToGR`wk*BJjBtU|v(HG!AEdugl@AFX04glKo9!e=(E@S%)(UAn)SsbzP2I zJ+I4cW|O9BdHd6=JY|_0$G)&YCEGvKEcuLZ0$K8XOEsQ1Zw4FCjX%rwlw zRb030az<}?U5-_6Tqk4IDGH6vdO}e2X2r4Ujgg)LyhRJOPTX}O9mr&8yyE=yNEj;a z5=pDc6h)3h=`Gc`{|OH5(UOJTfO3P3=O$bng05&)KVeiIhaXdT`Gy|{?M0*!L=K#< zO!Bs8#up0pG3HKd)pGweo-}5*QTMPm)K*-lw4@a6zUqdvB0mq~!`rD>`NSq(->taz zUN_{B(&L8pIPe3Cf(x0UH)JAo66IhbRB%M9`E$y_L@01D5eoQ57JD@nL+BM6^cKoN zXu%QC`zZ&ZfuloXs`(!(fv6WX)ccf!sKCLbaE_bA(TEBh9TjiLoF{I0ElR}@y3kG8 z7Ud}ip@DH)}@AHnQAp zC|R$3xV_mendLTV1+Ynbu~y?-CYv&4mb*X2HnQA9DA_2o|1Fv2_SeEJ_r#!DnB@+j zC9>RegKA-x+oTnsdfLNfX-4&+TWDEsKgXO#$7oq@KdvdVNtSyjwGgx1hHA7tLoli0 zYULDFlGCc7;I!KPhTL~;7_O$U`&1CxI@$i;Etwzvk8*GquyzETv6#rvBFXk!TIH|b zlFJWF3&-C!_nBmSk=qit2<0FyriCe4v(&UyG}6K~D1ZnLve%<1ay3%$wv0U8I?M`p zwm`J9X~wmu3^Wdt!jv4yI7|wsQeBH(6hPY5#$s2WF=~G{*#ePlAAehB?#2@i&D?!W z=rVIR?>4!$`WwL}X}j%WurM7CKmnMxqXmdXQ8{L%IC$A{YNqMVpJJqwVxh*s2 z*@eUln+nRnrlMuYrm|8T{Mbabd>kbQZ7R$Km!jrbnu?;3rZSPSss1*aYSd(P6>DJu zO}01vS4LA)!lA9ylh9=}b^BN5f%R5;M@YP|m7ol4C0d4TB`d|j$4rA{riqLdY5cFR z&*Bc^$}PErIB`qvAdcQ5JBV+n%{bI85EOl=GxEScQ$b4}cq8SB_Lq5JlL~YSnLag9 zjhS-)%VB7FV1E$I1ON51AeaZXg0$cp#>$1*|Gy5H0uKETnojQ~!7;QHu&H<>1zf-n z1XI8!X&hTI1#BXt`+xjbCT9|Q7XJlH+|2q?ofsf-qs&!Du->$CxT)$%DJeg}i%MX*n~$IU3er47 zDGyiMga5;AmF-=g@tM~_QohsuM5mZVZ~mY%{$wG10UWN1v!#CW-RTiOQ-rEOBq!So+>sfW0)(T1m{uAY-@!~=fe2ai2NXaK$laH~#7N13aBuH} zn_wEeEH3thm^*SH%zH;Jt?bLxZobS;PYYDC{cWv=Zxc>HOHQh3EQ1JHYe)fP4I3Ts zl#iq2fViTDqhA&mYxtI>hD(1?`?7@=h-CXbt!DEGCy)hCpTo@q=_fp$*v~}LT0M#) zS7TpV%xJbs?ahu^Ad>BeG&2qnP9QVZ?1em3*Hvl^pSMQM!=LR{BgIb#-@itUWd9It zt7#Njnzr9C4JX4qcjRRF40@!;m1KYXADIjb+y!$?9VJFk^o}AX!_2`yt95Ox0+lpI z`m&Ua_W)E{1NQ(>a-a%BpQ*~{u2CDX1{6TxlGQmykzw`bS~dQEg5N#~FKq_!XkIU$ zw+R1z4cs@-_WxDP$aQM5|5*$!T#v4U`xtt?EI5X6sk_o4F?W3q!KunLjQOT22OS`Z zYw$+bPes9azA#-};WRZJ-~*p8+}aQ@_xIyQbue2-tANwgVoK3-e|+jrH8)?@BQzhc zp9N=>Td5GvSDWt2G~h4r*L-DAi-4qt>$vJbu|=dk&|tKEHb*mesP+}NX4a5LcqvIK_MLF_0IvR04+@B{z! zkL64Dsb%6QIS?+^@bb&zVhuN1YS`w0+M4CM59oR%r6_X#u-`Yg|Di*$icPdYB-`t1*43pPwC>tr$UU0KSnJmeT%4B% z+>^s#uX}PB>M!Jhj+tFtA!hamR!sd>e@D)$9`mdIZeMy&dl}*n`92Tl)e47I z!AoOVArr-{-2FV<;8KAKi22e%RrETPe;{Ag_r?Vn_#06b zoYWdTkaK072lAswK_KvDdHEmU%krWt2^74azn8eG^nf@0TP@=(FMiP3Czh6mpCa!! zyF?DY>2H|q70MGS;vx>KdS63?ydQ{yk~-pNP(}(3bo(fAg)SN;T|{0Dgf9WcZtQp< zUkz07A2r4D4U&`xwS!Ib%o_MBRxy9xgFCJE-h(@>j#E+e;$cG;7Y{*7LoZI#ytquD zpcfyAt7Q*(_nT@7=Xc@<_2LX#8hUZhO&Cs|Q8GGkx>fVBAwnET@t`Pl1hfP?Fy6DC)D`VB1YKRcWQ9RNR=(r_910A9N%I;JY2rdwkP9Zzvzr=bdCnkaEy}zi9qD zDvCn?6&G+vAMz@8PbKFeL8kuONKG>QSBBbv{@Y;He8mtU{-bzM6m~pl1N2`5p@IHO z6j$iK#7Dt9-UiKo)pK})kDQUAo+Ye{VTa9TEu>`hOgpRQd_#nIhT=g{=o$AT>6u@I26|?_xI)jYe}QM(J(4}E zZltG=c}T?XtU<@B!B^z*MDQ{#npfoQa(f1|qlQu1Cx;JGib=0IyGVIrgp8rmy7}<9 zvpvI_JLTod4jjnA_Gwd+M-!k3m`QTqu_3vGgH`;piB!AkBw+G#_3P zg`p3t3cO2?_>_E}SDY6Fnfh=aHR?b<&qwSvT0XjOuT`mrAwt|op`a9W-v!NmZG;B8 zudTR3_qBZ-ykqUv+*ixtdEe|lyh-YT!}BRq4J))R)t6AT(QsZ_PYpiF;fdm3{{$b@ z`@DdsK6{^t$#K!7sG0uWV>!7cE-0U!k0|IF#HLU^^vnd!Gh^W|E=~%0V)@=e@Y3mT z{bav3WYLR3%EU1;<+1FELj?+Y@mFy*^f6ym1jfks#1HDlUbHlPD4SA17@Yw%!cp$1 zkVa=56IbYrW6~MqJ~g?7ck_`&J^cf?;I%l;77)7Z874{1 z!ud~R&p1;KMzu9m1v|xR%|k1m$SEfX1UBLLCo<3%3KVR@+wpU$J$#b9Cp8^PNNA`@G zW0Ee;zpL!=uxP4+Ax~9wd!wGp2K}juX8}Li7Sk;zn%u4*&aQS3lnEO&rox;;mmfXo@Wkw zY*?YKMD9~cv4J0HVcDYrthd6SLAiQZVvJE~-QHZ!WQ=(eJ!4rsRlyi5@=W@%BITeT z1xMVhTbFXsg}^}<7I-G(@_9peo~I)fL+G{|bT7(5XyD)tuo;wt(7@55F*<_O2&3cQ zr*aHo0tKVvQ*p(f@x<3X3C>*N2leqCQ(MB9LL8Jr+6(pKZQGn!pbe4;VkMoF{n6T6xy7kitGx z_^w3{R>n`Vq)8Ip7^Dj5##PUx8}|sK(2dOmJ;w9ntbdlu?&y@_+m*JiY!qIlZVi&8M--BVDo*F$^bX-{T*=tU!_ zARZJ9c`na*h7gXXYC7Y=C*P(LA?pzc1&|r;1n`BWVG#jf7`Af^bBOzEa1uZ%hEP> znR4*JV8jrQBaV^-nT+SZ_+=pt17d!Jg0M(LlH7 z0cdsi1LM^FAeG)$rj#N)A*te0XpQ)wNWO0?2s5hX*M+5U%m? z;QW^b7g1*)l#OQ`d9R@@8z1%BfFwIK5uToy`nhr5K}QkI3Kcpz4*mN@xj6J65LY<# zAIQdUPw8LJZ=dAi^<5ov^7OutNbvu>UPYJZXLiL@4RN;dH>HS!effd5ekJC`h-U`7 z@!vY9>W}pl4V#$_UkN`wWo=Uj)zr;?kc~%w3+bTKif1OvVrtXT_c(;&;XL*;rQmq*qoCk;0I_mzdp|el13aDC0V)VJOAh%R z>LZ3b{=8>ucnm(fCe%!G7(VWJ-l9tH83GVvsKlB@q)`cWbK~S5=6R2$Q88>BRWpjgg@NF+ERK=`wHcZxKR81HL_m}K zy(o$_&t;gmvSPoQd}^1_aQikJuY5Z-$^N5F4z??7+}5FAC7uvlsT%u{;$!@+5EMQB zHh1V(ox=m7?c=r)!9XS(&xYS|8b4~7$U~>%{ zJV`eyGhhQ^rCTrv~NWZi7ne##RrJGtAjd zo@=ZnRlymiS%{or8pB^P!%W!>>5SffVm&Ql=@UF|Hq1}#Jwt5NxHJdf+Y0i5GyKG+ z8e&-JhDm_7%uj5wAvS7kx`Q{^0r|3Reqvct%+{FSelN8Sztuf^tRqNEh*`;2lvkda zS_LPiytM=xPD&TV75wDSr+UgdtBYTB7K*3EViJo|NMmDU{3oO_GVX{gjEp-$BV)&> zo=N_Z!RJf|k40t&eN#x}q7?X2=fA87rC=aX8Qr$R*<~QinB_Ujs!$aSgo@c^Ae4i@ zA`trB1D`ba6MNkv7Ic;IjzzVD&0kYnWDK#0wzm&5WZM?XaPS)u-uyh`5oC=&^^=`! z$fDutTUCWE@e^B=op0WmQ6qvfFrfjAV*3WxV>>7Z6B@v=Wu>;TLzCcACrGQ}QYU+M zW2uw3sDQ$#x+JdPCoeY7Q_ERc{Gw46O3TEkq7>pejH-J=8l&pIxWcHqpFQw+ zfT>PZFw!dLkdama{)$K&xd=XAgJGh6@C1~QgZN7H{PoeK^f>= zU`$(+R)Ftb>?y`ZQ8s!Q*yv#}1w9<3Ht6B79K^%L1QdFBfw+R7{HrCNSDi)0FY4i3 zv`q9crH~dw53dx`=;2l33O&3kM_>=TxO*97d;B*p<(EUA<2PC^X0Lvwl$0m(!>iRf zcsL(l_B~_)Pf`JNE>+P@J)t@Gw;w#weBBSAcZ=$whp&Omn$+s-8ReiqfOGDXv>2Y& zBCI%Lp-@LX3eg|HMt@v}zwh*K>j+{%%JIQY8+FGiQ4qSLg205I{J|>7Bc2d+>W*#H zB6J6(kUF9}>IyJ)M?G;zos2kTOl+XXRpOYt~2=Vn$5S$<y>udx323fVWV! z4uwb7`ls-b>n-;SWZquyf%ka-VpyQ1RmkQTewXC*Hve!26ll{;H9>M;ibRJ;cG^?sCwWhbBD^{iYh9Mw6?&3)NSR= zROhTa1uEH(i|Xo&sxp3(C4G{%Rweog*7XS@q;F;Qrk`X7lO&Fi0b2rmB)0pj zNWkUYBdUu5_nyFopS?-D2g=YD}Ph2o`l|a!h(_u=tqLRXc@*#^?DcN}LkCFqq!+7p5i2_(6gQCdJiqHK~ zav<Uzn;PviP4-ijh~j@!IF`q4vw3R%|I1z_l1v(M?^F zOYU@@Uxv)YW~zdVfDO6iPG@Z{o>HTqgV((Rhr}oR#Et-pST0|p99%8~2bRl)_>8Nb z66`Kz<8m3;xLgK&+(}Kl=22Pha2lMjhOmc+OZ*~~gZRL~<#^Z)PdQeOvJoHHIzCSR zL7D(3|LIUiJ=dRixiA$c{}uuie)5YqA+54R(COqqlhz5>rVw%j5XG{3UTPj$P$s+M3m=O=sGkhLUO9{S1NHDpB; z#00E7zx8*j)9wi;K`=%jVGtCIfGhaPuRVqp;D>@vgCNyZq*wvI{lwFT#R)Ba>tU<_ z#gi@ImfU>qPIz@>5h{dB!D^I(gL7p;!ND1Pghwd*pTTikYbpq1XmUu42yH0{7rvr3 z|C*M9_`GKd5wgxX6adFyeBP5%1Hs}-@ZFb%#WA;8ggk+05+PTC)9v1+Y=#9QIbj16h)esi<#qMb%ZySHMKw_hcwd7gA0p!_?Rpu2Qm-*sy#;8jRIKAqbSn6M8iDa z$&{@jPq>}h&|W!09!yn?AWN=^6drr^CxW8)YFu*N%j1o=vH4U|7$TQkUs5t2y-kbu zR*a+MKo!JI-;Y$+Qa1`9S6jd3^+x|sT-kH=!B@zq$j(IH!FHWda}oTWn}!7(^XhlwkkrNbhF&C+khdPkeGX1winuRP|0 zQ9hL4sP}nPrc%J0-NuRuIDJCEN!v*&{(4*~ z4_r-aX^SMYcXvOjE@r8qllLG$&HjFx+T1giL)Zff<^~At0fodB_JBgUu?GZ9WEPBs#{g3cWiO)^ILxb;@%E3cwFoe^ zP}kAlSQN(FPH0@6w;nSfH@B7b)@Nk}yst-yu`cUT-Ec=KLN>Jd_hr3HB27G=)q8Re zKKRsI`FZP&r5I0N{%Uq!=v6P=VP4MLfW1y|;8tV!#V~I zG_@C}nlz)Id%N;K%X?cg6B!rm85O(>A_o(|Fh2iM??mEMvP;?l-RmWS2kEjIicb-8cxEN0yCLL{dnVy@s{pY`FAgZnYy;C?LeamnKBFlFO@4A{6ITLEHX50SpC zZ+710ZK%q1DvO2uqZRU)a^@Ew+rg%n(d^@jELR>9Kv)Lo>1B+%Ho(CXYk0e|;#4dp z&D+72M^+($GO!9o^YDz;8Fg5F%0Xn{=*T!41!*}k8rjnLf!MSvd_!w*EbsA}H)rxf zQ4JiCdI(_gQ#-%F>w#)`_H5bI9ii|at_h|Kc^atcv>n84WYd56xItuZVkPvh@Z@-& z{!2vpkhDCoUcOwQ1WP9Zd{kAXx80kESLUg;^F6V{_cwF(@6)$;ztj{ZZH77|4^L`5 zuv#P;A~xQ2WBE;Cm34K`vzM~rA73y zg_LsODNLL<>v+rXFY9{;vQ3nSG4TtSA@-n|;0bZOMz!^E;^#avng3NDIUj%v3WSJ? zOiT1SLe4j z8O~AIBWL9(6wm5Yt_Vuq zd3!kv3Vhn8*=d2;rj(+$DS%^}W(a9))BfTL+q8dFur~dmx%ce=ZCbpAw-1{@%f&Vw zODJJ{&)h!7U|O2@Z0Y@(Eg%x|D;aaOMqNQU*r>pf!(8V#i<$g~jS5^bPT1ziMorkr z3d9fyz1p*(YU0%CL(-_FaG1c4@I<`+dWVYX{rmJ*dJUK%M~*XqGBE_`+;;Z${5($^ zZ=7?sK&EZ}5h;pen^OuYT*k4GmT@euWE=--^HG%sB|GRCq$9!f0->S3sO7m2E?cw? zmo3`r!cw_;<(PLBeyp80Bfxw)rM>qjR#52c-9pT5kuih<^Wp2S8ZIo!i?)ZiVDQW>-I$Exlt9J6vX7#BG4m7o+#d{)&leN@uUaI{AsU0~C??>`gfs zA;2*v!v2(vAp&fiN&p`ds~=SMCbJ1t49ys;;m@WV#0QRn|1D)BKCpFs%S4++W$|4n z(L7_qfEp2$jzz53i-38SpGr={o5BS;AJ;0a?)0q9(RMK3m}Bo!1T_D)W`0Os;!DH^ z4or z%VBQo?fsOsrEP$liWSqQMK}mmw?{0XyFGk0g@0AS?cn{Ed&BuheY`bTD zoC2SGs@T^%f~8R&E`d`8g*Jvs-Bd^s!ROKL`ib3!!bIl}$p`JJk5n?c^NO3c;Pss! zdP}fq%9bIXSBAK5#_yxOomn|5hSrwKC-G}h4&nm`JAc9$Z*lfIWg|YYu?y+=afjgW z@8rAQR;&k=#X`Djg``pr76KeBq#_%Uz=l#b76NR&5bUP`-N7rr4gGXhUfECQ?X91a zCw}5Bns=pWOzfv$2w?chV+VU{JHHon8k)0dtBdV<<`;v#g=}mAwMRsCkw_+WA8~*w_LUewps~*QF7Mb5CW^{zIeqyiWmw{T7av+8}*z%Kp(1da^gg_5N zNVfv}L3b*KR&>$ey_AC?3LK*!454hq2et{{=m*oOEEY0FD`Y<9U?IRU`oRyBjfDVP zF9bJ*LA-%0z1{h&9pR#I4R(b60vUet^iRBXoqq{B?Fhe{d?=2X9(>~6#*R{ZaCF~e z)jUK+DxdMjWHz1PZ5F~VP`X7`8{SQ-qZWIAWdFWEDO`SC#H2KBqASTkZ6^VWnWkJZ zP*Ln^;o=IrT6j$GuC^zi>}sD+3pUSG;VWi%i}S^eA}aEmpL$QTk^)$dYn)@^DMijP zV!i~uNvta6VgI7iy7^UNWdHheCM;Fopeh(mO=7U)*pi?kFc087lj0}U%`8=*pSK-* z-%n~F6eXsav6O?62^?dZnMv6gnZOp2sT(1B7r!!2F5`ri{Ebi2lEg=q1QGyKQ$rFexY1m^20Y037a7`)dxCZJ#V<~cCq6pFESwCbXHu%mSpCBsjCV*$)K zRRo=OG$(CGd|FR*G+t?%Gy^+I5v$Uhv^J!VDU@ze)%uu875muW7bt0c%%mjxSPV7W z7o^x2WL}#rkg>B(5m(sRrZ|FkwjwdIv&Am;PB71Fn9})YDWoD6Q){tzEu@s_<=$H? zlTxrxQ5oIbpB=JKE%@Hc+3!?E#D{GcZ#y}y2K$3Dup8`h$N_rf)B+XRKa`E#0N6M{ zZ+Gxw{oo;-Rx7V~4^l52{l9Wp zgL17f7K5^ZK!%@u(Q0ok=g)#pgK|EtmCQ{M3TZ$bQ(FlzbaQKQg>G&gi*6>55VwLw zi`=DnVEI-1XK%k?yOd2o!!D&etvl{gFjL=^kaauWSOhm@d)G0_ot=x zkmjxR-iVw+kz|6L6Ov4jPl*-nEfeHyf{87jEt_<~o5*vm_j=ee$`fJfpwhafOJikf zJZ6Kp8sGSh?BW=pL8Ng}b!CJ1IonSQz(IdcERX&L2I@a4=Ro?9_IBWm8Uvhbl!FO> z;AH%j+KxS=oXt`F#`1YJ%jM*y*LtJ*fX&{b_D3MtCAFy!s$c=|tRBER6wVW+DFp%;sqz;7DUPU=rZCxjea&#T6_SF0n z${YLwFVB>I;5c0N5DaM$52knx^YH@ zqv6}zqQW{xB`S%=i*m(!pdRI5g>{`4l%wllg-=baT#mg(*;wK8<_cfk4;AiDrLe+j z1*MxuQVv!aI9TDyl!FBW2Pz!H6Iu;v%H~lv1bJWH^LCNqK3{*Kp{%B2hyt9pT{5b( zEtG>L>pJ@>N9crnQ7|XZh_pd>q%0`4BVUmTPg&~`CJ-8DG_~t>ctFMVI$(o`79#G% z2G@1+Q;x2K`K{uVgMA8g^ge|%Mv#F9XN-?y<%|KZAIQxsto26lsrS919o_x#Gwten zF=*iQ(MS{{e(Fa`;@a;>X{nH>)5*N_bK9Lcd>5)>qLfVm12O=Pkl-d*u za-`I~kUUaC1Mx@+EaMr)D#r8cr@X`L%?inLrE~#FO>08Sz?{^dr@j5zU`mDsRZAXU zvqxFpvv2NDIrw)y?aj@oawaUtj)bs}EsDv`F}@7LtcrR9l~@))eAx z;|4i-$~ibxG=)Q0h-lGfm%T+p&VhrJ%ibjC8ei3Ha!>X(Efnu^xO*8E;a4bGEKiFp zuxeg1M2swogW?er@kGH^7+i^~54*U+)rY;Xb&-i}iOG`%h2$c$%2n@3a}&e;FdzRP zVc#7XWzqcaT|(agp@f!$geEl9z(8XCbY!^4KVY`@RT>Be|jplYtg&IW+I@`FOFK z_4(5?`Ue`BW;kanbGzu}6=!7SG?K~aM>KhTJ5!{qV{-ZGVaCwuTb)kd z=yWJXFB>9@p7z7u1i zPG@~&B|80kBY{poZm!Vj$N#0%Z>eD(i|Luh^Q@~=mY%WOX1^9FK3|~tyj4sq_UmLB zX;I;rigNei5du{mC3Qv#dEoqUVKnPK5!io3 z?!qy@s|l-*PZ`1L!)^V0MvRPaq0T-h$4=#Tq}Nx!GKv+5$YBLy-A>bEN(YxH6`*86 z@01K!x2rP(w*`UQ4H$v32Dum>qS`ZJR(k7FuCC*gel%?`rYatg9bp1T71K z#oRNDK))caek|q^Bq8cb`*gkPu9;m->?>CoVxn@Sq&)2Nu~902>eCg2jRLub&V#5U zhtDk0_Drl4EbCKWuq{{!jUI7ZmUc%-W#_jMKV>$&U2vKycnyhdDa8qKeh&8Qs=*$r7SZu@uoCe|>2S8*Ij2O&3Yi9_pMw2Z zdUZs&n$eo`LAbhNt>!u8MujM8`nKv4AP=K?_Sct$X7EY9%fv?Wm8aWl1YcLzut72d z4vqr&+eX#$=f_VH)fD@18T9khH1!i9@z4h(9 zP6e?jZa9iasGl7NSgCa&o|2}|)ekmP9x@#G!Q()|1OEQM1NI^FlQPel@BIBJ<9|r_ zI@Ozv#h|*%P~1Ua{=J~V*O@hI~)mdjX4enR> zv&lH%y_YF?(+tzjnJ&R9a-)AzMg2#!V0-lhbKy*lZfSLe9ao|bQe!?>ZgZnraOP_O#7}?Eiuj% z&!JZaZ&0(@64)MfY>yJ+%+_}h$(p@9)6UjcXWGhnX9Dv@Da>c3*8F%%nhx{|wo@K5 z%n!$zkFxn1TLkl8am;^(5H6da65aanahwmIC-6Zu!w1%EeTb(xCDTKO4==@hh?Sf4 zOzoQ+?&iz1WuauIPF*-F$D5C_vcNe`(<{n?L;+>tYU2UQLWA0Jg|g6~b`fR4*=Po2 zVY+N!aB6~$=DI<_<*KdG_*cg;?($?YuhT;Xjt$jbw7)k>Ctzu&h8VopD$li+ZM7d z4T_i0bFYzVwmY8Pzf-iCYW5lxuFR^BqE&U%Xlg@sIm4LbMG%v`>oy)CIJ0ue0M(UwQA9e{ zv2G7w1a1ogw?{I9<^>VAo!dwuhH)F|H|a^U<(wvLW|!?MTF#uVBKW?J5%})PJj94A zgS#s7vP&ILpTTvJb6rP$OOQ9HZ=u@e%<<~f z?*BU>I75BTCZe28Np9NE&FD(%6UNV;pEY0o!W2}ppA7|-Op;nE+2lQwCI_$b``0F~ zZSK#|UHx?%sZw=?hemvVf3do@tQ8}~DGfD=WOpMqbj}1>SLN-lkf8@1DABw^hGC)7 z_K}3kls3_dd6l)=c{QF=c~7eu!7KdALl1XfR!46L$xgC6+kh#m>r?*HUT(Zn+cg|) zewRLH7|INni8kDzkh<$6B7tQfxliYB9iTi`A$z<2xR(O%J;9# z7ITT=Dxxz)F*<`4+s=rmr0J?NgZ-3;3^&Gl-G~*Mzv|cx$j>s+%)aIa8H%RTcoHU7 zX*m7dsa>)Kl}6k^rD>M8<0C^%bvLKtUX{(@b{Dx)NRh2 zbEk=9&y7yhHKWaWFyLDcY<>?)>PcfAZoH+69(b=Dy&b8vyrN!uK6sT%t|!J7q_TNV zfQ4P>lIq##1YVyn{aS%Vu(3%Xf`8n6f^ySnx4WY>lfOm>1`vg^SJ<{Lp` zlie_eJ(JyFVKbARt0<2-T}7De7Bhm$&Xrlgh%1B1ZuEn9WT^EFW404P%yt>|Ons}O zUwtGvTRp>UaC?X2_I^g-wjgl(eMZo-ASi9$FoKPmJH3D9c01&z~6GKvzx1(48va$B!4UGtlh!s>Mdr2(+3=< zKV<|?3j(LVX9O)9#B728U<6y>-Q{chohbW$h2#40i;*TiM^)< z%7`n2J#Ys`;IqiMKBI;w80e;knenGX_!y)!@c@&tG0=Ui^@%)>z3nHS6Ko%yeIaIt^v z<@V0}ZAK-VHj3N8ZSt!3$u7V{&e;&WS^sn(*i4UJADpbVu?X%YKH#Bj2%cAanSxAu zK`b!$#h<<0-n3;IcVgasxxHz7|K(-@)mNdb@pQzBn)-ua`zm_z!C)!<^~PYaq_0db z%@5YlAH5Y!)fG1dTLyNUM%lT|Yz6KnPI)^xMjdCeEUfycZ;F@vHpW7C6ImbGjJt_{ z8wpg%f6NssjG>1|3RTYBp?FoVP?y_pQ-*F{iz_Z^TgjmDMU zZp?~D^jO&SET@4jy{)zdhpRy>g3?>G$Q~)Zb$x0Qvm>X*HLz21J|mc&1i|cd10$Fo z1i_TNh7q2U{VRpTR9sibcII?-U|M>a5ll-WlY3{l4Pxf5LtK$q`T30HFg1xBrlwI1 zOu@ZVon;RAddl(j5+m?ckX^4w+mvY-i>?i&0C2SyBOX_4G_8ZaCmM*8{FF&fy08p+Ity6%LXx}=W#~jOOJn> zarp3KLyGAUF9xqsB^pu8;B`_X>vd&D z;I$y|x(*{~SrCb{vu$q8uxBNiEo>&QT}1<#(^UkwuV(~qyE4-mab@t@!t^P9>Zo}P z8{g&B{ewN>etyYol-!~RxSjRW8(`bqf3V4Ll-u=2o%z!(x8}M~xy>>BJnh#s1b6fm zl-tc@8<*S1}u;uoVMhVL8vyE)Ig@GuyVwo+sOJ5J(sxxolWaq zptw(g;yzZfx6nq`M5gFx-wRIi7TWAGp|QH@;a~;5{!nm_nqZW;Nr)S5W0>M{U$15| z8C8%OT~njd_iLg7-QA7XBSt|kIe2W!tC+~BbZ%WnPN?-&s-Vo zQ@6ZSHbYfp7_-Ypo%?FIpU(eGmg-9%t(uvZpzClfcWq;PEH}%vkNKsQQ8=ry9{72% zaUg2QoYmK}oyh6~p9klv_G|^RdStw0+ZYRFHS43W;w6tigPX)>HI7t} z)gvWb=3Da_U&^+v@JY*uU&{UY=`kzpi>WD-iQ+to)x5Smg1WiMmU6oPQ8~VzPaO7u z+#}YI_h1ebvE#_eSIYy9-f*={+ zUQgr`rySw-_b+a0&zu(%f-~n) zWr$+$2%IvOyFZ)3oWVpl>l z;7G*A@WYH^42u&O!{RH(aDwj2Tt7eHYifsZ38Mr<_)T+FqM82gpI~+%+5Ex7?=(jT zLwM|^;M3||w!sYHwbMiM)mucxSpBM*9jjjxV8-fz3I**r?>ro7MnjeLxZ(anB}l&m7|cgSLJs@_*RG|@9w_sH_Dg3NN<8yKgHnIcRxb^8=K=vu{O z3|3}zja(_lJrbU+9${{b(+4FY=5TFumR;5-kVgHPn}y`9y4q+#@*Xr-=1=Frn|T{5 z>YH!xoElhZ08ZouhT!HxjSky4Fb2BKe#{hxiP%b%@nsU#WeKg`-U5RdDvW` zFAv+k^lmkAH}#Ip&{R(kK36+b$)|qeCNa4jC(63op?uxvpJ|nK)w-c8)c**wUB}F> zeHWarE0--+xx*Y;TqfIQafxi3#R;U*cgJksRlR81MBimWpZsYj7~hf&mGs~BL#cra zhK2j_Tej1_|8se$hic6RA*25rFWDl-LK)5a$V)__pOHWm`kO06p?`MbjQ($PJHae% z7(d&eZ5S%=QaELF$ivsyFq<%sYvHVHJDaRvdBkD46Nj6e zI3$op9Inr{IXu^BK^&emS97!VTg^g^0<+8?-1lR+HS~Swtk47MX(prZN5@O~hWtO{o@Qwr7YGYhj0ouZ458M*3X$MH->`!U@f9 zh6kZ(X!QM-tsArrH4B_GWDd<&q)XeQh_>=cmFL@rvQ-vag7|zHFWw}^Lh)gxWFX>m zm61SvdYUW5r)P`AW8+IFKJT^*jgE^?=hO=F7+&pA8@;i8=pi*WW{VS*>xoiAd)Q0q z#vMc5RUUEJ(0F8=(8w7OmPfZRH%843PG}Z8p-CW(&|K5Pj+&^^g3xR;SJ4*hx`Zwd zgv~Wa=2~vdov_O3VLd~w)su`NG9%)}AB(Y2WLT*i8SxI0dEH1LGH;kGMCOfuiOh%= zcI4cb6B-*AnOJ!}+-ys6oisG5g?^};)a9cwtDG2pK@_gb5d2^FP;YgLIBbkOGER(6 zIx$LWDYkot&m|{D7o8X-kVcF?c4Bnew22tiG5Suo&>vqV)%m0$bC5n|+v0-MkS#%w zK8Y8vA7h~)u~Iik;vRz3)kq*nIpzvM%4wN+_v`+)15mUiQRPk%Wq z(ySMpt3909HYaEbam#IK$JTVC2yxqEuBNxtGY3lCrkFoCZdY@ISXD8_?R0Sjo&Kib zMyDS%SLpPEw$r_E^1!6~L7 zxKX%eb)ZujM&0{_TURa3@ClPSKy}qjVn$aDj$ZN^!2zl(a|0u;jQezLZMBkN9KMJk z4qwD`WKn|7Ll%ANWYIa(<;bF4M&G%XdiTgs(V=eYXv{R34cy1{(~c0?wM{8{4ZW`}lC<73 zF0@u9wH7bj9F?0sopi>{SCpz!OvuiC*b3%D_kSkI|1P%Do5qK_dbP-@OE264{nO~? zu&_Dy106digoY{)84vsSohTzUn+-9eF{LR{e z!7i=MJXj-n+7%xb*O|SCR9|;*pVI42_inC+vOE?NxvlL09njjY@e=4mnl@-{COi2p zM>%iOmtF}~OYLU#Az^2kt8T6JsHvekfiC6`?wLm1t|V-Y5^Iz3tzGRqS*mLq!)}bl z3FO~RMilvXv$;b4-P{`aM|0p28Exh{-CEO&?C_VSONVdr7-2emJy8mE_|Ys`K~!pU zS2bNd7^<(HB3|3|9%-lRpG?^GudzJ3{uQU|Uvj!Wfj)Ho+Cp8w!{|fT|JPjYXsr*0 zrR$$Ge{k1pZWk4YDQ<6z-RSMJh8w+o&Rn6l&lT0%sgcD~^vXzRWD)7zG8&qu%Cr%A zcbp-;OAy6*mnD|o??*zV^wOE3UaC5=*^c%IIvriDjji>Y^Fw8H={_aOYh2x(A8M|e zvj%i^lQuTX8?>=mo-Mjh-H3uF%tC+9b;B>T~5#k|&ZqOXh~k`P6)F6D55%Q-o={zU^@NN_zSHP-Ar) zV<_p&?OM3p>DnO+CN~$0zoF6R; zHB%okjKV1}3a98t;Y?s6hDBbXVBKN#Az0_l)g5j0_9dZuf#v284%SR=7bUdj($H}A zCzDY^qw$h|#8{|=vOelaggUjYG>%YLFjok5g|_h}6w$@qif9|V!5MLbY;ZW}&R!Cu zX7koi%RN~)hUWWJ6Qk8L)EW>aUPy~jasBAC6)WpUZw|Fk9f;SCH;=S4-rBdtc-yn! zme6pY%4Hd3MgO*Tg!OJKw#(_>)IuB+MT1F*IgB771d)X3q;6&exgZE~L9`;*8a)&m zT86pM_IgM2lZ-&KAV{^_9}czl$U(cHuJ+tJLtE5GEDz1^JDR^?1eyhb=D+Wf3FkD! zP%W^l8itox8M;T6yn^Bc{mEC@K1pK)`UR0E4%76uRdOIwmtp7^*rR{fJyPI0F&p%^ zbM*IR1o{Pu4Z;x&L%+bT{>Y$6nr^Z-bf=0k8}!Q&6=J%S5$G2L`VXv={<(``=oi@4 zFI_KRqSvA2>Jesx{s$fX&oTo2f}npU-Y5O@I>XQ}u&W=FNP?8cBvQL={EXkp#1oUq zcSdukwz~U?8GB76312t6$a*=!GHk-G7sCt@r#i?Bj>7Lk#MS;W^) zTE{HnH&>WN{OuCYB6ZD3lm}}1Z4OQLlnyP2yKS`0A06$-%SLYr-L2A%PM$+lRS(4x zxlJ`@GHM7jx<)r@XUp?j4}>8#>Y7%H<{^0Oe=5|p-K7KUx zy*~J8=#sjhF{D7Hc=7vUER+JQlzI~>@Qjf_3hXvlNP*q|k^+_5*%Wx}38~~sC}@%B11BwtScqUz=KRDFg` zGWd$?5AM$E=NIiCY@eB?AA4FhQeBt}Ms#r0_h$s^1(D~0tLnd>31zD57>4=|1?rK? z7j}pGt9<5y`aDPd4U9m&Ah7<>!eaH*N`|36uRwk7pE3~--Xlxo$CwN1A9mF5VFc<0 z5$oHj1B^iP!v&i06F(2XAZMOOnQPglNI|ckWB`i4aO}SLVyK?_lVNE8qCh)-n&IM0 zpS5%fWOJ9iWNOm+|eo7ZCCV0mtE1DE4!laQ1ps^n*ME{OnHUJ z-*n?N5r_h_NcyNbo+6;v|UCk6)D>z$nxU>QTSspPBMI*k`10Pi9`UG2Uro79(gw5IlYP%h#bs z>PCjqh`??mC{YQbf&sp%qn$nR3slD@PARUNZQW2tKlx24CG`c0WrdVRm?`!f3Ct9)nJdf`uXT#w zj9>uZNMlP!yAthiJQVg0fc-1yIRl{9iO_NNWy}=2995q&#lu}eU;IJR?q_De0ALZ< z@}DG*ru3coF?5IWbrz%Dd_yIHVFDNj06%G3FMlDK`@EgVEH&le?BA7FG#^4xPeiq7u2IZHV8H_FWS&f z8;>!9HUxDHCH1g3nAFr#k6+=VitAlOgjU_z&j- z2Em5&p^iRvlr6&`_&8qlNQ{LB0V||bl0neFvJt=-_}yG#4E)|X@fi46a>Z=OU;HC} z4B)0v-i6Q#Rj!L@auX9%e;KB@>AzCdWHOST8C^>QU2M`H{ZpPEYQ-WZtn&C^_Gfw7 zy8NX((tTa*?x^iwq4N5rZ&j+6tH!EdA(>tt8H^Pq=7e}o{}^f9O#V?ukTil6B<4~^ zku!oKXPR`eYx@L_A!mwrNt`noMl*6|tGUYPvbImSaUfu>Ib}++0azk2g?bVb-%i7g zpzktQ2>Pxr@k^whGTqrF(u9usurHiftLPut6zwo&iuS!+zqP*O(G4~94u80l+Q&x4 zR!Mt_>{@14NxR+{FjkM=Tfe-{Xf&g^u2~|SqK_qo+bI^12PoU<&i96|(5sWf6Vz9v z%PyC`G!*U{mbN!E|F2m1W{*;PlCY+D_^`UHtB8AY_b+ZjerXBKx6`Amgwu8Tmf?ze zQOWRCsvOH9m08YpvuszJ$`eY3pHlT$1T$1-S37?Px@zo`%TH@OP<1NA)-J||A6x3W zEq#_6T8J%I8Z)Uoo)M(3AUF(I*}8Y8iZG1a6&SfIX2{S;(~+{_iRyM{gSEGae)D?C zy^P>d2SMD605e#WCr{)#{*Tuuc($xHWeVy!cfqn zvtIW|;$zf3SqSfx^e_}GX(S=>A^F#H&EB75zoEGz$9@{@%>?F)Qkc(5t@-hkG~K>;c%$-=Vg93W z=6_Q={II&n7Qy^K9P|GmL_Q4iWY$Yn&1-%I!%;-K54V2-~>j(tZdC&zwldMjIsL9@wF+(CnnO(!=EzpI{R zMj4X5^qKel#r!+EL9cIRpKAN@>TG zw`&+dIS>TpE#uainQ9`#nC}H1`)s(MPg*dWq<60f_f(6S3wF+T)URL!>IFef!OQRK z8HRd+9rdUt3AzZ?B9UyYUSS4PS@x*TVcB6HW;#mC`vpxprNtwP(()Y(VU&DhC>SM@ z2eHy}i5W3VTol;+&cQ`OoH@Eu5Ap$%Txt(nTG9+cliN$(ZD|o@m>pP|ogLySPHFLw zF*{u7ZfA$z#IAzU(vK~H*}ZyLvwIQZm_3$Ac5)ll!_LhOd)U%4K7sk76y~#1YkoY% zDJ>o{%)hdS*Zc?jgx}Q*E|1`i7FfQyD>ISK2IJ zMEv-^YD2xU%6-N4s}ByWsWgGwt8CDSa4lAbPG)81wcq~!`HoXlV@{z!dL|m-bP6O- zc~ossAjJ(7$c84;D3FJYc_@&Ft}LQJj-8S}MfVvQUR*?hEO&kQC3S+`v-ek+BEQV# z6v$C6w^Y;zM}`;~CjWM&Es*<1haXbvDozPG&+wPL%DJZ^|C;)ArsWk& zRNX>s8CTieR|`h)a({;YAScpBb!EV8hI|=%e^~Ber45;`ff3RrI*Y^2M+n z%!a!Bgwya|Mo^apkzYaRScU;;7Qodk|5o#_P15}qm#W&#h)J_%PmE(#laZBQNApx$rl7{Q>S=3iJA+V-Jt^I4 zz6cGK*O!YSr z$xijldfFP>ucxiCwzG`=&>)GvEKgGEjcLkn)@6$?#FV zD0S=h&xc+v2xT2~}m^0nGy5=qL>cYaV zNL|I&EeuytS0q-oUT`)GF=JJ>aukyjT+{96W8H(w;Tb)#%E1GZreRbLaRQa2pXowW zj<7Kgl_T7%h{|E#{$3JZ;H@0^4ku1zMK62K_a`Hm>jjB@`%v|!EW|raZkZ|B+aCHE_6d1y$}pp=2W6%eBbe>ow!1On z%3yznAD$k>FsgwFq8dow#Omu*W}|cC!w9?g~nZOB~oZs6eK0m8|vFsv3EZ53bD`du;U@LcQ%Ck zs^#&V{+py-S&->N`F78Tgb^Z!LhX&=M(QD!L0Slmv=B>>776@8S~Tio)1rsbg0whb zu6l@y&EfWe9P|hiw$bGtlyCm{`iix5+|oaAnW1n;cqHWknvwdNhr&}*nCyJ?FQZDhl&cnO>`cidO3{MvZVL}mt%%J&)ans*mLe_t+L!bDFgNDEtNPj!(ygz3 zv@3x$a-&9H`^#aA9}1VyD<2D&O>JZJAxoy2t2TZ0j>qJ_WlQr1cTP=DyYdNkUH|d$ zXDW}$X7UIG;w6L3B2Pi3>D!->V!N2hagxrL^E{HPR!q)GV=LUiOV1!P*BXV$%ys4p znYpfS{FH-eV#*2hwNp-`?cq7ztihD?!}jn=wS$esl=B2rB7fh2^lG9XYqcd!KiVWv zO&{ASH$+}xF3dnI=UTqEubqJo>de$d+kCeEoFf4*98KrlX0Mo!3yupOOLdYTnfiOX(@Eg%>3i?_W}XaH>{QUHSF!3YE^BW|&s2YA9&PZ{J(4*554g z+v>wZ8S8{1Ju_inI-CSJ3uT>s0wxh$OPXgf_|J7oa*-cM)JN%=1oGpRX+pN_o+X!)X)2|ZA?xtVv zZ+FwTN{^b~N!p*ld{G+tYG#cxtN_+?D`tD0ruBQ_eB~j-`Um5z|MZaDf&QKK!TNKK z_2&qY^Y((D;VmQl-!I5Rs@2SB4+U(vo9LtWXVmb!DS9_rY^%?FQ=+tg zh12{3Z}Zr6^N6$GbIhoeR631k3U?q%ZNjEo8pNjiRufiK*Efw-sIG4gh~IR7(?@^s zxhxBK&19e1IrD{7*{|6ll+zW7-u{dd{??Uh3kA|#8}<=M+q}?Xy4)~lXd8eJ4))5 zpXB(-gPGOkp7(zWH}K|sn%92G~)Bcve zmB)|wTs##{_NhvPq<45g_{!_C2O|A^N`G)r?lWxJQf<0w63^ssFvuRPv}XhdD}vxe zq!%MN-Vh{qoOCV2a-4LFet+YXa{B0JD+(Yp_7Bj=6O# zGk`{m=h|Ozxq=aMw6)Isc$nj{zg4ciYviaI%*?JDY%0buV%&9G4l!Uv3~)%2>F|iu z`f4Gg@K)?%Z=bv*dyTcsW#a2wW&M4S0r4UGi2cfd5lebCSAMP}#n)Q-22;eOpNHx#tL|*&vzg_8 zRie=&(o_6GxN0!7Yd-q9AtUH#N2DzSuvh@o&lwLV)mK+Cihh><;C^0GGH;9;#atLi z*ABKrdj=yIM}lA+&1Xc~9pW2ohtUcKJbk=eXP=7%^v)ZvY$D9ivW=M?E%0|Y0~khb z!>=*oh{!O?QHL3TuOh;}hSy9erOQoD9i)C_Ryh2<{ivYFXc1DCrn0+&T5ccz?AGvJEEcBj`d48KK={mz?HwwMkCQ-`a3 zW`*B*SKC0}zzF;n1b(k%B=@H~hxo3xZa=_)$L&oqw_PnSGqa-wUcb!%ymm!CW5f}O z{dn?mM&Y%{8L$0H=G#|7xs{8od)l`*67V0FMZnBiU2LWK`q8|y6)rQ=FV=7+hRBut zsqZY2+B)#JDW|-M`+@7LS;XxrTQXI?7MxRh#g-4K^%UOc%~ zt#oR@r_!1J^#@Zj^^*HjN2Vj9DXF8?2xi10aj3Ln7KuX{!6Grl6f6>_53!5HJcH08vBVI&NEBUIBzkmV zkr+=&(?5?(N%uC2MdDyNb~jt)fnt`~DvwT0U8}aSC9wJdYjw&4gg8Gd{1TDuR{8lM zcAt6U5W7|0o4|Zg3iDa1-Dk#ASlG0ErR*KIOhLCi1XlW ziJ_Ed==J2GUh_*Cjv{(rl)`*gYR!+Qr0H5!Q->%I8Rq{SXMUGzsduT)Y!S?FKNLBW z(w-3B>R(NC8-hV`J`7FZgJ^~itl9byPf62Rds6!-4;enR9qP@X#(~sR>UOpWKHTE? za0?+$2sRVRnty+s`CAj1FG^uPE4AjwQ_}RPjMNvEhYa&?^qRltrBzhDy2%a*zc4NuaX{ml z+QlHd7p}}jsbGtTQm6L~s#?-7GaC+RZZz`=HpI`FX0aiDZdm+=_@#l)uZ(xkn^kCQ z+I~-|=BdY%^wJ;ZmNoUWw0`sFa4YpbyMdkRJ50e#;%+Uhpii$$EuqV{mL5LJTxPpk zndMwxzS67Gqv?AtwN9;&tj@Ct7BOceSy!A(r|)O*NBI1K{jl@l6qJD zXkgv>s#%6JwdSle-Syrw<5b;vPJhNVc2(4Z5v+;?kyTNfG7MlzCIA+LgBkIxiUyeG zdl}tWSIuBXR|S?t^BKXC$dy^nh$|D@L#|^OYa$WEnn?V`Euy8v@)oEa%!Uqp!tr-6 zBk)%cSo;nmXxSha!}3X#*V8(yuNcOI5*cr#6>KMcpIg^mWq&ZYs|>Ce8%{xk>#j^i zMqC*zg8TPOZKN_8hU+5eaedFoyrrr=v%&Q?!)>U0F=AYoFE3`ciMCP07(l}!f>2Lk zghTD0AROkml^hi}Fr%vi{;p)i`0I*nV!#!FyC=uybyH6=40pvSkGt=6^F`GGW`n!? z9d|!s1n%y)?ta4n8Ws_8S5ASB)$3G-Q9J~m1Ao_m?w)q{T6#t2f~mD$aRDkyyg>W>V-)lVH)|6l~o34#PKbu9(aliM*CP18!zB0ykZmE{wP` zv2AUChT*FSlCNocY013NY7(;{#m8N1gPYF?JQf7Oy@3(5EC@Va!-&V@m5#@*j_u6p z>VU^DGXjrA20vQOfGdKdi_aK=uOj05iitaRc5#+@;qWQP;Y*CbVL|ZA)z?uR(XasU zw-zJpudjxVTqi$=y01x(CO)Uz+A*`M1}^tx1TISh=<1=2xH7RIk7pQ;i=gW`?yN6a zmN!x@WH$Ib_c|No+Zln+f}rJl89~c}!0E>s@i@H=POmP%ud&}%^9D1!YT)#TjKFDE z<`^TcOzi057lz@q2$IuLRbnIs4E`pKwEk9R1pW#Ff9o)UMg@Vttr=l|{n^4{Ue$JW z3}jAMhjCWFJ1J^^Qb%f30sHi#*u~FoWf*{m(t_(D@_GB6d2`i0%mz2_8mY5q%xmM3 zN7o8~AOGIYBG4=dX|A;Ay#=Z3{OTa{LG|mxXU^vtfNB9GAuH_(ElKU0tiEL&4H!Xl zu0(67Qu_XzQuEbc%!@`YIAJP%Jp~Y95(HtY$_Tnx5QM1_Bc3qTzutz))zO1FT^-2D z!HmE=S7r<&t_%j^u~y3(sSv|(TLe9BXKl{AP2I|D@c72-ZDOuv#CYtxQTvw3`sqOi z(6ESz!~#%p zOqcB*9{4G84@xM3*$^EuUtb$;bRQe0|9LboEAW*e^U>x1c{Wbw z=yKj;d5wH(6kCL&%dRi3dE-Ly5W*7>eN){G< ze0}PpKDB^FV~3tMGFgrUx@&XjnIzo0?Z(t?UNPAT+aE!QwOZ1y^gONNEOaX?#-@Ce zp7 zI*%AW%ASXcKAcB*^x-@-o|2|tc_8(6P2yxCuYZ3{^DzXIdJuEJqc`P->e|(fZ8_h6WMYtl0;R-9Z zM=SA^H2u@I)GXy8!xg`2?uvEEa0e?>sKY7alUakS9puz4+mY)Qf5>8wM{nI$mrf1gE5<)pJC$UOZET z7tbf~LKMRbR&2e9r=;n|J5o0&4;fypkN4sQb&73*13x+r{78rs2LBk!JdB4+ML3Xb zxQa+7Q49xIv2`GxB5!yd%xk1PWH@j<-hpNsht=)aFnG~=j2#lK3E{))0Yta4kmqSP zM>{1=bH~J>1a63CxWSsO8}St9u-Ze08!b#z*`DEj<@2fEtDD&JQi?*#Dkm|9gZu_8%vb zwg20g{dlWh+C-{Gh~q&EBEbWH z)>wOF?dDJ`!%@Ug5T)>dm0AztDbA6#hip9Xr;W8o*6yVG)q&I-)l{|!=1+9YpGb&f z{$e6o^B2UKzchjQq7>${Qfq!ZMSff0|5Dp44;ki5|na~xPp zI;{iolr-J?b9qd~LxuzQ#2hHN{p8zWmzqnT&rkJl8f9-7Z5U;5LH){YVYPe4P~6on zZb2oFr$odpsGT3(RNOb--qboXu0SJhL3vixVwCeZCT}hZZrjN7ds*SSX7PyIPshzV z7`LCAnkI4ksp^Q0E5@{Za{Ea&g1GG$35OdB@2EUN=0OhK`PKUE)#QJX zbiTmjk;KQCAN(WlZm$)1&1l|*ye)dcTh8E;*T&Q>tR0^*9OI8PU)N?!EnV%;yqW4g z#_B69ec z^2NHf)wc{|xBI%zJ{0Zed&K<0THjLLV zUdrnfxYv+5BsX${cw3Pvp0YChC>%Y$&0ZytSc{e*T7zE%iTd%LDGkt41p7htneSRd==?&j@s3N}PtK1Im=v z?|o9Sylz!BGFS~}R*Vo9cKynoXh+E9)glYk6c)kYm@v@}jxiIpyn!83OAB!pl1Jniwelo!%bjV#mO9A>SJ)8T zriC~f#yFtp*eH3+Icsy|I(20s-keExg1nj$Ok;xJAa^Vyn85_W3?>#Jc@p@FOd z&yU7kB+m^--;WdZ!G@AN#|@d2=L7B*Bv0Q)ktu398-e6G94~oujD?bi^-&y?F^+CXtEWSpn~|bZZ(J>}rGa&O^QotNLQq+Z`J zB0pN+TAn@5m~3z6hyZQ~bzuQl6>4*TMv!{0%yo>oGN{^5>2A%`RECk6B8bd%dtuWR zkumB9X2TF#JlXoak`eeV2&~=22wFCXc`jlnBL&Yzv=xo!Gh|OXUJEyFg)_6O22Ov* z2%Hv?v6-`q=yCz@RK$4}fxCjZ?r!ZIS))>>P#ocDsVUae8jQeGLC(H4yGm8t{7co4?*wCxnzQv;a;3IxF|tLqs-o36}sMvP2S+bPaHt9cCJp4HAhNiF@{ zs=P?z7b6j;)y(dij}G3-2s+r6*};e_gQ;#WBj{m~aeElQn7H}dLfY#KJ!Fxq418x2p$k{>BL0bY+sJQRrM5 zjM`L2;H${EzU~?p393fS0blD+v%X%z2z(U;zFx%$+7l!;Y=<-K8MZ?l1v8if3IstW z&1VFSx-!cdF)~R*ra76kj-kStWHgvea?Rh#?5_Ff;#U|!7dtZg<)$`YTy~7uFPI&@ zE9`FXV)1io#{4|>E3=`CPdi=gn@)j)w}POH%Q1pR1&MWWCc~aC4otTSS~CX}2!bx| z&IlTHWpWuYGD(5yP8W}6sBjk>4W^4-^XD2plwIUIaevS*c8oj7eI1*=1|brc~6w zOpSC_Z?iG780@D$(2VEchpa@5Y8BXG8AkWWp#!->T+aplPWnw$nJ6qr>w~{>_KrdA#%*xYiNgc z;YddnAhJCyu0F%QVpPi@bkP0AbbCu(6ylJW71}e_cuJanATQEPdB`|p^~tBY%qvF! zOvnB7J@-c1KfhWW?i%ztZfxqYNv6 z3*3~6dYZoTR+%O|WVrB1oC~)uk1SVzvOc)*yW_&|gg7Z$E=2u@6jdQ_j8hFq5!Q=R zM1Ymr6pg2(>7jQ-dMOVX=KmUJ{?rwb`_xrz5zOxvvMJh)5Xb!Mh-5o|c%1pyCoo@> z!hBY0&5x&~>0Wn7a+HS*^Sgu!5-4^f?4r)@JTtI5uU`$Fx20HV|4&l-+vVr@PfWKr z!?v)+C{!B_#Vu6$R?7FQn?$@?kX>A=9KWr z{gOC~m<{XOd5-=&7=eC4u%x?>5vUf#qdInO_%!oE|8__JK1QHl5a>U|2=oi$>c^5X zK@_lL{3&FYjLAj|mW-#(RdQI*cp%a+;4^>llJO*^g2w$Yrnq@2k;BQ~KSmt+c*$HL zA1{TA$j5IUSvWF$JG;%Gf67y_b8)=G#ro z=o(l*&nDs3k3=S`PAr06ZII19?ly*@USL-}5+FejAOXtd*#u~4 zv>*WvnyZF+`qWdArh)qA4^DtoZVd^*6zX3jz$b8 zBA*oz`@Efzx#|oziP)d?P)^KkqjA=I$448=>(6#YhN(-;fT@T@Tr2;{vtRJ491+{x zt`X%_g$n8H2yBin`^WD41a9_(Rs zp$D%tSLnejBSrL}d4D%DU+bkz5sG z2J|J1xb_Ak7*VU6Ke0&N#1iPwrGlD~at|XWm3>Qf>YX#?<*Sudo2e~~B9lc9nY_@6 zLxPqOhoKRh$$3T#;;`RbYBi7h>=2VaKuW^t@}z={|4B9o|c0^GfPXseK2iiSdH|u~EJ37a8-X z?wMK2-+G(Ilqf_@iFluN8OtD%1V$pcek^}G5>e}!4SBjQsxu#pv?;>?)C;ink=a#r zxz*Xt)pHC(y}+(|yfVIWW{+aJ%6sxC#{0~RHr|mgH)G)|M$m{Lcq{2=Mxb91S3e5I zy!Rs`RPs!UFjQYQ)2gn(2viG#)j|d%P%Vh78pR?(mSBjTc7|9fV<3iDj?q^ts&{`V zcNvQtGEa49IV&;MF@jf~*T zQ4kz-KEVi1{S0Ex&G#}==-m7T37vVX&eiiNbGv$wQQtFyu)8w9GUCc0*L?ZX)$TNb zgb*1d#H};U^1F)ebTraWRcAKiurE#TdS+%D)qnxCnU-&}xD6xFEQqTaS-f*rcCy}Z zOj3Cu^Fn=JtNwZhpuVr8emWyiFNmuinVcYsCX;<*b>^e8%{Vq>KuNvtsYrV20@FiC z=@mxtf|>fWZzGKZa}AkOdOY_ezPdT^J2{KIhpoX`>Bcs#`K)wj@o4G5)KLB!kG8v6 z3?JZpgellmK4d7^R7wh-T{Uy6{^NM$cJ&%FVsrgUJ~r2S(e9b0lUmEyB4b~}{gjz; zHt?}@W0RRPDtvAbIulrtZ%;l&nb}lBnVDqGX$Jq1rk~oESxIM{h*Z*ZK1)d{z_6cw zDc|m=pBIzNOGIz~6q%;V&61|vRD;E3X4&I_GK8?%b%~BM0bi!x_0CM^C8Cr0_VBa5 z;VQxf(T;Ng)^5)Q;wfo*;i*V{6rhy86aD zs_C8QWzFeX!eU@`UQ6N!_8w=R!ma&F&p%+b@V^N2=ogA`_qzEG*izq4E+MT`Y}Bx2nH4! zABd0UG2Nd{JTNPNV)XqyOON(P+Xa3wWS*5j;<#a6hUC7Vl<_h_Fe0HMz zY?B;aR767lnH>F8U1BehkQbSji?q^BTAPw7;oXM)fmJ%68V)3dzMg7iFVuFB8R4J$-j z1yal(oSqjrDUhB_p}-?OFPkgkNKc=+LVEh<7LlILdkw?J%P-hRXC(U0bo)xt+f{j^ z$xS^eSoRf$S}84&Vp zI_pp8*(>>gg}@~BR`8dV7VZ8!skXt(55T1iV-7|bp3qi37^dj#h&nyw8H1vuV1??-+m!ev3w%~cseHwhw%C9m=>FWyl#Vi-?SIUf7#FR&xYRn&tyT}AMCFeC8Tl^Mf` zk?~!C&-mI}h(Wk~!F3t6Ho4^C($=ybq`SX@F)4nnUb3JQX z>14Tlv$*^Zo8=jXpG#10LvTx=*}1RYaZ8t!HDp=|om;wphP-=Trb*JK1tsrh$2K>Pl0Q%KFzVupe7~*(hftS8;22kZQ?}ZYA`{?$K7dSNG^p^*S@)py5oz z+Bj&is#PHkd+zBGZSGSa#tHThd{EH1^DI^&QQiNl=mYB5zepCJhA-fGByo;$o`rCZ zan?|r(AcNAp6nI9S(RHzVX>zI3!PH|La>z{t?ClVJ|vL25a$@_^$kLY02~8-wq<@r zf0>2OaRBSULmFk`C~108-)IZvA>&x1tt?P)+fCGC;=gQ7m=A;XiQ9#5L-bGgy= z>QS~0jy&Wz@(>}8BYTNt9eFX%kyrn}j);0V!s@Lf@su?EQtz@AbzpEbT@TObmZCfi zaA|9tOGk%BZ&l~nO1N~!ap?>pC3JS*Ye$t?M45;~vf_)pp#jIghDNl*Bi3#`il?OM z9mAttl!pvIPR050;s{w%b!FS&N5@5Gl%y*HoF{3963IqpaGW347>j;!mO zXO=bgbP^tDS~fD;N_qI;M!Q8AE52fSS$cl9&RCa`>i0{Eo3o~~3+!3bFAMBhlV|$C zkJ%g^6`k*$%5Vy_YIJmjdYWxAt8ulRDa)d=>6XQRU)?;nY*4-B!OZJ82c+lB_kH&- zvNv~G+FkzdTVy|v_1Gd)eflZXm}y@~wONs-bK1+VFE+orYzhC5;^dvts`{?J%gX9H zYN ze)f8m&OAtws*CMJT9pu)NP7*Pqq2!)bEMf~JCU|D2<66)#u%rV*@;xtA~#sA&2bMU zvVL(Z<)I)iDlfKAJtgaWR|g=?u}}JPyU(NLuPc7*67>i}Sj0Uj5izN^d9h7B7IwYZBqo|Kv)#HFsh1?F zr(X<5oBIzgw#ioG>Sa}RdY&9KY%&dSvfailj@`ZVCUux8-;B5+Q)e8Q(@cHFWJ#9p zddu1T(n-RtcfGf;j#o^2y_e3YS+AJhGJ94tGq$?x!}rgxs^0TxIX`Q@`hzJ*)boad zL^Y0?L{&?K;x5FHs3n)!L@h~(lcWo;E(N{ zUqi8Go2woQa@9jIxhiuPnlhil@SV5$dUmm$vOKQG(vkx}0mbonn;ogG2A!Dam^0qG(Xhxy0@OUtt7W6G5;wd6yCF zC=6omeI8}Rz4uwctln0X%$wJK{EV?PXRa|rz^vhXUl_ye=FC-nffcx_u~{j;RC?FV zGi+8|nM#bfGB_8k%?NhEB7uv zb@I*8D*|^Lb9uktdxy{m6Z&@8}qVw*E*4ACWDVwDm+#a2#7RT(7 zr!q`op3fAI+$yz}F{Irpojo!i&ztz}#HC*PXw}Thti*L_h0Yw7AMocdEmWSp0rDm<2qC9cCM1C#B(N#<<+=*qAS#2G3V^VMJX4EB1`3~8fTfUY)gG?L$tDf z`;&^5^lz)9ZB?0NVnV@qGml<+1f42SdYRs}Cb~&wGB=82V3{qB)#P6@<&0^OR9^3x zm)~BsE5zG6#*3R_89F*p^n@A`DfzXsHRhoze5JjaUb`-DxinP2I6p*5bfD|dKhzd5U6cterX%;LXSO5hn ziUkXZT~YjI&fd*C_a*s#f8}M)?Cj3&?9S}$y?g5{%)Q6U8ZY%Zt3ul|#@n`M5Q42w z8*|fBxsAO#M7M1}YrNgZ9UEt#7^tTlh3FuXp#w{{Is_;qN=~V08eesZTo3hhZe1^c zL6Oqq^A$-Rw6B%Qb@TJwIJ^0IT5NMvtbK4?laU0QiJSE@sE8y)4?SqFa7@R-M!2ex zjd0E8(b07w<`C z(A7Shi?}8~F&?LxYfCN5Z58s?a2ZVc)iRhG5kD_{`JYhPUV!Z#f%WmKeT*Q)5CkE{ zQAXg?1wmT#@ZqUv9^fD zSmtWHD6{`MW<$sHo?tZ|zz8%J1R6&fLCu1Q#{SnSCo&vRd%Q1T9&ZllH~i>=Pv7(m5RBzcPP8N-27gx$W*zMNl~(aC|%;rnT*ptE133h>27T|0ym zv+>@-WI*4C7=byvGLJFh>dg;JmM{u^rJU1OZez>!wlD`&ece}eCnK1^f}ouT7(tza z=sIbZK5f+utQ9}_YP#a3C(_`#;!v{^BT!QX-zJ|bX22DZQ`Yug3r3)!6mc42aqLmN z{k2|KW`mknOtd3K3OdaZau(rCZE9$|ZhLxXEmY5jkn@nrTR7f4urIfM&J#-J zkn=(IfCxGN*_WH=ea($P$a(O$+x(DI{rs5$Azv~#-qb(I6vUr@D#a#y#JlO;_p=X3 zA~*X1AqQf(vJW7J^U5-UyYJ6oie}+M^-TZQ{De>0Mv7A8c1Q;G`eA2=MIIuzfIJ-T zq*AiYfWx`{om!*2zlRgMHq%}{9*Wp5P4c?d6WL$X_Ls}U`78H=$b}l z!^&0An$kod4MU|=S-_LSP(Kw9*O_GZ8*aGIDZHMrD1b3w1?(84QnF3GpK@RG0%Ua8 zkpkUiR-MQ_;q~K2p||=>vfHLUg!m^$F(TO=Q*Md|iNZBV6JgX-52eZhp6sb7Qt|L( zDfKKUyq>T$9zDg4w>_0g$u{r&p4-<8khQ16*H5yWGCR2&ul@Cp+}a`2_ygr(M8;N z+eN7qIl=lj_f;=IMi=b}bWx+VZ=TA1FyvjyO+r6i_MkPT%Lwt;zrIAW{nRI={rwAX zf0_uReoCau0iNuqNvU}F{*-zq7hX?T8jpVB#@l{MrDU6UvB+XCK*kZu1tTK$yye^i z=@xs066D4K>9OLG+k@o3r$=t}UN2ByZ-osqqWpy=BIgCk7_3Vk4A`@2Uo!Hz_hpLE zuHl3JSREw9x9LBLWXI~als^1hISSfZnh2w@Dl<9NrWH?)Rn1g9Ty1jDrq5E2g7s+Q zF;?7oJ65TbY;#6NT&S zrMRdD*E*~@BQo4eFr$P|{tvSO#5Aqgq=h$|%RuazvnB3i4!i?fp zFHgJEdXt9c!2B9j!Y=T67PYlD!{_u&5BW9EOxBDWB?6I~bc%n3%26SuYmi}*y6`GT zJ9VwdFzwd{A;YwPa_U)?q?MahhLXNTw-$WeIt#U4QjBQ{GOi!V<7^s5r&uo61eG zC$L3GM40`wr+v=|pQ%togk)}Dt^dAnhj|UWzqa5>SmB=k#du{{{6pkq) zm%J#+k~~nzW_hG79umJ!OJHEG*IyWz>!+liQ=D%zV zfEEeS6~jKP2&G^kcZg`+hfPq?Fp#oS<=2EM=B&Dr#yMk^%)>mGn}B`T<8>qBy-Hfh z**W%MLm#`MzFAN&(!;C37_$D2n1Uswfl@Ha(%aZ|{rg?kOz(1Lgx~Hs)%xv@gp@E@ zKV%K_ZXyzVfqbU3XDH@>a;&eSv_6-eifvb#2vR?Az86m|9+tX#G>Y8iJ&=lo?z4ii zAUV%!11K<{02armUUCQySbG!gq9YCl(s>8nSBGF$D7S3!M8Rxyu4MX>= z^SfsqA^xGrf)*ufdmjeVd++tR7$p)|4UXoFF=MWYXhnz-C0}P z47jrfQ{i?(buDdExwNdH5hWb}nlXmy@j``@IXbxHEEH|1;VUC3&q-bCY>xdC&A{RbFm@T~n@{*?*oar|?}Bj*A#MY%rtC#_ZLp z`uM&Okyx6`>`3egqWLp#F(aHr3q7M%U!E^w3o|+qSl@Osf;Gxjdw>yF23HdFZWn24 zUd#5Is?U?h&FaiphgpY4mzGIfrdq6`>DylXQ1NLr0$A%p(`*{893x1h38LDXj5DoV z)F?zK+ML;0(Qp&t(4?qv_KYN2r8A=wp^BQxRjgd-=vU_5Q5bvw%OdT)1S7h-heEQF z#kz#uNY)6~$}oSoiDa0$ogy8*8O#q=r~0Zs!3b0p1OvOA5j0j1==(Y&0e#o``Z^hV znbXO@$bQWTwD!xGhP9}Rg@`2K^e&MWUU)hU7_`;}%4&`LZxv>MniZ$p5v|XNsu`+i zR@aNQ@>(;17D^Flc?BZ@EiV-g8C56ZR%Ub}Fske8CP&qA-&+_rvcC^80+%gKQQs?8 zD+cU;&83KW4*%QYA^6|2-E?xm|E^G(@~?TUMfnCfot4fGxE0SLIN+;VmTzgU`)X{4 zkzXCWm$*%E#eJ`Tu!#*!-MWVC(+DI?&2s6U#9GVWN z>>XkRsnEZef(Md+pKcG~PbxzGc!i9Rra?s(d`v(V(x3r~I+O6{)9wE8GpS#l;@>w! zZuA<>5W)GYbn!u5!}Vv_n4vx){$9TWk?j8QVtHlo-QgF8GiO-0-cdOUX{QK9J6Wjp zg#ilMS!YJDojoop|BM&os?m)j{C18Y#Bb+hBH4C6kkZbnMYL0dqMa-h?aW|G3G>sj zj5g-x_T~Gft(+n6jkGU+tGAjf)u_MR79BKLqyIJ8=Y7qVO4BokHZu#p$|!D5-4dyg zQ-GDLGpnogy}UCo;QvwP3fpi+fk$aj=KAQbd=A^)fs)cXzj7? zy8BaI~}Qwu#e|DS%#UN zEJQ@lGJ=Rm%7ji0Yn9G`D}tz~oqhvuGs6fQw48(u;U>P~ohF9rm_Nov278||F9M|9 zzV_cT0__EX_P;ZN>IK0=A0=neh!%Y4qu4AP{5nCknB572>P;De>aNU1jJPs#Yeywh zB(5qo$qy1`GS~J_G6Rmv%grX! zL3~(7DTohcQp>eYC%wkZ19#M5wsl7h2=R0Gmk`Oiqjs}xY%~om@9f5u)q}_S zndqUp>5s>1nN^EriRq^RFEO2!;06a*!!U)~j;#N4%8edg zq`%O^i;C>wzDvag7JSM-YgyzuZxh#xblhu1;ivqEz84EeVUn%2lPqhO znhGXabCtJij`{kvNW+{RO6H06YQUuAx(9RfhDaZ;4L1V5JNcT0Sb7z&6*C~W(~T)u zXgezf3$55Way$DsMn-#gFe4n{?Z)PIZf69!oiR+o14{B9>I`?@GFDOY;mwWp;UW({ zFdz^4om7fk&$%UXz84^?50|foYc)6y=_{?%%+K1bk*N1FHwcY?!8ShQ1w#Dj<6R=b zi-+E}t;eCxEMqQjS8#L4-mB7HTy}rDU6C??x(n0WviBJD@?nyASoT z9f`A?&c>eQTyAMN%L&*g+;ffcX{EE-+@04DU1Z&Makfu?AaBr5X9hTFF5;Rz?GfvwXY7p3^`7M- zSo0S?V!iU?kH~4ZJPTiS(1oSVue%~Wy$uC;Ulmb$X8ax_Sg!=Z=Ay~>ooaZWGK^J8 zV5~|~37$dj{IQ%8{mg7=%Q0X6X^)c0LB1d&U#_h9BvRMQWEk=VcJi_6710k^^%9TR z6Xuy(JyyLYDsQHc_eARFOj9zidLskP)K%~Fy^#Z6OKt>Kz2uX=Iz+)Iea~fXEP+=t z1xsKjrC|N1{__b~kl!Tf7uhF#mBv3EDo?S>%nsNKknQiLX7 zlSl0$C=xOGSfZVLsg!K<<>!%$y#QG!U-;%n?MCKCX`HTr#|}iE^j_eWpzSOCwyz+> zUpw9=l5O@IkJ`0k`lELBd#8xzi%>M5h1%w)QnJlQhvk{302$3+meTyAUqp_1r?^FE z{@;G{|0cxGW|o^Lee2dqEPZ9>1)E<%IST205sK!sP}}@eioECdb>s;zKt}Wbu+0zM zXtG|6oo8m;aC+(Rb<%6H%L#Q-T8D7QM{OQ2V2a7rj?J8w4y<<4|5)v&tJYZUZc|mT z+TAv>DFE7{KJUH6QT=#>d6K9Yxdz<2PrSL2d6vr)57j3L_ zzW2ocDCuAE6eyW>EOIc|6kNgB`go*oC}T4T^RHlhhe-Ac#?A9|Df6#j+`uqy!Vsle zn|A%>=Cf))M}~L@m_fZpHWzUn_xU_~^J2qa#P)ySBJdhT6v54l6@QJi40++lq`RDL z_xv!@J2cOFjlbouz8W>-y7T&Zm6;0*diG;>Ls5?r#MXjfL(z&61h|4EW9!Qqme_it zIrL|wO}L}*=x)MExs}1fUBL(4PoX#!(k*hDCV>amg zl<2HZ@+C%4vmnSjPQSNxO>YaskS}mR{=KIneZ76m)_=_dy+c;KY5Z~WU^u+zG3$Qu zBFrCL1d;`2$#afGyL)Bk(~zR!-hA8eYK)-ag5a9tcH!t*UPFc{-Kfk!N|88c3{J1ZF5+jf=NX@mw+IVvrfoMUT zXgU7RHoupM4)<0v8$>VjMQ>mPq6IoS=rx?gXj9no-}9MLG7% z3uDJD!O6ij3`1in=rqR4@JN|xKW`YbLF2)XTa8CE0*wWM##0zULj{4xk26wG<41js zouIYM?gU|qzR3uN)0O#%5mzRu_F;yhwiFDgy)s)a(ir@k?NMm_yRUJ{Cuk(0u^`Ym zn-Nqh2sEz8NI{Lye!`Bi6V!p(ogir3gAr)#%G}I|E0bIf?_wAlOTmD~N2*5qc=t0K z)E@VQ9q3t%Ky5*w_CiMb&%U>}ymN(%Y+hslS~rbceU>hOYS=4LjvAcL>p6Op*9z1Aw=}jf)-WIK7 zrjLr2?0QUn?moT9qSBM{OaFB@ZR+m=H*J2d{2ZRFQ-X8AdTfH5Hgi;%Pvx67>ptn< zv{|1R>`j}spDg00&E`+qn>Nuv-1j6cGq`E9UFk0MOuqq{B}`upsa*6S*Lu~7o*vG5 z(q6oIsn*49uFRF=g6jTtqf5O28Ba?0su!K(^=EDkOEPXEN(u9Plj!4f8$_phc|>Q`Pb9dAHzO87QHjUQs)-xA& zj2|%tJI0+#!H!XyiXG$A&7xDhW6X$c%Xb3nLm1x?f?e17=KFKSr>8AQ8j?*uoo2Es z#)niXt^jRWL}ULpuw!On!+80yNXFiUCELAADka}#` zrTE~s+#=}EdV$rUH6i}4cS)=0U0x5OTOGQp4i~1~S!n^bk5zj8f67P|qD+-^mV{Iw z*J-rTp%yCJ=KQ4H`MIX>VVPfgw6ya{d$hD&Y;%-6JrNkrex(I*O-V|QE-o#4I9ieZkuK$H@u`^NMp!HHhc z9K0l29`kNHvD$g}&H_8{_A!EaCkW=4pB>TiHI^J?9Ori09r)t{HRh$_~*@Ub%(B=hjioy;rK7UcV5XD`%7; z))Hp($=c;j<&M!4;d2(6j7y`Jd5s9irm}2JrJxc1*08==*eHJ9++yL<^7MrKY-Y~A zEZQQimNfmugQd!w(U(PE^E#!>I5=Oj_T7H+6LJ*{+kw3~M$ z%f-vZz3UICV_v;H+RnR`G4ZVS4daTp3%S4>#y2jsGdv(qEZ9D3lx&TE>>Fqe)~)ee z8P=_Pm4bCkhI!YOGA@RBFx_V@w9|bSA^hgRa-!SmzQlI1-eOo~g`%`>iM0gREfJ4( zi^bb@E0vOMKJOZB?*+(M0_5qYM)3~edl%Y_vRu_GgKbuIDqh+PbV72rvr)R)EqJA$X#vY*>k&<0DAZB^Br>u9a zEPutjR^W=A;%Azkx5jhA;irNVJRPypXL>DcEfcymTG6!a8THJjYoe#8^?k~p^Iu*Q z?V59@R?Bm~7`Fp+e$=(mL*5`J+c|%INuKl2|Dx-oo_9O5!gxnB1;%@~QeeDiK4p#f zVdjDHPJ7B4?=(W#coz}fraGT_3K`leOB5l)6_taAE23ezEZQ1wD#bV409g$;Jmo3t zqwapn`ly5qvihii_OROF70RcVr?v*iPOPs|$?$7WS;Kuz`Czy|>Mt1XkAf92T)3&T z`bD3~;83uHIU`aj#ru5fm3Uf2u?=UW5v8y)4Naq4qXV)7Z2ovvc-s1ue^X3OdiJj9EN?a!L9{>PX`6bSDt|TgcydT|s<*rV+u|e} zHf=@JgdpSgrvqz{-LzF2t1_`^dtZO)zxLUae@f3k(>(iXv8prcy`DaA5Y523Ji`cAv`?R?ySIWQtv{{uK zJ-7V8)OJXPru)DdXL?+-My}Rt7vTSZ8-Vopyokgm#hxK`)U0WT~&Xk8BZQrqN6OYD%#)zHcZ}I3%uO&AUC#TJr z63UY~+L0+pdNYq}BJP$3Vpv&xzYDe=`ZyC zQ?~DeGv7bGd1#(#GA0@=>h$K-F|rw7%`Fhu=YIri1(97dk{`iZU_XL&(NX;f){$r_ z(|T;QWk#TkdH;#q;SA(sZ_#O|>y5a@%su<%*yqo&(caz;l5Y=mwkw7EhQ%4lKJ+ow z#zzNx0Wxf8=lJON87D}fe>C$Kk?hgTiDxvb@sDPHWLRFzA82-F&CfI~?~e}fGM|;k zxK#kBGR*BdB;#2tps&Ww+Xc0wVpcNj7e(asgMPQ(fpS8KRc8nm`CP=7^ zygkSOl6(RrPh0vijMJ769v^guX&Q}{Hj&A4IdC80)^isrg{0d(T)@dgqVYjSuqSk7 z3?r^gGST=f!w4p|?fNWwgJMDloteF?_vNI3xM?M4~!(! zs}Yf?nZ|E@t%V(0pZ**TuM-5V%QFJ4U71>pxH34DXvzo_mNKkxsJgk}foOG8qhqNm z=F}{47gul*D1Yg5cI2;R1j-A7M&Hf|8X$-aeFgdAS-C6B^Mm4eF}I-h5nsTR0s;iV z)s~Mkf=XSPMT}^rX_4prt1Z_sB(+{`R;^8I9(H}M67*_I*ZdEd-8CP5{y8J)b64hj zMqC+OZTS}?=yNHCO0nv{x!i^5zGDgrBg1EBq zb44sz@N?gapNYh}nHgV>EY(G48@$_lDzlpW>yqL6yFfBLL-~1W|Bjd5%_T<7$k<7Z z^W&?Xx5c}KKU-vK+#YZ2?I+yk!S^mIBDDH?5%S<3+J-!MHJSDuV;#&ti=uajcP_Ho z?mtx`H)=aqfj7avUmUF!^8RBwcAtlqjP7Th#T|>I8D5|u_MGJxi)`mUu;4!c%HM^ZamK+#DBb|Ba!T$v;AW1Ijdf#2<1#jCSw>Watn}>JWM<`k}Xt8fnn{H~i+mL5Sb~ zpA*UU|7R&W9Q=QE5b@A~#akUxDe|Py+GsB?K!y&Rtq!5uCNxdbRd`aUmUN;%DU_wO z4<jHXjhMOngIV@~hEk&|nclUAivX+jtM#;nCp5+&J6*Gh(8AIjG$hIl=fu#M|Cgt{)V(e)Ke?1@Y(;&36;zkkMi*_`d%FQos9$FtQQPzKbgjq2Q zr!xh!aH>);3$-2k-IZsU2L`Y}w9u251%ycEM?VnsDv_)Kyu8Ft!1apI1RSCNyR`=s zP{d;3S*#uS00kdi2~aTRk1w$apQ%f1!so#yc7PMyBH{FJv1(3a>UpFocZlZtC7>P3 zgU!T$`U{(h{{#zWd$x;<&_jv7+4tAiB`?Ete@m<~U|6uAZ{LdMdX<)nB)9G%VOgFj zhlWocXnM3;kY&1Vi{9%sVGIuGoTb)+>Mpew#HF1cb(X?{_E z`U|FbT(H7Tao98~K8Y^MD78#v`bO#R46}%2cZQ{w zX(;6H42v^dQ24E09cI8@kBc}pYcDe+X2%zK7ce*M{Jdp02)&XK1fhZ;2)&LG#DRiH z5ZcSTlM%g=q^x>-{xFbC2`o7Sq=d$!PUd}F(#b?T`Y8%87sX$Zb_q&jq=yV(q`26 z%}Sa>%O;nZTX}vBGvmmp@(j;JY9;D{P21@)b$Z@f-IT0Uj{n(w5s&7xc-#C`O19bYOl+VRAVY_l zNga}pp4J>d(CD7@^dP3_VvkUf!6!pVv%aI!H~1*_XB{e{)- zlwgHB+5djNtBP6mbu3*MAWwt7(x&Y%cV(Idr{o(T0q=|TEayMTnpRvPf&<}SIi|=P z$^*@zijrgPT4jEzIiq4RuQB78qYYNr5U|b)>pxh6Q?2$2JKr+pugte}O*+``kXAGo zSD9b2)NGrb=(fT<5svlBsjao}{42xN*1T(U%)6E;*yLB=cBka8{f$qVIb&j{Bev_! zjM!$}#S~1bJCuScr7hLiZXEN#EJur;8rzK~#Gg%biDb=k)(ShD9#MqMv77!Mm`x%U z=E!2LIR+@0O#uol@$MBiw!346wYmW-tkngShSiN7I3c|PwUdShR<}$P*U)a6^1$l$ z>n~W{e!&V@og7(o&E~w2lPLKTm6&$@V*jgd^1~N-G+*S=0wPyPs$VxQWxd$Yf@cP6 zcY3iFp^WfK5fuy#OB2b4hGBWHGCwptMLL_!Ge!quFj=!Ucih_m1-;PTO1S1 z#Lo8`aS_CjMHInX9R0ImRYTq-Tn5wS;+58$_hba#ToAb4zKp<)3W9WIzxT^un9gV* zn>j?d)P*}aQ<&4qfjfPa5x7%VW)UN-~&CYeAs(cZ{HBL6S+_e;5v^{imrfDv3`=rYz5ghR*J$ymsoP6m`+ z$q1BnWi~M4%HR^t?tgS`>b=J>l$C-`Ssed&JUe!?cZAuX@gZO1pBaJ1fzTS0<~S4%NcQH@Q%$-C+K=-`F6Q z@P;uP)E>Or4)kb7ptc}TdkQ03b7-*13MI15@Rgy9y~i0<)#tucrdIx;%%i^MPS#rH zh89}CYW^l8(A<^zh!Ix?4~rgV1WHSpfYMW&N(A&bvq9-V9x{?vp>B?Nkh?Yq^`vw2(YXCz9&b~rtn{j0m z_RcS-z*sJU2B^~7)6*D1PrEYn8F6K>Pg%+cdRoc^db)3$SlrvnZ0PBYFIe;1#R#+( z1U-F_5mYJ&){zs81lExsg+td7CnNnu8b>Ds%AUyxlyzn5GUCd}qM2=`TokM8wPaW| z4sFy0V;jQbUbN?4OH?4YX$;qZCx>3V zG&b8?#biXpKh>`#7qE|sU22+M8q4$o%=_5DY_hv5aU$~sx@?5pXK9JYtrq}@QPA;MgacF=EwMpRX=HXk`*pPqY<*`ij ze(8E;jQpzOjW1AUOu;gv`buhKUMi;vUz|91?w+(NDjVy35iP_z-*}Bp-pP8|zJIJq zc-!DC+3FUH(q zGOC`RVeY+Erf^`SF{F)di(Tz~&6VSr?F*(H9(dnC({FgJta&X>zBx4J_Sg{bUuHnp z|CQg3q2KV+zRJUroEpDMQ#HT&d9sU!4UE+a=e%sYXwkq}i=1Dz2JWJRTqRC(>%1&1 zZq0;C86Iy5mvWiuc1JABJBu0MQra>FF6BI>z@=!jG`Z4)d1T^u%9<0#gUjv{dtF|( zD{~iO^m8q@6UnXvx4dj~Edv#y6*))$cODhqMZ{wMvsgR-0~F+10u)UBD_*uo_UD;# zT@oF_Enl{&mOvK>qkp2yok_!jT+7`r+g!`t+Co^_GW`WBTP9cmD??)B-j!qPo2J8K z{R^?Oy~AS>?+q2=MhjN9i7D<}teqJ)TxRTyawDVOK4!pO2h#KUCF_q~w%I(E;MDj~ znyA*bUjAw}Pa`Rt&8w{qt6qBCE`EGHuARc?r3kAw*BK;huz%c761%{~_sbRKb9(be+)~Y2|<)-+C zcs29l0hwNFts!2k2pQr@RXAXXA{B;s0n0f2;<$6tnE*Qsu)q%6thG76dTVXYul8DN zhyj(8hREGbBM3vhbFDSRJGELE;$!*?hWMCZg&X2SCu8TB8MlfJl^zqjAz+PbhmVQ% z3uUY!HGCJgfk@VctyxPhY&F9oWb&+bOS^j?G8Hb1`J6Vp*4ks+ZF-nDTqDMA^EEZw?%Xfrs^^oOg-q5Hurfj z)+l_>E7lP_`C#nIoL$;GJVRG-clF;o?!k1fT>L=Ss?VpE8JA?C(_5BA!v!Dvn3jOi z&DUQry7{lb=;(bLcvMW%=cRM?^mf?P*uw#%GxmV?q1Y;KO|liw*#p|uOzGKU931T# zX2JZ}nRCC2KIy&BIQ;B39nUV|H(s&fP4Z~=NGfai&@0xyer5#rB?#>6v{zH?OUqz$ zUY3#nWnkgVSN-glFS8++gr#UZko{r=*5%r9IU}wN&StM+1coJLU|7-v<9>*a@P;u5 z=GEX=ZGEE|L4ATC-!X*|NEO6MMQFzZ<4j|#48MAoDa#N&0s3ky%$&_0-gO# zfj{|FDKJ&hBY80U2Q$K{{PL;|Z+;=f_bT2xvKM%jQtPZ&$y9{A%5p8tUM2L4X+J7a z#bc>9x(QI=RRR=vm7k+E*9<~qAw zzVZKSeOSc9C$f0k{8Wm6E*l_2hYQ!`>yW=W3xD^jb(f#MYTe~-v0Xiw4UA~gU9KQw zBC~|M6lHKmR#TP1%C%H~VdYvXSOIq_FZ2yEP0xzgR(Dy^Ji0h`X(20D?Ip5v*vegq z;B6yQIzvlDH@@>si^T`HO<+G|`FPGQs53yX7~*dQGGYHU9{Z(Kt&ywjKqlcy3> zFnKB{1(QeHromVv=79y)UvDk2J|X_R=|CiFffuj0^QNOBG;jV^C3xP1MJz0j#ahb? zP%v=<6c}Bd_13;BtXKQ$5L$1|E1)yXYwY+E=@qC4X)It}*RHqLb*(lS)-_3g!MY|1 zR=~P&0?P?XCsB_r7mutRe#t+8Ev=amNSu=|aZUk=?f|yN%Y_`kp1=0vmt*Tf87owP zKj403_cD=eWVd2HMRrRW#sO^8jteqP$#r7%?=gl`Smt)>yu03>!j@Str?8)L5rl+A z6p>TdDr>)6A6pUfj&m8zk?&=c)M5V12ppIo2)gd=e$V+{`fEvT4ZN7Z@M7P{X#Wt+ zp8ImKlIEwYD|PnHW>(Zu<275yxs0F=K~Tr*7YuCdwPP4{2<+<6^R~4$w#3SYyz7|{ z6cAc$75_M$gpcZa+fVPU*{@(eBd9es;>>P>SU3+haF*jhG9P>u<2b+LjSW76g*7U<8d8#5KC--_jqA zZ@8z6cMG$L=-we;@^A(q`Q{C_yK&jz7=|HUU?(1-RS`2nSNzbkrsmU$YrF1K!{4XZ zV?C+j^j~){qQ46qjJ&J->h-Ofc?I~dfS8YSG}z$(|w<$ z(uedoLs+eVpmk29S~5PIq?CP z3z-79d%jZOcBPT{+Q!akr9oaVW`ytU_Bwp8*NqXq1m4`c&W6?+t%hzhhc`&t8#lt- zp{(S2tLy)EG|jG$6XnAq6OK0^6SqI5QnJnLM5Wrn%GLXZI%|FBnc)kHmkyu*x{dH! zziz)RvXGk!ZJ$s|K-=jfD{b>$U`FXu`)!es9DwD^ej+JbLd*7Epl_4WBaa!4KK%PA z8EtvOs=_F(4c>U4{(^tsXHLAH;E&NR+^|+|n@I}=%ywAB(iksC`P`C#EWwY;$R#T$Stv`u@~EN66130~=&hFe3%%7+S|`yEWeG63 zF|a?%Kxvl1W=l2F7`;aV<{PVztYl;!mo<%##i|E-)us<-ACu|bE!jLjeQ+gHkU`ya zD%Q>%>bT$x)8lwN;@!>+SP}Zm(T}bOH*K^l0*i3k_3?+{Qu*tz2&YcO8iw!p`@P-I zvCDJ%sA%rJPFxq>jG4xiWae}(lV$q)nN#7mnbSZqvEF3nw4Yh9Czhq1lx`N}=4N

~}jt5yqZt-VQp!CGr?N{!tYim%W|9VL-ED`<+6`5dGpkU951ImyB+F-QK9Gr@~h zS}^SHL?jz_U%W}f0RK#|EyFDKR<9332%(wTsdnQg90bm4x@@$U%OzmsLj~0UdMqP| zRRlq3h}TV~F^pJ6V8kkS%3t-DMO2O5X-nz3;3Ab{PMnHWH;3LTRXn^>P+g-QO^aWd zbE8(obLBj)8Lyzc!W1k|ty2rFNwU!L#Gy)*D1 z84z8M{*=GCI6VJdlS&16%Wt*`%{q)Ap(zLwnk^VXB2f?|G%sUB6Pj5XzH!EUpLP2k zq<}trtI3VciucI*Lx+M*?h76pB9VpSf!@y z0xBmLX6|SoL1h66nnh z`U}0e!S-gMtKLmp?5fw~toZm~zhbTX^Q`zlZ+Eg4{#y4TQ;-0~6zEYqKF0fzF?gh- zexH8j_bHcl?LXr8>2}+v6#Z5*?Q6#?m)NH};*70!md~ggZU6E@5#Z0(tBGX8s9sy` zY`s(L_8w}5zpjn z-64LdcP6tz>k4w;vp)M!ml0?!2()g=2x=B2sdXoYoz}RW>k?tp0L}^O&zw#W)E>qN z)OKY?GvdlXZ6rCTFbuV&V7}VxbFmNHIf%;?8Xjl0uZ$86B~WnbrQj6i2Wp!042y_+%I`?M;l`5h-M;J-fIXvubYuLhlB2&I&&dg2>^nHvG=v46Si0w|PNd4EHcIfW{ryU2BpM$>jN^l__PCL@JB`JK`k+IF5cAP=DJ?%)}R>Wz? zncM7X2ik_P?D$rD|Jn2b@zLS5ZT6t!9F@q8I*qHq{b%C_#v6vbbD1t7e;3p4)lPC3 z@qO`5=G1_ArWYuPShN!tK`h!)DTqZS48g%b>nFxet!h)o=DUvh%&wE6o4gT3vhnHAZ8koQC_?cmb%fd6G_Sl$MSRLq?QSxal5H{;j=jta zkP)R`ExoT_iRie^?kU@E^Uvu6tr|0Epy@pEHZlb-%(rV6 zFJpeXczy{J9TAUtpD_cBc(?Qs9?;lkcYiFx#eTcCSu0*Ae|7gK7BM6euN(e*n^`?l zE(}>7iC>VjOGUFqyvB9mA$O*bZ0zE^cceH%>BsvoFqg&S*LZbQoSQA$OBuC@QbMlHzHfj*HKW@_h?LuMahe*ZzV5xR~1Sr_R1t^#r558lkM&3JiYQ)~LQzM`=HgEVy zFL$9cDNz`^w{@bp?%vjE3t?K{>o1tr_ksm?Z_c#3w;EmFTGi0;@y;n$b@|}7b0^3= zD)z1jVx#g-W6FuH69(oFTBh0g&ZwAIg&8pQD!yxNs@%KQrdWj2rR=-brcNepYUspx z<8a$|?bKU5VN^x)-o$wGoU$sPt?OS^*0m7_G#$AK$pe}$OwLaOrU|z_pa~R{uJ;dU z8toX>my}%aEpsgMz%oZk*QjNVBE+}MIYhFS`S82e zGL0f+nQirdvdqvZvw1*X6_15l!wgVhm;nk5bL6|$FbBPB4fFPQtziaKP8ufnJ`E-e zbE)X9hPhN52*cc`zhIdA1S{My`+YL1ff{C(X*VO@Cuo>iv*J_Ds$J(cHMh--FV6T) z#rZ?;KN$5dk?aZ0Z(?@&Cp0G*7HRvuvhO8j*vtBv$ElR{o_*ZC9&^LG&wkH_h^-hw zh$sj`#Ey(0P7_470=>Lz7(w=4y)b9*kK47TmlV*=pA$Kp3p$Yq7soJyz|NJK%7`nI zJT;ofFk(h2h?ud4{MA#VBKifs;CmTP-xth#OcJK+-?Q^}WN1<)^VehX7CBiepXco{ z9ts>5y}?aD+Vn@|;X<2}ER;57Q8Z$3xcjsOjBmgGg7NKt55`AnQ$%N&tUrp~>sfZ@ zkx`A*4DSe9Ai|OvPsSH|za^XE=T1*BWoPfv{@OTyiJV^aNKef6y!WLAZmELxlziW= zjm6||@SN!E0=zZex0ZG;Bd|0<#L`-&Gk_5m0EX6!k^g0A-K2mTnw8knyNe4tkubEo z8G)g>GLsl_WpGY3ml3tGPz_Uad|uAnUn?~U6~j-nV0H19+1!(EK-1p0F5(9nJTbL& z>@V;XMJ;o^1F2eTVE~bRy_xSVljF;l2%@g;Gjd>3+gU-{?1npJ4f*ZOQKTW?&uC7&q z_?${(q`4X$50t_#vT_UyOx&3 zDaZ57i7@$1roha$CNHv776`et?YyXWMzx= zf3~vS+pU$cP-|rY3al(ZQ7e;oytUW;cf7YF9+7vvLBl)V0nL+^#+^yS0!u5l!&+Lg z9nw-*T1))}OKT}u0ZYSC2d5&OMA@RN#I%Xq{3pKUhcB{2zQ_&*MA|352bt41$FDDV z++m*E9RE4vMlBzVYi=cyjcab)k&J6Ht|hpHS-t1BCYpLU&+Ir5Pd8=Wi1+pKh{NFc zBT&Y-j>HcCvF|tIb-amOL}yNR5k+wM)}A-xZ9?9BE&~_$$PVkamNEjjB?tnfR~UiA zP~@b1Hf7aMRWI`1Wmpqwrr(LG$=iC~+F@OmlXisJoiw(PurYghLaMqHWXaloStLu)A*(7MU0{+XuDM{*SM0`o%k z6~5}57=h}7K=mDrpn5?Nt{h@S!c1{|D!Wr}x45An!>g!@KQVc^=ZGShKRcKsh{6 z{^OzeEkQDT{M^Hmz1Yg)ko?+6loF=@pAGy4u}7(dd|~NpSru_V|7XNzGhn+#6C?^{ z;B?m$5ah3tyLMV1zfS&&kFSc+LMU3YL+?vEHXd+C)W2Nw@15qr5!wCh(t5aGUgL_9 z6HD7AEN*jvF6n#ygYszT$#`*XaF%x(Gr-SRVha3x1*O2xYa7+iH)0-yll6DmaI!uj zzN7CzB_J2$sASRB-3KUe_W=sreH~jDu5_ue zOWl13OM$Zws1Ik4m%FGRoo5!+;p?y6Wqtj%+HUyzN%{-Eev)88Uq3`lUoRGE^&`YXRmyq1T_m(`Z@YBu3DrU13 zr^QNXp$3wV$X^X4WxjPf5w8{AyUPqd5x+cVr3z+~n#VOE5q6j<$wb&uCg<;P(uCV4 z!UDylr{&T7)}0&KfCBRe+Tls%0|8OG#VPrrG|QPWY_hmgV3Vqn+GGy%z$VZ9(Awmg zg!ndjE|F{^tjUK+gjH>!2-)LaZA`!(MJ()*#aep|P+*S%irQm1`$L-wEB>KPg@r$~ z8=QdButel&x&LVpVTzqTw5Hfen+#LT(_b*fJi!W>BGUg&$2YHR`aM3TjIIL3%>KXQ zJ%g6nfB3|KihX6KeUw)^t>trm7Hl5(8C=}MAF3bnpHrU3u#<5nZhu(G5Mn-Nc51Eo z(5A!QWN!Go&C*Bu1jI*-!0ihHw||%sv`rAW{a+YSw_jGh4X49o4q%-*E+sVhk&>&o z=C(@zNcz&*oD+#Cpb8^!)l%fdJMqGcB(q_yxg3H3DF;WsLH?>=D56_1WhY4;nxaVh zg>vS^zwrw88S3jkG7V2pT$!^%)#V91h4n{9tUosc8L`Q!g>Fu=P)3YJ(V)%L8~pRM z1Z;4m{(=pT{0KHk88J9u%-YE^aGDYOr(|MG(EP*!UtqSBlFZh_$yWHuuxUhDyQ_4f zT*zBOB>QaCvu5TYyR8l{lncFr8L-W%?BNX`S>yVE5g3;sGuKE4i~$&e0I;p&jQlU# z3Vp9_vJYTL;f3!>Z2fVnd1*slk?I(LbqN3?ug!>S2y$S}8G&U<8CaI|0G^fRo^xZj zK*mR%!GrQQXj$2&d#OZ4)3k?N|I_Cm5 zn`*erZ^-*~YX^HGx#mxyj-|1}n!oyEyXLRf=3>5mp}#QSz7VYNHNR8U#Lxn>tgZQ{ zYT_pEq?UK<9Kw%3n1UC*cV4lejQR1Li4m{tC&Z1#Ir9@6+m`;su3=o-wZ7CR*3y2K z7K)`cNUmX-h;5^}{f9;d49gwjN4V!oEmMmrWHt>RUBTR2BXL$vDXp3f@K^}W zb+A3$oQbRjf{b?6680(H^OzGx*n=rB!mdhz5o-I@2ybT|7-4_WUel=k3Gt2aZX($j zBk_riF-9puwx{X_ZBN9)_E@a7y#NKa7oZ@z+a|#Zn44y{D)6S!NlairYF3?7I>UZUdwagf9r+@6 z6cFj|GFV?fF}#q>R&ImDqZ!|5dEbKlSmij8Z0_Y7G0*&1<;wv4@A!eH>G`tWO>3Cw z>lNFblxA~U%TwawqqBEgKh%m5_#r{C z{&!>q>%Sn$w9YjQ2huvdgbgQszM$dE=>#FP8N&#ikE?ttBd$y`uQQKfcpxbV4^%@^ zz-LEp@LpsNh+etdCO9@Tg1!*Mm4){zqC4Te4v5XT$HU62BxE=a>o5J+WjOSAfycwr zl#7>?Lu?pGcYLiZ`Nq|=bk`aNpU3=Zw@r8aOt?*V9NS$)y5pbSHr;`?!PS(P0nv2F zkNfXxJm*l}x#m!}M5ej;{6uE>>)kf_k+~84t{MDrjw-0yj|Qf&L{ z?y;`-Y)iw&KhPVv$+gd_@zr%1IKyn{mMCqibx5=e_8Brm&vr;$<2}bZ!eu_i6l{JV zsc9eiQsT}|i4yiI&<)I`h8~i;n#zyFv+tob`m|B}jOGk%gQLL%sErocQ_m73Jg>g!sW;eE+mu#uBYfsOpB6xfJ1OTA*5 zy+U!O2lMduTJ!J-@x5YgB3Z9kYp?Z+brm7o_*^S;(*!#-5eu)#Vy$rmDDa8_3cO;e zz1A!K>6^oEY!0j@JR^4B+>bOEaE<5hwXX4eZ8luvVEqNxI9RZtYy47HG=2DP_&pQl z?oZ#!dKY3~*L6=sz5BS6U|?gJB5wi1W1V5zT_%~wL%kB7eTV%q=E6#9WF$26IBTzs z&RCAq=wWHC?gQ?Tzq${=DvHcwj%jvTqMTNc6<)vB{L(9NbI!wB2OHaHt`sSvH<*%4 z5xvi3u@nDgcHy=uqChbj1bJ5K>cn(!bD)@}gT7}9jPhHhz$jH2HOkXI6-vM;|M89T zA1dt|Wd&x&`;lcowMJP{5i-j4S~y^oA{Iu;Vy#gIC@{(Z1xERoZCd4aS>;! zGe5N{qQ%S&JAdX=8$G?u2%;xJ5Iw!Y2m%;Eu#Ml%2)6O+mN-Qu3oaI*52b_#QcmVi zT++!zAa#lnL_4mGCo?PGFkP8slBhDn2&AMSf}sWSSCd3VbPT5OU>RuNLwqwZA&)wK zW-1O!^vjv4&EZKql-q~2P)Dv+vSeYQOvQ3O&bOnKxeaOiFw6Yyi zLaofn{DDh4nXt0I8G)6#G9@Jn4qBNY$Q5NX0s|8S1|~g#Xq)@b4d?_JH1!d8$zR{V z-ialegKKoQupn&xU)oK?v7v?3V zc^3wXs#6%q6gY+3lmfHT)~iz(#XN{q^7h$CC65r_Da<62jZ~)Xvrb`_BIFcW>;D0# zAY$PZSgdsl0ScT#fC8rw+h-${+xA(f(0`wG3IV0z6cD8hrLLy&f>(G>E+oe)CG~CmzhfwEcDt{!${ra>X`1w0fc+1VgjFE9C1cjhG8T@TE+FX?0KvOiP=krga1Jz_hLr zr8G5k4I#d14I`2@t-JPH(;A@&nO0r>KVVuS7N*5wt!V`)Fs%RurghbRYg!%lThqFD zzcsCZ(n-_eKBR$wY2CNqn$~^VM3~kZ{RPunBUk~`!c$MY!*&v7v#Ao(?%3l$^&~%h zkz4XbZYdzr<%TYPNDObqGg8DE9=yY`hZ5V&lednfBdjk~nq$IBx^F*4DSH_1Uw)Dt zgFPqV?-FxgU++)G@Te1WJ5B!BZ_`38XC_*Br+-ehA*Ly!2+~5OA5OgPRpla>8kIh` zE~fz_>T=|ZyQ_0Yw(`zn06Iw#^*Cn3ppm#LS)Gl0*d=tC={b1h<*x8;g%yTt$z?=c ziz_mg0aqX5m(eECz?;S}+>0~^?xps&7+?(Ok55QH2 zd=Y0eqZ0wG&SeDM=@)6ofGYxZ|9Mhus2jsjR~qHiMP6+nbD+O&Jz(={F-Fh_g1EBq z^hMYs*4YnbzPY?wN$nb0PEWgYj>^=3U0zLp7s#vqp_7Hz;*WXuAg?x$8pn?jJ#)b3 z)t)2V=GC4$P()sB)d8DVL))-cmK0OdyxPA%-%w9eU>BM)gC!I5_+rVfl^Z?sT+?q+ z3vX79-o7ANuUYL@)0Z))jHlOH3J|XAm{IEXXp|*CZm| z2aI9nz9-$Nd7QTo+6akDJLmJ(K^q~hl)oAw$t=iTo2VW>e$cdDo9K}9mP%z?U(MAZ zP538MVCF813^Olfa@HhDmc8@uG+7FMV_q10#vw9G7<*}@z}U5M8Yk6a9#}}VL)Jp7 z5#q;5t%+nUq{Sg?=WP@rJ3p?CadRJbE@ELBEY?~^fPy$FK!H(IIb_Gb^dUR`B@Wr~ z4=A0Clei~oI1ndwIb`FcF4|+g zB<3z*-rOuf%CNg~ukq$`f5FNgW{O1LLv$r9Z=WK2o-tV25*Z4$vS$xjE925mt!Jdk z8izk5e|;<4wN>Kq?T5@iTO|&EMy0ZqP3LNmAKcB9WPb1flf^Xr{Gf2#{9vG%^u7Ns zWz$%n5$B5i&K<2e*rt2&{W}|7BH|1y#-P9f>^|4^UV6`NHW$ zviZUX4r^@UKTI}(;iNQ86`FkuZCHzlni-vPPan2f!gVYJ_Wkl<8%%Fw1o<05kiXf@ z2*NQz5Cne92=X`TTRBT8>n&EEBT_>1H%?~w3+Ym4R!%0O!ZM5?c5`K_G2+T3vxE&9 zMp!5X5!$^Ve>F>3M8{z2j+T-2r|!{WT7k}i=u&=sae7yS_0NLRDZ$xhJFF-qbwmT4DKDeyU*EXqew}C(zT!*s=GSs=G)LPQFfML1GK9Uj zVq^$!U`oDA2>1HZW(WfXtVg&yai_Yt)9twSo0ys5bq@$pXE2f}a0YRuz_?Tobq3Rz z2hL#fm)03fCd79JPZJ5wAhf{rUoWTL!;g-=u!@4@53bPv1O7lH!ym9@>kk4H_=5mN z{XysfTNTc_<6k0P2}LXoXWaq)lYU_=^*;?F{K6|=TEFm$HWf4TsQ$vtJSte>exd14 ziBW~j$6tO*+~$RkNO`viA~ZRr5*?*x>^=m*o|&ehboZa-6!c6kg7v$?5gVUm9kGiX zi*PEGk?+2#9sVWF^zE?IuZh~>Hb>0RUlZMO%BWPf!;^t_Xr8bGSBxmQ+Mp@@G(Jx@ zuLNF`yqGx=17FJ&m{xD4z_he!YFc+O4@_&2D5kl>L4^3GHI7I&&KM&v$Tp1JRds?Q zWLItU|A1YISlAVdwRRPtz^(!mwX5*$M{JzY`-qK!dmgbda6sv#J#jzMV8EW{isqVz zo~uoSJ-w~JU{7xgR=}Q+E99(!lPH^Jm6&$cK|fb0KYWoN=ZpNffJn&|%8M9-%;*0m zVg+-BYacz8@Io0sssP_2{W#?}BH1|QN3p&9IOQnAcvE9|-Mq5qtWe%Suk=?*Y4$-f z=63p&`pRYu&k5&s@G5Z;#5YA0LB=pME$?ryF&DukY4DZxLKiRsFC+-O(3Ol}=@$fE zs1GBY=?YzE#_buIGxx3u4MV<^IP*Fwa60!f0;l6@ewYzg24T&Hl6j521q{RUNI`g> zI$v4$`_{%Tqr6v{4LYy!b$*)>=qw0y{)7?KEQsjr--!7Q!~F1ENETF4d{&uF=Y*ZC z(APAwP8KvjgAr)%%H%NO%0Tn~GV^MA=P(S-rJ&P%L=XAY%s*%3P4PN18#HhCwH@tV zj6icipm{$=P_rOO&2t$JXg<`;{L0td$(qW{P8Kwu#|SicWfn8y%FKLaXtt@IKH@Cz zWrm@-6m**Rd`Q>^55G3g`+(V?`Fpix?w8+-UK zUqIG3sRJ!Y&l^Ux^r|z0N?n;ojA*54e|=rjjK~PJ^x85cFCAZPR;^8I?o#upwd06R zVb}btncX!Xoqa1K=xkSJ1S75tzQA-ZBj{%-CleuU%Ee zG!5NT#vDKYo)V^Qt-LxJ?@^nPU~UoQC}qyC(KxHvC&FfqZJA%STs@oC+C$}R;`yU* ziby;k{>CPrp$8mq<*&?NXXU*TdQZFOJX524@zOcJs6cN2Hm)J7cHVaHZ>AvNz~{Nk zoS%1vSzJf%hz}O|@2(roy-!T4Zs2UX)y?Y~WWX-yi@JH&d)2;`x?PNgsH-wlS7VjjWzt%MqL%;uSQ+c5e?7Ds}sKZ zTXVciUL|waIeF*hG*r>t6BW6x&FAE8^=@VgdIE2cxHe{ZH!=evt_V{QaSc}rA}(!~ zMqHDa2NBnOqLfBl_YvYpT#pmUMqKm0wGr2oicrLLwf^r09(#Wgi-?QG+K4MaLBtiH zAmSSLt&O;be`_PIA>Z1FE1)zYuCcwn^a|8Y8V3YiFNoqAaJ`^B2)Mq~UkJFq6f78U zZTrS7Y@YX5Ay#y_MP9=Dhbpok*&Gb$jHA|o(vMmL z;?l0+rH@(z`o$VhI#vmJu;H|+HO#mUd6M8fPwtOwe$<-NSTt-}(WS(#= z!|L=yrA=1DyRG9s{X07yi|89T?p-pZ{(Amem%L`-h2QA}9FX&e_At-AkGac{DqPBS z%e3oS^`q26i;^sqDr8YKRx>qKxLHfU?6&AHnBA7|V0M%$guBE<{YWfcQ-ya89M>q{ zU6wWtnvAQY|CTd5d*o%Aem(Lk1dS3d^tJyZ?79Q1Dwa3*hMJtv6N2PI=p8~a^p1ek zpjbdaz=Dc2MM-k+g+w}{f|OMe1r-s+UchGod@5L;V($v?Ju3*rhKT5I=G(Km-wEXX z{KH&kc4l{Wznz(#({l3`c%LQ4XbXv{9}%UJsqw}9%URVw3+k=TS~1T1iCS4y9sa?( z!5{3rrv>!*j^%r^szpI0{H~bfPkZk%d7Z;G4_d#sVoctc$oHx_F!zD3uAJT8e7U#a zLa*LIY3Cd<{NCs1<=yIKFd3dMn?yx%@ll=?&y@f^XwO)_c0HF^i7#^y*{`1pxwDF?JU?MBh&iVWAfLB(Akso z+Juk#5V~b@-oVHnRm~83BG8vYsKJ!Hq26&O146TYxv9O8F<#{T#=H(^-xy6fBuX9L z03%QUBOR5(s4=$zj2axWFls;?A4Xk?WMOpXAq%7K${`pX)v-7j!MTcB;E2^)90e!{ zm;nlalzGU6@@DpzSCRopl@D1U1xzjhQaVo_Ed%1^h(i`cBXq<7(LDVH5X}?bDIh}S zi;p-?qg09#pFz2?MBR!Kbt_I$CsnW6Yi3_z{=O>j%2TRdY2mdY)3DYZ^-SL>Nj1%* z)AHU;-K@%j!S`Vz+2FfbCZ{C$Zen)7U#I7++nU$Q%v_OI+1@wz67zB297{Ocb|11; zu+U8Tc*#B%LG&&|1XZw)XXfqkzF`q;m4C~U={qBSVUC9I(7(;5fdx5U_{W5))-Dl2 z1h37UKwY5vk7n`*(}!3E?YJ32ulA|8u=Qk)hHKa7P-duzFhau$(#@Fb@>+QpG8ZRw zQHT@zm!i1-b?K(?#PX}W+1w1aPXE!`I-fbPb-EdSuGo4LGcZ&U*?qX+eD7}N;5}%w zj#p}2Qj%EzqrJb)*Yhm5c6wm)9_GMgU*rR3I1wZ$e{JcP<^6}*uvtdtY{u<;edeW3 z^#0^#u=#i2=H$b)jIjB4YjXxO(6NXlia)KG9a!XMhi!`2n_EDEa8Udi&K#tLPG%f) zR3@p}VZZou1+z{q{-_2i{)GI|-@vWi=rPkPnS+`3MebsT6G7=`8*?zpG8Jx;QTlm> zTOh&Qeb|buNZc*B?zoN>n&XaKwvs!{+h4f{1*Qp>ZQwLD*7B8*R4znbpquDvTSD}4J=bMIY}>CRH+yiG6S-f+|7JxoE8i_fgceZyVVK+jyb zF|USqH@CuW-Od!`yH6;kY)S`pcTXX~{$a@161%`YXOZ!W_wdSd#z(VM8e;oSOn!rSe)BuC0 zka%8cagYT6CbOYMqu+G2NP?Re%P%Cs&5KJX!M{p?(OV!Nd-vS(CT&aJ4W|Lums|2? zdwo@j3kU#LPp06$F>&0fX8%I>=DZ8I0m9k2#r8}!su*XgG*;p47->c?ms5Ec8LD6` z1(6K3$umrct$CSdV_vjEcy6(o^-$i0k&)U3Bd#0wi5nmbnUc5xaw(GqEdC9U(%Rkt z84#11_iupQb!{Wu0O_L@#^ObK@qj+P@ns8B0NMML0?3XO>lCuja~nW*hfI;yGId8BY~FuIjFC~a!Sz@<&`zF69uMM6uPPUkk3bUOQeH6tg5 z8Av>x$X@0+kwj(lLuMnV6+z^s%aqrcWlcPJcSSMcywQ0U6cEzJXJe{8z2%7G`sKi%f)?v zE`0~&q|(j9 zap@W60ASJ~aQ-rLoD6P&e3v=EmdF5GG6y*G@Jzb3>?0Ox;jM-I^|4j=t-N;OpMN%I zzm+#B(nqxhu*Kcr2FO2|f*T;q|3YXh2?^mpf3`P31_Tlj0iPFgYums(&T5gmG-kDk z16fJ|w$u)d16{cd;y~wLY#iuJ96t_>Ad-y(Lw~VxV3cww4*aZx3B&lX-C4J7wy% z^84H`*155?v*RB!Mg`!#@;8{Kq?@eI^U|yMZ`b?JFXoTW@^T~p&|Vmjo4H%OQ11{^ zY-+48b95uM@6!988v$OSUq!P^%mA;yv<={;qf~gMa~r^`=C2lBHHqWHt2L1RD)UmY;eHCulHU9*LE3c64T=9-7oD3t)!m{fG6vMIi_dZTpt;j5fiqH^9TD&6DK z)4tBT`jldD4^#h}yth(~$_LYwyNP7e6!R;kDXW=X{B7Q6-ctcewd*cP=QhrWCx6w7 z?-=hTZjF4VjMgaj4*Efgy&tm(cE|g_BJ7w^FWFiPB90K@=YQem@bkivkmKL^SMj%m z$%gNL3x|KRNsLpJ#Vws81etcsL6C7WJ(=TVkj1R*n%l@5%4|d$5k#cfC!0ZENAlv) zyb0bV+zb|9{F@E5vzY_4g#)waGY35jCt>y~W(Ul^$v4|6dWc&(MKJqW=D=(xvxhlO z24>@<&>t`xW{Y5n+0R{*VRC=!nquNV(!90O4Q)l8@2C zVhqATs*%Z@K35;f&&O`@1)NQJNd{ITLFAsMscaG9*ouvFLyw8}7=(c}re3Eu>MzDi` zJU$$;{Mk7Tw4wRBeEtwGz(>%ZQz3th_c!ZD&_BVH*^8&{EZY!Tw5agJ6G| z*rqjw%ZTF#`*}pN!9M!C4fch~p;n`8`v3*Oe#-AQ*pL3* z=8_|Sx4C4%XqQVSr}69s)}u+%Rjb8vEheniAtKzrtiKTMUlv|4+;2T*OI{bJFKP)` zEvb=z&S_wkRWtt@?+aDrHXmU12~)IIAUdj=+>CsAJN#~W=J)jvHDz+ic_v9( z+Y(nmOlBG-F8OAn;!o_U=baHypf#<5OacD-DFygD=;LoJw*mgnJ8toJ9&vp9%^;G+ z-?ZZvf3uWB_^Yk|4&YDJ0)MR5;x9k}{sI)>@0{ZnfBlYI{PjL=@fR>Ufj^%0z{&~! z796+uTcAS({+`lbz~58CJ3anBdv8uF;BROHd6j#>t>NYr@m76I-E-t^;PN)WPUecN z{QFbiQoX^P@k1inobj#Wlrz50>{5F1Ho$}207)T>I8%Q(Zi`%@KN175cUqm4dDDyk z)tIBnLFlCE_lsN*k1zvqT||%@v}X>=5E_QK#wD8puBP=L_S(3w@@y7#Dv>5#z#I+g zZWNa>Lq&wK=?}Rbpm1eIJMUWNB3qC#B3n2vf3?C@#-t$JzbtF)Z{6El<+lm1`NQmK zl|Mf6gHA1P-90?lsBmrIj#1%ywY1P3i6&IxVpX(AtMtabr&Izsd|H12hfn_j98!e~ zh{Mi(RknauxVE;oxy+e-M|4ccAIW59I1yB~W-ZKuKDf5 zD^Hlay5>)be6F(#&YnA;WltDe&+Q zDFryuv1vKspWFr>e&-46;dc_p_wXMR2_8Q5flj>tlIl;DOJ07Z{yX61MK!!UtF~S~ zK!KMJP}IwZp0|DBdEJLj*b8hASQ?(!4NO3Zw@=?glS(Ut;=+$7;O*0X)S+UR)&Em| zVVBi6lj}!&d-5Hha`p)qmu&p~)7A2EiW>P1&CGuJ15dNb{^*x~xz|M%1+tA!OnH1- zp`UFG$e-tpWEM^-L(S+&)PCetUOgs1P2mF>4bxeNGv=&6EzH`IgzupD+XOQ_bt_{>rX_~aQ3JE0?z(C z4bD)*;=`g-DCM8T&5Tt}I&I1N3)+%Tmd;UJ{p!d_L1pRJ{dM2IepLS4P-+QYWwY{}{ENN5+yHklvWPRN&q;d+7)%g*DwbmM>q&Mh0KAY7fzzab1Sn0HJ+QL8LrRy zineh}rwG^Qn1Ow7PAoCswU;du9q#1wG9C+@Ubo1Ip`PX_!xEZWI z=v#e~Ij~wdusY?h#2VWL6%MSY8_YMI$Ebo9b;O(W-Iw?3_Sb*r2`Z zEu3d@AF$i?elByI3?64aT3pcBo6Kz3ErQN&Jji==a{dCZfSbYY>;JN=y_7kyTR5t=1P@sEVtCz4xMNEPKf4sQ<(v~&nst&zKrFhFax~`qsFjU znwj-zsE@aV*?Q0Px~HlqJ{`TFoGJbxHaILIkMD_|>22cHPTAy3g!3qKV78NafjLg5 z;l0b!&AwHk=H463hVAE>*%w5Iht;*}K?e6s|Cd|A?)}#8pO^u=_xocl7b?9(!kPWy zym4Ml=CFqeR~3}2oz1uf#w?tE6QVNap5+^OotceJonU|FIKk1!=H+;~%sB;P=y~y? z!C^Q0tGGE72?sNs#~jSGlUd9hm66vg&ALbiowYfsnYV_ynCSf_6ODTP!`uLhx5{)} zKd+DX9CNV8g%dh2I!qS{C#^D40-UtYknG15>vJ^_BK7@Db?QG|v0i_lQmpTz?Kv^d zRD#RkQLNujgX3cT5As0BBg@)(hlp>B_1}fe?njn&uk~kGp2)3o&1IKgI&=EuD`%{^ z>bH<7`tO3y9>#{WHCMv47VF>cA}?Rvcw_#k@cxkL&|qG_Nae7MpGWou_k+6pr7Q9m zd)2g^8!!_04LN7Z+Ym*UcdE!|H|4MK>X#B35s8#^mSjDDKoUj#zPIGh2r5Kv;n!R8 zM|=HPA&RWMm?EFW`@y@ADOlq%VH0|E-mq|P*c>j#8Hlr)VGtC9FqNBqy zS?yQn*H6j|S24M(^ZP_bl?*#%huxh!L5aSIDfSrMvJs}IpE3q! zdSCf!rQk>-!jm43E{?<4k~p<4k~}$C>bbGN{Hk^b4;Jn|C_L`h{19&8Dy7{em_p z4l_J^ya4;-O~N09O^xSoXp;Vc4iSf$ib?Vd$B&9hX4TPXFFG}U5i;*gmbbLFY8jJ~ z#rpiQr$J8Po%u7p2CBrN7s#o{lp6DHoT~E4X2U)C>Gny#9Bu$0bxg8AYL{ez#44N} zZIb|`aJu}>ij7Kvqxe)Gna?oqY{)+Yx1}bXpH#)9Zp=S7(pEd+-Iu|=qG*3HQxZk{ zsZ17V*!xn$7bls={uOKD1*Bx^<H z(j-|x8shkXe2hpIkPjzWKt7=y0;J4GDL{%^0Fu>OKn5rPWPk!du8~10AQvQAKo%xh zKn9FX0Fo!27g7QFN|FWSD>_5~@;ChjK>k)HATu5q<-d(nP?ciVZOuPF2u*qI>lJ3w zgZW2OtCtsb!P9XDk!)60y}X&-EjG;anB#QR#|NF;GD{(z#*Lj>ZA|vo-W_o#>jX9k+vZT|A z9N~86Ae1|qEzEH;yLS~0@SbLl<_BSsL6GlJ9{aY8dFgOeF0NH9k8P_V;Nz$ATPA&2 zzKSXTbpCmfHma33Y8CDVCHk+JA|YTzX64dCpC_6mO7v;0DzQ#7o+hU7yGbq5R0zmB zroVu^W98ursY;JXioIG{rgvcMX5H(xP1cV5vxCS(IDKqK{x+|Ag#_~KD?~h|;3AOJ zU3!|Md-Ch9`+CmZUUTLHF^wx&pV**+IdJ{Lgm$0PM2~4eJ4lpG$MIX(}F&Et%tr9--e!Js@*s#Ik!QSKC9O-5c zvwMT&^Z|4eV7V*Y*;>6Ktv~K; z&0tC*s8p|LipI%WYDL|_jg2*zQ z+aR(Gsc0k15aRfeWipX$WSJ;K)KupZ0Hr9mJStdWC<9Zh%8lT(s}7LvRq%$MwaV!h}hp-^cVK`mWpMiIvdBvn%b>>^sW4U zrMC8ui+Y;;xAUiXyHpeBJE_kTrIMMwapC25$yUCfU(+T$A5jZ?$@aa9c5}a7(Iz|r z9sc^gRnY=*yZrTm`1-r~O_GiY5R2c<9~OB_)iMyD<$iESYq?4^S|raKZ&^O6WPBOk zNfyBcfixBYq-rV!kdh$*QmwcRAk|DP*X+3&aePSiA(Dku&q@|j{ggwH63a?KO4I^U ztkyy*Kmnuz6hNx63`!sss%b*6$)%W;#j|RJtI1=Qnn4E)Pr!<&(7{RjAfxs9Rm4ZuKeZCKrUO~XNW#>meQ6;D<)T=DN^q;P(@QF-yrC6=V zUTwm=X)||>LPD0xmdtPB>&UGt+d@Jc;@d((i^^pb5^^frLIQ?^LV}EA_kS1kH(#0Q z_Up)Q8LEb}D%*;}5Y^8^jBtmjD2(|wf4Db_$-3)tR~w%2EK%yQ?AqcPY1?o6F8_(J zH>H&9h*}d$daYp3=o2fOexF6Vn0eo(Ca1F+hlL4pr}n_uWHaMXek{#x zO_H@Y1xLk?zEru2*>p62MCA4o1N|bz!azrQLBD%(ehcpnCc~NHMagcIsoq|00B5?N zDR8D=C=_z zIMUoIr5$NRI@D6cv8l`Ddgh@IVi`uJJ#F2S^BV*Jwq5Rm$qso}@hkycmor5g ztuT{v@@9HP0kYmD6R%<+m0!g|iUpk=c~vZ=Cdpq1sck3o+a+zP0!XEsdgm6^G0A`B zcaG#~54>kD;Vz3`o7&DS`zwFB_aKuK#fT@EjJ$EzCo84ERmHsix9p;TluZ5*{mfJ5 zl+t}}NoYx&j?#G~WZL7imJLmRPbIK4@9Qrt&HHv~=xBt^4=_)WoJ6;LQn=u@z>3%{ z|L<_YJ>HLrQTR77eNU9_e?o#g$ZV2c2Te5YIzY)iGj@42KJNQtTmtvh`4dsw? zl$j~z97QdhBdfK}F+hQH3{c=4e-;FO7VQ^4nrwD=T-t8?(b@&=L*8H>4+cLV#Z2xK z&-94lzb#`tk*s4Mn_^Z~Skx=rME-s^zisBk|JMf54jTrru6G7cZ{?Myq?>9lFZe1* zh9P}ZN(?!0wlhXz5XZ3*6RnBR3rzO?Du0SX#^&Qs5*Ty1KD#E9UMH% z!}<%JOM01SBL!D^d)Q$3`+qVeAX3eG{x7*f z(ciPjgi@@V`7p&ge%9b@`5?tQ{uku0bNpvCENGSVSBk&W{>m?^Wo9)j$c}uV9q>-u z#XZ9DA8c6ggjdOvcFy6UxV5viWcfrBa^I|v1_<|EUnMZf4fGc#xq*jCKCS!SnPRf~ z6b?@3oY(1;%wBTov(wv@=xke}v#r%h7Y^KgOUs%T%uVHUN+ol2Sv?^qV#7?vp2sXIHA1XAb}> zZw~-h=r8@JI{*w68}tA$Mj5`eLH<`~7c3yht zU{1;M_3cJIb< zFgtLEQ6FEy1>6D(gi~?{h>16e;YDcZ)X7|XIvL#jQN)~6Z~jmPdh>@H{d#WhMnC%2 z8*);ZfvI*P+nM7;fHK_t@d~ps)gl;}>N>*<=6YXpGlWflrVlX#Mt|y0)E~@2$HFO2 znJ+W_PP;*#SB)0$)D2d-nq99fZU!yF!E_gfCuF5C7ri^Vp3HG_nDU{_Id#faflj$I z<5F(!%&_S`b1>&lrjR*KCNbwXGaGX*f`K{zyH=sR#)z8%-uJ?E`Fb>SV771o?|(7} zJqt%BeZ2Ppb1>goFQ+FQ+B?32@3|Qi2&V+z-Z5sQXD3*pI<2P@#Dv#k&Z!fw3UtDq z32nK#GXWFcgE^RRU&ie3ZFik(o|x+kSO#+~GJ(17@>lLMZx%PhTwh(?x{`U!QHw)Y zn^hxXIo=9pXve~+J}j2LuFLekDa_N!=9}l_gL{*E$A&mPJGd!wmE*5(($olGy?0*|dg* zXD@C61;R<7YZ$YEE+;saIZhDhn#!D0(WMFmT_N9sB5v(0z+~UT989(^vVj>gO?A!l zmD^>Q>La_f35oT3;SrwnA#R6Rm&pmt`j1x^%<^95W|;L|n1VCCcbNn0g@awapE<=F z7L5tjplSb!xq)dv?8{fINec?Ag_D@}+RR4BPOuSkoFJw>n>nXWyDHF4?JO9|&3y|n z?H4iwd)kRy&KzfS$!yPIuFUo{nUcU{Z+tj)jCT{a!elS2X}9%y=D=p*V6wL|2Q~|5 z@}Z^Yc+W8>Fwxs<+H}zA_<&oM=+N6?|HB;E>tu?V<75P0XL^4#2gni`GIpGoQHvHB zT5H#`mr%5x-%kK zot$Te)v^~-uGJ2Bj6=9bTu2GuQ1Fyjz+_bXvl{npSxT!H5Y}5Q*DWkq6Qtt0$7c%* z=6H9pN|Y+@V2XUuLr=Z+&8Wo%%e<$Vg++T@7EN!te7KfP{qK6VV66AAQ<}Y2%SMjR zm;*crC*i8TXEp#OY=A=a0~9%bu;*%3rC1qyQAS6R)A^u(+VH$^N@vg{0)# zQsv)U(8%08tSHs&7(ZI-A`1(unLD41){bn`j(GtLj|3mHnU)-#=+&w%?c5O@3ow2~ z!7W~OCgVa&3#Oo;*i8lZCgw1MjXGEcn*=ww6&0;0}lDA1K)B{mvqA=D(!b9He4;Vt@uYh;WdD)MgHH0pXx5(~LQ|ZlxiRuUk2H z)F|B?xNymkkgu{Y3p$lZ!A3F%+s+MRJae23?g_n$IR`f1I8C}4J$K%4`GcLl|B-@1 zZvi)g<#PB(m#dhAE`^iW>31_5J6+hmdfn)0r=4_DrbqJA>#%lQi#ZE&^a ztQQNGm~QuWN;UFpjW>%&hSmL9MOer5M3cnorn6?Zx>f2JTz6Tb5?I=$`U^|Dv`*Pe z`*XTo+JEdSc90~nenO&n;TxG-2$=e^%oGkKBKJM z@V$Kn8&8ANf4n1bdx{Ov+%WYqqEs?p-C5Q8s=n_@3jYT2EI9XMSfBGxnW2&-@js_D z`zphRj$-BjoWe$SLn@`?gQao4&Q#Q~#%;=UIZrKHg;IuPqJY5o|mYe5{>5dy@I=r4fy zk-Db=G49Caf`rp3mmYDE`?(TL&zER={uE7ek-Nt1c~_V_4isE`%C*xTrtiNCK2H5W z<%3!07eumI=La$sdg=5X;;d^lBgd>viuN_FL-O^|pNM5}>69D0@fX*%mrhrIUC_oW zcSfRXo1B&*g5-44HwABb=`4cSUh@o_oHk(&l2hRzIqk?CWQD>(aypPXe9bV_*Q|Oc zW}lRIY9?}Hrv};K)y%;bcQOUcaWYc)u4B44%WdW@Wi~dy2x9YBJ;OSeuMZWB@-}fZ z7`?$a`cdY39W14uim<`KC&{^K_-NotVXn5=duMIbY91 z_12kU^-&!9-eRYPn(qV}3)g(7X4;zXmBhC--^((~sQF%-X=}b14r;zK4%|Cm{m7Z9 z`Sv!mDnzS>CuG`k?;_RB!yCt)q1-#HeDrc}1(T6cPCR1>%Dq;h7m&k4^%qy0Qq5Fb zC@J^R?$L_oU)`h0Caq$$Yp^NGziTQ+M|zKO7bu`@W6I>(OQ)J6-J_Mwo0Xz@-X7** z0skorsP*5Snf5L~f`#AIOsQJ+m2c-fq5E}L;_yUVYfMn;ST<_vCw1SUOV6PR@3_z6sVBH09{O~fWJ9h5@}jM(TWFai{mXhkg&7*=Z& zm;eO{On`y}rj`s!5}1&@+8`<3Km2#5&0hjGC$ey!M_wXHU_t}Urem?D=>v7Z$X~A0 zU&vpsiz0KSJAlnoH z$U+;;{u8lt(piHuK(463Ni34TT4fQ8nQ7_KCRJV$Z7V7X&dj5^3nJ#}^k}Qdo!SFK zYe}F>g%)b6Z!sCr!UGm=y!E^{xB*c0AEp3R`;`Jz$rypE-?*zmOFB4wL3}_G?6GRz4+kwS+VXS>8ZbvgF zE4nFlI?b71V7-n=Hr1V8-=?}(GN+VEybgCcH&6(tvxu{GS$$ht#q;(XStRtYE60TD z+id0$W+11yv%bw{o@WkXx^R%ZzQr6=RyELYW!0_s>-Fu`UZ?XrmUKFiTl~fx#Aqi| zzJaWa!<&;qX|*PEkjjY+qW5j}t@AHqUa&DQsh`-G(N@u>6+4N#6_w0i!{tj|ds;9-7xyV`C*7W!Dc}nqmGPyYURO^1rd#L8Kzy4rnJ4bb4ZV{xc_6GDTkW zFjbY*TX*BKYrTccf+s9&V2X|}9xe}!;{`V?>&%Kau%7Tz`RhF4V;!O`lJ1kooIdLi zJuebfwSkEa^rP-?(nB{^GTU1$s$=fx7%lW3<_2(tM;~822?I5SEtYuRgWLd)@Fk|e z5$;q9W>AI*NB9x9fg^mcfeo+k5yy9ghlpgu>-RDl`Xu;a<&Yy3LrXbAQ42@NYONy- zP~Zpy6ga|tGAIqNJI(AmasRR1=NnjW7%)8H4KJs`^1`S$3}snw7|N1i0(Twt7jV}x zt1NH$@166SmY{9OY2Y=!M|6@mOf|XPi*P%bDfXKODba4`+1}9<)8~@BiZ

;Z}mQ zF)~Qxb>p%u(pZf%Xl#~6T7UWLkhZmVG%M+btSaWs-qEunV^u99ZD61uMH)&_H!@lA zg$G3CW{Ex}1NFS6+z1%k$P~p`$_AwXV`I&#?D%@`X>J0DJ)UJD_Be5Th`mlE3$Z;} z7GiHIhae^vmV%h51;kjbg;;-pra2?PX%aqEo#w%tH~1TRRKR zZD@;73x~`52B)wH!gv`XT7=qu(TJ$rIgrOPaKLjK+B5QE<{*Fy2WRB@qoUotHOxk= z6gFbztcJGWlbgG&vT6Nj-yz<^+!mc|^*ecvIp{<Az!b#}w#BAsnc0m98 z7eq&S!?_v8KctcAa6oP=X9m;@1M0Kaw`t;C!EC4(HmOfH?Z!oidqvy~>f`?KZ($Df z3rF;y>1|*RR11exr;)tK&W>Eb^Bcy;PKFBTyvOgiBmh~<-N7f}A+}rnG<^;-E z`y1J8&*}J!TbAh1d;7e`v`nzZ$(+F)CnI*In?CV24ZIf2hOr_TF!q)y(b--X=EPgifcRNSD}o6glH9Otrm|DfKqgNDNOrk7;A z`qIajiEryoyBe2KZ+fe-tv6vfs5i+tP;aU>Et((R0Tb(m*OoUIrCgMW4>Rdw*pdC( z1&{J+?i1xBd|MplqnXnrL6~uMbg&m_wfpMmU*1WULzZ!zDbglxR@@(->D6u`J-T!R z3s=2~%`3bnHm_ho=eARt*u3KB#x}2z88;8jiZ%#$Zere?6&)B!QMGKyZ`?gDu4mr6 z;8w2}caP)3uiB6$yC<5^ae?*GsBl~uqY?;*=jks5*7KT_J}zL=kcj-+*c@20Y>IjN z+UTO-T*?=+mzcf>sN|Y5kkGm?@ah8=9EiZRAAY&nJtxk;nb{ zyiERTo~H8|%Zs)Q-`~V+$%|eXiK|wgl`FWL4l}Q4Z!#ZR@GtLCCSyLQmX_R>XhQSJ z`e;;`&sS9f^SMWVVLtc#kNKS1#2&xo%g?RM{>9N$lO2m*7@S!=V7u~a;Z2$!t!+O9 zJv1KOka{37Joo(I_e4Sh5;|Z;Ul#AMdf(MG>|1HR;1&VZmw10M4_O7bcDA0B8%6MD zne*hd`1#bT)y%FJ=U?L0ZYl-`w?|X!Hybereyw^_>o?o)n%~OHW;Xnqu;JIdrgmSI zF$x^TKO!7Fx**yrJi4j*Y(aEfS%;c?I|ToS#^yD>2ee>W{*3JN_NS48XE^UpoZ!@jyp zCR7UB=EK?Xj`pJ&EblD1y{UCoH^^VvS}BMXC~c>kq9qbWdo?Vm6n?3x`D=MJH*&l7 z!t=W@(5)Va?zmBk@^3I%k3**Kis(XbFOzWq+RqdmfWA-){LbxW(hNBO{mM;n04f$F z>8r7diQ^xDlADRN10;%#m73WDkf$6v0KKHbF80{Bxiqy0AXaM+KmiI4KmiI4K!;^e zdI0*OsXYLF+SDF^0yZbk*F15&7J33|(9E8%8|aXMs$BgAROL1+eFA#AvB3$5Bev5h z=LejCCX{HJSfXj-DVp4q=5yBwD)~us`^u4?Yom9j&Q~k%( zGm6!9pWRu&nBdtrtn6R~E zVCJ27&L3h{&WZL|H-2MnGx6?)UZ}m9y+Z0xleTpBkk?(HeehV@aHo1XaeL2uqV+@G zM5a5xa%qWTFCYg8b1h4tiZ@Fsa4>={c`wS_-p$+w9%gxS>tU7?N8b5#A~eCfmq@n6 zvQf;|D&A)0kcZ)EuouZhElMn`)_R!IlyuYmfoLl)K!%%H(%imIWT7mAycfk}Z;h_^ zKI1XLfRB6wJ|d3)UX-ImvIhLv+`boOhy2y|qWtv#8Y1dp2&=b-l%}Mcv~AH#yZ{-7 zyl)K&Ewot3T9;KLTqL8`I^`@&!|Mg7H@AK?u(Y9hS4=fW?<{IyChe3M_2@HlkvMgZ zzWMIaXdP3yu%LDj3X*zGQ{EPDWD8j&7a)-N4`qsLm}%OLt~%4ZjCt7PlUvyIe?kkJ zrm(d0TH{;Tm^x7YN=yyQmTdE6v{llg7FEoo+oETfn}!utHAPQG+egN02aNo|+#?PG zM_cEWH-A4FUFqG-JftpzN{io^XhNwAE2Tjqb=j;E2r~EUF9ezUTa->+F#FgvgId_^ zb=EV{J5qU3?2XX6Aa%^X=OlC8_gbu?Jso_oJsS0PC5GnTb^AO~PA7ex_Yt+Q<(c>V z`G4D=|9}pEU%%zg|1*jCAN5?cbJ8(4{~Mo+j*h&gx_RoK<<2nmJ)e($>XmCL?Hpn- z>pMzIo=iy6tg}8h>oPRVdL31YSB;Wt$<7ySb$;D>En3<%8vz_?www}Pk2W>APmHP@ zZt44nhwCgk!<@VS&K73Yw5l~CBeY9KYAYT?!?x4LrZa^W16Zrl%3&>8e*tUBtxBhn zZJOJAAzpu_sI5g9ylS0Si-52?X2Z+#o1F$`qy81$=rvZwZjZpLHekxC%q7559W%Yf z5`8^)EmQmL=p3&*Hv&R(TAAH5mktlLvgy{B*Q8wGopVa7k*#bdH;Fk|KjGlzZ!?&K zRT2(Xsbed9voa6R%~*$4)^VR9e|^Wj;=O3sq+43~3zK`ltWDQ52JT@YXegH#9dmtuy}p`h_OX18;!_qup73ESo9KK<9RDbFgh)0|IMm7}I>pMNL`SB_KT7#q zF!Z5$=izugkG0zLpfn}j?D;g>AlMM;!F#Q2p0iH?q3?ft;B->?1~hJM z4QNapKhfz)Bx^vo);7^8FMl=B>8&mPmmy(Mk3@&nTT4n)(oLJMqWir78J1+VF0n*k z0B6p5O3&jv=F|v3FHqFmwV!QeQ=GsWi|hb{2T~bXj8r`;iY0glTzRzw@#H4`g*|?g zSQ&f=oZI6~-z#cLd;E=&vd35cM~+4u&+Vbl`)_oncR$Z0w)Z_u8J$}+RplF+U2}`( zcrP#yyZYJIHfeggwe^rJ?JRn#wcUFgqkbHVcbdpp(^Fbe5+0 z`z$~PI;+UYH0A!?YVu6<%Lryc5h>$*j z7JMpo8s%JuhY{pF((l>DjnjANc?25sN;Kx3qR~|^`W4HKr>9mg4i`uFq^?qVe`Wl1 z=yoF6bZC`Ki9SMbQ-Gsi_B{G?^d9dKCZlq}4V?`Sx3O1lJN+8%=snLONS?|NL5;QI zZ_$svcUc6R=q=HxFJ9Zv93)S|LGpB%IY?TBgXF1P+l1Z5JwC81PhJlz2-2_3ITdGc zL#G0{QVZrF);gIS<~SM2mFk$aC!%e9P}(4Ty(sVIegJEw8R{EFFqvfRBYykB`UN`^dxg&u#?%%94CWof_+ak zY2>}lY#1zp0fRS%V;6YeaWfeFUm3ji{2O!7vv3mE1k1Oh#e{xglm2mDgj+yC-FEf{ z_SON;rOU^J+Lef+`cwumk-RRIjiJ@27ZqoyJ`GcK`cGGVdQrBeR-Yc$ChU-xGd6KO zF_(tI*AvIJv)2>H6CZ`A(1oVMAt@VWdlQmR{gB+{@-j*NkQ|1Ts_&7IvEZ5_J|rgv zsBY^bvC5{87pof1ZD;Re&(l75m?OAT+{fNBB{s&J&t$|6d{Hi-)C@aVC=ij)X zpG;e&IuJGxK7{ltVF{LT#W<`3egBKvfmS0b`Wm%or zQf~+k54H@HdZk`(7)Tt6-c##zHyb-wZt6`Sx((su5(Z7)dPBQ<+TiWP8%|DL9O(k~ za2M8|(v);F;fz=hFF-~l@7LbunX)jNXNK;9eWq{M^c30TnrMb@R#N{UP*F;gFBvv4 z8wbad&D&$;e+8LyGxVP+rb;B15p0jz!WEI&Xzw3vHnPHJm?EDzoNATaUq6=Ty~8}X zyMMLUtZ=wggK;Y;3%e+~x4lgYAD6$96gGnA!LhmOz$>r41#J$q5y-n^6* z>l@jto$z+!fk{ z+W}RrI!awzY zoNd2>7?6@V_rHOduyEt6b3N~afD$bN{LK`=@lT}yj$#_%Si6HzoWBJet9P()tWF#s zjxC8~;n=K$g=1^w5FFpujskELwSXh5wQvkj0LK6Ya7>j!DIEXw;dtDKW5DPH9C_w> zF%^!zJ6JgO)*%CqGxZnXII}}pa7=s%5uUJe7fI3rF}4peG=o<#ut9UW}){5o?qc@FI` zo2tskkw0bzl2{SJVc`enpwg=GiYu*>S;7B&BMUC42dA=pN10>?G*u~#hBc(Gn#|CA z)JbG9!wmvu)^^N6k}JbQlKWH#yPM0H6lALNJJRQWFDU7>1fL_w{^7N|JcC|fS#v1 zTJ*fi92~ubgQM5`%)!bD2k`lZIsX$r|L$lHpH64FPNnb@77k8CRhfeWjg!e_jvEI` zz^#}A1c?j~BzEJh!;|J#%yhKzpius530M%6oEvKs9@fcp&5ezZ7_}~dAT}4@DjdTd zqvSiDDGBF4rjz|vVL$-RKk=f4SfHK zPS*FYAdc_*HxtSF{(EGEdTD!$a>(}&(|-qizo>=pXSLS%2Pp9U0SbKoG8vTm{=7~$ z6}hgHO+^AmCw%`6H0Qi<>ihrE$@>0(=n%2x4(cy#xr3d`^8NCu!h%w}O+QdLWn65E zSH82zJGZ9(IJF#6&IlC;_h-+y?NvsX8i>>Qu*uyYZyJ`9FG`)C=y4eeKP*xB;VBAT zsdM1e*y&20#ZzNzQje&-4+K9aIYuO#lN^!N(wyXAfTN|(U025L@w_t=I_#TLxS=y4 z*_oMb=g<7b>U!Ss;llYMviXixqm=EQ>hQMpSFfvo~{)#YpLJ zh-4PSnF04NBB%gPWDZvV!{g4hS&OeCj~kY#&^p{=<{)kHMbiPM6yA2tQfCB zbfR*|%>^a{`Lt+-n;XD7?B}LRQPRzlvlsUC0u2#K`{vk4+CIld(l$9Zk_N0t&8Jn% zSW7$UZ{Hy^UpPN@R&b7xZ+eAt7=MI&$6@?Irrv02`f%b3BK<5EAD?{Y~+d zc}>&%>xdDRuGL=%bJun$9p(<6Y0El^b2PT}`77ic9e^JWy}~O_y@@8t4^nH1WP{XA zVvh!?Wz2Cp8m#X7;3)4wX5q-pjh$6nyU>w&7mLi^c-5Ft7aMEdVg}AU&v&tBp3j*B zw=W!=c@8rNXCB?$d}J0VV`+borPT{=PG{w=GNI0QIh{E3q%#LG!pSsYj+4Quxg&EB zc|-=$V@DUe?aG)JoSGMODcN?nn^?=_b4A;Vhn6hIMTBQ44!Z;>ND_IDKbVe~PJvvtoT$>)95{ zUoA5tLZgr^Y5g7IGz+(1Uorf0SM$kTlGU$Q4S_i(l_v4x!+$Y3k=nZv*YRHG2JmzL zW(xe=S4zQ@$spn9j&U3Kxu3gQKld|nd_U)P6LAM%y_yrMVkR$^bQ_nYsw$U!-OH*V z;Oj&+d>yN{zAiw4uM1G%>yFC6)YpC0)%v>6yV`IUFg)Sw7W4QMRwJix*v;nj4Ry!> z+By0QKs%?~X`CH$dQO|%V#_BoN6u@Kbk*z}o7B%%#|w=YmuS5B6pfP9AJ`K6`QMgQ*grqw{e4B)6Hh_ z+1unD;rFr#{An2?NZzYGEN6vhSp)(9Y0;?3`yS@Np$Z2@qz{+_D})1w`Ym(Z4GT54 zPj3+VkD|-I@6f3Ubx%x<4H?3L53R-=_)sSkVUFv1^b@fQOpm2@R^dLSIo#*t-E87M zkj0>|Z+DxxpTiv3FB~U}a#I;o2-iDPR!=kc&1yF?_iI$2{?lddn*}j?X?=}0VdpTL z=c?qvj=3}*ez2pcyZ>Ov0%~B>_xat+NZ)VjZXfKxn6P_gU}kp1c3I|@%dfxK^i7J^ z&}Vy6!*jda)ctN%&V!u8y&-k)`K%mX?`JYRSl?#{w=_uIOSF0cVLax$Z{juLGe3yc zGrRW0s+ft(muHyl=VC2`P2uS`Jr_IQd!74HK&QS+6yMW}f;9R%`T=TTJ^dH5qWZ45 zPr6%AAJE~ulaIT@)62#AqSf0(BH65VkhIm)%`oMVrxz1_PcOhl>LXg=>9bh}PB#GxJbi!yPv5qO_4JuNtf#Nr z!+QFF&G7WuKeSItqsem~PFF^YHxqkUM?X==0k?dM{(_^wrAKK;Kc~CRYDeY7TbjP1 zXmzu5Pwc!>I2$sphq-8P>^koOwhbqx`3!Y3+3tm(2HeG7B!_xgHi^+k04m zv9L4anI1NkxLf|}AxWn9wKrnzlD=}7s`_SZSmYVi&2ZYpo#9I5cT7oKsXWSLfrEdg z^1B}PN@YMw=G*@)b=$XMH+o+OM72g;t)~pbK^FM)lmh&TA;4b~ZUg*f^|a|m7IAz4 zb|aDnU`|g9z#hsW0Lpxn0-&e`09ma~H3Ad>FhBtSBQhvSHA3=j*{3DF!NW;adRh<$ z3y?iWs^P6=ZYi~RjodTb07(IhI0K*VNr$XA zSp*2*+tVfmpE3tYfpCx%e8(I_X5k#pIArx^j%Ep=y_m+;yLQ(Izbw)xVx!YeJ2mE=7o|#fOV5&x z`|JK#`=pC|xnS@_L0vQEK&*4*X|M3clJD~(l^ESiqY zeoJG%3IULX`U`+8>{a@lg@}w@yh^58&skOf8(SBIChA8A{~O!n-JTeTf4y=oQ}&IC z`xxF;VM9%mm7TxVdyE?>azfio!xv@W?Yn10W~i6FaJjd1qwveUEWAEs4&Wsm!0W%v z!MX|u@cNB8{|jEBpL8fT2X$(z_b!bv;Q(RvnFE9g=baVu3Ls{Jv0cjh1u6%pi; z4~VD~fzx^Z+#+u2Wdp-X`RfOUFAv8$CSBCq#}}Sn8E_=lC9*|L4d9Dy$5qTrc?`IU zc{NiKf#K5L_9|vTAQ2cYer5T^8uDrwEbgSmRa3pm0ZkewZe$AL#8RaIVPY5J#71s| zIB{oh8z=50jvptUCX$U4PslhmQQ58>iW4$D!8j4R({y-kUOkVs+AtBIAWQ@(2otx< znDj)tw71Pu7WK9vB49H@1Rn0Vl_s7SQe(vHy%8hQUe^&~OPB~t*b%asCP$xs2TdE5rTD(GW@RX`jcSgVO-fwi)a1=d>S5U|9? zAh5!s76}Newa5xkfUE!o$eJsIQe<7;$0F;JJ{DO4qZ7#D>Ep#wWIfQwW*-me5P_^u z^cRrzNuSeXA9z-S51LM+lnvwndv^LaC7Ql1(e&*pnrw~Z3NyK4eD*1Yjvl6NrTB}f z<@(A54sV1rb{8$yTTj#m8Um10t zjs5IpS_}tu9vKHN)1u6StyK_-R}C-kXUjZKsBRwK67CFTo|BRIM(5{Z>1IRYczZ8Eh6n$5KYNS*SF!;5@{Ze@#IN^q zv}fnSU_i(I)_{)0@gD*iMkH&%kpA}BiCXekpJ^TO{~99dVF;_YhLonHn+u!A&-4Oh z7}CCfi6Q!|LHKi-at%#y^s}L9Z$BHF0_%#a&M4f?nksK}`($h^!+beqW16YjDqcGX z0Tk}8Y85}mAkDPiRQT)Q4Xh}CaTF0;Tb`sOp?4IlImsI-uB^7GnV!$)~{gR6O z)y!E?|7cqYlV9~WM@Gfd&B3Zi{EVY7ew%tg9SC;|nSrK%-~{8vi1-7L5T4&={ZqjVF9G{xHCz z@mm?=SMh#cz-FKk=P;gpUQmT&n}HUNZFI7B^;DgK4uO|DjHY0VkfQ^uIK%MwqoaW z{=||_C-S{=XUW_<_#rEEGF6%5WKgopWDasYkwLz8&p^AO%b1vkeU?S!n=&pcyf`Y} zKHTdp-NjQPt96LHfoBEA{K?#<-XQK5MY@@#g$5*=B#LzDtcunNcS1~13BYio{sIgq zo>jU+htP|CJ5#3Cuh6x%fLuN`o^0x$8y^)!B?@*=og3fe%}or-FW6m6lB1ROj4qQ_VP;5no+aN~Fl|iARGRUu}46-pIV00oz%%Vx>B}GML zkY7>JPHaU*f7y!4pt53w6ziInY{}85*^P~^h+pab!~;k2a+oP7+sTSGvNtGI87%!e z{|FCWVX)nnp}}T%tni#P5_V>k8*GvJ{h$(GS2!)+D%^6gLNTq%+VcKw+h+H)_<%?` z?St`nkaQZ<>N@f;616%RXA7@A^NYFj18a~&usvz3uV+ra-EtOKBi_9 z$zp28V2i11l|z_nss9dOO0)t~7qSjuDnJ3I0u*5CyulVz0|#47^&4z46|gyhDV{i9 z48_#q!4^}Cbs)ghcKroRZ6ACZOrc806#}PGPRzLUEr&!rW>8C$Z)kkEMB~e+XmpPm zw7f2U>1nEU?_U@HI`s>hBtK#Knn*Tb`9kJI?%+)QggBKe8UaC z%6jKtMOS*Axfv|aKHIKzf9Ak);lT1-=AdWcBrKo8>{BeCc(z@0r!2;;oibRyoH?*u zWIC){a;oL}`1)E&Jn+GZ`&kTziqgdW;dNjpOcpUR zd7L+tTR`!kp|((aA#*Sf!f~?5)5`D`DAc|$eoG6r$%;}GYV%Z|{?ip|lf?^Yq4v0X zE{=#FvMWQOHcn&VLhX{Fwoto___k2HXlNOQ+SNmCp%%kI@RD($P`mGmNi70SwX(VS z(4var_)uH1-K?GPI19K}RBY33kKgBQV=}_`-IF@CJdI{Apa8*qH_IZJzo--hbM@W& zX2Q?b$1nFj=Z1*rAIn^Pe?z8648L?+Oe7o856dKImiV)BD53`@1&2$~iirL(>sU2n zPU{pVNIK_cX1GGU(|4`HJ_Jd_PrRdVpblI|CuEVGfdwHrH*mvJ}Kk|+T%z$ zcym10ThFE=i8V|q{x)x_Dv@*0{qgDE6U@WDePozTVjmo459}=M(wwcsY!-W~{M9N30#3SK%hnc$`i1&_cRjmyEHQWtKxSufvxZl4u9`!zEGC+QmDFFG8N&(1a9LQKJ z3@;6k&~OWo5OMsJ^$a2b8~VubGx8<_+(@6PT*Ae>+L_z=0J*3JE?Bk2MSy~|H9!Fx z{u1QsQRv5EcJ+T4W>-I8cp`1(iR0PVw6*3H)hkBPn&RR#?jV>T{` zH8A;4$J<1fXdeu=Yq(R?cb{cSqQ1ME$>LZ1`tGyCZGAT&B}?MhceD0h)y~Y?8Si2G z)Z0+iY`o^0RPUL9COy6HX9{5Zg;D@pu@12PmD|9t75lI)CXNr=?K&b&`UR6}5mYtF@2~PypEgMIjqHY_|tqrTWEiz&7-$rQx~mfbj|F@-pzcDs&r+ zu+VLwLkDzo^%tOBTV!x!A%}WV*H1Tkl`-r9m_z694e8_#NI=iIMol-OHI`zYq0kys^psa_-Gu z5%U0>_(&Ux^GDh$@9n3wSSvH9PyTFS4$d0F!C9lt$8^>ZB0#l=o0kPD#JYcuw8t!8 zop*pG0W0AER!5kFqk)q-$s8wx+b>f_5#oR;kpZT}WE>iJ!rZdujkK|0vi$X9!`mOl zTZh|>GJk#)9~a5f{sJ)K0cZ`^%s60Y1?AgbJc>jVICB)rw|0BGxS^Gasc+wr=% zzSogeY}&Uh8n6uBf2=kEbY%SS{>=e%&@{6p(ajid9MrmxqLV#~d$zp&-r995R@|NN49%}R3N zvrn_-vi=>P;(e`}oDV~Ga)2q5XDvo{l5A%DC;oqgU3XwrMfUbRq~<0NN(3R&MOdXs zT|faVoglpjrPt6)AbBP9E@e;zf)oWsKLTIWuSGo0&6b?z=C?`-L$?CqJrZO*Xt$tZL{xe6&C4#YUVr-}bOHd|&?hG|c*R ze(loLGF*sqdW(E*>gcEQuS)+`D`HB1$TcI4TUXQyT8?;lf9b`U8l$1Hso+^HE`;c~ zHA_IWmMQ_!q=g__4=w|ub;+q3YhW{e<_Jvj}}uwlk1MP5xXO&tv~P0WI6Y}PU@ zAOX_?5@lMrqcln*PIPWlgLIXC#6d?pZhW)HlJ(S-;~qd{Pi2j<(?tX=5hnYeKLHNVRN}Rd@H%!pIHS_ zO%W=Z%RO5DyZOySUTV)ogY7M3a!X# zjR9P;z=pmyW;7$%azrQk;k*_}3^)}ebAS2Y{5oEoVQf31hi#{{)UA(S{`AxQ0p2}a z3>)%B-{C!sz+pk)@G(YEvmkKzMMeS+Kj%B_Y<$8c3v8&v-!KA)oz5k<(cm~8c>HQ? zLLD!KVR$TxzQ>Zjp5fKw0`Rr=ZFX>*GXh@)fv-0*f;t7k zox_Pd{dHUn4*#{69p^5Lz+*w+@c>3pvml9_^>~H@IcvS47~RW`wKKMWOFLt5eJvw! z-RW#&#Oc6wWa{@Z4A(``xt_?>KhMSB`ZK=kZ!!Yc1%d0IFoK!|Nx1$!!xy;zjqkcM zR<1XVtuqGKuV4hOiw?fI#DG&tT+Xy+7@mtBc|OqV#U)_5M{k?3AI=E6LlCEn*t>`= z0SWtm$i}1z`(Je0jhvM5!rnGd{}9?;?2=2mgvR|Of5yeRGUVxZ zRF^Lk9A+`%GtJW{40-`Qe0RQF&77%0G0uiB)XW*+y~E}ZsJ_7xe8ZygHxT|UPJFk)ZHi0Rkl|I^#1YT1MfVLtC|!_<@VSHo24j^w&IHNxfkm_~JTZc6`L zt@7}^#?|0AuUJB6@r+chKBA6@sJ4DWj8(f&;TS94+vXl6p*`UuJ@Qn&oD8q6>IXvi zRxCl@8a?vsRXKCKUW{pHgygtZKVn1oF8F9ecQ)c0-?@+Nlcw_5?~|Vz$QMSZ^)Xfc zl5>4}XEn}!(wu8U`g$HqKnF=*4>u?4Zcf@zKc}=gd38<+Zw?nixW0xZ2-jDt1mU{0 z3gP-LE`xCW-aa;5zn2g{Tz`Z_Hko})ou63kF$E}EpQitJ69VT#v5IJ&t=eckAVIVq zkl+7IH`OXlU4evX2ehPijj+sZd|}1WJYa z7DcHkfEf;AFJugh-fbeoAToLM#8v#&YPGUvARtF#hkS_Q5Zx$A)} zN#w3?XK^BHF|e=AT?e$J|2cQPzo&c^eQWcaN;p&Y3mDSWb(AF_X^u)jQgIF>-N0o) z(mVTFlHN&(PtpfSWJ!9z_Mv~{vR6@JYES)tfT?1-L&+solh_QN6XLoIh#HW9sH<#M z$X@64wM@;nGGwm<{wJ8q1HmJ!OntJiW$KgKATag3egad^7s*t~UM~q!6ZvK^E^?@mt-Vha)fskV>sw>Y3EnHew4nxo>j2T zwC-m^#IB4WP7(xh(m+NKrwD?ecmg9xHR{gH`D@vbupEu)XCp;tb0KRwn-VUy;Lb6K zX`ITv7gND=$@>{Wq$E0sc3SkaduI{-f@mky4>LI_F_SBs)W2-5tUo4MGJL9^d9-Uz z@AP_F2hZh8xl*LB-(`vH8r`ZDE3EWZqDUfroyMkU)UXAgR}HZ68~p?pe$x-@C8e$r zo?r?WlaBUN*A30bBXdd_Sv1R-vUSI$m>P#?mytK~NZe7j;pPfv^(XTx1}TdOW@JXr z-Ck1v1V;@bn360(b~|AS?;5DZ1%^+W&|7|K2m#FH{cVQ3H5UN)TJ*Qv>&OVWCkVLL zml5zp5O8k{BY()f5&bRqe4FOCev!lrzeI>AeKnf{?_3kMFyfk^8E(^kpfv=_NpVn4 zyhVV`{pAL=N`Kuv(xqcuWYT$H&R@c>^f$8x<_t`)qBR9L##Q6_li5u7^$`2rtV4Fx8V7G}B zLi}x_9*Jz~vCaUSdaSPqZ4s|%MS(3s%p#a!vo@FsNU%o)B)Uh0lcZ7jMwN_={!ru( z{cY+o;57DztV$J=Dv{$nZn`zJ9bmVHw%TG$%8B|3lXBvKqJkJnZqL5RJlixP=XP%) z_X_4&j3r2EW1j6Dn^WFCnY@_`U>e;uz)rOF1MF(YCY%fF2H3b|zWnv0;x9+%)DAy3 zz?2)4Bj2M^tIWMzt_Df$=U9TM7)fl`yvp9wTmTXAdn^Hq-c|`%BrO7q&T$#A=qt;j zN?#FD@{;x0#q^!mrsj-GTbm3sr(M!OG36pYT%Cl?wyBYHlXa+k4SRo5Qi~9^9#e|} zYDrz77T0B|6_9{h0STz}g-@-w2Uu#oF~CwQ&=a7R{d!cup@MEe7W(pmmRpx=lfkVn z`U%|XGVmhYLSCDX+is{O87!+zr?mbBmIf498gPLn$!Did$@#}co=mPjH7AxlRaJw* z%3KoJU}fq+8>~zsWJ9eeBFN^kxv*>c%7OMZ0@Y^ZTQWtgz|tlEK=I~j7d1W5&Y7{| zp5{Zgs(Iu?PU|QAugiyQm44NH$Vvrx8jV+hBPsGBpOJ*~A?F4nA7b{*^_$vs>hp_a)C=fh+BaY|O#6B&!L*klmTB+561*K3 z#N2N)$nGF*2*EqShbEE4ZXi7e*$t$xA~eebU4igZtYVh4RXfWIOZ-=Y2gI1_t)yYP zi_{xrr+S@1cB%)w$Af*t%HCeqBbK9`)?l%GJO{1v`#;yRWX^ja^1+3e8v(GWYVTi1q3N++AhdRDsNM7|K_5g z$}Fy!;LhY>(m! z7_XnO8H^uXcr*C-K%0Q;Qa-yraqjG@oEt8}xml|vO_#^L1kOcRQgcQgIG1KtSC}*1 z+r$_+X9io&tsQJR$J)-BI|p0NWy@dTTvCE_vX-^jEVlJW;T{=mep;K;J^fCtgUL3Z zD@C&88I~lHB`>pB=;1%;_sn3MED2~y_xs6`>SLA-v(3OWe#ZkwGy?vTC0NA%qY|)F zTtn<~$q63L^<0acRfXHA5&tazCqp>N|$mL+TMma7Yydhty{n!3j|i98%w81cy}Jn>axt zn>Ci6*M`_bsOXF zgbY#*&~31O0^J4=1>GnUg6$Y{bfWaAWLz~0*!&76BWcz;Z#fqLK^70SYhm6{o9EbZL5cjKmO>9R0tyMz^B-~}%>YJD05Iq^ zM*fgNCx%)Ei6&V26>B=1r(P&j83^Q5N)0PaAVKgjUm7FGcL)L&iPy+?aL2i!i;H)~ z=T{3)kiUB96c+VAl2bpqrC3{D(hoe$w!D;d^T3guhUsx_a)4Fr0}>$Zxgkh^bYw|l z`ENhWCO`rTiRHiXjKKxLaY;M8k*gMY-gNo8=>$jZj7mvoY-O zVRjD)IE_63$JI&H`#hu?q3jxFH-TN+M9j*!^b=;~Tf>Ul1pf6z&h(4S#m!IVWP0aR z->qH^foAHNN= z)cjoj`qcd5>71J3dYQ(1Cg+y)-?VO~;uqW)+giOn(DT)xA>goRjQH7WVo7k*nQ$PYX z1tefoFKLvr>4r?prgoW@O#!D9Y~l{&QBXGJWm-1nX%oSw!}&sRR*auV{U=!HJxGq2%|} zfKO0AEcrKyY*_N1bc+7W&RdL}9xdT?<93pBm)HB3G>spaH_ZEy3*fzqtm54HA=4&A zhP@`Se2L+S1{j1hMX1PweN~VCG%tC3$g9RWm>rde+s&u}BiM`t!Oqc&5$qg-OnEa$ zz9Pzq?nVVqLEYl(4&@Ti6+|9mmoMJ7y|lVFfnikY6z4MH6np+44`(c9L>|QHWA+~{ z*3{J;l6Nh97_qMrb`IRj8qNU(Px~3c-sf~4XT<5)XU=vOyV84^Vch^jm9<_xk`S&q z+^p%eD9w~vl$_;#$|cd`r~MxPmJv8F2zoqpJB=(V7ew}dIVhE_)y}KHFdn(fJYTKg zi{hcOX4}909&iS)VGU;xJ5FMxV)dYreRGU^l| z=30F&9++!&@35VA9hZQvAc?uwg<;g^6bCTk6fxIEGjhRP3#);J3vLbj4fmp4+_fIP zyowR@veVhjh|@_-v`JDFu4vO4m5v@Sy%Ff=lLyMmk9%<`^z)Jt_QrG*BdAx9#5nF|7~?2# zz<&F?Dvt7=;$pD>_z1gLoMZ%jDhS5$Lq^c2g5WvqbBqL@!~SZ7Jsmk4WkwbrP_?1Y zVOM4ZemR{h8FBT(<^ z$JvYoJf1budhBeh=aL0B)Z^`pz+=%l)iu&0i2HLQ zwqV35>RdI|FORyn(*&arRI1a|wSMRYHUt5$CNP3tb~-{sD z^z*iHG4%CjxZT{_#|S(Y1bzJ&BdA#r@ak1Y0=#-@l;xGP@dcMGu%W#Aff0D@bc&Cr zk#ssWZ&=vetH21H6&>d+9(B)}aOGttW5<&I-qlvWaXNO4^(zfq7>3)TsBVWUBFeIlyA~1dBggWZ z96a=rvXlmyxTJhSZR&sBC1oiIQ}vSa2R(Z5+4i4&7Ag4cvuCJH{zYZhBS}{mJ24u+ zeO4!laQoo)%cF~UaQj{P@$gUL&63e196_aB_NUMO)}!xL`b%Y{w!hCW8I_CI=MH7yzm&Y?=lXWrc4j1 z1T_}3msYH`{`{nhN4sB{yR?*7i#3sR%Ia0WOvQwHl2yNAOzETN-%c(W3bz_#x;M^! z#%s-*T4#lXQYov{VvK#INYgRqc$3`BVm-#l6UXl*clUb!fo^H5+byA6vuSR$*eKEM z`9bnzZ_FR)ma)1c61q}vrK4{*%WYfCTgZw9u2QRgS7T%35y#x!#qNui7n~?K)a+v_-%oo??F7$rqK0)^97nLCUqeuPZd1H>YZI}DcV&3Ir ziJQm)rH!>Ypfp1K_n9{$k<9^JJ=W%cnkYg!AfABs;z7(J2gGKP14?E|NptROawObm ztog^yxm~<|Tw$THEo*zC*I3KqjIlblU1)0g1=zf4^3jA!N3Xv%cWQAjtFUcSEoW^9 zR1Z`g*4CVRHC#Mg!LPEMRC(>32fCH(u-(cMbn9Quieb3}ioG?z?Im}y(TH;o#ezDD36w?l5#r5`>b$X)Y<8_u7IgTXDOg069X5|ySdwOj zUY)Yu3y3wD8M;I(Z6Y&0HEikA&^&QX%4)9{HxKOT;XBlW5dT-}$B@YSGO~~_h#LjgREGjxTl zyS$AXT>m}MGG&&RI-b~yD~Dv3;FYlL$H{LiRNt6e+-zBuyV$#m3n1pKGv3}d)EIA* zK-FJgA=7$wZg;Q!1!dcgH&gzb(;|rhgr@=^JRQsk!bCw3o=##!!_)G*mh)Azgm<_~ z9w!aapY3xt7qe!8O$}E!FoJN^>Fi*{=^$Kf|8t$%!S-u1w5^Fwi`wsJ)xbv^uyS|0 zly>#;_U5IO{FR%Rk_cGk1^-#Qa;u=DORux>>+9pq$0oObdUb6Jhk<3dapzwceTDho zeb-kuSzA(vdjDb!JM2d)!44}m9^zUtMk6TB_-x{=4Qc%TP9c^ZXv{<(8EY%C$v1fqduJ5othl3H^J^~!~fJ5sREOl ztFV*0uq4eq(kZ2_7Z77o%g;YZ#k$yrzE!rgGOGucC=)&>1E3T8BbD7y?EUejO^3dh z5A=3$%Q2?gRN}@Ij}va)-s5`jFc*}av!mI+s!R#%CB7oGZ33>ULhsvJ@s5*sXt<4Z zqWu2Dz_Ce{NXpFB+bZd+)JJ1=(&}k-xLf*AKjF6OL+QtJ+1Gi^cZn9ha(aBUeL5?5 z%i`*${g27z%||It5KPW zb~P$7(cXQsw)3O-L^}h|POx{MvT!`MJNL?P!-+cKDw~yEqA6xruapMq#nnDfy>r|c zJt>+udZjG%T5>z2*{mgYVTnIW17gh5fzmQ% zu)KqIwH{S;Yr18k-I@YjAf<0KxMb%ZL>Jm!%66U zdhiJS3ih6uXgd5o_m_*za0xmpnsQI&%2%=KwkT;P&d;8kd~2dTyZl?_9wf52%C}Ck zx5_s%(&Q$2*=I)UNCh=n&fwRDM{ogL5wnW(?2bwHiMQ2#vP+uxN2ioEPd=V|hc}m% zF^n@O+1%w~Mi3|nf^eYGlerDN4GbfDB`}h9QzzMFsEAe|b9Mcs#Q1+PE~Rn!s6YPg zp33c>euvuTp>NNX;VbMcAr~=tFKB5D-i!JPgZH8xyo;>S6GlhnyHN#GXJWBM@-;y1 z;giqhmbYJ+3(Oyck{?b?IpzJETcsVJ{1Hh?n$!<+@7(a|bg?u!Ww-YeVfJ-9-%E$- zxBb774x5>m=aruPN zn(U3*%XCpjNIH;}omphG$1nm`IGve{I2}Almd6OFB08Xoc#ccdtXV0;yvRkCMo_aLiN5H|@E`RB4ivX# z*#m_$p2gbEIJzQ-5p;#qSMhGU!)9`<@>}g}hvXqrx2W}G_xNeGd;5tJ5lw@BL*+8t< z6q`f4LjGzFt^c1oBIe-;o41Y>mZX_(D^srb0%ADQdP>ldeyilzw1V3PN0#`GEFr{C zQsp-*RoACHGeY{-F6mS|*7Qq{+9sYo5|m?Sxd5v7&OBn@_!d2SpEgU@_!#ASZxKt zQ$>GcP^c#D>U%U<<0w2(}=na}6T}ol@{TOdE!E3kog5fa?1~!||y$IH_`fN-wWBm&Ax< zOtT|$J0s`}K`(fU+GYtCz2khhV zpo-IJoMFG*blcUn7(rJHa{BcJEs_{eze45Aw)4@n4Ob7oK7jpU67~A&wui+i#&2+8 zt6@RV!{Zo%qfTcwBj{m4&;@v2Xd%Ps0)Ycvfais_axrwlCcg{zGJ-A;B-BxU{DuK^ z!6tNpX1tC{$VG);CF(UMJIgDns7)Ebi)5Jf=+Nc#b(e5IvweR=3Xiz@L!uR z&pZ^&HatVrfQzaBp)1Ys|3xp8S9>q1k;I^Ofq<#SVlBK|7(f?XxqeM7%{*~9`Btw# zgP3jlAW>1XE!5kZoWNQz*;^aZ!kfzg8sTd!W&pnTo?);8ZeZk3SHQ5S>BE4|x&5pS zyI0PzHkzPge1-f|XiyK!8$w}T}%SFREqM&CH~Nl zQnRcdY~K1&SdwODH;mNv0%G`4d{)qpv5mx!{@gbBA#b@Fqniby#N#OVUiMYa{KvfEdp7OgMu8{$Zhy2JqWvB7iTpWu||9^Dws;l-#Eh zM@eM*hklT9gZDHS6q0wuV;!LA2f}_F z4`jq~JorMHisQjoS}%?VUr9$^{PyNZ%gEB;@gQ~Y1bIKf4 zm6$E&95InQ53{6@-jhGgo93l+fes^<%Epo&v)8GW@X;{zZ*!s*%@b`SjngY?Exg$L&K-^{dh6>Vqr6+VHOQj>rUhB^#zYayqO(0} z9}=-cR0G{TR6n7+ht4iKi~idzQ=?tv)---L(b<$or7)E8gb3c;ev>}M0^8#YY>&6L zDaq^J+`hbhG!kv(eU%|Yv?&@u$viAKq0d0ReZxdv*5qacQLSiztnsDjK5`szY!t(u29n+#;lnZNpqz49p9Z5M1@ru zK~yLzO@5nyaTRRA|9*MV)m}^1!xk)hh(;cpZO>u3Z95e=%ezFndl_67es`T?{T|8) z{1ya$PhbQs76dOh&tU|SVb=dj)^^`D3(uWnPX$sOKQhUsogH|-ixGJ4>ORDX(}C;j zGa^@dPcaPFMUh+|=)K1!VEQd_Yi3S6?+ZqTA70culu$(uwFnX+Xvr2*>+{10bmS4J zl%6Y}^uO-;;R7~NjA_60|14k8O_$F_b;wwaua&82moC5Kby+9!rvs9A1V64$e>Uu1}P9ZL{N z4I8i|GhxdMs366A8>?Ug>!A{CU@~K|fqgYV7M0Ol5HZyqb8Sp@2O<9R81qPExA8gR zseTPSM-hre0-hryFJ=)_v01x)7nY=%je{e#ynqwvSLk~rW4#oBVZX$pVVit5@vz8743BJc2kbntIq*2O*8rhZ!>DfLL zxJ8NBiaV0WMpLi1XWQ87c2&iOyjDM9vtOHCIJQa>>gkUbo?F_txapBytCGGSrkqa2 zQYK@3q)&i!N97I9y+g@+sZo9=_ArU;2EA82(l24}W<>P!@T+exvQ#-+oy++y75r5D zxEHeN^)Mf^F39`7ylz-`*|Usbw-E%p%`c2##TNv-Y|1?8oC5O6*Qv|vROe^Y55Eia|N`4d`P!@N5)a&`I(+6z1(cLlmd-WcP}<2E4f+*w#@PNE3K zoovccQksUibFFHCitF?fsJL!k;kXm49wzTjnM?ZGnB{XKGXn&)&y9AP8yW8HO|-&) zZOm?#;OqWiaip)jwry*6WV-hZ7f|BJu||f}#`uroqmA*|lJn(}dA6H($lu`7SKjo@ zjZ`%4YR)Yl{$!qcWPYS$`XgFZpr-?M>(W>K_Sv1iGc3l^hp)}J5VoXotuKjpS^Sra zV+{&Hu?GIGWzdb%WUPUgaT%>5~qzFh+wDne`ECt6Wp z4HUCj1KF%y0|OGQfdL8Dz;e;oNeggTX&cDbyi1%4=809QVe1W6Rnz{C?6XLU`C&<9w0D>>yvc$~ zJ4X)9w{NoeeQBh%_cW{Ed{cx9&NuHai`?VA!zx&L-w=zs@_x<;R$f7{^8OzqSndRo zYp^tvf75L@C*>qMz-Z2~Aj~h8WA&?Y3Fr%wxcZWxf+*-ggNmJEOGca`62CVyQjqu! z)U018bsh}k;?4ss@)H@sBJXsv8F4y^RPPdovC@koR{B#ig)W^p(7TsQ!1NaB5Ite+ zX9R;Fh||Rpqlj_DF0o2FUym5i>agI5aZ>H+f87z|S)sBXF%D@FUc=V#P~wR32DOFX zqxw;fJz|_D+#WGL$SLB8@nw!ZVxT!#Riqtwhib-(epl(C{$^8pb0j7FMvgsa{HnIO zd9QJ0`pv|nr8h-dhrCO3rJ!3PvBsXOU#ot?q8Cuas#=9ru&So11gok{BAhl_Ziy`S z8gfA_tqpSR(%OI!|Fm%Pt!&mVt%W6NCV5-r7B3*i z`dUv~ChKb`&75Bp^B;_@kZa@2Ko`h~W4tL_t#y)pgDO^;O4}oyf*pke$j7F_+lNVD|qYMObmlIy}7Q{P}oVAt*Ey~Y^G@L!gI44#<3EkRPx83| z=7Ccg`-LFWxR1c8$t*zvx7>+H`wc_n7sBy^)TN9gx?6}|-SA!IM)JK?bTAIKY{)qh zjaX)llfOQ*{(dlWb$Cz2GV7Ov64XVt24>a-t`e_DJ;;*8>ro$JvCzYRJ?g=TeLZSG zOUB24J!<|;d0CuJ95{(rr0x$G(pTfX%M!5jEtPUEF*;zk`uvIWrJ{l{NbxmmsY16W25|`Hx5LPaZ-2=O2zIkjRE~Bce8>%VeaG$;f?k`*=|< zfFO-koSTs-9ghvGU};?&wL#iWMi46rf*|c6BM4Un!SVQ6M)0hX?oE6=mPHuH(WYW+G@39SwX!t1Lq!_gAi&Rz&|G_!$_r zXEy{tNL!_wZI8>_c=0nc4Pth#U-m+zb9zLZ!E=2`pj~=YZp!V!QF(A-rN)UObW~E_J7$I8wu==KF8pqtbAff1*Jr{s&r3)4+>5NC_)h_kux z+&E5+*^Ok7{Pj1IeQ!n@hp&t)xkjW<)%pUw;s)ULs*Si}yk4~>OA^~hqqu#&YCs{e zebjg-vckJMpsE{2UzT9Q=%o^{Nm`E$V?38ZI5RqKw*6&6HID#)!-$Z`Mz!;$U7ACW zDMFjYmHPj{W+7G)#EfPec!o6~!DbPV=w=Zf5w{70UU8c=&5$;JG`~a8=fnmvgnF8X zOE!qmdQBbXV$fIZt=&F9v7K&SDcok`A6&dZw|qbK{KsV7)$s|EB!)SvUKW$W`IAJiDYF z`6SXl{fwGs>b=c%;dQFj^Q4GdVi6dB{ApyNSB=GpiJP$mBx<4(kVqOcyyb#TNn8XR zx;f8A9XAu=lV~W3EQto?SrTO`LL^Gl{|87UWPhONx(UjA3jNlyCu2ZzU ziF_lx{+uzSoVc{}bUPBH-){V1&Q|BuW6NBV4t(A z!Uz_1L6BqF|DT-N0X;+uf@1kDw!m!rQSQy!vp%L;Ti`(bso>$t#C184&Z~7P` zFfE8SeZ%i^v;7>Suq>#vtSw&`je8$)AsBzpH-3f@7#9Tng5Qb$nPFHLn5~=q=PDOB zzdm1ivR83o;bASe&<<-YMo@_$iAowXj7kI!R+3b7ey6weLt2nf;t3A)Nwb%s6*fj>M)U$l_z=!xhyK# z=T~x^5mX{b;wxRRGK@+Dc9r0Dxsy7Nn(O_Ci^2XUzWwhRfqg*|_AgyTqX_!~JNtNK zwQA|Iv%GXJrjJ(1WBrKB{t^K6$D*pp1OMBX$d{tlgz9;JWfVvM&l4Eq8H>_3_o&F~)O zVz7VAxBns|urCPg!hZ7N!ow?Yz&@Ui zzmki=eyzp!2+)iX903Hu5#R@D6Y(__|lxt#v-Z2HU&Uw&VH#|ZjT5baBIcbRzN$23KVZmhV3#xBr}<(AlPl#=+$G8aUT zs0s1Nq$gXuaK=^ks4sLS(RcmX2Aq@P&N-ZwirDB8wH}vfL+>Ph(C`3v5_8m^{@2|} z{2;-O-bs9>ML33innMcQN#syl_)cQ+5_>1HlyG||v2aNdcM|KC*gFX{2QjC#19uX5 zVW`a68+a)UW8ekGz`wQxlcxL1-X+af&7&i{dR!FDuD#UO z(VP*~AxL7CzL8T81@Br_Cel2 zkNc;bQ%mfT>u>T`k6glxSI0-IVdUJ~lkQq-o@^7HkbX+Lm)Y=WpuhELfZ1)MC%t>Q zC7Mx6f26SHRxXnN*Rhq3zJ6VFb#dlha zOfurOjLQ;JY1n=$H*Il}I>Ci|OBXdq(zLPh%qQ~>c;7K=`KGn>F`?4FF zcBxfL8Lwlsr}rCo1&-i9vBc>u^C~SPwu3{d%j|SXUS?0% zP*zrcg$>J=O!I0|0UP$DudwTQl@)d!518;LXXO=k9S_Oh#FpMH++l^T<5kQR6QaG+ zE30Yl*_1ombcden26y(tOZIergO{SH}!~8|_xMbRcy}c10&h zJT2RNm%*|#Ng*sd;u-S#3ti!HQU>czY=vESVubkX&L$Gsoa{zvuO{|4D?;l|2mODt zzW+p`AgnuL7V8e1wd+nmf^{b#!Mc+xjnZ{z(h9roj9+2boq+R+b%#g55mLue6Z`v3 zhc5BDY5TQ>;N@xk1YVwAQPi@NHe_~PgK%R|^*NR85NyqkmNCOl6^=PT)4nsKZvK1k=HPQbkGuy;0*v4ip+X51>Eg%8ghDf87 zZCzJdwsl%**%olxvaM6sq)OCNuy;J3<`r9&ux7tS$12W&@G3L>@rCK;mg%BAXHoQ8FO~Il8LxCv zJu_u!Jl%9%9Npm6V-3uV+N*3{sW~Iag$RPY(v6HDMg%9)|<^r(%kQC6z zJ)dL*ouG(S#o_d#y|~J*4j;&%YG$Q^8bM~|WBsK6b(xh4t88W^tN^bSA2AV-S@~3p z6!0kVg|e^Z`HP2^H1y6Bj?7BvjP@*^Ym;A5dw)Xd3crNqoA{-tjvO^&^2Fg|C#@Uz z^D3KSLAx-ir9nusyfD7ZRi^#lquor~4bhbFr>kscC3$tBcK(ZN#Sc=PSQpLrDrz~m z9Aja_mx>&jlf4V|#&3v@@@f~->y}=tpho}98_>jR*pij78a7i2RzsZ$ljb)!gEmHI zdtJF8mc)*$?ULA$5dRzV!%1Y9#G$M0l6Z$AuO?nV7U(@}z+x6lBAc~KVqr;|N#7K` z-V2DaF5WCH({-`gYP&8rS#8(FfcyA%+PQn83xoZMZSk?q(IMVJb^>SbeJsKIy?ac_ zuV!YCoH5ONkuk9Sxz%nF*>WDhGkDDurNRHNHpopK48EAg;InBv z_yGy_!+=D`U7in?x?0)i?~1R%*oVR@yCLYi-4ZJnD^rQPGB74}!?&)%mRRXlZ8WyT z+4>1v;%pP07r&mq9saLX{;}^!c70QJbF_xZd}?uJ?fc8ku-Ti-n0C{%D_w+WEB8dR zy*1ovI3}zhiGNH;m^!(4@eJ>NDuHuCXov0SlgVwX*-v<=EMUnW*{y5r8oOBj>S;k( zSL&f?v+(n4lywu*x2kO>+|od01>b%=#bOW+?>r2&v=qMmbAn5Pd7rTa%=@=Wz&vRm zqOhO244C(W(4)@6Y90YT@ygvP+HTQAsv-GKyW*5rgh=R!{GYRZSwRmUBO_ z1e^;1-k}`X3_*Uz|?KwbJp9QBDWRk4lVaOcdIxU3SCTkLQ;O zZ@SaeT)yPCie$H-XUwU8%3?q2&Vp&T^{Hs{aErBevET98&6Q1=r=zXYm#Z>Qz_Db_ zAP3Tp+aPnVTeUHTmD(nXByu2?*i@ilb=H>KS}(1yDuHzf*l=Ul$F#`1yQBF2?A z^7f<-+u~hA@>J2bcpGzW=%tsXu@UD<&RV;)jh4Uu(std8(N^L6{62pBSiGuv=*8%D z={Z_OppOG}>LT~y^K<)q`&o=d?%04*^-Z~#qZ7TojA2=OmL*u$o>B?AO4^2H?OiT| zW$n$ic0+xW5Px0!nnZR({YtyQ-%!shN^9GF`v1V%CZ@5WvT3`x1teJ90un54uiLut z>jzJ*wHxXaR`z6tVyVFnNUU&UsnI+#y24$$&aQBmu9K#MXwCH#h}L{vQ7c^C*Q0k{ zgkHbB9-ZuUSA9285vO%#3Eno}cGl^|70e57Nj`tD+Gk4L8mLey)%oq{1aBpaL8HzcolZbWsHMX z+gSoy<*Nj=lJ%Y}QgL zAOWQU5~Wo5fHX>D^Za!-Hs8F?#^wR16I9|ZH_G(};BiJ_u!Oe7+FXT+NfnjWs^4=_Q z(KOyQzM4Fzml#GB4+N@^hr}*3mCi(` zd7p4eRPnK2#W#$g3PEI#Pc!S!Mz8TM*^n4JgDO4_R3Tp@NHd$imeX++E{Q5CZLo1p zJw_1c2!f!bIU@)#1i^cRZe`?x_XveN^Vul`>&)7!zt;CR08_`{6AaY1_i<6?~!0N<;Q zM62B7y~cX(@t;%AFRT&r`|UF>fQFwymGbCa+e@o^-!Y7O1xAO54GpJL#P_PpF%tM* zwX0aaRxQnhod#SQb_79hw_*gn?R0Ko#Oa{7S2t{1FNslfw&=Oe#?y%R{3ch~6S){V zd#tf6%Vq>l3xdWjVFVQmBH^^8we)ulHZiPJ)892H_(HicHjZ}24s&T|44yyD2t0Q> zrxVI8!b(G9ZFb{W_gwF60r+I5r3uLW#g|@Li{h(Hz1LXzv|s(qucqnyJxa#%M1fh9iRtIdY_GY>M{~ zw+)W$@g3Pih@Yx{nnc!-Ckr|9?4LR!=HUpNw~iE+q?wdnGn#qjWK7R22Samxaf9n=2W0HQ8B&tl#awe&6 zta7kC@(bhY#`<~_*mE2J$FO90)mgL>BX7wF@4n7 z>FWaOySXq9g2!2c)#!1RU^S8^;vo1YmjP>DyW1{AuMy%O1ivJarT>5KwhPf2MTjli z_5W^7#zG`!!4@`a*%FZ8AQ+HBCXDtT?zK6yMfG(bPzmc~Y$PyIJpqIHnJLbQ_D zqTemG;f`2E1M92e@}k1%CQG|ln#Ve&_t&bJb~kd}c#d!>OA^l!-pOL2ivMO(34QN=|N^*JsBqCU0B67?xUe4@Tb zA`mt7wsxYQ2>U=$B5PFtA0Vrk23gs(C2K$evIZnd*3c8SE+oPp+GG=94_FxzVFCXW zq~(F&0antU^GSP7n+np_yhlEPv^DQ3inJMD_PX4@=n%~9(=IkRNZRw=;{Iy4vYk-- z<1bq_Gqc*q?oV!`)`N+N8%boJrD$`HeU_pnBZW-v&#Beh>(2#rMws^1^UBy8F${9Q zd*~Wq5|_rBJMJEPaGA#lqIW?My)R`1(X$}92e^k3+yiKk#P}c#l25IGaaU z)7eB6{|qCD;+@WGj5r(#UjqD@csx>XFQ!-J6^8akf zQL-P}B|nK#reRu5)dC%B=_k;!)@IO=E&#A|!>6YAnBm=G{}&`7_U6sqWBFd2L?is% ze@m9&307fpEzSL}_ikehi)MGzvqc`>a~STt*}k`7T;W3DQJXE9W-|gZ2?8=LWCVjK z2*|XNkv}3+NbuBs$=exQ-`gxbNKH zb=qt*JcJ_q&#v5NhGt=jz{Ai;hRkm!C8ZX?xb@X}z54PNSPvB68g z<-|VFjJll1P4|HbTWs($L7R+;w^=`7;%(k?@qOUSi%hqnZ#9$ePu&sA^p0?^AX<5t zB{ie7Mw`g={Ho^6UlvX?jXLGwJ9t=@U)W+p;b*tlXI5CzHT)TKe66fvd$$zuZP=(- z{qUJBb`{$?D%K(W8Lf~>w=d9w3G-)o-?Idf@VNsEGi}4tzn9l0f6E0B{U&V{t1b)! zeM+eW^m%5B4JvAI8StmtR?DAig!uevP9n>nYq#3yx1}OPpflQ-0D;6T2*hSBfdUc` zC?ElWsz{@hK&7@?0u|qC2^4U;fIyYF`vT)oH{5xvBN{g7ACd z2TkKvdEL`EiR0`^HUpO+a)8J0BDB*pCJZhvFt`{7>y}(!?2^zWmt10^?}RU>$6(xz z$fa4ai`|Gkk`=2PO5Uc{f`Q0x64^jxoAi%9)VVo;{2Ggz2Tk5!?{OC6{(}oTj~?4< z??3LC9&78p%qlu7(uz>Q{YU#5v05STU#x=(@}Zd2*M^>B1Y3E9q%KCZH_rV=zGmrEYJIqi^1*he78$%qmhH#g23&HjG$&gFxpo# z;_fk0k4~%}uC>jkmVFcLxnO|_9qjImz+qSIU`CvdIGkoOw=b*ijbj+8<%GYuyXmty zHr0!BDfpYa%}lu^r$rJ2>aOIMPmRlK;caCA)rtnZJ-|r7+r8VsZD-;oE?8hfy?uuf z_139;&VW!RQ5dCQtjmJ6or@ zH2e?*zJJXKe0Ms(GU9X+mnKQuX%ykRT;(Qwx6h>4;X<%pW4nDO{aQxQBZ4@tAjB?W zQ^2*!M%k3~+T?^T@whg*P3`G_-L=UH*&y}WtxV)kh72p2@m z_V9Kavpr0RpRj+4L^fu7UcA>YcfFzr#cYAzKt4dsB4%T=Hf9S-zLAfp9cbT@s4#jF0`*BBUGkkiig4uW|)*}5?wapXt?_3$~6+%0Sfr)zs zZC_>9{Eam+OVd~rv$TRrFiWL*$khIY%YYX3c3N80Bg8*cwI`9K#dSOF1ie8K;3y@hJ}TQpgErI7zltctnrF}Y0$@D0Q|@tE8uY~>CDu{N;; zw+S+E6-?%x^38!&73R$Fj&K36>*1Z2T@UTF>|ztnnY}wLyEe#Qy-UEp^=>J1;H+FG zv|Fq1pN`KfQS8l~KH26Uk9AJpt5q>&Hges#P56iSt(S~3d$ zZ9>A+ty8C_c<%>{Xws;}E@_ZkTtU!cDgi;oLlCqomjOX9+hqxQ86iGF84S_O!o(lLejDOSNxwrcqqkbs{73HVu2+9do86_dv_?s@=Owyd*aW0isH}e~e;R*vo^fUY5&) z)zoGFQ;Zu)WS?SOt!}k3?f-X6s<)icghkvP>}3omaW3t=d~g?CAUw?~;QtenPS%6? zDMk><3W7-XBSsKO3WA*Pc}9@))lh*i5ZronM#lTU^KK10n@RUc2Rkl0n}}$uFoKxV z>C|Jy>EHsPIU@*WpFkIGi1aEioWx60i|87}qYHNx>>5Mfj5RFQ_db6jUpqdfiuwDS za+C0&y2`V83Hy$(5)9*3;3{EpVWq)|B8jVnG&V(}hSw>~R1I))mVN>!XWa)*(lr8j zhl#v+mtG^R)Wvgjkd9b4yT2=O=;}l({JVtZEWusE$@gMMz57@Uwrs!8u9jQxvv&wj zTu|bX`z)VcVFY{<1bljr5safC;L{mK{*X^!+-LdZY?i#gFrNegpDHl|J~^G*jJS5- z0-*^b%BQgC;B+H?<8;Fv=7wy`eRh{vB!B%Fq}?a6CdF>M-)GapPhz*FZ&4ouL}I6L zjWCF-$2GzoEJ^GLgYLK22muAVBNSXC$UxS|)A0QRHgrRXu>>1Ju1dfoaRwWL;WF3| z*4}S7gtdhD8^VJmvJuN}X`${24=F-Bg7itD9YM@uM_{vdM+iu;BLpPa5mrm1G-AoU z-$pF+?zg)^!0E(pu!Q=YhfjBdvm<7Gqtff~# z0(u1`pw}d6l+tU+ZcDF$yDhx}PJ>=ql`1AxqIU9ND7&`qw(Q!fWx%eJ`U&hhx%(pQ z!gnn=>ESHO$zQG+>W1X_`L~6&(>~S%G7NrDVDN(r47!Vj!#~I7CqJ~KQ~?o7nsZCq zwlQ;miOuuAr}pFh4&FB`neuCFP58Ur=F;C{O}*lKq*^9(8kco#y>yRV8qY{SYU1ZR zwTHw{W!2aJy2OtdM&jpE1(=v$a~trsvMdyw`CSKedxhT?s~>3cM>)871JRok*jmnSNqJ)2t-^iqCT>Z{Uq z(t4{J#-opZ!T|T#g8@#)lMJ{`l)&Mou-IIodQH7%ykal#Gw|mNACw9xm@RS;wrp@Qq4 z^QGbyLf$^sLEP|wnA9lqF-8y-2!g2KB}T9t3xa!(4;Z=d-s7D;W?S!A$B=L52QKaG zAQCA4fQ&-{RrOWFuI>tqI31f9Z_%TUx#m|(B18hBgGk^$sjqB&n%A0j;cJTrtgjsz zfv~V%-T-+Igv#S|F*yD7zFyeIJ>_-*jb-V`|hR34l zJjVUjx$lOSGY`G?*XkQe6mQ@?%jMz!ao_*f8G-+T!2i>Xpb3H?0{oVdzFr5i_UX>AeE-LuBa|WCW9Djd#lLlT(hT*vAImhwck#kjL3T1FH_}leCJKjSX zfxm*l-wBMMWy6SAy=910^d~L!Ae04hQ z7;!onO`iVEXpG_R?cIBN%!?oGy+9MJ$atWR8^eS@*t8 zxln$6d=RN^xVL3y??^(})|{w2d1JOVZ2}&Ek!`fEdB!`Mox;epUuR zZ#w?oJignzncD>?Iy?j?%==d@C{s)#1as==&=7ARmqYve+4i5?othl3^^m>j82qPx zh;{V?*2D7ZKmCav{!g0O+bTY!K%xx~U5}d9p6r_%c5Q$2uklyCHQXk&eT8j%@(MyE zXdiu9Ym?usR9$Zu$q~6r)QV9Ecya%qdLi{-G`Jo+8ighD6PIn{bG(2UPAv^Mg^P|a zg+3bHzq{8)_iydB(S3lTxaK%HbZRBD|FaoobXKIA!|mdogG7#=S={oc z?(!Ssb;7OpnXMV|H1qt8@fPW+YMQ6(FVql&TaO#Lc1+a#Rr1Os*SsW?b920e*Pct^ zh}WMbn6rIUf;lT~!x3*HmjPSG?z7W%EFu08FGeDJ#LL}hk9c{Cyqb97Rcrl!vcFnk zs)|{VgUwoU1SB}(1tgfIqoh$vfWu||vR+&ccay7WmsJWjS zm$=WU&thSKf1govzrD{0Xh{$IZ&|+P#JpjafgfhXlTAjic#3yLz>?;$IfddGUDS0Y$b`nV}0VnUb1e~tOs|f;D*8c|xC{~4lRRbpQQ)XO^ z0sjIL@UO2lN%?p4e#^fb_FMi1Tn7L4cU_TGiTa)gQ0cd5zop+IZ6N4(Oh18s$MzRR zzsxu0HBkCZ3^K1tx*Q;79r!i*H8tWh&%e5Omqhju`kHv5j~kv~#M!93w*8(S-q#G_ zK*@!jGiUeHtwr$ziK^|(d_xCp%w2&IjXy&n(_!9%7G6yT5C)10!q29RAjzz|K3`f0 z^Rb{bI)HH0ne4`j&LpDIL5yg~=v2ls;8bvBF^dtzq0&CYlE3b^>wOWuf>`qT{RMM$ z)5v(E@Wumny`Q~cNoDiX$au5#v)ao%TVLXC$9=^%ZUXKrUM#G%B~gTOA8d-o3-=Yr zR0E{@n|=c6{&oPQqx%Z%teB%O%AC>n`=@*|?;5-MeKRKBKgdDcT&x)z-{!rRXpet$ zae^f$d(Q`1Q_YrX@d_p*Y1TUL3od}g@KfpNeK}pirw`aWjL^e{+4ZZ>uCk1PUB6m( zr89tW6&0|n5hKd3#uu`y^d&R==YA#DE_12;Q=+*1gM`pu9=4qGE9%7NTt)c(Dh5C~ zUt=T#P6M|Z(-;Beq|u<9^aPGC+?j4*KR#eXj2GmuYzs*^zTlTrYnds#HrF;nf&#(lW#Br5?fZ`uEiFddRHiZp#PNsiF7f!oc9#hFj9mi1*!>c9JP)XD6U7eN zZKBvgX(488GyQ}a+w5Rb+r;u8=he0Ibj4nL5T$ft310b$;Bx+K zx#DPd$LtdJP1qy26eertK|5IoAGE6?+i@NZI%p|+ll=7~mm$%3gK*wKOUkX$_zmfU z)HIXw7Oo2y9V=LZC>SsP3^dg9mU1aX!S}KR^xCQt&`a6|dL895px42JmR<)5@#*z4 zi7dTdIB4m0LJ^`@p8h{TFENWKn9bTKI3Ph35|Dsj`=wFJudN3yzwS9``4w;){EA$= zG^rA`lLtfTb=s%bX)ObKl|Lk(K(F$LES(L*+!fH9};-;gP9$#RwdV$62 z7g%&R9VM2ly9QW%0$ytyDi4(zGX$4QW~(vLQ_~MvkwZGurH5Apv8b@5&qP%?YSz?s~={o0M9_2&Rl6Sk3>~PYNT|nCZ&2Sz!Rv63fv?|QtCmHa8l~XA)AysMz~E% z9XeD*QtGKgHYtVXfZ);&B&9M|^t;NOdm(NuJ9|Was;3hwXf?rU=dVKzATW6|jch4SP3NFz2?!7kd-gFC13K zvV;p4H}gi$nC#^-4mL-mC;lhD6m-~ zgGD1{Ja3wJyIH+6z9iVU`uh(CW|TZSY1j zj_$wXi0%GiN9-9S_kt4HN9+lA1tU0vWSirU$O(570~+XuvQ3jC3(`z}h0t~0UPf`s z)un?^xiU+zfb2eEPaMA4f3PCX57H8xa^GMCM-E@*-wZev968Q2f+L3*!{#K8`&fe{r=KLgCvBIY7g6+coRjnzq8q<&yoDtAmiVOc77tZ?wVTV|qWfE(4G zS=TN`9iNZ)xXAMJ;q!6fX06GtSmAT?*1U41fMjwhMb??nBRReLUkC8+H& zy9Bj5W_Q-QRKoew@|fLOYsg=JXKnRz{HijUQr4e*<4-THZkD_pzb3t<8sN!Si!7R` zzP9)7W!c@mu`EXH_3@{XOiUx!XwMtPg%En>umsa6TP2uA(oUSR)^ZupaMdx)AoI)1 z{;gVvj(ui%_j5UXb!g`?JA3vhLd;W7gR@60D)V5m;3iGY>wk386d+*Pa%q6DN*3pu zZ!hqlRiAy#GArO@f?3>eJQ8}WdhD2G)??Z(Fzc*-0<+Fuj9EBVaj5PrO1KKHHacvN zRgH8PhQ*%?EdG3fMR%+^{f1mx@dIQA8)W{Q@qOmMulaqw?eh`sy=s3GyN<8e9V-6K zo~X((^8bWgXJA!D)8^h#lamliLP-LICZP1HfPkW4K{_HTMd<eRXP3}!7f(olr z1oc%=Uj_9AQKTt|3Ig^*RS`vzY5@_xnP<<*ea?mW{eYZ1vopK1`|Qr_oIU5@F`zD2 zhRT?azY>%;WFEFvT-vjt!8*IG`r_-E?VUC(f^Ag+BG^{F{f$I?Jy`^^qU$>A?Cxa_ zP5}r9#|YZ~UA?L^hS_jz!iHn(w9Y;Sp8Wk4_c?i74El3i{ZB9l`h^4i_^$W!%!Ynp zlm0%=MlJybZ?CgE!kx@PrNZ%K;dBe=7wiZVq#3#+Y^PeVBRr;8`qSGHwp(X+gbkFz z6FyN1-cVylc#0^zBRs#(?g%ds-|h&{tt((hSo|%!BSdqsBb0W?j&Mux)H=KStN2z- zdycbqJcs$$;h9IBOfBa%6AKXD9p{0scxju8^+{t1YQ}hzZNX&h$%kNQLrB z-b!Zlm&KYm^Dbe}dCPj-De_l6?xX)-Re`sx!({`k!;Ph+n*GOS-tG9vSPE}`%Z3ge z-m(WFiXET%qVqmC4PEuF+g0xp$L*@UM6zA=b&MVR|IH4>yP_VE1FN@Oht-zR5w za(rYMvMFi^B8T?UVvQUczhxtb25;H*-G?9?Aec9#S4q2p7PMuUr_ac`O(@0YxhYdt-#2530b~!XT~fqM`(x%frwbR*nIE{-9QrdGuYC%1#3eo`n!=jA zwX}no|5tWKu)*6l>c;%XX0MzH6b+U0zGyxAZ8N`qsDgR(ubEe8bkGWU1!&}Jfx7(G zXJ__xCNUW^uJZQb^<^{L)a+inq^!2SnAv^Rw4%;~ToRLRE>ke+W+?@euEX0l9_5qdzv_IiuFw*0ZE!*kgl>HSb9sjH1S63Z*R>3ibOR~#HuZdVkxO+ z;stpXuaB%K3dp<7{>*m2vNY>$ASVz}+I9Y3$PWxsxOaWSRwKCcZNvpBJGG_o;urJ^ zalr+1@~>?E%F^+52sjspCKop2)=a6PILa`?+f6KQ5w$T8s&*Mz)((ayI_1`jT5s_L zEXyzj4-WyBqNJpmS7y>UrydsoEbExf=d*7O)YLyM&8BPe%BN5n&$JrrZSM7) z^?pf_P{ZJD>n#L-E)wdLQ9}h8g2|-GMx75Al{eko&SXHa)x-(?^X)BZmW>^o==9)H zfZqtF0Di-i0{BS-k?{lkvbZ4N_t1I^zlVt9!fzpwEc_nRzHs69gmMXfx9M*m{6sb2 z$Eq#-Vks{Cd}P3HvaJxWVjQ;K!f&vp*@wKjiNN5DAu|&S8YhWO19FDBXikmPmsAiC z+^biB;9eQB6H{8#D~?rj z^?yjG>j{KY%!yGs}2WNk8 zU=G4x;ow&B?aV=nM*TadXaw+BY`VW=&&7H=$FQWQ6FHjc%#o z?J_GnrT?a7SZGVM2qgnq6^#{=fqPW~0Nkfn0N_4pm;f*(`sfARE~fEsW=~4aJ!W`D zXt5uOaK@b~g+k6B(MGsAzf(+UaAdsejJs@*1VOqxx zHcY!=gALPs)?=mX|IFls6zWSJ8Qq2FZLquWJZ&bB_O@ODX>ZFgU4E&%^2*Tc%K+@c zm7x*NXDaU@Mcr!RZlV-34I74L*?Z)_5ZxYzI^tsLdlyqaNq5k`vzQ8gB!9)1CPc%# z3=Qwfn*Mb|awk4>a*<%dM#Wj*jPJA}M%PYX%^KXbY!G_RDZ7!H4op?4)>b|U&@gn5 zQ;K=;r?r^^WYts(kR^?b`qOKIm#l)_7orzy@_6EQ?$JXDU86Nn>gbXH8mfvRRWh z#J5?KmYWL5n%uO>W=+r>KwjE``{*k}b!(Yr%R()52;$Ag>qA8Yjm@4rWYXk+6XZ^< zh}+u0SM!PysitLniQn#FGM0b_H-yGGzS5Ze6SyE||2U;!_RH{M_HURrZK^Yy3u5+1 zHrd%9ACSWYDCSC)#|nn8J1IW+Tq-GJCi)MDndT08S&DXAuWQ>c~WBg3y`OUpFH zJI?kVUPm%!ll3jWEcpbK*CPy`CGHfAPT{fz3AF2yV9V1}pGZ2q}YL?&v1?hBSZ}TmNER zu5VWlpHl#)>ufgdJBJ!&1hf{0#jn&X`$R!wZU_+3w_-@ys zpxmGo07cp>KzYi!o67(rcWky8xq~?F{W79hh}^%~LS&qB2qJa#w>MJ&5z#6TNlRcA z_I?>t?ENyP035xfNg8zAu-OJ3*KKxz5mVB=tHeFY>@e^amE6W-h$ z>k}GmvUiot?V)j(0a&-*p`p$mZUg|flPP0zhIk0OBb4p@#5}B$Ke*^R=%S0Iz1AOa z(Y0OvO61{0(N(I8IrP}HawUpyk!??$K+T-|XHo_8^PQoZ83(j3hS-N(Ii5BsC1Uwl zk3MZsfysgj_i2MtTkO*YJ}DWYj%HK&hIL(F-VrK~cV#5`bjVFy^Hk>?`*!E9p-xUy zWdn+09H7|ACs1T)r{GOnEEI1djvK7pLnMpEep@US2P%iKs6FGyqNv4k#cJ(x<)Z+M zJ_^8iqclpv*mR2pW1}q=j6Qp%qzgvwa~@6w}x&ELO; z_Vd59JOF)ii`~!1y&G+Y!G2yi*w2?@4tCPQ!G69PbFiORZ^Qd}alN{r1S*?SgL3Q} z@IAGyS=dvHE&VObLDb^O+`$}A2AldJ%)zE!WHg>Bb4*Mgf6sv77vc&PS`f4^pAI}- zwvqi5Z~;9A@9^dpn}ri2?j9Yg8jQSavPOqGX6)BaLEgu^X8F7&vwCE5yi zo4;iDW++|GAE*{kX!OckO|mld*+@$KJKjy2uFioI?5_-{@8B{E1AiPgBV$i3x_ z*Y0<1bg@qUY8F@U^UFh_8YM!a&93^(LrEE?*|bodjNRHdJ}hx(;mLtH+z1@qS-_O& zfo8kHcMxODm!^TC3Nh{{ffL z2qdu8j2WJjp1745?yA3^NOsl#R$8b*>Otkus;@ocU-h@ju*#VOht=9u-$%i!@1tPV z-}0Va^;f@VSN&Jsv#Y+(=IE;bHuX6VqOSU<-?OX!X>B4VU-hkWg~?Za>*ZJdA!blm zG91207*no%MDp^jRo;tO5rSOJl#@p$N@h)mY4;9!iQ_9u_VFYUc9R_B>>i)k2mN+h=))NVc3anGR zN2YI31_5fE{`Q5mqP0}Thtm>R143G^#y*7NqbQyN%S=|-%XB=l)n+0DGmg?|FB@KvVqmo+NY^I|+ zaqyh?!=}MYQ~NnL5Zxv@d?j5ZwBKfv94ns)-RN{@5yUhFh(wbd!+aw8q`;tUHpwx8 zIf!zMEY_pMjIu+1)^(&u-*7^)S# z_I*?3{ZK`->_xdhk)o;@2!(ugX$JY4lap#W9hhtvQ#lcs-$uv0+B#CyY0ssW@6Mf) zzyvI)cPIr5s0fj{+C%qrgQEmqzKv?2h-Xi|+Nlbb}XJ;Rv$X3XBxi|n&kYb>b%(uczwr|sNDG?;hD}q z%mcj6y72nlg%?YE#+-5CwO9UX&?xX)xmNBkW^A|cO6#6g&Lq7VYMyaM^)to}aD{ld zW8Ryguv2q8wK|$DsK?}J@K|%Z*|{#%$1f%Q-%&r6oW4J{&T3IDw0q%}kYU)pbXEzB zP8Yqx=ycg0yL-VR0X**)c4p6K%jO}H`G#I#~c6o*Ydu+Ja( z1Qdq`o0$7Pkejy+eWJQ`xsxfnFeda?3V<}h40t`KrdhUr<_hOQE{DZ&><4yn97`N` zahydY8*N6+fLFa+Y;%-L3*?ph+qXc9YAlef+Afej3KmEoMHk4x{iqA?A{y}lKY8#j zHw!jwbZyv39QVnCuZU!A_}ton_Yf`nz@CNtMoayxEm8$+;VP^xu@v{|10NX%$}o+kz80y+5#Vbx%vfi5%ZRixM|W#~5SWsxuIia2s)%nuO)1_J?wX<)-$B z1v!J6UxeoR7a4rI6wct4Z{=oDmCBQgT95F>m!Xl)^{Uh75!x{2QsMDVA1;9HTQ75R zdrro}Gv(_Cy5Z6+TV14SDr@qr>-wRcl~>DO*E_WOHdHS-`9td+E=Kpr71s;z@Jr_8*PNM5Muw_otmKSn5nAI}A2kna{8K7{PG6)~==4Rl(X3zp?4FvsJwqq^C6M2 zrwK@Ycx%perpui2@y-V3>b`toe0HKqIvXl(Uj8oB&pF`ZmmGg@Doc2V?Eld2Z(jaB z)WSK&BG}&)AcFl(_79;~oVbso&9?sQqG;52iV?hft90yjgL4~~f|8qe*nRR{%t6J%aph%LTDqxnf-Yejd*yW>+P(5| zErY%CRMn|Jy}j~rnX`HtV80gO1?p|mYp_?&qW17!d6pRcN^U)84)N_?Id?|^du6l3 z?v>FTcxPz`_R8m97}w96&q=|o9d^^aQdM*7rg2@^G|xX9n&+%ya(*@}U!UU>Lo#eD zOJMJ|MJYDc{m?#2(cye(v~!RP!oTm`VPllN#E}>!|7C-}6W#9OPKnu)XifW5Ipo-> z8_byFIc0;Q8h)KsTfZJlNj2u-xs4njS^awO>mBwXhc9FdM4-JMde=O1B1 z?VZ+!+QeZSt|Ph)RN9z5-{mxtm^0`E<98xZNo%jA{>7d^ZL|58oHU1PvF5~5Qcc+m+026S(mYE-v4LUcxxBe zV(p5h$kWh8v#TaDx!A(NX_ZZ-v7M_quW@T+rdL_mY<^)gY)IO*4oj%&RI|KTb`3un zeKXeAH+UT6Qvs-M=C|yyoB549>}K9K3vd=BZ{4`cGD~{;CkS?Qi{rCad9kDb ztTh+HYS5D@SPi-<1*?Iy51E|dTn1np{IQ)xgNfsAR;Cllt^rd&wrfC^a%j#p*WZcy z9?9c&4G^tZ16ZpCmyd#dijRWnf3LJj$G+RgcI-QUY{%Ybvy^mWckV_W5RKg*|JcUv zk82ANMsC$Bgppf6j*Z=?3E1=@;(n>wk;}lTUb*bC&VH5m)*-;@8>So_oo8b@8LGl& zRmE(_bUFUu1J3VU2)H`w;_8@-D^}x~@vDog&*iTM>4K|;6|=7lrtGq~`l4cXhm2oU zHRI|_UtO9Zyt3SsflehEvHX_9!8G{hq5g0%(Z(*@CSSWw1pUqKlabNPND7eP%vfvu4Ed;op)hmGO*A4_dj2~3cvl^ zC--*FGa2wZajvMluAv9|=OiUMXSo!hS86vI59lQ+1~{YL33rpwl14boa`5ow8s!PD9*#-OMN23ftuppOC!`Y4J)IlH3u zJvRE*G&6cxk@#TJZkwn`aNDutiW>fo03I7mxhtV8b&qevs>coQvKw$r>7tDX9JBNa zaLh7$DunqqptsarJT)TC%m{}P79I>aW?r@Ic+>Lqh$OS@!nk-~YH5?~1e39A(&fO} zpkel4=PB+^EQkx4QmRq*X=gQ46p8_PU9@xoG8OVY6YYIuDp=IBZ^drwT<6PQcM*&< z$-W}EXSXhb-7;3Fat7dIzSK?n|r74Hdwnr;sw24-rjkQ{|`6xh}j{>y) z6Ghvq>#s}*xM2I4z~(bQy7+NN@@VMdS8tD9{OW1rfwq2n1+?|sbD6~thwFJ~=4q5{ z1`gLtM2^Gt@jE?@Bl0zlxJ09*XBwtFFx1q!R-CdgJtN=N8M3xyo9s|=Cr1_J50Io& zoQIjBC5@C!F`dVbFJd0)n0>3WfD0g4L%@W0o5KBWQnRAK1L zF$bOC$<$zuE3;OHeq@|^wVj0|jF<9ce2N+Vbn+w(_R)s4&i&%z2YJQfp7MYHeKOe5gsW)j8Q6N7jBsxb%P5)Q!CkU6MXIMMFDp4qY89c<$& zxt&WviEt!6oN7CK5VKLcC-?w!JVEq$7IQA`aaABa9`wvu#Kk=`x<2}Fvjk=U*Ph5) z=BP-Zl-bimK(cCK;Tq0X=Az3*&e!FQS0_()_H(hUi(`5O+#dgx8L;^qx3kVM2Tc`D zG(qfqPJ?(!j~D;kPH0z|sneUBf)F=<_E56~)&P^es;^@XO#VhqPBp8Ze7Lqx3>J%+ zXR)`07dNl0O)hSZ-7O$Prh78qGslyO-my5zY?v;Bp6NK7P(U1qyA4w%ZkLmJrHuwt zxZ6eOU%jAWcW`{t9JKYK{KRBi=@reacUQ>9m>YN@SNE28sj^$OAXwO=ASr`x9ppRu!< zCc&j1k?He7Y*Z}?)oVmb|CR~YOnj?YCj^`byi0#=QwKaJLM(Exb=#u@-`uh#R-@oMe* z+SGF9_SdsZo3^iH7c-q-&%VNm|B4_6poMxQNK%`-pP=_|XmN%502BFz%Gw5JF5Pht-2_v#Ka$CJUz z)?m?9)tv>*hSehIv%2qF*(04-xEQQ{(Y1O#b6~Y_VD*R0LCwMu*VWx;hUdAk2m8vk z*HiJwWmTx}D*QE#77X@eN;Ai+76#AQm|fMW!fY5UfFRy?#Ud~EF1uQ2y+l3#y7hQ?vRBiT5922JH1}UBVo%R@l2} zYxXtHOU#D7BIvXC)os}`ocFjG?A_$r`w4SkuW-~}^U#xaCZ1f9-9rpOI6Pxdy&IiV zECN*fcG|zW#uojC#tq~J(0JIjz`2==s~NVl zdovlG?FkHKj%zpi8gE7%$6V>_`=nQVUA=Ty_5^1RmqJ(Peq*7vh&ixWIDpnl=D=d% zL_7R#W?$OjYrip>H%O4rrJzI@(f;1YY}77n)cy-|JVEsLS>{~Q-vN2;?+QuCCU3ej z=vh+c+t@)D4%V-6H1==yHo z+O8kS92hSg7(bRds9ZRh)gk8iX7!A3?YiyhSjr_m9WeT3=D=u?>3UYSC(Q6fU~|b= z(`!20nT=^Jaz3oRv_Ja+=MWcz!TVf;k241b3kL@O!yMEs92i`3FO8kg;Do)_U@3{u z*>XWo1?+9k9N6nsdjoSk85sQO_p*+4XEqELK{B|HGlEM%_0YZc)XZe&pcjPW$s&d= zAmTv`dz%DX`gBQ1BMHQ?PpLlr>7AGfN$961W**QY9L{#(=mRHao~E|&iJ6sq?TML} zh;L8Kys)=`6EpwYYfsFeIml~EJ8)tKA4lzn`K0NuTbBc9pl$rP& zQSdC%VACK=o@Dv$RCZA__xXoLIwkf=d%dV1<5py!z0(%hXEslr(Jh5lxHl0B?X$Nv ze%_1Q8VMLS+-fTe{lzeZwfC9idUAg4+LPJMG74!u+%Lb7Ui;37M%)y12_C)i8tgdr zxd85TbYKeZbhK9r_5;#L-08TB%ivB&Z)twkjC6+>?v0KyM6x$JM(x9mj`RnVLpM5V z>u(PbIKM7hai^m<>%c>GJ__!1_$Yd(BiM7Fy|>$bpS`!+ZlArk>$5p}dxLw=+i~cq z=FqSomzbr{GZO2V1 z8v{1|9OZ;_+2ftvY%6Y{?O+N{{zf(7ZIDN}008&B3%CRO>?svi;n}v|Mcn)HS8k*c z;wn*7=gpLFkrmr-VRz+)?3*+8Yi$g>54d`~M!Sd-H%O!OOhS|W7Pk%eTip7L25v`By(J-qdY^|@ zVf)~I3)=^^g@Ek~dIi|Nu)iSK;=7ds+frt2v7Ed7IJF<1tdmn}VM0z>vuaPH`sSPB zIV%%4t6q1+?fzd52+)pqv)H8Xmw1QD8CG_$v!7Ym&~stWw0-;OZ4+l$1i(MB-v&m( z1JU-_w@nBKaY8b4;IM^*IH4+YG)^e3E{dP45l4k}snP*AcjxMC#gd**1P(Vd2j1Ol zM{nkMGWx0sGyDhJaR?WrI9&d(`|V6FpikiP*Y3Bs#HE=P%jDD#h7Z_jJ1Gz;Zzh$= zX_B!|JB;Vcva3+MJ zW7o+9%KwI?KyjEKg*eWaTrOw1vpL!n_W`YUn1Uzgk_E1&-owl6=PS)sM{V~4FP|N- zo_Y5H`=r(hmPUzR4_HK9U=AWr;Q&$2LBbkFQaC_VCFcAqqADJ=i1Ku{U`bCW5OpJS zfGClf-$hfGRN?fh2dDH+H)Y*ofp!`Rn%&Rn4KQIn~Xol@AsP z&OB%_)+sZmTgEQ!BOkoD(~uYaB~zY1pUn+ISkiZ^ejGc0pzzhnTrP#!WI0o?$S+k2 zAS2DiBEN>qV3B|Apk3r&BaXYse?%m^$ZtPr7x|sap+$bC{`M{Mq85uhtF?=~kAg+s zN5LZhsx(R$`K1TVo>igi0tf9H@3R?eJl<>g7WE^K&%uXkh$NmzI;aiA6f1Q|t}w+) z9V%#z$44g-nv8y3LKErv`j?qvIdx>_)lqexGevX;C=#h?_FS2hZeOA~;E*D%cSZ}Xfk9S{tHi4$ zhBF2DvY(xFTUiWmq#DA70I%sx0lcOv1@LNd$inM!E(3VYJ7nQCk2o&8Ruaj=>-j?# zUN0$!;59&h``{&NHy?c{ErC@a^yPZ&`y_l6plgn_Nzpa+kPRUw9kTH9*_;or6z)Oa zkkklnIAr0qLE8a%9oH+s>-gp1g@Zl3f%Ftg_FlZyO{wSeHT{#X>7Pq9dCyzTX`VCM zf1n48fBP0WClgb@la}~`4yO{4>`jN%?`-5z+Q-qOJ|{-ylr*cZ$r<7_W*%-oaB0tg zM&H@n4{x^2Y2~zI5kxBmh~PP^1+8*^bZ%!6OpWfMQSUwsVh((ZaNt`WU=9{_;UEW} z%^W1pI0qldGMO@?ki+tHJZJ5ByRI^M>Y$Z@{6?$gszhf8`o zU}_8Iz*JA>M&@`j5|EWM8;&);%IU#u7%YNpaL1c+S;QQ+H(;#jt6Tu02DQ0IGu~k~s&wT(VumM&%;?w5xg;|h6!ka@ z<2L;?m-d>DZVvoFL#5s9SzD4Bo=7w)n!#-JvUCRb^0NOX_HdeUDfDuqA8aqTXAWQ` z9Kfm@b8y`22ltSfkKsFH_Jc*0r(&9~q#iO86*y$Z41mfLd5Sr1tzvCcX9Y80sE9-j z?c;3b0?_%6Sn}YsHqI{Qz;8 zdS>)BIUS4J8{cPsuzA6BRnF}@Nv$!O7hF4}uRQbVRO4149H`Q~Uu`3a!5ek`_r6Z# z6GuSMf&~!}G*t=$0`Ug;I?=ZSaz;7bxger~&WCMO(3v>0F@CxJ0B0zXY*a8vY}cph zhAW4n0_qF1xp$;&P_!cEWUV&ljHRR+Gcc!$<0B(9xb?7on(n5<_LD&~2j$FgmT{BN z{>5(l7Zb;QJJWL-JQXeU!HL|Fc81!w%MN?TDqMnodJ=u5o;1*zshH z9o>iJyyyJNO@kdjxpw?S9Er~K(Z8ofe;X930>*F^)|gmI zs=0SWPIt#ghB1eu#^8Ck8>Q76zcoE<%a16Cjp~p5q)!OOH<|3Hy!xZ^s+;L|-Q?R~_`O${(BY(6>2$u1pqY*#a?P5>) ztJ_5^Fi2pRF`4)0lr3&on*~3bRjYDROwt26O*2MlO+15d=c?zQ%zngK$`s69`(?4$ z}EPBaR!!?<0~0{5L<^341^} zgpCFI+b&*q!irX4gSA?0_$b&U`Y3?KW@(ecVAYQn2LJuh!oX*MpYz!8h2 z)6;Wq%D7ooGm@HeT}Vn#WlA(D9b&Q|!A(j}7418xR(E_-($$ib?m1y#zGZ37B%i#d zqMv07@V87Uz@Hcc{JqI#fWJ46Sp2;~92b8(iDdEj;Sr0!UCJT+J)plCf1(xmW33i{ zJ__*XqX2)arA>;zWk)RjmK?G8^VtmiAxpu1&ZDOQ{O*Va;CI?W0IdE`KcfP zcKM}yMbm%Dv}9f4lFigy*;Dw|Iou8b%-SxAI@jzc*}3B)d1P`;*-p z)@DwON_^SqW-fr;9*cOk-t-gYru(x9z<$?HHbx!A9K@)?L5w<;IS7u0gRRe8=IBpX_ulw;<=1jGMF`p3XJ7V&tjMGesOjr}P@J zLT95zqIv2RR+T?;XrWnkWqiGqGCz9=Evr{RXj!v)V&qynBMA^%>Y`m-MKL!9F>R;H%_?*&a@NOx zwop6&OitH~mRgYyYFsm3ko*@@@NTg}M`7&4V_$crmb&p!_k$%*Aj|xYv_wbnv@3E?8g#=7CZ^8D=)#0oW z?0eMuj=tIq_>M>P3N!POqnGy`v+aaj{Bq8Xmzj{Y|C=+^S;1Bz7JiN?nOPGM!DQOt zWh3*jp1*z61}|%m+TewyJwUEGir^*iv^g{<(%Hd2dpM%v3W|g@d#vNYQ3YhLj5S&Z zV{tiGs;OM#dh$CGKn98U&GNPLR?MrNz;k%y$UuNQt9mloV1U@k20IV-#^ruEMaA{8&!n^-52iAKs z?=r`ei9R~BhuQGFA_&hbrsJuh6KV1}`J-G6rvK=g{ugs#x^Q56(PK2Qs988s)5|ma z64T2bv!;8>8gXe)8BA}>9GLFO+{PSFCTjX!%!cVANTxsFjOP-tddx99;4_&6tAzur z=Q9VD3P*!2^YP2>Vonc_1fO>8^u*t}oH*?Kh&iy+llhuCUX=j&`KKo|agHz>c8Z{9 zC(wQWqZ3M){$J&EaSHuLV+M=QyA~%g2Nnwl7N;`@)e9#&&h?lbJI;YRCUb*3$31-= zS-{h$U0|Gbwg+LoSA5{*ibqFzEVE&~2$J=EoLO7~s>8q8-20QvL2n30Wdrg;G+83> zfrQio)=MPd^Tf?+0)CS&e@MWuQ=R(LOTcduub~O}SG5R-1G9O_L;`*TwTBb%+kdkO z_z#JXbGZR|9sCAqX9MT%_%i2%g$m6sF?P`4f%lIbFl^N0!$14YCgIVfM19|mv;|4{ z5AKVvWg6TYzS@j#8ZK+@dODO8-0+)C#Q&(3a68}TS{oi1k+Sy5A97v{I>(rf2&V1q zDgDJyRd;+Mh+=}rMXMK~Ad0!D;)r6zRU!F4_UD|5P6ii5C{saRJf&ZFs6ZU|!*-2` zWJ8(yCh$RoUiXsTM2qZ-zV5}>894tX`Vr8uejCulQc_KmUvnBcJ~E=3R9kERJx+~a znd3GU-{@G*6lXX$5Y`NKtr<)l3C!}}&NrRt)}*PfNq=Qz20I+Lui(wnQoH`mDyaun zaXr?mSW2ondpzfA$47=$_g==T3ny~kcGhqkVbyD{Rj(1pwQ6_uyK5#8*%~G9mc}@- zQ9HHNu75L1s)12ljWsHkA|E4oCm3%^o{=1rj|at?8m7buic5xATEG4 z;31}94VbJHtO3nV*qzLyTn5mZd&0EqA4+$K;cjGJAd*GZbG9c|O(@nXeWh{>&9MdaoW{#OX-$wWyPj3r4^>ucm*G#Dm{Js3Y$-rO5g|APq zoXGGiW=idwK3K6?(d=G4IoZCLI=66mic{>QRKQ3~j3WvOE-V_J?o=Y4eYJ4KlXlab zdeUy1ebVm8rku1H|9>ulpKLn|hvil46Q>jjUVBpEmu~Rkf)T~TS7)SXZ4AUhTz$j) zht@agFU{QPbYL=4hZnWmSh9VzNHler%KE(VkjCPOYhRVX81&OCj6uJX*icg55WNie zUKA+l5!a^^!q58WK0bXuBYW8uW>w$Y8kwZT@Eo(O#nftvlcJ4!-hIeAi%51`I7#-4 zkz1Yd%!q32|K+&u&O+v4gU6*k!xo&RZ1&46g1BeJNgMaR#T<JRg>N-o$N1GBZ38SWEbDVqLcoP*0Ud)#?tX!(-jI^U-dQf(G}z{p1>`H`!rd|!Xj2(cV|{J^ zdP2nM$PEAt$HWTV5G_J5WK}d;fMGwC01W%<6=2x^RKYMDBg6RC^n1)lTeGgRUP(WV zQ*K*Ud7b{{%!%w}rS01Yd4aH>#<@Q&{DLzn+C=vR_IRSKou3}A5pd=a$*u#lPuX=K za>{10S6ou!xlm5s|Fhe!{FSp6h;#eu;9) zZMW3lKDRBZ;kH?|4FY`>xNRQ=ZhN}c)nZ}cV0>`uY5q{gr`#;qu*V72_&;>(yWBQX&agh zQqpyfZ;bOplhm;UG{&vwSj89|NnfSLU@f}(j9g(Yy829Pj@64xYJ8ei11r$2O~beQ zJ!01`SwqZ>gr%8gcZ(T~&G2U7`R0(8$A z8;G#9XV8E%b|T&+e`O*jMC0Hp8V8p%b(@6~?CJEpGj?v`Lm5r42{+9cpjGnRyp`MF zeJG=ZDfwMwrSll`;0tbv6`vO^LcV~NQnTR;UQ`M6|4Vv>{(s5#|7AmxTh7?8WpJ9o z(ZMiEMX=Sa>HZyl-X5mB)@5Ss`!vo#Sp1QdmgPyL@ zT-ehE!>2I^(T689n>n5ga=rL8$WzRQCgl6D}yJMY!pex_v7(xT?+0pY~p zm_Kc1_es^w%^Ss);nfS7_k`y<%a|sB-RuV%G1UwpH3smR6ExgqD(7?DmHujE(e zzTwO#iG0wzEQIiKlTr{~%9@UxaN9R>A940`K@H6U^17DmbJG*QA%+{7ohA|@v)~Eo zC;g1{@5-TQ%-3(&pnmhGjmB85jmBarsiwl(+)j>^T^OmRI~`!{aN60LLE|1DKKK7MS*nN0T)j0pmXc~ljSe?-d}J6pI>ylZ#)QMpyWDIT zy3sXsBXQW!uZV69{oH40-Slt%Uu&ceSi^N#Yho$#`jBzqCXSB`Yt~1t!721Tf7$~) zoBp&1c;5Nb9^moKOXRfsufEa!yza%AzP!Z#D+vE zW*XjjWqq?M6mDzopBNtR+)7NFIp}!S2JY?8+Q8i>?yd#bpS6MeRq|H?ce@fJfnB28 z{o_XstT%X=K*TQ1XU)vX;bs}vYel@&)#I9R7JWQZu*yB%zj5vS#uhizZkSor8Ox=x zYUMEnt5#SkShb|3IFIu*mjP%NowXBw5pmr8@Eb(3cv*ecu2^f7!xLS9dn-LwEKv)b zuv&`~9|e119|aJ3LK-C}f&*c5vb*fR=bao~Di}IzVc|1eO1mFq;ePbuZyg`qDSmL) z?i4@JW@4vuPOq?2Id?X8r#MP*s2S|N4~HjS240J1hKD<4&WXIYaN(vs9jMsCj1-vuJ*JX=35OMU@LcH%adh$!=#0|BdZzVj<$N zx>eJv_HZ(ZX|ON#6?aFl%HNcxZ_XkBbYuDAp*~`K19K#b?;&3XMC9F_8Hl1q1WD9E z%s~=W;~!4bOZ12}Wx(Gyi7JxNIh`dvorvb=Fb5&GC$oq-o(vN8E182pUStrA*O&U* zgu0cb0^SN!#q0^?W(3dK*&39Vu3r?cp75a*#rzyK&@{X+siG;eI9xlUiYnl>{~yJJ zw~FAn`KMHeL4xMImSLgY(IU|VO$w{>Hx9?mQ;(_?K=_MZ0ffK&9hr74Bpj?)n1q8(mdWKC=wA5o&1>P&mzjC zqo_$Pzck)ld+)?z_H_9|E`^2r(SK|tGWQ=F=CU5oj5+_-=o-^N5|J(ogE`x#S!sXa;orleVjX@BN2 zz|>(EQ-_J;V(J2sET;Z;F;(b-C?-s;(ULw)iCSQa)mlvXD8Q7D0!)2pF%^)H^epmX z+K>OSfrZcTd`zWsKk{H`Ok3uHjV{V)vw^AhdIe0izi^r80w>Hl@8fBdj0U1)*~KI0 zUR*bU(AYI!W7kVGdO7!An`xFv3VS&xzjfulm-XEllC6WzNhF`Ej%3$KS`?KVt zk+vq|TS>Y_sqvC2Pt!5-%R=KXLF=O7n@{=FBhi~Ef^ z>f!?Oiq;jm&7AYhK+qy0aB)c&qdn|?#XND(& zr0@4T!dE%nm<@}iT|SF{-Wl%W+{eXW@sNww;z`VbQx^`LdYCzx8CgB#)7rR~@uZJI z@6iY>$hSD?X?fjO*wv!9Gd42=Ln$K2HZ#MmR}4-y4SwlR+1bZj7%XCBa3ALnE&;`- z#3Fs4M&Uy7`IEt>7=+`=BH3F2G?DBbAhSf1y+)ycj6!wQr$4=9uaP;b$=)0-!prf! z3?C$WYg1b&*&ElmP`t?;^k7}5DHX8U-iC$D@};vIn$dellqh@2iQYCM*f6tRV+XCm zswvGu&Ug1~{c9O-CMN}J7cvdI<+aP`sx@#cYjTy#Z=Z3u)0-*LL`c3a$0q`RF_J~# zFNP}x{zBJ;|4bQbrtJ++b0S<2P9s#voII18mKY+Ao4Q>>BF_1qbtGhhjE;vOD+nd)eI9&dglA#)c-_6ac4n^YqFhwGB-jH5}&EG$T zr}}yDoEv@)k8&PkGZElD!W3++lH()sCgFJ4eeJ=ETmY-=^8wRtao#P#XXI~cUe{Ds z;W_{10kfw@UV1PuV6t}Rb`Hv{t#mAWMTrkZ+w2nEd)#W4&74};Dr33Uz*Ba% zugd&y{(j12%v*f(a`$iHUe0djVaoo*6inH}O2L$s)@^w=S0V8oem6JCi7gWnsKG``yE#nmPa2?7Pvlh(UJ*2Vw&zw)y+WIf=&ZM1 zA>Qj9G!1L!wRW05FH+~?q- z3_p`NmU_(1C`~4k4c5j6&GOr3x3iA|j$*b?@4e0=%u@iTaB0uDxn|6_xhtIiaA81q zxma|?tftQE%t3%4oIRED#Dg;jp^0!ZADG?E`II@>_Uo$52_<)c1M)@T{c?BMQ+bR9 zRb^ngnRh_qufLfAr|yZAh?6n!)-JCVfwv-jR-XvtF>{Y&0gQmIBO ztk%r$H15g-R*DtRR|G5G=W%w$dr$uAinkfRT_@->KDy-HM|x?1u;djjY?r*Eg{7H* zTywnwkf$|0|(R^mV1=f=GzvFgcz$yHP3!qwY8UvK+M^m-fJW2GWP zFSF5ITspET@ots(Z*&I{$*!Gu7pArI4rUK18~NIq%oJ>Fxr}GTBrP335DW+CNWRz2zi@|7lO$Ll^&Kwvm92k8AbI@AhtR5gWZ~R|k2j_NX>#-wK z<-JrqK;3o5q$&Yd$$eZ3O1h(B_syA;n2p+njoQP^QNg(GMdHnv#6VML0kfp$=vSQF zn#b&&(;?`Y@hX@0%s{8V!yM`K9$uqAVumNOdgH8?&ezOAcS|+C?yl0Y*A31oE{5U! zO^T(@ZQ~RwO2dhPP>wrZ1CHl*O)UVx@P$1Jn*le>>eVSv;etJI71gIdy*;pAj~^ai zSVEv}Mdd%Nq?5EfFWbG8;CXFqh-*;8ctc#jsJkI3BT2y;MeUBblUBjatjcxb6jbf2B6m4Gm<;bSYSB&d zo=H!k;GlP}l_Ky0Q8WLj{x!$a-7kSAEacKnFGm6>`*$m>iTgxYjWWCKo zbj*nKMam&>!#!cTevnrtC~DztSgj4PV=1X-X~Rgi<0Hf8JXF+f#3mQDd*kDcA|YoF zw+RO9bPd=^9C4RJ%Jp-8B$74Ydl(>F%2#A$bZ`9A|7(fphb64vS`tf1H5;2o>N!3# zEcq~M3AU6IrH(_yu5kjOaGuFpxW3%K7@OHF@ical5LoRI|Y?T zMjX?>MWnEaKb}3#>B9vuNqb3G=|-}f{MD$6Rd|l6t8CCUV7;aoqN+GW`}vlUN^z5m z#hZ*)5y|+dUdDGTUqu={z1T{g=$gr7;M=}Ob!_B%+sY5FnwIFy;8Fnj6HEcf7bpcF zm)1ptssD08z+PAy}g)P2CEl|N~Eh>Bz zgi}5W03pZJ6#$agTwXWNJp}V8Xf6nRT@VeaxLav-5K?_9qoljYFSV@*sfrhuD}+?V zizB2;jP4=@WhU@@;lbwa_A;w{m;=IU-4Ge=WU2yhF$Kahn1c5k0bv{4N0JP_B-DZn z0AWpvTZA=`zltzc;n`5XI1m;nZ|2{Y*SWB+`({o@*%S3H9&g_480nc&U-dG=D*7tQ zPf!eCG7u)OIO=brt;E-V`f@2C>_MggVGk$;2$R-D5jKkp0%39w0|*Nf$3@sOB3Xnj zDQ*$=jB*HJVrUG)L@f};YE9Ov30EetQUJ_X1ON*aw=2v8@>f@w(fI9x%V&KQT->8H zFaX#8WPlW0|I@kwt{?RZ;QFy(aP^;hm;3fb8Gr;cscWRSA8TWJNhTw?wmc=g?Cz{4 z=CN*(=MoE*5Y7IGyEu_-tXQZ7Mcn6oJ(8~yXJ9f|6oE9C_UueAVGu|k{JP;Rr!k8F z!}Uwpn6e#n5Y-6>QC(-|;DCT=)Re^lW*}vu&XQ9W?vf%W6%KXDb5AO`TBoqEs}&Jm zE;A5^c?~hlaYdq8i~leeVV=k#YjLI4?!JAbfF4pO5cq?p=;pg3wd1yxh&RXXirk)& zuDW@Op7jljKCrrrtC!i?Dg7@k!$LcvMJR2-s%XrlMK`DZs1m^B5xoK?kH~;Y+Kkc` zSmH39|0-_N79aMD%=V)ZE8mj-k*Q9hc+uor`OZh%^}NBmX{~R~TUKV_tlS5jax4MR zl!>+2q;adMJVG|Y_rN#E)%hp^9t6)#2U={496m*+3HM$B8=Ym)T z2g}Y|{p?`kxU1lFBH2}NYP?+qvy?-tpcopn3W{2+f~?m1Ssw+3sGb4-F&M>>D z#Wx5ZbAiX2JfnVff%kcQEbvmy{E?C=+r4yZvAC3kc;k$TbjtWuD`en(>1#oLdaP0c znE~Kc8afN^7cIBn%}L`zz+Gde0Cx?P0^CVUqqytH1%bQv2^M$liR0q#ZX#LS^+~X} z>!%#To!A+JJ5dYVv095e9|gGcQGmO42^Mz^Jq(@E^Ck5n`(O-S}{ z%tPL6D^Waa4ol}~-fZGDc@N4NDqxSi79aw5KYc-@sOdgMo|$=MdgMMQ-ibEe%)j_x zkAP$SetBlV?-zBf->=CWWK@JBxukAR3+DKq%xvPAL$}QC5cG6(`a^6VQMgN{K4s{km$gKtVe2CLE^3P5DAZc~-|)5~DVwaM%;qfELM z;l*?dgBD4v?$jJkTHT%KCawBW0h_eCQ!FX?6vr?TMA8baLedJ&(WKS7&b{Q#Y;Qzv zGNT`g6gT%Tm{~N?U9E3ns&pTnw?99 z+ddX~*qI+A+$m#Tezoq?d_GC|jsLI^{Khj%f!~m2LHvfB{E~_OptFfftMdq~Hw_=n zOHW)+4EHd?=R~r;;}i7ni1aU&L%xGM6uAM>y6LgJG>5fX*AYueHEo`VH1-#S|5%r3 zQ(tQmHT6~Bw0Sa;=OiXc#a@U2-&Z2Z`o0pxadUT7iDcVfIZ5#$sjs7nHuY6qi~O4* zLD3H<$oj1%v6NI(W^tse<0He8qDinMu*TwPUZ0}z!Pmt)&3-(iwChZ21$NiaYDM6tMmoQxxk7dz1pK&oP@`$ZKZLQvA&20F%QmOb!#r zhDc`evw3)@fF7eT)t-}qz;O|((6eEL z*}OI{BhbTiU6a=(PO#|0#(6MW5$I=!X(-&gBO4=><=)1D& zXgpWiEO8H#NFHu`|j$mh-5>^-6d@Z*=0`o zcxMN*WAx(d8^^c+l0Yot8T)HVN&>|t)39SSFN(o>H?ScS! z0(DyysAo4s8pJJ3c7gibk2jPzcW#U{%lK7$n}PZPcR$XrJk3o2Mz_ZbEshq+$7rb( zR+T?)+Ok_x)~G;z1?gJ7YJe+~`DPw}b|Z?>?Jh<~49Ti%F}iB0oVx43Mf{l05y9j9 zwI%Ybvpd=(dxRx%2T|Nt7Xs4r-iy5893iGX7W{p(T@Vf=+gsT4eoHTE4(@(vm~%0< ztUO(pwJNWflURyy2(X&C}U|B|V)$TTkWyZJx}% z%<*IpnXhWswvjW2*+82J0&UU@2&;Xa=q^0_#Yny9^nP;G>7LjTX&m=xDHm_8cSd?- z?ALDdL5=${`ueg(+z31_^(<4wP1>hqN4W1 zA{Fo%;3s^V^l_;zOhH(>Q7Kp&#V~}W%hu0a;q2pr@YP?JvLW5q#BtLZr-)=jy5ps6 zI^&FTD3X&tigDMX7VetWT6gWEz+L+&aMxdyvf=2brEn*9?TNCJ>j#`VrKJ|nF{1G` zOWVfRB#s-8wjq*je5=xKJX)-@jYr#Qk$<&9^ur3)Z>@->xNk1=kzq=;()p&~R_tyu zO(T(w@>e5~_4w^(YJ4Lr;@6weQ*TK~A&7ZPkc=uK5wQh1!eVL*)}ncO)j-#xd19wO zN0=Xpq~1MIHY(~Tu?Fq_&&=``Wc3folGLh0kFx$HsnmZ*G&6GOwvm~!FY=c2B6luA zl;@e^E1hZjH=B6BvzZIPy}eV~u1)LYucoV6g=glQVxG=Qd84BqDNc}Z#Z6bIo4`hy z6w=;=;@JHjDvf!1XU3aa6Hn1+x$2m=m>p#v{K7M_;zy!IqJANjmHJzIb84WBHyA;^ z!e9i;U@$Hly*wkxJU+LX89gMSR4VVyJ;k!MME>lkM3Ts#$%Q-ICG%@2X=|X9yWVlL z=MKxg)k~kNy7R}#lZmxd-k(2fKqLe|fm){Bfjs(fM|EEb{W5j`pJcy#1CxHM&`g%iOhhDvzsL_!xI^hJg2GiEpyaI1qPvuO@C)> zy3~yGX2>9&;gV2(qKwTT1}AQO&L0scctu%z7OJz>!)>k36(gJU(jSq9PA?{7pNz92@`z9i zldskB31gppAIrh{4pj=AuV5Yb5}KWjOm}8*LHMt!W#PX}-D7$2adK9|?D;!zx3hrD z;RCOaqGLv+8|9G4;-0YEWYMS|3mSt>pNF&JAF1Zz-;p-?6u78KWvxpZDu2}_4Z?5N zCHd?{iUi+pt#UDy7Kzp+N3U8NaJu zhQdLv2ye`}B1MXLKn4ory!8OHyY14_X5U50R*q_MOHrpfmjVh}F$E~NS}8z*G%R{Y zsVf%*3Oc3OD5eu}+z@Oqk!%!mZ;B1UhAM}kAU3)oSkE#R3ZfRl3#+xki;sd3%trwz zZceeFxLW=yD4OB72MTT$;uL&MlY5f}1%b+x6dR~aQBedcFY6V2Y zeI|c3m%=JM<32SflV)WE*QWq*#dN8Zo9U)utK71#?wM1I#+?`V9Zkx;JL6NWgyFY= zYsD*eilj;r4}Q^C>?AT-K;v#6q_kPRb80omCnf{pee*TnNSs0n`n2fA;VPy8wY8N3 z)P5@X$$wy~9T!y823nh}qO;NyTNA?tZ7(7Lw36H}RbrO=?&IFdCE!Z$!~nN-ss%2q zw!rmK09+qMfg89+>uO;}FDnustepz*25OpiNwcnVeD>$VHibvQH?lQ?_oZ6Y-lvTQ zY8UGjP`fy_K-5M*0xQr>HsSKQclxnvzu2myv$1?`NptX*=1t6s3b`v1*HGWNPfl$h zlFdb}Nu^xWYs`+(ivvlYash-`EaDmbNh;-{er6HOhQng4hFE_x2O*Yl5MmW6CmrJ< z7r~BjkR2$;9ApR7Z*eZlTe8ZOvoV*avmr}*IuUcVVGhC~Po@)dJeg=N>P}`OJ0OC% zZ+FOo6fsi)J%pI)<=0Br5twa!i^127+yv&-k!aL_z zNIY@xd4u?#n5gI6{%e+3m?cM1HEP+^Ft?18SiPg_+Z8Tgtzl#an(pS zj#0 zXYkt%bA0CK`-{|9srzXZ5#}5zZym-FZ6~H=`3iD{DOtWkfexeZ%Q^ByqsG*W+D9sw zO)YclUS>`kjtLjtI6m7&q&fm^iq}BaEwmJ`4=GCU7BHlW&Jl%EMTOJcR8i4163J>jY+x{$_HU`8WD!KF2u(z)NZMvo zMU_T&sFe?<;%3(!xkZEL1lIZ@nW|b3xAjkInL(;(XYbr=%!QjR0;?QfO&m$)8ewFb6)A2+cM*>SZh0QMM#u4>6g3RnagCvtT)C=&WaYH zn3eVUn{{*Qe^dgi*7JIWRqOe**q9aFiuL}+G#j(xbti`gNVoX9d{5&Chb+7&x45Y? zR+31S2IZD82kyz;mbfX}Fz-_x+lgdOF3Ii@5G>`th+;i+FVT9lvyb`MO|gV$<=!;A zn<_ClcZ74AMKFHH-SPWH#z>ci7DMEBfHREiR~Tiy87n%Ni(tBaIx=^qGl9v=?irP7R*uR&>P%;{ zc>Tua`^34WP0O!`#;0Zp&s~a2>l3_qlgR|NSMuX8G;toQ(xV8~?;iN`)jxmskanqT z3=J-}T}!lnKzONM0m4hu3x@EUE`&Sxol)D&o0nU9;n>{kV_>WwL3d$Xa^V~QN7;M8 zS5-Xk!`vHs7D#}Eme4{CEtJqpLhrpxM_TAjkQP8%ZV4b|QMv*G3Ix6?pduiO3Q7}2 zuz?K=B3MuX;hlN*oZLA#Tz~K1&&P+8nVmT^yR)-%_LRG*_S&gw@Y8lHCNOmdF{TZ zZnzY*RibSApX4Aj*=8J<99t%Hw?=<9#VoX@m_j#Fu@Y-SI7Gi7UzLtU2#0e?V%~3} zOZdg~dBv^=y5tJG6-!^fS)A4_wl$w#263Fj9)5-FA4x&LmJJrV6KEm=R;m)ihSU*J zlFp0N5y?jg*vOKh1Ga3e3E1Y#(v~;_6E8G&oklC)FCKC)>018kIxQ{jNmYdv+hrD# zMny?+$SqOLB@ZFgw4_;l8q&X8YPJ@yrVU#Hu+}p+V@gDRu!3kaG`)%h=3oi8=m&b(-K{wmY?VO-$-xH_#&*u|20b-p!eZDLGZYl4NY1e%EMm8zT;wU7RTCD6Tp@)5fC&;RJ&H6_LK5AyQBR?HW4UZ3}eI_j6dRq+F;ed!ROy{lMPs*PyQp{ zOODC+bS{2)?@7rqiMEuL?3 z-RH^qvyyF+Ji42bJSpJP_}1J!lhhBg865uBa`=wqz+vLR;q0XYgKI{TIC$hET5{}1 zJ|Yi}FXb*++Bj_MNRTaIJ#pZ1Q^|qHwoFIKv1QDv9us{WDqR`b zmzgAr3HIuOi})SFE_o53QQEqQKOh>I=RNk4;i2CkdV>UU5f2m1MSLmiBA$NyYl?eE zX>-+nh80WWo|k9BWyFk(v<>QGNv2$9{p1%O@VK=vt)R*(hu{7BHb|~h>^GTbv@RSR zlGwZaTMA+C@=vDVTDE>E-n%TnHhyYL{ly6SF|tBsL~mmMvOpQLe_23qtS1{Q36j~r zEMLa#U&b>>>|e@`GZh=D#r~yKYxXaLDb|mFImp<=RAtNqjd{wLujI_XSF^b8cqnaw z8X^sY7XvIW1_+Mzkjr#IGG0u97xcbRlQQP{%o+cuJER}(Nd3m0U`n(u@_JfB<44iVJmCFZ8B?WQqkp+db11UH z?P?iRX|DIR>wn%_I^oo`lCekt=I5n)j2kn2g!p->JZ1H;<7stcuky*{v^p)%j)!Fm zmKAY}8HJyhvS(Dl^xXR4a|?2+0HK)Vyk{xGehbN zj63d$CDM$bE4u2W^ zZAFj6dwYvNZ?x=IyFwt}vBy8Mtl8rq$#$Zm(tL!PN0&v-BR&B@;c1?lp`V+otPzmm z59oH19Yt}E2*_Ed(o$3gE48yZt`%OA6g;9uQJqJhJ)M@S-jzJ8KqtzYC_GC4auiBw z+odMsNdxfM z%q>X?JT~*UBvaH_kIhhP^Vp0-j7G%zX)4>*g18C#i$e+D1T7LLx(iWTm??-_ax)OM zRb@j&ZKXI9wUq?NirQpBGEv(!&O~hs=7^}}UUEh)sYTREwI*sE6hy6qf~YMYXQH++ z{mW4siNCF=b+{jhS~&({h!M5D<4n}{X1fu!OZf;EHpmQL|mOpRd#gJaAEId zDN7(Km+=vza#^|Hi+@BPX7n?0X77c5zN#9BXOBl@(f;43tyNnCrdSvL8zluFT1NyY z4WWlg@k3UJWCKLa%jHZe%_tZA+|0QwZ9gEZIl{h_97Gs#5MehY2O~=yMA!q#`OgTu zTh2t7t+Qx(5u3J7L|6sML4?^dbtK1@2|PK|T(S{iB!~#3Zs2&gWJto|+fy~E-3YRj#(?y>vWMMr>1pYhzxIC)|`H#1FA0!s!pG|$aAB(P*;{;U=4 z1=Q0RTl}ik7>6caH&#gs){PZRL6q&IS&{j)&CY7X5H8(IM%vxM3Bt7@mhJa zZX9KfST~0A-;QdB)MDL`YR$UgpkUo_P_S-nEpOJ174$E!8-DyvpQRsDB0OALmAPz0 zJu8O5IgaLs4lk59OUDHk$0QA_Ku2bir$Wf3gMQ$uyeW8o`G>ad<Fu2FMuzUI?lHlAMd0f zx*Tl~U8xliU9Jf_*+oAVgCA}k3z}7#I65FR#G+-VilISel0ien&&*`7MF_8Je1!12 zX2MJCAwFL^@XSn<-0`s0*5_T7a@pyM)p}-z4lKPlGxgrgqBrxInOvR;k9cP0r(B)| z`EpexO;)U0WlaG=GG$G!ih;65g-Q1D6;F=R^K*F$=hv#NwYulZ;io7q` zTh)@Su_YO*H5c>`DwsW`IxK}frPh4Jf7*LWe4J%ZDUMso*^rG1_Vna$%dOhCq*=ZW zf@qWY-)t-Opk4{Rtu&P6u&o3u5wB#Po?NDSY5FOOK9%&A zJf2Ru%?;xY70nLQ)L>KF%9BPu9QT->G<`w zcIsov#^=YAYIqtHDo?SR@u7I26xsfdi|CLKkJ zc*?rzg~FOmJcV_aBAz<2oA~@P4$`DSxD#}yh-Zb$TSUlDPs+L@_A!IW21+ zU4|u)2+Hyi5u2z@xOj4gn zGUBREu;fR9CL*q+zCaI{i;Q1b0&#Vdj}TWkOnyi z64j(6k_d4SPmLr8@kE@=cv77t`~MtkS36y%n$LWCmeg=u(IfUmYNT%s%3h?LbinS} zXg-5U6Vr#K?5w2kHT0yY8UJtRoysR^E<)_lXEGu7AP{1c5(vBL*H~eW z309Z11kv?$O-crfYkE4XEs}>2%NFp)h;Ixu5g{g(20Fro*g=*+h#lf1gxDc6F;wcx zR@tPk8gWmQ&y2CW`k9^dULDq@l1)7H12%upDeR0p{2G(pKPOiM;rE>tet$_0!jCuzzZ~%*$Ps?T34~t}$^O5?kKUkeNXpUs5ddzCXYT&^abO75ZY9DY4x zg*7I0PRm|HLOw#!EhNK21>Gs? z;>=GQ$O6w+9ETFYy0yPNQ~Qcc?JJCSQI=Erd^^eW*&{0FLd`up^6g?#XXU(KkWA&g zE1rkm`th;t4)&5!bv3Qy&2^`qp4_@?ohJsXld=KIXDMR4@=m

Check how many validations are possible given the length of the data. Beyond initial eval split which is always assumed.

diff --git a/docs/build/html/source/autots.html b/docs/build/html/source/autots.html index 9971b449..7dc24817 100644 --- a/docs/build/html/source/autots.html +++ b/docs/build/html/source/autots.html @@ -14,10 +14,10 @@ gtag('config', 'G-P2KLF8302E'); - autots package — AutoTS 0.6.16 documentation + autots package — AutoTS 0.6.17 documentation - + @@ -343,6 +343,13 @@

SubpackagesBallTreeMultivariateMotif.predict() +
  • BallTreeRegressionMotif +
  • BasicLinearModel
  • 3hjCrMqDBB-H5 zh~TzfJuJ85vX1=;AXO)1j#xWAX{!UTJk$3f7h4s}A zzP7f8TCyD`7HPn4PLkyCZjLR|Su$)9Z01bp;HjksNH#WeNFz#zuc?Fho<8nyPnXTG zSv0wdxx@XG zxV@}GpJRf(tl|#$PGOh4!+oHNb%*<9(ZF1aWROdtFGb!YL0pQ!L|lrHZRRocuk`rp znPHgUy|aqB5;@1GkY;X|=fu74ZQVUr)g?)$$=`A9mO+(u#AHuf4(t5NA%+W>w|aV( zILWwSxxANWl)5Lip~U!0Qs`N-JE~w+(O-z({8i1KNnZMw_e`XWJ!kS%HOcO`Dkj-| z60d*m>xp;Qs;Y+!_7v4M`gxLK^RQ~^^dIu9D?UQbYE?CO zFNu1@+&l|^EL2An(nqIk%A@~y%+o;)lJ25Q`b!FR$&^N2}JExC47dl5$oVwdbzrd~0IXn3XowGA^ z=ky#(iOLZ?h?2x%p2h08JTZ4kz9WKSeXT5_yC+f~o4%>Ao<8}BY3fta!ralmXm!jv zt79BGtlg}$R>vF)bj;xqo;vQo(I-W8&XJy8v1eJe?3mZ&xzI6^Vt0(u-99>RHM?WN z`3M~oUJX$r)}rlI_{TB-a&}40*eB?x1=-QTV`xJla242TjOPhep4Hij1(8!mQnCt9 zSB+%@girlyW^UD?e|c_66}Bg}tC_h~qFQG792w`S;T}MrpBwBcqIW(ur-+UjPnY1e zS-6rsl#nO#^P9q)NbjgSpcT*L7tIy zX3&4c(tlQRpr1JSDtyK#9ZH8wF4Pm(R*y<9M6aQe%U9i0axGX3D!B)I#DChA93N+? z7-{o<@6wrCs{cfEcj({ zV}0F28~1Ib99G~Kf?}R^ATwfgLbv?m)gZw$Yj6J=W>x7;|MIHhkha#|UNy|B(zJ$I zRa#WnRnzH5rRUYq)jy$#Oz*HDpPruXsT|vj^-H&s94F)tR5$tOsX==8e6th9Wvbq? z+_O+Ek`1@ENSUoRNDA(4J;M}af3gVowpy(8tk&Zf8fCbxwWkK|nyNigdc{{$CaIH> zf^Te{z~GLHd5<~bw$?oU+Zs)?15R3TTg#ypx3z*P(Yp3(PdDf3ac^sP4Rden850S7 zZ!2sq#ZPkY;{8=NO2BqxYWVsu+u-nZ-@DZ-s7Tq6datd%b=IB3oj<`S|2LrAwbmRT zD-;&#?A^e9GdVhT(xa}$eY4MK(D}aEXKV=lpDm>!pBpPh!-U{cnxfN`(p~D#t&FfQ zaF{CLH^xrMuea2lo0mw1*ZwcHR8SbV9otCXdB!tc^^ks{Lh2$Z{E-`|$hkCCu?>OF z; z5!`3D(7Jd;HbjIUPB0OESaJ~I7bFD{em23}xV^|65#b*G+Y#ZU6%p>xiU<#;MC%RD zd#Wo384>=f2}1XF`j?&!2zxHUif&bt&X$>t>9g`G4^te@ZrSdcsbXcrKy(+cX&ySr zL;u=}yA@9vrW(rj=*4zqAwJSQ{boKPDYq|2e z+gj(YXU^?@Ea%Uvlu!60f!LE+wr- zcr5Pkn&z&Rtuwloh&o#*N~CgE|LxPAL>IT%svLo%GTu)B&&GbdJf+L3> z1V8MF!^@WLF11bM#Ex4~Lg#whQ!jQsyDlSViR=rihZD5-ZO?4gS6YR2YtTD%+r5`0 zW4RhHDM+*_OhE=GBe7f+c-J#tEtCzhT+OR(maBP^gXKy~3NKf#)%yIaR3+p0L7ri* zShBkC-*U-v&C{*}z7ooz7%NsVC0c*_K3!Tl$h=~?X7l;14+o~yHjB%s+SaOdUYZA= z&oIT|^QWijnSiflL#$f!&qwAIs?P}3ShpTZ38=mwqy``<5q(&<=(Je3USb=OP};C~>E+9Z{?m{;Z+4$flTGD=vAKsg071+4YK~ARG=b1(8PPVs1)gpGfVT|a%QR9uuSR$R)4sduK%@l{%s0!m{ z!$4J7G0{|o(e$sa7_+O5Y!AgPgA^}P17sUByZ)e1&a4Wv_DNry&YE4ltaGHF2Oi=~(5;;gSo@#I-e}JP9#kC{OkzV%skAJsuKl+nr;5?J!mq=0We0anZl980NuEKEm9(Sr>Cl z>~`bl5|DoOQM~ZSVq*UCOmxl&tW_8O@;t3_)gw)Ilwk^lIVjg>j?!cPqI*GIvwL&t zaqdxt^n`yr^;NWNg~=f0Z1bb)naS`>6K{;3^u)|?J>f1rRa8|9V|**sGjpR{Ju^2_ z@6jY~nWb4$JyS?`mmCz*#6clFL~>BT630Al^KnA5nj+bF+-A~0x#BXv8!(}sDWPp` zKH1#XX7;Bg2Z3nI?35gqaV6>G-|6Q@AH0xUTD>Z{2vL$lh?46F(GdNJ5PeYBglJLL zf)KsLM@8%DC*0nuu~Gbo4AE@zZ1~aZn{Mw0^@Sv3Nx!;l?vTuJ&Zn-(2K-jI?(mzH zM|j`kS7sx`Xn<*5w|+V@BZqf}%2%IwnE^%L+ji%vkHtM-9>KAm(Jw1V<{AA`^|87a zEXN$Nx?ifNZ-;w}u`;abQki-0!$Fyx+uK?>C|JdF);F(!ht)T)fRE|y-LLvfBT$a? zwk+-~IJ61zQjMW%q97TI$H8KH`@3F!y!~BpatPB&D@>PKjp@OZXgyDPdnyMR_V)e_pcP=R6MwE(7&1Qd^-j)u!_r=5c8B*@vwUJ=^>7SRVqZW3&=Fb_z0Qi z7`aCeONmw7UU9QW(70#)m6o?6yld2D*}kax0rAVrW+?$$R69c>Nb|@ev$*##DVHjk^|Mmu~j1%gm4_W z;9Py=f}%gM@5lwqSRen1yG(kkZ&OiSskk>X_BuC_dEtWWFKod`is<6N;-gtPLSh{s zAtcr{2o)0NzNnQ$e_p~n#~By+rO|3JG#>qW_NuL;V!cPz0oe)dwQc#a1|~Qzl=7Zcm!t@W<|DG3_hY`394sTm!7}o@QY)lg?+VulDhOw66sh92aLJi#%9 ziCLTVooJv7C3q8Kk1<(J#usI*p^jXY;GL%$NFz{3?hcl$8)zcxNU2Xuh`?0t%3_$x z-S`Moxm%;qb>!{_Tt^PqcWP0pb>w-xczC6@_jNTkV9E}SSv*Qo?1oX=mq-yhOY$&_ zWoz5$CmWeryy9xDZqXqcpvQ+cGCe+r)uPAO@zI<{I;EbsdhC<@hwSmk<>}Gm-_)bB zXp?5-EWJ%!r zvD;}dx_go|Udc^Lq+glI(~e%6eNL*t$DiJp6l^-3WD0713XVXnKeN4eiTYNy=E~W1 zRYz9x$K<;z7*?tOk07CNcHQ9-Y@)Z!s$4UYnWEa?+}Kq6R~ws>S?V(-b1(&4c+Hf9 z%q6qy3qA||0$}e*_m#$?>aW>^PH9Ihs{U$C%ymjN!Lh3T)`DcJ{ucCB1b!nve-l&n zx8){}aDlX<>X%xL3&9kt>UWS)^~X0cS1n{eSN*O_a7oWUG%eD7l4w-3O5QvD$ksqM#nr$Jl(C6V6f5`pc-N3g`p|NBfmfBdJaCXia1uqZL2vZ8{2B& z^BKuOHnwFxmmFILPU91VKS?&6CPCY2uFIkx88CW(TYs$kg(jv*IL?EOY#iQa3Gcb zF~&PZCCk=GM@^cUbksy}tX$e#kW4!2(ada{^kt67LgA!@w@pYHvXE3}vQRK3TAv)} zt)d)cWTA%5OctuwjI(I9gKv!Y-gK|2?k=m7+~wj`y0i%ncq|7zf@8h}sN;wE@!~IT z=xl-Qw1G0VnMtMFLpVVS;e=FZoRE}*u~WTe-0FlltL9>^WGSX#gmaje$fQ&*ef(be z!utK`-WKkUn(6#cc-yFtgH;p?sK{$noTpCV4VQ$*74ybs;mQ->M;H#)nc>apQa=PM z7NX%$Q7^9X+GA=R_gC!RSnuv=GsZaDl;38u)i(&2F!bcdcEoQhL zd3zu+i64e9p1o4a>213EBJYG!^>>hB%Vhf$?U)9?w&<0=MOD*X?~lu`6UzAt=*o+| z_0+zAv2-oMU#dHHw{hO+mjpSWN}pZqJ)k5{<71S6Eb-2Dl2J$;TI%(yt3s2xviw|9 z7EGZX#E93t)%D)>o1*p2Ro>#dXPURY`c<|<6iGSTrkhq2HS>5!s~pK<$gok)YM&H@Ww^n=B_~aj%TH}lXSP`v=ecY$ueXw z%PzyVprnW{3k2O9R*0aR%SQ;hxyi^8;`@#?;^w*9ax1-F=RmJ);H#(SZ}!&KKRvUh zsBZGK_Z6k3>qru-Bqd1X*HyGFu|qb%XiE{>^zF%E$nb zORFCx88a(sk2|mXTC(21&Rg6mMcKVAei>wW@HxMfT9Tiktr}NzGRsa(oPlBkLe^J- z9YT0FbLq3*wW`2>Nai%_mO~OhL?WFQa1i#GqG*W$TT7R#!RT! zJTMbty0a?Ggj;;Xe`2Aer$mcs*G6wK{n;&V!PqX$lry6t6YQ8ov7K|L_ce7#k`by6 zf+c^KO*m8!Uj5kXajEPrgvKCIE6N?B3wDkxqsP7IeOeX#4@v9uN)AaxxpY88Mj%mE zW~~VGcs@dy$F~R_<_&1r`R0B4oP^x^$2}BVj%Abf_^|BN(P#F05382aW`uZ>q&Qj^ z)DQ1Wj?xoqH_ok(WO(!G$`QVN`jrfCS=B=dA>ySP+pq2|0$Fsllt9cq-oga@Q2Lj% zXb266orWy}u@l*gRUvkk@lmf9dK7*2Ikr3hA!DV9P(m9Ko(sq$$>1I z-oj*2hg4=3Z5(_~uhfEsxbGG3ZnamE5o7^LE6B1+Ml5NZOIJPUt)`0}^mbNn{D%%J zsXBBZ++-h!VF`rWN30d$c9D+|ZWsR}+#0tq;nwc3cd;|lw!ZFtN}oGL1(x?U?|OAp znu|#LNm8iwPwHPuK^Vz4w!QZeMlrhT5xV{@)RL^sOaS~gOo5grj>21-#JTjliv3iT z;AZ-pHU4D&h7_kY{p4D@B}9L464O<+zmuD!ksF6(5gfhVUr+ninF~=!KUnY2rPpup zN0_uYM~XmWn~g>za$*RV5ZB+zxPHjJfwb~!KSE!@^A(_jp^bSb`rF1|Hav&%_ zVXX+tOMHZ&ywoyu4*cE<%Ekjn=GOJMZ;H^xH+tiA&QsnbXN=-80=fuD)JIOyZIj#5 zdc^22lHzDx$YjIKAJFpw*;dO# z7W~GNgSDABSn%6R4whx&U|A;B2tvpEqvsr(_EzOw1?c`GP-|~BXGRR%mn?`Mei!LLt26m{V`bbdD%p)@Gnbx zkf;^iSwuC}u@!WQPrZ}WTmK<$E%Od>gt+uV#6uv&FSAyJ_!T}vh+kdi$Y4Yxb zE3}E|SmAL6Jn*_Vw@&(uX5{bET*UORl0y6GRz1*vJ$+>D{m;E)l)E)q;0R|aVw>-3 zZNmAZFT9iVjlCuxBA5!dHjy0BTHpSXE{_wWKD4MBXn|)CQeT+dNVUzja{;8FS;Owl* z}W;#ec{MzTxO^{&tI`i0%wT!%M6K(XfY)5Dj};BN`rcbzI{6M=ZW6 zdgk}u!us?nx}2eKSf}1)RratV5>7}8t-zMZ%^$qu)F+aMoF-e_R)1^-0WM;0ND++l z57q#F+gjwb>}`Y{XqK&w8M}g#gRvtHa$0H0!LShr!$zu+(;CPY(3)szZ6i6*N}NDW z>m}JxO>A2=A|iz2h=?Pt0})a5Q|f++f#VuinheZ7qd;lNH_uD0ZjJ)h7vtZimn#AK-~ zElRXCkzP%55R=3S#AGAMMobbLF=?C8{GoS%>M5JSg07bSVUh#=#G#o)-?#W)l~R)= z8~TZD>vyg3N9%}(lSimD*$ny@Tl%%+KtFNlP0$D>oGb&nAY?0xrvLs_h$%eM& zmFQ!q^XOHwKO%gKRWm7q7;4nc%#wQT%#6a~-zQ769zo3-7V@=M6SFiM+s@3Wxsrp3 zBn~2e$l9`{lvlD5mc&L_k{Ot++hhwEy2Vm`Kysj(IDyG}OtPVx*tY7xWV$SyLI1~= z{_Bzh{lvj!`crbCnmD#=2<{k}`T@8DG3AC&__bl9={7GS=7CDaE@addq@oIb(v)SxjodEW8ox zo8VTBB^|S{V5X=w3mu}Eh2NF-c~yHU88ElIBnQlG-(Ht3>q~G-J;GdT{yNTy`71k3 z%!0uDoysT1{GG-}n7`B7hn~L$X_(DDw)d0tZ*jhq|KlFpPIHfK{*Dg0bw)Yg5cO0R zPjP!~z98F%w%ego%lqC|l4owOy;{LH*GcaB$H=-mVZE=}!IvxgYPi%ZLZ7+GwqH^* zn`>%bNcV4BB}(6`?5nTdmaULTq?~QpiS{OuT#Wa;m5%%4x%n?!Pn81(h8nfF?)hVrw5vdo5@n47^OgF~>!A)NqFjx9 z`_)+~f+0I?jm5hiG!plg8hwVV>sgw8Lk{utUw=vto`oU~o`nkQNY2~o5)UL1ho6Pg zXYZQwnjV8%qT4s~HE~CF)Ym%r+PH1mgh$EZ0jQ>ugN4GD=_on&`LIMK-781G!7ABU zM@SIs2ziPt@PUo{j8;=+Gjzzrj>gjkk^@hP15cMr4$e#*Jn6Poa`2>ErH*<*D_<%1 zM$2Pc$Lq4CtpgsvFFEkomboN3whTO;mE5PU`cAUpF$p?6KB{}nP!D7?czoCLSalL3 z2#<*akBdtV&P<$c%X~dmRmtH;kJr8&QPypHU8$29XIoEe+1l0vuX{=kytZYANscYU zUa#$3u#%c2xp11~Y^RZ2Ld*#ymn|Jka(SJj8p&lP>wCR}zShMTAA5+&GPyi2qaRPh z_wMSW-|CS@Ah$dhEV(++MC2B!Pt4aqZrRIX$SwQ$2)Sinr_j0OIhw^>1Yhp%o9)ak z*dtrt!?#Pl7cj+2EpJN-eRILAce?b(E&27fR|*x=kM*MOP+yX*kZz=$ZT=^nOuDJn zn`)9@qzGc|$4;hpy(c+%n6s0(Sj*FyoV9ZaMwR3+s^4`ollMelUmI0cHp4R2*=SFY z3`A4O&SqDospLR2aU7Z>9wW_tWHT7v!%{s$a-fd{tsU zVX_SM<8pxTfQzJv(GCRbr>qdcdYO+9td~0@Sj83|ErjL)myyGKtFp%E!KC57$u9Mq zbQafVHzg(Co3w{ZMcH6|^l+6z`r-&*XXWZbC$)nH@hL@Yi?ek>d>%Y8($~nPibxqA z3|AqYTrIuk+Dl<2+y%OrSi7;s7o|6BO^DERR7cgwB2y)c%&OAYis=L$-chy5(wc7e ziZcWj-NC^v-H&xKOVN1AL1HEj67y`yL2@Jx9zga>4jw?ZlCn;!mR=H%AKOY^kWFnR z$jYxs4kFT)IUzZ=OknjrFWD5UW7L}L_9uNw1)|pO-r|#ev(!&g0JGwI%lW@02hI}* z&gbkZ1{^jJ2kUTA$#Ja1g}a&+$<|RzwzPG?_aw=I@3u^5$+2bNd%GtnPY#f5%u^B+ z9!Kl`GpK5xE}OyQ$z9EGKP5Tvm^kowrR3nu#KCYsFFA6!-J30sZ5>BsOIrs#J}o)$ z*p|60IkpUv-gU`=vm_&&rFVW`FO*AP98MP?rCa7Hu8)1?r!U!c6C(%T?_0j-mmK&` z9QYn1Ik15^dvebOPcQZ50))U!XjJ2%?4wsS~IBd&Q zlN?(nv*v3gx$Ly-9q#8wtBxIy%uL$ze7+RbQ?`WPUAvn(HcWEhH*w(iB+0?Ki37hE zN=_EP=XE!J+j=(0)~v_XRlB;R*HybE18&$;t8?BqvH9oGb)~ARotMaE|1 zCbIhZSr!}E63q21?HbRN22r8kQK!7Ws0J4zBh+-s!)q;mNuk$TI)^g>djM301m0@- zVS{g++9?~;K3ymGwjSn7U)v-HU-~*CDR?pDwI1fBmZQuOFSSe|9sE)Y>B9RU4qfGK=B1WRJ-EXfB-lURvVXkbSoSXwBxCDM9wPIOyA?j!2VW|6$Ai!-7Mv297GyP;aS|yS%y} z=*Ee&!A@KZ;RLCM6H>KtBA61bE5GKetsG=H@v3pcwMn}crPtRh`sd8+UQa2CK2+rL zFs+F`*K1Ku7f9AGB0JU@($YegE*zFOTCP~)S{JV@U+7`IrbY+W6?$B6I!fRVQOETT zd4<0Ch%YVc6}s;ArteMFm=)N`92e;ICFS_3F}Ofa(vx1>R7jux$yY-6JVv)*@BZY= z&qrlc2iYFi>r#X5L;K!*y&kKJ9QUnJL!}5xn}NN}?TdcB&9(Z(x9HO9$t=yL_cj|t zOC<-T2yswheR;xHUagUARF>2A%1XvJOAgc%C$lzwD7iSrSAkQw`kCX5X7Np; zLv%Jur`o;EW>F{BhSI5YA3EyPTR(ZqS1YzXlV!P-D9?&=>9141-&6$_vSS3dBsbUe z$E)g+OtZ9w#@jj-`sno^`23-yl0r&d`Ow$aDMizwtu9@%d=A}Y=8WoGpILEu|BNr6 zij$gf12z7vZ-we7$@qB0^|N#hF;tSN>bE`~F`UR*J|5ApkACeO-2`^1Vq@^aQD4@C zZnNI1br^yV!_Jo{!<*1^nSz>;WigGx@2JhvslfDpL6S44x3e|AB)sYyx=9g2$>IOMO0ItEtKw7we>bqd)`z~m zea(kIW*JBE!nb4Uk%YC1%0wnsAgrSAP~YHXZ#uA6(Hm?fR?!=ML$0EGuLrN9_Ttz~ z7x;me#1DS(-BUUHkt#b^Vm)3Ke2$e$kMDCEgfH_C8}JF{Ag_$f@+=q_&L614; z0e{h>c+o6mM-lEsKH!E@vQVIjxDzS$iO31u+^NQ5HMn4`&PNFP>it9CiG0x4+==}8 zAK!vU)R6zX>-%1{37CRAk&lN+wNZdO~kMG z*LOv$T+2-&;}@kylfnEH!z>}Cu@Ocbm-f|l7=R5aVqhQaSt%m-!RTj~TsfD=>WmMc zs7hZ;z=%KI-hTwO(~A(c+Ilq1Id9c#KETA70H1y#DOt4B*$UQ4=@I| zcc`&2CR(@5;UA_V9uolqJJe&QPfAJ->>v*8s46+IgE+9GspLpI+zlTyn}fEFzOtpQ z0~uwc?*E|hG{SQ2!2jQcF>WixoJEsu9e4m>6fd#vYGFhPTp5)sb6 zFPl4@eaCXv5?9~ImbMN!ds}kgtS$3Ua%>sgV#zl^3>o|+8Q~|rnjGmLs4B>2@U!dy zGqQCg2YwOj1u?<3XAge(VXuFn9bkEOZgY8#?lg0!1V_jv+E0vWp+0~G8KGhm`xRYv4N(7 z?-9a&(u(p|YBlx;Q=)Z^vi`ctL5BT_1D*DN=}KR(mPwOf|02u&MS^45zfq8k{m%y5 zzd3~cq!so{t;YUfO0+(jJ-xMZkYWFVAp6Tz^siDErAe^=oMrzx!LjWBQIL%N-v`_O za|ruME9{qAjs3xtXgzrKOr`V0`)er&4^Dg-Jn&*k5c=W)R_vQeV@g;7^L5r+@kP zNX`tfe&}SDG!q$M22(@^NYqIM(tl81*)VVgwMvqyPs|31vo)@u{!K_P<|M<=Wn?HD zHiQ1vLu3L0w$ znqi>|VH6gsPX?KV>NdNAg{l|pyFEz1(b!)t_9m0%LUmcXj0X>2Z|C2w9+O7!mes-V zrhfXh>*10f*s~fzL0TfZI&h(|fW>g3u#k@sC=2Nv z^j%ExZLPrL(4P)67Yc)u{Xv_}fotAl$^OE6Zgc*2+9k`g4+s-=IBdQmn& zxJVJ(huwokxEz-v7~CV);2s_v94?o$wEZ}!E#l>NmS(>Mnjv07ScQ0bda#L?J*)-s z5;=s9_6*id+xct7?q;%#mo@Tifp{sxLiRKe@ls0C1MyOZ$XVj0$Pg1RtAo#3IG{wt zi?l@abs%1vuo&W{DIXzTn$kH!#mnl!CSJbp$uOGYrH~%dg)SR!cJ=4f zCA;`fs=fj9tjOspDItW%t5LEQ!bi&4E{z-_!e_1&LHIm5#AKW4LxRI+O_sJRgW4i| z_GD?c%QVwHJ9nPA`9h*pd8)jGu1ubbop-D}K7Nj6CPLfD#cu(h||xf%y4{#SlMt`3UiI_dnvN>ktz^ z+xz=xJL88Qk#2Z!F71eeOS^HBgG(&p;L>iM z6_L-jE#hg)MVRa%`E*JCvVFF0SxN z4p;bg%-`$W=P`9#HbXc3Vs*nq$w4;|2i=fwxEN)em^kQ$Qj!zg4ek=dP2Agh8pzhR z9yr}ba^SQr(@Sz}nM|jLOD>!yIooN(yr+4eNotO42B&8ZH)HRS95_uJIK57CaAM*h z=yyww40`tt%VAr`+p?vt0}fx195`&tT$LPK1`)rnO`jxnQ?lVP2|7HExZHK3%JsMy zGI$*JxbZkja^Nv>;BlPf;LOB9YD<(Hnc7@6_3_KrG`H1sk&SINaC)HRz-e1%tmN1- z*tmL9a^Nq?*#5ef&|34fYynr(EmyZl4qPP;T-_@M_Z2xcWxGRa?y!+1OSC zSAUQkxN6JXksMnFcY3butXp1XA0Y+~{*s{WFCseQM1v<)tZashsS##)t4IcXE;hpW z+(2@0V&ag`v`FwT>~xT9M^v}56bzOvpny0vGavLGFWES=EjU|pSTL;32?IcHruDjJplZb5{!(~fb2l{ccN z63mK>hhsvNZm6a64mGuOIj%NPOYdc!<%a6CP5vseWtc4MS|zIz+GIYiUY0gsf0=$K z7>^M*(_By%bI9+Pt+B)WzNBD(=_FIIzeELQV2AnSR{s?Bt!#}QwyPtt!=|oE4xTLj zM^do4e2036enYt6J?4mgwY{W+H_dJMU6WVkM{%U@YJc<`bAD5nqEcl)<1ue1x}wAAup zso+=-zitsEIa4h@J36in@!(jU_gs`8q!hWfh?XMCpbt3%tz2Q$$j&?BrHT0zwD!E` zFRL76n7=MyKJFr2qV>tn!Jv+5O~vI_k8)n97?X z;*V;Iw&qt*a-|sUcj&BqE9k^XJyd&=m7}O2yR2J5vQ`mWR_2GVMp-|6#W@)pZngQG z*l??z67o*a!9wZz^j9DHCuiAgYozrV|6SElT8_Q8wvv*0D~L-YrTyppebi&J0ruLY zh;4ZP6y9r#(TmUfFR95=1SRbF6tmSfCdKSJmHLSCY+9CPi^(;9W=Km8DqZ4SyYHzR zE*U5|iGf1*pyW6T-T#p&e*lGAqU5%1c=HqgDD{~X!_Jpw!jF;x6E2bM^uUVxOLAZX zad6Fqmt*sc6~W;!B*$2zAXc`30^;DB>FQHWN{34>PHf9HkQ|l^%Q4ovWNIT>SudGL z11_0t7lz8_whL72*L9p6rM@jP_faCaxbaF3s(g|WJ#9S=wM{ldP;7zMiRyslz+>W| ztB*+z>?96``-0>+dil&)Gu*b08?vRX1J^ZoB?r#hGP%czF|=g@PeVmZHasRlhsSst zs)lR^kE@I`@!dpn;4yLFaRNVL6&c13n`<~>$S>nLiPb3E?B@UeZL2?|u`?`9xCF% z*$Byjv$jl0$+6E1XRAsMoFy6CS=>1ck^Ec*6kxmX>@2?7_Zomkz#6uqEidQpAw zH-A)Yf9A<6)>bl`@ar5e6#d=rQaz+0xNM#Dhu@>RN;0lbM@tG;t`SVZ%0)>zaDCeO zj(@d!O18$*ojTrBPN{-}rQ3RoVV$6x^?S{DbCvomb41nDi8S$5DrrR7AvKzHJD3u! zYyIQzs2pUh+jGX7s_Dt`=DIWR^wv3P4jlNva^M5Ov1*U+1j*R`HEgHnp!SS6SD)8I zI6+$Bgw$%Ba8LrzaXH9v;{6~e@Eljn1nM+#Mc&C>bb>y=*B_$JuD_+OQH&@);1DA=6B={wX>=>m%I z*Ci#W2rn6(-bbC04N!zj5!>hwCz>KWx=8v{>RTy-1^MbkQ-ps$Q550#vo!mgyy7A} z?pM4*SLAB3A2L}k#)ll8!Jm4*TQa@6OD&XE zU^Sj!I^CmEB^j%+mK4PMYNjCGX>4H0jAf!9rHCe0mM#AY(ecILRypJ13ddxNL>=dFr9G z1h(I^Y`-TsR(dTwnT)eT3F#?vvX!1bpJW!|Xm0Wd`$;S8ms*YeP6~fb<9em^O3Fco z{eK79|5@eqQ>ueB3HG;{Z2G>9;8=a%_3IqX)eu29eLpbRiD4m}Ak}a}sy0qID6qEW ze z6x;g3Q%uf%F*$vBxZrC}R<4TrcKwy+3wLo-OxDFCW-YR`q+cZtZkhD?gf{B2;Fj(_ zQ_S_v7|B7>Bu?NWb%tc)Qij;boMZ_yX9#zYIsct(GG`Iig3P&&kBUsueH*7&k1fo9 z$jtdr#t}YYC@G?|NPA^nx_8OA=oeT=4IbQ`e1u`%IVI#Umus5-h))>m2Tkeig5#{f zG0aCK#r}d}GxK&^Qu-`)PVzChQo^?PY+!JQsqdu-M)&K$n0+Zn_d%AHceA#{=tfT! zhGTgvIMs}9ImyB35+^XawImy(OKglTS%T3G;SWal&=fPe7uZmYZV%RXVT%5zb$Y$n zvrLww`4uF)ZVl=8|(76X7u4K&0Yy=h5Qsz( zQ9moec;}x+NBpPxJXiH|n~Lil-O?jtJ={c&{dC8PhfePwB?zL&0z)6mx-s-6`3OT_ zavFwS(IsLw^D@``_WE|A<)!I&o;SAF1$(5=`9HovpTXatAET#CCd^!1+UNl}kz>Fcgn&K^}wkLi^@SG5~&=qOu zhBS1+GPs|{o~LG82Dj7TavI!CgR5z9GYu}L!M!xNmIk-d;1b>5AWzcZN*cUKg9mA_ zJ`I+q!RoZ>DcQ2~*j6&*i4dakEJVY|qly6?&PVfi=%J6NS8>z7=Le@Z&{YPcPfGo*e#mfr7r_mNDZ2?~GW^Q$2gAjE1eY0V{*Rz8!_=1vW->fr2z!O#M}}V+ zet4DO7lzjl5*%kJz4#EJhhfrTg6Ry1yptS=-yAU})4wpe>8=r#bi~J_==ILIqpGbP zl%78o?W6e^keve;TMKeX9>#x*udX|<9bI>52bW2&XeLj$oaI(C4B&Y`lmYYp9v^9*_nc=;2AIpafHDBh zP(DHeSj2x8y=YEM|Kh|q^N*~o=MNgwK)>|n==`bBCC_@Cg-$X&^(nzJhEbOZ#xWdV zILHuwg&>0At@%xq6~`|JPcUBvc=F* zY>YWYY>eef#OU3(;Dh;V%}y&+v0|f?Et~1G5*s{#RQ~Gc{ zCxcJBSh{Kb7*`W4sqTAj`!mDI-UO!^P@Og4Vy*XZqonun+I6yD&a_m^V11FVYu@I!94~PmHD{HjMo`c(yNBW&$N1B%jERYso+T4+i=s4 z47=tM>}6OwkHE(;Bb8t-!?gJXvlxD7_?uzrLINMd4G+O@3}d_m6Bz3F2^uiud72Vd%S=U?9VuEd&P`+|Lo@V)&OK?0JF_3}YFpZX>A4fEs)+AD!N2tT??b5J}bb z{AuY;Q^A+#{(%L4fs$QxRF|Q^Zi2!L4;ga2NRaI%K4Qqfm!J^CKMW5Ts=q=|o8b$F zuNhu{mEah|iw6nzGo-$Bhz}WFdyU{I!}iw+b~Ai+gy36-pWh_7&Cu#7L3@V8V+4&D zt}=Yb@Yq`fLm56~xWI7u1i_mOuf0cblp*$gg0k6i28w`IK%G@e>0p<{gLnz!-b#th#})=f>#(e+#uM>(C-$(AclIk2^uq0{EeU* zL#5yOh~fD^2zD~0|4Fcl;m%(K_ZTkzO>mjv?SBYP{gaz6Uf;RPhYZ#46VzrX{x3l( zhWhS2*;1M?M28WSV91%BKr!UX!AA@Sa}vD4@O&rn*98E!`t{Kc@Y2*E~%7mE^PFnmyq;5@?% zF$6C$ERH4cFbpqAFoxmrQmK4cilBLEf;J4*%MjFN_&tu`ABGX-2*xs8V)%k#VR?e3 z3==94Ol4?UiJ(2hs|;^2RH{r+jiGovK`DlfRS2FVNKIK*l@9$3`)d%q%CJ0vU^PQ( zO@hS?^K0=D!@b%B+3FB{&+s$D_PPYS8J?;~kjAj6J|8hmY(OxL;dn!WlMI_15o}9k zT;7;q4a15ie8dpmj39#HFNXUJo0}7CW0>25U?Ic!mIPB7CbZ%sh96rK++?`ehTt;8 z(;Wyj!=#P`(;0?z%0uxtvJ)K+?MyI|;qxv8*BIXIO7H>0xt;_cGt}-yP@f^PH$gOm zs}Dgg26taRVwl^HU?Ibp{sa>kHa z47tY=M_(x-N=Uwdo~dqU|6@AU?an!Z3IUc)@~>ja4m`QIQY#BhV*H-=x1 z@Dao5HwjYDF}`|~;B|(djuHII@ZNEP4;c= z!RHKLGYol;U<5;hQv}Tz4l}&T@c*&*-O*7SUEl2325iQFE2i4U22Ah0nr=Fw*I>W| zOfg`a4yI#MR?_a;Lob0)0-+=X6GA5;kWimM3IqZP2_z(xgfv3=?u=%wkyb1GyyrXb zKi_wJ&b4-S?(hEQ-aADjt#tA{@-ILVmxon$e%mF$DL?chZ_KtgLxa*u?dA4n>J8id z(@A{z(lDQs=l$tEzHHd+SnZ>9DtW7k;cg1or6m zo(BW(Qt>e;PU=#vTQjz?%dWg0JqP9Nq@a+x5t9xTVNWh^A;d1wc4Jk#LHWDq$;J$O zbv&C|;FSnmFlCQ1F6DtX8LEL6FmE;2z7efXCy(dZ|rEfzP&m6D4k@^xA!dek=C%}2xv|G*syMu&051>?fwlkPiqa^9}m$; z@=7Pu)r-Pl5iSZhBgYd;`<3;mwOefQCcng*L|SOCj(*{Ee`0j&`aDYyAhjC>m*Q`T zf58G6FBs*o>V3+Mf}WXCUdz+y?8V@YQd5{8QHd#eKEfnwiM@7Ul_`0VPyT}xUt+IJ zmMpQCEhd(av~nDO{&Zzs8WdsnH*Jtkq4_Vmub`Ty!?Z9c+rAYsvU%R{P zU-al16<05SxJJc$7eO4PLb(JYhl*L3LCmM3+m|4EQSs9^ARc^^0rHa@AkI;ddlSSF zDh_^2kEn>g4Wc3yf!~1$rlQY}AO=!V_b!M=RK(l^QJIR^pXd=48-50{g^H#3K}b|Y zJ^~R-#d8oD$v%(aFolYADklC$kElp^0-`$=XQ((&MYVrG)TScfDTrcJJf)(*zaajl zqQEl{Q=WsENk!rd5TmGAYJ=>Ts2GhvOrT;+h7UcYqPH)I0aP?81fnGs5rsjNrQ%O2 zo>B3aKRu%2Y5<69R2(k?;$teN6a_Jpir&RQ45Z>T73Zkvqgr$ zVJsClLqU8`#o;gzC#cvJ4&q%Z-YG$ksE8{GqB<2Jr9ebb(Y7>*PE;JA;xHAv%YfKV zMO0Z36{(0W2ci-cPAW21Q5g~mB7%yu(I75Rv8_CaT~v@55bLN|8B33-2&o7nf{GVZ z_*4S1n2P08)QJPph>90f_*MpShKdVRY^(y}Eh>JingQ~!sv!DQ12K?_gH#-$qI7i- z(NwIU!bwG74G_Upw5SQ94Hcc>vTSm9Djc;z5Goed0g**Tzj`1BQ}IrH5bsg(q5%k> zh5-dSC0}X;hgYfC-WbGgDiWK5c!P@5RD4Fow&oyqQBjv(wQEcTyK1+K9-VC!KrS__ zR>g-NusvzE#Z~;!vTEcf1+ELRT6z5(y78A(?Hejq#Dj2B(Xcg$=2SFk1ELibcc}Q8 zio0z={7S{o?La)F;z)ZCr>HpI0mNx4iYI_zZ@XvL64@iueAdD1GZ{g8zz7!G4tp%_ zXOlK3ot(f@eDWR}6L)q3EcTx5jh*3$y%hIYS2$wt4E?Da9IR_s-C*~Eq|)p5>@ER%ku;fI#HLrRSqtd_YvD|nJ+Zuaft!t?$xb+OLOdHeC~V!Kg`?~ zR+Fq)9_GL=%r*aIn%x46Eiagwl0JDvk}LV7lpD3u-rZJsh5{$=tChlRq?##|Io-k}zF|aNvT>{3h1ZzdSZT0Pw75pvHrk&=Lr`+VH`_0x!ac^o z1T}Gtx&jyS0IKn*6jgl}4i)uLxqwf2n4jAT7c>|rbIXn@;*)1KaJxOWXyMb;?2lGv zORHvAc$nqMaM#23#(C$)tlTjqBBz<%5oc&a7Ty-dZumhh`WII9tS8cEB=OkWBGdY?8UwKhVBjx#lh zDomq8LANGFv~W^Pj~px|sPjDM=SpO6t~17;o|=H&0zS@1Lrar|N9?_D$2^tR)5yH9 z?Oky@v835iyDOr#Py#Js-KQ^79WA-X|xKK~UdR;8pdCYzWO`S&4 zkK4!Mnc_EKw-O0CVQ*h{IxS`f(&!O$8ehq#PovBGh9s)HUqD%pZ*`XTU4}EYpHA4H zU_~@D>2G^iK{G(jG!M<((WmTvZFqx)DmGD7{*=OU6F#<=M))03wP$@PnjHAlUJJi3 z7EcP1x}tZck@(N-WkTXqJe}UX1wG#*{S}iBV!no3r-1_-msEHFEi^ z{h&c1kJWuM1z=U4D%#G2C(8y(HSlw@YK?oyMj{lq>p6Q9Tx>c7ko7dkEZSN(^>7|g z75;S`ZLCNQe|X-$M9&!RcN3$>hbLY1SP0Hvuunj^u?|!p_z=(NE2V)siNvjO){@_8f#qSg7*hP}j^v?5IipeOqdU(?m_$dm|?aC7xZW z9Eon3U5%8yW`7+mnNDh-mrDCC0S&kn6K?)rF6fdIr=?y6=fk}x%j=NZ-`gva9@p%c z^uKNoMp@Izq&tuo^RC;SXw7sIf8Sn;7SgBl25UVtT5a_raw6Q(I()tWt`Q@f%F3n5 z-{08#qg<5_{hxBfUI`x-6v*SjQrlqv)`_WOMnv^Vg#`^`R#RnG?k04)4>+kFH|Og3(W$ z(u~{o)97DL2?`CAVpK{$yqZ$%_x2&E1iT#x;zs{({2u&NW`@wuR6n&Jmojz4=)}os z+)wo=vwCF69SB~@88moXP}Lb~+~Bi;Pprx(jO=Ukin#srgZ&cfFoS&dqrEmx5P6)4 zbwrcOckNSf53!iiBMhwii;d+mg%ggR!71Y+Zdv)t$ez8A6Z_Xek ze}%DqiwBiezuLpl{4dGgUm<84dFuvOl17jv59~eBdz=A$WAJ}PmBCtT1`q8$g}IFP zHL>@T_}TEd(hIZYUg6^CA@sc!kL=^{O_4YqLc*^LB|`1dkD(pE%pg5C$ejht)m65l zk~%E5{mov>hMx*xgk{C1-|g>XG}Dl@Wa|^vT}PhS7oexyUH$&BUqit&)l7xL?tj|b z=phZWLQQXM%Kl~VXv0-RvxenBZ4*^+VFcNEW^@E8@{hejq`4oVC2XBinMD68*CPx5 zfplmi8e#);E1^X5s#_O&XiuLI(&DN8E!359uGMKpSkC&T|p zvult_&+S>hnP83_Tq{T8rJ`YIR03AS651ZLbS7E!!d_8dmo1-;eJ8cXn?(h>pr8ur zFYN|!rm*Fn)Cs?DqL4jWYNj_p8zjtHjnxJ%Ci_-7;YFqyQjzcl0*)3sHg)CBw@L7d zz%PXwLdd=qi&+!DoJl(RNOkoJltG9#Z#GdGd_GfkWSFls5IvhoCiy~>UWka$(pYle zSE`BqW&tm8t%Y8IYy6~Wy@H{s%~V5AwWgxKX3}3NhLQmVrNOAeERtJL>VqqZ=&&q} zCCv&+RdEfmn8l;gEV6IqvQl~lL+hHWMq{8VeK?-m;D*9d0`8$hghiX+l@_XA7fla- zxKW#I{2{QEP>VMSe0O3viN|8(h;5k^ojW2xvfFT)Xh`c~v&3Q+ue4cY6NYuTPJyk= z?P6WldZ;_|2dS*SE{oB#K#0*sGX=JQHiE~J&x?Y8-!)U1ISM+HPJ!k7wqjB}{E?YL zgW^&ny#lniQxUPMyQSrVq)2^LL+o0qF_@^vz-zzIPfff-=|%{4g0>)7T85vBL~eg3 z$C4HyQYDOL8x#8JEOI#z-ONb|<3NCjyhP8Q8GRzFpcvhifGn6bK0QHsc0z$9}r zuz)#)=5sPoNY^fcFQ=H8W|QdKaZ(d+>yW2$62Y59`)nPuUMSIq-2+vmX+HRX@ExHO zxiALIQaQXkTOB`xYe*~5S@=)``tb#w9-Tuzn@u{`gwFGs_zg?MJvAW_Z;8dMn}b5_ zTGAlBf}x|#Q7L>fTOH&+n$1Sl-0rodk8QZ%9Aj>yIV7d7R1G8X8;wJRSWG$iKt**E zK&JsCK`&gzSQ!C&h5AyI9-Y-~W>)uQeW|6suAy-mYU5ro|CS{e+lL0_e$_y#Xv432 z;0>BX1~ify<3Zv#Y{WX&NUDV=iN(yjpwOwY)K0HpATUoQ&~J|F-QIKPjR+o70j~u# z=~RGt49M?IBo|sYhh#OCHsB39`}#CmpjuhOt+-=&znPR`!v{n~)}AFTr1|)$Sj^gU zU=HgdLV7M#ao^Q&%_cIQL6F33BHJUTAxvaZxu;u6>kz&t8e~)R^Y$=xJQ9l;k9%`S z$+l8Qy+TjAYoxS=^$5x^<|HUYwv&eF6%2t`tTyG&9JQx~w}+k9O3e2TfJ3xvwF;f`UQA*S+P-em^E>mSzmTby&G|KTsF!*PveQ;rd z^g6h%{PrvG#T1ex`*aukdED?7(7=r$=bKF8?5M-h{eny zb2CWu?$8Bv3iGDGvg_UMQaoN|rqHbiEIf1y%;jr(Kr-w!Q;6;<&C)9vJh)8t0<3?y z2gAi2)W&0V2WRGM(pBHjzz}KC24Z<$G#Qi&v-*x+Qhj_yEbduc?qg z*wV1xj2PLsqE7!{@RQ&@wWPLDDkR zYc7c#ELFyRL~CsBPaiBz#Dm3RnEUz0Up=}#Q;|#@B1NG-bLnEFIk`AQ8jr@!RTm>r zIB=-cL=S7AYFDZDw5B?*v!itGbzgo_cW@bhVw|5Nm6gUJwuaoRF-w;sSAi&^Gu`2Ye8GQM6q&f^Rn6TMefs`h58_AI-rlrEh>u6gQ|kt1Tl43LD^i6tz=IY53Y4F0;h z%)iIKms^wZYaIcIUw}bSH*T6F>FXMNvr6Uau;$A8YxZ<$x*xu*qoi;6Y8C9fHP|No z2_s*>i_3qyml;8#8ixmyF>|Hn-cBSA&y}X(KSe%l>+N@;M4Pzah;7@gQ?H49HBah` z{O6Ne^Q8f}$b7LU>D#nXZBwE7>e%ZmRMo)M&7n6INCR!Syimhq+VK@D0Y z^+)yRllK?F2}VN;z0Im#U6ll?HDBGf>Agf6K&mZ)^R_PYN&6*I8t!HRvPA{yqzB2J zohenZ;Uo*iw^YSMP0?(5#5qFSSpN|nl?zMQQZ}4rVPl(WW6>+ztWO;t8!_POHhAI+ zskgVR`D_JDfxAU2?DTV|P@)Ak_ielMR$+8_KHW-a8X5=d@~qJ_mKPeI1RJMgM!J%# z%qAO&6egS#?^0VL;;|iaa+gSNpbPU!kCoC`d`U1z*pAFOXu8P-?{g+_Y^#5EOSu2W zu}W&|t)aiHk_LpEUCd9LMh2~x;(g$vK7WV?9MOkp+{zeCFZ⋘t?hID-~bSJ^iax zyhSgEy-CGYD*i)-AN>MRQJ;!BR3uaJ1{KSx$fDv16^E!OLpL=`QZbmG<_w@>ITcy6 z>8kD#?Y_TKF@;WvsZ?yIJl>+>9u+@;&>mbtIcG7x@T3Vaki~drGLD&yUnb+0$#`Wl zPMM5PCgYOHctH7VxLY!l+0SCOGnw5iW>a|V1al9&ZGyRnT_s@dVV7f=d)DT;=Nvs^ z?s-O!n0u;GFEIBc(j(@c1@!0;`@EkXHlhAuS6P^+Lg>ep)Jbf&i}|dV>N6-?K#!Qq z*eJ?eHlF&8xr}uW>at|WNpfpS*g(>(4*aOS$_8mJ4qX7{d0WYU+xg?!gBGwk(vQ+e zB(2tml^}S#(;q?V4B04^@pjQj+9>V8HO(QbaY)(<1LWgPQkh6`8xJ@c?h2`=-qJ$T z8LolY=q)Yn$@(`Xco2V{xr7DkZ75yDlIokKcaY78e6v}q;5Qb&NhI^WTVLBbwQESo z5L%JV3chMD8_GDAaemOXYPg8v<}+jgf!V7RDYRN@Q6fPwqg4n{A5a6(yl=q~?OQji zCeNS>Q$eKihpw=atW^F$6ZTayH4Beaim&z>LEELO{?rPz*f;Mco~mTlcDO-fGX-OT zTgRKdQ7kF8Ls}QHPAG9R+y`aCojiZ^m@k{tY3bHz2?_bTcyKJOyDf^jBl}-2!!{{#HO2n6Nt#Lib2Z zQ0PLH4*Wl~M{15sE`(}skFqV%4tu5YI!*`n0;lkWd7LhyxP^?4Eu2g`>}bU9RtnZA z@q3Pf$)=;~zC^ecE9bk?RMeKUg8!A@ld9tc4^~^>lY(`u{PqK@_8O~BWcq$73H9gH z+M7}{;meQbZXASNzAfBy@L&D_PPBG-Fe-dV3RFD@FCjQ2C6i~r zuMb9BIknw~V10j(v)XFPir*~zX8u?WI4sRUS5#KMSAY#EDam#4*B-oP9Fa=uB6{lx zMDz>MWxbC=0Pb;eUzn2Pw@Cdbf8=%^lTwiHBK4*q-$g*~olSBK_J<>VC)j;l3eb`B zI|1YhF3Rf!kZvcWJ}6?5+7k+ro}YU5gkoyCA@cZiK6=8tC!r_QQ_0c)9Z$jDd}9x4 z$4*I@X4v^t(n!>RGwS$}v;%eIWEz-~DXx;KlRq+7Kb8m@$vriadWzjXHAbYP-982H zT=+y9OKSW9H@S@Bly-k2okP<&rBSAof>cVw^G9juS;#CG_YeI4_bhCEtr7{b@oVCz z?$Gt4V`@9H`>Yg99{6ntMmZ|AoX=of-p-ljm@*4inK|;u%yAC(sXyY(;D5LCa4qz# z2eb3%rBF4g;PnQSS+xsNV|1GPYt{wnOY{|Ib=s5_zp3wJ{#Z4<1pa!$L->S-@J8T< zs$@t5XCeHL2f6;2weHySlGKqLy9{>~{mIF(si@9>pgR^`tY-Y5rVK+>zx|d!hFPBj z!`Q{@j0FEHUV+_`%8QMi@$D-bH8x8YzY3kP;$opQF1!lV8mZLiH|%yJZAuDLX_Y6n zujHd6UjIV6h59chN4|t@+kr+p#R_&!8JRRLmEU)kpibONzLG*wUry=WucY;83}*v{ z1~%a;o7Y~=hMxIpt>AP01!0aS>^{i@*I;*exk!}l31kT+;8V7^)X++jpxsJHZpL*f z)d#I!%+B>f+~;})Cr(croiaf?)zkF&-I^k}%3|}kuub}oV3RG5O1v$U2rP(PH@H;p z8@HsY2!AM4A#7iV-3)U|EM^-)A1)??zlVKeoq~36!&Om%onL}Nhda_7y#m{Ozbn>t zgR^@Zbl{Xt?#Dk!b!_+_GmY2o!j(jw2D|a6$Pyum-Av-|Ne%RMSzFnCJY_`%H=Tr^ zqz-xox{)PhL|rwLL>H^4-KBq)uHgDQOxWQOG#i>|vNP-%_oc4kVsN#XksJ4=w{bTS zmE~Dyp+u_OLEUVl;Gw%oraJ<#FX`}Wv&(^%-CttDQfg-4Oxq7%*%vv)r6P{!y z!`lXQ8U|w>yczr3Uw(n`3>~U|Oi1viIxkS3VDWTS?W%MIchGT`rA;AEV8Sd`~=ss!0WH#RkOrXuQAMt zlBXct!2)c63fAToU=QsLNk(Z$)o?K!non|T#>z0fBpM9~;T)tI67|`PoAI#wgrumH zQBi55lcL6_q^3oUNEtsqWkS@5#PrmpRQk=R#4+R2C&Mw^fE+b0C2{1K32(sd%xOvE zCyq-@1LXB#s+5JqkqB_%W%epjo*_RQoaG(vl`erKG2sVo<}NKRR(r zQq=IIqzO?Y$E1!(0jLS-Nh7O45wK2*nm9RSL{bu&l$;jw|5l41FPjm9Q!El=h)H6w zq3K{nxnJZ3Va=}P8yvAEQctq!hol;0a3y&V&J=C1<<%mg#8Y<|yQ@C8b)0<7hI53f z#(`+KN>D^o=hSUgS&5c6Nn+msrdO_AObYYE5~lUI7**N%*L-Zb1r~KHPbE zd$_(j8|Bv4lAGa6q7ED70KaZ+xszT&BlMl9;3m|rj$AcTYytNZ|79pFSORYmsSeCL zPju>k+uIho1-~L?za#*|v32G5^@a@-P?Cug*^Ry<>&b&LUJ7>Io2l%l7uxWdY@$im zs-%^@t#5Ak`f`j70m-xma%)`9fFqDBwKO-Vp&Vz!rNlZ0mgBtG%KfO3Je-+{Ya%zo zO+*NwE0}4plzi9(vax|!1%h0U^ld8F#$Ci>7K8>%bH8gU7q#g%47?_I<2AFnTocje z?`jEmg^bpr>v)Y^N;OrdBS`D0IooVIc--fLDrqpj@ptWR3DldIvAW(ud<85InkooM1&mX~+h%imDP zp6npE#W!`>I>%mHN)kK5`tF)o#bAWrbFCXen2|FH@>6Q$qfXGHpNa_jtom~)8Ppk8 zJb#K+SoFT?4C{BiOzb}N{w7eE-bG$*qQC~Ha%KwGyULMz1w%8YnD~mFH7@EV53u1T z9-s}D5%wE~2I4pD*5%?u*i5tM~(T|c=C zep4)_?MJJZ<+klF!*7Ok8q8x$2Y|=+n`jU`P)^e;7}(A5#;(X9`6|NaL{Kd{SHxn* z?%Xos7%KPED;R9?`@eOm4zqa#fqVQ*68Uwx;VY)}Vd@X%N)3ZS<}Z-~o6?^MC7x6I zLUqUF`(g4wKG<)$&?(p*vN%bO$AMz;?SG_hw&iM)>gr!klDp$bld9||HoB_JW9LRe zbZVQ_XFqw;)i*ed-zF_KOx=n4{SA3EP7onkmM$9&S=v)9X0b_FuKv18r(iI}?_JiJ zV!wbnGDconFeEz+(R=6En^4%iK4y8o_cr+r!8+*66XnnGbdf1ry zFDFAM%jtRrLj(4!iLA2%4G1GcQ{^wws{GSEU;@Oll-)&kJ58?niY#47Uzt;#3{HnB zb-&mamZkfI63;9>tS&rDPmwciWJO750D^1sY*e^3RbG!j6_nYd5zt9Bwt008UOB2Z zMl`Bs(1hu*zw(_9PQPz)+?(c@8L$EINYrHfs?CIH>Tj`_=AI8!R7Y){2J1orD}+u+ zE2Brt37G|6)73S!=%fiR2v6_w7c9>P4kxGkIyWr}C+DGVq}fdg+N!dk8o=>$pp(@X zNwNUe5lTD*_%X5F4h<3eWR;c$VKq33V zlt%Is)ej;Y^~~e9`SJ=MoFW=w!_c0^FbqubHm!pVU7Z3YT`n&RyB4sS z*aFr!QIwti;9scgYgU)>y0}5!g=^>tz+fb(7B*95gL1$oxkIGb3CzOHeqO(26Qpwo z(FjYGwnB-AZr36tx)EH@8}z0e$N}u zD##3qrCrQUxrGl-wV+YSOqcpN_t)L>N*kVMp=JKP;;}74GhrC*xc*h5hf#b4?Ty4?vvH znklgJ4V?w}h0y?f-K;KK%jxQ}4jz6G2GL*56jmOD5nrcZ=qlCC+{;4q=?8K_8}^q3 zU$MofM5=xWBeS3G3%Zq^{-HbpmlliJGRaROEe^|D^a=(RwY;$)6OPC?a6=K4MW!xi zQCIwiE!G|#h11Ifv6!+bN-O3iMFAookwZzPl1fqRiSWxY*j^Z9L_lD2-f=lauV83L z9dGT(oppllm`oK>Swm7K^214a15OpcVQc^Wr(o@$B^J9CdVC~T(JL5e)H9)x`}iaI zu?@dv1oYV?@wE^fXx#$xsx!_NOPKXd5(zvbm&5wHH2VF|!1>`>QGrDt6keVIx;h2c z=lY(NyW#7ig4@E&v+@xWg&xo4IQ*-b!nn`mF?t0?|D{>oCFfvQLdVA7yap!DW2@8L z5$EOVHe6a3+{7rCkku|xLi~m$WBrRTQ&ks>nNvXF=Zo?eSf^m1(Zq}f8~3_gmV*&a z5K$S8b~5?kbNOG~PW*<^xP3*ghzE(qj0PwSzbfC?D;Q`r^Gf6EFXVYPlH6K78(<7l zxg%0VQ;fmOuVB2)5{nswR5|zD*K&Cq)@c|hwDd}0#&!7`!ka``x)m$TTJdJOY<9nO zQ~nX}u~2Perpf~F+AVpo4IdG8Sw>&KEq{bR7K@ozj>zQcck(I|1vc$`X{NwV!gUr5 zPHAVxj?L`o2f11y^ia$ z6N_2!>M7*cr}BAk3f;^U#yyjB^$ILK*!VTfOo5&17%6qelg;YB`2yA#y1ItU$S`X< ztV+Yk?w4}vD`E<7=Djw$M)m}y7S0x}v$#5h63@6UqHzr+Rcy*ZyjiHJZWI(lNv@fK5f=`LxKn!9@^TJ9^{Iyuj zXn?{eg_SS#3T#jIctNEqzHe0U0c3Rp!HbFKMh$dI$*o#M*=W<-Ff=vGYg79LDlvZK zKlPGJlIkUt2Dqd{=yj|OVUFDDA<6_B4imp(nRg}>oL^Ne<{G45n6lAC!9PMNM(T!x zubP`_9SK+37_?%Pez?1_t`AUA-Q>v$Otip>Mhz6^Aa6z}PCa^jNhKYpn$-;|rBu_` zWl>{KjaXz<2&63Bi@;W7SaGElX;B*1fS&B8msVcG#0WsyRV<^7H&HlV23)+uOrd*O zBSkGHADSsNET^QISoo@((gUA2Q&l3Tg*Vi@l zDZAG`^--+iK)8(owVTaJ_El0E;+EnUj6ff;1iBEdx-|}%>8i2?PnF6_Mf`?XpDlP= zI?2w;$|$`8%ZC&@)4)y>7) z%4#2U)tT?r%|lGWcAFCU*EgLGy_;1lMZ1Vg= zDDj*;_tD9-Eh_9HZ#06rH^61+L#Uuj`}M4_zI~6kPDCd?8!L}+SrLLg8)HHfMaC7x zVz$lOt*KIm{>WrpQ>6zg>r%IQKX0nMkLtVBZC)tc+DwVlLmDFXz8MjgDFd4;@Yu1g zqFt8of3;AC<33_BBz#xY)kXHVgb`DxU@(^J)!4XJN^2V)FQPJI*W;CrI9)7OdcyNs zTx3pbWwXA%!PX%&TWqWMlQv2tEQ^>l&`~Rd63;*%v8ngsFKeq1U$ow3+>SiK&50=L zwUIXylv{Y00B&3_UolgKP7{_}w6jvzh7Nfc``S!{ogJO%qTIx1ER0?Es#>+1@)Unz zp?brs>b~wu3-qIlJcj@Ho(_Vh#vSuM@U0mhTkyW

    &EAyM{?T*n*d2_f%Tpg4sf^ zW3luRN<4MHvyn-U?IC1%FXc&YpI%C!4TWYK1NtLpCqk*)3E%Zr;6dBv1rx@I{$r-g za?iJ)(ihhiRoNg@ODOT=`;4v7bARloMA>k>P*uGQRCj>#I!+La>G)98zw4L@W8jX! zH`rsU$)f>EOBA0?Y7bOap#jpU26K%YH= z``^LJ6*N-=Wv9V9P($y0!9654T;1Rf9j;9A$t^rwvHKt=LQ?*Xmh@ig1sPx<)(~LYTM9z`9>;jhQx-}hGUgRa6%z^*RcN) zZKlg6(x>B;WWSJXTLJwQ^vn6C6=Md?1`nT9WgGrM#|pZy&+Tk}G5`nKMk5=Zd!)gL z|CdHdr>R7rA^$sX^u}g4BLb zsL6gr7r9p`@pMUFnpUB?T^1|weuoo6Rdt)CR;JPkpB0N)zc`UYu4XE`^a_Tdv_JQm zXkXoC30$hIx8d6&D)ib|a(x+W5d0(-tDP_>H)**t&7fhhHpt8x8$HI@m1o#Spy}f6 zwL%|w-At9`>|;sk6KU=HzN+t?vT^~J5{S7MgY$ye;vFb zhsJVei7iumdBe5JkXJZsjG73y*DB-iF3~)5)()Y>(^(T$XMMd+8RUbH3RTs+pAL~+ zX_HdL2Oko@GLWCl$%~fMbz!@=ls9bn3sINtP_x@OZi>Y$5MK~7beqysuV64X!^{}F zmeF*(66K5k)S>Dxq0BbZWj*!oE~P#yxRR862X;#euM~PL+w1UMX?n^!-wcl}Nn&;@ z;e}D@mH9rmUuXu!nsxaA%!9b9$jPuW+GVE8dfLtpl#Ev-&qQ^K7;*^48_T=4y0Wo; z8tx)8VHuVnlz3*?o?IAel6>$$p_V$r_c{i%#&EHiWx>Fe7Ky z`1m;N3mGlMlBg3ftS>fGc>9FX#6uyPFiI=U6n39f+Iv%Y+f3o;DdlGqg{vRImgr$K z1vW_N+F(fieLT*hztt5}!fBZYd%*MmH@KFofzj51#Uf}@u z?=hpqoYCA4NA&k`T^}HIf9%YUN+7mR#BZ}l_+5d!d5lyIRIsSJg8Xhlh zY=^L_EbF75cj)d~?B88qpDtam`dyIulVH?f#`sQv2f4vq=>`iAz_G_yhp=EmC`aP!3|9jKmRZ8KfA zz=-p494Kr{`|o^J*9;Ce;XcPpL=tphjan#_c;@yHANAKB#{(Vj`rvG#u5pZfo!b=g z2n=*JNkp)t7uvp>j1P8nBfr-1^T%%+akNLqbsfoZwi4y2lRY>-e6vtpqezqx2SLYH zlPaN(x%h-ohfxzClQ`s&S3MxZZNlLujrH}F>$xT84kl~>}jhxOJg;ppLm zA6fvu!2$2T5)dAFsQy+wQuMdx95`ZQ(@0|5;0z((ly>ZY#V7`mX1}($QO3~%hpqtt zcaLXj5+sy(nn~tqvaPHm&Igwl>KfBz9B-nCr=9=}igxsT1xGLwePKck@-*5p05=t_ zFpiCc5>JkkRF33U7l&`|_vIb`vEc+kfo>@Oj(dtFdD~qjdO@+rc2~k0QnsR_pB}|9 zD5Ub{iqu$hb1FH;M~VZt31KyM8!9=LzGB6GM?Eo|66Y9&XNxUhZkZvJcv_jtLpQpz zV}}hd6Y3J}6wWCYvjK708gi!qmr$O{UMJf=Rx* zqbmX!wu>HG!|^S8e~r2|4~0QB9h3Cf2FFh4jujiHZv7Ok<;e8K=S2cAvd0DtA3KUY zV_?`Ya=Fja3izt727ML68q%Y_W1L>qV0N~dSvF92Xy9n%i+){`?=!&#W>D-(N$sYN z*KmQg5G!35d@d07jAIUuW3gtAGYA(IwGF3{E4g72Pks3Htd@>ND0(gNY30boF-8bs zL|w-rB8hUv**d(8P*r25E=!Z+9ZON8wdBuuM`PSXsL0L@*{_h}#Zs1CP1cg@tsTkw z`ZN>*hxMF8gI9BiZRBe3wWMl-qm4HOr

    CLECHbBTiite=m`+qp?HK)a1_+%h%xS1>%0rh>!byaFX!3CJEOU2BnL&2gW|Ug zC`AD<#vLVq8_n+?Pv1e6NKjjdS^)5@O8|KK7A*-#Sm;>ZD3VuT;)H^ym?iNn-?Lz$ z8A4j%d2YnjN;)IVphSryj>c1c0Le;P@{C%25Ce12}uH7!7Jlh$fxAmyJ5I zzNf~di_isFd_WH0Ne-^QL01BN13WDcB;fGpoo0jrmWkUUW+p4?w%ydItIh=kfT{qX zx|9K>DgXxdbp&w#v>rp>!K0*yfCWHxzCZvd`WAZ$@GXKXBcBnf)ft*<3%5jjh5Z#} znOZlDH-C~6s`NLHXUY7aZopFj@T|gs@)Q6(8xX)e>*l+f^c{2{Jwz=4c=jOxJbjCi z1o##*4z)GY2mr<35)=x z@hJKZUL!pOEC48eNB}7M7T*w%u+W~lb4tNTbA(XzOfmC&rV!m?$`=H+1&(P2j$aI3-328b1S@hZdKxmINfiJ| zZOecbCjgS#i2z>p2%gBQ3%RWsMYrHQ}PyMHVy{WD|ZtC?W*>FhS z+5Cw%FL1r-9STP_y1eU6pTyktrq2ist~Y%YbJv@`i@EDfC?1=Q5`+7o$&XtX>e*#m zyYW8-Wo_0~1?9u(?mmt~)KFP!RM2FX#mXAn4U3K+r4WZrgRFxYFxR zYfl+`Q~3?}a+xb4JJ#6I7}9%^Lwe-{17yhZ^b^xaA=%1v7 z{`o0G*Wbbr-^e@rM(ixWWhWLO>=zR$-*I?Ff&7GXwe~?PMBtU%yM|Jk0OY(W2{iD~ z*>>^wQTayqpOwpn{k%6_CpQK6mHJV&YdZA?mI0VDFAf10MKCp=-{duOSMwM%TxG_xWC|Q^C`sz z8v8sN`v?eV{7OPTNTtANEDESz;$U278Qc&tJppd7hGp16NJUu_(FHjY)m1YkuOTs zT2SZ~m)8@3MW6s!L#`tLYe)gG2o%3q1X4_i)1%RadJ2{qKBv%Kn2<%@dyf^=4L@CI zv%V~-V$1C)Xp=cwJ@dk#}l>`^uJ3B&p+6Y63?cV=IGtFU=V`RX!v$T#ugWjB}1uVpvAUOUU3 zZkJUJ8sMH*Ki-1Vt+Eamx~9h^py{yy_s^09+KqlHbi=~;;zG~1J5o64LGg|l*KDuS z`FdQVf#d4g5K=_k0~2xA3D@rE)>y+%8@jmHUgNvhsQtg)SSFXwd;tbyd4AXQ%wAZm zeprIWowIKX-Kp*S(nj>NMDI#N(>rHeg*dgP=8)2`vNdL$+Sb;XacX<7{)JQ9d*$c3 zc12?JrLiElA_nWCxz=q{5J&PiBteQBOYNupAiMXUPh@-Lcn`|(7lXGx8rFJ{`~LwmhOGxzMa8I+Dh<-FAq zy*~7~4W;Mz2}`{D-zaDnp3%v5`gRZIRkxjrZmDBuPcNUI`IaVvyZ=*^nc#NWJccV~iPi|Mg~l$yAjHkBM9riqn`9(p4@JF4sWB1D}uRgiy z{Y6!TOKD$HshGn%d^Nts+OG@xnFEC2I@(_(z{LH#3eXqJclNHMRp}D63Cw#HySVjy zMFN7AtSG`WqHtiCC_So2=8sg-+H* z6a|7F>shSATe(nmV&_WfIx5yZ41Q( z7Wa89?jryTCOk?#Pg2l$E``R6r==kUfCd);8Z5vyG!}rt-2nqEJxXyQRmk z(ysLiTB)uF^Wr7=Mv`3n7EBl7(w%EwHcLPoS@ci~k`0eBTp6CYJw!aF7 z9)AO^&(VS>ij|ujWWm3Dc3vQ|IZX!-3P~#D?pe9*13*>j|R zycsTGpsTUF%EX$Q8iZoN7Izr1Hwll#MYPtW1(q$&aV!f7084pKW`MBl%W`EY24Go4 z0I>{>vUP^!cMEyu3rGtwi#bRxB>*Hn155IRfs(`}w7UoeNpa_sOk6@U&yp5MKIxHs zodA%0(vjT9awRDSxQX@y0XS2e{a2}aa;B!oKcR0OQ_n}qZYi}RKESjJ0buGG)FnBX zs(~`aMYNWLf~lZBQ&cA|qID-NFzwRKRp$@_z_g3qK3b}CBFmMj7@#^YB7mwhJhz)` zw4VJ+QbW*U50)DV087tc3(0*0Tts_{01y;UL~wz5mlVM5Esxvh1c2LHj@u!YD>pH~ z@+{mvs2V=t{@3H?*=Ld(LKS;(YfJ#Rc?NkT_YH!3Xk7^fL2>634DO+gAuX^R(cSLa zEw@fdt|Y@E$0BqA1IkhWu)LlCX1TPxdkj>^S9DHx?Ae3mqhzlv6D7Vt0BC9`TjOob zUIM^S0H0xS2kjtff#KKPT^s$A08kVF6ifC9>I(%5AdS?!gI1kTZmCszIP0c_!&(3w z$3_{@l=>Fk7|@gmfaBP~1n_aJ;KI`#a{EEgCS5;h1#BixAJc}B_}lmEOJmR z(=(_rQ1nZzMnJ+s$2fd9q&}hGspaU$eEcb^Mei|7Oq{g9GuqSf>_q^03XpzK!eqJ9 z6gip?eurfSq1;WT^t6Y|MUFQXIa<#RWQWoOKvr*KK#LOqt>=CMxb+C0Xgv}doV-Z7 zNR$9b?b`$(wF0dC`}jCRQM>qZc_A-STU|Ot~3$h*q%2a?Lv26+E#O8R`-3bRp0g%}t3~0afEhaLc&0IAwPUWa)c>z^vWFsAgKZ*CAG)Dtw)-- zNDHm?buX)*60ocLM9ubr9@1DzjN(KeOOJmENL_k_k4jA1F+~|9tM?A75+q-DBpZ+% zB-NmLer_7c{Zi9!h*h`O_l?yv9SH?fu}WgPtY2)189`cLI;6L2KT`=n`w;+9Uc`Xb zrvODovC(EJ0mpG&;#sdJCB!TM+RpgfH$XbEqpy(T1OMq{HmCuaPvHE5$q2MWINj#^IiA^WJOx1e`GkPu+Rulc^$d z0=WH%VWR!`LANDcI1vEtrxO84u5Zzw0N(=bXAA+zt62DXmG#y#GoKWY(hK^!rgJp` zNT~ow>1qZvr2-(OcN1`2N^ke9pClzjDgaXYG6R}Y0dU=)F z3@A?lOIxww*)(zgyBBtPYV)UG5s%JdC365tsi zwOdF|sg>V?+6klY3gXmSMzlAA~9amj7tx#&eoh+6<; zcQ^yuaD9s@3}~SOAiWn7K6#xm|KmZc#TRcdBZ-E3qNdQ`|SWwH& zupeF#D>Cnp7LvQiOYQ*zkX!*4&y44CZJ<1nV~K}*|Dgd?SIPJOL;u)1Z+b@?VuOmR zN$S2c&^?;~(Dg0a5sHFU4xax<0C@VvK2LyeA?vSv^A-W%DHcA@^c!Q> zneRve6u(q>h*cK;yZI05l%oVlx50#o-z4^UYQQ zKvgV~sE)ZaHpaY6THyPl$M?Skpo0hizF#t+d<6*j{!VBr-(Ld0zO#yhg1STW0)X#X z1c0w^(UgFMg^qbq0>D=+e7<`xY@cB-zCU)cIhVA+x9=cVzeNOquK?hC9s?C(QCqrn zRweuQkTU6EQE|*G)NOATlOFnw_d*GlDGLX=LBe;sj+DVd0Pwz#0PyxLb`X%TP~I;Q z0N!HZ^TsCsmTj?1&8MUV-upb>KM(-k0)Y2X2DF|92-ub#98}zKY)cPzY<*V^NExvU z0Jd!i09)UpBLN8uW!sMcuoVlREk?sH9+QXdsiXzA69>CmzKDTW#taG#c4U{39Oa3D zkR4zw0m3se>fhv16ukql$ec!MzC9Q|M*tX#0n+;h0SOD)>sxzk-&W=$0>M(Ol314i zr1Z7sH_`&jLmtcUkf3ry-jmH0Z4)XzBz7Qoa8JM7b!<~rMGET z>p>#krrDxC^`HLRG^^!sP~WDJW7Fg-8DshIab=5^w%&haP<@zUl0*AC_M!j8dKZ6M zq_*gPH&(Vy-@Um~rAF>f)U%|EGh6&(@RLK_3pOtg!3#EJ5fQFXNGOe8jy)89STqtZ z)9h0xd{tyCdDWL`Z0}d(%hLx)iu)pIWAjG1^W#@vj+HlTHR@F{I79|=Jm1+Kd^MJq zL28NP@t=q6NP8`IRml9CY|ooXw`ACR_Qb9+d4!{3v>ED}XjcNzlmx&-!axGh z5(Pk0YB|(>@{Nj25N|QmT`8+R)ZNLI`uXeaSmW@#p|<`zv7wnQ)G1d@4JxJow!#rr zgMYJA+ylEtG2C6aR{z4?g=>eV-d)%#eN*pYZXML7w4MK6tgLPJUTntkdEEb=Oaz;Q z;`ENd1hbw5xIKsa1he0ZRkZ`(k6mCMCmebFzoG61^foUmONZayR&7vv9<0Qc;EQUNYKNl5sO+mgdY z;x#(l^$HJn*X+Us;I0=g$JZn&?s`=p?ylL@Qh=`6y`v@ha|Et5i{k@7cdD629&p8r z3&NH7B!OOuKQ_$W!1_tjsJF?#m%7l~Mn zgG8a1mNpTf3#QNwc5$zQT=Njib-g48SQhRip#PL^OVeeN<4ff-3!ny`9*$*`?{6QO zVG$($ux$F40B!uf!S5tb80d*Gu9O!aA?fs55_*QXL(f7f?jOb@JvE3GP47O|@%68o2*V zjyN_9a$QszEvBpfg%;Cw1X>JTC&xkpU2CqSS?@ph`zJOlsR8M)+_?s{;UAe7pF1X3 z<>V%Lb35l>S*MMqm@pTPB*F2f(=!N9#5`++%je(`em>W1iD!iujaaiM-Z^uYdgS~K z<02BDF1?nd$luUZyCtNt>xaTlRfB(XC`jK%#gM*D`WMo-=@jW3I>M!IW3l*@r1W9= z)u(v;HuFSKoLe?LN`k_>I_251dt$9@%Q>6NNH>j_v>h5W`^>yWO6YK}OBCASJ|zIh zyCdB3E{W0HMIT3V{}P}_bCq;Ke4-9_RH)#ncZBN+FH3=mxu@<($%fZo5YAcha%m~q z$tO9c9+6|}i4%YhCIC8^?-tj^hmaQBo;wn~+HM(HpzjO8rONaHb}lKyr2xK5%x09> zM8)p*+Ss;48?!H0h}SB;TAXR0wT0`(W!PdB<8?E4Yo@rtJxr;?t?~5~0p_%4r;llo zTzzHDt)zqts} zKMbcwwJ;2)M@OAt{gTtSaH^f09ltbb5XJAGV{|-kj=WZS=;6Xvc0>L6MW)JV@#Zx; zOg|M#aJ*G5OL!jVJfG-deooW) z#H5S)o14ZTFbmW)s2lf5S91|bG3o7pI;W|9t7_YF_R~sP zA8T$WsSE&h?1Gl@9^nT^+ubeWP0T}tN`Q?m_Mq+`?e?G^m)zyV+l1GTw%_E$`-g8A zxwrFF#$M7YUcqc6d$+a=1WZt?$X@k`~9e%Ik;(blAF+sjiIb@KCJv>I=eaN)G zw~HS%XOab``>JEyb8fn5>00BtNW84w8i}_uIjO460@b}8Wm|6BXL;r9hMu)5+HHe+ zH!$5(^}7W6aQ#4jytgSz)fzR%Jw=>H02UnrU>&oN04zELz@ozsdF$m%`k1w(1!Ai_ zzjqP!nvTnbIIU9 zbH>=9{^0j-&u@7G;8%bk=uAT4S5V(CGTp38e1d69T5z5-)@8aA0dTH>20dGUlCnRc za4sl0&#)ct&YWkakrtd!@|@2n0L~SF^Nfbs=4wLw$BJfzl6+USb$Y}vGaE?>zSnua zw-5l|3h27@DFP6)0DjC^m!70wU?2S;jaum?w92rL{;~QjF~(leJKiKStYRLiex#m> zk?POh@?EyiDGp3CKd2hpeMTA>ZO9S#SQ%}4W&EYeZtm8<+}u4j^+|H|#qx?W))ha< zFsx6K&s6Ln!+F2>^rUe|pNH-_+%Fz7m5apNaq~k3lIBe6;*C*b7u{0H{<33vP5bwN zczaWqlrZ9uRU-a6MQ+6T_}usxCXXyon{A5Rh|{vj;xnsR<<6d9`lV|13bfFq*Wcdo zA~PjbYeJE0(iakdmLUKJkE;kk%Mbu9LrQmDWmtTeSx;Js@fOeT0|daY0Qjom69mAo z07-tAkBG<3+oT1*Z+d?B69B&ojFk5*ej)&V1xWJy)~NV6Q)*mLfw;~+&ONi;cwg|$ zR!n5t@8VIedmRAGa9oJxRiq5a1$e;O?c z2^D2Op%_$8()BT@rWNTr-Yo^wv$auUP`z2p$(Fu3JKi$0j*5A3EK7|a+t>?d#~(8r zC^kIu_bZh%!eU(dYfikJSr_0tzGFt+P{daMvy7uxZ)5_Rq=f)e_hw4Xrm`4eh zT*mFrS5}m%wnL=zrll1>1X^JFoLOT^4B5i<+$$v_q$+}ne2@ml{~ZKKn|{;yabp@1W3NUjj=Kl zgN6hGB_}2)-KauJL+O9slryEpA%1p?_*sCQUy>I+*RT{Meo7&6OGNr@2Z{#47ff{R zx_|&Aeh>)|_kfhRhnyg8G;nc=z}Y1NX8{8L@A7zS!%_qunaB;ixt$%0-e{InI0*b& zFYs##2(rGJq=h^&Z@dCqAM86~@`bSpAUp605IEemT zFZy>02%`Uyq=^1tO7uUUAo~6XtDYJ1f@ik~o&`w#uGO-$#Zm;nHzoKoYvb!}lLMIZ z5O>xj*IcqD1+5xmON0anId@WWGtXCrlxB|RA}*0|c8Qo-fS7-{Io{E*6fxJDlxQy4 zfGjq_Z5RGB-fb8DJl-95@*INgLYiKAsg5s0L?;xt{o_^ZXUHGkGsiL|fMjyZuice-PTT7TBf3{us&Ye9=t6c zHMdX>WjgC@D~_9%R&8w{Wl#3sryCSmV`f#fW6x<;%4UVr%GjzK;<@FL4D_=Sxi+gz zT8@2gLwu8YEbwMAWj?9`UUiT;=30AjWBdy9;>qobyQ!A#NXHwB2}TysIfb zSvaIVz*Qs5MB<7~F7CdSarIsCp{7!@-Gq!2o4BX9MR&(PHI2vu>*egpZhf9h0G5&h z;7#$)1n9Cclx;WvF625y&&!naBz@>wyP!oWJMF%B7c+{K;eMFsemVhguYf+ztT;0_ z+gwa2${3bfMuvUzf%rVLiWJ3v>+qVe-B@GwSvQS6nijsnD{B)ep)3UwWj#bF%DN%7 ztg1HhP<)QrO^WW(!t?(g0dCdprRoa;;QEEYwfpPPlRx7F*J zsssl+t?5(TPHXKc?zSJw$4w3?c-tfKE#Wevk+|)bqfWT{l_amY?N{Z|cw1ZQQQ6+i zBdF-n_&&qBSl#v}4Xkc^r~s?mVw2tK_J$qt&&?Fl!?-?SiW}D_5P)UCLK0wHzhsI# z*IT3jjps=`abH4wVqj;V7}!~Wf&JMh<8uv5F|Zd+aRdA4DeiFZpQqxtm`5odM84gN zd^-V%{8bVl^4*g62inELtHhrk?7eu^0_T4xHE4feP(?0~UZm=@;Vt3`@b_XflHx z*)PUJA=8@z1CQ=gUGwQq04iY|2|!^?3WW)$r69gRfqjDl3qWD+?)WOhQc&nRHPMW) zJ{U2@tq*!kaqEL~rnvP1cP4yl)clmHbuiGv zPD4^@UjKe$syi`!OwzTiL%*<$He>h1bHe4P*{vVM>)9W_9$e18uqU3I`G&gZA?I-_ z5BD`mkeE5eKhFBHrinE+Ve9B$SP<2jmbxG+DM{69tZVkhHyoeCOWuwzHc>SXChZ9( zmjoSt?yWO@U;EtEx0JTq%(*pf?RVwis6XjoQt3U-C9wN6i!aOcdQbM9r>1I6oaScf ziwMBfqk!(1FCjpup0EJe+!4P>IR%$UNjE7|KjE7*Es^s1AH>^+??%dJWp-1ioaok6 z3KC5M_KHM5uF6RC6Z#ht{lrNV{lvcbw&N4M?W6c=^EQ>Ljn%vv2zEUCalCoRd>2Su zyZp*a*dGKSVFF-#vBdPC_K+|Ekgx;O+;uf7BtdPzm#|k{!qPBH=l|ko*}ezj z>19^CdAq@M*KVsFh>yzLuVHW|U!%B?NfK~z$Yh?zicCiIFJv+@{RB-m_-Y)j1rqLL z2F0_%Dp>#=o=~xFhWz3A?V9l0^*Fz4C%LXr^Gg{xQr5)zI~FV`9WPOCOpr}~Q9L;i zxnC?DGu{1S=?DTke3X}`i~D@r@`}Up8y;?2!QSCs|g6*GIo$HY!f@z+)Ps4jZaWqJ;NP3_~s9jBFuBzOEv8z zDZ0L|{w4vc9-4v2gEi;LZx?<{7!EXNBokZ|YH!UEQUbxl9>HQWgGvEG0YEUF0Zr&( zr6@PwU#QZ>)FUv7XYHBJx*aK?{sh3WLl*}0*ul3rmjP`y0-)Ix5s=huM8R)1VL$2x zq>N^8*dnt_Nsi2l!Q$fb;u*;ir^sQ1ZZNt@G6no$*!gRE~*mjJL8 z0FRl^R%qYRv?LUi1x=#d=bqBzOn1^!$|3pkYkw(p2+6^?%PhxuA_K};fZziP7ZD1^ z`gMu~qraLI#&y=X5T6(UfbNlpf)M7!nfyGt_7=HKmYM40ZA=N6cR1U4}T9S zqv$R+eTeY=gycxFZ}2?&s{DDbNo5g$1Pg#B z)tmw4DF6od4g?(EnhHGgfux0a1wdCF$AIS5x0ua<7AOD`dl>;qi4}!JV*RjhCS{Z> z0EYOx2|#Am;tlx-8OePEB=&g%kXSKDO6=KBlwM^%A}u8LeJ`=!5rD)BfW-d6fbtXo zi7hjm>d60{Howt^O4#jFrGeBUC4^gIw##c126W=|3?eMo;=}-HJ%@m#w2DF^t$xr& zq>N$(Kw8fu0BQ9t782lFAg|XEfV_%@pI7-Z;Cgc>DIlerX1lifFaes<&?c9Yoh(<1 zVi25VzfCC5Dxo)>_1AFe7=NW|O1oh+_AfputNXn>q^fT(m+?aIXL}JEI zijrLO>FakTxv!6O4kQ5S6i0qKu@pJ$HEE_ZNeelhI>+U70RhOVJbliScD9t|no}`A zD_uvxaos;;o%L2yLbP^{Yo*UHpgHvnUSqiyCkDvrhXf?$R1^|9^Y?0Q7wU(Dw&0pfm+QRwoc} zTvo$l&$pp7kdf502tdd544RT0Q3^+G zKeop8*mKo%igPKaSJ;2#dUKG>9p{oEvf1|nm(3yq&~gOOmSbzF zI6{DLf!~;P|O`YkCa|xGD!8~0d$zN1-BsC z$B%GbJKf7@#`46X085gd0KtxQa!B>&*67o7toQnlmnR zP3JNKKvMvewVVO1P604OZXn?J_H(NG}Q$Rk&Yr#0P-pT@_H5n%2R+{>pPyCM)IVLHl6RfpYNatDI#KZ&_uRbhY|pe zzQrU0e2eYBcdTajU)4U#TtFy@ikVLo_k%xL(*AsNJ!ygH()q3dts?+L1;96?S*|=q z9!!o;5t=kP?wIe=w1*TBvjAv6pD-}0&!CWJ@IA}5JTXA~`HO(0_9F_~elR&oaHyTi z7YFr;Vg*2Q>kxqC3edlutf@)v8=(Ef2tZoJz)vgM&l5MaztapREu?k8#V)NA2tZl| zK!oQrpgaY@+<3$5Cz%^B_bhKtwG;p;y_*5;l4_w_8!XqNM2?g`Pe4*iML|<)50#8J z4SB_WOv=cR1dNm(BmgP(DgH@-Z-JbayyX8G`|bcKitTG>Si(+`ktHn|1j$J<1c0+!Vk!Y{3F)J0dU^5kmDOBAL0pQt z#7#0ST$;H+y-Z4={DMPy0|B5c04Tr9fT1jaNBKCR*(o1&D7&_PAZ-v30F?KY?M1OCzipbI_3fayYRiTMne`UEh2NN0R!yDQ&v63lcTj7YA-oBaj^ zKwRG^0C9Co93#NQwRl4j+&6HT%6rvS3$D5$yh>z1fZfT=vNOLzONP1?dP#cQe-gn_dZO5*&$mdyK9chUmgE)#60 z?N0!bNq{r&%B+s%#z`YD-J+M8L;!Lrsnd?1V7ZER<@S=Qq>QME+)&jcLm7z|dWZ~h zdDEvH=ptW6$ta~?+>u#By-lE@sedS((R%*&9mNuR2`}x;oTmRQ2)m$o!l8Jcih`m5 zrb1o6FqGk#$Usj`^cp8Sz5Ej`J;#EoPTH;+G-YD~OjGJhg);K%7xFi6pdtjBG6pKG z4~=VELyt;>L*Vy(;f&4+ZjivW5BeZ0FtlW)j|S< zptp*c=Wuf^tRY2k69C+{5r8yxOY9>cQNmnY@C~((2{jDm5sS$cGn`km%Z8Bm9km}x z6D@hsvehfoZG#!2BD1~eL9fA3sQ_rn$^>L@$?^}{mUPXuB5l_U*mfWQY~2z!5s)Zh z*y1~Cg9!!Oi^*(d22n?6zI*cxY9eWZ?brux+s+~Yc`E=q70XT28u_N?-PI}rl9n?s zI%Gu=F?*L3;kp1Idz1i>bxV9sfLj6|-Z=e7`|9cvp&%<$nkv+^-e<>BCwZ*}vUw+2 zvZV+BSpnc{bp{Mu0l>By0n9egSVvlBlwTOSrB1-H(T!B$z1RTX+Xw((x7ND|a7*As z`8WbVHLqULCd1p&{Op0$ThtSz1eS9gmd_9XmI8p~8U_qY0l;!60ZA;kfu&xvyKsW$ zr=$y~#RzDgBLFnrYJVdjQNrZ#@_&lfQu!u(jRmfAlDS@*kUCmbBqeYyH`%smT>`*W z0B~)^fZ-|txOOIhxduB-ww=|ra0e+Gw*%$$<*baR>OPW#r(0ku0pKZsw;G>IsNrcG zO1gyN#knt&7L30z*}gb;0|AJD0B&&{U(Dqg7mhFXlEX*l%=|2KRtjh4j~jF5Pxs9H zEIFrS-kB?h#gfnA-Aw1J0(lxvS0~96oSDCLQ@ggouP5sPAGEwyeM_i!Wd7`Adu0Ac ziHN+Mq!6mdk$Le!&+R#+xt??EhWgGyx1Tc$2Tw|g#1Z<3qPKE zKA;*TmyPSuJ+2L1?HN$^p_w{UQuN^q73=C6e`J2IBFTlil<@RJRzG8kp8RKKBv@yP z4ZuIOi-${6SddRx)(ec1z0^bb`frMwi^kx!acRTYgPI-FgqoF_f0-8Puz)Nk|J$%c%#RsS&ARLVBQTxI2Zkz70)b zuQK$&G!jtlrh<-XF{6yo#LX{+CO$3a0q73BrF!_`?BpwLNv)OVRw3VcOKKg}m#W7I ze2XWb>QnSTTZDYhpgvba$lqwm`v>5_BcYmx{pgzEUc|n!W#7xI&9Wx}RgW4l{K(P! za80xr!Z0flhFQ6W;jJ4ZE%np2!qM!p_`7GMgkHTpwRrH^X}VMGa830*IfQtu@C4*g ziXOE?;*m3`$Jdc~Je_kqI`2%aiVM<#UqjbZK$_WrEcL3h0U-g^k1D+J_=qWmfE+cy zkQYaD4al0%!)0~&>n{0q|8n8-y2WGRs(SW-P!V0URfimU%bNP(Yg5jPU43`a?zPkf z@(>aF))SD2Df;v~5}}+yU8JEz=*yfVv}{NS{bk9~@QoCpRyIIid9~R9k$|d44PJoC zJ>&)`-TXp;(jUsL#FNa4K$uqZ0HHdLs7zmHktE_Jv*pWE;{z7G zQkgbV^}K2ksZu0hKTwAks@qL5RtRIILQ3aTG$6>b(> z_K;mwdDo@54blBnDV}a30efgFwZqTyKH*wvYfLeOXs!8$5UtH2MD}^4VQs>TvWKZ- zhRhE4Q2mK8ReaZzk`q!9@}<2l_C`tx-9Iy2OC9$#ZP0Qqs*8jrXgh4seDlL$;c#O! zJ}(Q0n*_hh7O3_%P`jui1d0UYBPyam{cVaNP*=<^1nNqzfqEnwekgmODjZL(sZVwb zS5c)N78_p2vPo5{geN6WQuKx6sXbIR53~WwSzG@ZmjD%hILB^Q`Qubv!6s*gYX+Ok zsW!7f_fn~ojZjgl2@xUz`GuM&LhVg4M5u%Lg$Q+cIJbeRZ@cig>=CNiKAfcnQvHck zO6%uI*@#I5k^vy4v8}N>xd4 zD(Y1o!*{AVB*i-QF(Yv2bh1t@r`w!P%}7};V%@M+N)3JG`fxe*JQb50P95~6uYwKq zl1|~W1$jdQ-x5&Ikn)*Ma)D=o?3>iqb7nr3PhU8bT2*Z!U1K=Uu-6_oPq5d~=R1e1 z{flu~CgYu2v`KKICBIY-P5vH>1Rs0Ytexd;MIFlJrTlTU9;M1@e*eea)~)2rb(saU-p=n<|Qy!H`)-|J-~9H5%e z_eel~nVLGMwJ^#ENlWt!A!+$Y&ONTbuJlc%!r4Rez`4{WdAdB3qF*_e+Dvt&>M`Lbs6KnMT#I>+ z2753CzE6#-8C0t`UOePUx$3)mhuf=#9%jdjoRwwI<)VxilOD-&F#Y3VY8A{`DqfP7 zeK}i;_OmgWLUoxIEky!y%+^K2=_XSS;n{3{Av~LN3J)HdpVK!yBYSxI_mkP18Jj|whF3JN2NV@N}(aC87bEfCQiu&MBsreD6$d%O6`qlp7V!@xY z#cH69)qbiN*-rxYQY!A8mUp@vpnT>R0+erh&e?y5zIR}Fa`piA`8Bn@s%VO58xYEQ zQmQ&d*ZM8>235xcZ35+{{m*ZbKxxx+OrYMsr(T1|O#MBzdN4fQKO_vXK`BjjA%RGc z*1VysgDErglDlQ+ zW|uL{uSR% z?e;kZLzVM9I3q>BUNF=yJ;RvgkX=jlAjwF;c6Y3abWEFTl#yif%rAs$UQVHsFGvj4 zzmApd-rN%mh71m0|dBx|kb6b(&MI|)L(wmFg5G{e4bgUTj6-snW) z85;>@?&!%{^s1|7mDGodhf2Dy+W35iZu4NcOZrAr3CHC*sugh|0oQ`K{A837m!Hiq z#O3Fl;(}{jjmhD~+2bOePwCrAh8|Ld9~B#%MprUAofaOJo^EV1;rvty2$O)Vf^eo$2H~*z1;XJ+bL%txDt9iR zk3Jk8ot^c}N5X^DEmSqKp(hF4j?-GN8M`91Fg^5$8ci@VV#K4i2MvAHW(1W_xPFHd zkghf$=o^2Pm%cIQ(G*>&g7l3$j9Cszcd7>=ApzS(NS-mu2+6bN7eexEt|9qzR(M+W zXsoIfnx?i;t%$}35)^&Bh12{Mg{^s+H^!3leyy)PEsP~pLxR^H zCtj~nyl$>8`+#buUNukl0rwcI9IiL08ib1kY!=}vKhq6Y1@jBxsxULR40`&B@T~0N z8nr;y-px#L?k$Z;u;byLPPk@X8=9C#P{N_CnYN?Uo9T_257r9R&eLmVie6nSbZdH+ zF~~$4Pz@kT0=5gHLya=>;!g7mMDNU%sCTpWlix#SvQxgMZs=__h3ZF!OeDdIUtG$^ z>xC|;MFb&37R{RH6Dh5$Hr;o4pE z@Qq{DSEPm7KX>f@L;&mx0K36iUUR~(07-W16i~xeInu)COlMhluO&ImmYQYFHX{IL z1t7C&3!8_=sIH_0Z#y|=`w;-M0>Il51i-8Su37ZINi9PI)I+2NyOSNe^9g`m0bq9p z0kA88YZpD1T0D_)bDT{6Kgwj>Y~MM{x!FF)M4dBv95n+nnFMSXnS9hZg-rg?{6Z#w zILma|vZ)Ko;*_g@BTR_i}p9Ud7_-xFKp^EnbE#{c!R zqoG*=mG?0(K@iNqV>Y4x7FSF{7yY8fa8=%~Rpv39A+-rW$OS;iTM&Sd3xJTjcF|F~ zlNM_4;@Is^0PG3?yCVsJT>+BpqN6-QTCh9SvAci(*cAYFpCtfx1xT`sjpfO{7%qWW}^?)CJ7 zgW>UN5QPH6Sbq{Em0GIC5rjZLFx#g13<3~n1DG?Rrv^{1C6A_f&0wM(6cqhu%xpXJ zr79C)xM#MV;q;#E&2Vr>cf)LrJG%E6s~p|FRE>Nb_cgVH1UOI9$6sU{Y2Z8w*vzG~gSphJ({zCxF8o-*x_p;WE5A{@~=X&g5_UgIT+iM7bSp%4%r0;j(I;shw zuq~)#8&{o4S*pCAbRpbDbtX+z(7~zTRsv9g0C>y6odm$P0Brlgtg4;W6jFlOiH_Mh z1i-8S2**+aVAcQ>j^$+|x2pA|1hcO>X5S$IW(9!RBLu*#0jybEy(n7}iTb>g|BqAt z<6PBGbM3jR=S|ab{?DPd#21bBKO%dEe^cE!ncZ(k{+haImXcG`&xd69?!FZTb-gYs zpFY@2L%)Sbs=B0ygT>d*a}E~Ek3{FdtE9)z z3{_Dq#c|_n=Gj+CSDk0yNIq;<=mFJ>%Hn0%-RIetVRt7$Zt32phLZpJoNe}LpP~bHl(m^3IH_ zrMcicn}+W!K=9WTirk;%0eqk2`HuI&SDI(fK@^#1pCKqX&pt!I!wkL`LxY!Z2&@*A zK7h|lPckWoYxV`h1J~>e^K+YJ%hBLo*|xXVpDPwA98me5@X{1BlpqOk3u@9|p*HJf zfRr!1l_w12eVHfhen815?0&#)$L{E%uJda(e8OHNV+7!;AONlk-3Y){K>$p(#jbZv zA4XcJeTZZCKLo(80I>To0eDTYXBO9VT*Q`<63jm3m|aZ(%nAUrn+brs0=VvCWnG|r zWRyBeTCjV_vHLjzuxkJ_S17n9)LLC46vhR0jbpN~sA6P)1969C)t2G72krF5lhBGuJw0%2Q9xwbKFprlRonX8}BxIy=~bY%0T z0()DtMsUpndlvm_6KI|_{6k{~W(}1#$rivysvEP0gPTGRt2arC$-w~a+nYxQZLd+)${|^7uqXSiG}t`TkHR)4h)j)JO)V?U^x7IfgQ?EN#%o^ z*VEVT49!rtk_QOJO$%)>ZXy7|IK8`GQ#G2TU~-qw;d}noVW|KPa|Lji1sK%}zY}Vv zSPB|9E=;B&Q?oL9>888|^{8f%B6@$5NKE~g+ytv<9ahg0fUDFN5`fS~AE9mkN=R&j z5ZeYJ7T7t$Z25B6C%Z#66+>XP+{fzR`=MFtM{*7{E;=+W5&#+nv@gT*>f}TU8HN9q zta-$yK3%s*OI68lOKR=bD$-9i^aJ&Ll{EghN`hhvv0?&<6$=onGHoJt6-yDO?|fl; z^q|~99!h>8OoOz|;Xwo-OcO|e)*kC)@Zi5P5ZhqDw!we}V34^rZ>l~Qj#O3*fyMxx zoWnO95gM*L>oN}MKHr3XQ*{Z)WbE2Sb`sf&0L)MYz|6M;0hovh zfQeZ3Ma~`W^P$daAZfvFKgaH90$^7F*qulK>KPdM+#&%4Ursy5IM}2Cje#zaLr=&j~6sFB`p+hwAj9&Ax;456TmHw zi87@`A`z=CviV(Tk+;8$=kx|GPSJQyubLst30{QQBf&|)c9G!s8>f)q513y_@CO#> z(3{=o#+&LtdKN6}&+=C5TmBJxBB16FM|A92BnSk$H(xJlUOuQ-&%!l0?ZTjtY931%lbX6F$A zvjV{EaspshUe&|iO3xUfHj)y|zTudCj{ul8fVoHhAptP^MzYxkD<{X*_oM`~=Nz+t z5dgCSz}wK0qG7n60?PHd#XgU{(N_%_P8h8x+7z1&paQ{v^h}rHk#D z`pDwMoB^+*=)c6iiejl56nI3PL8HWu$7MtDPOA3I*S#ia8P%@WhZZ!+r-l$@UOcnD zWo0!ip#DQ*+zx%f2vCXh9vLo(U5i;%1iKb9i~ze9!T`G#H_wmER{teEOiiC%VyC9h z5+GAk=VSC+NQ(LC#wB*wVw(YIQr+MDowREqhA}T?!#tQp`)2FR}B| zB}?o+Lv0QeEFcTDmvwQGaJV$|G%P)6Z@(vS*3gDU_H z7Jx>9#gY1orJ!-aN26dJHB5!cFVJYc)V4xv0zl*1rz5>pPm-b)y8CF{^sh9e0?^dAsd0FM&a$^fH?$r3vt8G$bi#)LWLE?~RSZ|IBx(05rG)&|rbh z_m?7#6-z;*ivd1a!)>oF|}n=z*&uQRTeJR-R$FPEUR%(o}!CDw4ws5GrJ-iRvi|A10)l1m;`v zX6TOT1{tcLUXrOsq!FI*`K4v{f-z45=^pZUFs$n2*|bcavka@g=`R_pe93r%s=*|j z1Z)?R@O?%ZG1zZ@AqM+%jltoyk>oSr=5Y7=t><_*vOOjZ|@R1y|Nn{&Er0z(FH2 z#Ll5DZZ*nii$3NT+Mnkoj^LI~u&27D@~;pzC*^QUXM2t5I0zEcZh)LKAStAY2~#==FkvcV1eh?1dzdiQ zyjk6?nvotx;KnQL2;7(ejKDZ7(21lNfjg|Q6Q(W(ppjRo`X)?b7$Ywm#>mS8jIj+? z*fF-Q{J$r%OiiLn;p2G6$MFPsJ}w|Be4Mw!UL^*su(Klluf9qJ@RciouPlJC|L6IN z>p`s*_Igleg}ol6t+3YvZXjF_sKtGWQ!OZt;(9Q^IEw!Fx%q|u_xXz4t_Oz?$rUx* zqjif9M<%L2DJ1B1zmmXxezUc1^WLJuy5>!hvbx@p$UIg28L8AsKXkpq&)B=@A^G2Y zoxMTlF)dXszt%NYD-hBRFJ!jTm-?lYN~8J`Y*U}H-Q))ews+sNgg!S!71C>lsQkf> z&*%{!MY^Y_nku-v{6y~Kib4Xmk5R0TDUB%hHNOzWzR%i$9HY zN}pz|av(-gH3$R=*en9^mQh9^wwqrF#P(bRG3B#J@@vWDP~;4~b#s$?de5oIYV|Qy zjc9!23D%2lqky{XN$h9TFE~N?_8EQn^T-61`mFfD8J7214DNc%r*B@K_6 z+(=cY5*XYC#egg(<(m-;9FXgsuKaQYXGy#?@a(q3gDW=^*^Uz_;ia3x^LXUD69sqP4zplHd>}!N+4&&ET46b@}s=Ug_VM zLYxFgJS+Bff7{MS9#VzBy6+@e@&umq<;vgB+R^BD@xolz zFHDv>+{wwRyDH;XE%{tR6<6(~ik!>hZ_nD{=*+W;;ppOzk%oC%JeQ)6O;v-_e>2{3 z+`sVLwQmF=K_Y%)7V*2@_=Na%GQSYNPS52w3RU|hlEb5*7k`oCI)jNE`rQB$;E95w zzeV0mBWc2yG0%ZwppRZrI^0nApBJu#L)r(Xs~UNx3D4iAs~+iNj6LSrk1D_*Ljtx9 zo(qjKcxv+tJatYy5ATar(hb(%Qa6oWnw&5vZ@{g5L&miWmJhF#_FTf`^9hsBXEV8Q zh<%UO-G4>yQwxVk-Oj**Gv9UpmM*c)6nCT&x>|aBMypmK5?21DA10uU^s*~*Yi>V5 zCe&%0JVCXg{NRgyi-o*eIiuJ}oGS{vVOzWF+Kd{-4jTXPPV45zF6A_ z#FX}eY~Q!17LinDW5aaUve9X36-m)qNG;*u%4`j?lZv51wmCuE#0~PXU+beJEvG?# z@N0eVX`w-KaS09bgt%rp%PYnR8l?Dt<<~1O=m{00&C^#JF*nFUstgT60_Ka(QrVb7 zgH$oU&>&U*o6|Vvbe1Ce_R7&avNubyD$-+G85`M}r5Q=R9wTj2M9-`m?X5Zzjs~Iv z35Pp~Q^})Qe=3Fs>hoXQV{VrJ6FufXeyw|xw44T-+K9w_&P|P<3#e73tKnmnS6)AAYra<~R!xkwp)tEDXI^WNjRazgcBbV4a zi{5>8`qxH{v*81Z60(5=99Lw+JYyQ!FyH(_Hq3u9hdzsJID1`A-F1G`=zVGxQTDRo zMUt*5Xy0?yNY`%~P1XOD3x)JQ&7v7JmtlOpJne@z1l=)sj{Xdk9`j+Of7Vf_7YGe${?S*U6H}MNRVuw_^#a4DCn) z4i4IJvr$GnZZW^mj$3kSN1SE)qiyt_q{iIwOmk=C>(EXvO_$n5Ppglpey@joK+^1` z^6K3kB(i5o3GGUy60U#gwCjeB(MQ#vR02KZSEt2(cI`XwFe8LgZCr4e%$9`tP4&88_mqeInk@&KDn2mIweBn@mfks)>p*?Z9_ zBYQ8IU&!7|FJly<8&8-H5t~y68mqGm0h-3^5mPNPpZ_FVu%MNEMW4IwBe8} zC+GjZMaJmT1R-ZhH{o!pm3A!pt+!m>>rn~QaDiI-@`P}w;5930C~E6hiYAnhu?_o1 z+o^s&rC{%sHe*K+fD{m5ZMemCYAgXr0RiMg8=V4zo6WI_w?&7m`J{x*n!QqA-r1^Y zh~%&;awOKP1i-2Qj#UhAxr79Xb(Pd?hPSfD1`_L#`BiqM-ajx}E4`HYgA*%AbzyiT z0mmB&a>^(pK~9@rNRZP~q1>5FUOdSzQ2RZ1b$x0`w5uw(N_=#3 z54}Sf0h1>)`poi-J`0CN2PqcHCRQt5q+^-9>t7uj{l7q=`kqPgXYxY11>ejQX?#(w z{wm!q7Q0^6CZO&F`Ffamc8y-ML8i1%4v)&q9|%tj?4_twg8TKWQuK=Mozt}*5pAJ* zCzl(PmU9vGko9-p6&(~%qp1ioaKtM6X}XC7;L~&h;L~)o7%-ov69Av4TS~x=F1J3S zTa_DBRQI|&S~<9QmHjxKYhxp+A~FKt_~Uy7tUcSeXTYiSLy{*7nA!27G0|%33qsK= z#2kj(p%U=3ku?3}z0pqUFVX_l-yEu;)szk9yO{!jYH0=xRRQqb%vuC^-_2aRN=Nc% zRt#RV+Ol=c#7P^@3jns=2|zb@OY|qeEm7?8Hl_7rH?*m$MiL6TQY?w?^07kq5z+$P zsjF?vE+7CcD*)&|%YdOP0O-C!Kz6!o9lEZWgQN}T1pwWX1c0tv;yeMSL}02uvqIkW z@#2Hg>gsm_!B$GSY%!AlcarS66o18QL$EFUie+1g0I(GRZ0j*#*a{$D-0r8s1Y~F1 z+9`e`X@R8x_!9I$223`&B}Ow~Dii=;f}ThKz69+ik|+pM``vBV?I%eY^$LLKzCZw? zYf9{I(KJMI1h=q0^IEvI+DUT6RrD#YY5L_E(E;ic(n4I1IdT1#0K`=Q#PwGO3{3&> zRo&EAsfo;2bzPcyU$y?+6Ky(TNhNu7_`UC-zKpxRK4pG;_E2Idb0)Xfi0zlL) zv4;Q<9jMQ25TbjZh}Klc2{c3l19h<-GTm`U!R4dd-l#5<5_n#4c>Y5GcnScXh1PiO z1}_D`fM1aS8Sp)x<<{5+buF|YMb`p&wj%&M-4ZJkKoZXv9G!0HmxbAa|-wQ-b2z6|yeLzt(G*z~s(718XhAk|YPiJZmk( zstg#00w80rBOobb8?Lo2=~}pf6ydP|Xvw|=fTCMsI01{J(<7cL*XW|jGfK|`JS)Sx1I>xx*aesEi?K>0pq3Wuf3 z8e`o2>3#vYkIaG02Zm%uoII1SNz=ZDZ$w9_H^?tJq*hsX-BYM;p10Pe=pEmbuBvtr zjLG-u4Gmibx306F0NyK2U_Jqi`tkgMIH3cN)~%#7*GKOTz9D*v5C5Jtrg&Acj%=G% zg&w{kIzq7&_r@!1lv{Pbldf6rs-H=P2PT+>W<_nxcD&t-EX?pptXqx-3`<1WhvAd#O)2Eo~IFNTy{aB8Zfa^mb zw;E*xa+~>uKyJ$^kcmSdC8?hz%w4Z9KN+rtGaq{s7WXAA?#pKJJK3i&O>_6V(VP9t z<<{$qz84)GD0J48cNhJ3rF_8?*_HBHiJPpH3!U)*SyeZvFuJ}z)F5`9?y6!1^oc_4 zO6cWTgQd-0iRIOq@mM_-d_7^@d;-Mz)>)Dn=Xg=zby+$Ws8LRTvnN_l6-_QTC@tqA zcImu+Z*){ZT|-5X5LI5c!*de?Fgy!@;W^5Hxhe^O>+g*OBwc^IzHY~7Q9Sc*%cddH z!$nEtmv_gKf(md_BowvsVB)224^Wz?CZ=<0pVb_r%rtkeORp} zB`{p=Fno&uFcbg`_cLG^3IK+u2uNc1iNnyf@H;8OZ2@rI&Hskivf${JC`mw~gqdMX zhz@G4suBvKQjCc(H1$Mcr?% zyqRnm=?U*Ubm-G)Rd?kR7@{YajFg{WbbD=69)_n;0k9DO{O1t>{sL5P)4FMh*Md+mm0}*#lKQE$a_6BtDS>I1 zH*G`rCjbpC0D2tDO*@MmR3{O@RD$!8$I(kVJbZ8Ki0uDjUmt}cZST8>{sI59l7Qpg^!}2@NExnRRKVCApuEL=Xq3JBWp+(R0ROlZ3KX-TVfvpZV9aQJ|+M( zr3BO5`Kugl_>q)A^P*EV2`_%*)N6!; z-m4D19Rz@$0HAk}0Ygs!&^tpw61|fSJyD$dSM#PJ(u1!e2fNgbzSeT9EJc7@0xPNQ z>snS<)d>YfDdtebls%WZ3hw%R>YI5wE2-k8_-TziwAjGC@k7fqv#q z#xzz^*OOn~N~-5ZXC-wL!HJbrpoc!38EK@$ZCjKL4%lc{Q}6++DRIQErn;oYh6k_T zNUNza#vIRx+mn6sG`p@Bij7cXNs4E*npGHGGcju{thf}O%$iLF@MP93BfxD;nGNB| ztW5=DQ`F0(ho_!i*r)?q-hWDRiNbB_EfSdLodR17W%(N0JNX-=?=T=em&MfWt8~RI zo^^VG%-~rk7T}54die)uD3+QhpaRdD+8WM3)T>x<`9}LJ`<$Y&AhyAPZG!;|z+g?<;5v$>U@+Zd zaQF1sV)Y5R1m}-A&L1NH&R-${oWJ06{)c~cUTnj8whiZ5;5pAyIDgc09*?4& zfvr-9GYK$_RVc+1WH0j6gdwH#4tq#ui1Q;WOJl>df~Rj!f|lKCTd>qtyJ4DS(3x?i zZM8eiSNx6Bz-yeMiN+ay&)`9K-tIO~hEzDKfD6hC{%VxaU$l-@Pfs(RaEk@VHMH1? zmtx&jJCdTsuJV_QlLpSrk)cG32?gxI_A|<8uG`EnG}mog(OjjyPp^5+Wopxbdd0HR zXri64DpOIJ&sWQHRA$$g2NkW7CO;hWBNFCESo3t^%H5Ei8;X_ACh)48?uu&?sk@DhG*w4Qj+Nw2X&19wgd;QB;w?O(0!)NP4~**8=CDuEBn?qB`NV=Jmsgu=F*x8<6{VbaREHzlL>`!L0#i`H|3PB zv0Kz)(t`1Yj`0@>fN=wuli;t0E`>Jv}fB( z9jmGHgu=L>u5rY?ThCYzmGYL?ZZLk;TZp-yIS<=vuq!g0wK_CDZ&g)^O2Dq5WY^h1 zZ9!VFd)-@h3#Ax z#OyQZrB8Zv+!~kUq@372T}dc-N-^T;Y@fbOTHv|e;rRgp;3)u3II!H%6gg=AKtK}B z??Dq=;>P%28BIgmy+#8|kz+TdECFaa0TA4p1SCors%8sSH6;{OrI<_Aw~=}Sse;Q{K-I$;FoXrb-q8dClJ<`NZ@b+Z6UE6Xa*K!b;Je82s#=nRtXt!21h@rc zV^N-$O>a?I?I09nrI~bXOe@bTOfk~w*WR!I}reiQo^O^J4iB^RKat=4%?n%2mnt3z;iMK zhNl2%&-nx-5uNQ26~)QFN%oQ++!i^qcQXMX>Q?za0d5KGbRHuBM5TmFRN8W!xQO|E)xRmb&lVfJfnB^I@g)2IQBZH8tdjycdv7uT$#)qL(-|vc{O= z+3G`Ndv32GrF8L0v2kiWNwLov>fgM+J;$(JEmpc{JXT=gl&bj@7soc~eUoDo)w@*u z%H-Hb>HrDk6l#Xv{{EcQQinu(->^{1RkBBH{`n)1{PQlm`;I9Gcb#{Ia(&of{gy0a zgY_#Tz!GJJECp(`8mikA9Xw8@>=LoF;=n$@RlDp0`YHk>_P41rB*5A^ZI^xPRXGFD znwbM`cUQ$G*34`ZYi1T;&5X@3mSWBP_fETJ{$r=cW>`0J1x|N%obF5joE|~~IDPvr zyWp?4%kHWU{a5G3Hk@bMaGnL8^DKq)9d{+1_cp_pkY8Z1$YHRE0B_%79Z5msRUeJl z|CNSR02*8YXs`e@uo=cu&{*iBfz7aQ$uH12>(Dq$fJfsBNkQXJAC0Tt{J92ye{@MtU~DQL|1(RlJ-X-EZ=m$xn#B1>Sw6@mr!!dMCx zV?7plZ``jt?R(?ClI5iAg9X2k3!iz9D35N~16y9ZgPh=cI@YxiL9#X;oh65rDs76^ z)iNB*7l`$^yn5sk*(dyoJv19Dmpnm^#g_jmvc)4Q#BCp~M!5IEamv+l?|dRtA}0*jO3#j(;Bvt$~Zo zcW>K$u#1lm#6DOV{pWMBR@{>7BhSZz0X31lu=|rF5S0h?vI#@3_HA=LK{{xWIZmt} zd&h2bjr9}~RAxD`zW1FRVqNj2Sk>U`@96kTv5x7pOlc0)1D-h>V(eXQC8^zQ^q1R2 z8VE5NV!sgLqedAa{?PnFh(EL;roAgK#P^Gq-MgZRQ^KlT<*|2FZ&!-lyOJM{`Og#P zKey%!d0S)hxZQ#^sio(yT7Q#1z2N^s`uNlpg?0Vau>sk3vh=alv2*HAW6ayKbY8sj zD@pN4Db9KxoVucnebBwgTTSxmUtf)t(9@UPRY+fcHFk{(y_;ldP#PIY&`N#RK5M#R zP3#+0iAo?1(%-cmv$SZL6LmAz#nN=2wXve+S5wv8uiwO{U+W$5=+@h=E~@2M1J%{9 z-^r&RepmDxyc-Lvp?=jtKGj#=h;>wx{95CETASaLTTD;-wVv>4t?Vk*j`%26Ot0!1 ztFPAh^;h}y!@FZ$)o#Dm+wa;%(MJSe)gZu%S2M0tUlM?IfdE(+xZxeNIo3!0O8Ljddw;M&Cvgd7`QUoI3aAN;}BdF^teSV7|imK!aN@q+K_C%46# zrl%S)cjTWaFU^78k|gkQ%v9Amt%I?I{@Bs{LVxV|9)`ReHhV{GkKLWUi&WbYTcK_z zzF4Q=sq5QFD&t%~Exn_leracHh`NU$GbW~yZoA=mh0YP%4ipY^FDZ3@| z&gf!NCGe&0Rx;XZ{`MWk0+Y<>j{6e~1w>yV)!PD5OtMt$NVuNyd8hhma*lZOi?s9o? zp2m)N(u51+WD3)8;IIMuz=7C}iZt}{0`km4r8@EYy2jv6W%Vlu*eBjY?eObtP14b$j>QJ66Mm%+la;m~kCoAD zj>kHw%YMxZ$(nDSh~1-7-RDHO#+>Hs| z3~!o-NDgO29w;M6UE>Mpv@Wyk-qzAvC=`YhZQN?!&;67Sj*-6E;dQA z6l=LUd+dtz+CBF8TlWjGjcO9P0k6k9UXLfh^LhbE;q|;dc46IDjLI3f5;`~U#V)*O zyYQX`@V>{T*qw@{@c#dN-q&5wE~MvOjyXfbw7Hr9Il6bds!IYmUTbf1?CTqa zoH9pD!f`eU$5{Z!`~DWIs#prgi|s|`1g_PWV^MR4GQXbFJ6|Yx%^vIq1WH1#57nMi zaDLYXd4t9G*j)kcOL&_+b!fhvU>VeRPm1oAQL=iP{BSPQ6Ad9;rYG+8U#26w?K4#` z{TaK9FMR7O{}r1XP)|~@ycyjSBo)1}`sAW`Nxk`stUUfp5H5YBoAC7oal>5t!tLWf zsjXB3mza%v?TqdX(K0i-aEbUp^`T$uaIzMzkQe+)-+D@Nhk2~ZyU)uK)D_s5s0+8C zGyBB{sq%iUGM<(^(?3aF=T~UxDZu45H^lE&o&8!JJT2^#uMo6!1}_j49wu^9#8(bDw{c1hXrQ@N@RsO_Gx;ejjI1GQ3~LVDzyo~8&#Zo0^o@ks<=*P zkt!+`mXjyQhgM0xV?t(6TjKzdy4rX#*C+xIQZeI(6eCG4sgBv=Q~T^}@lBJV7)9n7 zb8qg`J+Fz^Pk+sbc@$YnnT%27;5G3nY9YB`1`z%0z-TcwpQIQxs4(|A3>vGAG6s!T z%r6WYuN=sI&{!h9(7fiY$+huEk_HX?36nbU8`gKO6|WpnyU7a-8kPQdtQCjYE%3TJ zmaIA`?QKtxaQGu}%3PlAs~f+pE_e!dW%lg>+h@;;mbpCjuY6w_eQ0a9n^fL|LW{e1 z;GoUv5(FTp1N!j8lGBx0ZcSq z=X49)Npe#_fuBeYma{C&{w?G35ceUkmB3Q0C9%wS zzwAg=jrtEh5|CgJqts@%SIVP!AkQBL&3^Jxeo=~57?ogYdoI3 zJ%c@$%y#h-`l-KS_4Jsm_&MG2@u+z$-J3q_AlKXi{nb&DV!l9X35Sn}Q;C`CIVypM z`|6M#3O*OD#7s4KSQzmra3xs_Gl8-`CH>O8Xa&8zXQ2j?Xqc)t@@WL?9Zpo{O;tPk zwc2`Gmh0{Qr_JIQ9+3W@n_*-SN=+r+UT*1k?xQ3UaOJ`|(yG5+;|@QmU|BD5;y{QFVqi zk$wj}L4wKY!|Nse+6L6G9%!#ZKRV5LQTQZMugC{NlT%N9U~|UNLh9ANBka?MY zg;q%l&Ls3Ezg7=V3z;{{uQ1$G@G|cazt&Wr7AB#~{8~?aV29(?1YpP%08^&T1YndG z0HeGcFw8=ak`{XOp%3g8`*Q-YqbLA20xvOOE@lD@_$i~03Lc@@J3E`0g5s@>SH!JJ zZJLHi30E>BS1qqo)fh1E^%DT~HDbWjCje%lVFKJ)s9Ti~weR&4=Zc+^eNfUxwIas_ zbSMD`pP@N8o?`)obs7~wSfzj)R$Pj5&SHD-fA?WKNPJ zF%J@ZDd{mtj2IceU#%n;Fi7n2mwS;kFi4Og>RRTLL!Hug8f6R;yUZ^P61$G%K1l32 zYzK*VM#pC+4HEL%4cvjiAd#*c+#AoUWqw+3eerwZl>+J{IfdaO+-+zpZkX)lN2>3V z3k^y;;RzB<&WpEZO`CaNyih;|j|vMO1FjsgW56GxW=4ujkC(komGx_-9ZlBqX0?s{ zs`ZZAJ`yGXeMA7{Y!?Ph&I*8OZGQrirnP;J+Jm32g|VcFgcSe@JDmU|tXpCs0d9%N zgm^Rc908a+)zfR&M;q$xM;fIEj_Av?;%U0aM46UtB}I${8y%i|2>?$4!1DwHhNl3S z*q$dKX=3}e!_&2p_d~C-;I#nYS%LuYbW2nwAW_2HRv0lg-c;2m6lCQQcp{7TA3rUA zhiXrXARGVCHfk>dKvn>d9mIekD}cSP^J*Yd-A|}lfG>Q#s5kiC^Pz2B*VG(R1_uGa zdMN>5?UqD#B7@mPY^p4kL&NsT{gQZL6JltT)cjSm2&A&G~ z7|owD7Qa8D3p^2TnSS1gc{KmXvt^GKJ@!O=saio^U^M^GUv4RBU^FK~JO*Mk-(Zw6 znr}3}Fq&_a=1KmBv9~e#;SoEU7uK?2%Xfp#ec$!(YO}rY0Xg7J^hh{hQGBmDLjpUW z^8^VuPk-dj=RDAv&wb>~)WlhDK6gww@K~;nC286DoL{M`r)1}IeuY*^3hsQ)uhqlT zvhz8=!f;Q4=5v0nsXi?`pYv-ybCrvT`kml!Z3n*er7cbvkXeM)!CPU%Pq{p*UzF{NVwQ#z-yp-8?j`zL{dFI~q7e>d<@k~`;e54P)8n2sv+K72n z*z4KSxHm2LEJmu8vok14h&fw}dv4M?c++uv=Z_iV&L4%#7y4>>{t<6*=TCk(gJ6Rb@(Y7tgA*78={%R* z`8!-TJW8+J;M-osk(dA57(b;tnBva(gOLyCxw1%Vzu_(`^&kS6!E+nx;E6%c`V5-PW$CZr?1c zlRDtn-{a}yao?>&@^n^T`L#YjVaL3m2tXe-fVn~kKlZ|pjwk>+qC^87F_(Da@*F;a zj##?4v5t;d)tEDX;`t=Kqx#}%`qDe`V(B*-74DQ#@(9PlNWcw;OKu}$7MI+{<`=T9 z@y9u28{XZy?7eu>eP)ep>#;jNU3DV5UbeL-soZNGs<*x$@2hSlDN>8n5+3#zFHCA} z-Xnv@-Bbdpb=Su>weFPv&Dr(`zr3rZn&H=a$kRds{<<&TR;}=9$-6Bs=aHM=uaX=s zx#VN}6mf?G@oH)-p=eG)(VXG|nll#;XwKNjc3kaijG#F`Gr#(NtScOnd%?ZUAKZjl zR2iC(1RNkV;RU0NCj8#~LKA+UYZHEbIR0R^xsqP}LHwx7|A`dOHelo->GGSJIIH9b zA6b!4w|-*JuH}Q*8GTYNqVw6q~o)8TpBw zvr7>)uj7e+>0{ZvUdTnw5w>}bE6))CR|J47>liSu2mn_aY%QLt-X;{Tyn1tr=gM}+ z6)EDna`^sCIVt{`^ulkrsBz^>$CY0QfGYyPm6T7t=EYn`0GTPtrx4yK)K;Ytn%$M+ zpIRHWNDDRuz34j2YFWpE$(tJr2gl@X-U#oSUz$f-qo22Wyj+fh# z99`Ds`X~Wz0jv+7Bmmu5O1QyAH_jzz(T%S--MF*~F}m?aW3Kcky2v;2Cg~-On7i>+ z)D)N=&Hg6-w0etN!1QQNJNM|G*Q>VOSh=9uLYkN|9VG##OoxpCQzq$Gm(RsNRToLc z%$5S@^?)+5bakHO&Sa@xQX>yh4(inJ)#t(G9D{qQSGD+9P;HFUA+C*5nA>Zmt{F6t|m` z+?(TdBPrbOV%*LMmN{t;;PuGO_2wt7>ueUTv*1jg+e_;oF2`FZ)ehIMGxgXP=(+Cy z@k4xpnobVE{b|cmu^!xIa0&`$v9> zFH}d#A-I3Yx_^k|p8MaD6z+eO?Ed-O+&|>F&t~C13*i3R-{WD$QnT{Dz z&GqQzc|*a&pW63Q9k8;~ueDVn%6d$}sY~)DNxFBnJY`PWDR@cw;apK$ekQ+gMQy1M zXT{dB_6CyLZ`ztWS28e^)#Lw>y}yBk<04B15{w3XhKuZiX<2jBf2aU1pZ9)dud$;) zlYv;i6*9-KFiQY=Rft+j07h2=q0E4Ii7(~US8AMCw=##!XBUV1x@iRLW8f0u> z4Bc;j4f;%n@@6$lA7K9AF|-rag-2mX;PExKYw1e8DpW1`sVRWz&`I+PjdwDK#*^jK zP<=XI*5lcm=Z*Xlw_m7YZ$kS6NfXN_(>$ehW@^@dRNhlkr`M>1(x^bf-IP;y4zxU! zb+x__>s(Av2xawD<)|!9Eu7MU7h|0Qr|iRmxmd!L>4J@F>HNk7qT0&*GJo3jLZF_k z7nT>yDwdvN0FLlQqJ+sN3D{*!HanWqi0<{~7ovN;&`JK7AN7rglERym(W&dZ7RkyJ zRD+ErFJ{iOc>_qATue)`lDhWXJFeDu6wkUr-AkJ25>zxnU<_hjZhfy3S=$5ZQ7VE? z@$f0zDW-^;S*re1GAm7AESc3-J>yqh>Z!^OU7B9jqEcyneW!Ra^Q)EGT(86ha@C2*{3Mnm&=9b(?BNS}@)Cv^AYY08BU5hr7i}>8uJ_HB=7*VOvVM zw&C{2jmi&JBS;Ijho07vU9!7Ha+n@!OsDBe&*!;DO(zhhrI2fSMQxcJZ>XI0kXk`n zFumloT{65%04B!*U~;^b0W(b%0NaQM3CO-$*y|Mkg0wK-6ae$$%M6%#v0LIF226zl zU|wA447Fyk@r=ajF;Nhvb|2Aoy9OzvUI8$6Uq=AOZns2?08_%e*)b8_ZUiE_Qp$}k z8gBFhh2@hfwX$wi!$=h&9&!dD)>m%Bat_fI8KV0zDF+ty?-@8lcb}dl&_p=t?$Z-z z>~hStw2qV=OW?bmvwNM3eG79Qe} z6d6bs``l|dw1ogz>UEtpARHnv8_9~FTavD&Hl*xY0?X?O086*TEd(S=7@BtwfEJY! zE>GM&-CVWp6g7#oz;pcPHjN%902K;=DZtYNz^(wUU1ZAg7FmPU8>9uhYaP402!LGy zVD~Tquq!~a-QM+ksB@$RyI(nWePz9Qrs-phoUh3JXxPWmi3ama zhxE8e)-ctB9Kjv8zW%~pNdtG>$QoY_aXBAmlyNy9Zhql%KKzT^@3{4qDTz5`wL6xT z!!FX}@vL{$G^!u-COm0LLT?kPd|WQF6J}(U)q~q+wO8{=3D@ySo*?1*Jn_zK3wCLj zwNAa{DL4;aeqk@;E50yu+cf=l`>f7thhJ-}*f1MN2MNG=keNe0Z|EP&lWN_!+6 zA~5?E;rti2FG~p|hS^=^p=2uPGL#}$Tj%W9+^ zA{1RpiX~A#HY@9HwUo3#bg@(GDgsce0O+cl2!LGyT)XINxuga9+Bj)Jxr0@FfoUZ4 zwNH#W`BT5wGplj>JR|46Hi23bdo*o(Wo=Mr$OqpZjhnRjoo6gRBh@ntnv7S!kN}%B zKN^93R`Lt`tfXvyE>p$Mir7g3v*->MI&1H16(Rtu?&aqiW~ggOYF6FBs%Pzet(pd) zeHtNb_i4l)_G#E2mfI}Aa=T6+ndq|AEVqN9v-VlZ{AcY(O-A3W|EhlE2E6X=c-@-- zZ?9ksN#XVAv-WwtR$|mVD|ufI-gm2!UMAo;&t~B~3*da+{#myxmcsd)Jm>M!o|Lop zCf$$Hoy<#nE=d}0ZE>sGKn|j{-Y|khYni){-wn*Fsop0&8F)MBO9z8_gYP<4-#DAF zx?+2ah~lKM5B+&*#zUFpY_&YC&N{dLjm;K6)y+hv48mk&o33Tkb zU)izuTG28~s0W8-wNoAZT3MbJI&&`dNMOnbzWRTJU3XwqRrYo!)LcqJ2?zlaKmnyi zAd~?)h%N_uTiM>&p$)2Kw?O{Uv|eF;gOEXV=rexG$Hd%rI|$FeP%M znMP7fndMT`O(6|TnPiB`W6Hc&D9R(QD3e3o z2tF3iiA?0C?t+iM%#oEywXY@lam_uQq=)B5UNj9zfWjkmzfL8hP$dqr8yo`o-&N+Nn3qJ;#2tD6-Dv zsI}wTd^Sl_l3ukqGR(9g99@7CBwTMT?&%u)vKys&L?{KiK;bv83v?5$#5jL`s@AX+ zEi48vP1Tz5jjP>j2|(=%fW_bn0<>a7Gi>MuITP)s|9OwLoP+}EHtQSL2lLbp>h?+f zC4btM%Oh>FTkBt3x2IEvm_r^|9(mk6OH#}sbyL$lO&XX($PgE-wh8;d=3axcg14Ck zHyY~-ZQWmWyfrdEsTp9hIC^X3Ci5+2gzk!KJ$p!6xGm~6nT&30D%#%{ud8kstcqM< ztG|L%3$1s1mHWN;m0r#4g4K~lrrNhbdqO>@f9rN6*#uxmA^elgM59@fg zhovwJ+&ccKEag~=rSJ-=mS1}nh8KM67OC^4?Dc(>%vcwxHsfuy4=MF#w*R4=N@*{P z3%HafKfFQg2mOUX><4KdC!TD+`1^@k?*sQm9xzq*O7i1Itx61<`Q}ltD4VA6Fu)|5}@b( zr~>pnsam{ksPa>hXH1QKLB{BL)%LlbSB-$6=QSfK;?_;=x?Q~**tKsr%E1@-YPL`f z>Vi@Zt_zA`bU`+ZF319O!A5m6%iAi?$U2E3gs+XuZu$%Qv!o?VLST z)9aF#iLpep!0StEQ!`JX_0WUdVA)lC#b7BvyutFA{=#5+Y~RTS%h6j;w5_T3a%7>& z+AqnE8!T&(RJJu2Sxjb^y&@-_XAp$Zk#rM2H{DOW_yS6yqhqL}9q@CnJiDt_x%%OD zqM2CX4NBGQm#m3p_DS-?QmpEJw-jrphA_;`(qHnY{o6lfJJeMF;&G)q<%nfA378F* z+1IEtmf6?pFBJN<;{SNfuWlo$JTY>Sz4Bjj@bU;r zQQoAM@bF=;ycfJJtLd$j0_835zfF|)bNk(8)@du3rrTZrjK z#OO~W`8Iut+-9wLOV;VOM!}zp8uhoUtg$yak=)V3{kEmU^h{&kEk-r z^-=wWa((oq<=XmVA#_|P+52(iRr4C<8kFl+lHyHIQm(g~og_s;l3K#UcU?i+HJ?RZ zF?%TmmTdnMR0B4@5P;>F0N9FDI4E?ywv0%H0KrzIE}_S7MQR;%t20T0=KqCcrla24 zFCybjS5B(eY&#uvt`rjhR|J47LmAMOp#X4Y`75;|W-_5k(V7YJb)(htZXv=Et`_I? zd8DNzM|P^O-;gJ{r;l3%50X6TcCDlnmhKjT@AAu}jM5VTk)iDbVC)be)V_04u6_b+ z*Y{Hbj46`9FI0q^XY7kiFy+4sY76xn`py+xJFJ}mV?8Y&m*$IGRok2iSv5G>XSbe9LkTUWW0L6Mc0Vq}l zu92HBB=-}bSf3^U#VQH>V#QE>k}icI&I z7VM@!As<{wES%NcuK!6cu6;-lLSTnUfCc)b>ETDJ>9yZg!-r-u%?r7oMpQkMn6&Y7jyIhQ}=B4FV|E&|r} z_sBdmjJ$x;WuDVz1c=iYn5iUyzZc85tMxms`C?Dk=+jT&_l7rTB>ZNJ@S6qj`|ux; zHio6}dti#+`~Q>~@_zCLey{WVUPl1@ex3yIdt-{qUzx?oK*3Oz6X4cM!Pqt#IP$_zX z)A;8rMdzD=x{TlY;%q;oTi2f=u(e7q0 z8Ne7k>##f4op#toHcny?LrVOxTcwOsBN$Sw{*pg!tE$nnvPbJ*JfxIRZdj#|fZfF^ z( z7xwR68Wwv{y0}hsglUzc6mIdon_vnEzyu=zCXzS-m`DV`MB@92o0(%t3v5PtcBc~n zy8^)ORRqAU07-UnQPq+b?B4pl`+yZIksMYXD$+gl$vgGJSq^JgtrJX_TyH@et_en>9-@Uic0VI^6dksKC9j;&M! z0$^4E-)wNpE}yjE=s7>wt#6;etjJNS11SN_3gDY{OH{pNcQI+f>_joE_xCR+0PYF^ zyNd{bT>+Bq>Lt6iqy@WodUhWt0Coj{-4_XfT>*T%>pti{uy)Y&xgTLj+2{=^J5&cl z%BN~g{ljk@t1S#E2lN+)lmkDUV0gw?4@SLVuWl8c z+Gw)cah)(>Q9fee`O((Sn9#qgU0Wem-41)Yc2&E!=A=q?O6zD7^E(v;PPa0~PEN1= zYak8G*<-DvPaA^ljPesZ*|*=0wz7@eMx*BRAH`vRYa{RO%&w~fE(uP&qjS4@8-H#a z9T+yvPM*+v%{wR5&;M=Q*)A$CJL+)qgcaQ}8z;n<7hdZS9hF2v;#CD3C*?=CgsKh= z%*h8J7OuX!hZ!A++&83${^-6TJvadT?_Kp+T)CnaM+dv6bM!)UX`ta=61e5avVyEY zm?+uVKbEr_>Mh8&-P%UaHrECknrwVlQcm8gVfK$YU)J9^r69U7WNxPcC|d!*b`SyBj(zkazRVErcf@V9eG8Y6BHR`LJm(RB0me_U zn1DnICEEYIku8lS6htMNPxSC5@@zoPJp-;X>q!elA9X}GksL%H^@zUBfD#n|-=X-7 z03kZj;yV;R+mAf9zL{T08@>wwwiSK~>IZE76txIQq)@i_2t{K;!B&#_Z1XPaCLj6j zQ+AmtAT2cFjz76Z947#D1;E~S2m?x2fZ+UM5}`?zd!d(nJ}JOy0d%u%-&%-S_wbt+ zl!ZLq+fSg2ZT3G1z&6`2R52zT-RXtz@K#brjsk?>~h0 zDk=OTMNervG&<9i`#GpD6zOR{yCSVY0E$!q6lo3vTBHJ?tDHkXQfapS*>x4)LMbW2 zWdYE5h7$mieu|3-@KeaQbPLQJ0zgty5XpJwW>NsZB_6-K2mn6;GGCX1X1UT6Io=re z5&>H^AnI4+a~?fWL;-z3if~o{(Az@*=(!Xp%rf{=aOjtyhCoqL`4s)nKA&gmkrsGn z{o?AeIRW6Qz!$=k<;qj!;8{dK63^bhxM~!|!X|QuoAf|aA?-G#IQs40?isIJ2C-7M1 zx)?o5283c+$jh~^Txq|h z)R6#Sn@IrJ`Y9R_0JfT9b0>Kf*gQG$X+B)k=VAiTa0FObP8t-;wLC?RcJmMc z)NXR@y8r9l0NlPgATU{5km0PS0pLW_s($s3sgw2lp><=tR9lZ$dPnQIRXiABS`j@mK* z>C(bP2*v5nu4nTK!i7iOht>NXbstto_V}>6_+VF*P3UBMlr3p)gMGzEH%6<4IxG1+ zo3VIuX7(60%sZ@n$_d{|KYvNI)LcYToQPk&zhEX0?$HMTkqk2C6s@X%y;Ph_iw5|6R7Ju;fH&TMXKTD12srbuc zMNY-De^-T5`YmSFZ{KWa)v%Vf{#(5(%c%~$UH?PN5+8)4p9PNY{=CaaChvF2f&&k& zes`tYiU53YDoO%)+w1paZ;Mpnl-`PMlrq~!DYHOcIx^U>0DhnKI~QAcv6^K2W=vjBzuMEK0chNWOICxt=IUC~44P4Wv2 zUh^2dMgSOmMglPSIEBHkzhoe`!GLXp0Smxj_}b_{4NJk` zCC&ttSb$3TbA5DRRgyMOTRm-Zj=gGw)YUoU430Yc+d1iml--DY#*@(oNm7)?_pUVL zduclP2H(_MA~U>1{6bf_Nm;+CXSci`xhr;Dm0S9UJ4+kAsnt~TXo_a|!9Uy@?|A~S783v`=Wh^zrJMj*%86Yp#K_CU z3FneO+*?~`|B@&Oi2m>Tuylg?o}^goY`XY@HhL_ZD5|RFJJP{D-im()4R!bMvHgtxjirvbE-!e! z!(@{NT7KO>-7s300BQLJ7SF)ukrXYzwH@=5uG$tAcg=36Ahmd*c-mxd;pdh+VjL}= zjibf0KweyyZ;}N1&a&E?Q71dP&NvhL69MB;$cffBnPJk2Ibz0Ch$+?8G#vfYu2|Z+ zX;xJIMNDF@{z6P*?w_eKiF|4Dhq_I)6JCiXIlU_=KyvI7YCT;&5 zyr#0fV|e3wt~vjMl+c|2?#fb|bLbwsH6+jGqcv|%Q4GKEr)$msCP2S~CIy4W{4vSV zm?Z%k^F8vv+(pkK{}QEhx0I@UIx)QH&y>bo$#2ZI%3IM!X}|wj&bEFl+AI5R&4nB8 zV#*c)Arf#lTh|vBXH`3`yjS?u^%n}i`e`;VtGF9IdgvGa@_A!(X?W>+dWA~1-`mkH zNfjawE?i@GRUg>e_Wrl5(psopZ;6RoIU^8k6y3%l(<6|$=i<7aX1CUfbufJi!2VN! zP>Vr%yi?8auA$FGn?rFBl`_cZ{9W?{4^2U_oikTCh zGM|t@W~08@xv5D$Bn^E|t2Wt4_UbIVeo9(y)(@Hh-SkKOg_iQ8Ybo>y7iJ_3ZMmn} zF}K9V*n5U`DQ}nGFt#o=oR4Dh>h_*((OUM{hcdU^z3swUNlgfsCS_3VqWB%AS}3In zrIR2@w~Af?x1(9PAs6hY*0Rb><lL<#mBpULiUY8o> zx>W06)T-{Uw5HFzaQvik{%Y$v$z^Fp50fh|&1%}VhoeoiFV*_ut~Z)0urQ)(2ztk_=3l;dSEmX7k+>rT+bYu$gUZ3(qnzQ&tTEb#(?c&0u295PJ z^$YHWJ8Bm<)hf;Vuy50>Y|R4GN~3b}3)4!Yawk~Q$sL~@+jiryR#|l5oG>e=u(A+s zn)dQhxp_1`qj8q}@a(os*ll^7-CuvOdUq&IuAcVcf-60} zEv^T33Zw~V=Go6G#x@#)?Al7P4Q6PdYcV4aQ2~!6oCH^N8mGs`CK$m~&#O8wu299ht|=}ta~Y@_`@q~r0-1K*+dS)#T7sM{ zCyxzQYF6J)K6_Pb^FVUC@mVKMVh0pNvo}6iJ+>fZUZfM2K-SNT?A5&{SGJFT(yOBVvr??G4PVr*4wdQ7xYcxHLWQxs8Z%SjPl3jm&X69Armibo0X zQ*0gGr_el4fKm+gwueh(k01gJ4!`&nY!*|Nt86Oqr+Y$XE zdiIZ;M7Hj-=y@hoA*h@n#OYH!=1~-FP^?edz8O$#K>#TFDLNA1rwC2#)7eA_0L6C_ z6j%JSe;xbznSFXJG_Exx>E=MM*-mB6%1%K3b5iUDKdPAY$>727BA8C$cApP zxfeuS7*Y~#_@y{Moz&sH$U*o22moC_`ALq=n4S3i5lxQFDIXid9eoL8d0!_!FDcNj%Fp8yo8pJE9Ceu}L_iwex`1fWbMg zyxcrVS}4=UE4n7Mg#eVP04URK3@A?lP^P;GNGj7$yp%tZ0$ddUWg4zT)ud(Wr^sMH z^AZ4M+K_;xGW{edQ{UlEq>F3?K$%7fK$-d}1{2_?K$(su0KM{Y&CYw!Sw^43YvPN{ zJW@iD&aLE%bTI)aQUOq;mI0+H00!5G2;d?O-ES9O;WZuK$Sb4^rv(7b9Rz@;pW<@@ z{1h8sKrvj|QLIG(C<+j2*Ec_%<;qax3ui_Ln)U?X z&VxU;wyo@@4^iB`SLPqmgRde7yO9Kdo#v>gT$2g#QxwkXbGq$utW#ri8KJ02*&{4- zQ%K?LK2yvJ!olz+kKsK8fS~}$?=c3Hq5z<{nSdmUFL)Gv3m=jqJQe^Pza{`2{S-$C z@KX#Zm0f>YdQd^2cT<9%jHk0qHsPQruZG2;;aLQLo&ccNi2J2blqm>*&fl(^}>~m zEPspISAh=*Z9FI|!-AsD@|}qr-PM!T3u2vC506y~e=l`dA==SSuTvpCyPiq$?K{d0 zv6^P8;q6JViEF9?Y~rl!Xg2hD$Mhr>Y+kz?xB2c)fbhD&3?Tvbt%Hp_EEuK$9Tp@J zIec@pW>{?I4JfLgP8P6TxZ_2tXscfdnA%w-f?5s=_G=h;38>+Xe#`fWfXyV(kq}!C*?j07o|+j5}y)YTQ9f zF8=Ol5xk_K0KxROFOHONUkr<7+G$tE((UN!vCf9a3mmcUnjRZ(_7GDXvF|3qx+gky zlF_KMZ8I~r%=}IWrmbJ9*fB-2xBan-+xg*SxK`DmsX!~Es+$2C6Mz{&fZ%AjEuk3h z1;ubL#xdNJUy0*~AF8;($R}0&;l5!GhIz!Fs>Ehqc=^SXW?x7_^8r=uyK`b)vwu)7 zJkozgpc-~OzE!B`BV8M0wCLlz)lo+QwhN6)Y7 zTHKVXuEkBl-_qh@<2T zf!P(+E_aXbsYDT`eUx&>@#SIF;3N-`Mxlghv&aTJqX9*m^KOJ+r-`u&J?5}9y8R_% zZRyh3+~nF14b=1gbP(5gJD5>{TlcbRbN{Vc- zV+g%AP-XO?hWZPAsA2Wg&}&eD?^n~%>$}NiCm&b0^KOmZZ#q)eD6MuR(D*b4yDKNI zsbmk_7prJ{oY|_TZM7=)AJdl<(UXd+yPh7b80$F8V%k%(&DP60K0ahljzVb@imdk?0@f# z_0EncbM6vtsVEQ?2X z@5*qK>sK$Gi5`ghXgDuyw+vSCcFERZ$c0K)<-@79P< zxwr)YEbT&mf>nN|tBQOAu+BlSv>!=9tMml4 z2K*&0$po}G6I2Te5HMwdvIw=)3_IENFJ_uhhQ-2rrTnik(`z%_GH5}DiA0Bbv$N&cJT2NYydpDU4gphc>R3=wui@^81(j4W7F7Sz#(~LTo92Yc zU|Z%17F2oVV|}vdG$UbAP6l96cE_P|eVb%W(Y+-sew?uQ@o^SANh)2UO?@^tD=8wm z?x!-HGTPdgo{eQ}9RFPGs*pKCg@98LyzcriNt069yN-^lXAiy*>uSo?5NBv%mqm#Z z4AN@Y!!;zJ_^%gZ-9x4xCBZ@4l)e z%YL*u*25I1YDEJrnStuqoa^h?v2Cp>HDgm%Mg=z3H{s zH1ki=LYckd*?o@y*cCuxowaSHf5!67mxRK&puX{SmF3RQ>2JjPncqnZ#((jQr`HTB z7sds^$zNRpU{?U&E~fh>H75)*d87rqvM|APe=Y&AD}WrV%hU9;)6Ot`2!(M$edC2^ z_sOz5-;T{T6G#ij$9l$R69D4^phO05i*+&A5DMdh`o_g``D|m0ZWZnHcVdIh9i)mJ zte3+>1Rw_iP%Ik>fN=qQ<13z&mb$&`?0#lDX~FK>p54y~fL#G_TD_kD*cHIHo4Hd8 zqkOHPqST~Zo6c+y%{Mhk4vV2$YB9_1+EcfY$t4tK1@+C&s9Q4JbRh*K&#z_kK8T%b ziU~+l4O(9 z*1rB>ti65qLutiR$tNu052!9DzL+$yh$m}2R^{FjDb4zuDr1zrUVmZSzFz3dMwsqT z;sOXJlmjwtZjRI|*L-qWIs1=~V^iy#@NSB}aAoAw4));HBdXi!pNQY9$Sd*N-BYP^ zOCU|SCU3>DGtQqn!>;`_R%A%S=G`v$&vQl=wX;3q6D!zeiwD%Qmwgty%{&>HaaUM2 zsDKNF&EToaJ3f!SX0}keKNj|CY;W2Xn_%7`se~80+bwS{uUzLXkzP7Ey_`G^QA7Xv zElvK}Qp=9q9V_ z69BRT6h0?+g;}n9SC#9n{XYpnkofxA?gq|LkEJN0v`)`Tv=7%91OUxu1c0WWq5}cg zxCww8IK2n}M*)0}m>_WlXC!HX}#R^3~2 zgy@D1gK|Pys7>Fr%BvU6@uh(aaY>$hE$N}0#Ay`l3Ib5DUV?i_?kB*i@G$~VreZ0nO#fb^ z=tlE8X`xJCuIt**P69CA34r113kI}U1qh1uM?#M;)e_aKV_EmuE9 zQwF>gDA;odNGe!KiMt2B-=(C8f)W5FJDdP5StYdNY#G@}t_eaf%Zq2Cb?o}p<<2m3 z2t?^>BE8Njvk9&n-AoE7*d?dCg1w6X6s!O!*hd&piUMFJd5Hii(;LEG+X+2q2aJgp zsU8e`KzeX^iETSp+SDGBgP@<_2Leze0^p`ms9sP%U?+gjPIjI1Og&NnyR3SSU2_63 z?8taEOMJ*@xfZ58E;2JZ$P|$r*Hrv|(Yu}-SH1LONe`|{hN!*i1fXAd39ceJ3PV0~ zGcB5B*FIXcoE^QhWn;6HG(b{J`Xq7L=zdZF$#wPYhW>JEisaz9&T-tza^<+raeSBL zNgUttIC|+1kRCWne&BeN0O45Xva4J_s3b642ZpQ5*UK?=2m?1U<#WSLqqd{~ZY}G( z3hYh*nx_D0U8M|Y^VAf2(`Xa{N%V$$DQA)bcnN^szJLMk?S6`73}{{gpts*iKvHiP z1@v~`+h<4-c?y8Ce3bxn1_3fNWf?+pKLN(kT?C*gC4pa**slIc3b1%YveNBp#q6Mh zP{soIDY0EW;nG`{j~awKTFZ{9T{^ThPnVI{qBc`=`lo+6Nq>7gpw}zN<_8->S?wq9 zw2skk1~-*jl3Q}Z>fKbz&vrMJIuVL}1#T*}&!(G7J+s|SB{+m*?>t#T7Zg1fZkeq| zm)^ak!D@;3d@aZ{_IyuuEgEP>kQ7J$H#aI7XIphG$~2q+0rcsli<8w$RN(P;7nzoj z3J#VRWxIprMFa@#3(Q&);CTNokerfzuL5*Dp2QP@Td|3AWVVTOWES8^95x$m2%E5g`YdK_}^waIRm$+cy3Q20OkHS62R?iQruqjmu`z~xXrfVHVa%Z z<<}8W!&3M@DdGFpwk2SU6iPI8R=BFCI@IRTh61aKq2DCm=?>Q@R-M_;3V`*RA$ zS}}|U$A;11Sb%#pi8P)jb@~ zHg6=qa6H?*QEFJNg$&0U1l#mQyrnkRzDbRA{Tm%S+3n+selD`g+;N;F#0qd7 zCBza*0IaE=AOQWqPw^4~ehOSq`WFG{Ad&(dWPs$Q_mik35|zStR{zkU?B}GNq{naSg78aS*c8|(;f+*HZ&TSHa-h1O6t zC-tx%qZm3*mqvELck#ux&Ge$;q$bhhSQ|8nuJ(fE>ng3DQFOCurWUzvG$Fxp`sLg^ zB1k9UY=<0IY7KG{r8Z|)QNzknv9~l$Mi#r`@TfX=&&)M)Cp5QJW_Ab7h>J0Ya>m7_ zek4FKHcCxWN*X9evcaCA7$>MQI@Lt|g<_m|iei*6dXBkQZhmF_6mRNggMSV!sb|;E zDauJIRm=u;<`%6n3&&&(!0A}mu;!aQ(lEbR(_jg81LpQ5&@7s4& zsEImW=C!`LLF-$7O;P>uh+O;FHAP*rmnjWyY?l+S9WM;tZ^l#3n8S8`u^4mMU^9jw zTmrhB1emzyr~rL$S&nxJXeH@j=31WXX0GJ~1WTreNQ#;3fm}CpJ)!{3TqE@Fq?t<$ zW9DMRn7LRWOQivZ1=t|mBtGc|;l^Bd31~NY0jEFpoc@#moo;an=qD1w=O1$2@_JLQ z+aLU*3a9j4?8A4q58qkf)~Wi21eSupM*)H0(od_#k}Yo#S~PY=-+}-v8gS{SCrLr$ z+{Vc?daJ@IX-Ed3!5M%C3vl6w1z>Qd_$E~lx=|ZCy}xczE*2H?(i4?ieSh7p{a2L_ z&&qYTe-@F~XoJ_Oz;A=@_RnpkBLk@S#)MUk-E!r+##pX|X1N@;)J)4vYU)_6P(R_$ zhSiExGgd2`w3;!nZq*Diux@RP`N;%dsBdB0mXGz#qH}_T!5j%6>1!BdUx_)ZgU3d&04oeRNfZ7c6>baliP~ggsXlXkoV)E-vuHU0{gnLi-&&6KvjAADI?w^ zH4<8`i8vL^l-^4TC}o09S`#l4y5z2+Gfj=;bmOy5oW#A9VBp$n(y&2GHK>)16&Le;ib;ARjxK)>D!H)bosxLah@=0VE{I83v=bEZ#1~r4)ePU?2#(o4UT=`6!S5i_G@=P@&We^Zkpxl7~Q1&zLML;6OA-S`$ z?UkY?W&oj}EXjPz2=%}HYSB zCD1(VXr?s_Y6vtBdo(i{(25lRJ+=t}$vpK9F^!tJ3CK6ojkHlk0)T4?0pRMTuxlE` z5>uAQ0-h5o1?p2!zdj}8mSun2E)jtRq=hDYWiyMX;Fl2qrUIY|-^qY76#z^hC*XLd z4|_~~GjEVKmJg7rZuGrjBKAiwi766o+F`$$Mz!24$03M>k9h$p(^(_n{MP(b3*M78- zZZn4DAnPZXMgWRO06Z?UeDyiG_WZL@6kscW&lZ=ID}7pYzFAGl!SNQ4<9!5xqX6Le zBm>G(095O%1SC~!;pcMi$m8i-`HYmo^A^W*Kgq$p zL4C5AbDDlxbg9WDEs$-{!c}M+0zg&(knP5Rk`*8rhWil;#!16)NefrCzO6~54F&?B zAVs-5Fp+mZ*6DAdmOCE*8hUA3K za#icwxSI6fv;d%a69J&+3ShX&W4N7w-Txd{CQgFj zXC&9GLYtJ}AajW1NtL+YV<(1TApPv1uHdTxU{{v_u=7)#Nr0aM?~}nDkM@Luq9pSv z;*LijQc#MaxXmn*L2v}gQHSxforjYc(1t1i8tOa(k~q#i+tr|NVHGLDV*$YN?*xFO zpJD?6DAu^`Un)*+COOzi0-qgjdHk0Yz;35w_dk+@-A<3)j|?a~0dUEqLd&3HlGue? zx^k&U3ScDwE_pO(KreZCDQv^RiMdl{xZly6l=*&#e7|VJ)K~+Xk-oHL$n$j+=^{t* z73DaE0Fns?3P zvzG3f$1XyHYaXApq-!2~Te@o=a0myRwd9;2cp=T5MKRkWBVHl2Qz>_HFQfTg?ecl< z4$4R`eQbOoBiDCZ=GN^8X|1uDQnUs@A)8D$u$=&^06 z%pSTpmTk&NE_HK(nMwjZ>I_|MLzCnY_WrL`Y@0n@K|1D4st`o#%38T&PPU6{fp+(VSkG|3R&*WZ0dfhx-|Kw8m*nvM1rosbXVv%a;cHvD!{(R%(*1iq z_t`YuX93*DYjs!(_wPw|AD2}_9^6kWyMcf`UgGt z*)-f|0j{F30G{tlc#f+m-N_dm^LJ_O4#>L@fI=Tc0(jj&+3T{u^jb{gXq-*MYZkZ@ ze!YppQguDtQC!myg)|ymMY)kYg74RRzF$v(_}QdHB!f z;Xe!DKQ5xM6#icu_^&rnLZw<2GK#G&pB^q~WeaJ*C628sS3^7xS6gq z0Xi*(n%TldvIot%KkZBtBM_6Cq{5^oW-%|3TmA{? zDlHt`i!PyD)W-HcC*D3gU31|9{|J%AC6pQD2LgC_RgPB#HOy3kF|J-u0*tHIssQ7v zc!%33caRF&niW8ApI8EJrr4P zV0IhO)-9lYi_<6}mT>}L;WwWEtkV1xO9=2&;2z5D1fY*d3iOdi;=SHOp(06COhX}{ z_fRUdMJF*qC#h*eSFWk$K5X)QTl;YDcyV?^&4N2fWy%w`QeGheu2WP>O|peFaGio| zuv@rJ@sTQ{oqVjn&`v&<5|VaOJBa#WKtrdhWJli;8%y6b*?wcOv90^Yt6BM`N%!QI zq_4?wt)jebR4gMH-mlYc{+gQhyF>93bA&v_*msx&c*zc>o|#2xf=61OE8cysc*D{R z>XyVCg=^*6&L#1l*=czx1$vOO!2Og4s^K+k6zBof;5w*B8t$3gzy>>l0&TC#D9{f2 z3kBLC@8kt~z!fMyY2ueS4H9MR7#_uqF$q|%SF$wUR9VsuHu|PiWRN6oOKXW0$ z=znAKT>qOz0Q#Q*GaiyRw6a{gpUAOay_Epn(VevW-JIvTpCm-rI6u$LN*l=lwmwhU z4fn{d^fi*B7d|B}>Z_06B>~AE8*>Cc2Go{iwL1n}0H)K_} zUsR%rsvYUIF?so>&U4zvIuDO$r?(JeOUvn0=f31Ib9g*Ad!**fttUpV;Eu{Umnj`h@*;o&A` zE=e)R%|6G?ahEGVbDUC4%yBxthDO;f@YQ#D2j>J&A`>|LX zyM9dkI`afM0=FM=Za+eDotkk|#gUwD;`VFahr$NRpFH0KjOS+^YESpZW*f= zRagoN4>E=SnWN+oyqC}2YoY&4ax5%xLnWh~c;^i?aKCE1WcO>R!YSSV*}2d5;XVs+ zL4^hI{72_`c<4Fqbu?x2zrK#9_c?CCQFxBKkWxlYqOA>7f#25Lg_H@T6I@6c*UniS z*e+oaZ=~VojO7b;2<~E7zDP}C`La|?5ToeLni)pXo85b52EGC8ZoH!(Jl z98c(vej$FYy>eE3ocRwyI8)Kr+0>x~2_`$*c^6R@%#JrTyOPt5&pL4ucM&CWX?(hT za)pv$8u(t`Po!U$E7xAi#Gm@~v`v78_sKNCa-9Z5j#XGw0{nAlJlLGm-VOVr7xLWvxUu2KRpE^7jP)Aw)!ycBpE|KfS^X67OSF=|UH%moMA(Or~&{WHMErR5Jj(8UT2LhB~Xui#S zD^?m7f{9Bgrb>sPx$873f zB>%z4VA6%tVgxM55&)Kdw$lmlQ{bY>RRo|SC52y+;Q8_m@e7S5E%3b6<9R;;;3)uH ze2M|(DFArBMnDozwA!tbyIi96iGEJXa9gZ^=m7$9XBC$D367H7PY_(esGJ{E7s!e^ zpDY6PpDvR@rZH)OY{Pt4sci`WSpm?uST0;c@+`%E37hmMc~YY-&3AoM)8nQ3qzJDC z0L{w?Kz;ftt|!1xA@ROC_Ry{Iwq_-v;3>&`o_?rrhD!M*S{E0qU~+&4^p8MNS;)oV>`MERm%rtd?P(LEOJm> zMgS=KIo?Ttp8`R?hY0{XN#V0Ykna^z7%-}|EaZ{fL2{7W?2-GN0VTIt$$7PSn82i3 zJm4|(t(Z0DO-ypnNrjKH*)lb5K`F zeA7C+l=VpgZVQ0mUke6wqV`jCWI*#001?0l0UQBT1w7&HdwT&XqHN!DWqS$9QMQsG z?>3pJNe&;Coo-7P6M&W@fZuWu{JWPFVDawGF8H^e02HwReoCCMo@611)1yb*xyaua zx|BoYZ@Ze)KmEv`{yr}9Cu_&#-RR>g@Rodt{JlqR$zH{a{C(cpMgDdZid8Be@cy(j zMgI16c9B0ggyYaJWK~vBbf=y2Qam&Kp458cDeq%yjyK2uA^UjByWWfO)uvpRz)9?o z@szikGn@biz^9Y0Y*_jk{Tut09a3icwTkwnf%D(CUEKL^TLOgo1tv}c?9k-T*q^l$pEN*nmi(W1$a^9A1JCDsp3f%$p06eW zJioPz+gpz6;{%N zJcYqmf5|{>g8|zH0~R2(#sWD1df+@_Yo`|kEf9X!E^uw8HUTL4)+B)6XBQ-wd|OpG zW!n+k@SAPJZx*;y2@S5X6wcQW-@LYi;M#@c5}Y67IX{K~ao&5*`wEhR!Q2!ESN%sGrPLpF_QpkU|vLR z2}#kwZs_WU)teNcuF*^X_NNdGt6~@piw&b;u>c{pB!Pz1rge2~XjE6%hDP9TuMIJ4 z97<8Sac$rTX|2??#?;oTdpJVcp}%k_wL`GvL#hABwC+96eMM5M#53A*0MyZ*zb9VX z?y5epwLS8sgx2<{HE&KvBmJ5LNvWPT;ckI08sZ;PLVA{yL4YpQLVwu8ma=+m$Z}m( z{$Y2tDUxf8HACG@TLN{9Q9~y-j;hI2j(TX>4Qo~3XfdV3@<_bU^|&qQP^6c+wI}$x z6HcIuaN2AF&_l!sddP25V;WAQVo21nNDZ6$WxS>fr>*K{pWh!Z z%KlXglDo%ORI&)C-Azs)`txOKk~>HP(I2wGZXx>fv?`;CJfpwRM4st}CPHsy#R!HT z^<`Im$ot)-c7o@%(N69@6u;AKr~J`6-X=kkZl-&#oA88xpLKJ^_IfuL!jO8+{UP2k z{GG^ui1*0;Ol@*Oy-ArMO!f;2P*88ACOJYHC@8YQj-a5bclQe_Lw}*5GP<9K{)zS*Y2(_^(6qC9s#iF z8OeZdLey;FBL$J|0T;Lb8B4}E%jEdiKg1i&2g zI05KE0{A9_7}-Bb3wB@e?7l|;?7q?+L9#DN4zrRVVOE1=RIrJP?bzM5u$=CR7FG~0 zu3x#_x%%b+nZ3LiS-3bSyQ5~nt*tTTh!|N_N#)liW-UC&jalo0pW>CY{wlgp-lvl$ zqGgRqfcdMD3eej+cK4!X-AD%$Sm$%y1lE~=V1+c0q?o|^o$DsB!3xj>reu>RFfoh? zj16M~V}Y!U1{fA#QIsz}>9Vffx$d#<8_5eeeZA-O^#tgwi(uJ3B!tg*p6k}76VG)! zf_18JO5epkd}sUcods@Ps?jo*g21%_f#9+3_sK7?_>afpKLlXyfS}nvl7hxJDKrlJ zB@M{{G&lp$U;(0LEC7Rd0tQ%@wmsLaDH@&Y))d+2x~N&(9#WRx(1SMDN(FwKb5XNG z(g~tw-FrBTt$HLZB5KCX8VeNaBHZV&K#?lN0%f9>1!kYgni&Sw$vsZ6Kta@ujsg-E zWzP(YvTa1vY?N-gU~z83;@smb`cbp}b&5x)KFHm5e05hnpTgCjirf0Qz=k`^SW$#Mj4FhBrHta?&a8(H`#jPZTk? zoL(qJ?X@ASsRY29>Z(bJHC5PG?r;KS2_)6A7dI(B%RW3ADKK_R3XI)v_MlMNNJLI5ZVFlL~r(*K=UM{%`UKHC9Z}!F^P~s21pv`E2mnz(#rp(kiqKS>ca`i!{?kFa=2rxQ ztfcbE;@#E9NC6ao^(dNNRB!S==a9$nbe1baNr3u1n}Fl%vzcA7*ju1U0+dyR5`d}z zpgM>EQ1w%cAplf=byUx7+_|ZlMj)t4DxYc)FS~)X!1uadu1Z%EfGQOLZr;a$5*7f9 z(`N|a6Zz1S;JSKsrmjwXHs|f%}KgCT1_$d%AyMqAmlN3Hb1jqi56u@u2$M0nVz)t}1+s=UU(-ayU z`+|TZexG?MeC!*qHBZ7g9u)0-z|1 z2tZN#Db6FnPk{~TcmhzAlEN=aM91cn0!&^WbF?vBW3oC--iIz$fwu-jbZkAjC7Tj2I`(|jMaNzw6zfn#$DWN+ zbnNx0i;lq|9BsZN3o(5zZuF~HH@6uV7WWOWkLudrdlB+~)h6$aAEQhVA`6W#US>Wg zDK^NPF20~mVx3&ga4H<@{zwV1MLDbjY*8MS;?qD`^;p0jTQd`LyJACtl)?q3DG9JE z%Z<4W@tF$HrZR~(P7=jt=COYD)5!uhW1I)}l!%kD6g#p?;*xHP%gg_XIN3-t2FHhb zjt?aOj?W+g9G@C-vhH(tk0H-6Wd^0TzG&!elH3fwB|=2$MZXZh^pk z9)bG^K$z?$5`e(-0f8|WL|SEU{!0d88w}Vs7_b0gG8Vx3b%FB;ll@5E!0$tz--if5 z!B;K{+7|q-P?RWm_-$0-lqD~=;Wyic-z;#)5gI0ADV#qLIFB${4{{04cP(hP#3IIi@+Psf-%{kp{)ePY^isYItF5jn zKD|=IxSThZA2`rve$%a{9dk`_gX}G8pNG^(C_@Cvnn@ym+{b9zzhWLnQ*btR*X*$s zOjAeJqNwn=GH`4(FYXSa=Bax) zHhNTl;UMZ!!IC3okI59Tk+LUlEWRqKVYW4c(Bh7n*EKnx>Ay?@U#+iu>G7uop<#X~ zMWUgxeFR{cCIFUczcQd}CjqdPFvUT(x|OJ*^BBj){8F!2?3Sgz#WN@&Rz?C~E!B=#69jb66F3g%9{!ew+yib}&ZOWd4u38hEhpH$-d-8=%&?*zc4 zvzP$wTA@h^i$Un@UQ&YDyFIh(34qzVOAtESL~>ZY8&*Ry6CEiku-khqu3I}$Nz`YJ z64$Vfx`x#Z8yVdDsEYpDdiu-@$4?qJd!^gmd@d$1#}(c&Hp|}paB<`88fulB-Z5%N z2&sJ&MokLhm<6mHmkv^dbllm+G+DwHg})1JVq**^?p+Ux@wIQ zFTPf{G-yPa_G*>7X|EOm!P2S~Nipr6RqCd_HVV+Rr^J(|Ju!@Fj}2qmV}UHG1{fA# zHI*qo>1wK4sf({&NM69{F`m<72++A2@wF>R2%qPcx&>{|QWsyl@-KZC`|zFZ!*>?A z1+B){SPBB80s=vNZ3FoQ7LR!>9wPuN4#d}9Cn;#Wl0xH+zoa1~)Al60)3ki#|?S@6!dLq`= zS@%q^I51&x;BglHSX;R*#V2?|?SU=D_l2rn929{cYnv5_Y~~X~%R+rzsBI$2{cp&& zx6i*)Jk{JlP!MIK1PLaK`gl>cH(!-?#_HsB zM(wkI6*n^t3B*!OQemlfUmps*btEkiZP(WkjSv8$0)Xfs29&4(AbKGIK2f{_uCL?i z8@QVE;I#nYc@qKP>8H4Z06zsHZx0awj*`OX7)0J)CM|H>ZTc2gks@3c03`oT07&{NHW1*az(Z>I zzWQcD!Bmp@OeGkVW%1J7|B@D%?(~@cj{qmK$!}FI<3$@sHNlUG~D0O_08mv zHk=m#bXyYux_*kT1o$Zey2XTot|as6%2(>MY^OcNrDhyyf$jzUUB%8I0CWWa-K!Z; zx&nai3IdL&dy_}kH}eQ-!+8Nf_c;PU*H7_J0yIVF0z06syxw`i9arS06Q*Pp%ZnG> zx@Bu-SVkoYtDb3#_Z1hKgQN()dp*9t69B#fxV|#fa+dHHF`)UozVn>tANDSkE?pG9KD>h zm2l`%JEnU)-z*|I_+C1|@meX`x^}g0|6h#h-N6COtEDL!#RvsMG6BtSYgplhH0CEEO3ET7j#Jh7LQ0)_=0X(P&+7N0sNE*Bb;O( zg2U3WeOw6nHr*AtFX*Z{{nHO2>+j=2$g=fGK6e?f0uCX!B)4SW?SDbH%=>~ap+N|_ zeHn$2dzQHnax+y$2>CYIQs@JgvQ0CU+^I~2 z97<5D_a!R8rhAc;nnsS7kO~eR7L~d4o<#%*dHIem32@$U7pTg2bQPeZ zo+P%2aEMKuGq6pZGq3>1CGI=AoRfw*t`nd1yl0{Op9mfQm$cydPS5k51isAQh7aj-j_UlRz3OMp1FOiSx4hb42A}(i<0FPe!7RuS~ol2IP2;n+@hvdTU z64@`TEvwol+--epF zpD_f1p8A*-+;f$;i?kGRb!TlaNc5@4{!bC~PDjuj+I66H|Q z|IRMyV;Fvx1Q>>&Rsn`#ao2rkmsHR!-xL7f*(E@lrT?8>l4`RIeeMbi$D=S54dHa*oO$H%&pASufPN&F z(2oWTb)je~heXZv7x(cI-k~mFDqd#yE0K@z4z)e{mB>eU)hKtH0?Gx!=OZLQz_d$h zlJ7|a0aLQUjv!!KWtiVIs_HK^jjF>^gU@IP=viHcx{vUV9#|qD;idM02QU5hQOVvs zu%x1GJE&y2X{L6$eKaA#Nm7;fKFAwrCLHfD%#~n+VTls_M_Gw{kXLkU6RTb^GDIJ68Q`-d4l=lN)q^=;YIf>XLn5~@xR4OO6YR84s%`Zegd%35&#>m zrx?&aCjhpQuMwadt&{e-t;5`F#NqQTdA3BX(>0OqRl!-KYi zJ|=)~G6+gHBrVvjH{986NdWBD8;+oK7m~xQBuJRm=Q*il6Lq}IYj|^mhPQQmiF}K9 zxczK=iF}J!NpNGkoLISU@lv*!@$d|1Fyl$3)iz^D$$gcV1eoULr~sXD*)T7>ypnV< z&n+MB=DFnr1k107NQ&jx1H)Z-`4I(ZdK;mCCrxi+7}FaY#`MMlS$4@+c{vkZaor?7 z>4Nvh;oetyNdZoO>N))>0XjLmukw-*KK~$fHYL_AylJ@GZTzANr}SOy!*{k1-&x=m zz4$6G=coie3J3(@ z&if88=_CTnp;gGl_TL)K3|}`QVHFQ?a^uG8h5870G^}2vNU(a@r1gM7b*pBGL3Qhh z6RchkSf=BKghknv!=h|V-G_K}-h#z#35(l~v*-twCtXo8?YM_HZKHW5cbTuL1QHQp z^Cd}xak`R9c3o2yIt21VD>)mkvpjm5VRfU#JB!s|-pVSWNI7z=>GSO{W2a+1=)I_k3#IHk(`MT-=tR9n^D zFC%P=>r2kcKB8hClXp?kj~UWqcoqq`=yPw0lxA&LQ)nhT^cNc54xy8LX_K0XvA-`W z8Gn3R`Ns_<8_ZtfiMFz(>Lmr~Bur{5Rc!H%vI75=a5RjQ<@v5{AEAV3+XA3%r;Q3K z18rLXwC#%LyS9Cj>O|Y#E&Z!@>CnuhTIFclO<``N{nkp`{zb*yw!aLThDF;Z0k;*j z?RIJkZM(hxLfdXX>SS$u!|f#(BsJ^cW=#D%ODfytYfA1neTi%^7#5Q>DOFE%K0#>Q zq?>Sfd z5Kuuviy%S8OcF^d0*WY#1QWpo#!o&2C?EJU;II1i^v>HoPXB?udR5i+I`>S?%$;O` z78ujpPKG0TYfNQXonS)Rl^(^*spezQ#{srllCZMF&>M5T3F8VK_DS;#9rj6~lVg(;IFKZ&08iYuCV95AyKJHyb`9K zTp~u(y(C4OraNq6Leq6IE)VzBPwmgBl=`j_bJK07*fH0TfUCnaU5VR`D>PjX^9xPa zL)S^^(xR~cr6Sp$O3PhgDJcF{#!_`B5%e2v3`ye}P3~{JozYI+O*k5j3}R8v?q?fq z!oiH0>JhRqjTTr+6}hONZMe;eN-xAK`HlB>f~H<^ZI`;X>BO1nMbzm8mB6R*&gATr zq7T29QCRPOPxgMlC8}SDS4Y`L56ck_+t1|wQsLBlf`$9rPH2jMIHSL+mZ(t4S3uWl zm8j6nS3tMQrB2bUhWE4G>RuByx>aA}?%sZS&HK`=W*aegtC7SG-HHUdrT@<;qtY*$U#RqpxmJ3kPZKIVR*_Ga|12Y*k_U(n zuY3A6UznsZ11$!{_5DYauhlia$Y`X>lM$JZ=xoMLm1m&eH*hp5m}qwuY2au=j<^e;a7+2>&in%dL+V-SOU!8Px)+0Y%~W;dGM5o9VMZXLMEV2uJrNgIMfs z2iorY#kq|Csvcy4rK!8#Qm>15m;L5}=5sSCdeN_i^6FQ9$+%W$gxbk#MZG^8sd0(c zqjOl7(4YJ&T?oBLel=9{6K(E`w?W?ZUl%e;>T<8OOV)p0kXu5JC)%uzw@DaiFDI&R zk5^9^Z0{$kAC6bYigh+o>DzcEjJMz*zjvWFFUKqSW3F_fW{N)FKEB>d=tbijCF`VM zjbb{xThHpMZlaBRXq9cQG*-JL+H|;r&6UP$|3pJM;BsMDFmmZ$7_T)3+VR@KR2;_Z z-Nt2yfx7wM8MRW|8ZnR8+El?9uiO5Xo2>IF42;)WiFR{H1LKt(ai7O{U1O9nUe}sm z7_Vyw{VSC84Wr z9)zw|?j6G(U2T?eXa01TIP#6^r)P%?lt_Kc=y1P#k*W+E6%ufBp#MB%{G$IXGQZG& z7733W=SA!eU%FZMpkzX$l*6)-ERY~1p#M~H|NMlItCjZxeDLSxh(a)ri_Bj8Z| zP{~mLxW@3$c0)^r-cg;5j~u(kb|m!;N|g?EQnwO>79rhOtlfv$773II%~Yev0xdFZ zh;5NUL+oC?cWNj}hf_m!)SN`s*`ykOmFclW)fK)fhUB(Hg)LG^<|@-01Yk%SAT}hA z5sD!xD2Aj&i-ymIFB-mu#9$i!cH;yM|BLx``w+b#EmSGByZM6~zBLtw+5h*n&`|Xo zNiqAkO0@eQX>2*ttZfPZZ*Bwhm!dUTP6NN4yM#fwXW0_@7D^=Qg2bI{*?L#Nin64 zsU=fts~crX{g@!M3hBne{K#vSs&ztR)emHWR{4)t-(L^4A7;dinRl4*;HC8{d6|S< z{||gk^_@#usPEUj`aWTbLw#2=E>8^AP3uX0e`Lg5-+L)6)Hey32Z+@Y^ z>kqratcm*myM8GC-WPU1>l=hNsW8#>>$@{a{oPNKMxi#U7eT0R(v5}LbC?b^4joeC zNEuZ<+E!w4_%K`5i*Ay|X?~*CeZE%0MXSdXRacX$xoGurqQZ7x0Y`xM6BQ2o3K(s( zhUCwyH#850)!9VVZ>5IKl=~Y2m~sV>C)*mS{KKU&yiSAJRshVl!dD)MO3`^*$@*2E zv`{N$hFib22!LM!{3qs`5(?*nI_H?mb7=|m#&*KejQ-vxbo9nv#$E4WxX=Zh2A()I9+)|mA}1AjX5?{JKKluS96G>-y3I>6fZ8r z1^B8RLtWKUg3udDHx}j+sYR1qklHCUMm#|MB;aa8>)vEsp>>;>UufMXBXVoq^H~XV z4d#!%JwlE2JCV?4)s=YqO&lSqZ!qBIP)l9pK{N$gm(*fm_8(zex9u%5w5E_BG~NWS z7RQcAIA!S{9*Q-wesWQla`u@7(L-(LQW9#ri}*CPJ;)S>+TLP*4H}_u?Ji@fzxjh} zJ4``gTeQD>sJ_}kQf!MtiFPlM1`fsKi0Px14jW~((h>6ut#rh;QVG75A{g$khjdhT z>90SzEi^3WU|ev!Y>WOw#rrMwHA!)gU7B`|xnw>?7xRgsYr3HSFx zBW-`rH`3nysGO*f7N?M+{cGaQ6IE~WRWS|=^$B%U-4eB;z82a%mzdG!UwCc)e}*X9 ze1dWJe#g`n;3HLlQhbIdQa-JFqE7-5ngSRrq<;hV12 zqx*-(l^kw7**c8*oF;FFd3W9D272a#AqDlY1CL&(!vjK1)lyr zV?4E3XRxHZ?8)6Ok9`)B?ar)i(MvZSBBx`P%ATg_j{gn`70*-TOW&P)SI${qWWP)C z<8#P)Ookk~E&65CrcU=rH}z{4a_0_0(mx%$YRp~k`RDEs`kGapG>coIYa z>}aMEfSrf4m`8xKkPAsAboGg$hH5#X*pi4Dwj^an(F<}mkrrq^@6p^%0B8yTn(s1T zXbJ$DpAmp3`3DMtejUmOPkKz9hfAc0xCH>ye53tl0#j#k4FS#qZ^%g_03^l2k;LqB z^t1YRsV1Zak_|`Ow(LXzND2Uw-5D?>1;G0@h7uqoy;tNorUOUYHg#_9CT+wm0GKW! z08E|5Y66@EUXk+x0bnW?jw#;B@FppM$)jD48PbMOf1Ay#n!c25yt*trs4BDpaT`I%$#CG)i} z6se+KClCb1n+9uS-e94xc1j+C!{f3{ZXl+ zIzb@Fij^aac_;h!MpM*z(gM#PJ)VCP0GRj9RBD{xSa2_}bC3H#^Iwo_ zX_ZJzytgi}th)Um{JMI962S`NEQh+Jg`xz&Yqa_->04g4BGi-=sG!fB>k(v*e zheGzm7xMb{P`3Jwlo0=gadyVZf2ZGum|G<=>jxQ8*RtFU5HY~oScL#L5Es|$QbDI* z=+Y_RS+^o3j1IA0Twh+vPIAdPtwMx`P03j#r)3kh8Ed*#~&*`p-nqJ z^0A#_lV{hwH?-`%)4rkQbwaVnHy`;3yk_dR?D8tp%Pn8tpjhzGo%S6qTZ}TEAS^1o zTJxEY;b$jS({)}C-4fh>C%vNObEC+Iovl<14m-cS9=cC`LsC3LS#(Rg8_glA#dS+_ zHOK1$ekV&j(RRrQaGbv^XIXh`i~j5{T-CtCh{eX+Cn$@J7cK8(B6ZP6-9Q37!dG?K z*bGS*iM=DBrct0r_~NPn&!mfQJc!7?@dzIa@E{^y+`>}4DBx<8m^~v;<)D%`{Iptq@hP^y2}rCWeLP zZ#Oq$V%R6O_)N#ric3ImWC30t5+^Xv_P%CI!=&(v1ZpOQBfFbTRmCStDc%Hz5q0%M zOXF$+3=KSHU6q7}MX=ID`#}(*N}W8n=F`nCHB5~S)+F62_2#1b=l_LD>$TrW-om*DZYmKsfEWEIw7|Y9 zWzl!Ccs)#&i&6ZbFW4cvH3I5cUt({dte4s}-|W~y08S(V;6(B!17;&605(F$2{0R> z;$|V@SER^_j9&MFH1RbZI~qfHJWqz$>YlpRM8H$R0t!jqkJ3L@S#DtD=PYM-^g8Ls`d)q5|5^6R1(<)1n~g=_207v%c>B#I6l{Z@CaEp(|Vp6$mb$q^n;FWv0$CC2-AVQ<1pw(jri|uUbP=)a;l< zyH%utnk7dZ8)|mDQAW+~Fuzc}`+t{v^hYTi zROKNO;PpgUIlnIwE~?MXZup1#j&N+uznWx6;Qt7~2owO{$(<~bdlM{1fH5#HrYu2# zx%83i04z4y4!r7Q08awoMU{;hFfXcf7VQ}@gI@q#Cb)$FbD1EwvIE8R`KGdGN#0u{ zC~;%_k0M(~2;+Ym0T}!WDxRr|5$!+$r^Q({*@o9i+b0I=RIUss@#eO-yoh zHjYW{b>H7Zh4jH?^^2%#q=a|Fv?2j^GR=(ubI|9Lym!O&Bps~(w@$I^|E&bb`j1!h zRZ1cu*8fpc?5knM8GzRPiso#7D$})NSq@8dq}(`PplOtG(q$)q6B=`xJKbvpZMm_DQ<%S2~=?np3Su-8=UF=J}XBVG%` z{TjPB8Xi2xuzQmR#qMp6sX;6q^Gsn_I_6Ei!tM>Pg`sO4F^_WWhetW^;&1n%H zm&H6T%i(dcSegA`@3ioQ#CxdCbm@xWpVdZUFKf;XI#Rz_6ZITP-I1-n-kc^2&*kgG zUDa;F%}SL*2C>ul_{y~XcbaR*K&HNa|gx3~AweSJUk5U7h4uC`wMV z=f_3_U_lT73xY)4x<+`lijV@z4S6nm69AV2V2v3`09*>-T;kg6e`|$Ds5ztszq38R zO9+5p0pNEX0q`q;^NXWyF3p4e>-wqw1-fE;Ots?z-Rs8Zo~gQNdbn2Vt47R=!qe0| zNP8dwcL1b495b%aS>HFm(EZ;RPVs4D(pkNQzBCrZG##!Venk;vlNnC83fI#!8-!=7%f6LOX86kpm@ONRZ5aL_&Kve`3mS#B zN}DcrUPtuDQdyD)0yj6-QgVG=p;0(lm%1t3UDY8RV~Gr6EN+}`$5PQI;aRE!S(pwI zXrs5>nc+PT-eS6ztGOw9Lep?Dee_WKWIeuVxVGw@XwxI!1`lP`X;w_0eylP&S=V`> zN*y&Z(Pmt{4Z2n?(V}aWlBiF1ZmlD&!iDtF_Tj6G)io~Bzm}U{b*JmDEyA@^Z!~{! zjhCjPqnlgzEaCsnb%O4--eBlnPnlonUQbO=>|USCkT7#$g;wDiaqVX|);pw4@&wdg zzZC5^;HxCXE?ksD`j4MSme3d5gxjbigrfn;AQtRluK^>6OJA#hY#Sb|z9BQT;u*ho z1E1O7NcPUf9cp-cjv78@+@gl_&5&Qmrt6>EhtpFJ8!^}LE-D^prV$;&!<8~N?tsv% zW@hTnM7x5dfin|1Vzy|SibfetbG`Y6rn!Db;%OAa3ybnjp|hubX-R$hW161ODV%%i zQ{Q~q4RqE!4;0i*JBRzKx)hZ^AKd6mW1&scg}Q{_R0L_{n*J0X(pFc!KYFbmnh`#w zvV2oJDP$S}S0H;prqVUx@boyp$W;0$9PS(}GR}ABGL@$KBAcl+ZidZN8co3F$GbMx z5?XVe{F5xcqc?;L>W$IxDD@C2nXbD0&GAi3__7$?2WRNDH_I&Zn2(vRJurnzVdZGk z4yilzE#a0ywUtb;4sDuYPnY`$!0A!|oW_nYV2*eK;QG!P0_6J6T;1`uaP#12Gwj72 zXZ|N?;cO;=In3!U_u!fh);yC<=h{>M{br(^))0fV0@w zH{4onAwYPJ49twt#9ji~O7D=;*yHWGi4rc+ogg__9uP8*L>eZs+>jJGa+Q7~KuCJI zN{;CTpQ#wkezH@;q`MNDN8}({fdCK{0QFm&01!36knl~a83AZe0bGM3Td5l_! zS(XC`080T-)>sA%O##rB_YlBs8NBN*+gF{3$4C*;3IKl3699hBViy6<0@+G$5deN- z;rPiHWNPZ>QyOHc)1(EGpL!&JA^;=>0LecYFeC*)p3Bv<{I)R{dxBmw29su4lFmal zQbfoCfMi1gK+;*XBfwe6cVwEXn+X6(v2Y}ju{44dz;DPb+lW&L06zi1Z!Q7pHM@5U z%(C=WklfK5TdR8o!Ex=_*>5F1&mQFVksRcl!4U#H1AIZ|Gm?Xw7&vY&TdAbpHR+by z)J0MS%U?W}d1w1=0+s?`9I@OqqLGj5aI>mJfMbaa$qKVAO;HRSlo3sOXc3WvW{3dL zGzQh%H&8tYa29wv<*n(rq^Y5Vf~=T1vY2;}tu&joz;niI9oU`_jk!8#}kv|fEge5mHL;;`7anTmIn_A0w z5CD~0f&f&iv$&oB#}8+>bOKPHVnOvO34dE>-=eyZ7V5LZ-F9@`MgaPa0I1Nx444oF zK*yO(KwQTef4A*8&cnl`h>!&U$+ZN4q_fyafV1$w-}fq^U@B(Bw1jT4w_koe;-PS7 z^%1Fp?lG_EuLwZV0wDcp@1pPx>O7$+LD0Ao_Ad@+s-%1T#)I?x_gG$~2!L|||PurGqy^{eJ?A?Jfb;eD;G?NWr*){R-Xsvd z#mf1X`jA&5t_j_c6S7mCL8>TWidVt{0#JegsGGIL%ciLngrWpN<4UO2zC{5&bbYv= zdXZF7!bY!zy#$~H0WcjMCIHR_aL$n>_8lp}@+)y^KH>F00#KF!&eB{dC~?IThh8@) zqik^44887LhjhL6T)0x#p<{-djEmuG%y9rG*%EW)m-*8ri<#d!lEof0`g}qgVFcb` z7Rh3zjUP`SSF*iiu}X7nvRD;Dar!sOV!?`Y=yP6m=Gas*1cW;ZYvfR2QpIj)RHmAq zbs~JrbxW58yw_pI1ygzsWstQoMRBMlscdABo!=0itU8kvcUmH;lWZyGBzU#TVKs77 zc&)mPtZ?7+)>vtI?L#(fhcuIsWP0#!INb+rNLjzC;3+ApBYvH2M66So9dfEydgHe)I73(S(3%-xw8@_#JV>_dtN zkstLUKS}^1|DFVh{M$M9p2n6r_Rh?I|CNFGMn(zy1_Ks=0rJdP3I^{bFu-@hD%|Jy zTQEqy&(?h^0mw9KKmx-cP*;z=AeROszg<%#=vXu|O8?jn;vX#7KUlB;sb(xN1OnHg zK)kr$wZf3ya{FNVpKmz|kv|`_aFZYrLaTm=_v_1*pKv`@xpH^ZA%(pt$*(3DW;c_piz&>(cLqUsp>A$MW~kT)m}FC={4$(+8eU#GjsP_bR&xz=A3Omg2Vv zz)~y#7SsiBDQ|lF?B-GGG-;vSPd&ds5dgme!0(>~z^?$#FOI86J10$1CFc3P0)C6l z)9c=fHcTQp+=|>DWC(y;0b*{=`cE|&yW%)suPYKN8@zLFZ2hkslqL1d$C8n7^E`d- z`|!2;y5r&csq;!3y5I zQq3V142{|I?9iA^0EPzgDjy{&hK8PJGZI!AfQH1)=5M!uz{)3%F(lYAh6D?cP8laK zNr*G&+1@{Dp1oB)9Dg^`$q(PFxV6mf>Jn6K@r_U^&+tw2%@7KqwXLbsB4sRzr z9ACvD4!lDMK%W<2ak-8SlSu9ikWhFJ0cI=&is-R7gqrHTFWyz$lqNZaC8!EwEm2Sx zs~IXAIH%LnLUqk<7^7j|_u*Q>C+|0-p?7LQzt4y?JDww3PkE0A1ou^9x<#O{pB|5|mYlnHJ;cmw7h#?eY)dhvWK1tDnQm zO!DAz^##R%F7XKoMD33fB!~s|BPuBP(f$5>p>R$>j`nrB*iYdy1#o7#jQYA(=RY5A zllr6a%{6d>3X{8Ei&cU7qQN)5jwhPrB@I*>`G}9ttF&^)0F_qW{6eLbpPzfB9lzgJ z+Vr(uOY3vLhR4O#9G0eMFNF81#uNx@u09F2{LD+!j-eOBg#s#z6fm|jBnz?V z#})vS`3M3qnG0Yh^FT*EyNNt9)%Uepqt(5n1h=z1w+|Blw*tWJS_0r!0Csz>d*{h& z7b(H*HqY%_1if~*P> za0$pqZEnIt_iAB&p?kGhaD{2wBo&pQvvADQgE)Na$hisy&Dj8nMO(}X2VOH`UNdrd zy;1IP*;iDAX6UE$W==1E#asqUQM=GU9^Wfs&AG9!Cl~)NtyZc=sK11$_Hrn zR7=*ac9iN~KPB3+UIS)}Lch0CJJI=ND$pl(t!vuyC1h4yN+b5xh~vDONJIjj`{7{3CXIV*P{ zN$w1A4RFeJne|mKLNU0-3WNL10=i2)fwaJP>_W@;9sjOh+6s)<6%7|S6kUc{H$OGX_@PS(6CX(3oKH|+GP zNg?yFDTsMRwY`EavI?REfY>K-#LPi|d9%z3YB=eE++YdC>NMF56x8J)gV8o4RU4N)<` z`W7Z2=la%pFYN(U-F@sbQxA*|j1q6VoSLh0o#|+G8;b!*BOjA!23Zml9 z5k-4W>7O}W?IkS`ebo{@OmYx?)du+~%MH<2AGTxkCj#Qe=-G$$*jbKa!6km1A!IQJ z#}op<(JQYK$(;el=TA*4rK!4vf}^-|92XDGT&FTf0o}FZ5<4_+C&2Iv3Vd6)W)m6P#RORbMmq=gm| z0O?Ux7%)}rEb230N)-Sbv^E6r2F)lSJ<7%1ixg2=@7vlPPIA<)Gnh<(XCSrPOx;Iv zRIC`pRcwLDQn71D3l+O^sqIA@2tdUOfQo&E0Ygy$zhd7bG-t&g^n9ElEmW)ksMwzw zFcs@8{$jwCDgY{0Eu)r{CtzdSLQz1)y0|NoBI;?S9{Zwn+j=BN#X5u51b7C=UXkl} z71rmeqOu4??TS@g?WWDnT&jkW7HW6kGF!V72|(=%fZDy60mIW+n5T@F6A(8EJ?vRN zM+&G@0Z^wq88CI~EDkVW$`Sx|`XK>vomCW2r!Lx`ND*ZUfI06^0#K>WB5AqbT+RZA ziBbfhLd7DkLd&JJDyXZ^&zz>xNfotPYq_n}mIR(gNe19^-ci z0Am3V=LrT3V*$YUECD$ge+$Ms@|3C>5QA^pH%!tA4JM92xHthI?24{H00;}U;OK=qcTn8{`l4mo!mKTOtp( zlO7@#IXFH>064lLpC`asNUrvEy4uz@71b_6!BNZ{MuX@C9pE!Do!96ve1-l-q`uit#P zKVqA21Q{7>f!p<#voilqVYy*u49twTfB?sAU#Z(GShF>RBDlGa*y(Nq1Ew6wB{1c@ z!g5oN7+|(LNPwH|OgVu^Fxj~{zaljhC~>0x&J$qj&l&tpa%X_4uE+|%$xwabDOP>v z=E#%&6=AymY+v)SMy>%L%M9x;KFlf@`p78amR)V*)BNeu{LJqhX@2{SK3~6IX9V6Q zW~BMmquAu;yiM~f+1yCK%X8ILcPt(LKl#r~(_5C-psZ?17Py3d?z=h70xKxg}5{ z+p7K~Mbg4U{xN$%?Yy6xU8H{pUACXpUACX z0n&|-Rmf7L8*P`EOuErl`9GFbnDnR=>-9RDHT9^MHAMg-FHZuSF!iWSnEGyo%_>YY z3jfF;|D#^Q6uGhqQzQTbWEJKosZE%Y*q8yb3cHgQ7~JeJxS0TC6^pjjr4$^FbjEA{4MnJrRB8>hS`+)kzViEJN{6l+5H!{e*zy}?L> z81>@neNw_)dzJ*4YriuB%(W61Qri9|71QGaf9PV@hEvraB*(ZxM%%Tk;(J}N*eaXR zmSO|aCqbcIuLQsW+s z$Ny!)Z>C4BSyxzZZrZu7zU>p~f8(j1&|$MlkYH8kV52A10>ZI-p1aC!F;@_P-LnAL zJwMF=_I|7EmD*hd$Z2R^akBz)x|?)Cw8*wq_Qc>ken5tH`zh67ZvC7g03$*ya8Hut z&H(vte-VI@A_f>K_ek*O1$tB+u?D(Z;+Gfb1%~Tmb!4#4lC&8!TK@bhvs%G&j|qiB z9op#Zq)3_$f1Oz?^=?xJ51dg{C=%bQijiBAu^}3nXi|wZ@bUuk!EqtMriD>PhiPek zp~JL%EHQrz-2)?Rq*T%m8U1x=VaL?i40nyrNJ%fMA1Wew4Vbeo|NLlS{or?**T!`$ zykti@Rww&ry`KNc9H4HeV9}?#k-!;jOd)BE!jQ-8B$Orp%Os?*$3}|WwR-jUnJG3! zZt`RL?X#Jo)FH+%*X+$y5VGTDlK?dvO*ENF8mL+F!C|3hA2G_P*%js&YIemx)NE8} z{FwPcT#aF|==qae{(F&%Mm=pL!McmxkPXyWAN@PCsBTrI)-`%jO5{Uzkd!b0-+ast zz~cm901D80tE6_Y+>Aewqv&h{3V%F}pIASuK^|Z6)z)qSba7 zRwp@zVae5YVQNGGhMNG+W8luL6n$5#+wM{k(gMSfn49-=_9g%f1;7+Dk^w_e09+P5 znmn#m5`pHTi%ECLmFiRp$h@c1d47b9F>?rjspcsHz|mQ}M1W_3{D;>`4(?*$xMNYK z){k|(z210u){X}=&8+z=Gp*oP;tbPFv{IzB{_?NPDye%-Yw}=to|+f$zx#nAz|wsB z%lmn0KJs^Fiu#_E@cz5N8o!aTG+#Cvm^k)6=Dq(em2|KhEVag-DM}F_i!>n&xfVbbV00cJr1n~Gv(KYq~ zfXgzB^GnP8vD&`8{ z@)^%~3m*4wY`|!c@Swv6Oj;Ii!Ruh^1hal;Qz&Nr&TFr*0mEDH=&DZ4qg*e5M>+E# zS@k<}^oPgpF^}DIc)V4t%##ZJugMyoGc&XJwORA?6dB`JgGd4_t&0Kf@qbQ$**V7UJDpmK>091p3J1TD9_C_k zfZ03$I%xoJbwhsZ|DF8Mi zqZlwe1;9oGiI;Z~>UJWIYhapgJt^GD7{JpC(gjxm!1ZYYz%~5%vVD?cN@7nR+m1I# z4yNMAF-3zS?ebI70@D*7)3XGCsQ`%YHwFw-0fcD}mGp$)NO8S3{}a}-94R1D0dTLh zCIjYPsk3OpfGJA=+&$<-fV+EuH(2G@t?!e{l$g$kG8=M8C{g67%WSeoT{?C%32+v; zw6c%@RHsO{`vdQw15u6sgni6q2e$cY>kxsMD`lmHn19}o~%kw=8R*`pf8T{0?2 z&p80QKL`+Z-2z^Tg`V_V$QdB@vLpe9TtFtG`{bSgK4>8m06sxihm=6D=96|%v>*Uo zMF21iF<_cc031Mi6X0$#Ayuo#la`_LFqsq)u>hcW9|34UXR(w3XMuZ!t^R6UQ9Vv5 zh}P8o7Tbv&w+LS$92|E%snhO|MkIN^J2JZkJch?vZWxL_7=BMc9K&xshN6h~o3Br3 z5|M*oF#Bwh#U1cJ!Qv)^KdIEf~Wu>I*0%e6=2;nGEb1)GmsS`MQ`krRaMO<5In`m z@szCFn!3m1Gg9@*&Y4ZrqofM5%RREs5CF0Qfb4b#3|Rp%Jl-ZCt_SV+$T|;Sk|JUk z0A$Y*0J6^FG6Bv434Ymsc1cr(pY|IJbj8fkMYFy)IBUA9Oj=-?_Oxx*dIW%}0ASjh z0mD=P>~n4*z%2d#K4)5Hg}~FcX`Po*q>R`F0NZH zQa~3PC4G1^setLi0Dng}j8MarAEgNl z(&yg}+s{5YZ}*TsA{PK$7ZU)k&SDJ#o(1-G8%PeSV&JHv2S=u4jZp_k3w&Sq_?+}Hs>lUzu>GJ=9$f^0fN^fZ`;M*HQCqMIF)txth=025dn9 z*a-l3AqEUP0l=;|0deelJZ~G&d6-O!ChkB@ee9B41-XypXh3JMlmHMFK#1b$iu5D` z(S8EP@hrSDYpi;Ow7_%6^LE!xa_rhYmd9CcSc*Q@ukQ&Emb6%#_3Imts%T^D{(|2I zV7kLHEk<%M6@650c>=&x0K0Q104xO{mMOa4x~yAN2hsw|HZR!L>`DMyQveJmmK&NP z$L?!90dc#p>=$ffiXtL@kQ5QI02q#|2mnWC@f-oD6xmb%9!|kGvUd^&nqovWOXvnq zXH8JYNDDOI^JsoS0B8z;0mX7dQ{A-*Mz2hgla0BAak1_XfS zdp^y!gn_0QIhy#oM~@9z)e9^O+V3FG-XPZ(dy$FZ9JoyvE0Nhy4JWywEb?_FMLwD3 zhVpG2?8$6C0gm#PEw@y#W~&KB)c2WUO6sG{@|IUGFlfrU&lb0(_?wuZ&E~= z0-)m*+3YtLYSmekA;4Ln<5VXA6)G04Lgj&i6kYIeRzKB-v{0cfHron~5P%9502SJs z0Yg#%bewDgT*o=~zRWh8O~>gZ|G|DfsUcvo2gOGS07U_|{3dTLAh|Q}_gOCy3YubN zXa=4!H-MVzbG`GH%vp>`b zIC1Sr=6)vO>a6 z$yjM#ZaCW^cd#azAVHzJ5#Vm|g0=P?upLPSH_6*>vH1yY36P5Gqk545H^^__Vp9`( z8-P+1;%W+6YT^?&#@Q!sjI#i@_a$4qS`rmh?Dw8o0g1?DCp4G;W4YQ(NeOW;^5R}Z z0OEd@1c>{oEjB%2>=v7z@Vrs@$N0rJ;%DE8p9P2?x!Nqn-Tem=7$8^sG{pr5pLz^F zB>=hF|04ky{F1=n(!Vkg-(bML!GHzG)n);LKba6baG(rEjC4@3jX$Tw0SD< zzw<6R+P>7i8SMaXxE=I!pYJarZ3=ka2hVm#jl7u+?vOtXF@%XutXQfAYWir0R8v z3MIDM<)tbCSY8CcLfL=-tRMnl1^GYSFDuhqK`5G7*2Qlx+Kk9E^1n&TmU;QvOIc~b z?owj0$Tj+lOIh_&e={^V_vzMip&;TCz}o86U$ay(`yfm&(!vBgo&=a+#~J}9 zScwkF+4qwQy4akpcBIT903!w2*{ey4eztO}on_Y=fJR7n^S4`%Fw2T#j1YE=4#omx zXU7T5`$q5HYWvdIt+p?X#@}9FV%EqEqAKLZKpxLlsr-|fl~T5v@Q}yzwfTk2psxjs zPt86qn+21{;x@dX(Ve`9wf3&n-6Nq>pHs>Cl{NPRU&Anf;n(3^hNV3h@UKohn zuP&RiypdGPSo*+1Q?3 zG#YHOku;D`Og=aoE&}3~np+{a%^sS?E5<>_HoHo#CkKdU zoz#kXOkyhmGUU4H^Aj_hseL5HxDs{e&ri-iMOtwBu}AVh1c0OfAbF7iL-J!w5-Cvy zxBGp;Tw6hMc5X9D-tCsC@mx=`F~}A(ipasQ4gpw&je+^36v>T&L?X=XXURi^fxXx` z_DIjBhL3f@F5B#^QcwQ(#zKWkk;=hQ+wH8;?TZ z0cIb8oa}--BouEVLCpE&+WW|k&4Wj`+e1&1QTWH$#Xn+a|A?Ih*smfdo24M|gHOQE z$!_0GtVY2^V#}#&5$i=1$B{7e3O#mL{V2oVsvF2C_kEdfEPv`LHaTlBREHfCqbO>y_))71tA+MQ&9EcS;Pj zqe~%!Sl|VA+D|EuZXWqrl_LvG!=-oHBTC9nlc$@ai)2Ph=^`y;<5;1kyo#-IX5@O+ zFwv-PoRPd9G~B1GF8$Tj$>vu(m6@pD#n;DW;Z3dOA-C17BfZt&MAiPjDz41$X%m^C zW+rM)-Dzj+g#=*67692g+X|+psYeOL+$<>OW+A)fSjNpI{OaY}!j-pkJIvH8#6-%17BdM2e*rFaXcizxd9z9HnmDv9LpASst~|=y^?svsBS7 z?eOjcuU)_I5-F@+^OcroL^=iE->JJ~L>j6OeL3Fke9e(qsRivJ?C4H2Xd3A{&8jA) z=0M4>#zQ(kl0%Hnvqpf?Dcxq>i|vQ$CE>_6RdAOdwV9dnOf4da4)oR08~{myi@u zFWO}no1VL{*c4xuOZ4Iv(X(4b&jLh0`qs$vilvBtQhfCKo7*Bk>zCKzb{gV7;KhA_ zBE;&ls7K@m^#w^0_ooSQpUEX|af`UwE#hVY;;zsua*tvu;(o)A8!O8n=+do&XLs6l z;Jcl6WvTSC-}BIS(~Q9NU0GQg=)ZeM=BWmx=dUhxU&iVZNYkx1Wj5A}#urHnTF*D? zBQK4ruWlwYxX;Sreo(*29cl>a$?cQQd4@~FwjL0vr91SGlnuJRIN)X5wFi*8RCbLe zi+;|pkN1yUqh=7oj#@b%fdMAg=K9=`V7_2qFaE6f__0FrFqaiFE0=lBEN6Lo%0P~` zC{Z~@et7HIW)lcj$jvV&u8^{xc`w2rzd(OGC^E9d6<>s}hYXH9p!N_Wsrhy~x&QE_ zlCS#G*sLq>yVr%E&F*L4b3bdSJUsmMkVrj6y7oQyYcry?^xUD5nd(#DjeXDkCq}?C zFdO6kLY={(ChBbNcHW%=w!J!AGF0LL!@aQqt1fT1D)Zlz5pK#pGCi|qRZRuFPtl!RJD*?^|_toZ1jil(wQzLcMK2pKzF1A?RJG?@VRh=R& zd+zjz|Azp3?(~RXWWW&r*dt!>Rljj@5Ah*kVZM8wSGPXsF&14MF-g@PF+IX{2(U*? zF)&9=k~;%DSQR3`o-cit*dXDZ_Jc?ZEc?A`oA*uvz*2y*&&p#zEH@-YjvS^X1ek-h zO*nQ;AM%-s0s6@XGC<@4plx3v0938T6^lmF@o_Q$RWWc43aWVI=p1Q*>JJ{(%LIU` z09!T*)!lxxAwZGiiKB7^aC-(z@3z$Hk^(FRz)kj6449kj0^k!2EH||(a@=F@MF8%x zdlhOFaF1PLLTyeYMHeh;^Iif_o6h240-ObI9jqk))hQOPI`PQSE>b{EZrg1;&07SZ zCIvurA2Cq0dAGoBJ0*Na^0=D(O8A>cj+}$QYjJI19DrR>l7pQX%x)$hoFci9Gx~Vq zs0PWwP4pc%$sd@e+K~ddwR+8RyO{vPOBInOVB-itDu!#i(XZL- z)SiQdq=$A82jKQ70fw6^@fngk13YTf_rsbM)pkO`P~16&c-H6$DS+X-9>dQF0K<1J z!~e3}FcbqY{EL7%hX3a=^c zf#W5QW1)T2j)tQEXUfPWYL**{BF9**P5|=^RMzVXXO-1Qw~wspB5zB&h+Le2YLo!e z#>P8pwhsX@3-fXH?k~$_pizW^tC%^i_yBs>S0aRn$EMf~y!guJSpdDQXodfaW6}&F2UJO#wi2Cj*A2 z0BF;92;epi9*{E4R>67rniN4%08spe08n%mSH0mk1~@)qIqo?Wsi>|d5FEwIah#n; zG7evTFLJx8N?IU#{TsGD8xR1Z0)S{+1`JUFK(reHaYUnUSfb9u7*YgL0YG#H0U+uu z77zfU*XzX%q%nIh>03dqAP_{w$`QpbdjAJJHg&o7H)kLy90O0EjLj07RX|Is%*pzHigw zvvD=mCPKkf%$Vu&>w4zZMNbRcw@DLh_j_zVCID;&0Nbw_Fl+_zA6C3bC>ppzmGRdH z?AbT?i$~kJN`BLCMvxEyw963y+RmaT0iFe(RBS?W5EcU>EO)!Vjby1?NDE}M-n32I zj{rkf?vWSknAK2?VY%Td29|5liY?V_Lcz7~`P7O*x8 z2OY5OI*EaUeYyn>*giampO0?>7x#d`!e3lQCX zDbiJaLMVueSsc;-{uWuJE|3<8p7V$X-}0LWqg4RJnaqG`Pyx_`>+CMxQdJ}rJ$Tb? zdHo(-?kzh@IbY348w>;h=Pm?*v$MF30A~Tt6E4fUT8CbiF*%r2KwNAcab)*D{I_Hk z-9=g;KJ6{r!VeIDjyz2V`pC##$#TP64E&M1fzX^I_gTwZ-j)MbZ;>)ch%3?d zfhge0or}8+DWXgPP`}j)K>a$4Mg%wuT)Asc0IF6jT-A;(mC-}>CIz_caZslp@7Pj} zBmmVdfU`t4QZBa@aLYTdT<1QP*;@AvtSq35mW&n&H8GdMao>BPacur{Pn?+FIi5JF zZuI#UOnxKq?uX!01&b*_x&7rmakBEDed6RXLUAhuPn@hcXm0bS>sB3ZDjj_Kpnc*5 z0U@2JiCpeCPn;xwa4+6USx}$5E!r}9XJu#z>p~ips`~$J0iD z`_iI6f{0fps}!abfLQOUB6R=SPBMveFn%dIe*Y*8lJ`?(K`4U{`Ma5 z;Q1L33zd6#T2X!DJ1q+6)5GN@%9EQ$LyDE~*pO-#&DI+p!n}|C?*@nbKHK_m2P6Qr z*2(!+=G9eNBrjAE!m)CP4%x)KPV&Ebc4%m#!oWjze=(5&Yz73tHsW3au#FG^n*ni& z%>cy|%Q5J9$fhROk^f_xfjvE=`Gc~~{?R&GCAeO!v!kVS(>Bq@sU1xjyp-0ZLj5O* zHj)(U>CCp#+3I1X%j^8UdC*i3=$`eV<=gR<}BObrG#PMT_g2bt+z`Th**s zQJo-Lbi)r1*-7C;0?-ZdDAA83MK?Tq$S#aO8-ON*_2zH4(ZFONj?w+tF}fcM(EWbz z7_FmNitcypknL`Jg_3!F@oxOxNT2?yhDxHaklaf3$!&yG)ZlwIxi$Engosqsdgd2W zcj^fi|2WZuvK2Is6TRCd`fyx_jb6IB@eavHDHc#+V^0aCsxt|Up2=J3rdv&_w^j`# z2tBs%d-gapjsR@!4e+DnII!I8u|gQV-B<{x~|o@vAoXN4EY z5IblAu;+f60E`J|@iqa@0#65hOaKOpSYWX9lCsPf9jGQ^4bf8w$QK=gZRP(QgXLt` zXnOFHP&b36QnzSkYEM%J50(y8D4r9#>abt`*eEMcV4Ht-)&Ye_RbJoIUUfhq8KcI9k#c|6|W+fnfBot<DP^sjDLq(;IHOi>eapo5)b=*Hx>J5kW?B3CD;wlwu#D+f6 z9clp;jar;bf;#FJZ=txH9WAhQOl{SOw8g2Sjp{4eW|Cvz9j^38K!Zat3sC%h>@!-+76jkfWx6ClBLTmWa z(nky0r;olOC6jEf3%`u*5Ek~|42U^Lf|We;q578b(f3r!QNPb%5ifq!F5<-rkVV{k z_^1X+v4~eYY8UZZ2B1a!GgDmLA})@xh_hoX;w-=-K75i)b}YprUQ_}zoB6`>zd7C> z+1+fa8bI+N{61dzeF!jn5Ilx7nS_Xb!cluJX?4^dai{((3-J#Y>>n&x02Yx0U9VRx z1&dw@EbwWFO%xYcJnyl1o&dX{H?J?)Pg2m>mq6pdztWHbK!Xba4Hn=zBo=_dGd=_C zYRt?V~(dDz4N4W+Bk8&LZ&mmPaXK;9o z#5_iFczjhdx$||bkhj|KlP~L8_eFEd+YZc)KA`%<*MrU5F44=E#)6rq|C}4$rU*is z_VU%;YU#B5<@)b*-^gZZPcs6ZT-X*D&#s*xeL>C7-Ojsi#&*ckUc4YWE-n&eX?I>2 z-5n^h!FN|JkDk5!u2yQBFS2hJ+i=XLYClVWyxU>0&VDF5QN2S_T$+s3FV>_a>Bj2h z;IVvqUBRlU`t~-~ z5-p*B)6pAMKT^TsCAL_+zCA`6+EYmjbSJ)V>CPhnbOiw2E)d`>kX9W0&~GB}6AQ-=A2BFH3ixu_hqei;lN|I)erV}6V!+T7K+=P% z6j+wWzQ8g4P?_4QGif1L$TemA4=q>cZU8AFasj|~ECJx^Ebbz}S@<6`cz{q47Bfc} zS;kM10vhyjkMTWZvD0Eh|zqR9)&q^a73f~cU5XnOhfW%NS} zr)Q~-qy?gFKekQUjQ|i807M5cV2BEUiD&`=aTC$lk8P8RV%idUGc)NSY>|WLV+4Sx zEAn{)JPUkTA^+h%Rn;y6!BeapPb8pzb1-_RdY`nw^RUPBGy&i#0C@hyfZ-{CpHpzv zalf^&vLOG-O-FxvjGeF2qzwWBfO0hgK-pO|B*0ntIR)(q1!pmHoH1MrAC)|cJ4g$h zZ$EC^b_4<7EC4u9VZd+}0ByT~0N1wrO5I)|aNIVn=%q)bX-N%H8#&&HLI8NW6890{ zS)gfe{3u#g9U%}j#mdo?SvO_*>{?ybe@F=|zxG&OBmgW0z(70UHyw%;IYw#<0dXU> z_zBBW6j4oeNYQx!%@zcJrn3kU;4ILbdz##org{(xo?_;B;s!)6dtqEtee#%IcdkP# zU1v?VBDzoSZUsZ9%=Q=A2-A#X^QX&3Fu!wTBgjTP{;2Vk5pXubEDBH#v|cvC{1Y}C zVIiT|@*^8z-U-S^SboB0BOoALUpOUOTa%6O*xjS6>2n8eZeWfN*LhFp&pJU_2+tVz zd=i>L<>4f>>~wUn+C)7y=?07v}usDzQJ7Y#tyS>oyem+XztQk}~rkq4aYxeQ#OKo$W@alAhv=H@cX zNAiCxi=gI7za0^HwUajRY6Kwg)+9jSEl%pRYMomIPTDIhZ4Lg9@r!F*nqb!;zyc6J z5&=s=pt6L<1dv29nZg2r@g9Nk1R#mv0TO_~{CENn{SyJaSka50JtKY=AccSh2z_iq z==*+(4pRFmAcVfx3wu2J{w8nLqgb)S7+Zn(1)1a>D7 z=>1D{xk^6ecb@ZAI%fq=>DE;{rzVkD!uK*DDw7l(DxQk#KUEF>kNv0cDa)ZSc>)I( zfJ3YQMbi~a!J*Kp|7YyF1FNc%x9^3TLrEy1g%UbQNf7BRAkqRPFYhIxgCe3LQfzdv zqkb=ehl!GfaVf{JAU2`E;oU03io^PPL&{az6L{Y98>X3l(b%02ho zx%VZGpYA{8Eiog>89JdzwDiLnMFa>7@0fHdNx@=roW=Ia1KZS5_zy{ldvpZ52MHE{ zM2(;Gx+O#b5-}q2bKa}waS90WKjOvz2mu&GFOUGCKNk;u+?c+t)BpXav5RZO&aM$V z3pDnXrzLb2BJ{OE=r~_|=R@InDI@@wZvph7g?(;#uD&pbYqQ93Z5D61Hd7Gsqpjxq+|#<$eer8^ zC4{wQaHxre0kF|#LK>Kc@Z zl(BO|kuodGMar1FNe5TCM@WFH+*%djDkrhx6Qlnk6^ylK1<<+jECHDDs0(Zcvcx$?8#~8nV*x%hnjnzRjLH{qrAvE<*Y3kHvpmC+ z|8{aii+SUynNrA|gM;Buq}TN$qn~JSI2f+BU;e^TbG7{?kDBMm9#E?S=B`>;+s^-J zWI4O$H+f!-A$z(~Bqw3WZokbPho;&FDUr%HW!J^+ZKagRBGX1&;JSg9Bq(9Eq-yKO zOkcvWyUpJ3_VD=xV0SA3HmBnVSeqP;h4#BG{B)A*7QTw^LAZE8c4XQ$@^i-7H_Eq^ ze1D6`&hwXXyZk}`i7{7v{U-?U^ieplh2%PsLfJMuEwAgcZQD~r-L*;i9n9%1E=;40 z#JjAUaM1dJ#`}MFJ~gnRx{)-yyKt7g9Kf3{yCSO1~&wYUkOB`lk)BWy)nezSG zCh>(Zk}#n3tF!X3ppAp4qzln{bt9`y)dMBQQ)LqTj#2uoQCFprPCWLE11`hm4+I$w z%ZPZqexy~n-2s=*WA!6_(=)UMPG<#bGSsf<-emeevS~_MbRrF8lU#5_$Yw;9kT5O;sJE8qntb7>Ja4a(0d5!tKxO{B3}|J( zZ*hnLy>}M?WdtV(KpDX~CcYY=Qr~A({^MY9AqD|(n_Ghb%zfXY2?4$Zp88)v0Is59 zfve~&=`F3=%OM493vu_5T)Qze z$EMyR@`qTiS)B8+cj~ht)YEJrR8M{IHPv&a^GS(E&fk5{JINNg5zolx2LvcX-{1(z zJp+_Fd`of=7e_vE>_})d$7j<_Z+>4|Vt#k*6loEzcF@i58J!|M(`V{%;rV?TjUQAh zzHryD`%K+~!QjB{_Q^Vhqulb;vxa=)s8^GSSKm;ZH1RRLb|k=Nq^%0D6wW;0eO+}h z>0mc9;Go-$3?LxbxnDw3Y=6fbbOjFM6`-9+HT{3WPDC7IC&G@g6Jdeud-Dtnu;;y4 zV$yroJ_p^`RUe=z5cEnf=#>QM77Aqz8%T(l*B^9c4L2NgH{F|5;SXaM|A?LaBX$Q{F$ndMht;`R%XSx(wV7pCo6tereT3RVY|5IB3BZyrr4DPJV=0ky$xHI21g@R?CeK+)Ulag z4I5})ARU|*ri?G@T0IcPc|BjOUvaBzPrf;;wyob~MH&12UCT4fn}Mp;i+36|%C`8Z z+cVL~Lt%4>OmJ~IQ0y+|CkVjBTmW3mPcxvG0ReCjUipwD*BdzgK{$SJ${ccM#J-0X zq=?m904(<%3BU!-x9CfNZ{Z3BMn*0+`GjKC7c;E-9~D!Lz$DTF(}{;1)0qU|dNc(uaed0mE+{!>TM-hGKx?fF=a!#oT?t&3}ZGaoAnGJuf{;8BvQD&>Tzv zXnF=CNbVb;HsA^ZKvO*VG*KIH6Dfe<+{3O9mk@x_DgZ|7Y6g^|0O-Vx1SE9gddE%` z;o%KZM6?2c-iHKWw5sd-q(+_Oz5z-Dz9Rti#K5PA(twJe1pNehJWeqEN>6J zBtx_X%axrN;CW3~0ur9rbo|8io#!A%dWcmVfZU}7pzl0`sU-Ief?9xigo2^C^BJNR z;673S!{r{s#|Qw!<&NRsS*{Gl01S5!kihUIkD=$FnDh{^H~_=r1c0Gu@GHrE0~7)z ze;V`-$cZPP96m`sK0Ys!BwP)umu3m83bUM`WCkn;9CS=9$P`EvXy|wy_=g8mNivs0j8U$2^Wg7 zkjLBCIwX_aH^2?q zXabPTzr~Y@<$K<~S+ANKNC|^x`Vlv1ZY2OI6#xM)V?ZZ|0Ks$kM+wCup70!g?GZPA zd|&@2ZH+xN-EKc1OUy2kgR5__j{uMr0N3PSi)X!Jz9bZrMNogT;1+c9;A?8y2Dy>) z_W8rJ3QYL3pu<4^j7L6&0FV~|9gfcGoBV5@!} zbR*gmc9=351ZYk@cDCzRczl5LFSJ=-3$fk1`!!1@b>vd~B;;~Y((Hw%fV7ay$mhtV zedDO}s%eba)E^~{(?}PQiLRR~dU|mSp*mOe^un+F4A1}ET{AsTt4Y`Qq#W&m6KECm zJl*Hc*2O`^>m&z1iN@!L&zrRQYoyQ|A}#Pc;P{yn1YoQj07<+0+jus^s;h74RQ@99 zl7t~*?9^W*F^vcZ9rJ}7B3TS*COw0mEZ0FI1{frR2}l?uqJTl-qBNJ2p0qe1ZAB^X zi;!2oFQ15XXTTCZ2F`V)jLdpYZYDXxR=)B;$}A-SsTIIaEvDf^Rc22yeewtkppC`yl}d`F+nB9wi)szUSrl7X~!Ho^m9m#29=toayS7eu3gBC2m5xNtaXx^DLbf>m$igdt+NF2zD1f?B{px@H0x13atOBU#RiBSM?^gjA zKwU%e$b&@F1c@ye~v}Ulw#p)zM`rp zt3ElVNz@3co}POxGSRFiY48CSb!XTB4}qT{T^xFCQ~?gXmf!uid91zL0}LaH6{QnngCdroJ+Z}I}o|rbSEwN?d0KdZsfL{T8 zzoE~a&XTQ6@jxVH@l4PN@ zxt~OuByBia+AiHSE6pzcB+@zkbIma?OYcz9gYQ`Ulj88dW6>6;!E5TRO0yfrN6UEy zna`3YR;gViz$*2I3b0B^peR*2Oe&ZzA0Ksd{bK^~gaV~1Kay1EOz1m%s6}3uMXAcq z3etoTy50jKS)fr5@v%LXnODcKZ_F1Kpi(74pp`27v>o{|vNffX!*3kL0|T3%nb*$Z zaRD>O;{r-0_YDsBD;#r=3o0Cw@Nl@_UH`)4g6@JPe!^msTs`%0e@*Y3OWDnrbf{sA zM?}l%yu0-5IrhfU$UIY^-ncL&LW23PbaO}f(s}82)$oS3ZLc0F)6CVRgYkLAF*o5Z zlYe!>-C9y%frP5{;L8ZW02TlPcr5`Kzye?Zi%UG*q`2Zq8h^|U;K9d&0c@}dK)F>N zyS?tJI=0@O(XvS|9rH%>z){1h+9uydGSkOvlRTt{QVin?dks$`0k?_rg!fb#9kN&d zLWk@Mn27Vm~ zwuo-)kSTLK=tA^H__*7mRwF>Ss9^!{<0~xJjibnMxX_*e-J({}YdDt*c~c{tdE6Z~ zh#`K~gY2*|6gj$kBmwAdji5!}3(b`T_!g)Zx{&~k1F^t3ICIQ>W`y|1`{cAY4vx?` z(1mQ}Z;{NT`;U7)|G=v8wd{MDv#Z)M-%D}U?t5!iOFymI-4xs#-oT zY4R{>psIy@aEKT-|59ZPo9FZ|44da9TZuoai)*M``egVQ=FO$C^ZX)r{j6^rY+fth zSei5}aRBL;MX=%)m&$KsdkxELYgZ)YUuE8-Ffo#LlYosDrV$b+a9GBOmSVkeJeX^^ zSR5~%-zw=_Kgkbf6;-$W%jCC9KdkOKwY#W2e0Stm5+Jp2l{ER8G$gfsst5n)z>wLh zC;ZG-)4!0}YA4Q}*|(1CXGdmHW`91|)!Ug&DW9Ky_Ja9t`TS2zYjw^GW{W_uMZQO} zA!IHJByxFbBR`dL!cE8s0ho{iU^{=>7LJ0`&g-oHKH==jk>wz{C;&hsnzs z(8a*FSjT|2EdXvKHxi(?k$=>--d1YRVDknUA_f7l9DGOsmIDFsP>JNe0j>()5rEY| z46qt>JK-)g6;B4efmD}2>6)rT0Gbj2E?W=)mjd`MgYu!?q@{jCJ?!>NKJBIV4w4P+v(Y|g7il4#JH6)i5rA|GfOLLIz@d8zCxrsH!G1P; zszfiH@!X~m0Jj3bZ9M`It^j_x*bdOFi?0M-Wi+8$^hAjz>d8j=Es}bk@~#8N8s%rF zch!-_t5Z`NYJ0XukDC4zf_%f}UDKBYsAn2Q0_<3as{qS(*Aren(~YEqE$g+X+?MrP z0%XhTy@{}hq}a0FX_wCTx2*RlNLyB66l_`XF3Tx*i^smPWn}?MnpmK>c%iA60rM&aB=HXodEsv-d9dUDFG&&p2QK{FpQ=_2uRG;#v-hjgxoGIl zJ4u||;@0_H%r_{3`VQZ?uJ1qqa))}Vp(F*7oZlgm_oqap5fI@< zK!gRTsbT@fzy;c1d<^KFe&{OY);m1>6mDX|g{NE@)pCjzBY&w1{E_djzPccOi4r9SzWnbdD3pkS}ze)PHq8N{iid|TRXzwf$qd*!m_ z15EuyyYXqiZ{ohG^4mrEy-S-5$pkBZ*0*lY(uV+C@v>~{a=GH=v0SfsVt|{7O9|j} z?(mpzZPv`3{?2?3Y3X$;lx5eh6t{Pg9M?6kx%)|u>zXu&2eLm5$sc0=N+>QDg6ic$ zUIWU0G%wB0zr5O|W*aGi;`1KGw+R5n=Ut5ZS*{et02GfCkU;UPZ|&6iKE-n11-%D~ z@(YqmF^%M)=rz}vLsX-gEFd=^<2c0B+wC0B)W^(houR z_y(vmOCS(37Zc!Hpcv~x0>DvRF~?r_SDRp-B_(j&x72@XD-$k*0uD zz&G-f>(=oEfUf}HJB%nv@Z}0N}fx0PyuKo+H4saK$bp z#}F0+o~t94wwq@TkrKEb@VK5J09*wC*V7CrR{=1DEB_qy6c6FB`PotQJ+vT21S|k3 zb|e54eT%*X_!bz$OIEhaF!_XnsF*R)yKK8DW)dlZ=)|90r_Lk*LX&Bp~53Eebf^@+1C+6w#&t zNbGsP1YLu~3a}?CU&kT2Z-DD`Isr(j8ql_NNapZa_J75Aw2W+K{o=COhYXQT0g%l+ z29%uu7&ey@kdVnSzhGA$@*K<|J;W*wK<+LAK+bRSegb?8RN9Vhd1rm|S3*Hi%$VZF zC55xhHc|r5=RKZp69Aq9faiV&l&1jTd7OX*o?rcft+~&$-2Z~ULe$~_JktmOPru2= z1o##K&vt}@rh`vB5h>95#oj-Q?b>@9i0?~IoqMs4~q5>$~8@Z*e05zJ=Sq6Mz(p1*dpy-thAFe}B(kY91y{P7v{ zF#qKnQ9x4tXq%8C+7tjuy?_8D)wjqdz_&nBhZ2CKibaW}K42!2lIAls-ma|@kzY1ipn-<&)uw9L-Q7ynH~(Z%Q|epoU_jdw04aTs zfP`@>3P`CR@o`c_f&@THevVyP$>4lH4(&`eqq{n$yq%`BIh4*0n5GnhSoT`-Eo*J?lPU!*3Ww zzNcNJi{Ql*=G}p=lH4=EUBZtfSF)l%u4AODZE#_QD(;BVe9~^YNja}f{Njh< zQ{g9aur~~z~RG94+0W~PZ!TJLJ9~~fK98!gNO?sRAIW-!q^@1wc~EhJyY{NNQ5ZS=J#1 z#3}%i+JXU1s&CPe0c}eFB(*OAoK#iVvp&*KgF>`pND*xcfQ(*E05U4To@WX=B$M1X zKtdN1fQ0TXnb2e3wVPqqks1=ZT1e_B-ADiuD!{leMxWiF$R(d?_T+nIE;75xN+x9d zqvYYYyrh0g3W!$#B=s8t^mkQ4p22zHpqqRH)@9jQ_o4+QbE5UaB%{r)d|=>r)SKy*@&dRy7Xi9l|!mDH(3ONrUpdw;dq4$t}+8j z2{bP*B@B_+_@s+208sV()Fn-XE`Cx63RRMWs;A$X}jaQ#?JC|^H9cRK5Jgd_Gl zr8(W`Y-B)JJVMvnxCw3rGt-1i);$hXHL>fTWUyR^k;pMyo+Kb) zwuk~YTYlKDlA<;l>S{NwkbZlYNfL%q?Tqap~!)t>LT1)N>223 zp>q@rp}g|zZ{p>Z-g}oBS`UNwF1M>={jdMtrT%@^dzVtJlvsRujB21lNm+N89TcFH z$a(Kw?k;CTuNJg0?+_}b>@6+cyL`Kx-Se*8{`I=JbM2)4<;vLY3tL}M0TJQF%ZzW` ziGug1)7^c2f87Pzk^6d;c_eaf{&DErMqOUbire0WjbOz<>ov|HH9pYr|5|NJ@^6owaX`Zfie! zb;uG^KyiVFeE%DxK0*Kn&{ZS=gNY>=T>YmE#5WkQZ!lm17!+UKuf1U@7z_;joXI>{-vVx5_ zuaF?)LHUZbEGx3*X|bw;tvjdJwdNqHDt(^8FCqg=L% z{)GbED#m7i7wKLx_}sB%#ctnMeu5o7=7KbR*`~S0dp1L-L>sx6e>rc+P~}UbkD2q; zXHfe(-ZUeDyk|4P&j0J$bbF>sQ5iestsYfv@wf{fF}+Di)1gf6HZM-cy)4W2O@V(9R{SE=}EdYEM69C`a0^f2j>%yPjqC@pS zFW$qQjXiWYk{)g-3G)Zeq{-11;ZOw~IO+D-X9X4Qw#m`9>7CV_hfw3dpAFs%POcF2 zro2q?WW4h#n6d=ns#%`|xN4@W09Q>3Z0!rNiFVuVl_r=jq=!YMLj|{pbRYn0A>IZa zN>Z#OIThUXGfx3p14H_Mf5(99r#Qw6!j7?mumCRyBnaf?0DIH>kBYeSAsy&6`o(gT`eSASZiBXz*-whx4qtv^bXgOXmzRO zF@qNdXw>m2p4uh9v1V!N=%U7H<27)sS7{aHFRWK-6|r7b;PuLG8$E2I-8?6{=B*qoP}kmXQLQyvK97mH@aEKwNf9COJHc-1iu)L$8w-+`dv# zHWYHlLUMQ&IRgEZ0Js&vcbl;=npd527w@_5w)k+QZn&wWN0uLh+Y7wWUEgk>9Q86= z|ITQcaOp~JK^in_SQQ()Gul4AyEe!RQgey`*EA9YElN~+O{-DKA0svOFN~3zmCkuh z>vgT%n&6r?`R-_5MY@v7YahLG>a?|E$47JQ#*Cs$?#Cb&E{fi3+No0v07R_mZJ^J zv(YZSYgP|5;(gVtlDj%JuT*k)G|}Nv!=-z7?bc<(`@P|@YSs9fwp80yE$o!5Dy63P zQm;Hl&JUV#Z+#yj0bWgRS<>V%Y3N(u)yYQ?sxAIDGAQj=)y2wlTK~eRI_*Xk{V)VZ z4=!^pE7^=yv2pgy(ZO}y@RAP($ZtSo6&d%wHw`o^9|6E_v5vkEUe0b?)w!Mh?t$nO zQ=@X?Ff&z2aJE$`yJX+R6Vga2PNPX>m+^{~k?}HaLfX7LWh)>-rG`6HcGK{otfFeR z^WJDpyZfPNz4Rv9Am=%SBET!)JxPE(S1xJNjWqCfJ^4roP^NG70#!z$3-vD~y3qFe zF4E(7^IW;I%k%6t(Yw!H>xZt5er~2v^Vq0Q3Itm=u8YdgQQsa&+}ymmvYVSL2*BJF z0CV#%4Cvex0MD17B|s09&NVl~n>7g+uu(OfD(t zT39(p1lL`%BJ6!+pMF=(30hWG|5s5}+~a;hZD@_b>ZM0T+W0yym_n0L=-2 ztMHEmz@-4bOI+MDpImT}Nl6VlQvJ$qe|H_p8Hv@ah_}gx!L%Z|Iu-e*y7@U8X0T!C zOG=0}JJqEop8$Bxc3#Jk9A2~IUUk2aM)NN|{pWh?)8%e`q76emcSV?T!7BNEfZBy+ z!#Ab6m8!?UqEvg+*60Q4b9LPFB6S5#1iT4;7lnkgzufd2n!77I9B(xF-cMfKL7I3) zd<_Y3FY}NJu*gf$xR-f;aM8zRE9v2eU`wjIm)Syq+z@!LiSH&UZU}bSQ?>Kue)O&S z4Q%eKWi!*?Q4P8!xJmz?a8n~KV3*DDLTinRF6eMe|JqznUmBcyh(iN z%}wh_(GpXxiZtbIZ@{Hg700C%0l2v-e!WcxQFK=H#QjnPNJ0!09Qxeh$ zNN^({!2-Oz%>u+f81aWT>1=Vohp}XMndH#Z=%r;-a_Zo7RPyae#qq-!%W_wg4nL4; zm!^yvVV))e7^qLGz#FJr@>0k244HqE4&LZ)@Ru6$*s5i|`_xtFNxSsI{NAAlTod@# z6;BA5CgR>1^Dn9nrChtN0h%BCg_JNSWL@4wmlSEqiL-5#bQ&sy)$ZCRA1I zX{T*Y69s<@RKqU0a8b=#z$ zs+_$|(k52!jg}2}s_GV?CVQg;(<^Ipy!QM;@!@8L1PSfv&B{QvMxF-gU&zy-s^`p; z`5^jWLY_9A$nt(%?1{C_ZLbgIqZgMEe{6Tgkswij$u*{wop~tx2{W5?khB|vq=m1o zYNt+>M^`ETZhyI1UP3dxq^i3btRnzdE&*_#&};gFc4i}?xO@qU%a=IM+A8%kOSZQk zX?BtpE;X-u&Oaak&IO2HZI2KL-vau+aT&X(IGSh9kQRLZ;`y#nEf`_&EkN9NZ35w2 zK;JhmW|ZA{?@sqd(TJ)TML4zH@JaN-aMx;XxR`*o~BVBGa=bpQ8wd^+Q{;p*E>~ z)95i@+^akY(~mGD4J}{Bo*JLhFirmO++PuQe}!{T$29)W*wpzVI`{0aFv!o?{55R% zW#=a+NksBfJ@a~*JBcGUoj2L3on&f{9d%(HGnc?Mh3$1(^tDqijmfw3evFMW4-+iY zqNU9|+_G!+Kp1DUx|%(8EIQFV6=3eiYN!EL4m~og&X%8#M^}f<%Vd%_Iwxk=4wTZ` zJtW0F#J{V#J?B9NbSEnS?(a_#p!fIjmn)7{bGugGgQ+fw_7+F%S_QzawH5&w)4oMB z0(=Y1(wrZnx#mJbv2**kOEA{Xt#<9hvI^is3`0l}>%~BOC|9_SBsuo%1LZzS zsSd2}sLm!Jf$ELbU7?ESU?u4xZgBvnj}V|tL!QBAl4Gn4v<+hUz0Ed~gW^D&Ix;^e zq@UQkvuGxym4A z@Dx|z*_HtC^bER_96a~hu_NTWJA+6Lo_iB`W)@vM&5S1&+->hP0zh=EU2utX z<9wDYQ8B=Xy_bN5Zd~lq^Bk-vJ`*b9YIqg=qto02B;IMOMqV|g1WIe( zj-=(Aqxbp}0FJIb`?t$M+t-zum}YBMjx{mk$N(HA5ax()B+Miw(7V2d>%Th)0KMz& z_6gE|D_O4nCkCMRH~|Ut9;xAmr{~}$(nHYV00egv0D_*u$0YX+^4=bCp*czb2#O~r z_;j6Hs>vF?DA$y(8T1KeW5`auQOHy!xsnWrYPxkbg8^kJ09al?0JD_enwx)Ze*d_G z!K8|(^9|xW(+C7l4T*TpIKJox)0UK!XZZX&?lRGx01!RjrmmI_9mH}a zDhBA#Q3RYtbXXnNp`Mc)NEdO76A-a*)&(`^NH3 zD*`}J048{HPWhVdV>*3F6D+gSU3caape(}z;Bb2!0r*|_bay?RPI6xC!q=puE8`9p zk)r1SELV|SS*pRfWO-&ta@Dtc9+8dBj@kJQ%@%^dQ%smAz7e*YltA$Sy!oBq8ERW=JfS~1`KFM1z4Ic1=B3oaU*g(f$2to zzo2_9;em^Ug&rv&JwM*mRwEJ|BcZ;*v=RoPw_Hx~dck}GkyEkaoT6y@eo{hCSJZXG z=C1@`*a(0ipJhN<3V?moYXtb?W>4RN4MKI@u<;!nB0aDa0ORHa0ifwyoF>4x2+F2S zy`Z0zr@Z5~XOo_pOAVL5`A6w=V^W0w2K6*@uXMT{p~!@wUb=9cfYZTq-0h>NYKEL; zJUc9wvqA6EQ8XPhodGEERb7? zFiq z`eo_QK;TTJl3{(6e61pVoIc;D0-PSni3%Q*%%9oga`O+;!>Rmc=^Cw;-b{c{A7kDm zfgZ?*U$2L1uR6OFpeG4Tb?p<;YGHASGkA81Gk6x@K>~iIhNXHCAKp;Ul`yTBXHQxz zom4;QCdB-k7xQlvB4Vydnuxi2eOIkpEU`IL4XCQmu3NC?_WQj_v|UL zznWDP48pcv*p>i1!CBaASOc?>q=@~g60vXov)IKyVrTz|odrmKo9VIIhNU2|JRpGD zwu5W?W|g6agF4llNQ#B)KhGuW!i7|% znt23c;j$#a!nIrlShyrOd2Du}t5sc3dKiq4H*j<4aRM+HQLDP0q!^4Z3PX9hjz!HZ*&ggkrC^#>IQvxo@ENjjlkkH=%BC?2Ule zGu&Gjl#zHZz2=R84Z#R#d0(tU(xnZ(5is|@STy}LCCDRSGcm?5&rG7m@z`!tNs}u` z1CQ;xo=3_Sc{4?RaA-9(i*fM) z2}EVFt0W|8Jec(j-RxN2Fg`naJsfM7^n#z8B@f4P($}j$&W)u8P&c@P1jxzK``ABd8TYk5mE~lI1wmd4J1q;v zI+A077K20I6`dV`$aUea{$gMtUA-cN!a%$9cc*t8B8c2~i0Z@&jZ5@kxyG&sYZHJT6aYQgoB_?F05~w~LV$l@cCK7@ zXzcEueWy{fMQ;j#yXQ*?05RWU3IVG92*)5U@1Z|B`FNKoFpn%Yl7Dn$fuhB;d z$e5lT3pI9E*k?!%w_@PC#TAw&O?=XpmW=Ba_IR*{jCd~AHtD^_-ugPUc3~C!+;g$^ z>7}(7c_BGTlMuVU7w#H%pE*EbVAr>;*&WSo?hUcQR_14Q^IyVI*7pqwu z-l>#r<|3~}0Gtbe+o@&*z^?$lUo7_L$S)TALKzZzYPv{+!>MV1b*KOJPfhjjvrbKC zt3F==hN-}dJL}or*OJt4A`)zG?2qQqC$YKaae^=o9+AZByW?w`xzW=5(^$6IR#NMEuS4G^ z039j-I&?n)=uiRBq2d=EN-@PJ%)_FiSMNKTxjTSGP3_RnV=c;@7H4-?cXM#r=dteT z536@h&z;m9Zjnil;9ht1m79w-R;m>J3oBJhbF5UftPE`CUiQ5D%h;l`6P^8)6bH0W zb3S@#LIUjLv21KR7OP-4d>yM*>egpUowqFe$(k!4F6wG}k}^`?wYf`ur{?YklDx$^ zbQB#;QG@14k-?bv-hcEPOD!`-T>A+-dMq{|y`#3p32R7=BVi;+XiO6}Rh5yjY5Eru zHq9lB-sYFVh^3uoQQVU(h4Kz%ixq3GYLGTB?rnbD+x)ZA?-z0IKN*`=a#ioTW%;RC z`BD|{S9_O#e_3A}h}^P%za%Watgj$+?GLg2<{u;o7IRXIGkCVSTg>bI6zgSPNi-Xu zb`A?I;r#2FpJJuVf5`%!{eE+|_5XqZZ2bkm*8c|vbn7nw9wC=&5oc}vhmNQiE7ij8 z**L0y$aBz;^ss3c2iWFk5`anTH`#*#-vZnGy`h5Y_TRt8%G&>g3Ywc7(!=By2iYe_ zAC7e%DyYGyqEy6^bDdTj~k50?`$q104yaazXt~wE;h3W z2g@5;x*l9e0EVjod$y12kj!%JL6HZ~$)6xJp&K7FgreC zK-&`l2MnJR;6EtG><|TLdVb-v4GgzP|00E9M{0VO8@ro%J>IFF&pHZ(lyKBnwBv2$WkEqq0wA_KJt z$R5=E79S@dZlNWy{~!R|#KPyMZ&z%4rb~hO4=I7+n;ydh1c0FcVE8oy%1{7Q0GuYk zuK+-aq5P2>?$4+$3sUq7MWJibksvip7nKM#Gg` zJI21R)}##r0)TN>0>Id}7(jq;5xTZ;p(!K)Y{kN3E1%;@vmZAdGQvzDC9s{;+V$#O z0>D-Pu)UiB?NtGA8n>DNC7Mu=_<+aL_wr9tM$`gKJtE_oA#Zd$xivl2vS23Vj z6aa%{4gs9S&aq-n#kr95f_71S}3fF_QpL z^qcHKfNuecIRt>BSOgT8n9B$UyK$MW52q6Vb^?Ii0tS?w0ARO_fCP5;WV(s2iu&mm z(nG8w2fM8VfSupuP6B)ju={`juoDZ9o$R;eC7GgvY33v;f#Ok*;u!)!Q2N2!y`B{PXpzrb z2tYo4i+c(1EimKP5P*D&g_loU=z|}K`WI;;sm}^g{i%l62tZN=KvMTIP`P_dewZ0K z{hZ_pIsL>l{2wVGS^<#L^6jXbG^YyarHJL4QjsI2O$bOxsVE?&eylx7QJR!W;f-=L zHkhQyr>{PO0H|+>O~tK~f}B)Jr7u0do^6A&+z0xjZf*0C^N(!HcpFWx0}5x&AK8 zMgkJ@xW1j;lPlH1gd>e2M;hN@K+`AydaRfMZAt*-@i+kqdDN!#7epi`cqn%P^^g}V zhGrT8NTqMlm;gj60ET8e0+3AsylmzTAAY?VL^u-J?*f;|VFVzN0*os+tV1%(H8zpU zIwmKD`g-IHLb3Zy_@?!B7q}HoOu%y)X(MWFLx0s{Edk)^TWla8ZZRU?`$?!52vxG7 zes<5>QSWP$?=-iviAl2)uNZ!_o%A~P3Sj(>$M{pS24evb<~Ix|WdX2smuesM6OSGF z3F_>9(YiL}%G6e&3v6~NS-nXWfr}4NZAAd6`mJ^$z_-Ba-Jbxkd?%5m90#S@WBc2U zH{(bXR7bUUoqG)dpeg{U&S5~Q3V_}AJp`28ZHMl1beCMdxK*gVduM>u5xn>T-7N%w zuHW*j1o#&59rwEgVib!NuL=0ErlX_;wqJN`e<1*D1#t81!l3`qrU1Gq*b4hGJh)H8 zX&1V;1xnh89P2?h26R0T0IdvUKyxYp)`KDfcs;P&4n*tO%-*@0O}Lmwntq^JOJr3e zIkM?9TTFm&fc4-(0+30u2r`*wD;#Zioq3j&kjYKLQLj=j6M#$#u(pPrC9zy7iX5x! zCj=y9^Ppt2T_OR*DRN}9bO-7h&87fIMO6m0DFKkp3<5Ztp@Vk&0dFrXVZljP($!|= zGcAWcmP^$Dk|Up;L}Y3|3F))Ol8FnE{ganF1kDIlW)Afsr8D8Y0Y?}aJlJ6I5OI& zqswTF0Ay4EWb{%7G&TV+ItSO>F@9fx#Q z=;YE_j{u}o0Hm`O14>bVV1V`@G+}^t@ysKnfN%vsPRBBk-Dybbiu1fL$X)qMlKcp* z?_e_PY5M{o#j^=WNU8 zG>cWRq*k}{e#{(gJ|ZQgd9O>e?Or*CBV!#zB14A1CuO8a01Vi&orBIw7_dp5on;+T zK%hzXP?`jaUomaLptk2*b!0#@DgZLtmw<$fiUKm~M?8iU(XM=CLo<3c$&pbpz)#+h z+|v&dx{yF5RE)fY%GZUiH0uc0T!vOF$qr^C$uVMAcXp?=ELVCW$Np_M0SW1RtFzmv ziXuAXD^f&sM|PM*ze--m0j?*o1N1D!#pV2nAn9%Hm>jDm24mwlx#>8c4=%vC;QM%lbhR< zJLIz>xy1#kcK42gO5w3xT*<~A+9pReih|Hz3$crqUsTo(f33ipdk8{NVe#RGB^?{K z-}8FGakHANP}uxXyvZcDEU^jRLD@_us14ho0@Q}d18uxKw`Bj&iOHmfvbden$NC!A zP68y6W6WU^pd#*I7x$&~PZgk2M9!X_T4qeuu=qqN9Q#Bm91Bp(hnMGAih8&mU0gxp z%U#^dbG5q$y^f&My4pQkMy4l|95J^g0b*_?iuyw%KT7QSjr1&4_`}%6HDXUASBRYj zh#fD_u@tda?HZ3gczJFDIRk-9y1J}iLI7T#n?(XJxUmF-IjZo748%7Wux~J60p6Zt z0fHY>B6$4T$Yu%&!9VQ<|1<%T{;n34l&_H#3|=Y0VCSDQkOshj8vp|qpbzkCBP<1t zCj%P6uZ^6cxIp6b1imI!^ANGOx1_SmD1}p#r{Mrah!QjV$ z0V+bb$%3YD0d9~rSAT6}eHZse7B2((7U0U_f|&`+32Mc*7Z+S(rVuOCicKN`Dj!o0 z7pyb4lN8JR&D~tB(!6f2R{r6V3ah%gtI|^h;PN2=c7$6Az;#CeREUX7TskO{cooiE z(b4j!%cWU;gK9@}yWz8fCQ19dm9d*s?0tFCz|zJl5cUg$eQ(nFsYyloDX z0L$kuB*60dqYAKmN+ei5@pBW^y9Z+fqbRkzo5`sJU^3tpzLq4#P-@oQEuyUypdlo* zyn1dSibYf$V+gTh3?UZa9livCzQb3kyIX^dxQPGS#3d98A|LHVKAM0a@*7Bs$gl10 zCP7bOpiAkDKV={d;O8dpDd|c8+34}lO{^)Y@=%G^*8P84L%x^}^2Gw=D?y<78WH3R zv#nfrH`{*f=4RV>-P~;BQRBX28jKnqxTuzvJfT{;r$&yFx>NcWO6pE^FIg=u6WP80 zIB(U$T6j%w<&W~(ZrkF5WSe=b?4@NJQpFDWp`cO1^p>|CC&Z!3_GD`73v7oU3l-UV-jP+& zZ34f#=a2K89&Xp`d%Thiv4<64++XDP4oQyX#W%Q(0N+5?9q;A6<%H_u6RIa0yjV`S zw)`fL{$dj4CEkU#dbqVmemBTpd%pUuAT#ON9^Tp`@9x!FF{tpu^jhkj*Pl|<9Nyo1 zkp$SvC6zSUN*Z`ajeI18qy?ILRT-n{efHQuh-`~S!0gG2s5BH8*W>VoD2_q+E zapz82lib#B+fk5WS3el*X=juwyvm%UaB!VCN`kYkQr&BQq!f?&jF-mGf;8?fQ`jo0 za!)Uf4`vlrw=K#RW~HCeHaL%8Qlog+uVzot@CG#U_(e&R>ZE}@l8=O#G>>gn8F|dq zzmUhwp6AZv7hWE>HH4j3+{Z5Z+30cPFcT;lVMl*n-Lt6Wi z0HxZ#8}CiPC26_unX#mV2|2Q-n~;+Uz=RY46LK~KIw1wXZRcVF^tSVy6Y|cUZbFJ- z_7ep;A^ESqBe$9C5z5m&-F1H(0hpKq;JW`d0l4l9;CaMLa-S0pkDqwtz9#_W1OU0D zUNi`loB()GP@Mq(LBTl*ruK3KeXniF7z>C1xX0rOGp_kj~Y#>1P3*MV+uagw}g;yoZ`oolO zC_pd4>hpC$I12b~;ap3*G7b=Y?)F&3W0!XFY4{~*BrL4XC=?c=NSECq|76IdKEITR8I z^v`yw?@s`>YPjPXM^Z2tU4p@-f671_00V9S3|N4d*I0ny`^rx+8g!a0y@Stf#0vvng zwomPnMrv^y4ST!S9JX~Ryx3$VnvFk~1-?}MSjWP(Nv0o}VD;|P+j}BH09J1SuzFw0 zfUe#GV6S)`0STw~Q+vCWS`_zOKC(kH>0#LwITq@N2*5%uK*m;iIi2Lb0k(#}_ADG| z{zWJjYO&J$QoZ8c5%WG%{SGOC=Gz|4Vgf)@0MIiHLK8-Am5ZEtOHzQj0C?`yi2;2qB0yF% zsfS{@q&6f!Bk?!+6mXQ}2@gfY4i82AfG3lpA23onn*gL#EDk*+wMHcO4X}T^j{sy; z4QPJg1K^uT2^oD#20D{^A5yTg=yO9zIcIxX04kSPchC11) zf0sClSg!oU06Xw22}pSGGoddC`VMX(JrL|<$8Cspu!}a~X@+w1Ro9eI)wb}W!_x$S zngC2qK5#z4yhci(_OeH9F9F+oc8fV;pO6%J6m<~$o`3{mr#xaWI|r374tfa0UUtOp z*%A=*RL?J=8kV+XP04X9*0$>I{P5?%zZ}ATTd<#@vy+QzpiUkwJ%Nz$t2^>H2 zIDSn4I0}Fn#B!ym^0HFDwee(n4`ccTy@ci4f0tw2@gn)A*Up%G`$%k%uO_69*aaAO zLZ&InLDo0OCcrnqyBtFa09g$yJ{@bgcR41K63CA4XUBb$*c`Zu9P!;k253$I+%v8u zKzZ`39HDyyqN=aonIU!G4|?@Q0zlMn`7Hu`i}+pQe+dLxZ6;1O&5l^wZl3v;ltA`G zKR0?q{ewONTLHkfG6UMR0$}uJ5Rfo>>&g!g$hWgp5gxjdBBB-mJO>Z}p1wsP0dWg` zv*R)Xz)>ui<6XAh6f>8Uz;R}O$MJ3gz)=81_y7aSQ2-PwtS2CWVz-2N<05T~6GI=Qj8k+zZE!Po{kjbe7+-MO+?8r$Ev5Fkz z9wGqb1i+4*hGM`BH!dlhW!@nrFnrr%SWEyI3IK-38Bm4-fZ=%qgKkM+ z_^Zdz_fVS@5wQTE*qi`RRM)y0C%JC`iWd<8iekVNx2|tD%Zwr=P#mVeMx&c?0+eEC zm`yEH(80`LxiS<3FuaQZpP}x+<>zhiu{_WIQBu=zL&H`~6}QijSlRi_Z6`U{NpoQL z9|FKm0A@FT?C|T%7o-GspL*b?izF3c3l+iGi@IZX3K(b%04D6qhP4{Fa?_ zUIk&&l9b@0${=qG&VXjrGq{-Lno%*poR1QaFy}=<=X}TudNS!DrJo|Dvq_AUdg^zQ z+~?>v-~=G0LY`B4W=H-wvx$_D(x-$THsAyxrLs@feC%Sm(h~!u6t(mR2~9{TcH)EF z(D6L|Ou7hMJY~Eum&%-=(?HbIuTFAbU%oiw)zLR16l}#Cv0Yhf#4V;9>40pf97lE_ z0U#@z@v1_$h~*<&)wX?7XZHz<6{g6Qg!)qiuaHm3aYQ{Yw~!tJ7YEsgq`scyAnNI_ zA-S)QN%AxS;3$rWqdmI6-DT!AQUb}BJ(7C~aNBaF_z6kTn5bie^F0A2H#p%_9z)r0 ztCPxugD&%(V3n&&04RC}=abwwh;ME>69}3b5^Zi!IUgY<&>S+@_2pOs(3eB(rsfjk zWR~l|6$4!N=M%u)7@F-2mlKXyXG=@^asG7-=nCK&Y-G8%BnDUkUL+u41rP8?x#_uR2nYR;=kW8_}7Rrxy zEh(Zo0g%lN1ZXyu2EH;ua^C>ie3JlVQw%tpxj7@|nNLXx1GCsm=Qji(odRH&ao*6N zlhB?37@1WF@JHsjb;BEkhC0Khgu}4XP&YE$GoU>uz|vi^w6a_~PUJ{tE&+Zry_S$m zKh!Hp&kq%k*GaziFT-OYkJ@b{_w|v=<0Ao{t?dyd)$$bMPbQA$ds2FfUQPF)pDIuZLa@|zF zg#ct!0L`eK-^Wc!9V{ZluzZA+{b31mYn+k!Cn+FE0g%WY3}_;Ki}x7Nwgf;T4->$N z46U)DJ_Y?XCiMKTq=zO2Kq8a#f-XWLeT$j|_!h`yQvx)Tp=sKb_ah(P;XZ!Qq$eqA zHbY%)UcOvu29q4g?3(9-9KnFH6aYJks|iTR=oNYHhDj7poiB&2q=%SA4wfqj0878g zzYySC1U2282oe20vx;2I;`{4g~G}l*xyLPW|AbnCBtfQy!t{PpzNh*%2OB zpO&XwTGxGnKJq|a_fP6g|LfOv>)&V9bvIOfevtheJ@`Xi_i2hso^*P@Vp2BZe#NAG zBp4ES%7yRom5%6x+brAb;?A{`sz$uxZbXFQZVAN|cNd>1oEJVViPsPCHBnz2%P-Wl zR&#H8?_^#GrBbelo9$4AIFwBA zj5J3Dct$FZ>w;fExsvqofOta0Js_SyfTV4VnMVRV8=f6;kL4FAKu@(fO|Ae@eBzlf z`@}P07T~Eis<>H-2g8>}+=Jn<5m&{%g+f8l&v-#ULjZz)iv$RICwjJfc)0|xkL2I} z)8NH7f@j|do&^XVW!x-9@Ee2RgEH=<{9xFD!EYXe-zZ>|an~eGFsPpIiVA!NwN>E{ z(=WckfPI4j3sA<*0tEkSiQrMjJ(NO1@PqQ*m>EPsP*gCUq+l?v1cM2G%0L+%Owlw`F&Yd)6q1!E!N%7+ zcCslsMSbj)r`MLYXQ~vH34Xc74w{6m0QLLHJw zmfk2kvW@T6YL-kGwk%?#Tb8hR#l?eSix(c$5gn~{DkUvztXmgbba1>Q?G+eWRb9?wMuGmkXgPq&Z&EADa? zV8xXzJR6x(V~RxbW+~?SHOArz7b9c|re=!V7|~7L!=Kx+w&mD&Nx3w`cZC z@Ve}#slp!yFAbpNyH!b70?2NVOTN38ROwQpwVwZ<){rWugH*8qsY(!Ns(uPmg_-$i z)XmK0Q8zP}O1!h8*$D&2{p3xMIv&xeF_Ju?#%RClpvGviazKsI;#kQVBboFTzs$1a z*R0ZZ{_vSnv5cQ*`7N)k-S$mkHG5`6G})RV?JL`df6FUpWh^(gDP0Ftt4QmG)Cpxx zsMOZIs|F1efj^K@w8T74Db}T;;v<3JY`dTg{NI6^`xTw7F?W-(ivaA41;FNg9|O8C z768xmj}f4^Y*loh!DZn7u>UgV_Q}4-vIW6l#I{!e-6-37H(@+)pVKoI@>*~7JGycs z;8lQU5sF1hJYkXA5_2Ws30d(b|35@W7pc_}mMl^RJ6wEyw~<{tLe`Xx8AX-s?%J)( zCPfOob?bpu<7?TiEsHv(|3g{xy0wSMyb`z z(^MA&Zo2-30XMy%WHmEJ4VJbwF;^A-m)1p#6D~9Ol(CGWTDHOFwKC#Xb#7TvSGu_2#tsWS4pOaDSXcl|*=Z!K{7oZi0Zj)Z*TvfcZ_ zqV480Y99$aOaheE%Vj&_egtMjlSmWWvt!Yl<}@kcs{C_--E&u@Lvo>nD$`2^_Q>A7ZMsF@9|5Jx>pf84U6u~4DA`yb45x%>C^N3h)KOr$uDPjuV`P!EGKo;z^^9(c79K&0L!C< zj-B80gNr^kuaO=$Q7;#{o!`p@$R^6GgWpe5Y@$9Yay!3|6`;+NkS?+F6UW%juw!gz zSb)2YIxj`%7?$F0V_T8i{=Fc6bo{7I%nZcpl%_sM3VtIf;#`bS5^cr*sVBI`^Hnh3njR;yAGw zUiJ+rhNnZixJNmbLNWYuIc`HSy!_$03=Q{PhK9rC?-avN7%TU=Blnb!4^dn&TaPPx ztzvC8PppM+7>HageC^@740*rgl13=*gEKEJdeU?xsa$tk+LSftcdZ@><4igXclGeI z#}^GTeFFunSL-x#&KCF$m#Z!-dfbd43tUJFhr3JG6$D^W6#$#l`j;0qH#ZQ9l~quz ztog&;uX1EeEGjfhNDI#I_MERK0L}%-s3YaV>j{8g0TTSqzp^ODyh>W|yWR8qE&=eX zfIg`|@L_I-IYcO&3+g-HKB?$>^9w1!?+>2eawFoMYT;LbxZgBF;a5=KFFt9ReN9mh z)0VX0{QMCv)7=Sxa{=(weGmcaH*~&T`cgqoSaOV0igR=>E?=oKcJ+w6pHjjR_aybE z|Mic!_3yKexI3smU%;xWz*~s%lQUB(Dp|g~pPZQ`Wb`Lz<`9Z;izDtCBj||x_7UC@ zHzL9jw}j$;a%RBwMK_10D$OjLvhd2(^!wEx$1|B4z(-3Sysju}){wNsQOf8`iyEZ5 zgKM_MG0L-KhUILt3b35Xyu!t_{*6T|%x==dTK?7ucQty807=FebA$v~#t)Bh*U`@v zpbHR_cPA*~6U#UI#PZDoT!7BZEE;N9x>U~wc8+itpdI2zucNhQ7o9Y9M+V)8$ZL&s zk=G&sXTR-8ppnamfwp4^FqkxT$DCf)tJ~Iot8Xn~Od*_mVjr zFZLbFABm1Xzon>0MUpm8S~;OkeLH$#QLCiK)v8&ms&>u7qSE%hTZ?)c(zFQd=Ua=e zNsuD2yUq@*{q3@O+fB_Qu($lciKH0%EeyYhIQsxI97%5;xeuIY+frbMoalJQ1D=JAfNAt_^K z4ayX$WXQ0E%8k;eWGFPq&`gA=%v1TAD4M=X!?)J6&wkHyF7l7xwVt)sUeDTlpS{ms z?>UF(EzX%o9jTLOj%Ic#U@o7Vc7;RPn@3C%gdrj zaW|Vr0^H5Y;@d*J64aZl4qwiN$RhS@rAJ~ zwT=%aks#ERp1i!J%Gg0|(7&*Q+K`=l2PH|gZ+94%=i0LId=EZ1xx444_4huf0Fd0> zB*42Hw2Ms7r_u_TM)T6jhd(xTij3*!#ELPO#7g=Xl2|Erz9izj zw9mq{h3BU3)~C|Oc=grZUu2QGx+Kt#RT~|bnz|xp%hS12*PfKIv$!p0izF>$_N0)! z#Yx;MI(na*60_xuTQkgtMQQc&-0iYdGAFHb(yi*66Lc-Lg#?ix4lf14avPt zZ?Nv2C27Z^gijW=vljty)?Jza{&`ZQq>20~zjRRtP2~6Cq~`2#*wcgn>|b4r zZ3%D|xP_R$I_+jJlThrM#SFXVV=?=Yt`VewVLhaWr8t2AP!s?ZXE31WQ38PCvjl`F zK5Z#F2kS`>5eop0TL}P1XR((6XMsmp|4RVqiG`zw?{xh`3ZQq^r&qWqb(Hp?0H9Z% z0i`EE@C)c#gz71oRp&eg4?jIaeb(@q{$COLRIgWCyk266{f-y2E* zc#4JNDIb@5*n5-|z;kj>+l})GKsO2ip3gI&JOw~EzD59dWAs&@p7ZbtDI!_{(2qw6 z06%B(JppkGec19(0>Do!96$N?Qcct3ec6nc>J{`ENEYv9NnS|+ND6@2#B${*a{MBz z83FW*tV;4-I6Uv9_VW8UFProbumGSqfB;Z*7WWe1EMz*$M(U52RlJ7@1y3<^Jmp2A z{)e;{krsF^^m)Ea0C)<3IM*|vLM*dhnfUkLzF*W{(W zgU)akc)GL%0pKVWjw3$1w4(e&B~8ll$2)jelPZW->uo!&q0EphofEE*aTb}78 zcRa@zx=o%aPws9XNpv2DlP1a+y)Du4BnMG3z*9^l_w{jz@)XHIQ}i88oJYj=%I()$ z(gMTPKErnj07C(kp{Z51d;EiKA`2e9{E{qi>2Z%&Nf%Qb`MZ8{KYuv^@dfD}bG14Cv4m z0N0_r2?$+>2Hb8Zsq^p%DI#tGz|;@`rq1Fy0-Oby_B-{sJl#Ynn2K45X}^lohj`ma z3rs)sneHb5Ocl^6#&RVpauEH4fDqANeWIdx>~48sMW3MK5Vgp`^9lmMQ-Gm$0fI7*xLr)tS6Q)PO0ZxCzh9d|#I+_Ag7v8+d=qIW-m;N0&H z%lQ!ol(PU>X%-ORuE6-&xbgWq4{Jyf;R^u1?+^gK>RLbLKyqgwN4K)1o+wk%J3=Tr zSFBv;%GM##?E5S24(~V8($06PBS zrD|b#G$k#>EdYqNBLGANIMYdf{ZDddARQ~OjK1y0Dqep=K~$_9QCxt3%9H+#H<7e3 zipTb~^K~WxASnQ*8q1ZW$c3c;5alXDbtK34yXe~GeJ#`XNDF}rklH||G0Sz6?F^1F zpp6QE9|inC06!3*3V5%j1T?}ZP0^k~P9|3%gNFCF@l6Rew(KyqJy)u8T)xEO9A3~bfLzwGyF+da{I|MRu?c%PFNi0<}@ zo*)231pv{X7*L`D1W%3Sy({Q0VH-R(7P-rsmn8-CjsSS5q#6S{hMYxR2DCu|Fov2D zz+)&9F_Dq}ZqP-YO}fa`ZkyQwBu8eQ!Mz0d2AWz^>A5^ry@v@zZpDgnJIz}}3P|fh zVX40;d6@vDRRE-QJp;;8fFP|O6BzZuX51wdL0^`kD7 z-|Iwce`5415ZM}})kR&EbkVE;n4Q-XfV>KTN7qR13@|x65TGfIEY#N8=&loAUg$?S zGI~cpo6*q>Z0XTemNz7H63Nk$7~rCA2yhp5T;*oVx@a=`4NdbOOBV_*>ooIjR7g^e(f;w}YhF{>+3kQ?W$g!SQFhA7; zEmSbCPh!k{>0C!BPV`X0tlgg~ zn2q}T6--2g3Z{f&AJXan?WpRe*tO}Mqt*J`Cw1DZLk_4iwQ#0a*VSG(5}JzMA{ZXHVX4-IqGS8py5*Su_JNz-6bgdg;Rn5g00jLt z2@v!N^irefN(o+Tmfv19c=3(k**Ah`0fNT^H!MZ)+k)VO2W~132u2(jlpkQzUY-CH zU9Tqr7}ObHf4Afq)Ki6jO~3dC1NIFDEWiUdEI{yO2E;R;I;87TZvaJuxbO7izLNmS zd;{}H)AUN-IFcgx2XX~J;iADy0|=fQkl<@3kZWZBn&Dl`d8`EjeF6gb+0wl-hxI{~ zyZYN-8Qsy}77%#?p@8`KSN9Y(KOF5^RPHI#%b9V_)0>878A^uvZ%Loz9im83n%PGJ zd3R-B(=#Q#m>JU|{RQu5f^fw@J-`-XP7biYU@SB+7#L6}FwibOb*dH5WFi0e z8V`{wu6qkffa~6qD!_G5qLZJW)iwCs!79?jKwdu3PQc{^U?AhMm-k7Ef&9)ud-3~F z0h)ae>i_-gy}kH}V+>$+jM>KmJj)Rh=yh+|Ks#8U9B2pY+<|tmGHd)Kj`GNzfuF=3 z7-)YIcR(XUsjbi;`3t4CLW6SGB4r-fXE%->?Ru%XrCa)g=Z^Y>?&%MBRn!R=B$ETd zx=31jp@`Qokk|^;jf3o9zkZM%>|JszbQoj@dv5}CWJctX>t$}EI)p%sPO-v(7q{3m zP$cneTqim@G?S!he`qFTr(YGFIY@_QqPZY2yq<`IbRYroB z=wC?i5}RPEJXY>+HpS9^;jFHc#|&Jmx&tqvOE*8mA`=*oZv7)!(^siEj}^!edqM$Xy2Erry7Y4#3 zgE7+*gQ7N899)>z%D7$7wU-$@FnuzQ3p4KBhBum>gVWoal<(VKV_qGU-rrkHkzkZO zLjq^8CXuA^_*M$xBZkoRVVE-({o6AO42Iz$thb%jo`VIk4S)& zEy!*1A!#6GJR z06(LZ%r-HnN7-M~mp2*MBYgNmNq|{7q@oCD7kI~AQp~KV5nvbvSoG-dhn$U&yKW}s`Zkj)q zUMmU1m@g{7(1gV9@2$tu=Xu8|rr?LVP1~oph|g93$(JLfi6>wFM*?jAepUglu?cst zlbhZ=5wFD1V2EJjS7fN&_!S{QHh%t7FV#qjjbG)VcH?)I0<`hlr%i=6e&QG#KX#0b z9}DExrK86J+_iW^?QK^9aiKrdUD>PELtYOG1(9d^k!KR1TULDiVFU>g_|T#DzOkVY z&^zBz7bPJ6L4f^(01I&MwJG_AS{_TmA}z$?g!dwa1OiKa0!svoNyk0+k~dmXUgD#-q|sqrw{Z-5U%TZA{oSk9xgdt zlK!gqC@JF-IC+@8?9L+qmp}n<34ERaTml8aC2+zp({Z(IxHggkT)yeM+)e-<+J?tc zW=fv&Dc%7B;a04iTU=Q$zyep+EXl4MY!)A-PH?dKr~Wl+n29b+ub(tr|HBv37&V65 z6cTWXs@Uzz9)cYRt&|H3dSG#ta^Jbl`}h`e=t{{7M;{rfInQvZ7-{VzP=k6DUSv9MgCSD`Y{8Fq$L+=WL0;|{i7Aa?T zy)4zLx`dA1`fkzd7a(D8O{M8Enca%13v~Kh`qvG^&C)gLHzr-L|KU!r zNKMI>ytb*aHhqlu4oR^uzdX0yCepyZoE&jtgTb<2EpSaapnqYo9I%6h?q~3@8?JYk z54W51M_x<6H#9nue~r~QN8e0uF)Jmf*1FeUPahHSexY!Ji^3U_I;&^AOGilabmovq zYVpwXjLEB1Za%6&jOdMf%gw+YaeqI2)Xy*B-!Y-s z(tL!yO%@Z}8uTV@?CAu+CU6J=7(~wEK>~b>b*tV$$}$; zZgd9t^<8NKz)?Ioj@ahT|0sQcmqJ?LSaYQ9(#8aUqX6L8h5_X$0P5H=0^ANi&NE}A z?M>(99#Tfw0)Xda0??bzVm1NJLa!C5Wj{+G$ZAl2hstk1?)Tm#1@K(w^V~u}uk3bR zBRAFG6rDvy0zgp!q3D0kq86dxD5&Fz z4qddoa2KxyX@Tg?qilzEApjjJfSp(jC{qEzbOZq*rb9;A&U7B8ks{(208AGW0H)4j z83E2B_$AM4go3GD%NFg?Y9G8F(r_a6ez8Mu9KZSsG?v$#r-JPU?b&eeI zViBx!)eFVxzFu_b?%hE&JE~ZAi=ybc7bPp_$s}3XvN$7?2R{?N*`s^ zHe(-LP{7O>w;;jPD3fvBx&q&%4~uvUDaK&&n@7^~IT-X^dY1PhDPey^R&jdEM)O*@ znM^SH-WqM^*$x6Q`UJq}JH&vFJ^_No@CQQAT@1e)ZD*YGRq!6ksoM+szAy+&6M#YJ zEUFNILHO2ae=)p{5FLP#w@jU@(%M8{A5Cjv8&U$@miJh?83cf?0HAvp0~(?LxUAeq zfV-^Vw@&w1j?Tes(nG`ofa9|SfTIBTu@lLi0hYoI1YnA(fle`@7%YXKlNKoM_9>nq z02BoP#h(~ZiUQzzlK0-Ad(OF@MDDdbotKKFjIad&&sqe4r?Y54fU}4%g{=q#Sq;i3 zi>0tPDS&6}UfY#J2mnt3!1F-{l&1jb${7T>uEgeTs?X7RSVoG7SO9Q*jR0_T7Vi__ zEP}Og51}9_W{zaA7M>z4F#X17dX@k%6#z^N-WPNnS``3H%M%b{TKYcQo6bXBQgj}` zv>5?l>MS}E;4Ff*um_=FDrSypuom7!T3|ZjKHI002>??8z;reP+NT0w>^@JxIb-)( zpRMz}db-gY%Fh^$(DpM-B zTJrT7YvL2K%E+2nX1VHMP4w=Uzx2QOC6ie`R^D8;t=+KVNy}7)*SR@?UlXj4#ns+j zZL?~&OPZbAt_W#heI!Sr0ON-S)zt#)<5l_>*2k;v$NE?*sA~o5<7|^!E3LPwSvuqV zw}ID~P48utSa(&KjI2CfGYThI3Y(DB-3MATb9KL}<;|L;j8dlIgmQ)TuPeMxq>e?A z?Bkp|-mi;d`E{c!WE9Bb-9;uChJEh0Me3fSc0;$>-niTfWA3-(bQ%E|rvhM{E@VK* zsQ{RfFB1@&k<0G4GtznZkQ6cE1lYA(e$-8J3{hwBB>~Q$mwu`0M*=W9$C#YnX*bV0 z`anWd7}jajZIb7W3C0RikYBzQp+D>_O8^)O0EX2VP=*4a=2f475W~8@Wm{4}paQJ= zQGPzoa;47%bOpiX4OGBLYH$MHDbtBqsF7 z2~tFp0w9||5rAwui^zjPM>&f+Z**&zKyqYL3_{uL*F>^eowSh6$`9IX)*}Gf6aW!6 zXFxd$fOK{vAe7EdzGZ(>K%@d7o%b-H>2wy88PK)_Kt5*^5Xz@0AfFOc^3QU?B0V%I z@?C{9Lvm!(vD1R$Ma5lUyzju{2b*;hNy^v;kfa(c?o=|2P@rvf0Sg~#UV zLjjP}iUhcvCXa4gDKgf6BZFYjD?ip|G?f9(r~vpz2Fo>}BG-hPMkY<4oOHSL+dwKM zmYmz=DY4w9BFD&_L;!N>Sj{2;(FuTD<`95f3XnUO^Sw7n3u#;{ZLOxxzO-T`L z3V?*RBLE2%0FOA4+!-WK>C%v6L^?&^rL$v3#wc$h86uNo$JtEIBmkKd0M9kCT*--C zR)taqUou-oDDJ!Y<8aaC<4m0ev6hi>wog7HWer+J?)Y_S^}Kx~2T5t7_#&B^BnL^6 z2cI(gg;1p`-a5VzY$xyxPNA1NkMN3&5Bd$16UJN0Nd$nh02n+q7*NgvfHOXb*O1V2 zIp65}=s;QsUH~0NrtNE(UT9EdC1uK;el4w_OgX2A!E+xu2n`-F!r*by&L%~qHNk9t zOVau*$&pquz>Pl1(W1yP7dH@q!J`Ix?`wBwiRP|;856zFNek)R?Wgku0bnNp()kku znoa?*vB*0i=$X)5j7;!v@_i2#Nf8uxTZ*+v4vMbH1_Xek0N7ZxA^;o(a2#<%c?$4q%ZBU{vHCsRb%q|6PqY}BJLDvf$KLu*RuqGs{r6yaAMGHXjA}PTgwv=>d(>> ztz~UefTaMqwl-owudUAFHU>1W0$_Ti6A+pnqJZh)q8(0($musWr{hVEoQeTnR6uga z4%6c)0+3EIpmZjhLMN{s>8&L#q;s`U)TQcO0+3Dtkj_sSP>KQ|onI2*(y1>gi1>!T z5spZY`q|9)5Ot7dQvf`O%W`c=gs{Ej?4 zNpeIda^$fu0m!2OE|2oEnMAYj;f!J4Skgis?|;bV@o@r>M*)z>1q^6}0!SVc&FMY) zntRI$m3bJ{5dY(wZzcuAD*(pk4hA%v&f*XQ+MobP=XV6Sbn3bWtx4DhKoAy zB}W^Ya~)Cq0BK4#4j! z0>IBVxPjzx1AT?hEd+qujySjEt=(sPF~Y$uW3uhPfdpV)2!MHU9|KBG09;?D65y^c z*q%lx6d1i*~gN&wFYRlpU-1^Xo_qD=vi$R7#7 zbZ{1zJREe9v%qvHLIAEaV&SecSpM*_ziOm~d|vsm&1YQ#kWT?XvKa$PQUK($D*>T= zcJwX#kpe;$00|wh;$&QpWIfc^g z_1r~0igc0ilQ!WGksJwk22T)xI0Zn$7ZHH*D}c)@#&2wJ=15bcP&)3`^@-&*!ceyw zACM(dDgaXYDFa0tb&X818}YA59vZn{OtBkr=OFS(s87@ZW@k~7gPk*|K!C7QgP=Nd zHG#O+tU6d7vz4RRZ|Ck?#XdE3T}d%T_` z&1ILzP7b!)RsXugbvrg?td4qvFKn3iT*IMt@4V4$IvMjWl%9B@WRm(tp=7fDg+j^X zM=tzBf(Eiz&*g^%%4C#UxApyuvm+MdG7_9_DR0Y zkJuu~TcWN-l0&%__B~=}#dic?RtRwHq-<1KuG3!RxIOhAm5lj?D>o~8eVkh4e6k1?csII3_tJg)>McAa0-~lJ*2(LhLig%B0(msz!yN)<{g-iouNU^Qh_d zW4I-yCT}YmT0ySz50O7KB>GsY<`UqjVTbyJHC#qG44-(^UOZo8KwI(+-egt4;jy51)Ij9Bu1s&}l_5DUo5C5FP01fBBXvjt zD^ab->;P#(00xKv=-{>tC^-QzLV6IuX^dt*W`~ILa4#u>od96>Faa1N&SDM$&H^VG ziwOWfv2gr?(#U$!0?F5Wl3NJ?NdZ7|F9S+a0F0Gy2?&w=uW$J`DIin&1;9Y5PC#g&hyr#r5)WQ+LV9RT)EK8w7*~s3;(- zF4{e$h&Ba4R*w^atU8O+1UL(1^=|@@Rk6sO)%jlOX+bw4p(Ur;gjOK{2^By;sBU_8 zmLGEa2hJixE^i^_P%cxa*b@0GXUf@=zwl5Sf&a zh9*n7mh_Mokt2~W5`aVsF!MGk-ILrIAdepqfINzU%OmO{M@a!GJm{zJdjddC0F22$ z8PIVe0Ez@Cj1-wpU2@I~-x8+V<-z%?PTGiD01&N50Ejw^<^;qo^dm1TJ625gIuQ!G zV&>=ug^>ZI1D`Sd{~|2b!v9&8kuexOIf6K0%3X@6o13r&|2LpsiOXx zfpie`9BEKT(3=eCWE22N-ok(;SpW>7&k1lt$ZrWFNFs)VGo+^>o8-Q-FZze1NUKvX zJR|5fpCQIid6FZcV&D=gn=-#Nay@Awp(!(LLT@Gj2^9e0bzngG34onNZvsM-F*d^v z9p_;TDI%u=VCXzb0602}c?38M>@1!q03^l2kql}h8%YZ!-}FgtCjcY`P?F~Hd+jzr z`H2jNho?wchfC-!rr-D+eFt9tnL)20VgbOh6ajed%}?u9ydEY1W5-#XB*0l7Dhf!di?}x_qD=vi)FA{Qsm|g-0-ObsI+Xwt$(@%|q>Qiy0MWAq2+^()zuAJbgWhrm@vB^E0>M>d z@~?6zlBAFVXx5xZwOE{9*YOZZAlK?a)06M830q7(FLY=g7a+mwO38V$T z5Bh#*5CFdd!0*!pz^?$#FW%X=juhbX72oB11i+;LaJicRxD>#-3<^RgNeh0zo@>X` z9|Y)lihOO3y)T>g0w&x=BA>Zk5-MkrVc8e%zNL}t3zl(fLI;XFHW+7Wn~f6}RJKprysRo*x_Xjo7I@O8@dKG@-fI*Rs!#KB+pQrDJZVFY zxbPA@iMm5AP(a$Lf1!Z1a~=vvrO)@IjWjuTSikbodv}?7V>1Vq?yqib5hdQh{qhmB z8IKRGYrY>VsXsz7Nz~0vvEKa?N*@fQA-l(?4eezrjL*y{9MUjDZW&VBq%6yBXnq)< zIl=ogFgHlWSru>!$=qlGZ{430GGC2&2~Ub1KdlrP`V~AjJhrHDmKi@Ov!};WdGlL? zb=4+kJ`*WiD{$w&+*UUb;TNBgT4wwo={K7WkCzFxzOs&ZM zhu4~HDH>X@P=4z3l=Pco?bJW0`X!-e5Apgy{dIy_}38 z0GAU1jy)w;SeEPMMBb46YkFyOdUn2s-a-Q9^8B!w@$|@orqcAxl<2%C?H*Cw;3~0> zRB@FM04wo(1YjmQi`@h`3z?#&%&?i6HN0bl>O7UWB;9QyeNFMg8Kq6rd0ubt57GhI zUwyI#=F@1<)j@#dvvSbLawYp~K-L`o&7QpLPI!fML))y1(aQ5JOR+~0BbUAU1<4Ks zfTRFOON;=J)JVE^PW1*70Div`zeKb1(Dh@zNu&dQn=@ z&Dp;lL;sx5(OluvbZ)kv#|?NMAOJj_#Ww^f&&YUl<{w$*ha^_3?EQ~GaFt&!=gaW> zGSO^%ILvp7tzur$Yr+(;trB`@i&`TgG z-k9W$Wtknls-y&xS1hz$c|8FbwgO;Uv0O=t99`LkfKXR^C}P|XCPhRo0Qzza z0T{3X;Ic<@XMo4%=MeygYM}cAbYm&=biNV^X2(j|)2t#*&|L1*+(-au3V64fB^*WIf#%sH$?X>Jk0Iogl%*=+;y@Oe<-6#f_mg5KrP0KM)+bgW^U_R*~UU2|| zFA$&vBfh~}k~;(GM*m$v?-B}@;*MGFysdqA?+_`0r_&woUE+Yj5DgbW2Ut>VGSI**n2DB{!aPz%~0Ni}Li<>Cm ze9T4rJt?A1rKblve-eN>;Vcps1>NKNNygH-=x3v~&@B1H@ zX+kKHEvWB8Hlq#9>DZ;EFSL!v&0=NQB|p}+&fKzDl}!78vJ14y&@C(O8hfa3{jdAd zjQ)Mjmu6b2KHvXTRe^t_gD=hWp%~@Wr^yCini;&veraY1p}6zFmu3boqA$(dx5)p} z3?jk{XeAW;rI}MJ9;mLjXN^pyXx62AM^hx)XOaEp%v5#Fq4lD+@Y~9i!nreB)3nGO>+iaH-;-e; zu?OFt$)dQB^)#PB8UgtB%uo`5!QfmBhF_F{_(t~GHyE%0-=1Lsg72Cu_y#94v%D85 zBm}?24}J*&l79d7&2Nzu4Bp7aVBA|$N#g&^x>)%Hat{*R9!L!O zF|)MCQjj>6i$sT?ghW#c4I~;qYo|g(0)oEiN>VWCbRH(%FUmw3L4R-~puz%B`S};2 z!cwIYsc%~y@<5&{QJK@27agu>^^7-_;sc#2KAkB9pigp004B0!IHyk*UzCaX2NU)W zCM*DxO}}Th@K_2a^0bq-8e;N8%54k0y%Zmq?D3iGAt30OQzQkQZ_h*Lhl|pYMnH!f z0UZ{APRdoSx_T@Hon2u%_*~OkSqSyr*v~Dp@5X+1k^KS=uQ>Qz(=+$CPBcA>W|cFK z-q@_DS@~*CsX6y&T^3rJ^xF_~KFjLuwO$;|DLt9>%ZBoFk;@k6P6n01|;G`ek` zw~++F_vPdqw2il(AbetJ4+*fk?@|F)cL^`}#L_pUhf#Q9vAsN;AV5Z81A|X2{Y_FG zh0(LZu}${Cq)V2BFK%m9(ckFUC0-n3#xVqd;qQX|E&eRKT_$M(&a;Ml%!aBMGQ*M4HDNztqaLjzPl-!ivY z)?Z#s&HZg6251Hee698dp93062*&5oCHB5>A_2H#8fuQ+FZYErS+2W$F~IHpVgmHe zw}kGc_-jBJPug@pv&7y(`3~PAJ8a>_AvXOV5r7Hc8|)*wGr;XWz6SIap_m!sPG?4R z&=UJKAj(C&CkBd+&WkP*nm;eRU|y6oL#Hl~PuskHX}*L4&k3nZb)uMKa+?$(4ODr^M<`DH-c5B?wy#ptzwE2jp3D7&5Uz5V zSlxtQ`K-@Fqh(R|>vgm=G40mm6fh6|+~!&{qC!^8Yes=!@H8Po*r>w&+5Hmp;Y zIh)V=&&Bf@mF|D5qMWMte$E`On00efM|I0dYe?-#eQc&TfCNZdgWM)}kp_}RK0?80 z(k7@fk~UHQLeeJwOVS!VXCJHT@cHdk?H$mNqFM4H`*&ItHDlN0lr{5*R6BQtFn3&; zwZL0Qfgy?WNFX2et8Z2omm<-r%30rguMnhDFtWn*njlpUe2jcEfw;3@@tnQ0-@$;+ zLjiDdaf|@Hv%laxJS3f?ZvqoTOpq7l|MEKrQ)Ehpdpgk!nv#*19z}>e1I*)NQ z*^NL1ct_DKW`Vh4-}wX{Am4uXrU9wSm@X>7CIKl7OSJj0_@=b^Sr$k zd|q6{KPmGUg@VX`_apzE09~T-NtqH$B_4kSA@HJ0?G5dIA)q(3m#MByzEl{vj5nm4*? zsr9&MY1|_|CBwrSyBV4tJo&Jjk>13oWcKSAz~%OkHipaXA#oi3l#HxV_>>HtY{fmw zVGlkfb4qqR_>_$N;k*1c?(*AnTuN2nZjfd+m(BV)HU9dyWQ~gy&hvt}vV+mp_`N`6 zYy5f4_-FN2xohDnTIf&k{-LZjJs_{o~d$jok;2Q2MULe3(Na?$@xxPbI4R0->dUcO9jim~drJ}T^sy+jV4RR{o20q{`P zM=xf?AIcILs{5&=40a!d*~#zeW_uZ=gjK(rDZVJ1FLopVz341@5a2A( zi-QONJ+X+>YukOAH<=VLQsuR3yX2;KHp$U{6JE5zJG_q3LD{Xc*ytJbC8H1WqXZ0lm+Nc01wEajxsL&<~D73k-3%x|W<%f-&mLmW; zbr#hLKu!ffp{*VP$f*D>r+8+eJt<(w-1d^46xjqIsRE$K2QZ+~34qJ^0|bQfdGAYh z%!uNy%`)gn55bBY^qwOC^jwp#5D>S};`(L+Ku;_jJ$zeWKPiCTXFk2J2>?9-K<`%u zl%4>X5(SnAy%L%dmoAq#FK4%m_ztchJp?NbKre*=&~r^TCcs%p@A;+mHiUwsm^qHY zx1sJJEfDRs-1g&e0+eW^mq|V;lV&{2m8Teh=PUw3Jf|;5H#!H)Ne@wr1Mqy40Ojcn zwvgNzVB&vH02qoV#}Id_sIH$TEigRkGyIzXFg$4)7J518FtjHIsIFg5K!{&v#T{u`m#?4z#!v*des zr#hx-i~8mAL|6EAbwq@_a0$iM)n|O(zIOc9p@11XKPzAK{CI?4S3f#0tE9(PICW1U1KbqWQUPuX<%T4vsozF=xFf!Gg}o!b zl>o^|53eT)a5J2}!k$C)R)B8fIRo|tSbX9pn0?|Vm<70vM@^ljxD#%^!rlp|uCO)r zc@zqQp6v%cn*ap8oCFAZ*$R6GF;arpGl&%z4PJaBc=nCpS%BbCRA(uIpBV%n6xF|^ zxWM43&)_HlD60QX0x;o4gmq3gCqr=ed;*LoGje!a?|0rl7*wLiw<9ule7d* z+!8pkKn}agm~E@FT6!!6r%mVKgj##aRk=o7QF)F@fB93C08IGmB*1j3vMM~`YpBA% z4m9x%7VH}=Sb&~Eot>qaGlk?Ct(4BGQ8&m?WA8z6p;t0}2AKo|y)uHNpfNNTjZqh+ zAq{{AHvk$e01edFSqd6y0Sz2KHeO*53u~>ghlMp(*wQC2J*cgxtk3EnT9CAmZjP6%R(YoP>(yU)Mtbol3 z>gfejJGE+?N(J>stIgrJv+5-sQ3AaG*h-90P;WueV0}M&{1JbBZ@MijACgg;Jv1W& zEclruz=EHq0xb9vbx>v>LV6g816SLrG>`xph<=%U5=k)-C#<%s{=*8;JZhx>_xC+^ z)fdMYfb19pkOe5ShXh(?@3$IbEs|#HTrC&5oh3(CiFRFW#~U-p;WQ^HG>KR4yQlTzi>GH(dyiX(=wDz>a<7hG>ymJT1kH%QpAkwGE>e%0+VQe2GLC9*Q_a{LZuD`9e_f`q71Ws@hDFALF%P^p~ z0|MY4xds7xk6c2xUtESydBJu^)mQ92v-8-T46)r808^$D0hlt*q9*~)LgrE_gF^gZ zLUlq#ezTp2dHS<-=$5TB#k?|g2FS<0 z@BK9Es-&MZeLNcuQ$CYt)=n{-hV^~On@16$o_r{`-5k=uX8W(tvZi{^lQfr||9BzW z>3crs9;oJ(3StOR(^B+X>Jh_lgZ_o#x8arC^?O`NF=G#{wx#IXrruh?j>9?ovf75m z;mQwhz&LDUQoe6{jd^B&mi+9M0+%6p2ahJFzdCVGpcN1FzpvOn_*e!B^})9XvnoaZ z_lhZWD64tWf7On&zAJE~pOTyDUGl1E_)`Fh+nL+sFET*^pL~RZ(X5qLcgR{9{R>$u z^Xi4Ow(}L6wPMfpDQB~m?`T%*P}Z;%nWI??y*d;trfV${MDk`2Hn{LM{a$LlO{>;A z;tF+BqwRSeu&4|Mk@b^T~n6 z5}9juHOj2#y+CqI-MO#Y)ov{TSnULG9)r^T4$^|#kF486B!}CN;MP{|zatQ?1$3^l zkWymfUED-;bRn%SglN2#KABa)E3_t<^T&o&D``5N%(^0}i8jNduLiY?ihU`ubEEIr zSKS`epIqEvQjTU7GF#?cU)U?b_?+vKE&8AssB2sq+3~-Fc=G z5bWDBNQ&jM`x?7kW+_0+rIHLUm*N=9B|FA)$pYE0bqqC)ty<$XcE{O3T*Qm@Pf#d` ze3~EmGy-&?N3nh>2@&{`HFn>8w-C@9<^QO{zY-AtAi(~IuIp1Xfn3{dv)1Za3nU&3 zkvQQUCNspp-;aMk0obUZR{s-8LEv;Q0>7xjzY>rJK!6)S53m5WdKMt~&x7ExS-x=% zHZbPBTQaXTJFlKmXjX?gd83ur*oys)Yb6x_I*EZ-R|Rh1*@}HD(g`Z|E!Nsic-^&j z6D}T6vFEXkO%crwo^;q0NtdExf461?*Vkd%7_P6w#BsP{FRKzN_HAUTRWpwSG3C zasmI^TSEf5#QQaRQj7C=b*-(@4{AR9M(>@lS)arUSV)aN$+WG|x`=7KG`sM+2lHol ziFo_S7?;pbO{7Dn|KqN&2*gV9=~}x|{K9~)6arv(mw%n)(;q3J3P_%Hc4crLl1UMJ zGXb!ht4#o|-Oi#B0nP%uxrYm9H}q~J6jyaI!&QBk_|Ju6dxriM_(RLPmEvmsMnzMA(Td2_m` z(tkz(7>N_d2o?GtNCAw#^BMg`02qB|8F{Y-or9*t0LR{_(N`c;XytkczwB#fSGDw( z*3k{5>Kvi-ZXp09{gykEJZ_)``d$Qpq=e*1%1cG3dH0b5NRE2VcH0yJFg69iE@mzR z+HV2`CC?WKb)AQ@?h@a8Jt-hm0Z{qa%79iroW))Sv_Sz-`S>pZp~{CSpxo&~zU1{> z9U}npS%d&g24|5(0HPEC#{@M9Ktcs@2}QZH87Uy4OTLzS&0ND8cNkFJh_M6X86!GegH*$5L$ic8O0g>8$yUG`{(c-lv z2f?kD;HK3#Rq>h<2!`U#F%0UR>7)gkUEi=Bc_#s&DF7NB$$-)n05l&aAVhQG8@3~z zha6HwPYM8@D+oYO3V<)xlH3`f;`tE);3x);BR2R~)yvNIz9cPhJnD1&kpOTM030uQ zGgnUt0FEUHV2+U@rsMR?mQm-RCg~w!0YLF40&*5-bdC5ewj{YT2!65BjZp9ucaEpr z8kIITG|cYf-A!8HIp9s(mk$sCo&sP>k-Yedw62jiEz74!9%3nPd{LHSjx?MQA z-y=Et(HZO}z&AiY9%H$lq6{!~=4G~t%Cd`6>mP)};jf6)FSQm}AM}>;mRH_5Yut)m zU?+oHvFU5wt(aeBeNQ(fsIpd9xB6dKW!1mWsj|MR`h15rQw9F!1y$Bs6rSwd{VMAX z>ur^_KB3sIp~_l!Jyltot@o>}hzO^R5{j*|K3U1DZB`D-Ze|{Am0cuSYrQS7c2%z& zRSjweXFlmIvolPS`PfO|zVY;c?3>}lV_lrG4kcsk+y|=wJ9pVb24&T$q=%cADeH0D zXlgD*JHoz)mqSXpWqEqNy;)qW0NtuETYH!%?(|m0xzoE8_cv~_w2tZoxIvk;-rgck zSZ_1UM_^A!h`;-7g`8^2`<#*_jM$xqrt=<`)zG$@K8#h+$8#h)gK-?&yvJ}C8 z5(FQVP^-KZj4m)pe#_pOCli1Y>P;j7gB#wm_qM_y^@G?oj8E1r17j(XNmiU_d}@?#%F0J1-s1c-fN5IeFz<)XohZv@Z25j+d*jk!KI%2F`s zA27hZ?O2(w`aAT&lD*G5rA7y=w+Hh)S+o!|_h`4$rdU>X8PjfTcEa4O?9|YF!cp9m ztn2~a7sL@qaYsn7xpJraMrLF)^G$a44DSzuaAp5hUgftZc3bqvx9rhai4DQ9fI^WC zcD<=Y0Ir+@V2gJR0a#K5z>*>^an+=7;&+T^q**<{+Aqzz1FZMfn)`ZZCr8_FFi-W) zZjp3GW93WFK?)wn)JONV>FcFY`>6e#F5f*RPT4DNKP}ajv~VdJL;_rj`l|q!A_*=i z_)H)@jI{?h*m?3G0W#M7f{!672Hflo_M-Hp0yIn7>;L^ru)QdWV+=HQjDf}i6nsJg zE%@BO!H%i^8|;|6bAugI%o^t!ltS(coNK(a!Jccpq>augb`0lKzE!CT+TKKKE?2`P_6xr}FW9wh!eFYsZ&kvzK^vDH5cu4hirv zJJ}L8HxG`_{@!cDknWCKn&MmKWGaK?m~$;R**SL?1A5!sQr-|PFZR2So|M{Ct@|>>q5=f4zCvvP&ZxDdVC4lo7)Ngi^7ToUGWY@l9 z1i-HVI&<;py)2y{HxI=&n+1<$ zw@YfK&G5LphT2Un*7&4Xc5^W9un@*J=f{sATAOiWvkTfPP9iDck;`jHfOYU{6<}sI z+vHbqT9FRcz*{!kHSiV!WDWFxu@)mK*1*iob`9*Q0Ih+=^#7qXP#j|oWXD(oSsC+8=YJ#xgP(IT`2C^` zqyaGC2Ec#?DC4jI!5;{M$5yxDX1gu9db8b@RNrh1I1S&HH2POajJf(M@W&kXUhBpz z%)TM&rIDgsN}HP@ov%u`teSGbRPgNPuFKo`%&t=vYnissWY72dg^k*kI7eSzPx;@> zIGaNEGYR92oY7p-K{a9TiU6>-l1W4V;Wp6sCr2 zez0P^rXgX)cugFivw=flijEoL9_3~ng{if&$wOgE{_tJC7kByIIWFUcsh-bgk2<$7 zm9#YbNTl%LAWg0?_1{2b3lxXn)=Q{gnA%UMzEHuQQdGJ$mSA5PeU@-p!~8lGS;cAn z@wTl~J^G@QXbQd~lxXLfcmWGMOWOCP?9U=zMKZwxQT`pf?W{!rmOufp?QFn+ZaW3Q zwzDk(d{`Z6B_lbrWd1otE|HH-Uova+up88-R{?noEtz2dsB-<0-bezlJPELBsO&^Z z?hLTuJhM8xsW+2QtXpD*b*r?v)e_Y*QUKfMeYUR=0JZ{v?fVQUTLHj!F99L8dz5Vj zvuR7wni1d0kEDyJ#R+I$@@~*!py`?|LV&YC%_@liP!tPC5jCs2qyUO_-bII+r+>HA zGA*o#4D33RGMW(}s8`)is8FPORRwtr@m;%-ajqU9W# zg4H9WfOJlJ&t3xz0Z69+Nau45C_Mo%E7lRjAbc+ndjhjiC zkNu;K-?z*}@k}Rq#XRXDPLYFIe*(Zv0Oax>0@NZ>%%ql<2d5XkRJf|SEip?=+#n_f zj#yBmdWNjQZh_BkIRRiNK*!^9$z{2Aoyfs(I{_hvTYQG1SbULOf=LeyMGl6)5CDeS zqQ1>J&j&#dfZ+l#oSU~?C9gPPU@1l+meUVpck^nH7FbsO!1m#d1Src$RkN#VRz0r; z%ax@VfMps1A(mY}KtDPM!$=P?S2aUxisNx4SCUSD8p)9rX)s=+GH+B1x={c}P`+WB zXyzQtzRO!f<{-GrC-@ElASl23SAx4(t^~yZ1iv64MDU0Zl<&Y;^S?+7^j2AV-iJX~ zfu7%7S(1aEGzWS;X7#M-RU;IgD5&Fzd(oG^%6`miN?PF9@I%{)?Fhh76##RI<;qdy zc(`&f0U?h4KeQum0x2L|0dT#Z!GK<`1sK0U1~tpIDUsuP{SpD8>$NE0dMz|I%)7;Avorz7rT~br z3Iobf0K9(w1_E@Q$5%bwt0S)4Vy|z`OGi>h)B>c&m@r-XBN(vFmJh125m!pr^o5EF4Eva4V7mT$bOe(b@{G$!d#h2Y3tMEO8EV zf&D$sVLpA^ox}LmTTgePIDl!Z4eEbg^;Z8rr+WK`-h}Y+%;$7hg6eH23S4g3{pxMj zR$IM|5sI4_t=>j5O!0PE73NkQbNSr4b&Kb@YpY+sMNBw2kzi22og0l!h<4g)i?;Wv zGY+Obc|R77jqt{k0B1!rZmr{&f91xin8yYvm&_#t+_KM70dCplt}3Y9t|C30S1gzA z(I5OSCqU@;@ZKkZ9#zQxU&-pLb}N};^{3V;uL^Y7!ldnyy!ggZ1^dQP1q*Q4f(K(+ zs^=B*k`J_qhX9vuwUyn!DJ&59!zb_u0U%KFBZ<$yfy7x$G5Njs?oN%O2e#VNqEf2x zuLQ(52(WJuU;zlAvddBs_+OYnP~B}!v4KU4k8C%zAOO|f9wY#ZtXwR5U6h6R1`GBL z7A!z{mjyU6YW9&mw3F=XiBV(;2+bPOro0)lC~rb^)>fPxMP^u{#lFj5B{Vki#N3dR z6N;K9>!kv*Owz-+>%Ps7yY2+wxDs!n9YRtJzCqjUN%1fRXzEng z|N9p_JNLyg1|2)bpko25r6GYv#clE;05!?sD=>|xs^ zjSPovYxOT2wyhP%;lnn$p4ykJ9ZrtT4h_y#Kh*JuUc2jJ`OQC9#I|@l)e{{}dD}>E zu0b*TZrZO%38VIlZFZCM3jx>`e_>Yjmu+#L?LjkGgv9_irlknb8`Bbc>E)WJd~gvp z(c;_feSq(A+~2Q`T@$@;ySb`ntY^|;O$g7DEtDbDL?=?ysNsE>+hiPRpoT|2LcwSa zZ@wyHkSx%@Fh~|`&t1dAqKi58;Wk^tn?9gkUemaC?BURmNnR+W&y;Aax#@6S%rj$t zZgahvniA{ht)ZB3jax;6Tvp}p&mNdacs%BJw%Y{0D1A!_{O;OVjp&~3ru22Ow4`^` zFDLM2Y6wNpLnJ@~m*+OwPZ~%d`3ME03H(`=k-%T{FC_4ne@Wo-?KXjb)s0OKD^9GmOp zkL}(#l>yyd3xM5qX99G0eZfiA{$qPnA%+p1lJ|qyn1$4f#z)^bR-J2vjI$84yB^qn7n`70Y z-+XKyzB$$@DM=mkSj$f>q44=539y=Nsy3y%SyU(1)*O93r=Zz7=lVk452S>`XZ{^Q z{~ycf-QLsxWA-I|?AJZ7AQh};m+!Ev+2sVtYUbBHZy+gFv+H-*)vUe(w3>aRv4mDL zag5cB9b+|P0qUMCz!s|f4!eaaBQD}~&$}rUL_WZed;kHu4x{e*5D5|Z_#Jj9+eQdz z-E;Cq35b6XVE-V%f}rlnQn0uy#NveaCWQn7>wE(12*5@Hbh4ZSYl_~BkF@ZsTNdd})Cb#WE^skzuZ`hi+Fl%=vt>bjkZxq-9_5w~ z^}z$OtwDWI{_tI9#a(8d<1$_!teh5$om(ILFfH~{r0~cf0j@syKp?X9!I3-l+LCHc zUwW^XKw#=~&15r`DOdL=NQ(RE4%ZjIDRF2ZjdPi~(-sB)mldn*EeaIuS7a|>fui7> z*|EhDZ!MYNa=Ch^-FCf80G0#+a9r{U1G*##fPL4O1h|3#o(4L)(=Gwd!{4NceUkv# zXcgKe{opTZxI{aPas)UF?6gYuiBNKJcU0gf zGVseLWwa##_}xta^OIlcM;6Pif3Z6o)QtE}9wA-l1QZPcpy--?jsRzYGTd~wkFNbes2&lTA;0Ip(tRdZo+(hSvx;rH zTCI-V-ML=ECqbtnaFK)R6$F5)09tf8uYnc=8%V3?2W89kikwsV~Qj=kWoS%LxEWZB>geBu83A z9^Y z%A|mp1;APQwG8N4y0d7?fHo)q4%6Ea5IRg31stZkknbWzv?%}*JBk1#)>%A6fV02` z@d*OX9B(!-5+rq3UP)@&xY+I9i>xGD;OJ7}*j)}kUMB!a6#z;7fC1$wK#*(|8*J7?=WJprkXP>;%9{ zHGlv&Cc*B`Pwhp`d6-0sh*kilXa3%gg%QKVDd(I|S?lsE2mm#)aMVzj|Bw_w?OmVR zX9R$n0HF3I14>N*+;{#;01uJqk3Kc$q1b0Z2Z5RZyUNRQMRL${1~mzA2GVo>YjbZR z6dc9OaSTfIokI~Kq0HO+foLSd4c?MWl1TP3JI@ zBc0A*903SY0L=Jl1R$LPxOAczxRey&a`ESOAC@vdPYrJkp~$nK&KyS)7uek6NMfLD zx$TjJUlDv(_uQxmeyV=;zpf&vf1gtkoT>VJZZTK|{@xrF!Tl7U+{*eD!7o48ieRM* zbMoL9fR|kI!0hVw=cE56{h&s8+!Q~XRmU`GQNMhi)1UhVLWGDD28qo+;Mw!tvHmOZ z7OjpIkM956)(WG0bA|aiwSosctG*KJ?-f)vKX{z6Y#7kv4x^qtHbAl9a?-_ZZg~~p zHdk)8f?8pH(!)J|-M#jBr7i)Im>ym`65#g!w!QXbrGo-=vckOW5w-ZlZ9V(MZ9NNu z8X-$@Z-4Dxd%RM6udNSGrce;{1V88r1R&@IBtX#f_S#dG+a-8CRe9>7!HaJM&%O~n z3xfI}OA-9oAo!p*_zA@Y1|RzjJ|+OQ!LLXF24Ci4@XbXTh;J}p-(bK3)CO6A;6KV0 ze22}k9Pjdd!8kvoqVEjcHh;J}p-(bK3FnDQ4thUEe zFt|MzgF;(kW4yH#7Z|Me8LTG2cEsID)e=Yu79ZwfvHhYf#6MWDf3RRdz=EYqwFYzfWAkU-1ig$~%^ zb#}iUUcc?P!;4wt%$c&sy?`_4MhEPfb0duuXU>E5FPu3KK9Kv&Sw^8Plh3%ncP%?u z8w21sZ93j?I{!Q3Ts zT&6Ie#vQN~-e=Np%4=p!>0Q|lmm1&48iy`sGav0O?;`y~u5$xV%M}lAd%g09ShhEa zqQj8sM}m;ms6>L|f!}}7X7Toep)B@46T3V*^`Lq5Osr|r{pyml*q7QsoqP@nki|Q4 zn>;}p$Rha&1*2JfNtKbs<@y)0xcpzTc*jAT#UG~iuBr)a8Oj|Ng2KPV=6ml`5J=YB zfnZ(oud$vH?@%Bym|Ob}+PU=|0hn6?96Koo!YtRhC34)jdxs=+f5_`i?FHvn{zGmS5rA1H09KmY2*5lNz_|=6<9$dAetTNK=H({Y`s4vz zicII{+;%0Zd*jFeZUuC1v4Bw;<9)fuA6RdN2G*QMdXz7iBmSo5xur{Iqi=Sdv#Cd= zq&=EN9%36QttgK#qad)Bt!z;jYgv15DM2WTZzKU0u=Ogygxhn_uZr&{9qjx*J7hY3 z*d-}}k^1r*#OyluqYjrIwzqJNRq5YIM6NWE zuG!^1ZUP)wfIZ(PeXT1?l}MzLHhOc^@;KoQr=URLZlA*41YqNUviKB|g2SZqaCr2h z9PYLpxD9Y%0V?AxK==dW;bX_T{gB;KtUqM86t5q$h4JkaCx+ct6}Vw%3*(1LCtetj z$g0{dTehM4W6`aL<6co5=h2Og3QY~3ZP=(tkD@q!sWyWvX#OMe7p|cBkDOBK$C83&5vx9|0f~Wsr_|e23FGdR2QU`VjyW)7=KxB*K zwT|dD1`p4A2?U}z-n2kgJ#%;e9-e)6wl(2$UH6}zy(*B#S+zQ1%j8AM_o(cp1q!xI zegO-V$v-LI{A4`T?x@*u#mr@GbS(6R9mIksL4$slw#KktZL4nz@K zr?sT$JfQUOE&;e^JBv>Ua2D8XU3Eo|>fTX8aW&USb=~QE#8%0FCk1f)#pjs+XuR7D zI0}FeOEI8ppa39QjerozE00=|&O<6GB4hzTvONJH=`6Ada2BYO4i#KQ4Io%|tE z0KaiZZ67{C0Qd>etGOIMvs~$kJYFX^e-Ff}DfGf6^61MxN6|)>ww=cfIPNC^95o=V z&yyS!H6AUH|4INT3g9TBhE()e&{Lr39kUcG5CDn-5PkJ%m+ zMX>8miU?K!u)Bi*uyYo}35Z*09cerPpeGiN9_mQ*Ndffc`t)8P0Q3Z~lZXN3CjfS7 z9}*BMJ-qAla~_V9BBIqcS4$m<*Su z7hXpII0^ucsSGGb0fPE;XF@|A+5WhFE}w9OD{|CWMlzr^76tUVe3ol-B1eg3CIO)m zizuMPB5@_ZDVZZZv?y|nnAZtFN*%)w2yhnI_)2`zeD>m_`VtE&Wc&ha>B>04!~yOOlvyrTR%Tz^kchXC}K0O+qK3}^xc z(1-KPW3%E{l+aI6+J0fDoO3YXJPwe+dkFv^u{d+JEJh?p{zR@kvCE%Bpyn`A(R5ra zJH?}yU0Pn(2IR4J+a8m=mq}BocGcg(E7SEP2h(Lf)2$3BQvp!;J4iri_U-j8Pm=;7 z79hEqJbK7-9hA2JV6s%)7lmKUemN}6Cl&bu|F_)^# z8CNi^M&IW;>>0dt6bOOLs0DND8qzV|@Bq&tNGE&4d1wf&$CIE%%Ebb@3 zS)d6$P5{bNEL?daf4rR(;PSPv?D_=xQ^0>>H}U-@a=8*mT{3(N4B|e(Jc)e)}?M>i$3zt9pD2IAy;k zEc_o_t-RmQ6eAcM8A}wDDc)K=zn^I_BR?hj*H<=E+)%x8K)+M@AXEHUsn~3t zqSs0Ank3$K#^A*_f@j|do&^XVFOjko!QU4IA0&x?qPW1|d!NDg1RzQ5eH}D5Fevl2 zO^i7PX{vDA;uqgwz`ntN1xOOJ0KtD31TR^=mgeJE1~2z|Qb-8C>({o;bR_`AKbiyx zene96W6l`7_(t&T8^N;x#lLrE-!>jg!JyOEiME3?lA+Rx_4~lx_S@5p&iifJg?mtt z)!TS(ti1Vnt?cI)F3dkS)Xi{u`^Uokxc4Nn#Oduu5+IF-V}Z3>vwi9kg zzOQXA@4sK$6V@-16+ZvkY^yGJc1ex_RppuIck)gUfT36bjHTicV=0A{ICFSObTm=% zh&kYawgCO|Ur0QvB}* zHzZYzTU|+jajTOGFm6e>L5lBu(nA{@a=^C1Ap}Sp^uHTCg`{YR#Ru%*HBABPJwnqz zCLQ~^9lXRb8X!AH17rbGd?A6R`0@^*twlPS+qvjaDw*Of#ef3Y0i}DTXb{&kWk~@T0b`1?A@}iqWxCz&9~$) z@?KYW{sf3-{4xmw1AHO)bAr%<_Z+ax!6O7+WDV@Ev zgTbS94_Hy>5Ki~`l@TdxR(v_3U(`8mM0Qx32!O>*TLREgoJB7JoQ3W*O!oACEmH}^ zns|>^Twe4;sYlKBQGq0?XZHcyiT)!E%I`#JK_{x%H_z;PyRd4Ri^TO!CFEbn-Y%?Z zE;0FyvUY2Ua7WrkMT8vSl@t%MS6h=!E+Y+OugFIzM9p6PLzU5TR_b49IV%q)=KwJf zqQh-HkemaQc9dqO<;LVQ5_jb1gjy6*dNRb7G)K3tDQQ|hzpjjAyz*L``D^kgc#l$? zXj>1F;O|UpT{&S|CMhMzY&mGl`@VyT@;*B#@A5imO)j37KRbR=eCFKS?27O$d6*Xd zAhWAYthy<2wnS4S4nH6PO8>y1h+8#3h^O| zC&)IsxwWK`mQmJ}+mK(*`b7t<>XWPLZxV*!?S zl@8mbUAnkPWFaS$AH-dF*e(nT3DAWBvXJvhsDYc8f1Myd-u+gcoM>;MpgV+xs&ZNi z@&r)eCx8MAutY@?lBM7g3-S2MdxC-jg$+K14Fq6qgDm9hBt_xBA~mHS%5eovL9zhB|2qgC>+7_`c76TFA-lf*^$>E9tC~*K6h7Kr>NirNuHD(}V{H}r z16CsY7_Iq@T|cFoB^eWYM#U8pkKD4cY@%MmeGtngDFh@Qdut(J`0cCD!tmSoo4;8$ zA@N9u0SS+?Z${$rI@#Oftz7xTcR3>Aa>Pk46N$&0UOGAP*m-mAfAeQY(q;zyUE=ZL zK!n6&WTuuvu8B=(Thp6LV32s6{hG|YdsAYiP3>3ni@h62NhV!C`$(n~!Hg{6vaa$O(X@U&$juQ^IiWEGiP>y_EoP z6<|(|oTroA86XGw2mzSR!~oNoFhmaWWl{jctv?R@z;G`E%20qr64LvgP@x&l zL`J>^SG=t2+?D$_s6K=)0Jzp509>6#V*(NunvHBn0LY4kBa3Y05K;iyf#2HdoIrq* zjSMtP&YsxLo6d6ODh8;{1q5(yMlb&s&DJ?Eq=#6=0oXl2fUXcNYI;K%XT5PV09O5IU_F1)SEqXb+Pjo+$td^;ZJW8=OVy zqd{dk3#^i>5P$*|i%@|sKPoq~TaXqCw8>Fhpq&XofeL^E9l(H+6aWP}o`6t+Uf^5K zCIy5l019*=16rWY;wA?4SpuLy?;wB+G;)F2)ODi$9DoKqOn$|LRPj`iYmu6P=V6J0 z(sbl@{*5w9^M3?rX-1mpgYu#>js~gMpGgUYdE76|Qpc#0l%N18%t{O>K>_ex)CL6T zIO_7Rk;R4Ckz;mh^qrWQ13?7jM27Y3ig0*c zc#IM}%LxU2LAAw2*4wG|=#*+Xr&?TK|5PM%ekjRvhfexP@@!P!`cIeS(Z5eh@?5X_ zyq}t+0!s3DPf?7rr1mpCFCMd*o^6C;1%*t{3&$wav;CN#=|M!u^hhX_=~><(*4=!b z5-T5l>X^;+e5PJGs>kUuL8j+RlDbUKWb?n2SOt#_aBTW3>0*ujlM1lLmbG1w?y3BJ zz#m(S^zZHND4hT)hkWmB5@1)+@O!(ZYpMY4hnTlLF%_TKO|VbwCRl*|5Yjy?#g-!N zd%Leo{obZ~;uH#kp5O;PfdB-32?-GN-0$sHsH+68o4L!*7`*sK@a!AGvjD*(-NRA@ zKQ;(HNcTKSae=`@K7)q{K)UB85`e*rNeo^-BLndb2J9OQSb%g73lRKz8+;_y*p$?0>F@2P?x$mRQ+NEBJ;3I67)qK{w{Jnc(=aCQ1XPWcG|Q^QDuLO;dBx(NmsGd8$jFV1RPzlk+Kka^vw7v!`Y(H>i2plGo1r?TT}!N&i6O18g-e zBS5zr6?FjST#2iIc|X{#hwtzoWQU1f9PaBSdqt9KpNRPSkC9yUMc!l4#7u*4hdxgr zI*dBgyShDpu&EL%g+$Ht5FPC>XG>syhbf_RW%U-ZoD!e?kYc*Di1p3tp{}`uG^1xp zTBMyB(kgd>x1Xdqoo||K_XTO-beiD;O6X@5QT^ytO@Bzv zjYyjr7#iV_){q`s(){}z9R|N0)WQ_Dj!p2Y{g~8bDw7~&bx9^ciI^MyX!h+NSu65m zxELR46RTC?+#gfS_BOF@Sq;@E7h?uJMDiOgP1i{4nAe@8D8}?;yDp@GVkAeQkhB;_ zt1^o50{sicc)^d!DW;$p(|@ES2YTI%{-w&84WG*kiLvL`l{fEnh^3mN=l5>{*!**E8R6)N*ZgQZ;%WlW5w9_umPkjupXJ&S#Q@vl zrwP#g%_%$L<5E%jj-nW%k1UpdYo_B9a)3~F|7fSF0|cN;?lu|ACU*9IA~|}U7&wnX zqNBo3LGyxJ?O(QCFDD%kpNTTWEG(IF8a}b z*=i~2U^-m#lbsHi5Fpc`|Cah4B*k=SezMcyoeI!&s66f4R&F#F$CwV;F{VQnAkV=9 ztjZStWY@!2ii<>^<6Q~`k?-&$-$8&*-)!uX&noR)z22LbjE z0xSr!94rNk?I9Lld9{C*C;Ag72-Nu57JUr@uo6L*;~bKLL93s`4BD!~X&J}^zd%QPK$hb&`OKi+BAWb@U7-~HWZ$&9jG{!FyI2LT&DmVX^`wJb$JWcH zq(pwU4ln*W;SjkFZq-=wQ0L%oh$W9yCUPAcv@$UYKd#ThDEzoM4u64EMq%VSXiuE* zD4Ry)I=X)E=Q`vM-{p%5moJ{=GLh?;GbUDW@)t;}kB!MM6n+%&ce#$efylmO_0i8d z`1rq2_&%ZC_q1C8!RBXGmwM-s^;C|SQGC?LNUgRJB;xe;#Tt;_mcux zuJu_yP5@Z0wJf)?Tv@IqmhTc6V!6X-={xy`^boW>6)b-v04#ljGQS4Z=M0eE$Rq#+ z#gik5^hQfk0Kule+G^}VfD()ffD^fa4CwSPK#<;;K&T$eg}+5Q#`M_bA3my8p{U#G`q2m0B{ux#}$i#W^<*3JV#m}{IpN_bpk+G01)2IfD#q} zN00{yP_FI>Qa{`mk*n~Is&f?mEvc3S0M~Q^z*PWTq$fG3id@zwnI?T+i3VOXLcv#1 z$2aF1`FiH?%VlkS9%+GZkKb$spHBez3IM)w0@kID7#aCZ>5fb#aWdQJtl#X4&iS~R zlzksyx`yOnDhBb?5$)KyuOATIOhzCoMvf@Hy*g!4tjOC*S|IwCPxOBTZ0ldFe8BS? zlB0CR0QLG80Vgs2&1Wjg@KWvfq)HV4R2vcis?MSf0q(hpRcB8E!BvCOeWZ*?XvEhp zjZO5%krud){@qsUR02?`0-&3*T-&h7k(0QdfKX0i>F+jiN;rZQIZ_gjFredu04oNL zZD&4xXJX<98byX|#A~F?*$6d4dPl-RY3?IMJWc?V=63|3G@Zqt1UL&R%}$>8M^G^+ zNwIJxiFbK^+u5&ziQN+G<<%!u6leAywm4f8fZ`MYadu}w%ToXhf=A2D>6uF4Nn>Di z@E^9T=rbzGyLF_j@#`D-yJfn(g5)6V9=(hJ5EdZ#wZGMbg0-NIH3o$-x5dVJ8%PU; z9}!;lq#KePd{wSrh1t%4@)ZDmMI}nR7H73Yk3cmbV2nIOSROWK}~_Gduk;D zKvjT5Pst$=Of@9#DHq-m8{>5(Eii5Or>)w41c0glpgM{Hr78fCzad3DQUDb6Zv>z%Ig2u9l}>EM zoCPMdOaf4zV&TdY$>)}&0GCbAGC6k^cJsOrfHD>!-YFl83LIsfVtg#k zX-nxQ1Ucsk>R12ia?bkqNjc{qbT7%rS-XPGrNM`33n)H0;IKL85;M*!ZRV8k-`Km5 z;2`Nd?JRTb_DKVymz`x+OwDhThG39xmMCnxdHIJ!S|;|!WlZgDv6N_ml*y)ekE|Qi zDMyu0PeIQ4pW9-iycHzHNn4#A^BSAkFU5v>Y=D&0deX&N$9*cmS%+-4gPij=(!)W| z3ul>(EAnf4FAyN*knim#0nT{dJIidlv|vWoM+(r{4wJXpCh-}0prA&`C(d^GAwkZW zr8wYu?kuxuUVe}0=CjPY7vn9=&ZEs%d*vhYSU#dkjo8Rj2|(oaNPx(*BWB&MSeNKw zX?oA)H_vLI3a4ctzQKTfg8>VI#4}65pmZe6AlCDoe|uvoE|mQ!pTQ^ska(U&0x+17 z#9+=D8HjH%VBcWC0wkVUpuwBc+4;2%ekfEbV8sX1Tbjq;i7oWjQ&0&1UO)VM3BVcQ zH#=ivy)7gKhi8&Fyl_Si@&It)2Y>?$P~P_hi09OxwYbrOmM(73yWmAO2Zw`4aLMj(^LSFiR@ucPTen&9I=! zKg)E#<@zb6>!QBdCRSm5Iol==k8D%HeD`UrqRBocsms~>W1jsgD3AZ?w{*ZM>`=3} z!tfU6&o5(3yvF*h;7qm1t4{)FaMbHYQnc7kCCsKb^4ofY2*3hJfL*Nx7{`FFN(6}1 z$sg{`BtVz%6?IzROn9kZY|Tt9VRA2t^;JW7yp9ZY%^@#nF6kisVHL^IADqE`1YnUO zz>cTSzVM# zP$K4-R&fPPAD`Gxdj9@2r~Yk4rCw9)LId+L8dJS1Q@0HEE#q$OlJ) z(#un2l-?ly3#B)xB>LOmmR_lnw)D~;D5{Yty$WXb&#^9{BE)R)!_Tohy-5@fW`hC} zL`qG#Q2TBvv;5~+S#!sNNj2<`X)YiobhXP%+OBpZ0ov6fmzyO6rTzbt<=QVUH?F8C0h$DrWOx!3$Cw1!F(yG4AkEDJEU4y|vJ2SRrR)-XW4!-0-fI*JBLA<1 z@<4G`D#>;BMwa_i5+d%8#nt-at`VtTU4;Kn@zaJc-Vy$P$rHk7L6GETDL8CR;*kDV zr_Ela6nQLfBPyiW(yu@OmLSMNc9Us>)xi`KmtW#G zngCc+HDN$kX#!xC z)|r6NA#3~6cAjt^Mv)>GSpr~cC?WvkxU;y30B0d{MisNIQG9^6m{1+%$|f~84QPx8sE(G$^^9phO5F1u>;)sS(`;(ebNNY>@v1KTN419 z0wB!p3@A?lazB)h6%Hprc!pEn(ZQmnOKs<725EzU0APCs0buJamJ#4AmV7q3npt~E zvm9?Vp`e^?cFm_s-4`#q#oItiVEc&A_5}jKRsgWw&VaHNpvSrKvEF9{xLU<8)qU(+ z9wP;WD}d~0GR@A;CF^)67}b+jL08O_R#Y~qIcGKJ!FW5bCINiX8j&A#nV)Z8WO6~b zC0#fX0A<^Y0F7)F4zup52?P^^!Hi#4OD_&V=0QbMuLD{C9kwFID81wgUh#();9 z0O&013E*Ol+-p|c=+hM4eTxcCE-I0OH*UeKGO^Wz*GP*t;2va6+oCuUSyek-zJyP&{2K!RNGyg zn}MW=3K9Th#}ELr&SEkF&LU@iVJGim0>D%(9MhZyg)_WcNC6~oNVU~@CjlTS07yQ} zfRYp-Ao)C@A(GGdB%Pbxq==9O0Ld>207+-@Jps-_hr!jQYGiw7c|m1?s8~6oD-O(% zD_2h}Ip3>JT3}nnvuqm?0JZ{vZCeJEtpH#<`_QFbQV9%^?d91Tbzb76h|mQ9*;xdD ztg~1^fV04uzjjOcZ0|-w!B)&1Tj`~lX2z)a1n+**0^7Ad+s6q2TLI9^SgvG6j-L81 z0o+rgJA9&|xZ)}q(MS(biyS3y_7u1`x0MCWv;vKzALcvqa9M5Bor(~Ly zHK8h)gy znfD=QY)97-0IC9nsNPo)A8GE{fK>okKJBx7oh-pp0I=N6fU*<- zEDsQH5=*(n0q%UG7xM=${;9!BZxuw@hS1?-g%@2 zmOavJU7k+>SPB4^aRP9SD$SCdOY)OQ&N4aA`BkY87%xqi)O|N-xob!cj_$b+5#Squ z=Vp?Frx=8Iet2QLz}rb$;Q3aXS<*io1}<);*^Wi(Xf~pbs{D(9lUV*1uoQiiR<-is zs*DN%o(%~APiN7F0QYDR?MVQLibaU%@pXU^#p`Q+oitcU8I1{xKtli)h@ywVGwt>e5+>}(C3LetioO+fLCFvAUw11 z#R?boK2k<034n6_jsTRav-pz$XMtsyS0Sh(l&e^{ay@o+JjblA8Lwm(FN)PLvu}u( zGc^{*TYL4%2<<7mg6%i02|zgufR@mm0p%?Kn$&OtlABa?a0P#9?|Yd+%3vX0!21dU zz}r1{83E1$?P)au;4K!!`zCJ#DS+c6KF1db07n79aXSObQ2=oKjDV9ke(ZB}UVbKJ zL@WR}mP!w53LKq9B?6oUIOY%lj$%O^bIfk7+vQ)>McsDwI+8vpw@bIx+K&KG766n- zF`$$M0OctJoJ6@O-Bzpfauq3qfB>MpoB&XE7IzciEI|3+1Sn;>%9XQE@*{4o{dwmB z>E^QK@&4W`qzSUye6sHm0I~vr>^=sRtN>V@t=-$8ODch(@!~t5tSDm}mJ!qPAEZ*{ zV@tFA&iMJ>9`XT_ANnK@5&)6{C`t3&v0%+0GVm)~F{qjlzfu(~Ki}A^M~dJl0O~N8 z0FZPR-3V|NSa{yPF5b)=L@1bwS%~S~_r~XVlSm6B3o6>0oJRmi3V@otiUF-j0fcE4 z(`rWNzTRzwY8N%JW0Ei5@K1xohULDGe~}g<7a%xnc$!gM>+;QBW2Vs=faw z&0*!!gK(?swoUPA-U^c9TE*76b>TDLV*`7ui*)U+E*0QpUk;TeoixQPzM|`7ZyV`p zVkYu}iIk0Hc`uM$%0Vu5kwDWKk@uAL%&d=8PI-(F^G&nzD@9+ZWb+v85_t?3(48)R zkld<>JSTa8So_r_qp8u&mH1j$WqC5^V^S;o*SZKm?Da^1R7`ed|5}%{J6!8hh0~G{ z-$=%!k}Hs40bT1NHDqK;SN5-U`3&r}F496)Y?RMn6an^H7YV>%MiPTLs&HBc;u{Ru zHyE(MUhCqA>AjZoL&3l2ttSPJddR){(C|UT9~1A``_bzPjP|9w?2(;2|xoXT_tF0U{JD3xB-<_h0`(+ z-(bML!GHyp!LQ@`cq|2j!vO=nmob?g|ejs>{P77}Qu|3ivRbH<0|jaR)0c|dAXFS9XW zWO%8xxa^VPZJz08c;yd2A3IV1LWWmfqt(l7UXYK?H@oV^rkM0A7uGO~KOSF6TUKQw z?R7#L&2W;19rB{rQp znRX3$7XerU3NUPFe!Enb>pD#2SnR$)fG&0`>SV|_*`x`gTAt0ci(fIsqVhvB#G*`q z+#9Bbo`eqJ437Ve0dBHIs!HkllcM&N$c^S$vshmAx=h?dlp>|~S1q@mZcs*sOF z6GA`(tMpV|B=URdUuZbJ%)WN9u6!v=*9_=lvxTQ#X=}AVzM2QM&Aax;TSmMI^kfWZ zV@Mz>E6wsfeI{j+G!f7As&+V$x3FCa{eCdsGG)Gaa3yr!p?LqS>FSb8XcRpI7uS}O z03|ds+2ktHz{NH4!4c`jwJLY2GK%Of{R>5O*QtwWWK~;4i%PWi@2$CBmTF>0WcH-4 zW-u2VKN5e!dzwN*(LEjrHfMhqzdYi-9Y}0XdZViCNqY!DPZ9tP{~!a}l?0Hk=WCe1rSO87`jsp>%;W73VP03*W7 zRsGv@*`$M6H>hE#06f7nsvB3SgXDKeQc* zu>cGn4;bJEU8U-FH59FGS3@VN*&B3~Y9uwhbQQRUXK&EeCmr0N+uD73N~8uHM&tx@ zM$G=G(8{5!N=3ynF4A!m$1;n03imrKvj$Z6ms#?MKNSqphhi!iR0GQ_erKSP!9_Yc z{Ybdf(*b!6A$quyf00h7R!lBq6CTG}k4YElw(Ti9$qcPjaMI6mci#MCrGg2Ow7Ee! zxQldG1|s`){JB~jJU*6D z#LO&Kn3;ts?#qoN1ytj(EX%Tx0I(Eb+s(p~6NM# zR1wNlEL@r5vRrLaK$+I4Wy`b~0Vq=e5M4(Gl%oLX8hHeS3bkJ?+x^u;kNkFK(Dkvz zw@5?=YV*h#)ZF8)A^_C%aaYR<8u#Ru6AFHUI)3OKxF`1zX@TSeKFQ4lfTRE*`3eI{ zQh;FH{vn~Eyxn`XOwNUq`bB&%$4C#ciDdXI%k69T+Z%WFxq>Ow7_~nn6#}*`=r%IqKeryqK~@a5jVQ`Avj&#V@p1_TTR|OLTnTJFs9>NsfV9B2 zPaRvg7Z3op0%!+IWx0|SIeO@21cZ9%ygIg4)q%dt_zzM<*aCp(S^`k3&f+lw)IvVP zyW#tAb5(E;~8YqJ|Hdl-c`qbDB%kNPyhm`dF09i8r@|XV8rPK89lhSFosy^@LW~jhlpCFx9M*a8#S=#&GNT`_Ye(ph}O=wIW@$DoZ4DhX-&<)+jJXSkP$7DZIfuN)E5U+ ziku^f)?rLRKkrG{R*2PS{`O#Yz2kyWcgn%H7i%&|LV$D*n#oR)?7 z1`GBL7A!zkjRhd^>)#MSUMi2m0)c)xwkrA&fU1a-00br`5hy$(0r3q2>>C7FV7L03 zmtrY4%ID?S0}E+P$V-g{tCh3!YMR)fDV}^7OtS|v+@YbTA1>V>)X##S8`!z5pn};r zqo79!$N6LXnFVq0Kg1R1kI#_+zb_!$!;WU@g$2vK4+yd&VvbEiy)A4L2ZKkFwGQUk zQT%rTFwzQu7$3|l z$naVbj$y4I2{5dkrveOX5+gEH6G#P3a71ji5{P0;^c=8H&*b~vl9Ju9210Ck`y z`foRe>v$F!V}`vNtLd>{G(Q#~K@}2cf@)Mgj`2{a{@2V4j z3_@ewL4uI3pM*L{I9lvib?qYNX9BQ@5ddqDQuTsIU=1PwRxwox&{a%DokTbbCDSLS zl1laLs>XTDB}3;CtD0^Epg%Z^K?FDpq@l(UfR6H&R+9hH-ae@*`L2Rpmr%hZYG<$1 ztbT&zb@{(0qa@&2OAG3jo-bZ+Dly8u_)Y&>=BcFx4YT%Y>2Md>PQ`_6)KZEBxt2GR zO|BvhZ$ zRrZ?-&s|?I!P`ucpw&D<0?|E?NrFUZuhg@p^{D*cFRjQ;1+}BQ>zSOJ3c6>#qE5Js zHj-E5qdq4A%4kEf$)}`&G9n)w2+HUuRYn>8tbd`5em+eZZID22eLL4&M*#Yk0GMl55r9pB0M0KynD7`W zh|7@?-{bQnhsTHO+xIu#Bmf=-a2|1sf(kWJskOye`l7u4I`l~FeC>+aYYJ*c57#$c z))aKis;xe`ah0Wq;7bTUkO0%u#y)K^J@vO=LO4b^ayexi1a*z+DMbb7O||R$xt#i> zgZU}Dft{bS36S~8&*gL=Ddwkk4eb2XNdcOl4r?$xKSjkc)<^6Z6BG+%eKgEt0hUI! z8rY>#jRus6mT>4N--_Y9d} z@O`qOoe^Fo0E;UDu(*1k0i6;Az~X8@0ih$J{}Y<}#=P@zRwF5Nf5yVnNB}IR$`gR$ z*;!-};4EY@Rn_!E#SAD>0g%zTj(|{=UhP}1Aq9jgK#=ym(ppHIGbVgA9^81LSn-5CEFu$sFa)N4+OuBb zm8By-cQMYWSJW=GX;6zGB63i#P5`L8Fd7lyEHL2jJy_7hYfC7&i<#ptm7Hnbynozq zZ!l@0rUx{& ziH{SY7Lfrax0k$e_sw^5?_?{1pea_4W{}|dn6%*ggQhmY^ECnBFMu=Gja!w!T{Ov8 zs^fB@SC$8w+qqvCF39baZYF=}KV5D||2`?Vvr_eWV>ep`{(=U%opS2O7syiI&+TM3 z^K(1Z2*&abKe}AGnf?BC-DWnagJ7`Xx?h%F`l8ew)!JZt*uk`VX>l);)5X6ccY5WBAO4f%341pdAbzBJ zSc>>JCB=_4Ps!#%^F#b+HMa$S76C}}R3`xlWHt{IsHqC4tpM?j3Si%0zyhRsSb*UF zObQ+;o}m;Hg3t4V&m#b(UrYi7Uyv018ao15G(rsqY3TjG%IShCU)DOJ5sLUIhOBFADetwqp=FfI##fpwQC z=w)XLE3q5h+1#GDJ}dv%^Hv$S4yPB^h_+~9N@ojeckU+CFV_Vop)4zpnG<{mwbPW^6AqkZh7dZ||ZfxNn zlE@$ak;e1-7Y<3DZ;_m?k+x^kHM3tmH^(fmUKkHG$76eY`0Xq^tFW5=2KEy*3a|2Z zt4}^{ewPFxt7p6;49V9~q6b^pwaM=UU~M7*)+S|J2Hvr@5CChFngrQd8O}jHE-<;%%hxdfs#n+~>q{*j?j`R~c_DLiJ%xg-#ExW> zYe@rH3G%^lAuF*~m2nETPX9uaS=TZ-bA#auy=#XMZdkY{)MB>PAKt-qZ&dh+w}l>! z0c7c%CHxNZNcs0u;{^ z$tHVA1I0r=I1m)iZ>o&q`Cb1)@%(<8;(4N_P1^j`tZ-haj4;SQ+r02DuW~DK#N8;J z1d`60V`O|UX{L0NK^~c#ri5dVZ`8{6r49sWUy}2c+{Oqn>xwac$3gz@x3Eqf3TsEdYh}iDDD0k9SDkVT zOQWaYRh(Z)fN5%BuVMbu+*Mo^??+P7^o?o0IIj1!F;}JL$}`ZL>bCMTH;q-~HwsKv z^>fX!QUzI14R#ZL;-(8}W3K9$Yv-zN3ea5jorV#btHdwns`}&ta}^6@)icav0Tw(t zxpu)*JC_nS7n2_ZJ}1}CvU3Q~Sr&<#8%T)2uM=OoXda$x7tJ@R!f6SJe-L2*Aix5< zY}3RIOTps8Bo>mmd4@|FBwp}Iyg>0{seruAZjyq*NehS=kB8*Q~41zB=J@CHC%S z=+W#ly30ZqXO(WAFhCb1ycSrmNm-m@e^i}pz8_qefASZt&5**|B579!h2hdRR|g{d zBF>dsB>syymlC+KTxTqr&NX)rFP!b&PEe46M!e_AM2F4DGbU$+%mHtb9P6xSTAPf)a#Y1~JpvLrmRW}g;3J^u{?>LP5JfE1 zN}eMn?hi>=Bng0JRYd|YP&+^a&oOOmeNHC;JOu#H%NbCf z0w8^JBLSiMyw110hZI0ffFOPID5ILbab{Z>(AvDt%ziL_uJ;DXL)jZK6pl7~-U!*M_)#zuGyukaQ8SI@u*-49P*z8QefX!XS~sxt&nZ6f;K?-2`vt zY$7diebndrA_3s4!2987@KBKpRq31WU(kg^pW7vv4|+YAUU2X257!N5)f*>$3WF=z4xMK&Pj!HgNk!bK(!VD zpeo+C9hVMDa%Ui)N6a)6mKE0XIuHt~V&$l!`ChpCiV5Cu(gM}N=h~``5rC={09-F* zK#zY6(At$wGV15M6`5!OVqh(K#CyxF^HN+KEVzQ z9M$uO^7Z{BRXou(-5~^mp%^)a_(u24RkD_xLRz3%)ZW(TB?N$`0JeuQpfm*tXs#wS zMDrg$P3LAKDWZA=KUjEi&#st4sD zfSSt}xnwoxzioAjxWVd{Gf1PaZ0e zxGAa}>0mdr>>Ha|7GO(`L>xC6Y3aKrkVWQ@boM%lEh-k8Cl3fz=9tF7A&v_J({0mDX0_%RPYMcWvCmxf;D?> zsnqD?4mdA~6xlk%J6PP`kgU7s$^r6YH_HmrOof*V)65O+d&%2aPp&Ix>O56g%VTvM z@Lv5?VS)E46#@>yKO#Zyqiy|zg025uSJpJ@ntr2qoNzmKcC_zh9hM?UoVj|Pf+hs5 z(w*#pU!4Gq$pT>C(1-vX(&e^#kMsinbrbcixjYIkaVT-9qdg>jPyR25q*)k~@lIBm zQRnptq&eDQuHrGvG|@{t+5UAY0n$YMWZ!a`jmnOz1jlI)bn=hWfIl?(3-y?!71!FdZjxDR*@xxMn*c@RZ$g^>#8VH!erDhXy?^qxh{%I zbhZonwgl*czM{@Poc)tY8TFFe8OuQDa0uC969)1OXqERG}qr2Z}^ z0P7+Fur4|w)t5;9QK2NN>@TTqO*QP7|4T3Of?gzFyFIa{vWY!gG9`LPXLIQ7!U0)- zX|Zw-I!NV=%-?+!2~t}Jl1p4}%$>|pT3k_(Ckd_8S?`&a+LsvT> zeD!^#?)SDYWe)BvoD*tEYe%>7$2HfIJhR}3ymL(EyM+_I4=6A+qFp5TJJYNyCrr;I zr9|{!bhd@MUH-568>#;M_Y3Ppf9Px$zhBrh>kDgbd-IBtS8~oow`e6l0XcJfjEsnte#rI-lB17_fpd%G;9H~skFWb4KOq2fp8!Y>9v}cN z1#m7g?@^g1>a?>MYmaRp|Ch$qIOwtEFz?O2sJLiq;k?`I{-kVI8Hq|NV1EPmKVKB) zWOdf(a{FsUf#A)rielz!7jt0uuL>7=6-bKry&91KlU{ulpeJ_j;%5zek`89Qu3a(f znQ<)&G}|Z>o}V!sO`4eSMs&3k-WUaF!c$V=2~T|Lgy($fT<89l)z>ihH`ZL8y4vMq z`>vECyp^7fC~ve;dN&fFb2Cze_mdEjt`lFHBAn6HuHx6L!f7KG|CplLKc;9F*p;KE z2w4gi%aT~&-L5?p7g&7gv-pqztT2!xJW5i~IFdx;`!mvz2Y?1Y05n*D93cz9;QfFB za)fQW+8km1t~N)Q)79n(+jf((^hX*rveqhajm+i<`;ZQDgsra3mfzs*T2L!kOSkTp z@QVx~w`MG9s26Z=!;)r3SAR((fA}-fEPW=1(plY-Glcaz*mt~W)1PpudtiOXOZH00 z4sOsLALh9E36JxwM_ME$-tju;*TSXA*}=}{#IJ>Gy;W2SI5N=Jvb+@}#SJL@uJd`ltvcsD!B{_$sF zZ|~h?%^hLQZFkD=$PKM?Nq_H9vgZD)1pUJs&N)E>uO?rHXDa zAC)ND;k8lwVA`}_KlECWRCEt|y-0vMA&o?IJ-gdFX}PmzS<|p&Q6=+gO3{384B28H z8rj|M)P{9O&8)uXf==F?WTlyb(zd?xla1MBi#$`IY*B0P`efCmfhy)x)bzS!t-DA| z_i(3RfVyka9d%djJavM)+opf%KXI;RE-Za#EmO8!QASoz1-K%ctH3W&Sv$2f#pQ}F z@m?b-7EsNS?OrAgETG5{7cm;Z|5O&LO?}&N6HmF)q*W+d>U~QQNzA=Xdcm~RDu)AUV6Zy9=uwXl zgM)zVjG}^&RQCIwHou-x^hG4CPLD(}xr+mh0+GEqAfLz@Uf^FGs7YY%Kjl0i`^}|ixUK}`@S@cQ7i;)SM^7tNh;dmhd zIJg!72iNl%&^?*}NV?oYfb7w(Go5M{OoA|-6F1i*RqW&*H;a~7`< z;4E-neM_yP&fa^3?pi!_hL&$$^nxDt(!e)_g53e1-ERbdodAfhOwU9m+Bb9s0J|Cl zAf>cUfSpBkqM1GI8rXSgLyCx305I%H02n%pp#(S!FvPWiiGUv1pwK%2>@AVv4;R> z5xn(zkWj4G#SH6psZr#(qrHOq0nxvD+V+}G0GJ8@rnMPRrUIZwTM-bd(Pq8Oriq39 zBEEwGq=$&b0XSYj066L+^%Hs|cLq|Q{u_$(2n9v4auiXa$Zy|FTHtxT1f{v(H3WdC z0Jdi_pgaXYLTPrb`CT|9-O)u|g>LR;jui=4-^mAm;{;s4AOKw5V~-I4vH~EzeS!e+ z6u|M6^mYT&YE*t-Gvg9$Q9!YBZ%eUZ@1TxBQ2wHcIR!Qbauouy5^@ zcBv!>VQ26!0-S+-GWA^VX#zl2EF9T*uc?{l_OE2!^$ux)=XRgxX9R$!0EqA~14>kY zfasruhKT;^6LoH?_6^l6+@NY35CEpm;v53NQ~-P&cI#V1bG#meg07$;x(^>N8sUv4 zEzlj+*H-Hk0zg*)^fZ<$TalxyE+Zh+gsrg_+~3q*Q(Pu5PuJSmaz3qo^`Gu4hyH!i z%hjD!pZA~DRN(JF^9aR>)|cAOoDc{hT;r(GKPUhkI%f8_Y0XRmI0fEY(BDi2U51J`o?$ zP47?FI3`nUU?Is1dhFxW~Z)aQOG% zaM*iz$O`WSMFtMP`y75J0F_aBK+yJZf}JtI9>lwf$W(<>#g7&xzR{xCHwdr*HL-VQ z-!>jg!Qz)N3tZz!gA7N{d;47MMf%xW9KWKc8{FdH?uNsg*;f@!3w1(V*2uZKXsS1d zSn6q@HNNKcXZ~|lQ5mzbXhaQj%QZ!_y=A0?x#gMx_8f5W0E4@Mv!3r>+H^ZC z{?;a|-Z{XI&W{m*(OCe@;~T%}ljA*4C`MvIF}=wXa9&GsCeDNw4Y2vEDFbvA9uSq$ z?bx!SoU)&ZvzyXJ^ciaQ?H^U$w7I^hVb&sj01s``=!tkAdp`*lxs?T>w;{jmUdH9`Wtt5J5K&6xZ$z-BgnlnU10d1R)@ zY*4XrJs`8uaiE{skU#u0&guFW&N!zJOwMdP)6aCj<@zb6>!QBdX6O6GrRfi61m;1 z_&?dCe@}9B7iVx*o|LG+Nbn6deO8cZ7B8>X!YfZ8x{+9+8{IaLZf{WGB4$*Aq9y08tv)XI456_Y|@rAa86D>I1pSk7^2EJ zCm*VRp$!eqOTK7;u@4<>fiTqj8Ut_YTPwLWE$%(0g6Z~PQAJaJo#Z0+&KOfU)VOd< z4X4u5xE}JRQJiQ^lSmNKt!&@zCOpC8vOHU$u{;#0ht(l2l~r54uBe7-IeSd0==FJ~ z#l1x%vM$pHaOoD(6LF2>A0$BO79^Y8N*X9#^1)G|bRSY>l~9# zpg#%_Oke#7MZXgi{Z5{M8y#^{fZqwe-&q8}uK>8wv48-$6aagZcQtl@Z$d?!sN!9I z!+Xv)y!1rFTU8Q2Id3{|D$0)DJ;+SlR5UnimzFEHyyvN)ae?DO3Iy|FogMSA+V5zF zK3J4)zu$X5Dd9fH^CZBO_^b-hQ+MV0_c=Z!9W2h?8)WZuy!C_I_xSfYz9CIaiU+0i zFD;mn^{oOlDc-IBc3T}xisDljWybfZ^P&4&mSV%)-?{*c?i^(AbG$u>?sL>1EH3@V zg($NJ+o?O70G+yVpQ8f_5ox=@b{Q!zpx{^LJE_9yB9Qbxj-@08i>s1YTz5tmGb{`C4;C!IZ4MTIz|?>M zZgadTJwktj`q@EtZSu5SKzcrZocAULi6-`%3S1Mjw>kEZjtrar8{Z!dwjN&_obZTy z9Ndbr+M&+C{R^v|$Y6i9BY*f~X~`k-7sk?(L;hy9gP&WZO@6|qZi4k5hio-)kE6G4 zPB1!WBs^wVk93bilC}nKdH?omQGRl=w)5t-uNC!i0g?l0y@9 zW-5pE+CO<2sR3ENb)_b6$B=|eu#Ed+q60ATtC1Iko@plbIJ8mih4eY(!gkEDp; z1pwU==LeMpy3Qhl0A~?otm_a8x?<+&1~(AelNRWmqqkc|<@5%ghWFV3{e4 z9V9QFE7$8PuO;bWiQROB-6u39Kcr{am36%v8-kR zHU}+A7kBkoinVp)5q5LXV1(V_EKl#X)|*f9Ao9!n$S)%Rk*^>DBELoa=xy~eBkb;G zZ!lorV88+}xS~?8b{x3dQGnECr2i0gV+OOmAtrrWaq~RUR2MHPA?xg{A)d zVmbk+h_gum1`S7sE260?oVF>6Z!lorV88+}*qB+|EEED5q>T(WrF)i1pNdgjU@+ci zFrEM~xR?ZBa8VM2OV7wae1ie|1_KrZ3|I;VW0DvQx~bQN-oGg>F!-0x;9mp?1OH@V z8%aUqKS?zHdqx`a0MOtEfCdXdBUYohvBy%-cp!yA9Tjd*6;$E0?MWU08vFpzU_n5GrJ!*vppn~VMoW`cr}#>*H^l`S-ACCT(Vc*R z#u$=<#;7D3eKtSUG zl7hy)Ni-fjBMo@~Xz&9-g9V^*SA*i_9!o*v`hW%wVd{>sM&bjf)4R5iG|Ktqx|i)O!N*`g7yrTfGvagGQ$(#%U)4-pShKOqV7yJJ%o+EY>nd z+e~D|(ROEDVQsHYUh8D77Nn(b5QHA&Pv#k;?ScKTqihC578z$ZFV2n*A8iIUFYcX{ zp-y>K@kbD?!RrE_G%ud*jiYDdp#FDNW4jAT0|)iwC~=M=(cqx|B2~sw&|Lishf8w> z3%|CCV#bo>_fhtsKKt$gHIN38YN%rJTNQT>t!(fCzvYdK&oPTy6_+v9bBi~6H&a|V zz`vdZNd|W;m?Z977hmGtPfDnfwSHOOIofRdb!v5!)~2|?dp=1^zIwOs(n9%eAIY)C zerB}&ZXe5ai7j$jVplQQFISQ`d9&NKzSo9-1RoSd-U7T4O z8-SZHFx$Hn=Vh(YlH(?PEfpo2{>KmX8t$#8NYM0`Cfltf4K#gn#Id32KdQ=T`j6>f zX!?&`fTmw&s<8dw~Er%jiV_pJhb4nPLAZ?5BEgFoE>Yd<8&*pH2W8ytBBR0B3={{Re|& zFuRUWw0bc^t4|waUx`^u3gCFB&+#z=z)=8%_&fv3Q2=nu>j!s z69M4pEJ}_ID#BTSBi@LqNGLdpnd6A_3%nB3l(ay!(O6rV9S8tX0YJ1b1Ny=2u?DZi zj3IeqSWUb^F;cYjx9yylxuhMpUO;vU$wAf`+)99N5WEm`7lGg^R*oy~w?0h@p!v8@ z^JM}+Q-F*y@*zZ)Yjuho*IU0NfU7gQ*Ds%6NCCAXKybY^WgOL+UT<|~l^M_n3V@lS zE&-wIt)d_t?e$iPPAkV;xgKZ7c&^A$qyxwSic|o62a)8?0CU150#KS_;7Sv(7cC+M zl;)M=Y@@lE0FC?HiqB`RA_Z_<;d8u?0B{sw-~UM- ziRDUBb(STsYdViEuSU@gepKVmAuTTP9=h3>SDP*Pvj`p zy#$1cRTNyYYH*19H&Vv41wgr$$q#A`9n@K565uRQu=NQ*!HR_|STxl3w-gt7T}TTB z+acc;>_7rgumbG5TfXDVa^)#zKM~3; zDe`^5SPbGjW%!N-)ras!4#Kqw0Acs&W&}73e98CQ9s}xm9SH?teU7{Z6P2YjHjt;- zP#|@*{Q^oIMRc8uo#Qz5ssD7TBmMiN)X`Dhy70d8ZQ9G=%ce1kP0q*s*I=f_{MTS+ z5R5GoUW1up_WkIRN0-EG@(2MTc@&Z5zW)x)>}V`zQ%1|w5l1qCJR@cFlF`)YQ!#qy zrCeMd?C&TMf0?+AzYGD0KZgW3+pHb8C(Q?AHicAA6;8zg2Rh;#XPfLBBv=3vc;kho zINK~0w@0*&0p51GfZ_s!5k7+v1mJC#nIr&%X-N!bosog~1_SmD1}wm zCrj_AkP!S@Klrr-p!lC90fK)zDflgC3|@RAc=nCpS%Bi-s$VK)DHz-pFu*G=k87Li z8C@s!-zmRE=~ZXhYpTaKl&liD8|}?(>{}`|)VbVyE;UWd$BT!AAlyiPhi zC~=@!kpy_zMGjwH@|u%Whw{k(Gj`p9Q54^wyO0364M~8600|I!2@qPOLjVEkRXQY) zTmzEOOMoO4CDQ94HGoKwt`bBy? zW_h-FYK+l$qeI5%yU{ditv!|+Yn?Yn9XpoVCAtQa$^k1>l;ZsY>0*)UeW``2-QIYW zWsy+8h?OT2Fk)@y1dLc@6W(QcQK%r=4v*10`(YuVXfwV(`mRXDi1jwNZ)1fK>l_P3 zZ=c8io8vTkJCP&YBss!OCg80Wp9CJQ4(J8-J>4bTx_Jx^E-V}Lv{PjR!fmqhc-~Vq zqVxow_q;a7c;1sPjGe=sEjZ+wOD`ArWW@c}5TB+%=s zQ3d6TEtOP{$j074ic(w7rUNt`7=~__A`BOwoJYMk(N4 zM*{DC!G0m-`+_37-X8j}H*e2UZcHxIQ~YPIOM(gm!h59pHtki3bo50^_s(8F3MpnU z&c$~JQ~+LW2}<=w7HF-hDz;m4La;~&Ev4hlmTE!(MiQ8em=8r0dwf652*T0cApGKb zYE5gWR8{;&YVYW2Y^DstWMMbnW9cc1^?8q_q1t+8TjaWrQ-kz(SsoLLc$XzvBw$J$ z#R=$~(^8CgS!N3z%!xBn^*M2d5YU`xJT|gYq+%JiELDF5Y&8qSeAtQq_n8lg81tbd z#(XFfX!+I8CKIsonwqLFd?%%f_gmf(roi$y4a?sY0-nwBe#=#n2*W=ku1iVnEab!E zqZ>qDXZe5HPxP=~(!+k4pf4Z!{T7*uO1$P*3B2DDVW(o{{YSW6Z~ky0z>);-x6~7< zs6}nNPc7nDUQ{h&&nK0$*!4K6QZ%cxZS z$%^5r`s*#}!bU{hcup{*PJg{6Tj=<&#&s!NbYxcYKoy#-kp_qXigm z(}x_7kE>d|j=N-{8u5E-N|i#tcgUrn+b>cpe~xIN8g*$9sw(}FnrM5|w{47XAim~J z^%$6`-u)x>piPMMk0Ac=XKH_+RGj%P_$zg+HRN~6qjJ_|b+A3~Ch2FszuWaQ-=Bpb zG&!z?x;WJyr~3SxI@(s&L2cn()fq3=hzuSh%Q*Bi-#!mgYuRFbv!z59m4nZGBOa!@ zt+q!*7R*acRZd@;mmU@An3tM5^m%E36!5%60;~p8g@9IrPpZ2C_9oV3hd%$9*|UWf z7IGxO(r=j%U|ukDY!U)92lmSUX+OBTZLg4G)}U;dH5!pw{7#Ltgngv#b)nU7RL?>5 z76uBvB+|K1%d6_tz?Aap{gU=r+chBs^{Za$d+*a{WzUzg54Qa&v@p;8YH$ZRy*@;R zNPyin+fjRUTR9;GIZJu|H0^Gr+1<7VLJQ<|ox0(zg#hFvK%?vovB%pU6H+FpTi2Z7 zv?wO-mEY2*R}Yo8hp9i~8dOjhUz-tc8za0n*$VTCIfm$eVDofAr6J!7zbDg-c=1eS<#t!>{5 z0cg*7XkqN_2z!#v;_@^0UxPMO2tZ2$oKIhjn;L725mIpf>*0pUgQD!iZ3#jNCO2{E zUhFIc;3fe=B)d*pbz6TSWo|1=jSztwU#>`@Jx*wW++mQ<6atWw0OT7ccdV|WlT-Lz zB=E98hF-N8`%slW1`156&W}kcp|(0x;%x`~NL51@iO#y{g&>dvSMCWZ3}&e`_g)B zi;#xYxyz38^I_;X-G{M40A3QHoiqOF9&2kPq#!4$Nsewf;U)V}TQ{KvqdSjNvHR$2 zdLkX%luqr@+Lj^&pe2D1?V%n)#Z`-w_CB^bLKWOI4Z{};0mw;!QR!(R067VK$m5!m z%}0b5cn=u7r-T5!BmnPuApkE4OkOnfsz<0Nej~KNd(+_kO$fkC0#9%RjQ6?++$1!) zaRzp6dZ{6{XrTq}sPXy^Q#~QTnt}w_VQL`-yrv+5_g=TVkm3w%22Jhs>0t|foN#H1 z{>HA!lp=JoSResr`bk27dYL)0g}}^#UY7STte$O|kfO$v&8%_w2zvY@V|=Z2+b*Gn z8t*V_{Gt$`#w0+EUzY-|F$ugi{!mDLYJACCW0UEQ(1raZK#l(u0@RoU;nnE@s0m&t zni1mpvn-s4e9(Ym0|yUJ(kY z=u1XL&k6x5N&-~$iWG1~N#OPDZ6TGOwSGfd4O6;V43@w&KPM3j>RDC@P*1bmSRp_~ zxm&P^9Z@s;TbzGW$gbQP^6;hpUQTPbA{daMV zJU3G%)wRL)AnTws{X};Tb4sK7i$YdDZeL|vAQG@4lySQNolWMtk=Jg7>N&(dOs3`^ z9%8R+vF#CL*eBd65=bRY)o<p*|jF-(fo?M2NK$X}ZtP3jusi0!&b!3jy3p0=V@U z!@XrTq(;owb>R)Ln%L7OQufR+RvT7H>Bw6y1LIX_L` zv)-DBO&LG0Fl({G@w^P}Q7{Whhm=Tq&?qVu^4Wx#9~ZHkB7o7n9gY&(TH*vsBl zAfM2{UbY~T24XM!1S?}Rh73c6y=dB4Xskvw z*kn_8!y7bH(_Ho}+sDEjMCN6Y;Fs&r+-kw9>UTXi+I|vBaMSnc`oRB>5MVqc0mj4N z3~yLrTp|JX3!;Spr$^k8<>?W1XFff$M5)A6DKRSSUWqu1L7E`)nxq&WI|~8Ag-XMN zmm=NFfb*jyAwU>W287YAbo~J7Vr0pv2yf*)p87gn52g3g5lR6RN-AiQy}C6gL)D*T z?;ia%XOe+)(aWN6g7lOq8!>aiKg*Ls12H2wq$P-%ZLEx#+0Ivpne7=x$IJz)A;(P3 zsdlGN%-{^1V&)y&2~j?R)!OP`I};+0Y42v}jdUc#+eqm%>{YCvWvCT1>>Z=u zWj@(RFNy+iNc5FRSZRHvPbL2xH-rM(NKi;a&_?%J8Ey0rU!jfu`HwbwAwzGYq)hu5 zpEkl#P^sDWy|##nMC9G8ORmPL{>Vsx0Awam2fG2JB@0&I2 z*}4fSVw0pCo0b|X=j)V6g@H3!D4|D=G`Q1+0Nf#{KuZEiyY)fEKvi|Vy{m1V z&;<7?gZmjF05=I>_v8ikdbT4%iULR~3%L9EV>4`Lg%Y^mHn^_{0k}zkO{Z^!0JJ1P zSFJ&X^N24R-sAY{l$k$Zs7>@n;PFNF=-`r*XtXKLgTDT|bqnG*g{ioIY~j(>xf~gj zrA5K`B`1*}3qpidBwjtjD)AK}tkNX^jq(08=Qhpm6)BcP9wyq-C8oM-^Tt(;tm9#; z>tU;_vx(P{Xp36^ebbj0+wJ~a(`}S= z3H9mA_MWzjLKP;QGsv$B0mw;!K>a}oKu!Xa9D!OyLm^OGPU1lA-!q*_u-XopOjrD` zx!UII0;}y&tS_UsH76M3627-lhIxzxthVvJjp)h7_ckgEF?`AoOqqgChMzh z7=zVzIvL7e+t~WFeX_O8WPN$vib#J{^OShdQthpNt-?YnJu!HS7$j7TUf*Uc^V@sUEw)BC1O)(4Cc zlZ^p`>UnXiy@7S%Wc6^XeN^-mW|mbPEsDZ|aCe@)w{4k7#pFK9Ki^`Zfr(2HNpmo) z>||w3T+i|qhLvY0V^|SyJ)*6!Amq~Yw;n|tcvz`ddWM+iJC7 zlfV2Kds9oudraUv#(d~a(#M$hChKF&J6?etV^sPDyQZ4$vX8cX@6`~4j88sekoj)1 zKFBoNO@qvzzS&YDi^{=YmkZrvw^?kZr+Dnv=jY%l`Y01LML$IPVlSO%)biJ==BHIP z$sVbG__arvqN@a3JAeIFe)?_p+rw4detR3+i#uQ+VoUSaa(lIKC*?k9 zFRMBnpu-)yinl%CuRqUEf8-(iVd|RfW~3p0}4%hn}~0wB7Po{nD!n)}t@jyV)N2YyCY% zAMLfNUN`c9Z24Oq{+-rI!AI>iY!!tNgEHm9pltdW`>jod76$u9Q+4h{A;4fy0?Z_R zgaEuG@ZrVYvr}k+H^tzcCIsLm0aj@XgaEuGFnRrEsLetZnrDicMl_p8$5^Hr(3UgK6}0R>m~?1z%wr{bHK`Ju;ktX*7wd$@j=rF4$-L zcp>qUJxhJ}{8Bg|T*ZHAFQq12q&>htggJ1Z+lgs2b}Dc^zS~*X=r>k9`*#}0iVJcbUEWwRP?(#X!vj;>fT57I;zUPDnT1pT}bI?+6vNBrg zExtlay`{I5SP*(6nM>0bgkog$u+j?3vmm_eVgA6w{DIC~*n)7;HChkIhorDIa;Q;< zK-Ka(?JWJsBu2DjV7(aGp>?oGq&<=(b?zG7TQ0g`?`!)XoOSb&{rQb^!07h422)a-twpYFBi(1dBZ@^ZqMhFqspgY-b<~GH*&nriB1C9xq3f~pW7*h0i5zI`?~P`>B^x_v zCRIev0oIwiOGpciT|_x(>{CW#f67Inv1>8ir!&;0pY7G7KjviF*slqb(AXkDRsxOP zoT<>*34DddPMBF(P*Y<&)aqYpY%9>%@xR%p*!qY%dKf2~DcEi`r!<)E><5EDms5|f~@_wiNI zOf~0kdyVLk{EuwxZlW+Wwn&hbKx4nm%4qBpe1*n7QB-5wRr`Mmi|o(-p~(JF6zgs5 zOCpscd))*31lw045zQ>LJQm)R&HT5>foA^QXuzLkGnbh~Rgf`VdX^s3q=jZKq8v2y zIlY<7+~T6p%uSe%{#E<#*Q*wNlhb88pBFZvokfDI1==~0xzNrX`3mjaaaNH*eJj9G zNKnr&?wDd5E-LA5=fNVCf_k^jEfUbiLc?R7YnBM*Y>@+PJlkl!8M8zvulLtl%8b3>2Eaj*X?c#rA6Au)Hp@~I;tOT0)ZB|ATpW!Ps@tLBU z*sfOD9EA+h4K>GP+YM2yw~4Ki-@sty>Jd@V`ckI4S<&&j^<1XfUCA-3;yJFx zHvz?pja*a5{p^UKV(#4xFOLY~oDEdkxQN&~FcG(m2Zoanl`g68nJpvjsbkD&dyvy9 zHo(1?KDpD#QNwnPxy?AVHf^U)<*q298pb$ES&wC^q8nv#vBPd{yu9=`R$_E9D z;*0Ah_M5G@M27<98wv%=-!dSgglbyD(JWx1X+)Z7#OWH2z1E!BYC=uN$@kge)-*D#L`0~{t{)dx{3ULwOSMZ@R0rzE z1qHmUs}^XgAl<%vqwHr3lx-;Zl^w6Xs7tQ;*fih+(*Sop#}ex|v(=yV9C@MNh*p~O zU#(O^w<7hwTFKD)+OYHk-O^g#pfVJMr8IC*h`vpoN#(p4SYJ(P;3%iQe{x6&UsVkV zon!O}jV{n5ern)YZ>=&%Eo$i4S+U9-PmieM{))T*Er!4T=NM2*ugy81+UR4zx5gOI zgt`BF45%YiFa~UicZAtwY9V8QQFP24J@U0V{yoo75RIhJ^S*EFs2?!gY>**FgXE_- zam==aj`OyJJ9gxMj19qh&4Wk&$Jk)#xaO!ECsR9G3Rq~!rG+$Ybj(WQG1hNF@H#)h zGZw+=Q^(N%7-+erQzyHB4=h$}&Kmch_*2KdmIv5X0G?fzGxTju(2HT^OoC+$tL?>$ zxmPe`efJ#UErxby2wF4z{tLk`49$xN7IQaYSYD1`3B$7S1dACy%Ov=OA#M&qU50^+ z3HmX-be!NQ!_Z3vk273ZPqqDs;oA;m>en5z2w&xgDNisAX43~UEM<6#V5<9XQMp|A zDyma1DwT^0<)SjVZmvfz>W~Zjb76Zf?9PSFxv)1Ew&udlT=z=@$i7?{mpFV-V)cRcoz0Dm_Fcikzfx)L??oZ3?ZEf$}sF?c#h$zM+sIie8un`!;mfnBN?jnB&fkKf+3mVX@)Hf zSsyWe#!$8wK@>w@hCvKV8CEgeWcZe$Wp9FZ3^@!>FucQXo*}#sK_o-vK?KzqstqTo z!!Vm6hvDT>1gA!25uSDsyv0y^96PLRP6JA=~?p22g)T*Gkx&d^h`=xLB6?Ih7JMm3aUTa6`EU4Y5 z^_QC$Sri55Ip1Z5PT2(A7#`0d7{Snb9zi0*T80e_|12P|EF}1ADZv8E*oB`C{~#jt=OCy(F>hBey=HZaWGPLRcLnc)+L20ICw zFw9_>!|)lyb%u7&5_D!5v5O#?VZeTZA^Wok?FR_PGxRt}(2rp!!(ImM2thbQbUr~W z!_s2}s~IM}L@nkc3&gd&rsn8K^2Av z48^}B7?Q;}lHt{_2;N}$@-D$Q48PqYxX_SFCNWHBXjFrs8N-JS2|i`$5>L>Rp?+h6#taJ?vYul6p((*VhOUVO zJsFO5Bsj^ixf8(-hCdkoVHnkgU@Sw_5P}$n^$eRC?lTk{N-&CHEW^ZM1k)KFA5JiW z;n485gfH@C@F;>XhDi+58NO$@%MhGQ5XyjgaUIW-&)bXZ!#ZDJ$i3g*k(LFS?9f+P z`6k0r7s1O6jokzZ4DT?UXLx)Z!ElE2^9U|8M9wFu#4w6sEW=TTml?DL1mO$=8HO@s zZDQQU@D;;%3~>ty8Z%5`n8|RO;Vp*JPY{%47|Jk;;UPouCke6{7BZY=xX2K>h@cWf zGJ~CAAH(5AS%kH73E~*GGwfmre2O5Lp)bQAhUXcMF*ICE(3D{&!(4{1mk@lGM0pSKbG!7yPv!6b%@3?DJv*gSOR|sY^oV;IO6Ffidlr-6QDDkk4>}0SoQFexa+#UyU~9i}1b2;FFYpHy55x#(9aLQP>*8ps z$cv5EWp{1lT;sFx1!YU5^ z*$h{!5!__>r6Iwe3_o;|SGQ1?zkcRL3`XNIayf|?8`8D3}T>>_xKVYZtfhoSp8g1!vb z7`|e_E#peQgFGWx)OE)l9m&pJ^0(pLP{F))8#idpf!`(dA-^9yOaX#4sFXIKhDX+eUo5 z+jEY=)RXomnCaDCj#+&nl4iSDH;rNPlLRvu?k*zuo#De=g3lNlJw?!r0XNQr7t__0 z#YPcR7IP6!mGNEg2C91>>J*U6a<+1YXBY-=BpAWq-b9eW&}TEjAcj2*2N>*m1mhTP z93i;H@ayvge=}Tpf#4cL(-#R^Fx<^2_>Cb1_w*;|7TSH~xMAd#M@l1f*_P(EQ6ClT_@PYaPc<5hYY=bBv)f7(pb%0NPV?4`DdZaG4=~6hU)_tqjjFd@zpS3Pbb+f>?$Z7>+YMokp-Vjj4a( z%Rd=LOd?2Th@MPPjo~)KJ%&}&3Dz^T%p_>fur8Ni6T{cMJM}s5Q~k9*NMHE#1y(ni z109pHAd|6G<7rZ^%aFK(pbNvmX9$KdwA@M1o?$h^dWOGu5jghR===++aBW zJi!MHbzUH7z_9!%!5W6FPhTOt#_;1wf?pWkf0f`9hPYD%jTt_Cjo?#;=g$%xV|eQv z!8wNK-Xl275O|&-m|^@yf{6^{J|)OtnEM&Q0*0}l6SzLlB7B7}Ut_3oji4^WbKejg zVmSFN!5a)az9ZPf@Gpb)dxDf72wV)2zYtVnsQW8HBZkty5tL(aGE88&@CU&M3^r>C zTKI<%x+@0|)L;lGPEd+rB*PenH-ZS>VHh4kki?J{NicPHj3ZE;D4NRd+e0Xy-U*YSA*yY8;HrMEtFYK7| z1_r5yPGb4EDuG8v1QknG69>dq4WQ!#we1N< zL>O%_a>u?XHK74_X(GbW|wGNqkhKu1|{?rh-N}KCm5}OI6Yb zK|UonKF+squ8PfY^sW}NBxrK_)JbFMr26%~wA<+prVVs=z(R}h0>;C>YGsCFmhIg_ zS>B$j8lQIbwZ7h0ol9~=TTSh+3)TM8s~tYZ5pC(F8jp9pZY##e3k3}PS2s{?80)Y_ z7HXQ2y;7msqq6k+Rrr6_FQHJDrdgi)W!OFSYp9aOJJ#6x`DaNQ7ZPOA%T<3l9Jca> znr*hxc>nBoFIWSuF1^I6oOMa@@vgMgH9e{o;T6MI`N{l5&^UTFTUx*-8% zh$`J>WhKM6Mwzep=Q(6)UlM;A&o!Z4@9|I?gVg|bZd zw!?_&{_U`~&@8Krf;<1e3T~(x&577#J5(suew|9qnpIRFeS=}Cp?Ypl#P_zdg^&bU zvel(m9lh1a+5d|JhTJNIBhY$NHzc9U|ESXu>aG6g!>{+vuQS)t%VM+S6c%X@4Eri) zJ8aEQt?EE!AfW9OIjD5d{LTFk4!1 ziTcx4>huK13|kj}6XG+g23d0S9(CcE%6q~QUFGC4y4CWl)dfxi6V178qfXh9{h2U6 zjLJbz3n}IG2C?>A?J-gVANxom|IcZMD$xW{q4Sl8vnH zoTB?t-wgK2dHR{O;p*fv$8=x9#O02kv>zqc;r>(W zDt_0(CR4*Nj7PyORr+#Ac~yUL(#NznMY-l90v`|^F(m+gLw6U?fGmzvTrzs=KJ<(|?=c3I`G{j)wMROki6`!&m{(wk^u zHe#Mi+T<9bjS_Nry{wnQcy?(RHRF`gkEr-IwS!{{NM!*kc9}ausm&B*6a9IGX~yG- zGN*1@zI%&fg+-h1pI6vqJcyH3xJ`ysGOHU4(jxM&BWFYrIrD4pbTqPR&--T;EfG~PD_SB#eYwlg+WPuDRb{uMgZ8FBg=mmyo#J%i z4Pr=rYo*-L>d`%prP?R{yu!4YB1|i%M(%YCvVJ>Hy|C9YRQukaLYP)Xr?^$PX@=Ct zw8SQ^#7G(K6!&(bl(e)W7>2lOhWrURC?Dt^{?ctfP$<$+TvF^NjZ8%Zg-D05=WG>Q0vi$?D7j zN4F3k4HceD-)n2X)Df&6Kj_HPnu_fD0NaF9WJj0z`IX9Y^jvcMeEqrPqGkm(r(RSg z_01ugH&A)QZfPJrp4_bb+GzZ45l?pBX>xf^{!^8(Nc<3!I;Ex5CVs&%Y(DPYpb5LC6 z07_K-deAF5)OsD%zb`mS){%1$6+gy(lQUvQV0+wXI&Lf6oAU+k&8u{wb12gXjnu;@ zqDzL!R%R-7V_L)jHR`Bip0$5;`BrJsiK44?`~+3$*8&XpM3v%BI{v>^3SHpWx>jugFUE(OO;V+ZCNX+R z7?zV-y#h3~7ho;fmS-pP<~X{*TJ^ulD`ADHJz9Xg;{vQM)zV%o{%1w$7o4M-s#h}{ zJ+-6)L?d-8xw22aQFNQ1c!Tzfs4J`My;jDqwvDc@{_UO~qS}sITT1nM(-E&_dzfdD zX`aRC9Fc59<&rku#c1WX9O>FBq2tXOxm+Zh0lkb|!;8^EXx+;e=!?-_yX%)!AtN@0 zsFQCydTGxI8ZUeK-6Gk`t}jbRzfvnqh5eBhq?V6y()09Z94$k9^wrAY_37cr4bFDz z$UBa?+8IHnkD_mLiX25{etk(2Z|~Vk`{+M%8qfawdlHZ1cUF{&{E3o{Frp2>`gyTjcX*7~ zcH?n+9}BR=?t9UZtNA2vyOq-_zse=Y+ZHWyA=Mq@6@>y8+Wa1=Rz@Z#Uv_-2)s!h% zOiLZpD>WAK+su{nZ-3x8Y|&cFJdGbX23Q|isK1=lbfLo6IYxi%7@!R(pw?%h%GsNg zV3UHC%jOTTl7PP{qNPj8VcR%2OYjK+V!l_0e$wF8D-MUYNUFhr1q<UMo2aA4>9=NQUZRG@RwG!8BzjjlK4>Py%iOx z!fw$Jv{LGVf2qO0RZ75567cVr67ZA6p`m{ZXepr3)yy7bIwj)EkFLlBHhrwU!Nq^Up1pMWt1pFj1`QcSGP4>m830l0= z1%KR=x@+4>3G62c^Q*tVrW;%C{M?Hu(TDo}`%#%%s>}=4WP^3Glz^2ausTOdKur>p z8V$bXXKL^bQVrDW4C>ud0&0?g`lytEnj|K*x4}a{iOSF}NL}!sHTb`f67Z7*{I{h9 z{3J2?`DMw7LPtKe?Q&|2HDn>Zn3~jBg*JEA4X@2T881v~i|DF0jRSu=n#a`OWI5l2 z${v6C&GexWGKG|}K&-(f)KgU-uUtK{67%5>CYrBs2NS(We+zgPPbIj6p+R5&n&QB} z9XSQ2fYvJdzGIcvoCylf0F8Z;E6qtzc>&Ir>f&WbNtO2xjjf%16nJ+CpQGC^9kt%0#Hje4U|45fKl;v)#Hf>mhND!67JFL&L4BptqSMbKJqP=m`>df@@ z#>D&XgnVjWi$yyv%F!p}jP+An+hi(hvp0IHyg+9^?V^-nW`0Gan6_Tf9ic7;IYZTR zm9oS1t5ZSF7TPVLui%(3(YQUVS7jp?L5oJt7mXbCKJ%fGgL3JL|HXclI+VOAQYG}t z2#>kIDzd?kOB-&KbRN|-&T9rH_7h+7&s0jPthCd;zoen;h(W44+*F;l;iejV1vk~m z)o=TKI*pOAfNCj|EvwUv?sK5Dv)1bCSLlcM zs)TmXdP*gDPG&RB?~#ixl>bJkGufhzk$K>&QMvk>YFMtmrYcp&iI4GxtKc%u`r51l z8K(JVm~bbmss>^cq4w@$==%6IQ%40w|XFctJ6r-1t7`@aq>Ta|4rBqUc zGgW(A>Y@U#8-;u*B`Aa>C?w{GDRJ6ODMleAHVeV>>67x#WbGfR2L3+{{@|ymNzH%) zKS_wcwH75MpeBh)jpbyQicW{tSgL`#!Bcwsw3ia5wltuVbXw6>-5F3z>m{Y2r+g+o zes1J=w9~EGr5fnR81z%5q+j{v0|og!DFZp>GRa|k<0@qPMyUpJWsvWY64C_PoXTioJHkN5W?oB)O3_Cc%dpryL|m z>@#|p_P)$=`rq^?)K5nC0>2rrr$C+2JI>9D$nDxL7 zSW7A4hUF|cuIVZzoX3(UoHF@d7UNV=R~J1QQIavD=;Dd6sj-bwz-q)`KDNU(NBo=Y3+>m zO{P<`Ue=vU^j{O*PL!`EH&l!NiF#K1OIiZce=|(~O-ji0R_gkhh6!5frDUKv^uu)9 zQvN~Iw$_i9;CEfigt0~;RUl$i!G{=C@JT@xmOhMnRP#wj6@K=qLW37KR~T;99+eiM z3W-bg)=!iYRDr$}Q9~OhlTn4iepMJzL=}h_Rq!E36?{^t3K97|TZF!536bd~RAT>f zRaNU&p>f(=KN~u!4*RXanp9V4iR&dQO!iGiOSD_+>&z;pDqPfdNK&-KR-+}hN{Qjj z+O@P}G8rxLqF+lKXN^LfNyKOgA7ZqGPYSBgwteU{%_kXE*yODOe%*HK68)nD%a-WB zMZ0*3ihXTtqHpiS7xHCiC-XeLl72ci;G-oaRKIo+H6!W5SfiF&Mpsy)mRhEN4o9w0 zRflD{PBp2Ib9RB1X=~NIuk$0V8s|4d-n%fZER*kbNH-RyTkV^|)dBkbOcm0f?kO5e zEv!ssKGXX6W%{=ZANF@1(7MVjn2S0s(-)@gm+@zxMr)%BXbkt!h+Lg9DO4rxb+*!` z7f_w-RmGwv`pWNquSXxF~gYzq7m6P^y8t-g3P?+DHkgNrDA7|Kz3CU5dd^Vv`?Vi7FxpFacH| zFMD=AnsW6p0ghwRrpuHy+1V&2o|EMSSV=YmO@Q%g)TF4<+C*syCcqVo=NS{A8L1&! zn$$X-Ff~(qLZ)B>oX;ufY80%P07FxpXSHoo5o6Bg<@)HmSxUU4?@^hIG3WW^`rLPn zC1R`@w_Kn5h!A6q4N zG2VGeYb7m06%tnHt)Czz-YWEw$*4k4zbf=Aq6$QeD)Pgss_>Ox6}~H?3Pg-5_z+|mX<@&svy&S(Puf?qt(T*XYE~l770R60dbG3YC)ETXpD3VqY^6TCyelP`T}Xo21*cP=NHJy?5@U8T`EwRJyQ!^db{t2<#yl~QJP}@j zet$yd1o4k6d8?l8H#57`R%g@o9N;904`=+}=Gqgq zW>Nt9YOC;5zgkBr0X<9jw|>dw*r%Kuwc%0&q=R)*mlS|>@G5SMNTm(xT~nJb#b73} z$&9JC2!CO!owia;wJW%FFx9SS(iJP!j-@o!F6Cr7)y|Nu$cGG(GKG}UMJOb&SGtS2 zuvfa9uMoYvR~31{kg?oZ*a1W7FG`kDGnYGUYIDH+ifY-&$zduZ#5qtq?Nfh#z7xCL zKB=BFhkq_?E2jAvP6>W=Ymly=c4Cm%+dj{n*40F0Mi87v5;*PZDsdK3M9J(q%P|!@!`?(c9eSS& zg5#<)@%yV({5m>{xWLKMamS@WaGXpbWjK!N2FEpFE;z0!U%_!r>F4LmjcywvZy=15 zp@+&jzmPkKch);kXgz)E%TB_x0o`PB>>pXi9Yp#D=Ok^olwsVF+NQ0;R_o)=yp7J4 z+C-TJ9dB?uGF!lMRN2z|SVHbLL+M3pv|(NQCr z3L#Q@4PEiS`a#N#ahoctp~2I_V}`Mc43|fJisybVQ-li;E-}oDaH-5!2$#xhikhWb z?DU_dyz@?@XPvjT7EI#lBA$?GCX;=#M5^9jE{RZ$c01c?U8NR+N9Hpv@3KY@p3-}0 z4Kq?^LGTP+qX*BRHTc%B_m*;M0o93KRnINo(gIq!YxL=Dqm;nmB*87;9w~vtNdkwH z5#IZ<*Q6S3J!w#1loC*r#CuMRYW@>pc+y`cmnD%rb0kHB0gTP>ngk^eLUpHB=dgo!tV~T8pi{7gAQedDuBf3tTI7a8?)ZPh*uT zIIEMylpVtud6(ldBAT@kmoa>WxQtPaci7uS`ix@c%8p#gM|J-`Pa}%|vretmhcD0u zMS?WIvy2L9B9cp}jGXFtSggIep0TNtT6C1|Y919Dd?Y(I(kG8$Lg%%5T&~ThJ~CWp zfv*RzMO<12&>IA_$)7Qh?$jq2&`S5!>T`*HyDxsIGfbtG=@_QWe;aFy3*>y#C+F(x z^LlAJ3Mg$|tH<(TDM7%IL=U(F*|9b$MZA#|@iu_8cq6=s`Xk;Nto6oQcvq%Eyj|z3 zu4`4}lg^ego%tUbV~u=@2PyNpvr%p4sjaEe2A6$>+~_K_By{YtZM<)PF_{d7&f|q*6?-g_XL|1!0jZ! z5SA$=a5+ifarn9Ad&NF%?|CiLWZHQ*GaI){BYaf27L;WRVzFj=bY^ zYTIQpMiQ%k&aF}fBZ=e^4UHM@CDul;9Oo+p%kg!X;R+o}tkj|yO3oI#GJ5-*^Cj)F zw7?rD7i6+`Wt4VlTZGCw?;NRpDHSl1$SkJiHxMFwwLhgc0^?W1+jkKdqqQ(adCYi) zhNkq;A&pqxY#hD3Z3W&^4O63*w{54@DUhLtHv|0`+Z3%s0gX0Z4ew+ vJh^ix^-jxyc6}JN-YAu)g)jIX~$Id1( zH#k{F)H&H+SSZUBQpO-ct&6yLhPeww{-Jxnp`bsd zbItI~XG*_8KlRJ(VcPuyYJVtw)GxK3c+F@*_a_NP{g!1zTWRH`n8yIiAL`O8_MTRv zU-|9$$aP1HmsEELMfK3)r6$5IZoOVaJ1IdCB%zz9^6Fjt^f;}j6l0hnF@_l`1Kav( zH=Sd(RH+93WP^XQlz^WksKOUt(Q_y{QVf0)oBUYR-}u@&QQIKZz`t(2er&$mN5aSE zB*EG7Q7OTBGfC*@-|6wrML}(}Gg3^4=TCahuHRU%8c$2=>LL14YMMlsZa5NbQh>Ud zWj~M-GfVPX+5q_}v3qq*ds_GvwWf?_t!v;ut~E(4ACE~; zTd&wlai>P1l$f|KX`nVhs?%Y;Lsfk)EY?%uK2PfvX7xLCqa?LW9vswXN(m}VSroAkaaWHXNreIg{BBx+LqE3#3i7I!O1gTxWJF~T) zq_)1r|Fph8{=Jl7XZGeF^Z;ML1|lB zCR44hW!hzF7;19CsL2H>@z&&9nT(ozT}Vy7FQO(yj+*$8qb5EnsL5l2t^~~|88taq zuqHi%T+6j88%3C-CY3ho(N#%GP!k-wG?U4wNn>^6A@vKN=t^L%Liz`hqb5G&sEJPs zYEre7tFh*jjG9EDIG^Z>33i><#!16a6Nga~hm@cu8C$Hiv}~D-n$Rx|6sXC(B5Fe9 zsEH3bYT}cEn$!w$&C-05QIiy(n&1fL#?$%{%tadL%O)pU-+Nj=f_YQgioxzRPB8~N z9Ki&Jxq53KNkzOYdD*Dc=`P{c*EV`+aSr1%s^T0*j>@6{oWn$IFwSAJmvK#tEc~@Ke#v)b5c{#6tF&r6Yf~w;U}i=IRmJJDsXFalH8`z=3X5_@_!yesILeh^(MHOmy!Svu zWin}IsodY`CswCbbam0jOBrr|q_){&<2Lbci9M^$liFCX%-y8l+|0sXjC@|L# z*rd<(+5h$~sWJvk4pMzux+25Vm>IMFcD_p6q_SgNO=HIKKeCY@mlog_^+Am5l(t(Y z;}&(0f6kp!1-Gb@OVkwm8LzT7ZbeS<6+-lsx)JPc9Ug>>Q~v(SY0ny zypm;#etp*&6&qOuGkn!+bDi|WCcbiRR_hzNn#82?Khjryr4d+GN5;E0Y1?Ho zeAUN4=T@nL@vm)TTI(E=$(%FVo6{KoL{9xZ+6;#+JW^UBnh&0Sn@Qp6GkgV4pZO0@ z_u0(-bF4bl)HT(|)A@~?xtdtCFQt)QFJG0(q&Y_oPjC&^?#X1hS}K~h-rcMZnkBYS ziW%nUeF0najpv8LrA08nrJoe)(x_k947jv57s3DPCkLalH&syUTDrnx?y`z>?`P6< zxOYk`*Az9gSAeD_w{p$X8c1v5=uiDQ>PZ!LbbfYg*HiRvu}p`jy;+SPLK9hqr=?M3 zFZwjK9z5NjN#W@Md<9Pr*iv+#{uG{0Ry2cV`gmGlbLe1u*II47G}P;Dr%a}Ka+2yZ ze^W`-GSQW!Wl9-bF11agXKm4YcdL#xpsbWx;P<7v->tc%)`{ABPXUdcTl7tvd?~?w zI7w)Gp}e}+*;P$@Q;KoR&0;>!Bx>yB6=5C1Y3!ClM~FF0ig3EcS97-T6da{qY40kj znl%q88#9ZOWiX{mGZ0K2yShHmevru&2R+rruiMmBr)Ih6+8sre*uOT!r+5*ZaDrX-~{k5W-{^Q48lYN_hVnU{|7`&703Rh`ET|w&O(ybe<8{(R) z{pDke=b-*KnOu-ys8%wMY%zNZh9;TCtV4-B-4FYQxyq>Mv9t=sReR&Ap;lSaz!??u zbZ123ui=a$xZ#XDg*zjdnc<9fd=;FhCXaA6iYdYWNN4;kYl>y!k0V?Qw9e8n%t-fG zQRYmPDp)2;E>eaYsR`i5;j9fej^Hb}aYSCxQ_4LGMqbrb3oVsTIYj8-F) zT+eIMq%EFKrA_il<^xMJ-%M2{$)UgR&kK2}Xj;C&a9*FWuCnaBvD!vS2X86ETdSqF ziXelx#^)8*b)ueRW_asmzT$uNRYk_4P0^}#Dy=FOut2tdIwzPR==I!bnGDaR`R6<- zRp2?vMXc}~)gPYwgtg(hD|`jdUHK2srBPe3=N>p*BmF#gmtM1g2a?<_O$~XactaKF zqTBUfq(NTy-SJ75nIF@v+eGcr0j0KC2g^3S19l%rvqY54!tS$_Q>VunOMPqDHvRBu z_IOuUExv$ioUiJ{39iSrZUwYD`)XlTP=s9whwlmvhw$P|jBs%BRq<^qDcw~g#=`%| z5cokh(6)5f=USRH3EscWIx^EZsRHjy8d8S$spa7Pg{%$lKfzb<{uA4Z?zgw|^l!w~ z*`#77xyBc@eYACwYn`@MT0)BgWBX{8NH)#k?W3nxS58*m?;Ks2LX%s)DXtbFJ{k1y z9MRm_PJKSb)n7Xz*z`@L!<-^pMCRAObM(?wSGIQQKXMv3Q3Z3pG0pXP$a#?ypE=5Z zZ@MemqJ1RNygZ7TL~a$=0vTI0(`K4oI#$~KEuzCOwH#o2V#Vfm)e z{L-1OK#OMCPE|I?3U3GdSK8yrqqI4$fm)bfma&mi+w@E5cD;jH=F+OLmdt|jvD$Y1 zWUZNxgiqE;f+MbuQi3BclF)f#gc_6WdQ=-I#dOAIS0k@j>gjLfZrw!zkd)(!vG(1r zAGJ}|@GB`jE!*`&|5Kj~sh~c8eL|S3nm)LlHdAuJys4xZmDIypnf}ttPHOOc*C1_W z0kx$@Ew=hdxE3TqE%r+ZYC#h3spzXxj8jnui7%#9vA%3rZW3LQnkErW3BQpN+?|+t zev=Y2kN2^;fF08J{B;}3XfzW(6Eh;0ZbmmgsZWP!m#7{39Z@}*6=jkHABSlnCAb+P zi9w1{uZUp5sQ1S8|loSDrRn z8iE1uFIJQ}M@SV6c#?~hG2l@oW5Aon+8FSr^A!fX={x)fJoGl?`-}Q1Pj@dYFSHXb zUF9mLPONZ!qpg%?c>CZ|nT$S2S;lI4G8yxmR5Xp=xz{Lm zR6(>#E-D65M~+9du3~LO>uSD2w63Q1pvTG`d4ikFgY&fIHyaO@03PjW2Wrlc&6t*)0{2s!;#rAW&(XSeuvElm%z&NxX3PL7!DdXqeXdd3 zc$tjN7}rjHGbW8CVlyUor@k3OgxHMnA;e~kPYSkP`tH=9h3K_Ytvuk`tmVnlVBRLf zyiHO9^S(dms;9julVRQwGJ`)-kh4>N4kEt@Gl@9y7(Ep5UI7M@&<8dutE4T~5-K2c zd>M7_u&b7KwSeMhennmXA4UCMfWa&(Z&Lkm_1yDxyjkK|YE?5Dxk8rWYT|MFY&(wM z%}SMGtwP$K_|Wz~t%bJtNkQ8`?QMHJ!tv9K)XiJT;^BaVXZ83 zm^ioZzEj^LY)MhW=k^IZ`P{ydy70n;X4*^AGW5QqoMQGqY=z!9L9KgUD$)wITY#H9 zdiWLB2&>V1EbpRh{9=*iZT&hUFEH48lv>It7$^HaV*oZM<(MK$$L3_tPGfVDE{r+A zvWu=T2UvDt4iL|Q(;T30PQG}GHYa`V7I=dzp9ZAz7OfI9n4#(&`^(E@?1z#1qiVwI zuJ&3zDZ?xvwN0z*?oy54aBbB(NNtS$ZFcEne~VrEDq_u>u0Gn30%`+y>9-Pg9|vk0F@w$Y=BmVv7ARYy-N8G<>b`a5LEUYQH_KD$d_93PVs ztT#x4<;>i7UGdsmQp}4E%d;MOdcrtT<({S0(lx0C`p*pdAEgBJBq91pb^DyFrgmS7 z`z;zb4&;^={Kt6uuLw6_iVNT6o#MjdmU>7B!NKvZG&7j9^jIlC`m@X~kCv=vKRnUeuJ`rSCZ$+@^+J za!spJ_#-RCgvvyzOOrENt2vil!7Ax}I%jG9zN?k?n6!|_JYz4Si%2%j+EmtynyXr!jj4$q83tZ7e9sJN$L3RDaW!KhA1@u>$#jK>-ja6HI?<=lw zi*`WfL748{t@qkzck7)c`_BeZDx+?ExEl3>7Nnm0nYP;V;sXNJ^`muTw6_Z6f6Xs{ z-+%S|-L{Y`v|5Zmf3|5CMnW1X<=yG8yudchIO8VVZ zLo2<9YH0>6Y7@N2w>D?%x#wuL3aC}vqj&vgQi8ro5_J8Gf4btdj#7;K4HDyigIeqK zU$iC~E;V4mV1wEvC7>n=4k7P0bXU`+OEIWf%!iOfO*dhw+6t)w>LmvC7AXNWN$@oB zJ}Ch!NlaD@RtK-w9;Ce~)j)mPpuQ|6pe6}5NNeqelz^HfOwGgLkLFNSL+`X6jH`mL-CEVCY-r2)|BBZj5THU z`cIzJ2ldIb?+>o50zI--e#DQisTQq1GnjGZ?UA)*GTk_}P%CP=8>>Sf(m~X|A6%j8 zVl9fy&3EX@uvStPeN$#OZEv|(@0$zmx<*>GzA_KI(sQpK&E59?fBL4gK>ifJ{NBEq zT|jrXSJ&G&*B4M*<5m0bzImuX)_vZrn3mBu&lFI5W3S#fKavuJB1yb`^D8MvJdzlp zPOXK$`LEPKd;Vom+ny8t1vN>$eY1iTgPO(MH;Ed3vx(FIb;IX$t2;;us7Zpp*;`7$ zN)nS54f1NUIwe%rxP}hRA$7q&*5IEiCEzCsI_P{U0Y6E6_#ZeMrfHj`8mQMB)O)1_ z)Fc7*F)0BxNqnfUHtZLqP6oIKXqTie_}?R4e!*M{Ku-eD|0pG(=PX8hqh&x}J&5Ro z_6gU4-nvi4c1upMNdf3d0QzcD!t@raN{n^(G`tz94x~-*qqUY=Abw<@?$XDk1k5A> z^I$0f^CKQ+Y)2K*=`kEu+l%2astt!JhQk?5$Nw5fh8yUG-A`=vqX;coMGlQMWN2e( zlqsZ)p^=6c42@4RFNVfNe1)NL(Y_*w#`MzD0@acb`u?KNip4YFt*ht`RN1B78R~-% z9<87*hNhKPRYTn!wCz64;W>lfB9jZSM5s|=?%~>Dse}PjW;1JaXrI0XRkdEF;%Zd5 zd#3ib%m=r11@0#mb7sL3dxL)_t5m@fThdT= z_?B7%zKv#W_%?>G;M=)ZPVz^`*ruFZAc1Jbt}22Yr|zexNq=&{r1r1BjMXalHm4mx|HDd zkR)__*k8+)61p>Vs19F5RaIpwyA!Mn_v=SXCd)HY*JQx~%@HXS^bt7{eIl!!R~rKZm683`h|Tg8*x=Uk|XZOoafu!&hDRt1i{t&0;$9KQh1? z`4oxQ%teZ5cErj9mLXOi@)cs`p&lz@f5BWLt(!BwxQedfPA?cH`R~_o+bmkt0b((O z*&8S2WHLSX`G~q6xS}!rZl*g$t1V@S6RB+)T$dzKaoWyWBnTAEkcBuj5x9HUB zi*`;tw*pp5^sYZn$~<6YG0%s@iuK3GQUk1)52(gZxe{zr0A>L{YE zQA8gpK@lWD5hJApMYQ!P0<&!qp@g0ldO+`4b-5YPv*t2o-2>{cN8Al!YH_mcS>Zm- z#XU==kTOP73RLv0rObt%wT!ROvz8siD6Dxu@6m;B8ufQ_#?mH8OLxZq*x;zDZ*cTz zwC#3`~hWPW`|V`^KsL-R?-{87D~d!e%R(<2*0LWh3N&H>a0`lFCk>Lco8TX(Qp z)85@(jq2~w9IM_l{z*@AMyQ|q(?|caI=FMy{sFoUBIUtBeRc>tL>8Ju55CDw63h;j zr38aCNg97V`f)8@N-QZ;7OAXGG%>^-Qin&4?Pf9Z_mEm`y ze1~+Z6eD;aAb3^YYcXZ0T+9s_t+JwQ(i7ASL)G>4X{A+mS9kgFpIG*PlwEm%PSyMG zeTNw{a|VMM>zEl!*%=90%98ABNXjxHysMGDge*nYEJs3V)goIA$rfK*$`Yc;5((KV z6mAC79s>${BJ@L}l+>?;^4JH+HpG+H6rDFDq=AHsBv4U~*H_HY* zQ9iEV$BK+TVcfp**)mzJrRO#Gj%9LvOHWg=i|eVS4O200VBbceR!`S%S*9LLEtI{z zl_%CEPTob)XzQ3(bZwDY-TGCRZ=Xph7LL9NLbc@HPUYiVG|6`Bmm#N*jm|TtQh`_| zZ9smqOlHmYG)%AsLM|-kPLrqFdOj5i%UKV@O3jLZ@f}#MDskU+I#*JM4X%=Mey@Jj zWVJlWiLz)1&x@ia7r`M;_2v2yr#k0YcU-sRWOaz+Znj(>^0ihRcF;73!m94LCO{mg z*Z^^yVx!>c$m1P7RfUa=^QWrI^^r=+<@#i!_;P*QwasO9vLWL~>fuS<^?upzN?M+% zp39B%4EkZriZj$N%!)IXJFh!v646^S%b%p13B#w9%r2gB;$t2JYpL-8Cy)7p?n*>A zzwx9;$SsEo7L&g{<*6>#aw#l2xE@)CxqQuXy*S<2mFC1fTm>`F*AxMDS+Sjht1c_{ z?rYjkoDCEEdAY8Z*Ek201##4rFei7hG!eCeS~aIH6l3C|7%O;ntet~}sAY>NDNQ|{ z6W6IWFeQ{xc+w$mz3)a=&^^!4dydVBKbwJBn{tCam-Z_i&YF_^2u z3N_so@+&feXbkqO74#+5sg)~d*XZln<`R>*8l4vE?;AccnaE*x08UWEXFb={$IxAI zv&PTDhh6pU0*Yt$1pOh!g=sTmWs1ksQO0=a3TXioV7D5+6}cgK*5g?(IH*cfvzcif za~H5&GN$9Pa$lfd20hFjgE`ZkwL;SIWi5H9Vu3g&Z3G}-NvEAjh$~_bsqRCn37L3+ zPAH1{J)ejj-1fbGy3F6tDKxIqM=IF%?*a8)BS*+I@*vO<$U5pRdM{AP zGIbe+;Ug!WJ*Z1Ycv{#~VUB6mm6OB!g!I4Q`AgoKV2uv3O|^t%eYFyINN0cdq9?a2 z;SjSxPeZw1@+=fTF*2KcP7pb4mODg%bf0rUtD6=NwM3;Y$$fH#96HKVw&774MVX#c zYAmtQUdm0MgLRB81AzBVQo3Kd-lBuhe4{maSjTG2 zB%0C3IIUo@s-8ov3T1bB%~RVYW;%75Sv9oow9j>0y{34Y$j(zdJ;b8BDAnXjSH;r1 zh&~(=b+~IZ9PaMbX`XswixZN$TR#VP3ub3e_q^g3N4ajKJU7$;hmAbT!!tc|#6_;< zNOJ?NaGt06aO5-_*awX??=#}MbGGLYUb-Bs484(FC%g)Yn(Mmyw$BiWB?yzpfI z^Cq31^l)0jlHERB({TINe9wz6k>%87=5*A${#AMczp+pahEaD>=xkGvE8q4E6I1RY z-__{E-b;s*|Ct+$r0l2aFZ zG8|gQdaHyr^LEz`GC$Pw_erw(N1j#@uUGsl3_b_ia%^dt0Nd`wrf`Bt+LlQnl_ zLs6Jhu!EFuwam!&v=s52b9EkF;^zOHCbJEndU}aUoEN$(PUb3R39PtUW_IscLVmTx zQ$^Hq==Dm9s3NZ}?w3OM{(Aa}c3cD3!>v~9>)~drB|SrzEY~lk6Tp69V!bUfT-Qcy zXtl(3ZS-n+a)GZ)=XweS*R`*zU+Pbsh|&T<{Wew}+oH_{Lq#RUFL?71VRqDguKUz~ zp%RZRvH>xT9~D!Sf?4@9CcTg@2ds;)6eU;F82q(JY4HZxmw@c|Hv1f=AuNHRFRMrHcDEo^E@kRgh^EkNo6iq z?~neH4rp6BrQFT3^>#{E&cSvHad58Dk8`kmAurHds zk(*Y`Pmo);c(RhYfN9y5Yz#dYohI*~jn(Px)AP{n&7LCedaLD^TRj!r2eRd_TRmM; zwkUM&`DeD~)By>nFnoCai;{-tXVouwel};%k8bn48o~4VgS*5^|1M7eAvSH>%ohx|!CDK>?Y%)8kF%0;Y|5*XS6~+hN0EkhsfJ-krKe*4yRjoRU|y z$767vH;3$V3d2VXGL$-EP+k2(463hjZmdnBE=l{U$!ZQWoimYW5+|hcv)}fnB|jQM zYY;+fpwZZ2E)^i%mmdDc6NpfbE`8(KDxOjRW*jlaWO53on5Wk0a@2`)=x`V1=%G2+ zX~VV3UXND{;e4wkaW&JM!E1C$s0vkv;cNNlM&LwRIlXKuMZIUn8L{ zTG#9H%KmN73netnH}C419lk5qp?^>ArBu`5h=n?rW#LXyQzsF%0; zi_=#`YnBzK!nA&3T52yhq9?l3x!bKl&1*eDp`hlu*U~Tbr&;sV@35LTSjqFg*g+A@ zBwD2|MxmKxv(#0lHgu&c$l0iL`PSx8=~C9}N(cK;=_agEl`dW8|886rwJHg9gFJNK zg(un_vsPEYs;UugYcAd@wwtQ_=xO8SJxxA)lB#DPMmG+{uDRme z-L;1Wt%i&p#jb1hN!OEWandE1o$|DEk6A0-KYMBqg$QHa7f(~S_=cn4 zveF8Hu_LQyQwwB(_GhK7zfaXJ>oE| z|5e)SdyzxHuwjN_!)zR7*gL;_>ZNjW4u&Pm7njif=Ib25VI4=&)(v)8*X2*oM`9(1 zfOSg^>z3L$%DVa2JWW$MIY;ZT`?`|@IIQC++PY6I>+tZIi_Gvo+t7Vwtv)HeNCSyp zP?f;Du2F+O{fEwfIbG6SbmQcj>z>a=;yNg@=c5P1S;v z%|cTts^dDN(sbs0RGJQCM#O8Xp6hg_X{1z8X&SFnl_sr_CsvWTH7(ZZ8WYB7%G<+j zl-zI@lF*83jMBjR>}B-}>$8{FVSUCP!AAZt-NaJU>Q>50F7HeBwBq5Owr+1Fmw1z# zvApBt-tnA(Pe&P*GeJJOmR^{5v8*>Hdt@$eL%I`#i(-ZI88xX6p+Ba0%%?}sF23Mx zE_Q{9ZL`F12{tvx+ee%V6Z>hM#C!TV1J_o>z+G3jIS1EP#KE-{835!vvED(V@Rt-W zv+u&rf?w*(wz8Z9XyO3+LCyg*aZG63jy76&JBe0Y4A9LC=&qcjuLub`$y-yBw!R`MQe>Tnx}>4e0Bf18Cv^I%Yk~51@%-Lem;}s7T`yKrOLeXRr$A z0F^jEt;ab)C60-TM@YsO@%9j%xEP?@8_>Nt2hhYpn6o$s(8MvJ5#~RNd0UG~Tnx|? z4CuL>18Cv^`UB1ZG;vI5+^E<##oJG8T=zT)` z$;AMD#ejBiV0i*GaR8m4a{x^o6B_$!k_}Zt!36b@G2g##&G+X^dCRynHpu*?y{%F{ zQaXGxoy9fXx2MusPUIXp>xkkZ_oTLw>>Y}9FP z!a0^J-8mU)e%j$n&%618bW;;Zx2*{{W20oo_zTMm50NuAGMs6&(Uz9%(>1+uE-{-M z2XAH=-pt?}%bSlm8Qy&8@aEJ1^oE*%H?}6=jg5lTG^pcUn83-#g=~CX8u;HjjA<+f z&?ULx;<~GDt?Mlu3FS^xLOF4-C=09g&2I-sWT!eJyP&=|!6kBUVm%mR6~54jQsFiASUyFR0gywKcRMGRwfYcE1@ah<|1 z9`}|_(WcJ@HN(7I9@?%SH4RQKjQSK>gDB^!PA@7>C z=3n~@M)GlcYi~`FXEPgmG?I*IAv|lt+ISNqp{#D>Z6S)?E6Up^VK>c(G>N_J)mGvV~Vmlib3t)qzCacn?i#aZ>g~@cW~yw*MDpz<1IBi zHpIxQ4fB;wrXR*-a+Wd-m&sY1oyQot*2-m1cz+DPE|&W{dgqEs+$S8}Ot4YZD}L4T zQnu^t{Z1_6JS>?PY}OaTZ){c{Bz{(`4U<^4Szo|x=Nv4miGyb|ddw-6CJu5oR@TJE z%9^09i|0#R3>KU>@NaSs@QH&<+_?LzI>#e0Rn?qYmZJ+g~x@UhS z2R!R-lrmREiC=1rcJ#TVk`#KXquho>NXt9%}TwWxc(nEKzToa4L!83!k)bD*g~(7B z^$Qv5vL#Z6@b%G|0q?X38R{SOP7zr)XH|y$jFO!-z?WFvjj&%)zYz8-5yQUu$JpoOTSFsl zRm$GOyx)u1tps59OH9eRIVH4JDW`9qpCspve6E;mH^O^Fq;VrjyOg!V z#A;Y#)nM(lmf`NLAbAU=5pvM1?XOU(K zH*ri|6La?z?@!__ zZi{`hOLzU9vuh+I%x6-@N%EudzWZIW?Hk^**^`8CxLZyi9u+G;dEI+HVXaLXOS?+> zeKo{pMz=12+-oT;v%D`wQoA|JTSt7CquPww-n2++Kh5@55@&K$+f%@o8cD5qL0<*& zcaCar7xdjPxNqu+3=bO>T%wc^ZR261RsYjl5G($tpZ!do>#gigD7ww+uExbZJWOYF z7MP;jWZpNuO$1j9wOPPwGmqX#Op=-J^;Zu#CA!UKM;Gz^=}u_O;EiT$y+sT5mWj4_#PA8a#TxSs=9a`U5y!~D8OD^#SHl91XczVdDiha{1TnSqPA1jJEYO!w` z^`Wj_UbO+_pV-=c zahu+QxyU)#gNgr`hDY>vt1qhLw{}Nu*ITlA6o>7-%u$`&wk1o@*n6=-WADXA!DZT_ zPrMnzMus2f!~IzJsrO~^2saBMsz$3J?@$l{-Q ztBH;rKwT@d+Zi~DKKZV-U5{Wh$^({qXN$oc0@h_2)@9i^%DT6gc}u5qawO~CF7In6 zUgNqB!#IF4tWompT;{F5A{X6&i!+3P!`LTRcs=4%4y%lH(Hj|7_b(w9bB47mx0#dC zBQ|W;yK=?1>z(K=O5$!kgId`4dH>?}7SJ(lZDy>UP*@gPMcL!zNb$kLbC=J0)5IBv zbv%0sZk5`i*pV2$?sEOV|=7iRVJ%`tkILJul zWW=b%4ttE!mBig*Kvps+N`| zzw%ZTKQg*iRRtH9sq1aPb~c;P)3>ysaH5*p98Wm9}H=+$+k-t=@_b z6s+4G{-3vkNZd&QFvo(LpY+x+H~sD&rEa4FU-}+U;L%sxsPfss@hEZ3cG~ZJC=5hB z0d1EC$eQim6gwH+VebyTJGgO2DD~JKv=w#i4)XOf%RhDpi*Gk}2kD1#LE29lh6~bu zJ0tA_;DU6>F7K-m_5qrF?HwRL+ofkAT#Jt6Zql9I*Tq~;!F9&0o%*_S`c8e-_h?^V zysX;SS4}Jnll_#*s=X7AZ#p+^r@p=zwllP;wPcUCynF9Xd3cYvbILS@%C9I!@MdsD zF=8)mCLiHseMNC>Y*oF#IeMS>0da^6U;%ZBQ!wT(C`V; zQ0`q=9i--F97EN%3>bOC_lzjcgfKMO3V;LX>2coyZz*9TqYJrr>FM##PC4VC_YKj2 zgTkhIhE4StCz4H5Z~3~24ot{t69>>X&HkQ7l8p?T9=2@4N!CrurMgY;!cN`If8EJu zxbeJ2MEhk$F{6zcu5Pq{vzW&Pt#Lnxlj$7xu~bfpkRQ&7EE}GqudNPfJE2Gt6Ea;*`dZHow|6=B9_X!I zC%kEL_yYts_!WnPx6d>@K;ywnc-`!O67w^K<9*k_XWE->An-lsnNemM9%77kU z%W-GDHSY}#OUdC*w0P^j<{l~#^o`KAqY~xO@p<)~{?ZJ0LE{?m8IFJ{Y!;_rP|Z*j z3@VBqrm*Sfy;a=tyX2Lh0#16hxagsy9oMVPL#~3G)Ir}bpTZ!M9kkb+lpe^}9 zTjHWGSWvL>N|w=07sR`$MKvsE=p2NG<(Oqv}0J6&wIx>s;DJ-MpNhQAwYRC=RU z=501bxu)vaY$_O)C~UnD(-a?QEGU?!UQjk*ntDvEY*RF&$8*~XM)x)_|_=4^C9?uTzNNQ>a{O26iumjH3B6(;$ zqPEiVkcNq|{T-HxQjjvXzr(n^C-d#^ggy45&^pCZP1IYBHdQQr(z%kZ$cloBOk)&F zAAf0Irl`jSvBs#qNAK;{wsF+%Y5y|52ZW7`mHR_`bO)=xN3UV9XWYl8t@ge%4ctr{ zC$wkG$%du2g{QS=`~nAXT(oc$y{_r*unv31^Em{(o@-b)*TxC$8FO+Z>#%3Mg6ldA z;{e*Q*$%^!D*6V>V`b@OZ}c)%*tBPl-uK+Yajo6FUpbkYYwbR>N1qm)R~)vB7pFS8 z?X-ZPv5RMe#x9w>a7Pq4ie9u~Q`kmEpW5vR&L>rU zlSFlnj0jcPt0Po}bF2t84nLC@fMoG9p!RZ)o&o)bOnk(>W-DG}#E!WX`dI^gbseNbfj;^r4ct zYmlf31j*I}f@Gs0NDtNWRTMTd{FrF@f$fs2G$7S>Ny$BWyQKIYcENF;+l=Y$tfH9H zo3$bQFB9Y&!cqH3oOe>aeagkz_9-Xx@|biFDDW8@!gdsEL->JvMZt!!9mU!Ze)t|x ztS#;cDA*8gc@HS?2phs2MZfC^8^YbfK(HZflLiPjgl%MWg@5+y)SulONbIcyxm{!)7wC6_BpqK4u{Deuw*wk^*tf3gh~8nlSr0zyU=d) z)3J^6%Q{_rr9__ntdFDlT>Gu&)s{0i-V9&%KD~l}dtYb;|7HtcMR&RVaz_ha*OY8! z24BIy!|h7!`f@cHZ0YMOGI;A)!C$!%jW;PYqh)+P`B^Jpf~dlUuyA>tQ!ug{D+)$7 znTCZ+zBaz6LVGruTmkc4xBYt0rW@lJ5VjRXdRyN>F^~y4w-`8po`dtYqf*Gpk#H9c z_SF&N?iCk3zUzKHi9fktFQHbn_jL}!$ph}(UQ@=fLP6hoE~xj?cpCo z{FPEUIU+83D5tj5OBF|n=el~Kv(Vw()17?JiF4d4ICaKw>I~yVYJAE2{xULcl)tn1 zmq|K3<0#sUQw}r!dD7Qgl=zOCFzW!!DDs`|Jw+HNk{SI5(LQ&47awi;cK1<6?2`=w zzP$3&9?=Emr9QsrMVmu#V9RIwuD2r>QE{*`CB!rCTfSt*05x) z$C=xOiM2Xl+*Qjt*oGnw?#c9V4z{6)qqd>kWOBpx{W>Hur_E^JpRKL3V zXa{P_0XfP?J5YC&4zFM58HhdzN%H%i6?1sw<_^?&F_V)~u|DAxjK{@_g7HYkpkgf! z`nrZH);6wyIp-^KSe-I_#W)6ptzyyCH$r^Rgq*{V1L)zmEX!B=KXFm9&fP06hQ!7L zddm9pfUa2WpZ9eSRjjy!WWCwf;9>MZ?O`W}X z@UZf|;=;qIgEkN64E41YZ8!oPYoQ$zEo>aMZ{SKV;MDiU-#@@A z(U%+*J%6pD7(GAx>WjW_U1A>>LJ`74vfpqrE(Yq1@};J7a-?`+&Gs|bb%cro=>E}X zG*vfFj)Y4EC?Kx=zi=mw@zwlq+`+UWKz?HmQM=}t_)nu}z3giuxY0W8yC|P39cvGU z(t$!`o0U+A_^f8-M7_MPMRFZw3JOtO^$Ufl?jaN+_N^#-ehx_dwQeR7z2}OM^lJc{ zh0vOZ(3)$sNUs4LKf&j9yasT}2;&63?<>A+(MzG2fuh=0Ubd@|SV#2W27ju7bii?vO5wqw#N@Ijx^6lEj1<3M$Q0 zhwuWu#6e01H~cSFzXlzWf4}A{my)Ia;05Oyh9&X(qTm~)bIaglD(s(e9#x&zDNj4q zKj9*Htq=!f#^GBk|5MV)^)~ejx!$I;!(J(bw*+I{K21KWR|@T%>dSO|>?HG_3RTqy zP3p?DV~e8Yhtqr?iWA(JP_hz^GBQ1GZC9)_gBFpOnS?~5Y&ym)a>+>4rT2VYMegs( z0kdNuQLgWGqHZ11E10SCX;t#leCh`&VX{S;th)Bip*dvqkde`=%1C6izQVhDNamgG zE1hylk$FasaA%Ow7iZIa(wG~8WFB^EHsB&iCdZ;?kQ537lG#;BBbiUDUr6TD-(%oL zOy*%DncqlXmVM0Oy_uuu`hFLKxdovNiY!hxrJG96JYP#Oj`NT^E^Qh;_Io|Zkh^(Y z1-YAJ7CCR8$Ipi=;fX~iNzHX z(%M)3Dt=g=`p{Q3rHJ~2r!|VVXrp$^*EZ*XFgi@LCCL{Biwe=EOFnq?CdQ!EC8?(t0q_Mc%U85qs z@$EAj&|A13a=FpS&zJbu_-(HP_D3^}7=%0tQb9U(R{=2E|qG1rltGbW9U z{k+20$36h@wKtkWYsyV4eal2~1s6W{3UjheC0OPE+kCZ@(-4lSV)CLYn#X(fe%lnztBDjktE z*ZRt)lvjW7losNxA*COz^>r36aWYa`(5d+X7ePun7K;GJ-E1X|EY4BCki|K7$znnB zS&h5n>zval?x1?>OW*5aDYqar;>0JMOp~WiKK0Y0L|J|V&6^uI4{77lrqSz-w54zK zjSvU83evXM$j9y@cx-&m4R0PfbrWsgU@QO5b#JWtv#R(lO!HSu6OX9o&^R*rfsx5g z3I&-IKhUpDN90pq(G0p?k$EN;^Vab2J*P0&kdNXD3;8Iaejy(ve!!@TbP;g>R@#vY z|1`ykt-hDVLkb{#9A$8FdL`qv-*UiD^J8S&ZN8_(V_X2a;3}rUjepQXsQGq!m0?$| zf?Ra|K@Xu0Kjx_$qSILAumxssO{rMM7gn zrmvoI?J1%&W9kKgP28xHoqp6~;+ey~LBhvXRES;uWY#%Ph8$3(VhPuedRSaZAD2&- z{JUjsF)mDebh!9}A7~WK50ji5F4<*FmwfV*AAI>G{VFFu57VJ<<~oh}?5OW?vD+!> z-tnUzqd#yC#wc;DPo4kD*%+gWtu~o^le21!<`6RUruskXG1^6;pf|-HrC(isl;0os z)lKQ7$h1oq(TA&GuxB3CDSe)EkW%8{HsLXxgKQE9+3a>y&iIusgXeJx zpw2N+7jq6!iG%k}tmYh`630YEAIZTP^pRRebsuT3P|!!dSHIdHm1i&bs-?71fABu? zu&p)q{uNGPp+csAQPRltS@jEO`)^;gymgs&bn-d0dnMZxjSiaknB08D_o*n$rICj8W4iRF9Mf}5 zwclysSU*hcVN0z2v|jX$js2b?a(X|18__9Dw!I~bw}a64IC{v9xxKOK7CY6bOo^s@ z`{{EYrMw+-G8Z}g+sI*}Y6Cf(qJAYFlfl1y_ow7lfAAb$XED=tw$MnI;+GF}?=&75&1>y!rhGBmhhW*7jkqpBV zdEzHxnO)Pdd(Hv0VVSq7KibGJ><@=w3x@dziwuqo!z%xTh>6NJjyg1{lIBlN<>UzV z;wueJxvIlluCI6XEBs^+Sp66LKGBauz^>kgUA=9bkX@V{!7lxkhL^am!!Qn@4a?Mq zxz@_fcRaP_^sdoy?$wkwI)b3*gfwkXLY(`ZW9(FD32y>@^Mp-Y(i+f#_ z8T$6S4O|sZF>*>Ir|=Zx0j}n7iUa7*fu|TbITEh*6yq=V3XU$ej&h`;^D)h3Uh64F z*E>2|%bMnnvkz|^vGCb~g$na~(s80-eot1vFux}s&v8Y$sZ@tNvfl}>kfnv+dC>C9 zn7ZN#(W{ON|jpxo3aHjk`((wiV- z#-}C7e76hX&tl>cu8k7U@l3z!AJ-**NbSMnuA{u|8feZh<_9XQv~%7l(VMA{7;JH z6D%;81Ph$d<*WeXM2e01Bw=k)j!8Oe8b{GnUcM80E*2+r@%p5MzprS{Az(%m!;B`3 z6Uhubi1{=Va$3Lvv;~bE7L@$dKTN#HAz;BUZGjkO(f|`)i1QI5c|UHAOLdq50Hm5t(?uziw*mN#Yq}G?K|?hcg~sO=RNEoO38$ zlWIQTPyNpptVdT%-z&JPNv>$=YUHgg2fUp-&VB7fC=j@Dz&18fi}+l`qJdh}LA8ro z^o06_TJ*%p9Ba{+75u^QYmMj^2Mp{#q=!8AtpB9&aZjv5)Q^+X-yKI=?0@@e$%Vhp zkCQDc(^~%pE`VCYRZP1_oYb{udLRF9Vg^@HwZ=6?1;%)T=|mE3OiR25ef`gikHSRX zw~IQiJT`~P(-%rOw0ZT>T^tD$J!luj8xjK#(yVipi>9Yc=x7(D*GeYK%U=I*5qpXp zHp>U9Xzo+Gijr5jJk23EC|k-J5ah0Ym{H}^j!dUF9x zJzT{!xYy6Ra~)~nA0kF@6?Cp4KkETH@MmM0+sdC;rnRCE{JkC~JJpg!{)@Htw-+CW ziGA?1PV5@aL1KwB=2+h%azq<{y4c3q$S$$5m!)h`E8QI2L3&&Ltke6PLP2`Zs$cY{ zY}?LXF{PLKi>J4ZtvR)s#VIUWNbg@t8tMI8{X%;G*6C$;rZre08%&+pPZsUqe=$OK zk9P3CBJ!Um{ZJ37}5D%lTq-v;wOzT{-bn+Ob zffT*0ej!CKpU!av4(aNjX3J4FJtRdRTAgoeIFz5coJ^9FW!G;0{^Ao(Mpn3>Y39d9 zR@(j0pnXzA0UfZ{b-+q2QK$&mPW4OuXd#P!aBrS-5{u8VL7U^$X!XtHT}fmakdVY1Bb?wP*c~ z+ZAxoee_xXDRJK!X1`TOZ*t>srvkoz@LG_jrlPMW7o77qy>~93Lzi}WnVRWA-ZO0B zRhFw@Xr!OfvtJ5{g%(})!^9r8#2gE*PGPd`Em?E1)gwMks=p;=t+U35iH)(utX0+m zF1GonmpZzbl$tkl2n6QMzjc=@kf=b=<<_fT^ry@n@Rv!+tN!AB>^h68Jh^sQH8~_e z#b*mQ0vpKn&IF7Xxly7DiA`Jpd&h@41(!Jo6$L$w@`Q`+KL+^U7JqO-T*X~Jqc65E zGmfEZ+latj*|~oqmN_aMS85zUU-95cI!=y+i@Wv<-zzRQ;C?%!uiwv|(bw-^4x;U@ z+8hF&)%ZnwR)cXOTA=O=Z^49|*K!;{dxj_II5{G&dPeY>d&Pxk8Nb*)!|wG+4gt@G zYtO`R8z*$-&B+lA!|wG=uIk7n*VotFLmYNt_xf`V0lStNb}h4ULUwU-1iSR^^)9aK zFpL9e!Y?u5(<6Ui+96Y0U3HG01+a*0XH0F_K z6vdoJ@Z4eacz=19+%wC$u|I(8TF)GEawK1^XAUQD07vFIiXMV^=8%&kfk%4gaPGY} zgAwVcl&Nq%b2bz%Y^vDiV7~~pc?sFq)iq1;AH=s z;v_fUD(uHN8M`Sc?0f&5FXW~vw3~8;3t)N0RZN2~pVdWu=~Vx48GK9USk-fvTh92{ z+(@~7R$tLvnC5RLO8!d9W;aLaFZQcm6<6XMtcr<4m!Gr)GsFLYsKeP<6%!k)ViUjN z>wb@Tf{Ova?XPmo$31Jta|Ymvfg7{ZPBp6_f}9O_Vu#>WG0!0YDCURH>WiS?RoGC> zrz<@AQ_h}EJ0_PEofq>TZ1GhWL7YOu7(^6bbcnYU7&^q;>K8i1+vHZE9`z%g=szPP zuJrQE^?xPS+WZWyvR84kwbEPmhQFoQ!FlKlT-vmCJB4dczY=o(JpU%~6IVfp_dC-Ys|hz(2$R`k8*#QW+}U-wU_cpm}nilC@zb0 z2m^Y=vR`$N*rnVF0Fana((ds%?#jXHP$1LeBES0rWJC zXHPjf5-!$wYwi^n8`@Kl9eh+{(mB1%YrNS1i8#Vh;M_sOxr2-o$p}1ldVvW!o#O!7 zIXrgC$&qm3+^u`XoiTGvn{d}~{!{Wi!JFeiuNTfEZ=#ru6IxGkawN;F^Pd_Vz)@N` zim_xkua^vF;Bo%bi9^7;_J(!sZJdyGoSdU|IREi-0EcxPMO)X#VO{U#e!rN^A!vF^ zwjKzmom5qh?&OYhziQa~DwoA$sd$W+lOx$nc{U#Ne1`)#?Byuh-tm^bY60eYMbA5U z6aJ8MdR6iKIkpJf$Kf&1zf}}-pkooXV3j}3C4S+O$`E~v#VJn42YVmR_E%2j+p>OV1QI}SBjf8e%6>-BWIPi%Vk=npBxN#SVWp?!cYD2!Z)}QvDwp+<5 zaj)Q5-W{htp_X^wo)0Ag%RAfji{%}k%~>{3&0DHAQO#SaU#RA-F630r=dAaSwQZM4 z*UW(VIlwpk(W^K33%SH|+z)G=_beyd_2z8y4-|trAEljZn1&C!z)JgTTm=iPS1#zi zo3Zq7=vd_4FtN8RF-J*X7bctSkd0K%zYEjaV`*8X{6d)6SxXFMJO`Ii#-F)>GG1b+ zLO~gi|BZgBKh2H7!qT;#zHuGq5t>z4gEjj24?pQ@=jL&67Fs*jb&!TmStcz|F)2nEzQ%TwyOG z6AEl4Jem4Y#Z0;5v%ZP)&eW{j@|!*W>VnJ4_`Uwa;x(o%vBx_}QFte?DWy;KB+0-& z|Ks9~yJ#A3YPD%@elPH}9KYY+%5DXAaf^KCe@A@D0kh_gY$&#JO2fxI^uDp*WJb29 zWx^W9p{E8<`uoTu2~7*iPpE)-n0#A#+TnzZV4E({I1AOA( zmh`cl18Cxy(3p~Ph%~08l@tY6&kT9_Cx2?|b1Hn8m)=vL>Q7@{!tcSJIQ8|ZZPD~U z^y|Y)p7+gFJpQ=s7!cF=QSlKsF=NsT>2koj_)1YLFVY*8e=Sm4tm6DJ`9}73FTW_S z&V8;fHxb#KbwSI_6y}mkrMQ%gZLG{ewiV zOVp0JoIt|vyQJ&aO|ry1T}$Q=q=4Z4dr`kg==8-<1`4Mj&K`VBHRkchJ63tF|Dahq zBV{hp(>K5PGgAI_y7mjV4=3E5!kSYr=a2{g^gh8Z^CxCwBFcC;s(zkY$VXtSPT_&sA91+O5>ccfZ_`hh7;*9k;MxVM~+2U;XK_T-~9sVkOfW`EZvoAy%H5|E&j-S1VIcP_or8 z6qM{s&IMH{ZueiI(^>k<>IUdWJFn2L$zGdR)Rz)=GfIrCx~FkfIsK%+ij4W4juFl> zrvBpZ&zJPtxw3AzePRA)Ej6P2Acq2?rWg%i(OZ`GjYh6Z6*}3}% zH0U23-8z}iA|?`5hR_>f9t)v0386L7Xsl;bwbMQO#ee7~4O{I)hH75-uM*uAfH{6c zE8T>yj2t5~95mmA?7Y8bFOjK0K9P)=M*@*&RR>=}U6#!Jpp$b&} zX|3Kj-|#2tyRdyqj1QS7ZGls}w46f17&6plu&$k;urXv_QNJ)`UZFVAE-f1}UMhZH zc++y1^SnykJtH=dnH+gRD;LKGUKewC6s$GtOhz{CP;1r`F-|#^TON!Lyd+jKb-id^p(xyUu8)_`>qYD4yJ#AVR+}aY_qBw;G+`qzuj8*J_vR0D zl!v2wSCJj^1$K)w96B_z#Yr34(Ay~fw2{>veO%Ct$sg2Z)LOGzfxvqr?kbVZsRJD_ z`l>Gd?yGtzUnv_1h*DuqzG~`SnDp$i`O_C_{28xG2HhKn-(o66%Diz z?{Qf)^0v{)3eG_z#KC#VPs>MD6Pq|2jS$;x1fw&DbYOJ;cty^r<#|+I${UEAQ#Fvc z$X_a(7@;Q>u=*1tRHo)xP+DFo5lBq=Ly7Pn`V;Q~>e@QHRZ5_kOPuAV;fm~-Q}r|# z!38S^qjoT`sqtKmlgCP(m<{^}Qy=%sE2D%Y3tg$eOv(b%+oj&Ke zRxZN`425^O6ng1fzw4p4oO1wA9BU|SauyG=EtO<<*{W4vGQSMuB3$wN<|`;M)F?^MFgFfU8^FTGq;`&QzB@>jaEDmpDaKAAiAs=&e?z`Hfq^~KlBaIIV2iGxW^xkAv{7w5<_^N z0;WIZ!e)UwDMJ;V58-Ed$U{R|*6FNQ!x(~@PNfChST=e;<8+6rF?wyP7`$iwwDey}uUZv$=opZqz%?S9{TtmT?={^k(>Mp+ zhB$QD(^ypD9Mxl7dF2?dukOrEn-kq}*L3~7)j9C2Xv!sl-q=9z#5q7G4*I;eOQ5#s z#o1`0ai|Hp<$+r3kdtrdmZ$%;cgrHTRUptU$0=y_r(R->%)206j_gWHtbdgV@1ei2 z;9>J6nNvs@iKlQP@iP@J5%{T`w69?Ju$~nk(yF#us(`{F0nK;~+GBf`s`o@ca zHHd4NSn&L1&VlEq&UDT(b&&4?y{cD`=SS%>2d7EL=JcCG$mwhj0H;?PPXEuwQBD&F zPJhQaXp}hQbds#*tJhSV;cVCNz^kUy?vn<RBa2QAG)%b_a?Yi%0e|Ht;Xa7>r_z$WDz^rU*0WB{N?Zh6H5`i> zhhvM!l{A(hP1P?fL7HB7u00WIICYksR%_2w(*vXJ0j9fUCdiLEJyu0tej`9{J9(Y9 zj8ON#+@Pa(kJYzTbJA5Mu}LzYXH8UE zeuj?cYKM>?4k16Rk=e<`+tbgbC

    57DPr|O zK4XQOZy8O#?YS7{&DQ^FpL^Ii%4gypN*75)qVYX1olQGA1o!x!Qx|K<8k?2M9#nXmN;GXR$1jR{*g4xCmh z>Wqh+#uKiaP6RySC>Mj%hjnw}Jm(>Rka>%7TJ&=~~(qn4?7a$Qr{Mz^e?i#TS9RE|IDb z%n?sBUMsn9L>*&wWDc7`1@tskg3IEGg&LfK8<{f{1!bBB5uRA6w>~gcwB>@hx4h*| z{n6i+oP+P#PS_B5O!Vetnu+Mk(>L*1Paj$T*oBFo+CIq=Lvx>~v9M~e}b4y_QT*LIaoCDLRXS>UY<(v%DKO?+- zJ?p!N-^BNd3#`n+1p3>Qv1T-dskP6%q;;{8;8iM-k^ z-GQocj+KSxoUB}MJuVymNcVxX`=?++C=)G}RD{k%;BdnR4mWHR++ z%4kkK-{NW_+wbya(9anC_QggwaZkD{19Z8!;&d^y-R#`%DmT?b0#A#n+;$AB*A&GZ zR(PjX={>X-e~SxVt@V6s*L=gt&5tL#U%Q1{-d$C6Gn)!VB?{XZ#(hA1W?+rr>$}5m z(kbR6NoAAihp~>?p_;@xX2&h8W7y3=RKE4rU8(&6e}vL~Xn$a{ILU2B>29aK40Vi? z@iZGvKaJ(3@A?*$3l9Y9h$~z`Eh&?^ifQ@fTe@@)KNwgoqHhz~oZK)~yKfs8PLyA@ zQSaJjmu8Yr5Xc$?)JC?E$9i zxp#Eo+@FId1P)JZ;PAvofhSup1|AkRGCcV_+!NH!nEUcra|k?%x=&_Z9Z+0EagJ3x zOK>tgDJnB^`HjM3dQwtJMaT((UmcQF%nlAuY|UBq(?*6T^rfX-{zh)f2cAaDG~%c# zLc2SO1G2 zrP@<A+X7$al`g$W{-wen=j>MyKX4IwIIus%JiuhcmKi79Afg{4205!N!wI^G@$W z?-~p=5^pdaea$&nQTV9ls(KIayMO2*0UH??o`bIkW{EF3V5oW}tYPFBIi_@-s`7*{ zm?2*}yC{!b8Xt_tyLV*tzjSEwHIv0PXp&9am=Jc!0r}`w>V5wP#)*?$Lrs#dW4cS> zp4KDx$@B(vKjhoxqG^3GKQmTNzaEH|RsD&@=0xYNAg(*L-Pb5jJ%bO47#Hi?*ciWd z-|S3cByk3&by7)xHP}JcP4weNZtI%#^qoL;cWIa0Tqf9*kfGlwlK$pygxrpEFsmCX z-8sW-vf=PSMP%iHiRFclvoYtBMVWv4Te`{p%zl2_>Q^_&y9hAdOQ z&g1~_b&LzPF5(O{Oe)LQ4(T9Pat=BCin|VhJrhiIFE!jXAim*(CIsC5k#pd#p>mEh zOqG)j1IZFk%KXjQaF>iS-A(^F&^|e0pP^9v5u7uU~|Unvx&u~*w9^#{+&Lop}R6=Bz2OWwm+1$3=548Jhc(Ie_U}vnZLk zdPoWRd>RGwNrzsqoK&*%`Af*2>A~H?&s8vw^`}6ndF%xnM_mZ?kHS1Qku%^SsbC&^ zlXGnIm?Tg&Z5t4)xS$Dvd29>kU>-A6_Hl-(vi$e}+DL3ZB~={fY|LY16y~u$QF6u; z!NM}wIygl9!^Pn4pN6~9xmYGKZU3p=EyNjUm{e4W68CeCbpd9~-L6v7)sPD7-l=^m zxuT@2$?%%-T)~8b+if@pZX2yX!x^SZ`_{t>%lRFG)r5z$;Win^+@2!FatU}mDwj_1 z3>!x!cvLPV_$|&ro1_Admvc_I$4d;4=XS5;(okP>1rrJ$AK@H$Y_xusGfWkDoSpT2 zHF1rzmB;kh&B@37`tB;qHC8Ccp9*?K-rPK+w3u`~H ztD~sLIo2gE<=RziT$+o3RrfYvI&)zY2445(9C&T04CD-@Lbq{cw(%#=X;Yw_7|of; zGMQy&8AUpWsR2d0bd*)3Q=U=-07ZI{0#$#S$MR1_$@bfa7fflUM0mk2%Lk2h68{0W z$~uW(mOGDr40HwO<0SsG-120-V4Xr?kAZ%vbS74QFabv4D4r~nu1S^C@$q+A|Xk7lBZ3u5Gy z#=)4VQqg&2R$8#Q92*QK$}Nq952jpqdU%=}hZDpi1A;w8MQ$N2ms+R%?9?pBMR0=1 zvFt{-NN%L0Q4|}iUnq)=qfr#ullKTL)>}X4mg$cNn>_46^m-*nR>|JnDpOgUe>O9UcRjhimn6u$28D)BE6`Rdm4DPNs+}&g2D0kOucaL!f8YUH0Y-H+C?SQS$ z;Ck?a;i&-;n}?;(gn+w+IS1|FZROR(eQC~>t02R>j0|s!l^K->Cd&fDg1yBrVPdDqGc}p~Y2&EL(&*Mw{X(~v6iV8JXNyB@Wusfur#{C_4^WRA zLlS86@~O`N`DoWCI0UtA0mJ4a5cp7^hgqk7`GIP}EWc#4NPlF%JU z1&fyAoD;TaaTS*PKJ@Dw=?$odxPl3V&e)i9&>0Pt_MD+qT=a&^nY2m$#XGc{*n@M? zA;~s$NaeLEaXAD|&9JTyX))rjuJ?8~EBDbKM=Q+DakBK3VC9qzip=}tM?6fZYV)TA ze-RV7A=ul+%|D^M7Mo>58Oy~NeGq)wE#u|w4}vYk8=Rv$c7a)n0uyrSn}=qrxYniv zk%YLy9LVg_q##?rUU`&Q!LhKJyi`%pf2s5A8|SZ)eSAi+lS^#plGs4q60f(Aw{VWN zg?yBgaWr>CS!EoP{-n5U^K^8)-bN-+Y@XUcv3Y8vsLj*tjh_aEOW5c*liQ@d$Je`- z#$&V8^{J-eYm#HRW!Ny~DKle4?qkFBYP{Ysy{fb@{7VV?h2dXHA6!ULRp=DwWtuL1B!?C(y4}Le6?Gn32+4k@*;} z!JEVwPkcYPLL@3BGqV`umx|RWuTLjw?k*@_{UDei@^UE*?NSMPXqVv}HM9$+DhgUQ zo`Rt7hterPEj_k5lGzwlKOR(dT8C!Gn|JUn_z&#Uakau;$XHy$2KI@|Cn*{~MRai2gM}kLc5s zB()8fgEo5i`UKXy4=X72ZjqOM9ZrxNR?&*;pd$0$y@@xOK5BSX*=0lUDN#TvvEJP} zWusFw9~Z%jieoX?GS!Nzypl!=DyUybL4~|Iuc$UA=oMAgnqbhD3`zH}4V8JyBvg?z z)&>WQ$G91oVXxe3ST~+iNn@9If>Tr`k{U3IX>JF(`4FvA(k6Em{TW-|pWY|0PDW;4 zos5V8B%_wMb@H-gbW%`A#zgh2Q(k#&eXwdu2lWR}Mt$C-m5gbetfq>TdQQ#BTm;GB zSRwDoIF*bKlr)m@q56ene0Y~+)T1Z5)$+E%S-Rn3-lkxryEr!P493aFH`DdaCTi_@)FBB?YUsW9mO!Wi(h;OcGA%Tbq9~$(Aj(})5UdCmuw_+5 z&{a`Uz*W~Sh`1IMuV|O z-G*7?DXyy3uh6k+*3shoR2#PEHqWvuPH8E~RdjjU|9-!?uBK3RRlS9*Syfot&fw82 z)$~l`q%?Y_!c@~3@>5M?NT7|z&?HqfhQ4eHbsgbfeN*-NW5uofz4#AV*Ue;+yw=Qvd7XD}W4;iQXWRX~tpMAUdZuN^KBT)Co zYW^ri5GZL&K;uAV)<~m*5vWxDg+Qh1!#^+TU2dH2b>g((U&V`JniXzDbeok=*E(9< zUaxzvIHH=f;rM3NM39~P6rAVC zM$(oWBSMB4-Ne#}(FXp77;Q)#queypmcpMFPmhVw?zVKfC~7(9o88s*uv5i%sr#ib zWsNE2Zb7c1V-(*!T|7iRDI`pIEFC92PdMRuT}mT7uQ=g((Fsqv+9o`A%J7u3C4}c2 z{#BZ$ANaiZ68{tYhYZhMvP7q=OV!!m(rBA^wz!SDDEWxf&R7%QNfE?J8g=7D5Yg#X z^^pgNQ#JmDI92l{o{jBv0!0&mnf7e#01xC-zoF4-*H^_Awg1cFJ5?jL8P|+dwndhD z!&G~V$Gx1CcHM91GYx2{ltzRG`b-1r>oX0gTy33OrO5BC;}Z?2BU?g*=JBtNK7G|W z8u;7sA2LGqWr^iPs7Ue=p?a|<7D^G0P^L6m1`$r`!V5W7^xWU z{r?D6Jzv>et&*;LzIciqFFbMk-1*{V>MrR|S!+^vSmX=EPpU^O3dcsuxQ;(eHP4S( zRr#JK?EjD|2+&~@AkRU)-IzOaJ?z12+zDi;5{RtD^@J(i7S&c%PqykaGQ+b zel83#{GEU8_vyMnQ4AmEKV%I5CY|ERTc)Ix;fM`Da!s;>04V;20H~Vf%;Inqar)R%N2`BFq1uYKm6iu&*ouXBef$bVn z!71k!$+1p3H!IoKp}R9=w`S0(z8?>mysn?#=J`bbt$J|U)m zdLX;95>y=KLG^2jE}{!tLwfzpzq-(;kiCJH{*L^IOs{NND#qB8-atV8F3IQ_8pLY; zSBjwTmbOGx(RZh(Q^Cl`4E}|D%t%k%cQ>fXM{ad1He0Z*f<9d_FfY-Y>eDL)u2+rN zrkk0x-DBPnsFfqgu0wpsZu0PgnYwUD>olGA3q2cuJ}pp5pR62cmtraKHx)YR^VxxB z`pPPS<0*ZmwQbi7$kFqv1|n*xAZvOUpqD=U>gH;-h7;MjKcyz$;Ez}P`=;wb)dGE$ zG{vt(n6Gm5VM{VN(jD_M!i4I9@ya5jYy7@?V6Iv$9VzP?Q$m7FUn-f|s*Snrgn%{I z?Nwlqx=u)#iH4=)Of=S}bNj4UX~EU|D_7XsZ(nVF{LK-``uR6Uv{l=s1vJ-f>1Jr# zN?N=Hl)xeqcTu`Y+{1fX)9VqJ2kQ9Nu{~t(GyH2^x~`NOXyjkZf5-|dmgQn)D=BWs z$#dl3t1OKie2sr02VXNeD2``y(#;da$J5HK>V-b4>N8fk?l<^SJ{9D+svecUqmtfV zlcN8<5Hs~{DLVCi@qg5Jl??LV&3DvyQiiGT3K^!p6Ieuje-KySKe9)t?@QS7kLh}4 zCe`;vCd>N%$nu=8)0PyszR7dccW1VR`tHKNP~TlLV#gq=?;}~O=jpz+0#nLK?K8Ck z3sj-R8%^zeL3ZA=!9_ku?Oo?+2L5EL{&n>5I)OYjUC5eBx3rx~pGMWk^MO%y1IfDj z@G5EMSD(6pwyH#0K&1zrN?+tudIF26^dT9sNj{V9q0(>TUo$gwrTT$O{L}akS?R-M zxkz$JaVwoXN2TA((x~+N_!lbuzVa#^+c&TI1Cy*uFKyExkm^y-TV=WluAY@-l3b|Q zpGeElU2_60)ti!sQC>>BZoc7EaK+rf9Nnj*m`a^;D)XZZa}3m~VPJ&%T^i*&_t14v zt%^FU>X`)2Z2=f%|C6EVxuHybZ6k_yZOO)o3$bzH!shwJC4qB@)su0tI>CM*R^8b0 zi3~lhNuY`U4JON2{ayNt;q=WWfr+Y*bO*y}X{=^XDT3it+7i`=C{JK%MEO$wg(zQ| z89SU}pullTX@;3!S8EoS88gaZ>4|1DYDl0%>8H&C%RMS6y@@usMS|=sTFW#wX;#+j zf1aDEC$AIpwNvV$K@nS8|FC;tlPZ-`u>N?K#;o`y$${U*f%%f2 z)VKaqvSFUs()_Akf%WQ~l!Ey$9rM3R4$Kn=)sopK&`wpYC87fJ#71|pDbsWZ<>n?O zAD@a`kr~@{U&D!j?w~naz9v)u&^OTBzlzDSJ6IqShP#8(EBXZ<^Qbn`AM^+FV^v#8 z5%dSrnA;z$A{TknelSa;KN!Nl&>sw`mAF5cpK1Do-v5(j{BpA{+4G9#efFz^mpDHM>tMqmchSp_613T6ALcpAYTtn5$}~G#@&Ac4-xN6YsJPp#P$&H z5BV3J>(?s?wDK48A2QyPWx447*NzOF)k{VO{!*tU4>6wVm8Vm_&siTR|_fjL&p%}u(M#sr>JHEWY4xBH6r`!xiaKB08=T)Bp*F@YXf ztoiAPdivm4dcZDM$eM|krS0_lIkinT+%k@`p^H>OyY5iiOlRBFHj{xL#?w4yRGip| z+9n;QN)D%kX9PWBN&`mn_>oQ3LdiuokRGyu%&!?&lBFk2q-D@rDF!cAJLYeZ9GG8i z%>ViLh{kG{RqseH%#)sL-m@#5 zrM*)FL)CXu4CcRf%>OPqF#okNKlsA%#;ST98F3mPy`<-whxa!>*1D3OG@WXwk(5Ol z*>y|++DQ(V;U!M)XB2^bGXhOiAISy=V!MTGxr^HSzL|m1YN8Z_{c(={xsn6>#4(SF z>lKYuM6zL@*sguF_XIhJ_Fk=aYOs+1`_7)naNcDQ<(M zTsKp5wq>T~{L4(u384Kzhgp9v(D%)ysY(1&zwZ^)V;{2c^7Q<0?;bspCDnIFs55U~ zG~YInj`h~f3-niSNIv@MX9UId_E;U$GIz~)mq7TH_5iK(&j@+bZGTGj%ui^3NLswk zPhb)C{A8WjdOptfP|rzq>DTc(dcwj$WB)NG%X%)A<)WS?MR<;SuF1Ag&*}UN^_*U} z{CYlAP8C13h^n|1tH$+&s+lC0)v^Aih?-yz$wU20Y1hl{b-8}a-$yBw7PtX;^7Y9L zvw+3#l6@hsyM*Edezl$1gVO<^B=N`o5-S3#gZbNM-{JPX;krQ z{)H-DZK_z@07comb<0!Pw29X%UFU}ba}#ai9SsLItDB_hp3Ut*!lmu>24+&f50+4-7k@X<;>4~tw)|6+2QWfm`9as|B zrCtzZvG4Z}BFF9fJwsvPHzT8^IS$#d=Xcgq?+SF#tyTmwbn)`Q z`|4X+IL2vwO+ivEwb|--$wP8}B`9vi{)XhFuWel&pzkWwqq=dM0J`HE^-OE8Ue656 zcg&xXtS@Y)34Dt<*``t1lONJMvQJg4s?TkqHGTg$(cbmUC{idn=;eunMZ%1vqC7QC zveC;E8@;^i&xJLCA!>;fgWF-p{&kWA`^-rR(S0D21JlH@Ot-nWq_W<*jRx|Eq%7?3 zaqK@MIj~P0JO;Y+xUjT9_?G_Z3tA?m#qub z@cqf5{IDu*Gk?Wp{8?8oUl(ZY|BcBqxxWx0*I18yzb=sFRp+H=n46xBRXry~FgKOP zME;ZVD9J$sg=|m6QC(Hw3;= zxopi%N#s4A((+5PrBYMx+eA6nRtj+TXG#^<`!;&?o+7{2H`79Xu+%`5``0(g-@ATn z@=uGCog9_5lYeoXXo#wXmo#f72gyU6X!748*+?E@BY9kZko^0k7~FoqvH!H>z&>+0 z`CpM7m?n;8I-2~aq%7=ztG*f5%E|rO z?b$GL-|wei{HJsO>2!LY`TXqxpT7-@$aYXyI)ipFVtb&cM>S##ZhD~|)QMHiks{m< zGNrL-Cb8enj5FSLgq{@C?-v^~_RZ`NuHcEmOaocHAH3~W&2q$km~ zP$swS4*`e zPGMtI0c#25=!0=$_fb`F8z_|=&LPizy4{mSS@`7cOOlBUA~j?Xxr0f50z~LONB9$_ zkZ%rKMhbnwzvlS$ulLb(e-{5C)26`kfR8^UMbshsz@JzeG5?u=A?81un2R|Q#oU=A zJy=(-ejpIYPH-if%cf0PUO{#}qx;d49}FBy zv3TZ*OPV9m!v0L4iyp8yaJgzIw9P~*mnpI`q!DvCxpZIPI%ScOtOFkkoKS!jcs5uHsjI2!)k$4;f(dn)wypJIiLHT)j(st zoVK9lD0NMo=t^7kWCp$Z*!TYWC7Ih@(c3%~JQeuA1+>|W2C=PyN!&fI2y@W+5vSj@ zKyAHiajRVQlw>1yiH+1HpXg2eEM5Bv+LSpi#bEz+vd@n)d~9*}Q3m3SevWRdkqkUk zKn%R}@`vQ$r59Wpe*URIHxJ$D|3;B{t?l&&cqF2Bw#Xva4%%c>$pJJ+rK4oHDj2Ya zKOGpT`b#!2lV>hwG}i>-M04#))yKDUq;{G|_gtS2)T=*%@t~2;X3PAi^Zxb*+Uk9T zX2$xhD>M9KSxn|>Z&?p`6K2k5flhkZ3&9jkzxu2B(oyR4>60MaZ*EhTi1nTOuIEZI zd{AWAbAdx@sU%~_Si%%|;7sx@P27~dK`PDMH zvdxPx_ec)C__9B~oaDxNk2FZ!OFST2e0byqh zgnJS|Aj5!Q83qK40tojW5A0JG84#|ELWo`_w>{fjCbypcrFW^4uFs~65GK@}tiF)0 zqV1eviraSRt+7se-&=uW>K7@<*I|2q%rQ34(7*hC*7e!EEbpT6(xuf(@sgJ8ImB>- zm$WE3aZBAvPG}7BIl1%;gM3bI>|T?XE*0Wi>gv8r%j)>^NrBh*G&I8teM}g) zWbR4eJ=ui!mQ8qXQKG|(MTYk`#&|#c0(DCtOON3F`;PbTOHOon`CgI%;d~5)9}_?z z!+>BJ1_X-&2s3^NtWy>l5Z;Y}@c55`7gh5{GKcx|3r!lCv}qzaQ3$;y84!9jvZK(K zCCbSmG7JcoVL-4bfN=Piz#3(d0ij`|vK)#IFI^g%p`a=K%fm~fhR*PEt#lP_XEjsY zwu9ki$FG4a)vZzx!^@UNu<2Q?57a5{sy9bcs(TwX)VrQoG+P~z(lGl-oY{Z>9+<9P zmV)#+>CmJFCR1DKSN{mq@w$!c1*gVekn&XHE%dJE=%StT-*;}HK9W4!)-QhsvZXCl zvSkZ(_q+q?5gSr;)U-MujGD3s6vGcjO+tcEvxpNGqh@+z`h`(5y>U6CX6~;W=IM)` z;L37F&8NJ+G9yVG@1#o#2>LkeKnlq#;@-5Z->b6%z3 zy=t^n!7x017I6opplb&M@$-^{fznZVLo!^I=)(0w$>w3yGe_@kP~3m( zsjI7d3HFxpCAD<56uNu!M=6Qgxj@eGB*5E5ga~C5ht7t3s5Hre^$TUz>Bx%;a*w=( zaS?mb1^yW(n+W9c1p!=X~!qEF}dT_P6LJDFSnBBzmp|d3iedwv9 zd7ae?Nk$*Ktce+aS29QRo$Z>K@s|vuSz89tcUlzmosVP%TPll;_CKSE={u)3G2`!j zwSv3V6Vem7zTa_uzvM)_|5qg$uD{&GbpKnLm_hjU1Q5tDAXtV0!J+`d=DNZ5$|3{8 z!v=z9sy@)VSbTP8aud^A4+FjIvpY$Hn>ZsujiywsZr6fPCNsqiB}Re<{$N*?Ed?2m|HZ{Cqu$Jo=n?l?y zQwYa!r)s*Hs-f>Naac4yK4CQ{3?{OTiiVHDgenAs$rjEX3?@&ocNk2bXj;x-f+bjw zCc&%h!36h?V%xD^vtXvKGCnC!N16toQ*TPJ(Xr(ds*fe_tkT10w*b;AN=Ml7p9_+;OLXjPkhSm{=$UT@&d0mq`x#en(}UWVkB0DSXDZ zhS};i$;R@HoWk;rY6WmH);=P|P%C>KxCbo`!`*A(z9tzcm{g);?MISrjkWJNm`Qxg zE8)&oKwLY(T(Ox56)-zR*OUxbB|6sTNH#E2QDvBU$tp8XB-6>`%l)3Fu`AY3Ik7Md z_G81JHq|@32J`$MFCIw~z_2-jF81Z7<_PTN9>J}4gT<-BuAadiYN_-f+Cn3e{OE&pg8W^t;EQUV zBxBAe1zmryZ)RHOi9Y=+>Ir>QS%p3y0)j!xmeI?mQ5n>}n*cDEZ1c0(#5$nXR|oT~tH&9TH5{!w0uc(JTKI@ae*hL8V6x38tv#T%J2* z(?r9053s2qyUy}^fPbzVJ(IswTd1T2f1kFqetu|hu^KEC%`w;@rpT(XH0cSRDZ0w= z;Jg$`b}mT75!>OR!IruxKbWpB45z8o0$D&=0;kLsYg8%5rJ$iI-cADX-smvtbr=%HpcH$Bt`V}ncV z3_=g}w{gL9>PP8lS%B3ANzT1zE%L3Et{>TvsUK+Nud6pt2o6+9EyxWwozY=QJ=cA2 z3)5khTpD~s)sZTQG(G7*k0x07IFzpicUW1v@+9ik+Qo``TemPPwmy=BUWhn&+II2e zU?Wu^+31Cs{YfC-L+1Y=^O4JfbJbiag|2XxV?H7|qifwfj`U7W33gN0NCpg(iffoZ zYW4Zl;5>DQl!9UH7=BQ4;5Tvb6!N6$!6vFyvSFUs()`33!By&nl!EzVj`>d{2j+=` z1J7N5rL|D!Bpc?LZK?(L=zcjX7*ds5ikQN@r=_X&bjg8v;-Fq~B?p#?<2ug0euA_> ztNkXf)mCCh(Q5m%;YuxZx4FUgelL?{tNm6cDYe>cef;XYX8QQt;6*h`x`duKFt&L$ zU3*^e>ZB1ZtLl^AX1CTa%?oZ&Go>Uo)sZ!sfO5R%t>|ejd9~CK-m7Thg` zu$MRc48D zAdq1|unYr&MFE5%;b25rWI*^b2Ew{X@K)7BdIShvTAAAKA~}G7uMrnYG9VPhKp2w% z0vQGb%P=5V6hN50B-m70WI*WHsw@iF1Ks7nJ(=1fK6|y6{^hOYHI#xlsk}{kitM|E zDNgqB{g$2d*=51a>V7GR4TO7I8JoAzzr2C4rlr|Hcu`8iqrRt28w6TVjxom10D|6X7xQ&lSBCO1*B&^Jj zaS~!cO>RxUFrX&4j$N5IrD1dx%?2>Ay18lQ_^WAPZOp1JIXZ&oNHSeU>x`f)F47L~ zo>u-kI_H{TZ`DCcVFZO@7LPA-jF~W9c?}O#csZY z(az^zom%UQYlCh4?fDPc(fVb%m>yku9c=;?OEUGG`5KqCM(2?Xwzf2MrPRPzX4gsz z5@rokkb?vpIr!K*YOc3SLA1l$2s3}#^ft+f_JWT{GTPxj3N817`}_c6Q0!{yewnQ`?IBd)Kr!&0-~$$QP_yxRIW+N=2BFo-ejG>G>l2 ziS+!De<3}8H0deUDU_DZI%Pm}ow_l&Akj+)?h`Cnk0457{=$B#xOe1EPHqDspwA~`@yPPu5YPso;S8U5g(pP4CR?Jo{BpV+kbo9DP2J0nNY)hXKOYwA4gC&dV zdA#0Vn$)4Jp2@z?8y>;{JZEUHQA(Eq;M6LT9Mto>Cd4Zw!&Tu!H~qm2#kju=RZIoA zRgC9d+ddMUuI`b#sN%bTx05P$+FdL3J+hCS`98q5@ zEnrHxnkkqP(i8wk)Q3}i)74HXh$-Rr_GU`BU2>vR!p9|TBuRX))Nza-do$7_3?C{?>6;~bO;Fk z?I8HK}9EPfRJqfv1|i~MPVS@-VAnB z78N)?kHfL;IGqu8k!}G-hYltX9V7=ZHkW!Et9(hu+~_+vqU+qfeZtK zWf&MN3NREe551)($b2b#lHM z9Vc55mBq{u3(NU&Vsko~N#PQU!?Psf;ITf*z*L18m?de+iJv8HCCfZ1oYM)D%L7u{ zwS!sG^OA#ElB4p5WVkBPmF0($jad?ThFKET4=~s5@4HIY`)=H#uhEeza;Rq^ft3VWo3oZ{;oq za&3#lkSliqkJ7^s{ zA4_SV-D1#wBN;&JX#7_)+>)_pQl+bi7toSVE?Qd9FHt#C0zm6`H4)9TI1IFYS46a@ zWS}@wLANzha^kaiI9cYfI(FtsY1a<2c(LRFDU}dhv$%7zWVkBP1??@84Y;Hy;AUy; zU+j}&!2E!N`Du&8m>)2hUy%$HOe(rc=$#7M$ zXW^F|z$K?#xG{Scouw==x9?`+Jka7W=JwqX=P{Cjf=LCKFPEHn%rnR`$Jw#7QcAma zfO&)D0JEdAT{2viXq@**Hh`07F7W8a#Stk6%+EQPk6RqZ{G7r3v1FiNQUT`kk`s^l z8wayvr&@OrP1g=E*ODAyc2t^3hN}|Yxac6+z)YSA%psL8B>;D5cN5~t7Kh;u?T!%7 zlMIweDuBCOa^m4GCd(XR$Ih)%+O-3?cS{c7Ix71m!&M=;{nR1JVWgg+`r@=ezSo_5 zOzRL@s{SRVfcBr{6K@Tjl^hgF9DE%82g!lue@e?4rEgs2+vZiOhX@`_SMA~K)JqOb z6NmCLqqJz1Z$w4aO!5&V;=4gYi+r$m=xWtZilKmBQ~>W$kFq!%sa`!0si~5I>LL|H zs#tQYNaa4UGRH%PIZ%$7^-|b1gId#)189!QeUjm-pe=saD7A%pT(SX~9J3&QIxw_e z9g|{!eAI#bfyH6SM-AjJB?ASM3PH})ZLjP(MExq+G^*ZEHhuWn=-22e!U+AJQKYji zUth8@MRoLANCxXA{oKRZmhUQA@!RrbAKUT{fH6|q1%S$)AvvgQf`*BUWVkAL7iNXz zpq@#kte*KHpYm5cxT4mRtasN4wAZJK7uSgHUizBw{QX0|7HS7uZ_-IWGBVW0-;l|2 z^D;%w^Rao^d{n4~N8KZR!sg}8-mK>4^8xPK%xAVScS+IHYl|{V{Zv;;>M=nz^ z8Kz+6-LR9{7`@{z-|NcLi^%Q*7F!U1^u#WT{%BRe9Inh*)?MSZoh&Jf-G}sE=9s)T zbHv8Uj-F;elx*>?Lzyk!a47o&dku%~_T5-U!8XIMJ}{veFqSAM_sK4tx9q}sivs62 zFAB9#78%aB>}{tIwx3r@k5K>19R$lI$JGB$Z&S5Zk^y0J420VfKp?|_U>ODkivkGP zezwSfup|b;puhXhs@J4Pfbg;d;bqB*wt`P384x~-fp9tj1TqW=mSI4!D1Z=n*7u0A z$bj&o4Z+!d&gv7JNHzPIM5-w{Q4B3585o-Nu`{VPOO%sIWEdDM!@yusfC1aj78w{) z``DR;?dMt2BZOg^17VuvL?JAZWI%|-Kvl-IYZKf(K#{JoKvX zL-nh42nc?55d17TK!DSv)V?C|7=edAyuP14n1F*lcVP3eR5`gs#sR}J4j2{%FpeMd zEm9U4Fn)-EQT0vVJ~dc+1sMJNn&!}7ascDh(My`D%On{vCYA$ZY62K!955{7fMHPp z<4|@=vaWp6*Hl?N#^ULNGI84K&NtfDqo=d-HiVv1w@4R(X_JF#ljKB`>j6myrhCi5 z^k4!^WE_|*E zIGi(u`o+FCMo&aK&tv-Y^jm)m71c^`VWLh=y}Xkyt~9c${@c@ZP5$27LtWJx34~(g zJfFEzkX`ra`OMMVLr*Bl({$zcLu#jxHm`;4V2WH)SxUGquI=3X?&_icq3PTfXKCU} z=&?IOH``v&)6qS3i=Cmn)NyGrdY1OOB;#Jiv^}A=djF141AX+aP(*zq1#qAyRop80 zm}-Al=n?g!l*a1*LO*k!cCMef1ES;Ip@~ZMr&@5=MP_5Azq7F-Ic8&}zm9(Uu$g3= zeU<)Z@k{pcUSk69@Zj~!{mgrftN)--2gZi$`%baHSojWO%cuJ31^0z|`9Ef|jM7nw z3zwctil_y=A2yL~AwMVaFXZPW0%+ggzp|e>2OabPZHrjJ5IW*u--1kIORU$Uq3hIHDTdTI?U?>S za$uS`wEslk_}m|Aq&x$ts@Hx_VNY32&V}i;Yi&3RPP{ zkM3D`n+?!ipA5B9QZ2e=u`ssOCYBYxB<%c?p%*-AsH9_)C93K?1{SBPd;UFiOihT@ ztRK~^X7)*hrg)E1R)EMow39__6z!ylf1#Ze(N|2Vorw1+(KIm9ETn+`BQ#(C@Jwix z-D3JZ7rIUdn)J@oj|Aw6_-+S78`TZcW%PI#8qDmGEUBb+PH9O&ds!g&|iy%Z;U#1_S~hUJ#1eWwF{@5%u&x#+u{ zO(GZ1@~_(m=)aDHy7{;9A2RpW$fEJW{D@ z7OGZ~hk#0H*ZY!JEZy>0Xr{U`R@8evRUDsU{7rJu?GXn%!S_oJdOYHw$76?iCpZCa42J0gWAiGH z?IEvT;a_up(^JL-|m zRwV02?}Ub{ltJWyNW>hC@X zwerp(+k7HK3OG`i@~$Oh;4PAa40HOtsxNfi-e}oiAjgHE)Se2wfL!7E!Ct2}TO{Q_wSj&{XTS}LC&Q<-W zmVyNI#P6dB&akzp{88<5o6+uLq zq=E)qQ*vYj_B6dJN9VQ(n%n3dJFTR&YX>d3yW{{am9VAzlFrGJ;i{koPmmnIB^4Jg z-g?S=V9ceeSc(De!l5Rgu9lpBr6uD$Ly-_SS#)YhUe+jUz&j*cHem1VM*n~mfXla| zL`taELvk!YNGeC|jaap$+lM+y^`T_NCl#4TQY|#)|0JbRKKsu}l{8Gm5w+~7_$0$s zK~iN)4r-Z1)x6*MLPZD4U&y|Cbq8{^%j!BdP%c}IrV(6WX0Dr8{pUX8~}%;bQu7y=VOwC zdM0QGI?{u1lHsbLp1+hF)HA8L^^DnJf*A~Ehd;&54pVt##q6-!aQc-xNS~<@Zsu1^ zmb1fO#JtGdmU(GvxSekMbL|wpGd0{>rLwv^m7;lKzTT8QqIq<_b!S>QMJXwSZL!zV z!e6Kcl8iZ~pD8Hc*%q@jaa`YCDq-`o4O6hBq!}CDW1?-4wW>f0Vk39haI?)mOmb)= zx2N8p5$>sGNiuKbdZ!OJXZDvfN1PB;8*a|*$sjgwErZy+wJ0;I(4*&Lv%;;FMaBui z;Nj-9X~1wC;g{yu3J>(C?a~$azRmcqr}Pg-A2q;RKaWaTxc$&@b6B=yxH-8$kidPi z$?ligWY5d~z>f2~b;Ey_QQ+@Z+h4t_e)u}|g>(V#e&$s5XOe?Ga~#b4Cdu&mKQTW4 zk-%p%j4HPbqslD`ykC?Z?xZX-Abc7Fp(rQ3U$q}0^O!HU&Kuzzc1sQ*;DL!Dk_-p~ zN7&Uqj3vs+8ZrzBdC~$PSQJ3Gyis_VvdDnYa)gyNdRgP}9<@^1Lll-f5SB}hi2^@u zuvL-)VRHHeZXS%~d!LRe;ZWidP)U~Ss3ePm zN*dHW+(%htRML`|N-As-zEAxiJwhd&cPi<;WvqMS-1!+>BJ z1_XK!aHAe@VV&?PT?gX$wa0)!sC0R%D(2$o?$ zuqcQ^rFLQZ7^*A^5W42usamIf_;z)Z6a$2H4uo}*0|@(T`kEw5DiG|5L2x%qloJH9 z3j~&3Ah0Mv@Sl$1e##;P!P+PS9ImykvNPE;+?<28p?~>ot<`YnZ0)S{6vNYJOmT-N zoUPr~C0wX}mV!82`yn4TJ)h|{Q-kerHL(u-)VVU1g>vz|5^F%j8JirU-Axx72yy2L zjQ}`fTf)65Hea#}=odC$vJ1*N!^rI(elvczMR)EI-mAK@syozUvxUFHn9@;@&8>wP z{h#j{o~VWhp1H5kl6LB4aDmyp`+KkOZZ%b^V5&H&!0fY(FAzJiC2?ZGs2F|k%dh+P z4G&No!^`K;9!bNOMxX2A`0Nm7{vgHLS25%2J_D@I->=Orb zxlbeqrimj=JDZ5VNHLiH!7)u|o6$hPG;v@$U2g!Pl57Nw*a#TeN1ClJq`~dD6oVVD zJN7@89M~sLG>yNJY}hAunSD-(1XX~97&kIDA&S@@5<-olUqvJJjbM6j9Zj5SjJZ780U9|3X64*Sj~+RbJ80#?lF^XMFg*a#A5@LU^g_#F}xvlWHf) zyEiWHtm$mEjb8oZZl7L%X?VOECMa@gk|zzkWnc}#GD?rykva)uz3`O76X z)`y>I+B|bT^HIAu@-NixjpfuXUB@<0_n8t7#8h!vrR7WwA655?(!>>1yCgYU&!m#6 zKb{sItsa*GsAs9-`u!NyB3+Wcwe7yE)vHnib^X#P)2RL>IY@fqpi!;fTsu#lm24zE zv61vgoFJ83v+Xm`)0@6IKYT{bk}8Pkv_jK*CKsCC?#_kb z+Iqvn@Nl&}PIhsOY@hSpl6CT<;kN3QIN426S?nTz_hb81{pOn082tNI^_H=&a0XE!+4PTFW+av-}5ndMpnwET@fpyF9#4J!-)%n|ADz z>Zc$3}fim~426&#j_`WFY*GMpwz; zQb_{|H&`-|7KFfeSumdjaIk*v+HirIE~S9;vN5K_MUsOOi37`5Ne(O%$FV$f9-YGv zy*@le-72MEd9!2rZpndV;=uBL$$@3!IF_-|njmgS<@-m+rt)Eq2vYeZ8$LW*->^R1 z(*GQjWh(EHk;7%6f32rY%zsI5u)W&zY*8EJm4ALwlm{!@)iBd4+wuj4UX?>wQ>{t7Bb^S|A&1Gs(?Yd<7YYl*&Z%c*=)|u_vkFAo+Q&Or%2zlJzP`oy)%5J z%9A|w;8NN}(0UyA;C}u09pN2npj6@h$J1B0dzJQf@DOItac0i*=-`b#)RZ{UiMA;1 zY0OZOSSfFSYJ)rHYa|C98gZ}=EZQB;RhuQ7do@o$2mc-G$^5&+`RYL_ica%Br;Jj` zK^erMX;GGb;hu0K^^#zIt`!o1qKSqXxJZaQmRY&YGO?V_8mH=Yx1oKD?CGmh3wmfdu1t9)M9N{UDV z%s5)GEu?QtSglU)s$GH;g5bjk}ax#u`}UV@KCr| zjkS1VN@i#E6%^OgG2_jIWBJ437u9?rU_MGUXS|u7&m3=3H9F;96DNChR2F0VUysr> z_4YWi+oEDIS27)llYQ98)|^S4l35GtRH;zmHg5$_g$fn6Eeu_vXY8GqrVGF5&{Mq{ zr}~mrOqMPj(X+Px_E5{3`qbs!x~tQ13LjevwKQhg|BVy-iNeS2t;z%u5acOwFoDRF z984gHgViV3B2R`B1OlnqV|;9Cj%Oc`nw{D5`0@HgX}F_*43lMQ_L9D0GAt<~;7H9u zYzwJ5n17*X9XtW4DQ>~0-qU&O;*NfL`qSYn6WxM+`e~X(jF-r1G;+SfGe(eIH~2d| z$9|cE@9<>lRc#_w^rUCQ9h8(cU*u_XINVDA`fPZN3JE*r{fi(|WF1)Qc#FdSTsUM~ z#p8qTJ{NA_QMXBp!M|PIPwkMDc1u@LuT&7~p=bQn#izDNUa&J=r9{5ntsax)vY{kP zO1r2JOwhik7T4EXkI>Af)ryoF`uH6?>gcwgEUlsr$C#O&$O7+=l#YKP?Dwd5r4G8$ zwFW+VfT7!V_RQ&+`HsYcy?1`q7eO4%C^_3Dl#RrMb) zh5g^Sr5j zzthcPgI^7=RI{WYYG4}q#x)SII9vnME`_%%B?Cp13LdiDEIIr*n8wZDwa6krZ@9rh z?bz8XrCmEf{ddU$YDeW|$#7Mom%+R(+2}dQGwwND$g7SM|br{3)lwj&m}AR1d*FzcTY4=5IO$;DWy?-fQCBit#Mq%}CON2Mstc=*M~s@7EQOF-y(XE~G|J*o9ee2Qy*lK|RLMYzq=Jj! ziX{h6Xc0_YUPCr%zrnSzUdp)^kW^Z77^bUopJbG&q=Y)D$0Y|a$sGqK_2gp`b*dP9 zH_)^H9ZSafU*J9xBktR5j{kIC52D|C^efBK{Rdb?jy#)Wzl!yHpvr(g>V4@?yBn{{ z)q!V|TP2;DR8=4OvUVeNR`S=RUVXXu^dx<{XL0w8ib)kJY^WBRGxzf1MKk9Y-MZjB z>#T3xAq7sQRHL~hd8R!#w$9NDzFwTiqtTFU*EFi^eSea<71}d7#>sbOX?PCni7&&O zRaKTN>-6~`@jOV76Oe^7QS$gtx12rE3VtR}Pl1Bqxf+dzna3VEHSG zg*R&IS7eF*35JRQ7^?_?u_%bl)xXl?fEF2GzK8*H-EZM_s+;r;U^-o90@F!yqF_c! zGQf-Sekhw9hF4}mX%Q~(VeIvlg&<4XZn|SqB>9` zrk$u1*^^Ykhj+G}nvkkfuU=AFAF3FstMeDtsHsoPSXo)G`gwP@Zrfr-hTZ$&u&isP z$RzcPgwK0I>IX?_S9?Ad34L^{Td!KCYD^JnjN!HV6tljrJjHxyN@}}{hDszuU%dBz zcNvdP`AIwmt*9Dl>dhlYhe&Px@TfI4^lMckE&P?Z068jMklxU!bhGLreZYqDiL*V? z*ALUH=dP@wI!Xa_wE2>Pj&>MR(9x1}7gLvPS2Lvy5@#wwqVGuQ{B|Mtfz_pIu@pnP zgr}IUbt!X11J2{Wok7lYtz?k%q|6|vNZB9lp1!_g*&oP>$y3bJRKxU|P9gI&)z-q> zDtQM}fxIDU;lzfdtSnLa*pR$witcx+q;b|w>=u^I2l*G4%?HV%eTMWdO@XcqT%kX_ zWNEg^sVi4pUz>k5(EBH@$u1|I{`5tb=+tgbU2!Iz9qMPD(k+d zYvk!!Ig#D!WiG?bPVV_qUJ#TjI$pb;&S@A~ral&8W|Q%KO1uS&MtI+uYBm|CG>Qb( zPjO-w2@5amlctH1vF^G!70W%JWMEZ5DtHa4k>p@kgTHT8lc#SRss@&IpMB-baQIg4 zSTTvqo@Q3Pj@@2T+qH`Y$_UB9I?Pd-BpIyYxu}oihqAVftl3OmA(>dCke|FpK@IQ* zp;eVmX1`4`JPaJ9aJ%hxc#B9!?+w#TyS;P%hI;z(7LjiLx4G_QyM10(Ccoob+NEV= zxkqi0p5URBL$RuxqzGQ}mB!p$G|mmr+QZVw!3X&la_~W_P5TZ2jKFBFhbTaKk$>C$ zA-w?JMYla1?yc|Y5UH+5-Af}eC0-l-UYp1Q^`dkLL+#;dD%e?ZQlJRnN)sB%XRnl~la~lup{n=Q}3Q`31E^XOP4$rE~(x~@({0sG7Z+hZ- ze|DPA9b7ylORid7o3wV~ekEz;#<+MqZ_ETU=FR95Ss1_J zs%v(QY*76qsIslnlwN{dMYkK=68%mGy}4f`Q@{3ZdWOEQTcnFB6k_IKVoT9!C!?n8 zncX8h)m$l!pwA)>_cPO`n|@|S`=m5|;@F@xO}|>Gm2nEoV-!xD98##Z#fjZQb-_mh z_eu_W1Lp9q#AA|!7Ehc5bBgml9OoOuMn2?gUH{3y#!T10_KCFe zkK#XM&UKfCVJ9Ngm)gzyl8lMpqTKau^r&u;{xzK?wv@m~`<I^+-TN7l6lPa)YDrcp@NbaAe5)y9UQqzO^^=pe8Dru z02m_~0FW{?lBX6*G62kD%e}oFW|$`j7A3$i#=&6O1qO=(47-O#+A50-45KUz(FM=% z)6I0^8~T^06JJvH@pR%{8AVJdWQw@Wp5lq=1OcF<_e(O_e>2hLUuL2^BX&07Hu_)l zBXi;#ed+xL5xVv09a&dptzMm!n>|08=VX}hiL`D zzWB-FEPZZb_I$NNiXHi6e8Ni#kw;KlOvzNDiu*YQwGOEi)r))LbcHMxI$Fu_6|S6KmEiB-S;Of#PP(;>60-o1Ylk zPu(inp35Waz3z#@X0puB?ioA!_bp}t>6$=79hBOmYu!8^MZPAfuKboZfh_&z+{h*B zJ;?@4^2mjW7ZZ+O5xGNMlw!I5>&JN;FBic9z@*C=U}u}b_>wM1S&gIy$|4PPiJc@TzH?|thB*wt8(DeKqpmk zjtCeMmsDK1m|7+nGqJWgHp5IUzu-|5Q_Ci7?~56_%bG}Y{~0FBspXq;bj8&2p*4}E zs-<)SQ_HD$%*CE!2Mp(REF;aNG+ycND=C;}_F{_J(3xSTnFH5GmaEI8Aa->wonv-& zE|nZ-o|)HK1tb}JJB#L+r&L4C5p&EYbIcr*3}Q#eGKl$^MZx?mYh9$7vdGxh88^r5 ztdE{!4sfd75V_2w_DEOY`@N3u_eu_Y#{tfBk__LUnPbiguA5`#n9nD`K!)k<>`XoF z^W28&omewTRGxW7d+KhQ$$k;b_nwI<=F7yzpsFnYQB@WNRkdMbs%6_HC8RIf-2o|^o>U+F+}fi$6ES>GIKt}HTwu-ghk zUg?I-ksOa|YZb+(Xsza&1ZpKY2trzw%w~GSG1HTv{`=3h>wgIAl#@ebGg|*srC~Oc zL`8}EFN)=R7seD5NL&o+-*O%GZ&6T7@7)$Ts4Ozql79L1POHZgy3f(Oo>(+ny)PwU^4&O-7s4Axsqds9t(Au+Eie;^RyuGzr=HiH`FxFn zy6Dx<_D=RVg}xgt6ew{8g*AaQ$5UcnDE4KrpG0NhRgUX;7J&_=-1+ni8%nwJ6KyE< zc{UP`*-+xwkj)O!e|D$qjt6Px(1R_xGl%HTQWr_ayU0shaRF;W~8D7v0i_xML-vnrJyl!YhdaY3%4ee0_^+x;hAjHKyL zPx&UOmxYAc>9=&8hVzmWmHjVA)~b)B3Zn9!6P35;n@vCe8T#n^k8xrb2qbR>c^43D zH2^9;=pwmrt;vEieXP+E zphLnu;v~#b_8bXwDcd_bU%z%NlIMSk$ueQ~ON47)S=Lrh{nEEaO_feyjdtO(q0So3 zt@tX=LBM1wi-UlWq@c4YW(qQa!hnN-Kfd;DQ5&ToMve6g%&4(maxiLKxFe^k?sJmX zAa_e1hK{=ym}T0%%n?Jzr3=h5jjYm;(L+5OtC>XQn9<^q3_3x4HYtp!Phj-b1!g=d zU0~KvZzeX5;lXkl!-GY^@bJ-jUrS|?F+5zqzzh%9E-;4-hu@)%!K8%*#!WF)&RODkivkFD{^0AYEHWVc9))1~{`GY2(E>9V z71O^w7+pzW;v)ttV=yGhG<5qK$`lLE&& zE8|vu;mwX!^{#`FzUmrTW$1I-e%7Lg5>#_X5kJ|`L7)09lA!~iM24v?Lc(-8D+R?x zuz8^w2qu3T`GII(95BX1hMVR3ku>Dh(YRQpge zcCTGK&O-)oC?2D}m5lg3wXeu9@2NRvs$41Z%`t<%E>kkl*Et%EB*W3b#RR{drK6~J zl8cUzkf0-U0k6m>Nr3~X?b3J@=qoH)ev3c$<;VRNwJ zn7TzOxTb)5m*fDoqw=z{irIQM2f3ZQP1oH(eS8+E%@PM952d!&ME z3Sgg-9Dt=lu#qkqt_r?Q{FdYZEUCC)F+wNk3@}13TWF?qTe)#!g#Ll;ZC$9_{TgZM z-^^q=LSH2tF?Lb+{7N&J|4Jt?LhoGO-5H^&pQ@{VmI4@-YZQqD!LXdn6b#GMRbf~z z_#-k#HJ5@Id72cNVY!LqVC2E~OM6Q)MxGu;W<>7G95LejKoR7_c`}F*$1;c!$D&|p zX;@@N$Lu0AI#%kDahVFqBH?3^<71KJz(;J5u9IZ=xVFfQj$@0=0KYzguVfg$T881P zMS-siV|*>_opG;vMivcUpK^SCN^+vU9+zbJdMw7*lL>q!!|>HI3|}qE;mRf3lYT6s zS48?z7yPp0MPz>ei1F5=EG=z#JYo&F6hQ zrb^Ba$XKTu7K>a&l{6^U2QujL1<8okNEb;)jdU!wqt}fk;xetSr&#CCT2{|8i~49F zEmD2Zr+5cv4!$)Q;RWHjjV=AhKsi+qmu+NK%@<-Fhk+KTn_l-)w8mGXqYhe|ZL6mAXZq0b89jX27zW7xPEVfT@GR40tTJO3Z+J z2j~}Oz`XD6VNBKOOB}(QW|6a(tw%rMgq=5b-5)0b!(j1W&*`i-n%UhPYpH) zFg4gO85o>N1qZ7yNDfU6)|EZ{aEOfZbk{NQkrZ@IU`p_{buv=RkhFvcR*gYfz4v-4Xh@1yM z3MAWl@M9QRX6%lgE2N-n=i=Hx=VZwMbVuV_$#6CLO$*f4Ct8){sx6X@DG@n_DG}k0 zIY-|sWr6#C2lwAC4&%Px;C@*$P&%m~-0w+_74Ekk$Rvq3*`=Us0^zO@5@7>or_>sf z;i}*qy}slCE|tP?X@x-%ACst6U;;QYU?za`IGZp5?8WBh1@!$LOFH}KFj-Cj3uV?} z0@$om$rEaT^Z^sV8IRHvnr?$_qWVe!oSaXT6ifieGX)bsYO{2|({Cy)WiT)ohs=;u zEIAl*aGH06B=eBtxla2QhTG}1b;Ensypg$Lxak!#^FK0*;l?tG;l`q1$KkW?CGC|( z=BbwFN)&_h$oV02cK&IP5|39MmL47GapOpjgW#aWn6a$8=2KhsjwA!YTLuBX`@17# zW{3YufaIWq#4-*f76k+6$i5}RyuXI@?R`rM)bFxb9ye=_W(q>@yvF*UGKij^_-A`e zy!>%;R!MkM_n!VGYju_Da#A$?+M+VUWZCWSxvct88&%AxCTv7UHP6#!9(bve%LX>j zT&ISP4EA})hs^oKn2>XRF;JF@!g=38EU)~#QDXTuo*D>(Z4)kj&Tab zQG%7x7&T?v5Tg%9O$r=F%^h5;7&TXNaTqmMhRYc>@ep(X3e88x3DR27q? z+$zbz-xfHdW`hwWH>&$3k5p!7Nom*R`@&|UXjOhmvffv3b(+Sn;{1}f>Y%iM?(*+p zGl)JxT6}!7GwS3QO)+l_I3?CTdv~r+5TeKJ(w; z@{&ybNGpH3UNokptI7~!W?RlubW$)qVrqNv*piK^g;e3{rQ!LsrtS-uZZ)J!BgU1? zQvKtkdfQT4#+OW0lVhd46C!3rpJ#D+WSbDdh`v}dFvgGyMz$LyM~-ZswOq8>#d56N zEoEIR7~J+t4hA=)q93{0Y<0WR^t38{{rLXMP1G@|g29bk!dOnVfoD1IxvXTqIxEGH zm!}=DKUf?Fd)k2Yl!)M>U{V3tbjh*6rs|WoIbawf4!}Ap!z9C10pi1t zb#J1RZ!>iPu;fx1Sbo_eK?b39{T|c0vKTp9*HSJqE26i}DxvITvTR*{%GQM;y~ga4 zDQcy36GJ*)y1L<(YD-&EegikVuQ$W#wv57-}$%&%4Op<|OVhoC@2~dz>ps)-Bg+&31 z)5Rrql|{yOR-eUYhl2tU9s73!nl9wAe{%`OY0pMOJDi^6v$GV#w9I#R?4az#Fio+* zF#R3}5o5?hj0a=LLyHp)(~ZL=<-9_oPlQXhtCwVrm5m|lh$KhfAXyNmF?Vc9Nxphp z3T!D@ae1a7xNiTGqD5C~>Hj0_x&x~!miN1t4kr*=03niysHk*ArGsEWnt%laK~ZVa z$!*loo6>}(Hx(5TK`DwLO%!|}AOb2D@I8CO_E0SRX1+b==G#Di{*{}Vo!On;Z)axb zv}Td4`QF#mz+Th&JYr+>rxAHnQSOdk6wSKV3r7ivh%tZ5C)0=3_fnYwhxK>F$O$9O z^t^gnW$#jE!#N2X&Pmi~{w43N{WC7X>3VJkPh2-@uTr;S4)hBLckTBdk#(iliP_LE z?4*8memrM1131TQi`a9_ah(J>z2U0wxR6I>RZBmrWOjP5@npg2Z61~Nv6tXM!0F}O z4yO~#qB#8KU^T#uboS-S6(7`3FDg! zv#twyx3COifqXIkonh%_#hocN!%bz}%?6Y;I~L37xJT}$;d|ruI5EKCNQNDfSK1tq zfHHy^m>zttBve;uMjfp(_1I&Ef24I)8juQMarnLcOo z4s#G#L>U50VBlvfvzmF|a5Dt1FZ@1#XAT0Fa8Pdi=)De^UZDg*0Q!aP=&$*tRI4+% z8T405nA(raLsHCudSRfl*N8dLEF4GkV@s7|L&QrPTn+b2KAE?b}<$(2O}2_PBIx+G_UHdW;XN-+tJ_VIT`*AZU+6Y z`uYzt2l|C`q}z}iy_3v=YT*Q`iX&-PbyV8wOgjVa6~AhWa9pG9wVlxqh&i*_Z(tXD|bB z3r#nRTiD3WFazuT8QAS`bOzSj892-gbSxsl3^eyXWwvAU$G*+JolEK%XLlH`)BgoaCEq!U3Xx@y+%1lo~~A80dky8O(vXzDNyb1S0xgYtt<} z+`h<5AF7n`BrVlrMIMnA$BMsVrsV#tF6nhO1f0|tSajD;^xxpMnswv$wVIb{6HY(Q zbDn`C241WA0FN@~wVIEN@?WbtkokD6X1`H+yjC-&GWuFg3<_^|l9AchYF>SP#j8xu zhl>|7%?@R?(IlgI_<>RO<(kv93m$3@?i25xE_^U+jpvY27XAI8Y=YI?TFc1ZDyAg* zjJ#eu{ngvfKqzn1INFafhBxplpF=3jlK7o17HdV%e85gEiiLmK_awql*#-i zmM-dLweIk+KK6Y#)y(YES>?>5hqB5P#`>L;Ioq&x=_RK7(X4yZH)?l06U(`OEL#3| zv;Ow-jh1#nnul{?lR+bEsg=F`8;}3RE%YpCnijX9!!fX|vT+QQvEmrm`b5@ruP#gB zBvNydK;?+>18AlOEGmat- z1xJy}A7tI=Ib=PGgs#=TY&ERfXnQ8S{G`O$u{XfxQGei}Y9^FE{01|tYr&#YT~{)SN1?JxZxJeG zNvIt;YbuASc4Y}2ggu<4WZ-zsUUwZh&QhQ1FPx=59i6*$)MJ!=<~#&rhQ-*lJaDt6g5iy2>;|p zj9>2=`{0|by7_v`Ab*@%q>Q=z+pKNgjQ>YVetTK6_ZVAwtkvksqUjg(!NauY%^lxm zwM$t+dhMgbkDj`vh>3ikm2P@|FDH*@sDY8dXdfajw?@bpJVd-=j0HU_H3D(m9YjO& zuh}|7LWSy0?hLN!b)~>H$>QR2=<{d9HGRkpv8Ue?T*zxNz4w@dJ&im5e`GR>B;N}N zr9@TfXXTJ@5^&`5O`;lm*-?$X>`>sFz6?j2yJJ9^Iv5O0iwY#|BSQ#RA@%8!(yZHLC7um%}rbqjj-v7&5e31=&+u5wKUI&#A_NH#& zlr}^uWM&T;Uta@>e4lpL(qiW5Z&J$bO)YFGx7S#MTVj}j?JNvz=kd(Jb{39qXL(Oo z$vVRunltz1FPG+Y?XUWM(oVPZEn~5z^GWnH4gbullkdr~{vMw8XI9&=H1nztuMkd5 zup73@UsttU9nYe@CtpbrJQ#g++WJ(MxFJEEv zGsCuKN8w0W^UO`fYMADQB4fNZs?>q&twgz)^oTU4g}-=Rvn{GxWM2>{t}wOtEWM)W z<2F+C&-PJPwrJ$e^sd?&M~YU|yE$E^Urn>QXyl+boXG;bw&^W%OAg^Cc!-d71=DNC z**a~yw#Ky1&|jF=8FpIfAwtX~z}Yg}zJ`#q{6MGF=i$_MgwZ`nXqR6J}o8BcN-+3EV2`x`GBOfwvSd6KTM0wM_WaMsd4>wRJ zl(wEI!MJy4+sjFJmWs^v-lqoeL7`)2S4-JHxEJAwn6I_L=SoLrct3JeeUnnIhI-1% zqd$0_HNZ%hN_$lgvhIpR#7iqfW&mWz3VWXccVdl=H631!Zy;C7r0&KI;V!vjElx^;!fHt#kjE3_-+Nc!0fN!r_^2KO#jGL5H! zmJ~O|^i-vQ_x<_{@VyavG=Rc^q0ZMJCPGTTe=Km}C5VgoPY zkke(ePIV}XK5i2Xb;>x4zRHy&32!-zAfsJ8&R)zkEYLRN% zA8A%d|E=w9xj^)#98o+GlSl80#n2FQWbE)d^DA^KY%>1LDsP%z7AahEx~c>)Pw21d z@uhjG`qQHd#JDAwe2ZH+bgLVsaRzOZXTmtAB{{L3!y#LOpEBE$2# z?9%u0$Yb9Bcmxvl>}8kAKNC3^hFo^>N58_XoO@{(^ZjG;X`(UHB1Oy>RU_A>I5MW@ zp_>pj+89l8wPq{ZWrdjTwkO&GXfD@Ovqvm%#}d}=1SRD-adJ4q_W9qS)`&_ccVm($5;S{ zPm|&4GXhH-ju(Va|6h~j4u5bQGU#9 zePv-F_boG2F5k-&{1;K4V^+?KD1#Xn{rV!xz<@FnX|V$XFyogoM`t_`sl|*yM6R(k z^qMdSGcL0c%s2pcM+=ENcXKnHXZd(-C`)GZA%~&(>NFACU>GyBOOePNJiL=Pkr}wB zFR(LvqD7XkVL3O%pgTzez4Z7zbAT*gyLSs`_}dvO=_-$+#_EIK7wdXaum-N%Bko4eHmu#@qUJ zM{U9myC!>qA(z}_I}fcCcZY|w7PpIB7V=s$9mmmG?Z@=YrPgz#aSH9i zayW(Fr4(dB5*ARe{m&hdrQUFEh*Rj`N%j;vm^nCw;(>&zOh!>;(j;3HnXVi}kc$Q7F)!O&|(HQ9h#yDNT7>5F5j@%Pz;W=a&vo*(<4P7Gdcqx+!jM5+iI%S%u&(dazmI9yBQne-BW?P%hvZ>n*g`$$c_WyTd98fZC$&Yi zfyuZklHb(&Yh`}Z=zj6E^SKow+MLNY-F{4_RPXC&Jwe9wsI<|_QA7-?5N#h8S8`pi zNM?BRWOGli$j#}Gs#e~&G44hVYBRkZOu>$A7Vc5athhSTGC91${w0=e+!p)xU8Z2) z9#IPRtqcyIQ~8S9041OKDEW*zf|8i`H&XzRKPKDV`mZT2Fg9yT-+9^HDp~;yM=OBg zQ1Cq!hXPD|I@vD&5&5gj|F-n2%kS8X8WGPSEd**rrKi{$QE445P8Kco7fu!}r{t~? zl@h10IWfz+M*!k{e*vt6I6!N`BaxwAchwX)e?Y4XQ!>wv@$>EgTB-Br#fEvqxe<^x zc#1{VBU3E0SWRG1e`%x0>O3Vt*8IVdYr>CDG1Ui0x~BJ6r3|dQxEFlgXDL(goG!lZ z^AwY1h5fJlNNf9bA6HDj?vrt8)#^z+$~T)IiF@86)&eBH&J-YVmr{U4F$PF{pW6V5 z$7Bk$qJE4yK;rjI0TREF_0wYd8Rd|RdR+f^kSJP#L`N%-=um(}hcbI^cDv9N3&dUW zSAqDNbgMvgOa>5n&S~8M#C%gN5c5ry!2yW%^cR3wZ|X&Wh+^gRxKtG!_~97)rxKCXUOUwpKoW<(-BLC4^nR+9H|;IlP3D;R6fb=mEhx$eH|G|*gqxtM%W7zuWGt=I>S=4> z?>hYj{9QLKci9V&!&bd{sx5nUIGU*L`o*H=-#eof%&bHt#hiI}X(`ie+UPPaSm7&w zn-Y1!YsZ6xuWZefT{pzoS04InWtsUKVinBZdeIr)L);R`x__E=nBCx{AT4oITNNa1HI*+u6Oh` z^e$%(lnN(MigOgNP5_~9(y@l1R@0Jj9yBjfGu&#rSurp2KzcVFssm>pJF3u?AB{iY zwd39;5Vi8|VoEXwh1Y)ADFAz=8+ndyD4bQ&SKL%?{-#)V3fra1f!u! z0m8*B9A^e^NIc}t;)aMwGp5^!G=n*aNKY{Z5oy(Q8{hss}#w}WI-HQqX_ig?3-0cw8F_`<)Z>$?=5})5EErhaba*mS|01sK;FFPu zy>6;Fh`DfW_c)Z&#*+C3BLnBGr&;Z1obcRTx=M3%RNDL8Q)8t_O>+F8Mv z3!C)|V+Fm1+#cI&15>cQ)+q(sO9qTw?+tDPjP4dQHP_qC9PF%{wOiD!h`L?q1!`E0NsZp*|i$?l- z+t1_dtyH@=L?N=?772{&^{76qahEqVmq@R?TH`s5!doJhLgs_h z_Etjdn+cEFKtG=qq2?wm7Wxk4gxnZCJ=JjO`%=1N}%m_qa<3#4DjcUP9 zQr`_sJh(^7a?7|CQkF%q(>(vZZ@U)k7g-axa$|J1NM4(uS=s^SB(t<|P{-cq+iCTf ztAC_55fw1;7ghli{nq_{a$DoYnT_vlSIbMCNoxTUW$M^a)(x62JOdP|~NCW*|A7w_+ zD;|bfVMbQ*7Bd@m%6pJ6$?|V^2-Y)vI1)A2{^8rC+2?xL>Fs85WZmnnv4@#~Zr9JW z_rrh6oSggNgZ2E_H`dqlC$|ptz~Z8_XoX<0FH)Wvfe3CEyMj3|cKt<+t$RGu+iS{A z;eQ&=vi_&7!_kATaPY(fGtjS!oEVm7#%5P&=?!4EvsL@f0zR_20p$Cl%QVxh++`WX zn2VYA#g;Nd#q#x?Js(%=2}DB|6XpL9KU+Nqs+ln`y!{A5s2XM@dI;o zs&$qEHz=RBo9-2!P3wml&Oh7EaGJx>8O}c&GjusK(4C0DNz`Y~g-)W5Xx6ivucrgI z4)g$2_b~^S`XY}oBM`w;+;#pNxzbB88|KQ$0&{W6Yc98d=9w6KS^LKEmCVL$2s==K z!&)A}6?tNlM>S9MFM18v2!xAXyHu(E8(j1n{;0j^)k~XjzSxYT7A|_d;S5MGdL5o^ zFM7Sh99;Bzdv+cdy*`}nU-ZIAkip4t%#mkCHaGpgj*JMuG2341`d)SNfc9`FxJjt% zH<8D^Uzv<7_Dr?Qs+m(8<$=;ui>DRz966+|Mdyg>Am>5aT1Y8KTO~QcsWA4+_^4Nv z8zOhjoP*p|KDC`?pQF*&RpI(p18$4l_4+wBcWtB`%3axVTgMWun!6^oYTBCo2M4Je zw~fC(NkPVX=^T3&tT@MB&}y`O{FB~L9s~wF&<@xe$Q&F9G3v=o#;7OA^9O^6HV(I+ zV-JK=|8exv1u}1^3uN971$JD$b9`@iEHI{jE@Qgy8b8E)jmHLKw))0wWe$wN!|6wv z3}X)GGUnJn8Y5l67^e#u<4|Bs`PawS^&B#c*^Xn%cV=B#cS0+g0sg0nRIMzbqK789qPP zWLy$0W2zU5wo6~2s@XMWabLLGjwxij=x&`>@^KNz>9myo!s)csIe%0% z!>q3)RyA!WcU-kA5^Z{s<$SkD^iJ;@)fTu_6hy9MO6~IYl4~<_NwH|mYvJ%Tfox*# zXzr((p$7K%nLgz+(^yMj%Z-oQa>!+mC+8_GC3;!-fyeDUwM&WCOTSUO;CZ^7`@~h( z{!BsiIQ&^7IlEpSy;+A@Y<`JoL9Y)tLIfGh6hx3wNW$CeHyEDbOCbL>YEgeQ`g1VxY?kJ~F=J9LzQ*%|!>n4QTBW~Szy<0NR8joyC| zbWKT%4)co46D1D13NR(Okk!moPKy>dsrP0N_cFKv_IIUuc7K=AMFQ?rw%);C+uEE~Ml$>j@ zcQ9F&-MDwuST+2@Jd48@ba24oDg6Z;o)U%s8_<|)XTG~L&4$;##H8LN?|Kw4mM~kZM7uhO z+>&v5w5NQcTvY{VMCc07CkjH>xp_8p{g2y<__Vpr*0lG^aeKroZWq{+Hs4-lt3lk!ANp0vMy&fPD;`f4mwrm+k$u=Goz6*bS7t?YP9rf zMyrQ+&bLvZea&d=^fXn^+w*5$4_s~C&m+Lq)}OQu3%$WjaJ7}y&~hQfp3>I9+-dy< z%$=5L6wJ{>21u8%J%5^KueMgM6P@G0&Dcw+b)xINb36hCOv?X=Qpnu#UfY^BaCK-Q z*JsyHi!Ap_8tFZNslq0dV(uRj)N+a#x{O*achhiHV-a?}!%>7)HMV@k46Lh&0AY7C z=N}O!_kzlx?5i_<)k9c8pxTzTm;;pgB9Ag75W%(7#moV~WSjt)%mA*XZsZo&UhBnp zEp+T=4!RQ#>KTWb1FgadwBmg3tdH-A3riclj`QREWa2WUX|z`OM`IzorD?Q7dSO+~ z==+&g+CFrME2`&s2)LpeUO)?;j40uA(yLxkbp?_E(ITT-h)B!p1MYJNmI9d^3 z917x#LqUAGZh<}2)LCG!qfX_KVAK=+QBPz}&f#nslQHzg3+&o5Bdw9><7_!LG;8^dnxUr*%$F&$J)td;KB<-v)Gy zHcL;_E_lC%xKCUxy_G3AD9oBZuBY8J!GKe|R@@3Zr#n-ybGj-8J4eQblfqDLqwtgO zxtyMwRmmI34D6Z7Oi|#;bt+5-4hmD1OZ%p&{_pIYfzqW^nq18QozoZgjYGjfp}+R! z9~8PSv-k~oPgrCgE>G)lb= zS4!K@u~$mdFcXHKUoz*5RQ;#xK@dwL4 z>^0_A(0rq>`F7?&vv6>Es|$0W`NpJX%*p6s(Qe*QZUxN)ea&N;1I@yL=Es-=%>$E~ zLo4J8*Z$}GwDF$iR?z%}uXz)5pjkM$l)Q&I(ELPFbM0G(bu3FejrI+)s;?KSm-nxF zWax^W)K^vgS5@l2!BvlpMfR#k32nlT|65XSaMj~09u6M$`FXLu>hUXcaMk0-#d%!y zIKSAx>Vc8KBg=5?RgbquL`Q_aQWNEk3{(4+OfR`4*PuSFQdw!~@a2#YZnnghNg6G&=P%X}OnF0TqlxV0 zOKf13DLp?{DsT@jF;%jox28ADZN(MbjTGN%nfr#8@8Jz#a!v&<_0i~Ux!#%4k6Z4l zpEbf8#}owDF-k#jmGR-78Hb0L@8cP6hy-u0n5Jcqxy(U=hu5sHWik@HXP4OAbe(c2 z#y+V3`zvbC%c2@F)=`ZZ>rjx`JsvGz)g1#8yID(Y4mU>rN)DHA4fH|6_HAM=r6i@Ii^snOlT!UM^a5gzsG!gt0} z`GxSEu{3vb`1#^3@@|-XAqTNrPR)q633&}v&OvK^rbweXro+vx3YaD{qxYvVFBsFU zODzs-Ed>sXVb_14H^x;pD<6$k4Q`C^X!R@Kj2zAkr&k8=;4Qhv1e0FzM@ zsFPc=2RA`YfOWY8Y@HU@)|jk>{=#G>>|{|*0J|E?Sw{?eedq(G)}7<7LNZZ(l;p(? zz8O_s{wrlZo+~G{3w=P#$7M&)<$=Km%w!5`rRoFB`bVSr%_nm;-`0ZZ8g2!5y;=s* zZ@}&0RZFcWU_F6>EBzIiW>+9Ao?xAcUK@UEsrk@IeRQR2Gm0w!>pzD%i~8BV*)nOS*2js#Tew|C6);#046*} zv1Qg{6k`sO^2?b5XOX$gI*TimL(bwY?Z_&26!?k4%dDR`yVRcb zei1zBSQb}5;ca!yqey}9FU!nz&qnV{U!i^Q1{uYjqC)u>Q{at8<`z1~P2i1K4NZ!S ztaVzM<-uZ?)n8cbvdgj97xhLXmnAEdHB82+XgPD=+GtyM$&rNov^KijtD!oB-J=VX zay3!>TBU^eo6XKwq7~*(h(G4Fq6YR&U(J_W-_v+Gl_|Sl(5#D$S|2y+?{KtC*=0G( zlyPPNVD2S0cDaHgvjbJJX>|D5I3-Y+M%?|AxBwWa(Jz;(j+zv9h2W zK)Br~VES=Hsq-0bvbDKef} zZc1;7KA7G}wKL$ZOpMmgk^ z&**p@rz~3GlpU>b$_@oi*`dHG*H~ela=QH00^B9iuR3MNZa8J0_F#j`+G&m@FRN>I zDywQ*4;?I=@+|#@eL71NUfd~9-Wi?c?n%8>LOgT{GiGnJlP#kPFXNfQBzWP6g9cx5NMP#pe$rHyf*KS95ul)U1}VR8y%$ ztg!j6&(t2?<=j9Vh+oxYxxkz%tF)?F$(;Ql+Qh4qORiU19wK<^HEINr)K*bXgM z*`R-y!_lDMautI9gUoi^u2WFsS5rM^_ zCurRri~q{8*w<2#+Xh--aW&?^VjWWc5%r5PBM?F1bmsy2Do874!(x$hE&fuT1-*}( z!Q!q@*foB{;k+=UbLa^yaf0dSS0rHY4Cb)G;VGh1bGEKl#cFOCsDQN_nFDKmk=@J) zL{PXq%p4dh;|UC%eZRcRXw>)7LEcx~42FK@8+z8^=+b^>hgslBT0rzEBCxa^a~w-c zKWQzMmf2f|)Gx*j0~N5eDRW?{-)mcD1R^N@-pd?VD!l}j;-er>{t|u28_vyO>0lX@ z=IY}dj#@hSNv!ECW}r_Ifu*aM<5;@Px71g$jT;6kVCh@Tfu+94d&~$#j+7qS(EFS@ zuvEqqSc>iX+PP>y?>skyrGNOAraVPUhle!&u$ES22Kp2cd>*1Yb1rxsM((z0UMq5I z*jIB4HxAUm+B=y8YkiSk%m_qa?GWa`S{V~tJMUENA#WPDg0YjHvdg-_;pnnXdJ49mjn-IS%{$yUPy=I6F$c!_BHuG35CMq)WDbm#F$Kor0gbY&Y3-o2 z2&RCHLK$CZlvR{K{fFcPF#G8{8x_vjVL44`=U z*46eQjlrszN7agZ!u!asN{L+?GH*4E;CTt;l{3R>)y&~)v0F5qDDF8jNGxZt79^Ha zm4d`lk_puHTc^fmcq_Rfvdg8bZFaeoIjHN)^A1&uF%=o+ORH^$`Lc2-!({XAabGm! zQ0Qnzis?{L*57{fxSKtPj68FZ%(}kXYO4IzJadwCu6d?21I-?r+Rqd!8yn@4ae(-D z*;r4n@Y6EXAdSP(Ex$w22hWkLt@}d?rQ7z68SYi)2H3I{pSI_Ta!=dy1gi-0wlry@ z=ZW*H?Ri45m|h`vWw@!(E637Iw+gXF>1nE(ArRuea5FknT-~kH?$FjqmOJV%B+DJ2 z&V9aZwc6f{e(J6gro^ads@ivn8Bj5nYwj>fzgCRh?e%v?Ar&aEH&aR;dZfNNl@V)e z*1tVwfH#hLn4i)9{3QJOVd=nz_|sut0xI$SrSr(L)v=`qiL)z>pDgUzv%DcBs_m4eM7Bf_cc7`MT`I3jlFsp|-H zaO(P+DcBQV$o%W6>s#f}o>-;-`!2!m3DJr@;b_I4a40x-ITUP%x1YA#VY~d*?XXq) z)$QQejAIwi9L+wCUFV;+$FB1_Iv}amGx7^as`X4BNHQm{j7iOr-2t$({;F7(cbm#P z8>|&m?mybQzFA)*cDKDhsVDOkJE3kS`_71cUN&@({f$x`YYD8l`x(2(nmv;Q(WTeM zYJ|rMUH8~M)kc>yBd(3rO}|_FVK}wmj&T`fDpPVUqs(TqtgwF>MOxd-D6UwtYWLBw z(LF34XIvYTcVV=eQQVuvssP9JOaUC9R|?=L#sQ9dxeegB>lq8jUCaR-KVXW&F?7Q0 zx;tV&a9!y`i-TTMKd7jXa*!53LxoF1d{D^vHbg+o__|Q46U&=TqSj^2QYaJ zXh{LgAD*$m{6WVEU}iikzW~gPXY&GP>WI-->#UbFXReENb0I2Kxf$kEiHq;Z?Tn7c$?U-LD9Tf;;46%#aFfI}lD?_Tz+glKb@#>0kzC$?&6mbpF0_k7)k1s7n34}f?Crt6>P@U5P>n=z4|9;S z`65S{5s2hm=lO)$$OdJwnhk~?(%$V?L(KXIB1LW01^AZ9L4d6FY;yCqZXT-{{?{72 zd8<7=wY+(@d8}UOF0;H>Dz?&Vz{60Kq|_%$Au~9;N=?n> zZZ%``uPQAs?|R(3gBsW?Ic;S=^eXagYv@W&-wT>OBm-7NMIDYJN;sjqa)@OH)=(Hg zlwr<4A}TyrdeSn$Lu-K44J;k#1)O#;2XOL54l*MU!KIs%%mI>QkT_SU`TF3WGlRaX zyj9w0u2p*tpi~S;0^G)MnQ7iCc9}UdEKw-@rw^=A?PDF&Z`F<%GIhD!M${#2u#2q0P!0UWJ}01gEaz@dcNKGrVu zoXtt9$zRP$u8?juCkgX_;QD#CgY77$!u9um&bt2oDur#iM1NshE)k9H)f+#%H9Zea zuBx+qiOJ|9uYkKSJ6YF7HtHrG3DW-!4yEEKKmFg)B_!<9sX8CH8W|~J=P+9k7{NNuH&w7=k%{k!TGP* zs36hB5brB7wz&5bw*sV!t`*e*Yyqi4N&%$y$P$-`F7hgK8$hb!S_`R)%mJk8F$IvS zz1BjizH$gs-|AQ#NQqWJ%Fzl)ITS$3p&-vKzt&=^ko;9l<(GaHQ;yAwsj@tK?lPDT zXEF+hZ(D0|b(@YDxJu|R;3^?n1y^*5K>&nH3|uM*w8}ABk(%${a^BZBOr^;WU*+Va z%E?xxd!0e<{^(;iKOF0F;dKUcSMS(Q-U^iu77l62GfaWAT(K5uNy-x96f!kOJ&a&- zgBd*`R?O_|8|&e1rxr%wUd^OFcu&K!L=8;Zw$@%|*x4_3h4*i2pklq!oUVKvi3lz; zOzt1MG31?Q8D#PwnbR}m4RAj=3=K#ht(Cx0zZlbD*GFr$td(ZgpQ+TuEAc!{gw(dC zBwtZf?0Fl1pyoQS8aE8|ApTs>9K;`Aq!lv)5u`J*A+fPuCuSoE$;c3d-j|tgCU+|z z9V#pM2seXc=p!T37@Tl8YO-*K6cn48fsTcN3hg51I2GFYzPWv#N4VX{4FeT0cQ!^e|i`keEVFwD3tK_k3kgJ%r8X5c==0V*Hs9~;GrTTAB!#udw)-bne z6Al&&dHxyc!j)-ZRhvo*|J%+VTVXuHmEZPWDT8;h2?;2Tx{Ugy^_F&a2?8Irx@ zy6Kh{S82`)H&ZgaX`L-*exyC{@LuFD@y40_6Jve6|1uc??StCYQP8vsJx2~75nehe z_JB)9hJEwo*zI277o^+3T_VHIPn1ID{@<>)PI3MVvHYe(0l96v){Iy|^Ju~01I&y~ zHVMPpReZs(>Am3B^jMGY@zSIXYI^Gs)hl7ykY^Td(fOv9H6HFe+<%i~(-+KR(_;0~ z(^LyjONi9!!-zAzTbY6xS(a#EXT%w_=e6RN2=m>Uf-v7zDG2j2ScLhZ+y-HOpqQxT ztbxoyn4ioPg!u_C*f2j;ITYrb>i<46Y&lD`BFsBl5#}8V!n{L4nD76B4f9>)uZH=% zrC(Hcc|=GZc?N^%CAK1UT=Ieq@k>++A^xELLWn;o8r{_K#dX13I`W$@=fs9y1Y|4c zO49f_j{!;Jr%bU=1w0X}Z)Ox&RRXW8|I6X)QvtvG@cPw<7i$Qt_{E3UM=#iFZ5J6T3D27uCvO`h>ed5$lTe(j?dqIYq1*OirFz@=0r3#B#-wMXbT&qCHH9 zm9YY_%-#@Og;fEBZJ7cPwpI#2C?)}f4{#fR@V@mHg!eHAAdE5vARNBlf-tTe0%5xT z?|@LW0)&oMfY6};gboEDym!3?VQcxTAiPETRS-Hh1B5*Dw0r>JjP(|TGjwzS;dcE6 z5N;QZ7X_iYZ$)g33&4_TQ>3=DGWMBwLgj;1MN;?)QxMxuthcqQqs$3ZRKQykeqk2U zI&K`8@v|t>qE*oi)G1tK!3{RODerJJy(zc>xycpGz^Ft7@%{$pXuO|4v3+Jqi3MD; z61-<75@kZtjn)@@r5#x`P>RUklR1db(%pt9q}0KTKqM$v)pWQB{33?99o}Gle;(5U z-+ypDHfOOM-(T9Sd?F?v6wtepmu@g0J{N19{lC4>NEfcCIKocf16igR}@_++Gga}{6b0!#na8gS7O(s zf2LFJ;EUJb^eeHc-YOmi@`^LHNA&NWIrHy##Rgtv zOFgkW*4=BS@_{qQmTJTlyc!xYx5;iPK{fht`XzHSW_0!L=0t|mw=>@yh8CWxyChXcuLXmOzB&b1IKK@i6@a(0?EO=hqm*C7U)cLxOQ{ZME1lF<+G@L?{?yw%a40tT zBK4;Vhhq!9YgIl#CsK`iOo5-fcB4%-u3}E+6BBxy6$Mw7G&SFm`n!<9t> zLvGz@OHbDwjWzP_&L!6?Ee{bbJ(>Korj7Lmun2ZWUojn5*Bp)pk-i%dM5ZzWHi-!8 zFpHVv)M1P$)rjG%*u)J36^Iynn1hJniyUD_Ac8u~C(J>_kntd5JS5|KJ>J#(jaxwJ zFR}{B+o=j}qGiJz2s==KkdwzWBIH!rsP4h9MRd`gP>Z-imFmAiEuzatTZ_0=o3Puc z%A-Rq;u>c_T8p@D6KWCj21ao+6Yiv{yD5)5shV%{D-ak1cCrk_Rv^;zP3e(DT0y+0 zHgt_CSupB90^Uix=FwfnV?imR?mISb5~wcslH{Ta?4G zIm+SK918BND$yWO%oO`i>ew)rx4m-h{uj2QR@ zQ*dm761?p)yjdn8@JRso-V%i@iI!37~SvW($=&n1k5Yk10r_dT+MD?-At?M#Mlr_=(9#c10^N;%Eg%914P; zLjfq-ZMJDtWBIFTR0HW(1D|6u0w2#EEdv7In9VlujnUB|RIS%v2z={BqkAg8YLk6X zHY0ONHA2_GUt+BaVdBGq%&TEbkOI0I)vX ztiWm$l4Vd_v4+5)6VgO*720W5RETy6%N+OrEml3>zqa_WTKAir|4yi8hShHF3Z@6hXPzS*gVigZDOtU)xhG%zS#K*345`&_rXV5My2Ykeo0*fR?)9TD z>+GH2ri%MC77pw^E{e6P^BuPaGLd-iqX_zK#{BYI&DS=-Oy~?%nX! zQZiQLL7xeNbxY?lIoSmh>7gyjNby)oyhgsUFZ)}1-~MTrm~T_!b<&UPB=Np}iDwOU zovAzo2^VeCU(78uiJPFV!)j>B#L=`)TcNE1&6WBK&|LX4ph|N6!O_Xh6>H&7sj4(jr@3GbJ0&HFVU zd0r=XtMF$sa)sMjhof-&>}9~Mz$>}oCL(}aIp+K$+`^?_u?f3~;~^fF26A*L`WAzx z%mLW^p|oX2Ac7Llz03j5L>X|V=1YmEEKgvtqWes!X*4~&;pHUG;uYhy^NoDP$Jx$` z@s8>HbYdKc@l561nKY4yfIE{OWl9h_iiRedp3S4xJh#0cIpmwPpTur9k5yV$%B&bP zskk?ebs&#f%M=8RXO#k|?R(hB^MAYL4mb<%Rsd&;4B zA=8p8UTlBG#tTO);)O#&yl^Op7h7Mk@#0zet9i_7=~wd@$7Br{WnZEhch}C|N%GAr zHfVgKBgD?Ev{im#XI9#Jk)VN>ex#nBRyDaF<>sQ()BH^NeARdnGv@TPvTjI0y8M0B zcpvXN)gE|YY|q+EIdVn(SFa6I;Mi~7YLn!aTdn6~nZT->q>U!Y*KSQhvURn1wS13k z^&vU6TD(R2O{$wAS%W)6nJ9}XNRn6FJ;hIwVPA>P(c<1vZUuBrV+znUSt&r53=ZkY za&CikWU-i}C8EX50lYRc1@PJ+3!?DatQ>-un3xM*q7~_gqxFtj+1C_fr9hX{1n63@ z)uL;%{8e;KkZu)Sj>$+zc=Bi+G#v@;H<@jtRnzushXB?&{RLp1v%sS2kT`Qxhxqgz zD3l|qD$KV|4$`NX0U3GB zRZKw`&oI00k@I-Z?$=dJsYKjDrsUKjHPz`fHa{3ils>vH-rH+TE$nSd9qN^Akmd;b zm}vB>Ef#%NKVHwfJ(pasyhKne+IoHbHSc~F!8YkGlb``SHX^*pA;QbNq9nJLTR`(O7`y+3<5p&4HiWGTLS5_x;<1)I zFb=0&?p1Zlep#-qF4IYU%<%(Ntp5gOxwfy`vRor=!fv{P5|TUh`BAe>&B3<%hIcW3 zwawlg^bL;`b-6FL$8!yr(XlabiE+^iGrucDpZwq3k<_>*n+_Mk%Ba}Di7 z?h`e+kK4r8dd0O}Fk*y}Gxy$#nw;-1RIBF*BaBpGIfRi6r67!m%fLIf*R_w&_nL4+ z#F7TvZ7gZP9El|j48DuhiOC2k9k$zma;I`ApzxH~x{IhrKyg$fUvVg?%{|sJevjvn z5mv6>Zr`?DZ@c|c)i)g`lr(!f#Rq%Sd0?<)vTw;`=Hytig2}LC>2~|x?LOP>d$(8p zqeapMEONSlMGgfPjk+t|&~wPJXhM!f_$bn;t4kJ>bTM;8qJ{iH>`a##me`rX>+F9L z>4lG`RyG~l#EY5K`EtZA)Fs}?g#+T$v@YWE{$hKPHT}*MT(D?%?K022)ioaT%DhI% z)9o5cH9t<37^c27O;NE{ga{JzY6>JhyBESfbDxb z#Q@va_BX)BngSEQ^1=4bYe}$W_l;Kzm)c?0_Kn|_{*`KHu)WLOq4-#F2Msx=_*jL> zvh@DLj?&szA6>Cz_3_ZwqB)-5nrUwqE6@6X(-uqtPMazPI2F5)@88XB0M<@BELb}+ z2Vi}KDR63icUbp4P&owDQu;pwH7r`;%p9#iszU)%9SZzdhaEQIZz_K^;cq1UYQpc> z44Crt(;5P%**h#uvvqWU>5KXcFnv)py7k8ZrXOeC=YMDiSiNzW#13|rW`jP+0_T=G zJpP4uKy?NPMaupzQ;_`}*kMbL`b-@f1HH%*?_>@# zIbWm~GXjyEYU2=QBS(~xB1b$cfYoYa9#ez#ZugGl_8mJqesy@xPP2A&{GRkLb;@}A z?&Uc|jd3w|j2h$XxrG*R6Vw=44K0(5rFGhi+8XeCNq+%;FUj<|_l^N#*s8DZur}0jzS&z-o#JfK`n-{|v0EyDYGLy*IJ6>J6PWvsX(M`wnIR zSH46KW&|TaVQ~O+04W(GAf?u8VUZ^>SjG>`kj+w9+_N)@sGDcRtA`)kWwK_(?@Rwc z=gL78PhL(*(QxM|DK2M9G9ZM_F8i>fE0Bx_xEhtSv^^&kPw^gSO$Y_AF$JOERiyx5 zAMCWD;3&62C^)pshJr)PK`8i=DF_9h$vSE2=WFFqD0oc&cS3<^MJRBzA{00jgaU_x zP;g+E4F#{tUkwE>OTQWl9Gg*D+)EShE}pF{{BS zm>`1Z^2tFkhz6(T#YbLb6FxCN{-Ae@iU*z_oA4&49Jyo?;zXJ`Z{owf`@JYT<)yKORY zQbz~$czfg*(BtiaH>dKUcyp8wxk?adlruBRhkdsD$f4BMq1W2U^F>E*xuUdY-?&q*sHvc-TTNMXmALGg*-B-(kkB z18dstu|>m^Psdw$-E+zHO3On8MZ?#giJ$X^u?V)sATeEIO}4|)!q%WYh&3~r0S_-C zh&3yjlZ-XVqTy1}tc5LK&#T-z(1WC9KXVXVe328(2t<&y3|JSh;eEzz6!ZpRvghvH zRWjUvkCCs*r< z|Gw~kSG{g+_m$nuB7rj4-kCYD-4}U)8G*>`jq&Tf!OVf#=Nz-M3ymmep4=3l=1t|6 zFngkmOIO=C99`{+uVb~JVg|Yu5tzM&Ib?R_@Jqh2zKSE! zon{WLA6muxgV{(WWKc*YWR*j8<)xb6|58T^AA5N%^;xCVz1G~z9FCfsx)t8i%m%uAxuMKZxqMCb%InoqLf3g?nI(@4 z-)Yuw$yYbIt3-dv@UU9~0~T@XqybtDe}*}jY~SY1%m_sA1)|rPgL#(O2<91;;*Yom zl)k@Loq=B|{)X8AoUm0vsJ}wAV_pslr-*9urh#OUxQFgo6p4$yA;0wBph(cj`%iofhNWik>5 ze0o~0E8Sq4eH|}p+8>ZQu_KIUNe6#BuCh5?N3M2%{l1hB&mV~2T?-l{3hG}nT%Pcq&pX)urWK0yE0tp6Q z+*`p7kW{_Q6y)Wbl!By6#)=ZnL2iSrYQI>hS=D~#AglV6Dafimc>`Hh#s4aYvZ_V; zzr}@FSt?d0EJ~47IZBaKITR#S4h2co8-hc9W8fzFt4Y<1(yb;{j>)Ld@Z{05ph9z2 zpsC;MIje(1Qgzjv@(W4TRd435(4@R!3yCkhAD?p(WKH=X9`%~5e6YV1St*T);(y>F zfO08Q`GdIsP40WBnSIcz^P3i59p1F~auoS%)?V5uzHWHa=I65K&V3ZG6^^}W@ziSD z$a3c1kK@;+w^#iPss`MlJXKW7eDtwwjcg_ZREI{(_Z$UOnWjVe;VIr|ZU9itX9_?y zS1ACM3=p7tj@tlKPm5U!s;8L)Q0-(2K($@gLJoTscPocL71RG2RH781a+Cs84h5ic zC;-)yZ(2~zmA?wAS<im@C8h#Y$KJG{I;MjIs0!|rUjS9XeR+YZNSA3> z!+XvDBHqJA7jDs7e=^?EjQL6Kam8n2uKZH2sAZ_$0BrVZJyQ_LGWOZhUnS<`(ui-z zH0B11+%y&mjBF(8wD#ADTf-f;7t=J6y5HewX3>5hGK)dXz}Q3tX>&Gnl9@$G4JBOr z>tP+oDCtPEXkYDO77o-Rxq6m42+h987G?w@IiPON zSD&e_UOwpXQ@m{W^L=(>uKP(&&yBPr-jfx$XH)}!V2W(Vw&~?_3w_H?Pz_`?v~V)K z)@cRz2dFHhzktd@`*T+V5nZu?%gY-58vnyZBqC|A|Ha398LA|JAR=icqC9>7*?7pi zo+#F})!lDhTh0Ccd{T>Gz%`_ey0&urbI<4Hc0Ny@l}YW{K2{)n_kKI6b&av|x|0)&_cR&TFOxgDw5rve8^F9NotK*3oU$HgI&G=`TR)GYcuI9|X~JdpI%eB4~OnU!uSF zH}!^>6M5&Dg734z5q_UPG1@Epmh={2Pkd14&|4N(DQ{U=v2ZYWPueJ~ezmX)OT;`= zFmY}8y0;WV-O@c(%J4bMBS1a1$LNu*y(Zi_;FGavW=#`}uB0t%HRM*nP$#AULmiX? z49VDlp+4LO76ky1q07Lh` z1q_8cm<@GfEy8W3SA~#cF(AYfNUHz{&3Vg0XpW8z5Za@^0HHmiQLa%?RZF}Qs#<)k z2{cL_NY>RpGI==DFv;}2E+Q8)v1ZT7Z$WkkCKUZysuS0fEXg|PfXF+ z5&Bvuz}^q%ea_q;7Y&m4;kHXOHkIon3Y#vCC-v|O{hJhuzpQ3VeUbk#BM?Dl=SSvXl4UA_Nk(O-=s{W~ zC@px9Dm&$wjp-M5pa75M=CMT)eonuoS&e`HUpYk&N;@~GQvEk5?UehsE$tN4CLEUj z!=46@ts^a?succpGz2#%Xmhk1|fDgZ@o`7zv_<49DICxTt(R+zKN1>@;3h zOr2WsaN~ovxbu*9!Q*SdeWJKiu6ClO_Xv{_How259e ziJJh&)=l*GmT*IjouLKhbkA5NZvitTbo%!IZeTLv=emQ4pOs!x4#iKN5qlHDf`c}I zI;s&s9SZK4%hzT?HFpe%qVo>gdjRJgwD$o1)@H(D?<*b?Z1~LD@EJ2;Lu#S2S9yOk z88-ZJ(BA#`#zA}c-@o4eCtE)AZE?DQEe-{?$g{>xJckThKFwu|+|QWpU8g+<5fr&h z?YC_%Q=2(C3(}g&Fy@xGU1Qq(qcPG2G8?B07~@c2%;ruL8hQ>H#?*K_xiGkuaaPxY z@?HqpHd=KWEq^s{9wAVXq$h>(>fg+G{)_r0%=vmFBoWlj@=&wHEiSBahWfc#qLcSD zTZ}W*6HJkhjD739#uRv)t#8|8ce6~V-j2dDK|-)e+Gw)7OpMW67sZ>@ZkfmkfBd%T z)H2aBeUobCUAuz2!L5s5Fa;YHUnxNeODsz@-pz>=@4ws%8}?78V8i~d6l_=-7V_MZ zhjL>h<&ecj3UiR>UcnT=qRJt=Pp?uA?bDC7AK!D?eJWZ32S+R5;82k0IuszG=pno4 zzrSr4{eN%UOxLj)nJ&*BEdes!hKFpX+fYY~O!pD}g-rJmvBbR@tbsgmrymnu(PDgl zv$suR+(oeSSlh%9Zz4|%u#@dj^j@(SbeWd7O%ydH?#<5fmT&_=X~7{2rN?FV6-ulk zuw$;YQ7DZ(WRK&BS*T=RVotY9R5Bed9aSK_?U2d1BXLjqTq4`F?3icj<5R5 z$Kzitt#~v8M%la$P%M4eLb1FmASiBAF$apG5Kwd!0*Vd=P;@AO;yE9RU&&wfKc5S5 z^w8y)3n=n@(-H!T*BrJ`yhcY0D0b6dfMPeXqR+v4O<<~SOAd2^Yk2v6hIfo*d{lh!4l<<L0$3$bCOAMDNO{pE-79W_aq*bp7a>x>-~|X1HCu~ zoo5a*OJ5}Ah^#{Zz(6FYFjD_@$gWEY{eZ*5NMk|Ft<<(Zh|T#tD$9*v9wO>rmX?J?)nSR>wYA66%s(h z4jp*d-ji6QZ{jf*e+Z)=_f0JIB0K`P!l6vDU#Dr8Xku1G686*Dk1`)%nR>)}!ih)d zcEqPHXtq*@s+fAo;V7n79s#CyF#`)JBEZy9=KM3J4oOdnDPQk*EFI_trv6|KFy)IB zc_%lfWGJ{Fu^e*%C*c52YQDb9jwdi!!U@tw1HphJNjU8vmZ%ZF;T`k)utd-F2|5r5 zPCT-l8xosy@3LkWDZl{{%5{p-T&jtA@_fS{_nVd(F*tPXodTCC~*G{1@1rc zj?F|KlE3QyACP|4{W~_p{STr!r-g(2fBGHk{-4&-VGq8izpw}26O9*l|NXBWRaK*` zXBLb~w7tk4ymoZrA@4`k6gV*K!S9%Y3+p9rUREyW-FJnLk_7f({-bse{_CjqX{;fz z<-A}*LHOl6xw8?eMPw(E*VV5&YSv^YI;5Z1Q7|aK=3(JJ#o9a&B)Yhoj?v;Bcr~~I zkaaUtfUKL80%XYufvkJE4Ul!W*rm1HyO{%I4Q2|EHQ=a4)==dTvaZtq9b}1CAj{DT zWH}Td%b@^SosU{%-6Ve%S6s{v$9JZh0OQAY=4ZPs5v)@IS@R&&L> zqngW=j6kCt=~ZLCH>4baN1Ww{uX0aPH34 z(^&+YqQbj2;#}i!G~!fv7ZK-1X21v$!EI`{Ge;s$aCcti@GYWLgNv`?A#NC`7&35J z{bI~OZ1E+snGs0f3&%Se+?eUjWcG%)hxHG=YvW7VcTJ{#fnd=5L^tmlZUtkX^o`x@ zaMW1g+%Y8K4ha1U1I8X_k-*p??+nY3u3_twcDl}RyFkN`qZhN)m++3!G6oWO!`~&$ zK^&FQAdZTi@_pm-=CLF7QcTTR3D3-5l4$1DWdT@R^O#-U<_s&~|~_LU@|hevG{GH&Ey~a=0O`L63+$ zPpb`TY>~tN@-iZN$ccp?*-()Lx$`ZN{!k6bO$vZYHlw+??Jq_pCJL zPEnYez!XeKvv7}UX7I5@E7Np+qNJD24G^yvG6nH^zETjcWqgR&>$nZ#^%}8CEkwd&zHX%yyr^48oZqeK=9^Sq=iB7e($&q-tXz?5WI_=kY5PiMdVYHZd&;LF*AE} z;)jdi>CG*Pq26UG8lV-Rx|At6;tMh>nbdo;hkG|N4~V+%ghf>C6Bbb{9Sppdv{6J= zIAISWvd?S2D(BiRCrr0j1!weo(i$lag@^#D_HYEb={oIHr+lh(Ed<%;P^B;(Sm z)h+by+met^g6fTOJy;9yHrw~X5We~V-e6n~4DgM9HNrT}v5Wuf$` zs7=Zt$aT^G9mt7RK+e$$$T<{1&Y=Ku=7fdZB>Ah58!!DT zIyyk^cl`y({eCgXA-S6#k6dlt+K;a%y1EF&9U^DmOms4*_9l*brQZ{E0SuArRb&d{ zXzBNCu2+INfu2=fEhZy-Fcn@Lu0cK!CB7#!E zaONb#dnpYoTz(SVqx>{jdeU(3>wS!+1HC8}EMX3!vM;iR8G%Sn`RQe5Bi_qM5w4rO zXSZn{Q-f_<Guh1aCs$| zQhWJ`KJ&kj4DfJ=WfJUyCt|O5+UOG+SG;ds-(~Mp397{f&6>P#an-@$D6X2k4_w{H z3@oOI09S*V^Ut_?M0!$O`Ff|Zbf6cwTEHCO$`@J9j6eh>sEy14q-2nQl$x(4D4xV% z88fAgdj6vC=guW6n@`#=t8BjsdhC7E>f^)%>6zMx12FCs-&6RQDfaAtt{`%W`|N#O zC%FN9`Oi#&FF&Icz(vLfUtU=9o22`JFV8Pe^Qte;&m8#jbf%~;4_#t1%f#iq*OOZ} zs#ICI+eShBZNmVIT-9G!l!X~xkxKyPTH;ukXTzZjh zxAKd`!`?`qH*C9@Ln%E@KD47s4t$#^X+KOpmm8>)4$V~a+k~d;pN8ht(kkW4Qk%fU zX&+eF4f`PJ$$tMjab@_W56orXBs!)~QyB(Y7AY|(GHqiDfOcrWBQ+(zZmQ!e=e@#w z;Oq!ffU~!i0-VW!fV0oJ4RH3UkF!si1DyTA6yWSP!r5QSC7iva|2sGn&A^$X88~w& zz?nk<&ORZWz5M}jCby*l=Q~U1E9u$~tnnPuLI7*2CoR@e<=|(r)?9x9Yt2vQt~ZH0 zN4<%UeSt=))rd#2cMrBpYHOd=*4}EnNU3T5F9O2cZ_{hArNys_XvpiM3Y`37FjL?P z`<%4-$AiqNU1GF+thV`xqNe6=a#PDh<_XCCsuPO@mP|NlZyUV+_k_IYESFrbv^+$# z^t7euxy1aC_bkgGg?UPh#}zb(qoL-hlL$3?nE|6j1m&0$%n8adySfdk96l;aHLCb3 ze&mLM3VX4PIfyF0NXmyaxq*mgEA#Fg(afvJTtpTb6C%sXlUkHXGlN4ThI#e48LX}K zp|!S!!%=H%eF$qiFa!OH2&{d8IgYjWiBh%JS22fYFi-(&S1?Dd4Mf&4 zBM`}1+HK5+xiYB0Ts-UBG}0yJ9ph#&_lR%qe;kgQd&HXiBQwykikujhX2xb$XzAtq znAVML4xP91<+uUl&!bEKe$cAS)*Fojxw_0yxqRn8@^1)j&MfDKPS46yaR6xBdUd4b43aEf$L6G0fv+tfW8{q5b_lI&avopIh`|Qr_ybaFw zY@Q(*Rs?s1&X*kcnY>~B3|N&71jnegvKjn*?>+;oCmjy2qkH#Z$9P#X&?kw|=a2`e z_a%qS9j&vUNXxMc$w$xL^qOVfs_v;eCMe>+F0Di;jqQ^zJ|r!B?Eo32;XQtNOI2II<7YI<7F$zUyUw3WX+On z+`{h3EtCwFOSt-L4_T`v>s(}!emq6)8Su1h9W#KDwM}y1XHR6OWLOa(Yp>+M&*Tm3 zXB5g$$QDrg6QxSAr^qiV5mSg6AhuP2W6}lUI*v(0|Ht{NS14c2;gtTnXk0ccBkcJ{=w!OM=RmH!sGiS7PeseYhVv$U3rP)Xl533@%UuBpDfZ$L}UJ)BU>z zJ8*7Q-h1ofxzbBo1y`vNrKI}=Zi@ArUH$gFu`e>fI1uj-Ty1{y`vWtiq)q=;>GZL)0{(D`Iik>%e%&@$J7HT%`8Dl= zmj+hFM(;DDkIKGKSAR=V%vqQ}3fI3yu#4VRabvk^(&_(^jd5Q2pQPZt@;Os*URhOQ z&MU`c8=O~;mY8$#QOUu1rR;uzJ=8e;`%R5AkvZb5LN9%^x`mz=LpO=`U3KhLa&}(KKtNE0YA>HUsg?aZ=js51NQiI2g zQ*kf;g_BAzvd1m1*D29CryYOq#Jqc&V?8M5EhTCji6sqmtu)pT*UU=7^& znQ-6!@_JkM;MIX?+=oQS4YE@d-5-*ac+veyNv4VRZv3Ryrs(d9;l|HKk&!VQYpM-W z0kF7JQh>#Gm;x-4T{t_J$Tq;@m*fqu(R?X6z~V_s0TxeqSp1zi0*mC2I2KWzC9MFX zqZMFuC;+2FLA`zNep7FMhyLYy`abA}G7IV1cx*7F+2Mh=+9H7AggdO-7 zK-l5Hc|eHLOz_KaBi@CRb&r0*Yg{rcn%wEn?kY9MQhg^0Vu^em~QARG=nU{1P) zl4DiW#tSH?Nfx6zQ#Q8tOeIBJZC@l?BP`A%Gx(^w#^G@4IZtm`L>c}=l7Uf?2&$ql zNKPyD?`*tzP71`y>aMs3&q%GOS3v+I~v1ku=aq5%Y@< znB{r_*I>E!IuHv0i>?bctXT6KGNVGb$&+rGK5h8eN!oX~Pfh*5>w@YQJL>flgY<#i+izQ^CddYiAKw_AekbKB zQ}P{Y?zLd&UKuB=r8a{F?E>A%PJ*RtKwc@bP;~2g=@Y zZ|Mz^5{oYWfi$QtGa4vYAa-wQ|5`KXbChWtYwOpNZ&&InsRR)wBq@k6vzP+Vk}-%d zD`gu*m}TFZ2(wIb5MdsX6hxQ@$<=&C_c7*(2tzI@6=6s#B8;OI5yqh)!Z;K}nA^WK z5oQ+s%Ms=_>X##oV>2R5U*U5xaj3}t`&$!Y{>`Jq0zb;Xu)vR!#&hx(|N$6TU0IC0LZQOok@AB zd}sDhslpmlnc6T4Pk$Rj;p~~g+=PzbmDd|)273i6vswwmzu8DTG!*)~%bt-%_iw#) zm_C-aF_VW@&RkaNDq8_i*GUQhHHawy6pagjnk?G@P~*ST8>&sMl`I*+(>zH5o{GOS zcv`?5fhRJq6rM;a@HAfP0G=EQ@Z?Z{r!n-%B0nlOi2h|f4WND*PmamJlXRY#0^sSM z?+l*q;V}SD@9{6-={?d&coOdipn!o2zdWy6jZ_z>Ni`Mz&tlp>k7@hdXmcz4#nGu_ zw3^4F-Qo3O3r~-m(Tt|n6!5Vkujp8QO z!T7StEYcZyF`hh%(7r_wMvq))^R5q9+BKWFIbJ0Do1w1Ba<_>UU5h88NYh8lyINQ8)My; zHD~k($*wh%+vv!llnR+rkDcI+2hHsXweJjuN_BLwxP#t*XYg9JTlRz9^L=W1*GtetSyem6G6hFKs*g&Nn5_1o~+BXNc)n`Yn&ETP?s1(@>duTmL!5&(NDcD14 zbl5}N%Qo0U^ADMzoG&@pMEgk!HqqXP%qCjM9I=U#iQXnk5XUirv|iJ>P1La&o2Yc5m@so9Jr(g-vudX>^0~O$W`R zr)yJ|Hq<4L25ah_ug$2Y2^$%D^R>lU4#2k3Z7t1x>S@+zS1G{tgrrcTrFu%&$Yk}F zL+0CEUO!|Y^(wiapFNd=){t$~h9ULvp*W8* zVYqhn%&hjkotWzU3lmfQ`_jiDtbBm@(L-jvKl^C#Zf82oXFuSU{=J!wF5ipO&+v1a-9V$`)6Zmw!>6AczQ^e&EEx!cB!bh=a>&kBOzQ2UvGUDF z(q(qi3dlnQMqfi+yn9xEY;TL62{x&;`Xc+PV+6flzsGKusqY`Vw5I;)nPA&M0e2^% z*;w|EeXrvCi$X(v;9bdL?3f^uK%~Mh(HpyJ6k~hiZ z9HszY1^W2Mv+C>qH_d-cT`JpQqwMg5*(f_m4mQdGl7fx0@CUO|Uc(%*QIdB`ZIq-H z8>OQa8>K_RM(I$nQMUcTyse=%Rc*&j%iG%S<3-JUYN;F##=giK`y$Dqv3oBA*&xX< zVC@g)-4kPfFfY=0@E;AKE?|h$1q^X0c=trwtHH08Lxwf;^`gX8+ zpa%CLmttAjDWb&nC5w{iS;7UIRBy>c`KwH6@hfE$?DtZkJHVcqBe*r3KazjJ`6CZs zc)u@mSm*SZe0io!kF8ER50KI3Tr)MMcUnyEG^5u&*WlFMd}nZmd#?Fu!@Q3A=bgb> zY6;7W88bH=sfCh^kGyQYG8E9wE~d967u{Q2sqDDL)IvYKWL2KJSGMJxAX7@);opNf ztL2}AN%O8zvJ!K2c#41VpZ4gm_^>%T+`|kxf%BMPM~n$C4Gzaj|*O}e21{KV{y|~2{bZ2a8K|i|1*dAv{0aDx9nU|JuS5X z2Xb7l(R9W;nv|RQ1B(C*hxr%4aM(3t+Grj9n2w#LPowR(7Jd>;@vDR* z!U;HzCQAx}U&0Y{96c+CT52v!`bUPUY$=K}DZbn)<*Y$jN6ex0=g%oc$}1%|BJ%V$e+$nR@fFTAkH2$)?Nw zi|kDm{z;^nGm3&E$W)ffhE@+UihCso8HFeEm}FQHRPIlg1m93ENH)?68X0Pz9gpah zS5L00C-#H6Wh_QNLeLcy6^`1y8$*>}nPgT|L9tt*BT_hXU)5xs#xQ(WN?;%ljoooi1 zuQ_UFe2l|ko3A;FnYv9f&@qePcBMa?cTbjFvOE5m>pUZVzia^UdFau*r{r4UIatZT}diRvPC0Xa*Q$qT2Pl-4F64^R7e!i#VC&_`YJ(1IrVMS12ukfRoIJlXd zVcm?o!nPj|-lpoxW^i-XkH*a{91goV>qofxQprG{Btp=lhc+j4yj&GZwzIJM82M4M z0p$CjOV7`@NH+ZJ$rVcm%O&*r(ev|i$vW51q#u6v4A>-FTLa7)L2}?{PvlL>up;pD z$C3j-lQ*oN>Bh=TUGb~(sru~9lnkAHSyBz%d{LE->Zp{0+rRhRe#+sn+lk|=PAmE+ zF`*a&G2r&sP6sbnH6)u{Fq#hIWny=V`7?jQ+~vtuP?Gr*Pq*j$j*<=EdvZM`gXI!3 zfAV~Ptz@0!dtavBbMfpe$O!a5O*Xbh!1YCv1J`>ZcSwd6f$Q&=9Jro5VqK4&WLZLJ zv3g!MgRi&1=GN*z4u^fc#kgsYWS~zH!3}xeNDkaAZ^-k1O`17&K+k!mjC6B@n^H1 z`#Kypw&Ty3lj|h|U9w2*F3(Al?d+T5jQkwg0P^F|rH82%k_}9Ga%&}n|yFj z$vOv9e$tQi>>2QuY#lRz-TaB0m-l;3@UwZhq#-`LoqycdF9qjy|z+lvPwE8 z<_<0{d(61Fs>5Lympuj-*OLr%$09Kow~=he#jT8dFWCU{t zS{?ITe5+)g>tfOm7kdUQm#t$4u!|p%9JtsMc|tO*2-fXOl7n?i-mvSIK3h+>tUp_P zwfaalgP%Y2{9NL2*v}stKm8;b=#xZnfA&Sk#iThdK21t_$$Bbk$c9!0)@%dGfu){E zzGPSty!qiW$stR}`{IV;zRnwD1Lz!l+>536CNxsxB^xdvw)GS$P!~v@xdP=sCC^OF zIqgH`X$dRkKkb>RIi-yJ0)#AXBF{{xV#v_~e-CUvb=AZ+VfskmFk>`^5E@XD$vs zr?yKnt_!UAYVI&?kD{r{k;5&Sn;V8!xn$fpvZPUHy81?{L-G1+NipBbXdL=noswkC z)^9Xh<0kg($)+PmrLk(f+k{OsE&TBUvY~5qWC911s7Y!F$Hx*8XzvV%#m$Shl`vr zHN=SIpoXX=1tqvuCrl0T9_EM|B3b9v5DDP8*g{%SdULd*^yW}dLv$#px&=>gfvu~L z{^9!CXzG^hYmUjNuSu7Qxj=pG$rGl&_9PDur~0q>7f$tGkw&+^w(PjM*3zwA=&|#_ zvt|3xo$5E1w{T*3rkoIzMD07!r8TTD_x6|l zMWD4_=~n)nUrY|uN^$^K;$VaCA~}F7aR66V&2V*w=%JwuwPCpacp?T@-K8MZKH;Wc zJeaO82n`C9VdWB`KMQm9{?``VrN+zt0nW2sLieaKk_>PbNeaLjW(vSb!vQ!~%QgV# z%3lmPS4s}R`M9JoIDL<@OTCA5pJc88DA`pCprjc9bu>3~fn~`)i`EcuTc7 z00VmYt!pdlW9dy>={I_YK2a5ZC8ZX=C`nb46ok_XzoI0SQciHruXl5#&H#0>XojzZ zWIBT0{MP?fwb+SdOiK zHIF*3A6Y$BufOqmWc&=~cO6o5D0pfPf`_o?Jy2*kmf|5kF)32|&ESo0T{1g!as zevPmBeS<ibgPM9$;0Q%{e`%p)*#yN`sm9`;a6v=r znOTop1NZg$7jR$yWa%P2ppN~*PmVY_YlO}k61v;ntLY<0bQ-@hR9m0DA*A%Z%zkt;eg2MR& z@Ov%tD(Gdmh1Q${(~f%ljL>}bCo8eALcVxXP!e_joy9ks-Rjs(%IMR67tIk1)bHj{ zQ~r0c<1{#@S?=!!t@)Azv=WDR935RRN-abLP+2Pj)ftqBj6`a~o6WJ`u-R0IZ#H-3 z%%rTg5$&!t=w!V-Yi`+uQNMd31ebL`3x_%e5_v2V$0vm8=G$-hc-JI3X5hH}hxF|? z?BUb_eY4@7ndQ`Y*$S|pD=C0=5mNwb8a!Zqw`>Dgulk)~T`O5Kfa<3t1!tYd$*Fv| z_tVS~U?yARU_QR?wkkgAjh}5>B~<{+4h2|tC^+h@{N3D3P(=UoStm^0@>$2R7yyAYTpRCrpkVw^_x1a2t(JLiWa1!;( zA&tG1wy0=rIeI3Wu5bVE5&AA?8_|qY&xSf}ed7)pf@)35|HE7o?Y1P;M0FPpOvdW; z=OKthkg=vM4SlGFND-{dLF5F!=W49O;f!_AAIMl|NCvDU5oD~3B`21#+G~Qo`FhK9 zv&|DGo~j3>fK`PAV~gZqxqBkpCBurWY(}3VFZbcli`55`jnGAd!;WzEAG-MUiB+|} zGt@^Nl+9rF0b{m);w7`2p#FKlSnU5(%rN?-*0^S}f!(1AfH5av_=b01%$-Oh<5`Y69G>Nge`1!G zNd`J*kyx#Hon$+O(EE)1v$6r???abft$BxJ!`GhNF3DiIg!}&VYRz9s*15H2(vMoR zXTa~Wb<6-xUdx^m(+OvLB9$eBMSK(W@DFEa>gZ=^dg|EpYuCE`eUO}(_gX&uC zWm`Br|CEViS4a+b?#tILzO;Q@Bf02<fA)-pl_mrQUpQA_HM%xvo&^-RKO6OTAB?GNs;sNe)WA zkDt0gsrSWG6oct@m=ufzrCu5imwKP~Z#-qny6>?%IhJ)&Kgzm)Z3^A2_DC{<@*P>d z=oVxy7Taw&RXM__?XC;Xl`SU$Y{uBFQXyMqIx@o`sS3z(TbGDp&+GkC`f6p{mY~@m(#zT(p*OUa!TXa zkCaCG)JAKv8!64=zf4NAm`8_{=4JkcB;;k%=;q|>PMPxU$ks*l9nW`XC29g+1>NMu z^CIy17ef=&$E?nx35UpCl7h!DpsCl3p^E11xQAr}0Pvs(zylrtr3!1&eh+}}{bdgB zaR6rM9ThfKHP7u=I9*=1dnME-u%A1T$a`P*imGen(_-iV9UjN9>$8IH_add{c=c_X zYzojdkQ9Kf9#a518Y(j9PO=R$=XR&ffv}zA0BBc93V_z{v;o=x<_MsXiKT!>S^+di zD}d%u05pdJpyi)7K&wapGSKQ!zYH|TW&lmPP)rMeHu|&y+GrjffOa?k0?_Uzjpqm2 z^6~jKbXvEfG=sLoZ-fSv+Unj8%{AX(`s>Zm2K5ZOqLz3r*@xPO;0n`0t2d6T>I2=x8_Mb*7<2xgUhry5t64uI+6H8bt zag>oIR=agnJY&*1Pj6ExZS^9Z>mWG@(w@kbl3_*SCDuWbjqpz+?K0%n-abMoKeloK z&maaocDnQu%+y=n3{}%5ZzYvYn0cnW?zubEFYqC|NiM-Bq~A~kEtbQeCDf@(Poh<9)(7aN}<0s7ye;k^r zo{=NK7WXenp%*@kHt;Rl8>(U6O!BU50PMVZ#>ChiXFUIk7S@Q@s13*1O=sZW1kOAL zeHLnv@&h$qn&`z@yV)KByIVhK(XiOa zv(?YC0XDhBze&GcZrJ3?Fa@5Y!D5rECEH+=tM<3q(Z?nm@VvgA4 z*kbdZPP-&XD>gYtD>gZYf=$k$V3W)E+iY@W=wIICeAF**a*oZ|!}GQiU+b2n?;llEQ-st=NvQLA@RqPYG)%3KUIN~hN(w$; zuqD(^Z(p>Q4gqbKOjnOeKH&D?-v(~$XfAj;OAXelwbX{;w(##b-1>hT$}aadsau+; znn8KAnq3r zaR)raeeEI6u^EVy&J=S4#O0nfh|A^C0&xTR7Z5j)EFr{+k`(Q0C`rk~k=01W7@BQU zlDa9TZA47l2&2t?u43wsp*`nTqqZ*oDOAU&LM&^2i(ouYQV?`PXH77kDLMF#e0G&^ zCtde=XtcUV@(Ax#gF3dnLx!MQ8}2@9YEX?&g!0v+qJgPF$xeg_-UaLbB~;C)wn>@e zT_z8pH#j1W?vxC~(U+(%diSbsSGi()wO6tcE{To9?(=8$%5@W~={^T1^id~dGpxg( zJpC74loaU!A>s;~7_kCPmzCJt23lpLrgPE0l5KNLI@>Zex9W>CG% zQ@u`dpqe;4{tmTMPe~3`6UVCdt*1A7zWdae-s&yc460xERDU8lP)(fllc5Z~{@VRZJKe4TTc>Q93c$oT2HiQ1(FVZ|vVm?t-BF6Di!Pcs()KeQJ8>)$IRl}dDBdgu4{wu+Y+t!d0#!wI~uUl${7neays-Bahf`>Odl$zn+)J{o(W8d~1`ybD-QpQ^H zx^b-kalh`;J=hPvZBjej(0|0Q2h|Q=8+e`7N|Zb$``KS*Tr>TC|M?%NUnLp7eX_LV zaoGgEmAb@;*tZ$U3D&oYf5Ep(59=H3EDm0A*FNdF)_#QZwHo8<9iWy;pp%&rM~f9G&5 z-EU6;y=i@9@d!0o%9)jsfW1g9hFafJ6p$)^0{A&{Ql7`{y0$o|BobfE#369z8Bn6XQyR^{#vI!a%FHH8<3r}|K1hbClo2wCbc2UZ1-ZVT)?Un<;nt5MRsDLv@)2^m;=ceH# zy(}+$t2!hbUwdYN#!rHJ8-h3P0Oh!aN89P(AXi95)S=QV{e_|Q^ujb+Y zfqmS8bnUycN1S_lwg~rCX=SLLg(A*9^r_W(Dn*iUys0NCINsD@3O1X43A(r_bgybJ z+u(SUUq@BsP6?FpWxA4Tq< zkG2oruU=t!JH1$5=k;VadlQgS0QFCao&)g9`LY>nmdXBm^sC6^V(V3#6JJUOl|+1RCsja}+w z8D0Db<?iTy8S!<3DXK_X9O~DqK16IX98Z_j&0NEZ-@K-7Zzr<$&-^{gi(vH%W+; zP0~BQuU1zTNj@H_59##bw95Du;OC}xx0f}k9ma*_MuXG7+nZ+VcgI)2(;^*o!N71O zMntNAdRe`J-bEd_pL>y`ohrNK%Zgi%ULLOPQx8hI-EBt3H7Z9C`_79}1pChOOu@cG z2;0*$yi0v7+hE_>Ro3h~yCjG9o%Xt5VoI+1UXro-d}rK(FFYM)uGoB}H?;3`xU!$r zWAky;WAkw+c(KUgKH)~nA!7%6A06Jc` zXjHwNK3){=!p5v@QQXD%mT@R{*yqcd9rhVR;~h3d&UB*Q@xP>-IakfnX`?8V4ZS{G zfpb+#90rEzQzMP&{U%aCQ`S13d5@~Qr1=QG%N>f>u$Im%Or5MAmpm-|N6MMFyOI9o zGl7)0JJ|+uC@b?GH~{te-vDw{}(Ei~b3pQMzME1Dd+Rn?LW*x$Ztx<#1w zAG|@oiuuiN(9e{rtZkL)ks9{CN+`xxU838h1$^&tIl&ZLPaA z(Hs|=|ImAh+9XA=ULK}7c`)2sZFM+&C6PENBfTj(7#wl7>{xh}`b=`-mlAn@m6sA} zdGRjm`a@{=V4ahpU6e=5#TE>BZqL2D(Z-aNOPswp`L<|M+w z+_ypC@&YbmT+*FS#}@_rDMavbNX6^vE>ptw^zIr>6B9a?_fXpD+E8^}FeThRa3_ya z0&cP#_Les%56+YnF(m+8Umh_4*N=YzaQ*0={FGseoN#Jcz5nabXx;R+MNP$aI{P&P zv#Pq!xZ?Wf!P?nr;q_{a;}m|xZKR;k?U+;N-pop?>Ol7Ns(SM!GcxoW)5FtMR5UYp z+Xr=*CEiN+&nR!QuZr6*8KZRRrvAIio9ydh$-yiV2iaZ0EyXR>vy#m-=DSO;yx;C7 zGt6)7CeEO}Y~i-@W;Yp1olyaTckzz1!fg{ivGa7_*rm1fQ?tUI0=IETa-N3Eo{@gx z^>ANFGF}h&oup7SHlI%L(>Ilhp9@~BTmgPN+-pJFf4`7YNPEg8(FkI&rFX(9A5*Y( zlOdG$jM1+xOszq+*%=k}r{QoXl_f=xIn+!tnL|yrKUBdUfRlIVcz~#xr1y z<1q&{>1(HiOk);L|j8ixXFzMK~>Q4Sf_jEY;ssgJ)Bjr!6c zU8zknX%Ag`<%NKQr8CpGh9;q97rcRLE}Ma)<&|s(7XC;43k&}v(tgguFZ^QBQnBXG zd_ilzU@>jiPWFV*^2*}yWOYP(kV8VsAwi)X^mFq>E3*E|dfhTAU`!6oy;b=u&^RnU z5g7iav2p?96#dJIl%vQ)?w>S09MBKY^w1Ja#z_bpXSOcBo;DS9&~I5dF`-TcZ})sE zYiSZ-u?spUpm0Z>OP0P0ZU z%grGJpna(`24trS0HnWt1zp&O-tO-B0brCKwO}-pmg|pJFkp=G5CO)`{0m^*Oq$&~ z2LTRs4ta338tL3dFv#Tt%J6;j>t>$e0~a)Ii)q|uG>W)J&l#ZBaePhq+|PV=&}()0 zZS^V3TUa7h+9xT9|DRScsnSQ1gRgw1ZKB%}e%=x;uLpNpK+iJB2DCW5T8EUg7M-ZT zwT@c)n|s48l`mNg0(sU2L{OG};lA+as;U&ha;ltc@~nCehx07rAkS(gIk1d4$g{dj zPAt!|&lvc-B%AAXR?$$|+$t(;OG%YvARP0kCN6RrR)UhMs=E7za1*sy$|18NIh08% zCYwB<*T(QbwNW;M(RAep$>nB;!$uPaM!zaK=$SZVbf$i7QMrz4w`4mPDc|>uwu%nR zmR1oiQvM-1u-eL$Q(|JRj7d-a%B`cSNH)wSLC5UE$HIeDQ`rn=H&iD5=^#1inK-zT zc%|e(HF2!!4UdPfQ#Z*LkiAjq;)g<)swt9#{)l5`QM9@MJh4@OP{97Z5H$u6D-4ce<}r<^tpf$w8&+0lj;7u*11UswWhRR0`uj zk%|T|wSK6prmxh^@UJG9aZzd;E0m+TQ}%#+-S=(|4^VGNGNJ{(O1J)=a5sJ9=5RUX z$RS$nbwp-OYM_Twgt-6MsMx+Z1{1X`qdGmo45VPl!+L}BqyHV zB$0Ko-3(!)T#5-B$;=U9!|?@5RHPbV!%>Z};ZP`SWNhuamA(zA96I90kL1eb#a(^M z)TgGs6rQ2F$T1=8b)qqGjlYxRzzEdZu90LIadnDG(rTxeB<F-{jS#-Shv zwt6Mp!X1mR&mDbzDUK=4w}ls}WpZRNWwB?$sK1u;{QZ5|>Fad7`snc)7hLU2!!u=NUT^fg2(uyK%UeuN5a z%U&n_vYB~jdBy*P3)NX^D#tMOm!#0g5vj7UiT1b6uhaX5-@a__bd{MZ(29MgQmRP_ zQ|Vt$38e}fIa5+iO86Urflp<$malv(T-%?Ys>i++E(oNsR=JG-kmI1E*m8BL>=-Nf z7=I=)?Zf)|m^ zfQ%qD;{>mWIbx;e^WS6wZ=t4`ObQtiF@=nV*dKiTD)tAa|0YsQ^X)6tT~5)dVt3;e z>aPB)%liAKnxxLL6G@%)nCtdj|6MdSeDUfo9u`utH~1Hlx;IiwpD^xJrnFE}GO&yu z-z8X2pec1%xchm~bnh-YW_-muZCVC2?UfXKArWXwt+}z{n$R1`yve~h4>B+~?Y=lVcJ zz2}o~u5zXLT)&>bh#0d;_n$CJsTxuVAb6Ri0D@hZ0tk{ZfZ$-+1`r%r(d@VbB?ma1 zBq_k*cxuZyoWh)4gu6xKDA-&yt_uI{;E=RpYjU(=YjP;KqUulp%d4m#-iEqVG}}<; ziUy93&48oyxjS*W{<#$m9Ov@r0LSO}7vT6DX?7311V=jXj?tkn!?(N8!=3Hq{Tk-= zH*b9ven@@Dnk)!$HuzLhkk5Ts(VPw5lbpCRlu?g3yiaD2%n$@?(BX=rit0-fJp;^V zDw;&MqQjv?*LOzm_t7n)0m;D7NCe4!Gs%f1_mwyUkVRCxyEINivTyVj_-D`4RvVJt zK~fv1jdlQ|B*TiJZhDL4AQz>fA)ow{W{>xI={?~PA0PeSsA!J<$R~01ug=S)h934( znR5PBX*%$I_?p0BcBx#bZwnu5+!^wK90tnyZLBx~})39LpX;O|m55lZcdZ(wiFo z2-jFMZ`K{^JIM!V_NSR}`c<0FsWg9{I&)5oKhq4XlG7#N`20j1oS&*o4yKhjz*S?( z`Da{RoNf-0R&jSJZWRM!S4$2~CRS#+Z1UGW&Og8z160BJ=GaI_)@I26PHhk_XJA@##CU|YJ00WYVU7~t5981T06xjS*W z{*2NOa|`@dVBfXg?^_zS&XlUGVS_3eL>5$vA@aI} zNUp!Ak}gV!^bQPS?Glk)Wq0_7;bKWaii>X;GOX6rqE9S-a37@?3uGfeYptXJTK6#p z(4tWRTF=ThfY#HM478q>96;+GNnvRD-t=sbz5C}qZXz&N#D6;&BlW;I~f!P{3nQs6DMGW`PHQY!;* z;{Gkd6zZC?wqZ5Wai6xHTt6LbQP-?Zb{mZ~V;XB3jpwOr9#N6=)iv)HHT#z0qQnyMGM6RioOZ-} z^yF-vP=QL74D1^86fQ~9bz}O6E~#ABx>^;XJ?4MyYaR;t8`H@7cCq2y1eLcuR>*(a z%G+>i!ncd{=O%IoX)4s3uQ#@G2E&!NPE}0h?NZ6Xt^XaWT;SIKE9s66y7gaSAXwBi z0$X|;s&}`HRM2@@kyL-HDy9fGgmue-HJ6>C2={q_@O_gc$BS^oCa2N~*J@RcFgCau zQVtv3bf#c~BN)>L*IG}?EeffnvLSZ4MODl$w@7kmmus)r|2V&1vZNx2uBG-IL?2|1 z*x(#r;J$@LIz2yBQ#p#Uzd00?c=CRp-^u9;adbX)#c_0c6%$9NRxu?VX}?#}iJ!#b zrf31pK=XQ$?yj%Q1;2Xq)xTe)T?l?ZOA1cnq>1V}Th^wUmmXBeAcO7R0~nXnQ@e+} zdwBfjH?F!%RTj*?3={kgS24kl08_hRq=COthQ6Xb7Q5F9_|30S)P%${epklBTM(mp=DTsZO+4PCE zrZYnTq7naX7YAywq!ba)Q3^yj6hu6Sf{1sG@i6YB>z-kvT~|ZHC1uBOL_6t1cOG*6 z3o}f#TganCw0n_%A=}r-))$h3t@fh~bKw3^a;%E1y9yrfr+$_!hHR#6Z0-9gLmarvW{RE>f#~BH zIc4YPCp!!dK*T@*%8?uljW{?MwUV6p!HCzrJa7}RG1<*BO+>Pa`$%!C7$IqhAzs-j(y+qaq;YA5?t}Vt(K(MU z&er#LisS`;VxP-Zxl>L8&fgp4NO1msue8uw*#zfrsYc8k&fhO`YasF^{slz7lv(=x zjXe-+_`M8s{-(@-whKXQcj;Xy*Z)Y40NdS%l7d{{2AO1?6`)kQf6km+)DN;10Q6m^ zIehP@f4RmX^;kX{=W60o+mQ4^o=~Bwy|hz!tSP%>YI{+1;4GT z*%)7voZIAgj!n4|IF$6It~9UlC6 zNAi)>zftW1N&QE3OEy2xi!ovS(!k6^A88-Y8>){zM(=Y=>AoPv_X?X$PiQS3mmc_* zJCFl?N%n}${^*T#pgkhV*us|kGaKq*H>b9VYgUdhKM=g8lx_#p*OLyST9BCre6v%U>VZNH1C}Tu{z@V!gg> z1+3SpZnpf|^e=DuQjc9>f$C<C1or!JdC>b(8Pj zDmmEr?~oL1{7a}UZ~QBmBQ}1r&fEA2#mIq3D-vEuD-vFZf`r$hAP!8UemD*cuWsVN zjnz#YaBM~#kUn!~B-j5S%^F|Xe2_Xyh7)kum0fdeE32rOg@5J-jqfn#MGAaGO-gTPUe0|Z7S1qcjMTSj0Ja|8m(9i3aKuNSZFmpV>-J3Pm=leXP#H5C^P-l7axZuZGDZzL1nJU9J9-4RFkoBG$H3HOw*V*q42mCf5|*1JWrqO?HswaQL!jiavf1UDj+W85kdl zAUn8Ja$?y*B@RmRlx26A4mFW2SiOU#wAG7bVYK9+I_C}LR>@!y(p9*gDvm`fs^zJ< zl8bzS28w(ksiuhr7x0dc&sd+-C>;&5^onh3v&@4b578a;hz6Z2%&o4=ER0+dIK|GF zEBG@x8#r%0B}atw)~BU~9+ypU-jZs>6ym(~2Db(*-{fC_<(oB2pSKX1v4lUZVa{8x zE{?2m0gB*z-|dkNYM&edgDB+-K}pn8it9Eru^)JDwlwmn-nGGmIYyAq+ZZaRSHBy* z-2Y=ubColtR%w(a)iNln>2UZkPaNcq4J8L~AP!*GL2~{PX1+Fh!@ol25hSa7pwwV> z18O5A2N|T5nJPI}CVrtaD%k)V3GT15fWNbjTcZ%uQar%u{p+eoe&8t2frBnFDdLjnCOHmV^4uaR@%XT*mbv8V3gB^;veA)ducEoF zZr+vlh*W||v0G9QDL!BdU`BQ!QhX=dAX4nFWg^9X$w8zzB`F*!=*>kmao)=WPBT|T z3-VB@XhE70Ega2=77hi`!l9r*w@BW1q=aJAUdL_>|o3RYrwXj|+W5H9i^fpTl79Vb; zr(uRI4riQau_mpHj8%hKxeXu4lm|MLnqe>OKocJOm?9fs%b!4F=Epw9(7%)qc=txC9DW|NPUVQ@pxrpq*-7z>z7EqN_L1#q4!7%4ip99rNe~D z{T_;>sx`6|VJ?^~34q)aOabIZ2Mpx?BijIS+XDu2+a(8(`&?3xocx#Ca&qzoa|GPT zOc!px?fSLn=mLSG6lilOK$}BBZt@Cs!@0>50h60N7BIPqV=+T5L;B903RBbg(ZDV9 zM;;*HR=YO+0^DlXE?p_1K%kF5e|et_aUiu?sm_q|UhvAy#w-s_O=6mw7)=7X^dJXS zN5<&%CnHnOQzCiy$;hj!JIh;aBDLuwDcD21*EXq57s=VtW%g*jei!9Q>di=b9k^rm zP<4}RKtT7deM&iN$?)2yVv@X>Dkf7($&JXofCwrkhc`#IsRdF53uI1h6RlP`9FA7R zp=fnU=4v0_@J(xaqih2ksm;_?p=;E0lH+_oVRLO$H!<2;>&Q+MPOUgX)0a{lp~-8m z4oi-enfmg)YWl0s`{$@XBpacLN5t>oi_|ucatzxVxlyHOiRm(_V3wB(Ivh4TCCdcq zrjmo6iDPm>$%zGNTPgB&(7t_MP-a~zq5NbiU{#s)PjX;5iTKt<&o6>USk_VoU6qs`M{YY!&kYUC2xD|L*A&17yp(`!h zgszlqgsv1hyXLxfy!;0YH2adue~Swu)p%!b=%N9KkF?!X`TJ2?jeO<@NkQeW4w zy?IxptiEwiWV$MoBT$5;dQpy7mB}{8JgLG4iNDC1oO*vt&g92fu~xmJU;6Gyl_c+D z61h1#^f6uO`HP1k*TO+(T>K0}Q#lYU1Ki+6=4S9n6DygduaRtqb#)5t0f0{%>+pSbjDI!M*k${2=wRj-*ziF{_pu!d^rX&j#41Tp&+ku zC;&@;>W0AKyHuyAgw1mex?n?oIns)URUOk!?L~Oeotj*KF-;@aUW$2;$Vi^yU&w8q z$thiXc|S{3|19DLo(E?;zohElPS#|%9^mY4NkR3`;;f8L`^LMAQ2+f${GjXK=i%%N z`j?B#QiU~UZ;rv)>p3QIrY*N!NhHtjucOD7M1}?Sa<>v!Z^&_=?w4Fgj5S{Ot1QVh z%U<0txsIv(xl*yZ-vbAz?pI!l0)j0i1rTh;6hM$n00b|WZ2-Y;br^!RoUVYt>t$0Q za4Lzsnf(```bSQve0rkTWY^JB4rAWw+*61lG34(PD z1Rc`>LFsUJ)^hz*>lg@5<*@*Q8~GO?xUtTKAh`PnD*wq1QKMK#piI}<*&Ds`U)~Wa z|GgrO43iz?jaIBG$Ce>xi2yewHHGJCD>c zIo}zF!#N*uP?$-sOCGRG2Za@RM!COPlv<6A`XC+m|GfH!~w9XOU^$7D`ca`l{q z=osI7I+Px+!4LT0Dlwj6SSWi!L2tRF#5ewhxu&4!3U~#*RcfA;LN!GaOf`im01gcl zTmFA!8*KU8bG>Scnb9oX|7iYceaHrVrD zp?*+K$@R)9xn{3-OvYaSya1nFTxL>o{XgcKz5Ykmk409y9{n<ruM1=|%

    saeJ7bk$cj zz@FW+o>_c7=wII4qzY?g_j(3;dGvZK4|*4;M;ld|MB0|7_2@C+vQZ-@Pn$7pm>Ub_H*3!Br671<8TxrOo@<= zi@5FST28g0HL1SUnpD3uuI(FI_ST4wJWpY7Ud`xtst(Ir(4w%{NKz2G>*%T7=-F+4 zk|CwG;LJK9Y3 zDJ3@|h(=2 zw;!(+lybMRO8(Q9a{EyeF6DOSCNfyolh>>P@^HKw;_Q;d2#|%5Xw92-95u&^^z{pn^lf% zhj1QfXu^3wawwd8mE3$uMoe!-0vyxZGDpO8#~(Ogl4`_sM>S%)L!p>nl^*1Z29!fa zV6V~86mhFIH1E%8*gYCmljN9S#5m80agqZg@Y0#Nk_;p03#WL=A$^e-?{}X6kH%0J zFvjTu#yAwzawlfpQbGTHd9<-|c(7=+vB*dFyiN+YpqE!C>J`_OtKhFfCUD^-0rdDg zNiJ%LR3=4Ex%c4G_!qm{8$1~vmoB8&%YFZTw7TA%voT5E-7{Lv1qu$GzxRyxS0&OR zNPEAOlnu-10w6&yLvQ{tI#K;Dd0552G&C9S&-5>6yi(fcKtGX-`LOjFxtKFvS|!c; zMg#t;jdb6>(awRNSgTwSdu2C#_om8jBv6gTu%cfyr~;CVOt!V8Ad_v$6u_UxflRii zYy;HvXk?(@LvoPG4wV!D=6Y(&s2|Q8f%>Zax7`JRdeRD@I9dS|hk{Jjp#UD;s2_rX z9yv4IG7f@fjZ8l4SdM&FI?eTbu77$Xlh01)F(UJPn13OkeYjES%yWAKQ^0-nj>UBQ zW(-gT88fT#pDDU#qnXM2SoLs~^Pp<>py(v^Dr>i!5K#59L#aFmsDh@b`mf{xReNZ> zd>_OI^e>}IN?Y6BZ)8yQe4`kuzPK)WanecBwls;(QM!M_NS1CmB-$kKKKCFIwpDhC z+V0XCO20*3H-AT;#k8ErJI+8~VfUf3W0O)Gc?B3mJ0UEh)aU%oJMI)ov zxM0M?mxR^|ddMg`DLpM6gp<-%NkN|TbYpW1#1oR^=&6Ed=-!unMt7!^u%_*7EXunF zqzE9sudzu5k2xGp1&M=H@Ndb%0EvStTv`+Ija^>xDjdgMS>C067W8{d^r(7E@_?w&jm9Y9>n+h!IXVh!GA2G2&_JhGWFqrY1(**VM!a$7IBa z$Aq`tDa-Yj&=9yNSHfe!%1qCrUs##xc^8Tiziy&ZpiN?Wx-kN2@a~1tn^Ys#WOr1o zz50@pp1BAKO9egbOR6LH%b7D>b&(CQ06XQG1=x=M<&96Ou*S5_Gx*ENi{USONwjX# zaMEV7mX()9YU{v;N|AZ2kUD@W zhXPbN6rgGu^~0zN(a^ZmJ1fti%CQ!xl74e1BG>;aO%|i-RUQLS^)vqhs(v=85~W_+ z?@{WN6$PuYv!+5tJwF{JQRVH$hZrb49aDJv9GKcF?^CPJSLNM$?doVPpUP-Psw_H@ zyaXf#dt*j3BrhrHf+I`3B|17qwG>QI-F0LUGroZ zXNSX969-nGksS0)99Ye-;nq*TW7eu;adLBGvDMMAxqyh(0gKy64lK4Z-6hA$z~Z6? zlj^FgB^wr#ptYFF+PA6+vIUGC)7(t)Y=^_f5(maEk{onO9F*|yl^mypzs56`TCO}v zU!jo=tqR!sy5zuC+wE@2u`);|UVFQ^j@l>Lu$4!}cjnsJ{ou*y_3C%o3Z3aA?YX5ncE#Wq4~P z17jeOcu9M+WS?8oe$sfsDtk}1w#wKE`u+oEnXvt~^}+MCj+gO&m28+#Ba^d^GJZ-+ zIkog$l|QMaF}bG0VUv?|&M`8%p=4l`Boa5dgJhp;a+{Wzc&lunY;Bcc-bY9d?DqPf zDj8M;HT6EuAl+v*T2{aE4&9K@TJkYLEn1nBv?=||DXG+8 z^Oh#9OiG&33MpwSCJ1Nov>sPprJGluS;arFmHza-=w*Q>+=FyQRoNxJxg{y03mmFP zb8F;8WB3=6tTC-hr|$2xH1)@LRhwK$*Qei)UUnW|js1Yi*u~B;s3fDplEP(d@>Qyy z@)2E*K`Hxg$v0s3e6_;!mDFGjS?>9Y9vVg|oA9z>H>ZL~OWDKqYi~r$>+v5&E2&py0~`cDl@#CUIen9vfQ+36gpB=&(}X{VaHy3z2Og3f zr0f@6Leh3MA!R>9ZTTGNXU?wpJ566?S-UXy{5_`%ed`w)yQ35tyF)?7?og1if7?p$ zIXkB-DM7-%yOl}U9fOguORu@E&-G_qViNWY9xJfagMR@_JubNrmQc&KFsh)rmQ8?2 z(M5IXEk!70JBt&m@aSGDWe=6k!YUl%P^gq`6)C)I{Wi&FVELx$^zsx~@Ri0%<~Lp} zB^6mKCthL}<29GW0M`2}s%ozxt#m%5^@ytWeP2;kdm{HF!FH|e8ddFek`k|KKPt)b zTE)6cOjX;Ja;n-fTg^+@@0W^z)wd)CMT`G11z;uP0M`G>HaK2>c8LM&XOaW39+MOX ztM5m4;lx@em?5yr9*SWVbx%?XusTWsR)+$xIur)0?-MgqcvIYe2v_`G)Yl9RZ;EqF z2WqAJ-TBP*mu+oOTedZg5~$7RUqEes>kFY41#Y1B)Iln6I}kN*7d*JOx_K*m#qXmJ zs{X9gu526>uay*J0{vT?DtB+mi7Uff*(XXKgFaKXwzf@ZEh^k|r3m)ZXls)tt#mki z79b8%<8_jQ!4U_k@fOL6rN)&wP|FH8ZNHf5r&^m-*(%;C#jRqbOnW5<*$v4Qx15)s zEE!e=1@4oQgOrIxkoE*=QaP$#z&S{JdbEx$=&pTaM7_&At86KQ!MIucM_~`Gffe zPRkq)!-+V6(|wYIDI^Zy^pxcMBbFCKJx`3s(^YGXozqZA>*p&%qU6yz`csT;01 zUfRYaFdf^N1jaF$LqW!s!tKt?)$f;%Eip910NUP=L5R>W2{*XloExqpd-lV>6Nu={$F4a{WWw zn&e|Bj}DMq!M^~x6{OjHizDs%T;tA^hiZ(Yh#+$8chPdRNUT?S@iaK z?q1$iwP=po%AyvV$X2#X3Ussm9xqRzU5v}BdO0?`A=IT`L?a8k$lWe{>EsvKdg@X1mRD|`Y|u)=9}X@z^Q zDxW7CVwo4UGt0b4a%h>i*Z9KTJ(7&IzJ>&Nt>4ESvDO`rV6BsCtaV2<*1AKnFDvh; z95NPsm^$MHKcSsj@MGIy!KX+UcsKp63-CHEM9%k(R|b;-MV>~!zB?mF#t*``J91Ap>hBxJr7qvOZ0maE2cG(gL- zAy;^4v13m59`0@++X6EMk^;R{05mz~}gpm8#f z4rpA@zktT|r1|`4Ts}UZUYp;oXuJ!_;?4AuNAiAEQyXb}SVydXJoWvGpOCV5C2WNT~IryWFX$Jg;lnI(aF|W%D29u{ z5eJ9anvxSg%yKxAwGj%_yw%X{hkuOLJKGuM3BXV*rebMU8`8C#DJ~OEH$VQAH-v>Ocrl{sLgsi0N%1rGXdH3yfVVIl!15 zOCQOxGVy}R5Xoks`M%S|^CP`|@A5z95u!}#PCLKvkQW$hTWAFQ00LpH{Pjf*Q$nP0 zX`+{s=neBy1A55yMR|dD*jo^GA%Ov1NMsc~)qjn~R32)~v+F39Qf-l9JP8Y`&gyHKqE?ey3Xj zZyaAlkL`?}HBt4Jt+2^o(b;4&m(jnx4N5)Mm~Nd7G@EpeLGzxmMLGTno%JhYi+TjQ zu~rGiJlPG3B)3Wmvf={&P%kSk8Aad4qcNtaX|ffdbi1SgN(-3+DABM0rFF6mpmbkn z1Eu>U2N}q7k^($!p|*^t7nmdPG=cwiG7!=VJULnmn-@1umP!F9rwQP6H+92sT1b=5 zHv-P;D%W;rJ^T|Kf8DG$vkZH6~tK8lUz?z}mMI-F8mFr2W<}ZYg@&r?Odr#U^r?29m;C zrjK5ywTS}5up3&}RJA0xMKwZh!S1xay7`Dj*Q-vFM>zN1<0wU}MIGriQX?1D(iLYG zbydAe$&JXofCv>$YHmFhN_o(yhD#Z&jT5^qGQ=WwO*3$;J&^My|EmE;&|k%a6f)^?~HjeLDm7=B){> zY{$MO?D+ug26r@}7jNOBk`%BuAPAn690Wo3$cuDyTY;EjD?+y{bx`S&gYb8QnQFeU z>>o@$(u2oq<`zv=jbux>yMBQ#ez}x#7)=a#yN47(x5S}4mIkP6C5Mb&#P)VMJB?n~ z_8i4~t6-XJ#tMA(b&G#T@>P*!z)~x6hve8k5$-o1PpzZwmu%#fB#6AyvsLFUOPQ;l zm(5`8mI8yV|2Q1R7I9$h9?3z^#DTTnNRG93$Muu5d|w-Tt%@_UA?)2^>`m?>CJ^>o zk?N9TdyU(Bv1G$u5_IgnetFSIRUn(e-i}?2y?q@H+e;kSd%fhKXX0QjO_H2**U~so z!5rBP3WyV5Oe-WCxUzz4CC3V4F+C|c=Psskdd~;mvBg^PmXxqoU^RUrIq+)8f zf?l#26c8uw^1+e~ms`Qnl4Awo@>?b69GCk^!JY=e%VQ=im(8sS@b?3f1AkkypO73Y z1Ao6HIe<6GIPl)RrQ%KMBiRhT{;;b#H(v)68l_I@_UZjR3kkdl%Wu*rY?1g*1qCXp0 zt_2maHxz7F!~$NsSAA!m{cg@|Ao_X#%E`>m?9T49GqdIF>25}`qQl`)Bo0Qgj^w}` z;?U|SMf25c)mpM?C}TI$n|C)i60D+uvZPgnz8oVtFw4r!lpHHV22N;W!_ z1f34ezb|p9+9HdgLpOM4=Q|uWn>aB0e#t@2#EF@GT(TXrANS0*ir$kYtsVY2Xp3s;EqC;?9aO2Y-qGxbs*QYT%~e#9HR$%EQWd)0_P|q;V|xJ8>lMj4`s#w2Twgz%ap=>1 z2i~kcmu1lBAK$3wzZ7zt0&|IhF8ALg1`-t#2Ov9_)BO4b$#pQ6e3O}4R!gb-jmbrVJh^-$ zO|FS!%pwwg?6FkpY_56t=L8o=n8kb0C;rzSVfLpYe9gNP7m;h*Dl#d?Hp{%Y?wwU> zR$x~>%?o~>t$Yvf=h-SsK29^s_9)^svt|#RW+tLdSb5;Mnr_a<4C@PD;VQu=;tbiL7p|o0U!~tLJ=}JF(b#BE9o* z;%xPa)KSQMWh(#3tNeo=yn)kP=YN)1RdkY9>fIi^{m@pQ9@Ze<|2!bmR{wcjxp-03 z8--`RqN$%H#`}-QOrzUgS7`T!V3E{5=`Xd9m)dXfw2!oHFSSUvJjBJKI7QuUnIU+OpTKzv0*g2r`a$XEjhGd z)Io1L=1)@#B^kR$^GSerjTSRU>>9~AYp#8gYU~<0s<8{{P>z>e)Im4+HnFFFS5H0X zVs2lxM^;*B?8}&*xvi&x{`Q{U*i-+B8R?aB>Ny{oQ}Nh^ONqCZQ2#1iLG{?&N;VY; zQGNc!Db4lqp<~PXM|jl^>&Y{&@v+?h=H6IFz2&Im+x@S3z51HupjXemP`{qKD9Py6 zFM67Hj#g8)up!vE`qy0IFMF4&K<_$Lpm!Y#dbd@H;7EURFTJruaEdC|OQ5At?^ZX) zC-pMDo6zg3z3Y{7>Ot?O#s%L^)N}p8xMPV`lHN;F*A=cybacSfCA8>RN1t*!y2-J` zxfs5NB8Pw;M+@bVjVp}lF`v)d$}DwiA(%tM^hE(Xr~Hvv_rwQk+F@EwkwB> zEzq01{xq;@qMvGc%Q?>$rwZ8O zP+-g6X2IdgA;XrlF)KJk9(sXD1;Fwe~vaE$m= z+oUCGcyBSqa7Z!Oq3~<9>HhuYb?)`S(mK60X__qyAXS~-+ni5K>21Eid}`^&IGx`n zI6y_OC>!i;(%P*Khtpc(Agw(hImj%D6H9CVDcPLXmScY|53DII#NC(&dYk;-Q><6C zTv6~2JJ*H`_kF1j8Ln-|1oC&@-`AJny4tmx;P!hbsI<2CA4t|-db zJ@CoY0eptopBg}Ch;hho-z%k4`vt4$X20z#VSlHhav#0v`rwGbWL6@R#(_esK3{5D z4SjE)E|vAXePze0`hCQBBEY6G1p$_7#t*O@Uzs#jb&~}#r*G(E9MlbxLvwnmx>-^% z1%~#~Ws65*vKuR%-9i>3NLjm%0=eMk>95RsKv5#@_?WoR|mN(Jg z_DBk;jj~B-{#vj3Yb7V*L1;*t3x}dy% zwRchj|AqMdoHuQfHF=Ch9;x(01wVtlb$eM;-D!>f)`7i8lxs-H8( zjw+q7wbrM;YjcD8RTjM5c0qstPoCb-V|w|wJGhPqdzOe-HKYXfOLv`Gp;&y1#F&fR zG(UA1Ub>jYqBxJL)0aNsgsV>9!sk&XdzkxP^S%nz)Lni~ET=d24fel^KYDv$(n!^b zHQ6N^{82keF;{5VALZ9OSVH_x^blDJPHA9Y{sPt(Zpiz=tNg}|Aw zAAJJOeEqJ1vqA5znx-FoH}l#8oW<+k-&JCg7X%|bD9&^!HcU9}HAcS$84 z9GTZrR~eDH=4@V<#l7RHG%CbLT+$!jdCo z5!`8#y6k9B+i<7pRxXWESiqk!3Jc6Ai0^qJ{Qz{!_v1TF|GUaWr^KUzKAsUw()k<4 z#pytuoMmdAYzq#gw@C_zU*9@CXyOX*Kzfzr&Yw3EzwCV@YfaYp>6E)<0d^!QQp6f} zXFqehZs3_Nv>7)!I7vMv<={vjqd}o}A=E39gG_-q$Ok@}5^Sj6mu%z%kD2!3RP~rQ z`b9JX89`W#{)HJy&HVrKM*rK4;DErLtX~d%)T!{fxg%2~MOcX8OX_cjuMB^}@RjL* zl}U8|qwEa*?)2cUtBl--vy;xKYgt}S3za4*6Mo9f(7E*w*4uG(DZLvzH|Z|bS@O}R z9sBF%`&aez^*8s;ZoZ;ZqLM)gA|AlNq`?3xX}wi;|7aP!hyRLtE;AQgoA`|H9x{ z^|365Zu-#cg-Z^Hdx1FUg+C+*z3?IT0)hDfUuTs(KnxX*9QaxHqPoJT^ybVJy$WvJdpm@SK;6Q&O^P{?vP+zG@% zC#;qnR7#xKD=E7r`|o=}n_jTW|0SiZa`eJ8l7n8bGG`>m%AglMk{t8`$=F`N(V$wjfnApoDPW_cJR0WK2s(>*L1;+H>kaUA`$S`JwFsA(Krh3H2 zq@a3DwhhL->KXH@TRXXni}a;vyC+{rfRxDR#nM~8Pigd*%)6leSR}#4e39ZPxRZ-Y0ahn(jck^ z207KhAcq2j8th1#ryMdHMEB*X;&wZV`{VtDHf-87qLJXdxY|II7gru=@?vN1AupD5 z*YyHvYz61V6({kqAR~*gJqYO$eR<0Y`Ndzm{JM8X@W_=B{n+|lN&S3kuk1BsUxy`y zJ(zE=uBBJ>OWY|KaXS5EaJ$ak6&$JlPtf^Wlao@MlAhamG#&ZYu{rya+WORKDFa{s za=P*LA37ZN^~8a%|4MS;T8V?}Fn>tS-^cx5J%!~435Y=q#ZccMa|7;q$)H|XRa6J~pBZFQ zFst&slx%KP&R<5q4lU_0-b(x~Ii3XaFI)gj7%YYuL6_tZbYJkSZ+1`cMwKRu!TQv} zCf{ixIjER8=-V!m1J%TFRO8CfNLdW3hYdCzo8fS{W0}K0g)JEvPh!NjL03xlUv7hj z2bHgXC;4;C9hmSpt}tImBQhM{>FzTQt-+#Mr;qVUSn$lL#&s?Ufwl zxO};&$QifOQ+QO0!3g5O`6V~*nd+Db-)H4sxtbh&-}{pDx4zF$3UO7C?7#^BAjQ!j z;$R?(4HaXLfv_@VC5L5vGj-V~X$_QmxL7?^Q*tp7BxeT#KQC2q38$SbiV*uEgq7JNIaUUk#HF0OB^zBq zg4`9p7dRkzUwkSeZeszmExlj?lJjD)t^eduvjBPZ#o(yGqa1+c0%V61k-M*JrboV# zv|7C(n}Lne4zJQ-VpvIEiuak41o-KXws7xTl$z=BIJS=6DmX8jFDDTpJbv z&4(AYuQ%pwaE-ePI5BvRw|DyL$4O;$m-9(GRbSa|9K!UJ6h~yankaejnq!BXE$>nE zm$$s7w6$a8aDC#vaKJY_w&Q)`)1>SCq2b1(++Qz8ijMp+^4csJ48 zKcf@PwUUe-@9u>qSIHvS@s_$o)39ZFkV~U$5Ai2-?IF{(m18d}#df^8I_+yx_NEkh z|Ilis>rEIqx;KMwbFJokGtmBEf%XTl7&!ZFu9lw%CtmSwuK%bPS=6qNv2Z&hDF^{C z4mU5~JSRADdcw~Qo9bo*LhW>F@lc%p-xt9Q^|>e^UcPYzJ)D0w+ia@+ zlTwNh!Sgq-e;LeI@i&Wx12iRXHlen%!{Ja%9E93>k^|F-L!oxCY9~1bOF#R4Du1h+ zO=z`>2Fv1B5kl*D$w6qfGIJ!y${@5}dnwpRWlJ_fD+waY@ZW3}SWPYmhp6qc7|h=6 znSIFNu-U|c*+(S@H4_I9oj)Tv&O_%~J%9 z0PEv_?akmHsR-W;{)~%A-|@7BDjqi);~ja&R4Z^oSy^15Y1e9ydZm zkTOsUn*T3&%s*s=x%!*M%4AE@rFLBX9rJszmkLQTlB0dgIy7)+s`rzPjt1=5YAKA! zw2di+hMwUt9gY(7kt@y6M<5oY6T^9Xa>Np^wvni1VID6W4k7FwnxQ{&3h zW5q+WRr!(BVCypx-O5M`t{9}24VBiF8!ip0hLQ)U)*ES}TW$Kw(M?KQXJ3nMx$}m7 z{79286B??N3f1%Xq5n&T(gU?vt3-p6)to<`w^a?16aWF&3DB}@FRiYo(q#b*|1?R# z@K0e1hM!tQ!@o=A$TArD%#mi~GbIP9@)k+Kpl_tIJm}k)BL=+>|8H@R*FrM&ppv=O zl%o`5?ojYWY=?s3UQE^Sa8DU&hI`^jvrp=nj1)=so7?$m{yS)Z`2N5h+&DzqclZHqrm~E+C~1^<1g5SO0U~RSGNH4j!{Hc09K?{Wl7l7@ z2cdI_(S)Y$T z4o;Es)`DwB8~=4-6#Q2LLMauwr+DECSy) zVzlvXBP8eOu9cZiQFd)UdQiPlZgZWyvQMY#3%Iy&Zw>f=$GuTVt4Hq5(F^zHP~hGi z3cEMoFjE!32u|O#8{aawo3E=O;X!c6c6d42pY9N)`SV5_FPFz{1lW%8CxGqPXn;+; zH$h;-dlNDbvKlEvpox^`e~W@Fzc=v~M|Nm@wm{>vMx*;S=h0d7GV~jbLUXQIp>))% z8;5RJXIb9D5I*uVNr4YIJKFfjcO_?jn=Jahw6&omeMi$!hWb_V2>cCnmqF7yRuoig z%P)ioere)?W}yzM)GeZVI9XYV5W)InP4mzmRYQuv$yU9^IN3%Hhn*~O;AA^U4s0S0 z9ZjX^++dX(RX@q*t-ylyNiR>qcv%7ph!Z=Cnj_iRjl4Aw29lJ(y3btcq&Degm zCfqKITNB{U{~bcRmYh1LO0ee8&*kH z#_NS+k9G-l@TuOCZt}ziwXtBhNwY@f2*Q<)l_GGZqnQF%N)rdmgg(hj*Qo`vAROx4 zF~*_Jm7LfzVU;8!V~mmjXN+r@BV4M}5lAgaHI@mEYWP%#f@Q)JJwiQ{Lq^^>iz?&1 zar79IH;x!%mI<;8%rap|&XSs@*PrVZ>h1Osg6**0l=rVpKSuR|lzr0+K8m#O2f*xSu<-(aUX1PGv(EUQS{bk4M&Dj)f zPxTA63VgwuB_dvzRZ*1PsH%>oA{MGnfW28&l03kmsiXh~jhF%$P>XoEptA;g=@5T~ zsmoY1_+6wRRth5}1>-)P%JR66W{w#5vi!fD02p`Dig9E@#;e4oBh}3|F<53?j1>a+P_(|M9@)L72YrXSyE!}mtHeYm_g&~ z{d)P&W6cAmu2jKubm`TXjMK*}?k}fz4GSe`yj}W(tN<{qDRl#e)tLeq{+mXz->TgS zvIzW8vvCHB%_Ij<>@6wC?C3k(lWbhqIx-ZUv~^&$akAvwrZxW+-*Z4xBIieNcAKyr}(kO(hl={JD@ zNj!p3ME@Wl>>p>=U&v&z{tD>JRrc4=;~y^2`6Z*G~tb47_a z#v7b{?r<1q!~xE}mmCZ(ae%Xu6aIg2=AU42X7#2@X{#4FYa%(o8MpGstTqXfVMTBP z(S#S@Osev;R!L|vRj%?ZKIM25pBek4#1kX*=i4aHaX*qv7EcZcFtMl2`UcfmfMvujbMEI*m11--&D`RZ{TdUZf-yn@c*d(jX2lyX{0X*;>+HPIIN8HKD~s zgScuF3lMkhn$WfW(ImrZ?$kA*E`b(Yql8^RHUSTnPL>p;xtrF8^3()L26i$f1=v~4 z6kvxM1MF;&Wq_SE6AgCONDi=bNK$~Ed@9S>Im{e^ozeWigB{We>^NG19ftz!I22%K zCDp^&Sxh6$->6$K(O}218Q78C<#v3U{}JkF#?B+$I$-Ale*$(c80?6>B67>vE0RlM ztC5z8+dugS`dqsQMg+t?y1sZ?60*&@G`^Bxa!TH}%sTkPE>vuR7-4<%>S7j!V zDhoo+M)X&k4A9{8%1kneNP;Yel~}W{L)~?=+X%;vB#&_HJxMA>tRdIYkB0F^QM;X? zZmL5exk)KSh~P=ms=Gor`c=A=!Bprs$=p~QD>?Aw#DT-ct<+hP4X;gXceIk8~TZD_18KS3af8r38=p4ss3GZpqe;1R?hi2qpnJrEJh!yiEUM* z=?@+z{b{lo^ruet?&?Yo>!*iogLl#k{>clA)m2?27wSpQQJ??s$|ZF2=NWU=NLdzj z4D;&9kQ~%8Ow_SRa#07#xpgFzDWP*tR=!njkY!QF8n2E$l7l+dh&t|;T+~5wZXIOD zj#n$sRnN$xsNyNFiZhafDxMNmd?dN3g5<8KLg${YJX`%N%c73&y*f%x5#xzEzUMkp zb_^(Yt*RiIsDi|tDt>#da+Yc=i;?yg`i-hPtLRPPl4X4jbk~P-+o+DR2v_58Fh%1V zSG^?%br7eZ4t|7f-**{H)I?c~E%4Dwnl;ap3}_zfXB=`%3?0<}Zq%2N45N~1{lpNSZ9Q5b87B#O=kX)xbhh>=Vw0aiEl2#A;GblN*%F1k%94iy+&%Kfj zqe;*jjrCFyVV_c->i&`x$oTqECk|vdU3il9@xS(Tp%WG1(}nA}h|Fb6$>4|6g=b`2 zaJujcb>P!0ny6EfgVTkR8AY5fyqjT87tj!7ozw!HF5odj9I$TsDpZ!UBl9BRGt|rc zlk^w464}DzvR3@G{HixXyOcx5SG>Cam$d`z2l_|kl(X(m~j{cYv+gu*5LEvK1)f0N_@2E@T&e^aMSLp4OQ zd9d}g^SLdzp3bT2C;gZ`AJ!WXr+-Z=Gg-}&g)xPud9^H)9MnP_1ejHl12ho_XtM1u z@gW`DACSeMdatMY0m*@C;+*({p69)9|B5>53CV_jVq5({tL$Z)*QQJ}Ypp*r%vy^8 z(foX%C<81H+}AZq})OeDy1sqD|((ws{!|WmBY$qPMW2buBjv%a{iI2@9hJ(+h8CVKQJ5 zdCfGlp+%R@mb-HV*T{H|=;X^ZKTZ$IE3W74?cPLpE?cFPp7wR9j2>8GVK>!Xb_3>2 zXGytIO-bEsP||EQN|wUR8Lls1@MeyWzAwd}vA-zwS$hXfH|S_T-Rv*ImtlV~MNjye z;L$WauY`ZubjC`0U=Y_OVbV!fjvLsITn=qhVM)gRV#mUgxv~iM7o{%IJPgM!E{);X z&7UwFyZ>T1I!-sk@xZ&8bTuF`T-`kXVuztPy|^5#>5db&8%zEWTB073P2-VBd{9tg z+l}q?_#esGlY(h}e)@Sa0MCd4aMXCa4^MjoaE}=PKTXf2Khx&hMRa*({nY&BmGrwm zhgt`o=6Yo3-zO`^q0RS_5<9f{pCre&;l7`44sBd1xeYg-Ev#>T6!)@Jf=!ibGpIq< z%VSfeGE*=g$SiECG?QhpsnTeM*;HvHIoMRWNm8(>(v8aUrb%LjbllA`b^x70)S|&bBFW7YKUBQJZ zp17e6jvI9{7f4;0*-~c}3*W8|%ihD;&3%%BQG>^RS3ok$&wa{qzP# zLd<2=VwY8(JEo$);!G3XI>(0x1Ws^8a_a1pHRDL6#!M<=!3>wRx3Ew(Sp+Uisu7(6 zm(`j}0|jmP6Hw4*X3-I3?+oLz=*6AJjDXqhxWhetpBN6SfwCD06n!P7Ai2_eYaFEe zdCk@?P*Y_A49>)vW|wv>{pF69Dy$`AW}4X0gPv#S$3{%%P+jkOAboE2zEi8-l_GtF6nD^TF1K8PlbGxG)39#2@K z)HQ{bt{N_eW1vJ5=c^D~X7dR}tism@6XJk?n$%bx0E<_J%f$NxK? zinPL0Ia=YV911*@LxHDymg-?o^-n?)Z~s0x(|9V!W_T*u@$QJG`G25M=k4DgxOKp2 zy;<}L7_B#}2v7Bde_37bY68Gn>!k9lg|8Y$tA}T*&aBeTDB!fCq~OK_99e#&{iXHX zKzNZFE(-vsgJ&6>4xqn`Q>nsQ)qj@3X`5LEIGt8A+{nLpmT>{}4YC^p{aLjHW;NddYxGX?0PwgFvt$udCK;aLVc^QOz_pnFcfdtT0WL==z~xW?E{6he9i%2PxHc067+f1>8E`o! z16;E6++j%bzfMEN;Ch`~2XGaiO`ia+;}g4k-LEqVMld|8%X6wyA(64++0jmmI zFHcL3Sq*#DpOzdeLt(#?zQ0xbM(RV!HjCxiCiYLBZSI8rBuhZ`e`lLJp(W;sQABSL z2YCa@Vj)~ahazvNJ=<*Cj9~rPwyDed_+PtiGlGinwoOkiBArH>Y!kL^8ai#^OQEgi zm~ERjl7nrV7ITW&w&^m*Y}=qAiTu(PwE){TFV2j=R$m$y?$5YO@;97gc54Q+ZrQN< zvNC*$YBxMr|?uYt&m**Kt@50-h$hagdfb7Lhyr`Oo1Py z2|#|ZwNAJpyi{$L1>p?W&oRz$z2uNH^q%xTBFTuihe&|q?VZdKF45`1vL8n(&~<)z zL`O3`qC>%D(pS2KZ%_^yZgCCO#cnZkj&X~N=fEu{${z5(bC%yNoago_^0wLC!(-IX z(g?)E?;Q%iu>H|Ynjata2$#?=+!$V<%FHF}th)lx6Xu$D7)O6O9!eF~*_51X;^DV* zOgtnkJ=G)J(BE{f{$>b;@3@}fPJxoFS|aGOYz)Q2X7sb;;hR)D*#sb{OU}CSqM^U` zrj)C-ECn$1mlS}Z4^sdJY9NB*L|Fzn7(3VCV65aIC@zr{Kwu%2We8+4=Tz)bvZnmM zokUn1l2%~A(FzPW6huXbg5e)c_3-fbnQMl>=UfvN9h(sqWf!`Gk>+1V1IAHt9k&j# z>G-(t7QN{otD0&xHvEA4 z7pt?FLgMs%m6h>rVW&nuGAgpXO@dTlRU-qs zL2{6$*yi+;94mv3k5Q6?Xa>7IE7^KIa?aBF|oeB;+!&P=MT z|8H8jL*NW|k(_z=%Ra+?M?^M(W?uimeT9XBvIzD&q#7}5*zefQr2)M?{0Y$8Gat|s z-*H6D#5BE+25nq$qHc10RU_l#mK~=Ty2&wJ?;;TqbkeNwO7$<*GkT1g6ATyrYRF0Ku8gp2!%+v2!5(h3*nXoZV&C~$EO1um{K z)x$0>?pEXCir;EnoMSUw-2I{#EWXTOr1^W_YFu1zZY^-Oj6VTq%SiJTE{-07UuS^z z)R1Up{pYf9Eq&jgITfyguKP2?bJbSaK|t3=LGiZzDHR`}pXjhZUZ-Y-7pl8O33J!@ z2sM-M8Xu&;Jdqt8-tZl`)!=K*tp)h1oD**5f9X~;k?XHqQ(kB0gj)v=uzrcJb+SU> z>(`v{EcLo117D|>hsLwb*Xq;TR>vhsKH&9*qyS!@F$M6V_5ohM%QAr1FCM&pksQFQ z+yaueaGju65AZEubj_~DbOElHSkeI(=>)hOodB0Z0k|9r!1bdCuFpJhee8kjv}_^3 zCA-do%Zx;tzy1OPuKL_sfNKPQ0=Pyj0Jy}S1vxS7S;*C()kq5+a?)x3$7r#@_aPtS zv>F^mUE(6pl(`K3aUKWG?OP+rJLeX2$PaNpK zE4fX&N|tQsC$^*i^|EaisRptb^w(Wz+TT`kpr1Gt-Ba|i@@*Qcnm5mBT}iT?D@5fN83otL5>P;#*!QX1OE&HS2;|<@c#c z0lrUdO_(c-TNBXXIg*18w=!!b$I9UL+fK`?Ed7!66};*@gXwnH^d2h9yQaIitV~*# zNGFY5)8Cv%@vdo!C1%$&Zi&DJc1?>dDPq^O>=LtU$}KV}1+^gfuke%p-)J=WQd=EX zCR_5etQXs)4?P^-qZ-Oekv^q9dkcPMx2=hrl^zKvDMuJdRA(uNB&rirkVH}F#Ji+R z9}O>2qhvv3Qp1;+M18pAP$tzunLpb{DBeLglDNLgi4f z<=Ou6a9ib&kyQ<$(cs5P)0ddXNjp73Hw^BOZGsVpJR=TCPRxkMB^gFMy2LzA8d+i< zCw=m7jiD-Fj8g@SaVRjR;c?1t95Rf_FJ#P^6XE&lzp`yG=3CF0ZzTuD;HMr+Ev0_9 z*%yo{vD7sto=g1Y$WRq9#;F3vI20ID`Ppzw<&a^_SA~qJ^jvt8>MYv^V>&K1@aiZz zFeW*!;Zr7n*L3PWNhzDM3W;%f zeap*q{QQFC8CSW~tmcl>UtY~gX`3TIwN#(!oE`8jHH$g&LBn1R*YSU`R5w?VihAR# zw2pg7aA^V1_)37GY!#R>9AUy}kBYs~Qv_Dqg=-XGvxLw+4PH?kWI#_HEh#*eJUU09z|5=6msH z!*$KJ)Dg)8zz$MVdAndA{bhhjX=~QrOtW2(msx zO4fzjfu|%Tc02HGNv2Wvo^&{sX>JF)QUw=pj@MsBuhpClU#DJ{@(7DRN(vzPU#0+( zWDNEe5|$Cgx>LBUxMc>HagqaErb-Iq(ihNOi-o*5x@t35VDsNxmxE2x3~V}@flY@3 zY&sOirmr~H)lMf5>6K6jotHdxIz0e%%FcI(G0oq4nL%f3Za2_5l|KQUQ&blo9Wb{uvLR!ItS%-m&W#~@pB z3Techz`e2nLp?=`SS$A|6Px(|lp?_U1IzTF|Iu$II1J9hiGjrVl;og+#K9i^dC7_G z;dA~Y_wYT3q`St2YHUqDejRH*^GBg7tzu;4rL(B}EfkSE+s0Iq94mtz{JN5ZjGSbA zfn56KJ_aVXmW${fa#7X&ii!O^Y_RyGyAqn;l6=AY`2`* znX)6WnLkjrhGIwmz|z7({bUhr=1VnV^st#fl}iJg8T<*@%*X;Z#b!RjGG_Hs8a;l` zVb{xR=sgGCX`-kcufI&rgbz*D`8Vz_s~`MfMMW36h}1WJPd62EW&7Yrvn2(WQ~_~l z>auS64y9!QplfTE@unNI%tH?kTv6hlEVB%J!r?Fgi30$hlpKsXaR9)xlJmC!^uL>B zmV{REPg2|}1^`QB7Y3k}DK9xz2Af#?)Pt%e*^ENpJ^Dlv;g7#H-?O<=9 zzF;ga$pRMRJS^%HZ_|tG=;licmc{wIWg9T&{1F}$*uZ)mFbc&wcE7W)Y#Hu%4v~~t znCY8s?svKZUYKdD$4^bd63jzT{@lDI)k|tZz`0dY5OC%)1<)ib5pY(@G6*=~Y!h(8 zl7oP=M^X@QcIrWuLjj%ta?Mno{#;zM>if8eh&tW)e<$jYdPE&ZJ)(|7LDX?5h&s8b zaO=E&)%3jl67l}I*+_|fbR~})l6*0)uG_q8_rNl_JIBZn3$YI(k=@5 zs5C!q7~nW1!i#fge5F9+D@Nm0j#D107`fVU%FL8VU7z}#6IY;B7xA3?=6E zRUb8GCn-aFQy@&M8o5rDEhIcCr3g73r(CKU zsqItsr3~gvo#iH=wRSih(1?S8)?IR76>%t_dEaLqCfUyJ`5-EG*NR>~PtROg(CR__ z%8?u-P`2*1l4E5MznV>1SzGOtY{aiRdVX8>v%?ab`fDyX2R*BP@0qM$uNApT{X>?A z`S*L~A9pxxK5=0FtCE8z5C_L4=Oo8DF8N@&w~g)T_*Is)I$(OK6#@Y;-PW5TIaY>_ zODgNP>P2d)G|7hP_g}^IGxZ}8b-gSKtJ|;eHnSZLTTL8nW=jStCq`_{XG*p+<{2xz zeQeT$eQa6MDuU%(B?p#s-7IrJa;yvny-e@*spLA%LngkuAuWc2XqK3#~FnVCF8R`iRhm9rlM%)U!K&Z zu-U|c*}qB-Y9>zXyha7Z7+!f^Qz~d|x7zB-;#M1MZzVaf-O6;694mwKnsmv5*(6h7 z_T4$7)O1+_TBiifdCd~ZL0=GuWqmb02eF_*>!Lyh#megbvpMF1dwKR+NQE@(q8NHfwrB^3_R6E;zH9`(|B<08= zTRSJkuv9q96r^huqj6-D+j3ck`b`!@zV=hl9P3)77dAd{!$KR z1&fAqTtsAVPIq7%mFhtD=G1}g&7ojZy;#3U1LcsB!hKJ}!)G^_gXZk!=YEmhs+VjW zthq5{thrHgU=2 zH5JdxDOR_@sEg^5pxP$e2%|QI^n|xpR!@)&*ff51T3v?B&q}^ZIZRX zB!>c%9v%|us2nm(TJM^K!;fzWUYvTL4Vu*Zy`VY#kQj~~ek^pcjg6F(!z060$*_PS zR$+cg!I4L9kY-)^5s{@TAbIR<=#|<*t3w@i`h>pa_|xDNDQ>gb3SqMX`<-yWUk#<% zTxL|HPOXYL z6wKxkOu=lXHe%sFPnH2nW`zy(XGsngUQtN_L_*vN-cIvM=8EY{)_RLCvLDlzGy@ur zWYg_rv~gW?b*eMO{-{(54h&s8wCd{Shg`jj6%lNw9=D0;kkFg>Xt*fm25-aOzNiQ-^{GGm`3I zPt_}8Jk?DRvq|9C41mgxcZW31zb0Y;x`tZ^fIh~b0MN%sv%4Q<0g7`F0%)>6Hjgq# z=^QmqEymAHYEHkiK?Mf3u!kXU&yU=t-em0-v{>(-l@ug!Z$`{||BU2ZO)XADzLTYR z8l*@$YwzWVI1woo6^%f4S3GJG{1k`7nJ#gV>842znn@fa_-!Ny3I3&CHEWfn{6wCJ zSm)FtYI0tyH(g3wy~ugTN)ED9D>F-StPD;>mProhyv2(XMW4NML6sfR*3JCaM9qd? z5nbft%=KiXAeb2+zPm4krOklSTTa2oPTVW9)E z2u?$!8ZmM>4S9@91EG)eCm{6kC=e=6LjXn0=2s%(G=#94;ldQL`i~Wq!@en-0Y7?1 zQgG;D@qA2uC3(Qk7u2VGdi-hBoOcw@D~zsd@(jAlIUGh8ae%H=$-#&c2k2@cIe&|; zCV2*3R&PHkZS?|Oqa+9DvNF>o$I4(eiQ|sNl8t2*31V4A9e}HBvis~PenJzB!S!;q z09@a$jx;Z(^E`01SrZu?_=G#x!IkXo*uh4=Yy%E9?v#{R%*f9(2OF+{J=n18lrnl# zkb>=lJC~MJd!-_TjOQf&!50AyqqLdFNO3_`{`c_w7MBRL2emn8)u;~Of=A>+Ty z5g~&*r%=cstq2*8R)h?Pf{@`*5HjARdN^b}n`c7Ci98cB9Gej`UKRcB4q=+VhXPq`sU{>~%6r5uq zz>t!7-RXn1RkxKR2AxzIn)LfpPPWZ1Sk^7k*;`hIGmK4=5ECq}mmK0#@AX9)bY8){3f3gfP_V7xB zv4j?w?qVw5>o6D2*4* zIK!yRs~~8sU7)eH(Rh_Jj41~qIqp|NzBv$iM0I3Q0aA1HpxR0@9aL;C-kvDBX5aml z^{a;>Ra75Y06B{ku}$v1%Am5vDzlZuO3YT$82-fn+O4GaRD^H+_GX5JXe%bz7UFHV z(T5|G)kI0AcP?w`uMS80`)94v9gjpBt2vU5O{E#Dir7?Ix(b_0{xPfcm^&iF{1aF4 z4pJArti=sw)HtaJ5ni@O*hvw-fzJJ^bXv+z7Qwje;!haqT~~}Wy;iO-znPq&m)#Y) z)g2fP?8jQ(9ZB%1f6D5SY(6F_h;9F*_VeM=1Cn#1>#~gP$ z(~xm3d!OvHiByCnxU69+cmCpnJIcahec$YxK)^Rl2-f!yd#$$`PP+D{~hWqetB{(GSm zy=1`bG<8{WVJ|nzvlrjKnX_wrvd*2@yoBB`Z%)-6B}+6^@oU8B!TOSGjP;cr4qHzg zSYJgSDrSsT4VA#94mwTaNeXA4OO;eqZ3H5 zpc77zAKflXz~arG#fKaYTTC2Sd{lB!DRE*44bMpSl?M$^d1hN}XJv7#4Q5}I9GGoo zevuq2gM)^+wPFNeG09kq&n#KBK&8qOu(WG0M9w0ea46(0| zKJ#rTfJ=8IfzF#IC9E!(yI68yu9b;Mj+MbE-+NPLE44+kVKWI@oAG6sdt?cyzGJO9 zTzOP-&>O_DvRFYB;UX!3SNGrTMZNI}v`Af;+80h<)d$zgm+@pPb`QpW{xn^DITc=E&Ja_hl>2tQt_p{t{M{@iht~CcMCD#>d()+R+{E(#ojmTu5O5}nza3ho4=uc@tE0&%dl#-Mq zha9rDlt2zylPSm{DJ0=gW#ikC_3C=Lk(HL7<1dlkxb=~Va%zRF*rSGMy=)r zX3ceGfmwZ>IX#hJ^?vd5-0(8GOwN*Iq*>}aTEngGvb?fB-tu5Yec_($3NFC0Tl4j2 zk(*Vo^r z!`GV>yz_c23=`mVa8tMfz0bD4f=<6c8{aF|m)6JcqrLDs7b0x~!?`Bub-K!`ap1B_ zQZTvGThn_^w#iCGWdY3Yy^@02y^ATB-PB5~5dR^|07mz(Hxv7Q$-xToc}W3+o~5!p zr(a}_nA2pPw?ZV3hB-}IfgDFGkmFFWLUbqq%{^2PuMl_X=2gPo{Cd4v7&<0nVJQ2} z9gsBt2Q+AWx$OgP9F_}-8|V|33yB*FZ$iAk)*P(7Uw>%>3%FrdLD-$&MHZ=gtjKy^ zAgs2e#5SU7xGLzce~y$h-z&LZmSTkY+Uw0V!sgfATl2@kDN>U)snrI9vA~AH7^}e; ztD&1do*h?g%mxo*qkoL_4YcCAB*tpW%5k_dRZ?PyD{~~7#@#zynYzIouDDVKhbw0n zET`WN_3W*zCP^iOx^BoykOZJ}4O4(lvJdDyD9Zqy`!*PK?vos#^O&SCI(-ju2YN?< zk1|&vl=`L+LP;|a>SzW+9SRWYP#B@U-KH)&0xahvEYT~RKH7)i>Tv|J#mjX6V#n(YpFvnZZqTyf1pU zshXWJEvw2)u2r~DwUT7)OUQ!OvX=Clr}VglZg!#H zTGdC2z_0e$Xj0n|4u?});vgTLDmln4iG$pBspJ&ow&ggjkcTPO5iQ(kmNQoI7AbBO zBhk&59Au+b=6=aRNA=LnTZSv^X2IHx)Z>!Nd9JSqx^e6A6J`C~Hk!y$L?H$@v<#d-d%dZx{ z+m(qPP?a_bq%y=3%L_`Jo)@gsl(O7jtf~Btqf57`CW3FC_i4DvMDBW<%!x~nD@t_R zWH30?;V=e?0}M`-96*IQz~Dm3`Fjk`+hj0k6>pH@RxvQRM{`BGA1k>uk|=E%hr;7D@3#EQulB;_?;3I9myK%P^2v%m);NlB&vdt?zJNex*B zk)-No6G^H{4kAfQNkJrOrq2(yk)$Nk}syiK7{j#GxRPI21$@^0{0W zUncRF+-yQgF+)QraqLGZNftd~=c*aWG=HznCY1EzR%6a)@+ZvMOw#Ti*4w0K{Hc|7 zV>2~t-*PikADFnmw9am`wxSzdkZC_qCpukikv)ezXoEwcr&2MRP_)0@+C}Ov$wvls zm~Ax~&;kB9I7RBP_T_IjNL{_T0I7-fqYaC_xYj?U0Pj<#0C?0u0PlaY41o8u2fUvp2f!=4g`{mrX5jggwwMIF zJaYu-$jm~ZBdsSM%c+(il>&24HNc!h0p@-XnETYj+ zEIQ}PeSST&d33ePVR_rrNPeP{0)Lvb#ccCuO3wT?Ss8kK%jhDtOOgre-tN9EZSB~( z#q91cZWZmI?kprXDWwPzBurg8=VhoTr3j+H|7|h*VlPV$QYqrV%|E=wBpO91r+%&O zU%17b65Y*OurKx%f8u}bzS!MVgincfGDFU!#Y`yZ!TWMHsmqdrA422ij)t zUP`y1-#VnFbknV7yG8bZx80Jnq$VRhNuTK+?d^6Eey#Vx{?YDw|BW=8{vl0*+rM8@ zoYE!r%Qw=ajW0R{_-7-Z+iEhj6ZDt&R-_6$k&bUQPj+lIPM@Gru~)RV|H4+?zE`wY z;5aLlAiYP{f}_lrdquaX?<5%+@!f?bzm-Lh5lda7J;;blZ=;IgnBw^pTwVOO!Wl98 z7znz1tI3Ev_l>S`dltX0K|MP}cR8QbRIl$By;Y^LPK#l5Z>pqNk*8HhNk%YjtGi}< z!L%iR9GoIWtr;!0nP6IVn^}0kA7IO>x<21OT0^JT$SL6;y-la3M{fzV;96ua2V}M9 zE6ixBUrvv{q9#i+dbxUG$qBLudRgic%|kC|acT5&Hh)4dXa7YnSKnrOxn_$c^o3+b z@`dy@waus03DNRq(IJtqk;)7i8r`q9%cgOsCvFxL?^RK9BRzDJS^LZB+~=ZIcl2DE zrS27_%nP=67L0-a_HAbM@oeEj{^K+RbXu!kb2z;EAP!a^=OhOKia1z(d?z`v)d#x| zxdNuy!cN5Z4Y$Xf_E_C&yFi%LjRi3S`m(+jC1bS`#);0C@p|R1{fkWI25|$few_sIL z=H*qB)Ogu2tV*UyN^Dg!e!C7nlvTfwK*9dj>E)qu1z1W|W26#I>Iss8=-2E&fw~Dhs8QCH zq51TyCB7%JuJ^yZ-JGbDGaL$nVDgh$A1Q|nTfT_df);C+s2D2Klq^`ly z&$FWg-Dm)Jv|&y(L(P#LhZrzJQi3lnL0X!m|C}FHy32}iNwdQom8Fm%26vb^n?rv& z&PqMjqHG!zP7tT;C zzcw)QYib=}){;K~W-WE$^%aFTtgmFgZZ%ROOT(PzU%1t*uNHFB1C3n@Gud=?{ zoE2SqmGxD6cJu)?lI86@$NFl5q##_3)MkA(Omgrwr{uQuLv_oS6YLjD9>LyQWJwWg z%pz?TS$Qj>H>yY>xk)KSh+vU5GnbOWT~Y)yWrsE|2Hz<;h=Ig0k?yy&+UjA+Mx-M) zBHb2kz6hWEN&T7Xlq?4QCq4aVB?tP6gZE-DN)A*L$EwDaiQ>13j%HckHM;rHa2Hih zGLQ>iqt6@-_w!Su5Ppm35X}2@Y8n4Rb{^Mn9_3(l{I6XY=1~z|7%t)>a`q3FZN`O( zwoX&{!bI2G%)+p{uaAG6l|v5QrNSPi}}FQ9EQoc%&`2 z8IQC@a$@Vkdn6fd=}r=0w{#zKgj;gDAo$6O3jW(l>vN5VbWqP;p@S-=XOC;>d2h$H zQg2?te(g3BeUIN}qVL;(SC#KJ;{Y8a-~b&8g71c{(J{&)!wYVt!RPO}uDi|L%{aD= zPNURLve7yW?k-;`?fZAQx+*0ZvEHgB$=qAM8hY~!yl?t*`9!}prw*4Ys^^dsmD*|S zajJnm4h8nyqoe)Z_OLy^5?paN-#Wl>>*?Wfdef+q@&47+wZG?dGvMSq&H7xOx+SUq z@Gzo-tS%c?&(t@>kD$kO=z4<&3On2pjn@NrkuP(KA|rTjS9FwGE_(nO!7_(ZK9s?l zs_3SBq6^e^$%8wfjbZLDyf{TCogA0Sm-R`sh8;N~O0M zFY&LPI`^Jv6+LZVw0&S5S1IS>64?gi1z+!rj#W=eGUno`*|VBzS_HS&qSS_(GH&&>EV4x@w_XAPWGIb9M7q!u@9RIDN>6yYQ`=D z#v!{*a!PTa|2@&>{;j(hd{YB6Sh2+2Fj*6D*W%vjEozS>19x8qGRL#6mGqeVqLtN7 zSpZ-=Dk%Wl{Y(Mas97Rl;*$W zf$tKx9N??9n?3=2wRRT;zP=Ad_a;i$XU=(f=eFaHCHrgYOJy6k)JOjny-#&ybryU` zHoHp-lFg30k!&Wm6`aBvA6#C0s2U*(Xhw31BjOGA&AY{YhB;CMnca-tW;Z9>;qYz_ zadV22O>3$marO!uO`)~ES@`dN4!veiosneCRmf-W5&Gd{HqCu4< z$#8amempN0WRtmx-q#tI%A#<4n@gnifaJjA{hy>D z)jdXKIn{lfIl|lB%Ktmwj@hi+ zV>riD-TAw#3`m;)6pa_(Bs|5f1E#LoOP_$LYxWl9(Ox?pU3V2E9X=DCrK+&JbzwkK zMM=TK3_wzsGn^LI3N2L4WC6gb(Ov_mYw0h~PpQIAhx&U>@J!xYFh5Jb8Ex!O-)rXQ zzY}xI>&b6MTLkK}eu=DdvOR&UWMTK%`8DlC09o~QEq|nqM)DSx<$$ggdkwl)NDiY*Z}`QyRsd@|6=PuS;$i|=>HNO~ zEK&$yISK(RhY|~;4jI78rpowiZKf{!JH_vUFEUQsYXIihkEBiZsXIhz{`+Vc8D;lz zQ-QJ%`4dp~p+TAWA|rV&?DNRwx7A1sQ*z2_yez^w`f*<6LF2^&jTf)L?SDi1=&X4e zy3a?^5m(vgx$seRxhlSoG+Ept^eRa~Kq|v_T9mraZ1#NkaWqXem2%A+ES+3Y5QIeRK>a3BKqDS@-DeKehe!@)6>$*t zuHR>7RT0fW)ccKQ74MrgXD!$_S-_w8U%PM8e4p7jNo9tdUcd8D6m%sYs4wLrmVyKI z&_1(o5|JG2o8;~*V&7x~^?tqVRtgOP;Hd>TP(QVI%C$Q#Mtk{}?lXt#`GuRbNLJH) zz?>BQ@rCGKb%!KlvX2|opaH8=js#}-Ta45v{<$~-46H(Q;N1u?~6*=MHs zE0RM~+&f7BT#_-_KOq60>|ZcPOm@fiL6gH3eEZB?cQj+JI~2_ICf`OoDTj=?{u0&2 zLFCbWCWt(|4|6CL0BYf2s4 zLBIK3G*b-}Jae|#SD#6aG~W?wS{)zE3f@uSb#;&Z#_u=X55Hdx2*nCMF1>r#CU~+5 zfStQvU;Lije-Exp;IImjc9NeWg@4{e z?~oMupxdb|`=Gm+BOutH|92orS^+^vDxKF~N~at(d_@taEe z@=dPc*bWTJzIO*O&Hp$JGUpnPb1Q+tulW-&_;vo(F_@trjL*w)F^H=^6xLhoneFW( zPM;^_?NxCHNS%cw5`{97fF;D@)9evPjajb*6H_34%X=;gN&uc0W))p=o}xP@ctf~xrr%xwf(Qq7^LL&3e;h( za^_wmtHBceElDBw-#_ptV@3+SE{kA^F4c&E!V>*!E)DQ~!=C`YZw?e*qQmE5!v2|W zmgs+0&dYXTh+XohtK@A{aR*70#T{H>F+n+YrfOa}pQ<59CazZ1wc19!=d4o>noB!v z3YYS?IA|brqr+hc5eE<&EIAl9;s8RECFk!T@fAR<=oyvQ{eqv`%sWAgZtH z|B4Wa-PXBN$^k?y*KS2WdXxpHg|gS|xK$+c8AE>@DDeKf>*Uof{URw_SB%mMeISw) z(4W`IYZ$1=6-a1YBWuKJvgZ2CiRv{;#_gQT4dNvS(V&i`ARkH9XNHn@#<@XV z=8A~G-Q-3D(u|1UXhuYED2NCS1xZO9*VWDc<3W><{MSGjKRDr-j$k0W-yP31f4f5_ z7_{RCV?IvjPneI>4;2**DmKoWb(LB8LSuSwKO{Q_vv9ej99X|BL+2;t71xigq+jSB zJ2RKg&@wV-tDUkGdu=^@SfqvC^kf6dce!J6VkLE1TQ(gs*vvdsfKAmrFW`UlkiM>Y z-VK3GtXbkQOIC$%20Se(W=~__3Q8|zI}_DYvJ_DDwxj@6Z!iU@qGkbAU&%5+)fXPB zzK|TC%6B_STNegY{UK0QjJX0;kFvazXOL!~%Fzr|ITWDEp#W8%8C1PNcoBTEtdy<03&*xI)GcC)cD@`k(~>b631lTwNh ziS2CMFGUal?!MjZY&fIsoSc6VbJ z72#VUtC=CE*Hk7HbSm#|oR<{rZd|~4H5Ie13n0=KY*?$V=u=_{Yn_=(1XcR0`( zAfH-+9gfGk4ZT*U_sARRKYzQ~;wXK%P`f^qb>V)<#+&lGsAMi@n~S-RZ`ab8oAc|0gj%Me4B_sBzfjHRsL^ zGY=kUQ|~QF@jBr@D=PE9m37mG*%jSpAnSRuU*2fdPqqU7wwI*fwjh)=+m^LRO_Dqy zW87i0_8U!qdF>~qZ7W9|HXgS7VdG(`(^Y!jwf^v7eR@`2Rh^!m*C8;fz<8fA{w7%$ z!v2>#vaVI@B-!{{z8i=(=1yInq*luUaI*&_1#Wg9Q{ZN)ZE&*>%QA4Y|Deu)Jgb`e zhvdM`o|F_U=08VG;1%3CZUdZQ*(3A`?zQZZ!a@7P+szSw>Pt5i*Q-Y4 zZAo;1h_BT0%;~E?>Toc5$M&Vg`TGb>^d}?pGSzjg*iH^cS7LoZ@lI8x@B-CM6fj@N zz2S&~SO@yc5OY*`!`S|afmp301rQrKCa;Bm;t>O}QQg;7(oc@bYa3|K`lY`~lNI8d zA6>@gtyD85IkwxdK$2rQ=FB5HXI$Q>LQ<4tZcQCpB2cGroztWitafB8?0}I`SnX`% z(io`i{0RfK-3(O4Wf3ZkgLMoGFkMHVSRR?EADNK1?<&)N@5H>r>VDY(O#8b9<=7LG z^6L21bAn`s;)FL8PaH7|owHYzc$Wr(znyT=;m|_I_pS~uj`a@TwOlKc_u!f2i_^ZmNH43lt`xRvvCwHLIUMJ#NLR_QBC&62GFgw6 zj_fi!W{-P7JZyj%hY0xpD7*GJor~|^^X%HSc9vc2x<1%ik=#kSh!9U_1#^s2>YVHk*#&=}*VAaE`2xDbqu-VCylqe9# zzGGfRa0T)4i*8H;XngfwPzGDtVR^$@@(-^7(#yC~L7>9yq33wgBA;Sas z-Zdv8$r^qg!M7L|M!z9A>m3t()4?b1YHaD8;f8mRAajA6;U{z89e(7oz@jsZ4a1@{ z?A?OA!;oLPrs^H3bR-c0$dK{bUEQSz7uz7>ePMhyy(ae7ghIwoWM^g%RYBRiSdJ!3 zN^` zz%t@QFNb_evah}za^!m^qieNIlf|tz_^H<=2m3KAvruxZ3@(RUDLL>_Bm*DS{5|tR z!K`W7ebp{m3}$cl%s%LF*lgm!>{F71N{IurC;q!^v&8uV09RXm$+OxjD<_LvWw81t z$$`~Y=2pqEGW4!PnofQ)rm|`y*)W|1t?3>y5wXNn1W37vOm4$$Z4W{*&nWkI<2^aaMfr%Mjp`_ihZRrJ;mCnxxyrjMTR z`vJG=$JaPGrzcELWVbSC~i_-n~Eimy)h)exXqo^7fiu z{m#4DNy_2DvccD|Y~p*_lhqp8P*}Fovuvg0L@nDT$*^q4H7xu3A1$M5V3|`5EORKZ zti!_W>ysooerCUN74^MGs^6f_%l6Q0ucS{b%xVE7iCv=$>^CC(Vp>@)9I@w z*U5V;#8(=;ywHyJJIu#XF+FWW?KmTf2+x@*OFIu9pd0sms)DAe)YY9u@Zjy1W_M9- z7K*8ah^vL9;KBdI*RyZey_&oct2=y1&iZ77aYI!PSqkf0w}mF`>O%ig*p(sm*!8V5 zOPMuc)T58h@abYjA1vi>vd{!!w4hA=fX)JpU#ORSKxY9&X|uJxT~k7 zl7hX#Ix5TgppDECb8I~SZ5L529He#Ua=MI1ssIq3YOud?DA*0WOV#knBE8V$gQhPu z`5?z+MEtS`ql03S;6Q7_& zBbIH#N-=%9OlHYzpziC{*(22rtk^E#KwU*iNk9J#9Tni{kTh{F=?T?H@)>Ww2Kvll zng@6rsjm5rXFF1pHL=bj6YiH?l!vsYx!E`SyD!p%aacd{tIEsj4(8HkxsRj( zWCxz1XFGYV)E$P5RjQXP1(1!A6o70LQvfn*7Ltz7$ua<0XpsR~NOAzOHzWm1-)v(% zo*2HxTmiK1{C5&xibInNKqJjq@*K@TnnMB7910dH`jXILdSW<=;K0vzM)IHDvmM8D zfK7IyI}#cG6^jhmR&WCWwxj$DU^`kM*gEWbx`qMU=eeUjuq|mqum0jPKxg^G68F`X z>0jPdN)^_&VzdkAP350a zl(pNIUCV#lVx74y`_Vu#)+$kULAC=)p67>+@23C$VKUzI0Lo5Zi1U^*G!M_EZHYn>aIY8M&Nx@Qo%z6aaH50GLC;Qr4HM;iateVzZQWSZtOu$7G;OcAh%|8U7hGO1zZK;Kl)68~GQ| zwUIQt2juKhmi$fj#A~cr-+q(bPwi)U3mL3fdmIYCI|&d~|1SF(^@rpEKfihSIqBg? zO54_-F!=F(qYoaP+`&&Xw$|?KD*m)3y4&vTPJt7wRKn*wSqtFPbHez$RmCNuslX84 zj)WJd))m*uQzykI%0hrpeMtd?>M#Wm;+8!(=~YJv2x_y$AgGNL27(@u6d>p!D$5A! z#hmTY>k!lUZwEnb^xTt#AV(<>Pp}ja^cMdDg5Dy{gdp+knN}V=dzO1ItC4aQv?^q9yp3ni_i?NUjmz>hE;Aah z@$7lW;p`{e?90LZIRkX1BiY6DgYBl&U9r1g@*nZK`G-%nQ=dx<^Aad(lO#u_tDnri zU+tDWhIN`OZB6)o37?BAx8jEp$xkP#(^3ZD{&k5-o?Lb~oJAlGvIuG^8EvNzHu1!v zEJ7DmL2@XA5X}2%dD*2VWny*QCQDi!NFLlFIoO6gX)Px4>{6w zZZNKidQYke?QeUwTSe<-NvjC9@01+aZe{jMj+Mc4jhg9CS5hY=n@#tP*1i2x zTE283vxuLpr%%b0Trqxna;#s)Efb@M5%(`Mrk8X${CLN&=f+QIpstq;uACTkN=`}B zBZ^($Ox2fMXV7ae!=PI=_sW8>fog``JtT+iwjzTh!>hStsVS)|ZhbZR!5B40vN7VM z(T+GipEGE7@-X$HEC!RG^Gu%YaM4d zVw}<2WHfravgDw*J)`SMhG#VOcABpAcFc{ch2)~MNukr(cfOmPsk+Nz=BnNFJ&fH}a)AXuYzB^P{wa1JmJk91eFlanRw-BnOoeCz}86DA`wcc>52`Vs5n!mc^|$m_1fj10h4_VSGLI=eDM~oplz{(Vt94mtrea@<)l~g6kMlX<{?FB4t`jh0o zs-Y|fvu~jXr2Me{PKU#069;B@l^oPeoao^9m+Y$tzt4Zn;9G53vbfa-+h33z*iJH8 zGbc7klng5peG0HZve|UsEqZQU;mp=ePSgKcpWI(QIjEdC zus-*d73O}P5J0U^LTSd$DG^MrhIaJ3KBtxzPM9PmQVd4WdQQ; zKQvSPxWi$P69*vwOLAZfam<07<Dyl4tTSb`N^&|%<~AIvGPPj}9V*H^mbR8jZIf>`571=hH)Kg5&HncZ``ssXYT?C-nW*#DHn zVf%>#`zK3I$Hyjh@hvysdYma4&bJ=_Xp-1{VvPG+*6*pz7=BV5Wo-z<`$D2^f+;%jx1fW9Y+>eVTRi( zYAj1yMX>rV$$`~Y<^jpEGH_(IAIrI3Jto<(odg}*tM|(pq$bE>F#G8hW|XHo93Exj z;H4JHK*huW$QMe^)gXV@vzm&d`!>qrRuQcJN^)Sel{q9iR)(xDrP~kAxlNsxY^>)` z>ve;tm=w3)gSYNEBxj;Z_(%>b--TW1BV&0fhr^Z=2Q98FIjEgD2$*|KsC$RHRkF#8 zMfc(LJO%g25>P;#XsrC8WCLneu)pM3LBz_VB!?=^w>=>Rh?PAP^zhNfLE6@%zh_Au z=x=NB0?Dy52$MgS8~}`D9Dv0x-LZw70iVh}joyij#I1E%t4D|2qQsnCXrDEt`+xBjLjG3(U zy6h?K@+R>^lXIR>H_B45{Q8yp%(_Vp5*-E`&J4N(O0|?6)Jq&JUtJ{UYNI=>G)7xR z!(?%*2u6>W92jk7!jfZUuzXDk(em}OWMfW|pq*1VEwfCPfa*mn&1spnl7p@wj+I3m zTR@mZnbq?Cmp(M7WwvkxgFtpa>*GJ|X_+llgx@mxh>OUWc7}|4a9ZYw(-uB0bCPQ5L2*Ophn_>+FV%% zk3(jyGLJ)MNe&)|ESD5K4*7t}^5c+?n6o|lIAj?AZ6Sk4wxku0Y#pt59^z2&Jj9{k zdB`hN4?hnHtuoI;vR9esA&$*>9wIx=9gqzF=QL>iMD25K9X3{f^Dk_y{wB@t6SadY z&EWw46lNacx?TffRp#W3QmLy+lf^V3mLe%Q^=l#aqN*-=09Mu223Q&NF9S5`8)3VM(UJ_O7Dn zy4qYt;Y#J5$;am}36qt~QG!lV2{1WcQh>>^OaUgzK49`iSq7MVZneSWbCLs0&XW{i z@=Yqsn0%Kx0+a3dZ;Q#4Lz7GTRvSnpHEB>VHIad zajO_X#0!!GPfs#P<4J}U!KD-nBnROGi68{1^NE?(1$2{-Lx8`{wDwa|*L{>z%fIy# zGm&q4CsbNj`Z%Y4;Cj|CXY&;Xiyco~Pw};E0uou5xr`M0QWnAKeW^wa9!~H7%B6wK z6Z{LvJn>2XEEJqICh_IfCJV)%z06xSi|BS0pDe1E7Nu+a2$Ctf>3sTn3=X_FZXPas z#p;~7DsGLij1iXP7ZmSpI~y?+Gy3wrMiUT4&CM2N=rr_{#=1lAdy4zknD@PI$zRA{ zXN>`5D~H3eD{%nBj*^3+Ck|lPM{@oVhQ6NM9`iLCt22!myPR~>U65N442gFwoeK8FMVRpnGqc4Z_KId-@Jz5I3Q4x zl}bEak$6H%^Ha#9^iYTqV~S4{=eJ zfrmIxqsni%o|hbWh~%{bN$?O!YmJ8}&K%((HnXht5LhipE20)hD_n#_fs1e`>>_+; zb;|ZB-fh;0*T7Bq4lu2yYc_j{RN0Gm4q_xK`zx(7zO;q)HjvRh&{T zQK|rToN9m_hw|b}S@-&=7LG2~(eUzRt!vhr=)$oWxRHJ53_@jpOs>IAOfEGIxT(*- zfSdZcz>PTnLkls^|H$2>RY=Kvymi$gPgBc0O)ZV4Yn=P3|3l6Q_uLNIT)GwLCh zx1I};NFPbTTJ}(`i9{Zd96J2-gBl|#gkSG9D_PJseRQsQ4$<>qP7{@#Pp(f|0U~(K zs>z|8pVVto1k>Qh!{NT;RK-Io(wi zSq%2xu+G?fi^E}ii359ENe(I|4%}i_$;oqzd5>K>QnB}*Y3uX!440*?9vGb|IWXGR z9g!R>L(y0%J*Vxx)z!Zx8&;E`wHnWpPo2yOs`q6vSiRV@I@jT_)x?3-Uq}vWCQkbJ ziQUx!$+_Crb`Zm1C4ZYd}>v-NRkl~%qIa(IV@q0 zhzXoNKtM^V5l}j+5fnHSyk~WLkzgg|kdb(Jk;a5SB=r1x^Il!G#Nb5rqihq5IOrL1 zP;y|zv=#mgbwQG0#QF8+4uJozH}BN_{g1{_6)?uB0>(HL7;`o$*ho2K7_%>*F&Byk zH>f%rs2go;0Ap%wFe6e!a$wAX%~ftxcStgfX|=&MrY)EFpCdz6z!;|r7~@c2Op)Tj z&dMRfm}(pHMh4$kjL;Bp5cf3Am3hIIzV(RVk|b8+^|FP{2kGSdCzs>-QB2P(8NAy? zGh(J&Q-fvnXW?N@)tk~*gzmE?g}x+rO0AR>EGo-4n9%)w`j^v-QpQF~%c##d5An(d zlU~H4g1mJJeP-G05_(SQV7!0#2HoraV5(kII(SQ98CN7H@N2SWscYh7mdsiH#2d7>GN57{BpHx}0Lja*nN#V~fV0>y-rE$iM zgfB}z05zRj#e2bN^e+QSYOof(@TmdRm`}}SkQ_nJ%E21`k3KaJdb4uyuGkkywO&^@ zyA;2&jD++$Sy?n8y+x8~7`=q_x=&3)+Lg*nNat1whSeG=3XC0<6kzN}rT}BqY+&q? zEQ4j}FArmXNe(bpd?QKQC9Ag%-Rs-P5F1*K=>lONv801A(g}n)I)N~U0)#mfAnXr= zF#nGP1l}he`qV(ou^140TC~|6pbUSNjRs;>xV3;-H~s~Pb=z1F#4h{BRx^v%&9#C( zT(H^a9bI*$wc%R2eeK}8YNYHVZ26v+6vS2|H<~TqFv+pX-cm0}G9x!l7PMwPzft6! z-2kjyb_A|RACoi%u&W>JYn+fSyKDKW(n>wrbgcP@m z5rAHl90Z_NCSel|g@u-tLAtq=r=R z3i)r_Waj9mM!|am&vWDCGCx?h7J26uvMsdCw+{@;FLb*sg1oa-BL)w7=WbjYSbUIw z0gDfA0v5&TNBC0A+CemSeERW~t>GF5m0vXtc5_h)SNg>5!8vNAYzvmaVUmI`x6$Le z7CN(Su*A$|W2UQ+ovN5(E~l`G)6hZ-~Q3HDQsq$IpUUrB*?=*<-1j0}Qz7%R)bJB-?FB9Kv%1Ml#>q#y!` zP+5*ZrZGqOhx+`t;~z*X{DY$v{=uQZKR6WlhmlkdMm7DZmpo3V3=zmI0nRZ!vi4EIGi_ z5J>@^22xqZ(=g@;JZ13T7EfnZO)2TyV&LQ`1)LlT;N(yMrw&vN?`WEBG2up&Ee1x8 z$$*jUEw}$O{8=V7KbGf_37oB~QCOI`Z0;Bi$(ieN&der9}6 z6^FyVhdA&Nw@41`Ar3NYBaV%3nkcz8vDV`F=t{oNjH|I~ddq@V4P4D|$$_h}GMSQN zWsIxgZ;MAH8?J@~;c8Mo;{)<(`oqD&uIepW3`WoKjDFwYu+hYU(Yca?nu!yA3Fu47 zru=DtU1>pbdS1Tz3(t0|?N?dcYJ=?;BnP%znZloo(X}#o8756~U^dC*nZ0gurm7`N zu*JTcb?+Cm8>prZgA69d!Iy|}k7S^>n?D!!J}lW++xy_>7;CF+v@C6v!Q3g5!{%C% zmn6fAz}mTz18b>e*4mw;gHNcHvIMMMZmiwxFxcAVY;AMiLZXi4pPMM^s4SQlMdc0W z5zjnGH&Fhq`A3HIz`SJ1fq9-t1<9~g1IP>8jIFP#OEzpIjn+myeW-Zb*aV$Cf&5|{ zSr%w+vDHlB&JKssOdO!Ox8$ID;zZH>gk)bmy2H1cnQXN^CyVE4n@eG;WB|-oePAse4OO+K7V~X0+3}lMziixfvciLtho!E#D;%8fS9K*FameX9 znRKmBD43xf83ZGD%F+l%S~CT~2zekR#;<=NI7U4x3nC(UWSfad9+4c1NW4$ejh1AD zB~Ow7hb3c~Bf=7=AFxv<)d+JP)rdzOq zk!^wz3p^thNDhp^g>xGu8Ahz5yM8|z*OWeWzwDjtn&mhCqb*be?!l6pV2V>EOnGlc zu%U9uFy-BRrYxQrT%|5beK6&`XUciWiJFr9g@7(hN&3Pur8pP(pTj~mU|5_QV2eY6 zEsuQSFQV7}JNS@tcrfT})F7nByHd+JkZirp1d=VbA&^XxaE;gN_9XPvb6P%Ik+DqI zF60J_=ugUImewO$($~tXR~uj2#W(i%{#n6?)lg|Vb`t|7g$}q3(77$%plhu8Qvj1C z59`guFR-1^4L-`QYd*IkslSM3;EyrLQk9% z>=qcuwaEG0PgaY)Exrn{NRly~arOl^XZD+rqUOs2nA8826wK+hOu?L{Mq-2UttKIG-T1^^rWlttYjY zv*{1fzr1^u($==_+YQ)SZa0|}4{W;V-e5UR?J1@^RLCske|9^gt-Qup0?IEAHVky< z>Ll*k$odbK98^nh?J#AVnkvai;kC{$8Inbi!jrm0OOe8RlS^Ya_7?v_@4sbwU!?Fb z<$=`J+f54ZzGcBT-HyjM#W4Z4FALJOd?_{R={4^MpG%nG^G*uu-XFx?pw`ItVbiuz zQV^i5*={y%D}{0|~&2l9Ly@7H7{XGtJ(tqZ>C{eCeHbAPoo(8%hmUH^SLFB?pn0mFX%u zRtCxDK9YlYj${y%{o;YPfbPKx`5yz?#OMlHnODeC8spjPlzm263+qoLWw2e;#Za*vft9AWn8BTr@sm5t6M#`uRmkA&==joeb?XpRjNRIQ^VE zF0(HN-F&7mTgtz8xxMOmT! zIK}(wJ4wb;KP|uH*Rlwfda28HH#H4Q{V6VuZa&Sw(9Ne!H;eC5M3;K5PWx)6v`Ld$ z0;`p_&SY?ge=6;0`15>Ic~1uIm-4hEj~`If9_3 zf}~*WOxuN^CaJjK#OvJB(;Cp3wNO*NXWrPJdSCe*oc5&A_p;DVac|`6?lK3a&;J~( zs#*wr=DQRHh#(c6do;LDJs?F8-FDt(Jkw(ihtqbQ^_ldX2I>jPfITFFOf;?-oFdsa z6}_&<@QVJdT_!*2>6tAHT0QVXizJ8rkga-^WLOb)LpU?NMRF1JP{Xp$=d|^-u+m*P{y7O9qVfBz8)Mt=Zgkz+d0kFWIn|8YV4%{$lV^^`|Ta zi_dx%$9*jZi-UW5@dp-{lnm5MB6$|88zuW{v#)Jxh&1fs1}%guVlb%Pojrp z*y=IHgCqwQQ^P!qk(zy07GRzJXTCP6*%u`T-M}0(BaoRbV10lyNZMsGv#l8Y$jmNd zb^NEz%(mJ!z}|d6*-)uI;nq62GCASa*Q9unUC6%d3mvELeG#Y#@pn1Ce1n6lrxgHn-8 z{7-~Y6)?uB0>(HL7;~}=4T?jCF}`o}5QeZljfQ~3_Cnv7u-*TS$wJFH=VhVS?7GYQ zDlM%Fh4jj*p(1*4`A`FQW@FEPw0x+YdRkhHaQi7iiPv@RxEXPJb6v4QXq0+UFinvC z+_xsk4$;3HWIN*CbPrM|a*+M_x4KTFUG(9w0t&n7FP`6787NV_8!9qkWL(=((EVJzN)O%?N@T%nj zhrwSS`AbrOkw2&`uRa%ShQZcv4Ggw?Yj$sr z$=JQg-m-ze8H5af(eKRet>|~uIt2dB_!qVn&A!XOd;8#PlXIS0H8kcL7`o@C&>+=~ zhb0DvFf3!fqq<>#8F3CJC1R`EGf}r+;b$EhS^J$ zy!@Rx#_dWWQ8Fq*iIUcD#OYbpLaBP`zsJO>8Bz(rxK>gC#??##7|BL}@he#d%hrzX z3>tSx4lP?_)Gv|(H2y?o8I8x8Bhbj*?C~pt08X^b2UL^?gBTtR3?}A>HJBgH)Z|YGN`6K!tSE z2BA(aLd_T7yN7PoLmGs{L5S3S!W^zBlRjHjS}Te zv{xO{B9xI>Y_~U$hxOHU1{W=>KWq`YDexFqA!l++StpY0rAaVvSdn>YkzXiP7D47k zsu6>Q%u6jU4N%tRUjSw8-T9O3@WPnDEoiLxYq0xRM`%PK}8&ZYP#ew0DMpC zj-%U|cSeB9*{RG?o;&iQAY0l#wlP6CGq3xQTXq zjGJgDIdBt?NebM=qg0mNM1ST8H<8GHJ3$L+g`04+!c907xCw^>H*pu$!*1fXJ;qJk zvd6dy$7Z;RmZHzyam(;Oy~hMCPjl-qBNy;5%*X|#*}Z?t1}))kp%GWj!^XPBgP}*% z29~!z0P`?cQt<5-1TBppp?Qe6%l0@0#=p?TN3G((Wf%R+fs52&E%zLAR+0kvG^er*pEk@9@VUs%ci=->0Ut*z;NwsLABO_?RH1qp zK52XP+&d?=^zAk1aZCn!WWTw6pW*Me*Py2xHx}p#@h_k!v=`_R7mU!tjSEI(F2`!5 z#09M*8GhQMBYWPS_qNbDGf(48qwyLCx#RkU=mP1hKJUD&Uudmb!txf6h)GsR3f96U zdrkIyf#7&swA=-u=6c)2P+@&yK&YqMDoSuZ+{>dof*u||->Y{Hq@CdId?J0)3Mh>f z`kFzZHR`k!fm8Z*uUX+QOAc0e;!sX6O^1erswnk?Fc$Fwu@NsE-D?g`S2~{6Syh(B zpg;WwD&UaN|Uv`e;$F7zwo@5L5XzkK-R~9+H~$-D#Eu< ze9lGWa{R6YG7`GOoVIX6cMLtO;5%!dmK-E>pW0VILU-~$bI=wI!E#A0z(Lzy8=mQ@ zcRU|T;MrW%KWv{lWIK~}%Z3e>l_9VD@TIJ_YL+D1tVpk@LgmQ8S-dYr;4GFf1lK&>-U))?eQt0Cso<~RH6K#Jj zNk;pt?>Fhd^ZQJWwhov0pLS3cWJkF~sS4iDsT0}2_kxrSbjYx!#D3S7_d=n^RX?c@ zwmj4hMPvW)8?Cz(?j>GRLR5atRX3woz<9v*+~sUDA!V!0T^ySV1RwQ z$B1Qb?y?%lJ9>#R8k)()~Tl6_*&>qwSv{z#RBozT1kO_TXDeTh(3@UM`IuL zmEz@p z9psV+%`V<5t}Df@VnhPXB?s=>%G@hCRtAZp9+HC~fMnQ_`wkf>;HX>yJ%mZP=s?~i zJUuT|H74_5f-d(?sB>T!_l=x+OJ!#vL6j|PM}lZcexYY&5hRGD8Zlf*5Y6J!K;P^9 z3+Q|OVEzOV)-p`kB{W)`AUgXVWz(G{4hz}`^FxoS6|x0b&_0k9%BBOb<;$_q-${4x#IGvea2g#`>lXkwQDqu)ZZQ1>Hr>#QK&l%V2#A95U-$ zKyt9YHINkexq4KVVva_)F-I(LY@S`<60RFHs7NdwCyXmZ|GN-#-E}jrvv)gFU0C*< zy0Gjy6fAoV1rDz))y@ts;gE4~afgh9b9w^H-BQsv?m%Vu@1g0zuOi>WHUMzr`4<2; zo;16!A``N(gO$On)kqN?&7%xIMKIXGp65sm8bf&+Lq_8@cCgb|ga%w=2ixkSP_BA| zQi6Z9qd|BLhN82K@TQt4w;i+lU7mu zv@M@ppR@u*u#J6Sb?9StSc+f{?LTDJ+cOS_)?43xUFT;y!*fM4U>S*ExlK7NdLeJQ zwYyAz(qVI2#?y1NEN%5*b!{j)yt>+|@01J{A;!)Vl(YSGU8uI|D!Eu-sbN@PDT{ZM zN^Soy1x>?bDOfz{u(5c&!(k6Y9C(jvq$=V&_>$8PwWV7X zy#=GFa^%RXj7yXfa4HL!0;fW&1-7&uz6vc+TVz3amQRlu&+@6{M7MsGbDy$!!NnOSh z@tGeHLRH5^Lq z5KnbHM8|hFOETtwxmmPyxRt)=a41E6DhnX8`ax1K33f9DlYm-}$m%y)2G}|2Vdtde zAhL@8N#G1S$5`Dl5FA=Aff)iVY^e#X=p{NrzVD<#i=z@~aVQ9&914JPoEpTy*!`mc z#M83+24bG108DftP%pIBd=KYMSpZ;KB`E;YM@#{j zsDS{}4p|0Z+WM1Oh_*@&!1SY}08A7YGnjs6h5!@U<$%dgIDa4ZL^WcRs4lHtGLq3QxR5~#ZQXZi(H-TZSwsM?qQNLh1m zh47K6E1eH@b3xYIKXrg^emIn&Q+WTjbnHVEQuv9+zvxytC9S+Bh#6jFRU2@Pu;viI>Cpmecatb?6 znVIkwkvDXm8bR}v!m7@d3an~G&tFIm!Y(VbS8}WjaudfS2LT<)bS#qDjw`N%x9d}{ z*+cpuHO$}m=ls*NtUhyib~(*&jV2}@jjsOb?}RGp)&6j;KyR*6&ehvx8<4XoNrHJp zPII+=plN=g6j_9G7O7HA-av9QGhRxbT_yEq764qU^Dn@)x^7W3c)NJt8Ot8#cT*Zk z&RT@C#@66PB2m9rDBQ(`EIe@QxbS$@Mz#j)Vhc&(TU%L)(u?E6*{X-+F{1SRhQTH; z<*rNdcR6ajuN1e&bUtd<#3o14=`pk>>W>q`)nmpVP0&XZ!Vd>Jvtp-fWleCb&kq~l zO-+$xtcBBlcou6RT3E&$v73U|u=Q2Q6kzeQ+kX7WDf)>I9GsadnfO@NVxZO1Xb!&-mUv&d(vWp%7 zRZ&uQmd*A6Rr~1dBKp4cNl&UqvH;ep2EUk)t}gw{A)QoVjj8jC0ae*w^3UW{eIPBI zswcLd5FgY1mjt~!E!;j(hbxf?D=%w}ro#G2G7z?ObscP9x~pE2$GFl(S_RFg4mOWz zuSPK&bCB8wNIfS70IAR~22vr(0i@oL6hLY=m1Ri1#T)@CvdM)MDTR}Dlmb%@1(3IRO%|bW%W0AVFH`iGamz&{r%vgC4fMq6p}KnMZQ(Nd!KT?g)y=X1!QDH$A?2(^ z)sC6OSJjMgOVu!+T%WW8M3DHZ)i@ldW75Mlb+gLh!RkIKj0tnkG2_@Db~xoSLe} zMdT71FFO>esh6FmaBAv}<0durmgFEcHRpH%sj0=sO==1aL28OxfYj81Qx8rY48ehA7c`hQHh|{@vU`%zui#T<_ zi#QZyyiPR@*HaD|u4Lu_x}bDKW=v)O#p5RDb@KLbM0JwQgFW|p_S`Euum?v``b#qG z>6>Ryy1&-1<~YZ|e>91zfk{p^Fv+37r1dSr9hF1I7W5udF&pK(2&lcZ4KE)^Ks%t97`&3o%6HXIqCK zR2!uI2%>T&1((70>Ksnfvs+Jz(_33VJ6!FN1rE}2SFgjmCe@;&`UVV7+;mHtRAfEV zm%o}&Y87=XU2GCVlV3M$8?GF4@mIP=GACS0PiPyyE$}5*A!pYovQC6hxN0o+goH02 znZV6~(FR|>D_mIlWGT#%GLnKIJ&h@tBh*AhR5fK8K&jdZGc~G74kD^nl7fh;IhCb| zs(c&fh{-^9dJz?^G?)ye707Y40yz!^A(cZxm|lhI;V?bzggFO$!o*UJ$%v(754xj4 z=U`8mSgIR07LiYge<79%oyZ@h&mhe0=2y4AA6qpKV03d{=P9K%^?bTMT_&?+l8Z>( z&OyuR-MT`@Fnvh%!R&fEzEgO#dQCSU} z2LN$o?K@~8nAn~AK6%?6_4SbM;e{&oBvoM-e}tz2NkQn4deVfaDUx$7wY`pw?W*d^ zQaqYzQqCG%=cGs-wUr_WuUel(gsIgev*W=tKO!Qs>MM(*g~UN*^_1k~MOMYx`^c=3 zH|=~Qbym;|Hm&YyQiIivVC!|sK}2L_7D|qlLE31g89WDU&Q+VlQ9=EKfGP20 z6shm^4cCs@bJ9cV?|sAf2I_DH5~M|CjYtw5krd!FDZkJ`Sp@i$YQ&HMpBK3_@cB3Y z0zUsfi523S_)MZ<;}p^N1G8#~wIX={c|f^Bm?t&w4hX-gQcnp~!Xu?f3hpALWrnUV z929;>RhK-#r|K!Q7G#_+Ef7od(x3b{n@J=p`N%!OjEfcHI%Lc08@ z@QdmPDGGlbe_CJy{yLT^SOUqC=v`vh%Yty)6;2zcT|silX^%~m1o-UwRFr*oL*{Ic zUL{6dlFw(8Quu5~DSWm=fzNg*@Y&@~n@60bPa|?&(QsF=mQM|r?LpHAdrcoKInmH{ zvLwTRtkdRkZM)MZY|Z{hL#PTE;#2`c916l#+$H9aVaya@RJEh@3dnRu;6^nzp&tZO`6?voD`BA+&{j*{>1-uWwFdmyvKwj zCG`Huw4GmcC9|Zv>a6QD%*(UXem1;PosvC@rRTV$IHl9g?P76fs8!a7V*T--G3(D| zvVda|slr-$i3W;hpN}40E(&%?#Euxxh|B9`eQ9Z<<|Y=#7Wu|An2rwxE^$lbOgt)^ z7QJSymTVA~{GannR+mMvAoI}r;Xl9_~ z;Msrj^RycdOEQhWmtvEptsS8=CdF3eg>Vz~az42}X$6QN#TGj)JW(x{BEZf3GsY{e zb~xmfeDihhkAn@=XOaPPNFmj5%B8>G?wzw0hu!Vt=E-uwZ5%WUDSN z8CC=?2p^HHB-wC5)H1lBc~tfM%3z^man-w?LYOC(Ka)v{d!WnD-lJ@i_5 zrg~M9kx0TpkK8Z9cj$`GQ;Lc;D@PcvbE%Yr>s-VXxK08wZFO(aKfNA)Mtv#^!vC!M z&A85Wk^}#PH%E3$GW^fCB)|@IFLQ(gb@~FEUQ!Le@cpX#?_`0U3Gf6} zB?X7APv7-M3H{vL;ZdrU+irw%#La{`E z**kQdz9L+rh<680pWhSoi~k9i)Vc4_7PS%ADREO-Hi9Cv7t|0*0c7Z`b#Gm94ebJJ zuL#F-;|tF$Hkx1~O9D1ok^eSv$Cb+4 z1kg86duq1T96GvFDgihjmlS|=7*haFvJK$OmSq6WNz_HF$CXo)BnRMpRZ_5$y-a0! zC7Z<@0Zi(XC@`^-kyfl^j#ePkp#Yf<1;O((7`7JvVP{RSJou~$mK~dcOWEh{IA-{l z(pdAe(52iu;PN2<0xl1d=4;~;-#-N|YpemWu2F0^Jzr7sI(O2RW?nESSw4Ni>8b8XUDvx5Jd|9YUfPI)I{n* zx`;T~$lonFXdH2{k?$cn*vOBFZI+%wo=awnX!*e?cROeH@t$7&!wK(cJfE|trz$5X zKAS8xBF3?;_?P6^Rv<|8eXs`*<%x48Qa^9j_Lb>}>P zv1Lp6oQ5nKSBMH&rgtM_z6cd{Deb+pKvJf6BnsnoK!jXhw&3X(*U*~*TS_MenNJ+ zJC+&#>gSE0sLrj$ynL8{VO~Cbz92tA-#?vvjoG;8V0eIfO7;q7<48%tVQ2E>$-2Xj z;Y2#R8h%1OCkr504sl0%!SWRI8^N+vWlfoU-oSF`d6T!KU|HYxW4LO}qVpaS!#9mB zsUtszYXl~9O%jg7W!1PtXSt*xM8=8dXp?K-JXWa>WGSHQb4dZZHZuk2q9y`e2V@zb zYwvl3uDy~2be)qFpzAk*uJgI z-6?sw4F9R$OseP&GfJD2^L!n~2Vqt303Qw7ypl=-Jg8ol}(ov&I@ zGGuSF?~~@#;^Bx&BVRP=_i&DSL#Q*)JYWCQT&c5Ea^Mz-6V1)6k!&pf#72bi%Ae*A z_yb9i4(eN33_fy~r~gOEfqvrP_VK30B9+zek`4XDw)&C#QGbcvhJwO>ncPoV$w8&W zv9jvnbQ_d{@nGK zN⪚Ih_3Q-AO%93s$o`8Wt%LOYa0vO&IxDzrMqV_8vHF`k=0VnFJ6Tg9H$@qR!u0 zb7$m63Nvhq`kVb_UUcivnq{+^$f}V0dGd0&ks2n+SfyTnx)JRuJscKQj@-JphCQTf zukKMy5C1TdqAS&mq|7K8Y3LR@^UClBGyRcPx^PBP&6&Q)ed;Ay36}B~B*hbWU(J_P ztl#svI~wz@)At7d?35-YE%@jDWmfLcUs$=*F>FY4sLlh2bs71XbK&o2eqp7lfJsfl@Oq3(W4Srbzp#KE|0{p+ik`=^ zA0fE#qt40kk+E)HcPtXg)ZfMQt*QT0IP$V8bb-`4t51@oVD%|=tBSSDR}3q~fUAo2yW}kn71z^=t?P(R)KWZ zCUJ3DjxNWVE0&~0n)}pZSuKEZiAze+1+oaH-P0u^@2S;-yrNdgNTN?|5F|}67B|(o zTc#zH+DK&YqJZLjTL51aFlhA!%<}Tl>bx_1qB?zW%VTx)i2jKw%4t6vuRENs6wmKv zq#fc~0mZ}o3s5|Kplzei<9?BY}N?xRz_|~}Mx?Lc0x30aX zY?5vihzwLsWy^qob1WwnHIhZJG)UE=u~-_qaA}N3SN?_Z=z6i>@i=$EEDd*$yWV@j zi^d~CFO82R>*vN@UsxxnOiCvAkf0A-A1S7j8{bvZ9j9e?0a4JzMbBV{ZlebY~-~i?r$16 zi&onfq-07;jtQ79dO?YY;{rMdLCIqm&2~BJ-Ad^eH%Ch8O4T1J?EjnYq`5iLF%aQ) zN&F3v4Mj5McG(Powts%1#SoB0>|d-MP3?*V_C{%%sytk)ggPUlxbC}3-(lWvW?t`5nj zpsV*uiY)AX2JJ70&)L&+UVoqQ`dezS#+>&0`#aI!|85jXk12C0L4VRHa%bQ)>y`bx zM^=>HIC4Z?e~F6NxrVOYonNS;EP}3;YD8<$wGFv6y0#JjLf1CB1SpFm3DMAut20Lu zWZZAH(mpHwvvGH&-I=GgZJyS)M(Z{9muGH|Ts@^Pb4L18rNx^c{`;xc6 z6ddo1XA@gQUQ-hUUF<3aHLv}b%&zj2mXWGzswlu>w6zozA%d-CcB{w&^@b?mZ7nZ( zOS!|rQhv!>$|c7vpO?I)TypZ3^1K&ZwqEjALc6L(p3ua&_i zvOl+tR8b`*+brOhyaoIczu`k4;vRBishM|2x~UqnC>EicE*sMuI~+EhIPhY3Ne*f! zPV^YYLy}GQ=j56Gz-41PS26pU28psD>+#*BJ3dZM>siTw;kN1*CC65ct$yyNtn1Zm z$%f%1XtvYT>wFC3BUu8f|8v=F#WzY0dV)As)@;SacnBQ9>vg;2ZN<3^w&FjrzUS%B zysbDD!B(7$$n~PT(5tZ(Kkl@Jx8moh@A)Rx^OA#e7{6aG;2ehUirI#vA!Zv+D7bNa zOHJR#8tFeygHdN(i$IAh`I>W7R)M`hmHTNrmgRDGO4AzFPSba>DEZtXl2qJ;`&SF% z6InOq6Ko%-npdT_A8;g*UTi9bkX~%W6znrIFPVF4@Qti)vLJGdU9OlMV;9Mx9AhJm z_g#icG9GmfA_0EXIh;8n$>?+(!Y)#c6t<%pSw@F~LmNH#8(9t+dF+l?%+betub7v1 z=G3cER{#BQBul+58wN|}dX~(U99V+mCo3fxmaMp9jz3PiVvawq{zr?b3RvV+0gD_8 zEZWp7(nvXESoC_-A{>9bhg!{<`bJkwrvBC|<~)iVWcf`d!Itz1QjD{UZ$mmAN80qmyOL zIEnIrq+s^YH<^0PEJba-+?N8$C2gOLQ(a`CtVL7CB}xKj!9b>97En9a%?Q1svSb;+ zCX+bJLgiGZ@8!Skq5<$GW zdHOotd(zYv{(%&R91XSb_q$G~{2FfInvBf4>^r;4vaP>{GyDrk`j1dX+5&DJ!k@kT z3*pb+>vZ~wa8nVe9KCFgpU@YYZqg$nw6CNCPh|)nh4nL!M-uUt&NbjxZA4^{I>&nL zYKQRhjHK}KCmOtx8n5FhpC}C1QP^jI7V9%Wlfu@h7@q;!uLfv|QJ|H8>e{Qv#}%ng zs;3rW;ORPLN0-%Go`_Tp#BhBQZzr9$b)Pg@-6ES5J&w{;k_iCjI7$qa*1eyYa6>*Z ze$1FVDl$dYm10<*dq@f+Gx0&D0GTm5cSh({^|&koU=F3@HVn+6k^^97OA3Jbtj_>5 z$Q%Jo?hprW*G>|-&6z~!qX&A5D( z8wXr&0WJWr=nB*@jtyr2FDeY4~u~G|4MAauH1@X{NKE3SY z&^_vqJ8zg;Uf2GmT|||UB0zYmUqAjy=oVGQ z;c%Ep9N%ZexkYl&HsZ86_FN}*r{v^C$i>;;I>`uSDmXP)BTQrs$j zad`L^HC%EK-Py)uN)F5TQgzDPq1GxQ83-9kWao_VJ^mCw=5FdWJ4a8P7Yg|I5=hBM z#L(2$?ShdT{0pg9f{}IsKWmjUbiW)9q&Gg46=P4hkIP7*_hk|638fk_P`%S4cc*RT z(g5E!{sr)D^8b-%e1L6)L08@D%QmpV~}-&!(e2k z#294NksJVkI6zh_$@ynwHH$IGvWg#;;#M(`HCS?hEGsisa;(hGwh=P#iLAORN3wx0 z5(K`e7gA5qFMmhz~a^Fg*?3bM#J!i5^){b)~ zA4^Kq15iQT`=1mv=-g$Y^6D4KfIslZ3Q)iwT!}IMAeK48AH2)5PN4Ejj0sd6t#Akq1rEWX zz#;q;V;sWQgf$LSzKk&r!Lb$&L3VlGxRI$GsFaE|4xtpc7IU&K|H7PX8(WY=pszAj zHi62l*^wq!O~=N%(wxX6s<-SLOvi^M1ut{ZbeyclNHQkild)z3j)*m3i4?RZ439No zNjJK~(5`I*-;7l7zZ|PWZ$?@MhO=6Uz3#Fe94eVBDTsE>QGE-da&JdUsn=y81Qp9A z1t9u>DF6{Q3n2PjmO)gpi8vfpY?2(H=zydEML&>H9PS=sjzH1N{I`Q5(u#1`(Fznf z6rjkV07V;O4T?S>959NO#u^kkHUmYn^TZGUMdv&eo#WO4MK>0rUqI1~g@7V)l7v=v zoFtLy1gnv@%sxIzLK{Q8bTo-KhR|3qPh&l!Q3TNThMyl7MuuJEB*`m_XxG|~JHD9E~45>?&A%{_1Co*QDi=INu-||D0zfz@9iTgVhtKlNM|jL z+^a{J>Tz6X@nXkT0U6 z%Tn+$)8ovr&y$>;U2?kk;!O1RAIU(#L?S8wqFdxJ@Eaxjp9lWG-oQ`Sb@qBkDE-so zF#4sX3AVFeAoVY$3`y0UHbq9N-~NA^Z0~#fAM%deM_WAfE(n%?P=L2z^(CTkrAp~Je9Lc4)zOU^GlYNMF2OcE7}7Z zaI4FujSt{ofLp!zg5frndX?c;vF_*^25y&j2R*pW*+!9n^YDa{Npe~7E-&e@B+_QZ z>}`=4pK32#$S_N~OHf34P31{<{n4ogXMII6lgsNBZ*Vr!;qW$rIM{$rlpFw!I8mVe zOS1nNXwOs5l6Rq`1L1p*cz`U!F~IW|53y>qgp7K0(1|#m_!Z@pR{#Gh{3t#@*sfg_ zz~-Y&&cRRzfwfBd#ch%6b+7xz6!Pzl*LQsr=^GI3GVr}aHVIh!^P9*d^`j&MYi*(y z8OcMk2(Tt~S*$%o2S#~s`Zt#b)-LfcVC~ZXz*-yXT*jKZcXVaO+QaTLhA#K!o(Oedzqt5Nq^f^jVg22qNSApbOO8|7{!ob}A(17`jldEy#@@XDVf^VCTe zw@5@F{D-6fG$#w2ymq>q=m>~2JqP-wkidZ{}BTq}_5C=2i9?4;&d^hXIFNHd*hb1E~ z^^*7O_rU~%d8=o%ERN104pJ>sBnPP$EAx`%SQ(^RQqM%{s=1PlR0|1Wf>lW{2`7Ab zWTh;|`hCmUf;3(Gm6&R3v*e;rmPeIvzNVmV<(QJLv!JPSpRRP**uw40u_kOXj`A=5 z({3{O_f?yWB3w$woj*&I;JNS#E@Cl8`-|c9{*K<+IZ~5Om6=Ij zovj+HCw6$Fh<^2Nnxqd%9uK3hvp!fjj5FH${p4_6b8ER&VQ1C7I;BE5;J>wq*&a~m z?1`OP4!X^aB%_NI(Q|H^ld8YEOzDt&xh6Sm4Q18KJ{|sGs-!rz;L`E55DQ>^3-d3m zZ}fIPKg|-`d+H^G%i#>!=9ye4ZyXGn^p+jPdSEP&29!N1TMCkpHgeKBt8 zE7t(f-uS6gR9qq{uuueI{E~uuv~n*{;Cd>4YH{5^Vd^LqkOj~=WpwXAn6}m}DwH?B z@M4x!WQ{19Xu|$W(H`oRIJJIE(?kz03lpc_A1KK+$R4_qzlYK!MJVS$D)l}VNB4B# zU+A6=`tb_k+w(ysJ(q5ipPe-I1-EzB-8P0klE+4$t}`b|(*|(98YGQIKlPK8d?K{> z8>O;j0rXR*=^fnnFjn-GRAr4BV|vQhOTSnzOmE*~rNjoQqMloHYPxy*ey;7e1;wYf z3yk3!Wxw^2O+fU~{E_TrU1?o*$^T>QJHV?dn!mX>Kti$!At4DQxg-HXO{I4dLazzE zcPXKRDAGbz0=FFMA{|sfK#Gb1EEGi$L5f&Vcm)Iz5b2@_`pwLqlRM|$#Q*p3JU=!w zJF_#pv%7QllqVpGRHv25hzQ8;jaZhse;RuehmyrES&MK}RCv6#F&lVTCQ8X~$bBc#> z$GAC@#Y0|!2IejsnA>b%xGKZHTl&D9^BR~ad8O6{xEa`QN^zf1p$GKMNPBbJEo_kw z%s1Qwc>J-p%!#t^643(c8MBcF;k>70Szd((f$L&M(ltd*tWASZ3rjQzwS;F{=pKdh z0W2-#d#j-s(y9EkFg;&+vwY>vlyY-gxVXd25i%;qKB0iTaKHe2DS0i%zFG7^C5H2q z91h_W%4PZpl^piqoWto;hs)iy?ZHyCcojZzlR0yMn8GVSSm+rdmor>?S*Q##sDizT zc-2F0NO&P4kRhHHYj|ypBX!Wolj60&r+_k^6$wVvxKEi|a|_ie^SjxJ)Sz2QkG_#FI)!f1sye-V=R$T60QkILd`>zh(-dTC)2q?~U>ioJ)hbA7bpE#MSjCG$y{-oG^6{iPA|Qwb4BhbZ3sN_{0+GXRc!8h#4KMJVPS8O$-S9H0rW;-+ z3Oxzyo zqC2m6zwV?C)-FNnj#{%Ix}#?KQR&~^s+hmIi|MW!A0js7bXP4FG~mNJvDgOfA30c} z{UayHGwp^zm52NH8ZIwZo>GMc_2^O%)Q5cFdPD0B-|4|GJ{J(wo0~#Xxsp3WLA{Jq z@VhV+)IsSGF1t93maXkU>Za|MAazfJ3md*|4pQOlg5idnw!XCV`~c@5Q((d+W!Ovm zoQCN~f!!;^-p;leTj4Rim^XVk!@gg9&nXnn7bndeh~C0i?nlEn0lwiCD6sEv3Jvcq zq|oq!g%sF1En%y)mISh~uu)+D18fZJf4B;FU`KEP3~Wnjd3Ffq<@oWevdCq@4ZeB= zH>juJHmRrJHc{wj89TJGCz|b`Te^Si0eDLVpwA8HPzvfSZX0>s5h*6GGuy#>HJDe# zptcN9PSAG;I+mosCcPWqA2V3w@am*@I@dd)gMFS@#_PbrV{4!6gp%^`DOZ9Ve>yfw zc=ZI_Dx`ip)U|&pi-R>kT{UmL5hP1Bwx^p%m*x}?5f*ner=U@qQweBKvOnB6J%%Nk zQ^!gcIH%xJRt8U-SxwEUw$o<9>)cuPS_Mp^sLpVaa+!Nd8PuE2(aB=_?L=3Lr+Nc7I% z&eR2XTk0!D@s;CeS4frvhXvI|Ri$LkD0|rz^Ima^o2-_)D|J0sE!J0p*&}Y2Ql0_y zTo0gj9u6|UvC>OP4V+w#ZM2;p!hLNd4Y2b zQz+l3C)_4+HpLGJ4m!TDy(L&Z;AZMeePO&T<7UGl+ZVx}(NkVt>2I$f2bP`hYb~V* z&+3u(F1E|q*F0{%!>-J@sb(n@7 z9Bm&Xj`51LTYXwe?N*<1j(fMd$jP)@U6AQhjos>h$Ys0LGW=W5zEvs)>S?z!si)n_ zM4?n{!8o|&GLb12JA@6^Q$I7dtCZSVc0hm9jujpPEgB0Nc^--sljjR2*cXb*ydtGx z6+=`S78>H#NxM~ZUX^sFbDgwX_2PBZZgn4eGJm)7?ul+8_}o-o8T{PG-`ZJkJ6*MH z-BC(yRi>fEttyO%hOvN9#Kl{oLENdr?qjdhI$}qwQg9uy%h|I{2Wgc2;YKy^^lS0? z%ZR`HxGX$pv0(Ar#Q|u$fTijjB`!<>=Q8R|4lJZg;{>m8f5$Dk^voA!g zCGUsOG91RG4X@sl6JCXRv?j!J9z~++Xz7ZXTg>NTh(3|tiJ4nk`cAhe+up<0_-tCo zo2S`y`9k}ma{qL&FQ=V7P->%U(VxlUIONIj32uPY?0ikM!1#pgghE?Qby3mOWRTnyyki%vd`0g>gKsC)SlWLk>CW?CH zX|}zoFp()2^b1w9;E6s99zh4w%<9kWB9HqZ#pE&Ng5!8anpvZjPD>w|<$$Ha_?)i~ z>V_FM#AF4j&gH6Uf^Fnl)dZ^#9hpDDygOrUD4SrbbQ5yTCRiWAEX179G{Q8|c+{9f z62INyXNA@&FRYJ-(QG@9C7NyLLuuD$$7wC#67)wcL&lc&@ek*RABJi;&dNWbyOOW+ zYQD;=UMh`87|$=Xj|zM^$1gw3;7O3&68fedv&b&wEQh@qeG3R)CxMjU87ehG5+<)Y zWDES0kqc7MQ3RAW3l0f4$>_o057#gFcEvcSeXfY(A~f}FrPb6gTUwaCd zQho4bW_huY%aCehbJd-e!4!IfS0mNyb<_874(SID=^wLkQh9NZvq?X)-TG&W?|BVU zeO_1n3+Iq(;DBm4AY5#zEFN(-sYbT0nx4!raNuOAU9jLjfJlQgzEXjxgwFWF!k`pb zT3&nIUd`r@WWKyUW^n`e*hVDDUaKH0i9#VG%3vw&V0(lWxnvn$1rNo;xGrO6_@h}B z<)H(Ws)p4-37Tv*u|$)trkt>AA^#C$nhUfpJqlHKCr+-hk1OC1d(K+>649O;kv|(m zYfj$ifTQZNYwbZRw%L7U=2f_bTW-C*p6J6X(G?dLGaTq0rY1z%&oC=uqo)SQavSU& z#RM*lqYJNl4cZCoBb~;M3{%r1d82)l$n~shogbzy)1--mSvGL8Dle)Nz!{X;0)rmw z(cW*JF7i0rGW5k<<7o!VduRmwkpeqX-hU4QG$Tv}Xg}0J0U8|+rG8ugJQ-q03TYbB5dA7&mbZhHyncl~hB!eH>_lWh}60&-=ZuM%;p?oFSH>`?ypOeY- zJ>hcpIcH<*bPzn{N(}j+5Eno(xnNS9l`^|}09Q#KB)x0zDopjrgOzR%25BqOi?#qk zS+CUe3ho~wt`$z%yfrmky{2FqRoduzc;ru6iZr#+gBug}xhjQEN2_SB` zcy9E@uDpFOgaF@_)eGMvKd>(s1jK zq3Zd%hH?o*7i}XGIfr7xXnz*x7&5etJU?M?CY+p2Ap?RGGNsF?XtW=15Gda{3XycV zWV=#J$4{&(ws0Zphd1RN8{YNQ1? z@Foe~*DV?&o^UpO>K@oHgn*zsGHoK=Tp-d1#CEO4m{Zn z#?DT0nrj^2N|RDX}%T`k~ClM==0SNou>IZ1@-xr zkq5r9*R~ZyGM}&a_>7=5v%$CanPMh4g3`>pSdmLk<5lR{3$BYzmHe3=wj4!htzUs9 zn&~TK?43gL%)79*;WOQ#MVi5u`7Z(nL2yd@32NdYTrpz;5_PaUfVDnzV=9$xscUQmQU}it4LZ+YDdyu zYe|(?9>b3-Lk3?)YS-*tL>5;}RXaqg1$cmog9{IEXyF;dIW+x%Rz0-xYH*V&zxA*}oSL z7@2*_^%0Q0KIM8V5+4Ijlk^@h-3ftEu!$R71*QK%Q7n`w{SQD2rT-8O?({$Ap8Zw1 z^B)xwltafysmwo~tDwxk38zr{+%QUI{%Oczng6v&mHC4%N}El(DDyW_C~q$I5Kbse zWXhY%N2$y|CW>YLFL6uA>WRA56FJA7`7h#RGJQdm%KW>4AZGrKLRM`#h_d0){lg~!JI$Rzs?Ff^9JhKlGMWdlLwptAd z=d}%MeWKOU^YpphE+V-IEh^#BD%TH*#uO-Aj$1Xbr0n&ty^W~hRW~VGEkJ1|4lY2z zp#`WT=g=Ym9LfL(a*lV>(>GczK!&2Jyt<)?l8*(PLo1LWvx0LB8CrpQ6m?V+Z*n%R zKp;pfkn%lD-kVWky!e<`yPrO;t3~(vOU|H#YrpRG1>#iO*%2dnY*_jew(wEliA9IHfkZWP@x+5J&!Rdqv| z!n#3_BS>`NwP-CJ#VNFwjz9{nr4ZikwRCk!$3*ceuT4wS9GhBD=Wq@!sH-`JR;86T zwVsm<=E7M3LmqEqm;zFA)$`nt#a2u z4Ziw3qJFSUvsSDozUG#Z7pHYEPIC?|u=G8@Upbjvxo%Sn>~0Xm1@=}UE`efl$)uQE z;*`8oWgKx<;a3j&#aMJOmn%0E)zat}Q*X6#DR^1*@A%U4l_*DswM;qrNtC0Ni1btu z;#T3WRKQ_S{Y9xu&vf^dDUB-o+q^39He{SLJ1p;7w4=C1Bzo$Oc8dmhnWsLwj?VyD zPr3(%wuo13YKs_QQ(MFfHnl~Vq7%1>a31Vz(WU2spzCpq2-}T)L|eoNG?2E45i+$g zd~AQ}JP@LHsNpnd@dr~!$me132>i4-$29X^akzqGzD!8(kRZ1WPJu{w=7~L~LO~^oWP$4ICr&V-M@G z*g32~#qw+;$l#`wQyJV+R6{GuF)S@DCts@UsB6>k559s-*8zg^EaQMpqec|wvz1wsMlrz5@&uI%AWCw~z z+z>3mewej8PGFH`y^lwB;g{ceIRA zc}KGtdH9kmT<&h^XdniARqOArM(2fN+gB?oe;ZIeSVF0anCd0)l83;dO^%Xs`wydo zC6ua&C0+tfC17bL@24$lDDU+z8WCQIKeRVS$H)nX99>J*K}{6N?_#M=jI`8t)V9^c zKX@dU<1ONwU*Vj>dMp3RHvBM(P(U8R5(VUu7|&-3=T)MUhyr+6XZk z?PvO^{1u~~q$@-Pb?`a8gYRI&)WNZ+?@o-|(8$rqb_>b8gTLVh&Tj5XmDL(M9D$XX z5xz3LbLm*wxVNLcNMdwJ6D;i=tG~5UEc{S_BT{fN3EOq+rLkR$+0J`5T7hf1-^B5u zXvrzGG`WTJ&-AS5L`kw`6g(H84r{4~2wt&)Gn@18Ed$ra&5vB?_d` zu@p#bX`}UnlBx4BJa{y%YL*C4AEElhGpHGsU640$>=P{64Ap`GTPm! zpNe=U$s(RR!NS8G@ncalMf^A{QN)jnD?H+7!q8#FFYe-a*&Ok3&ZkHG%&w08BA1)& zj`R7PY!V5PyVgt!lP`3K%k`e!9m!%PuSyFk7dE_+aTx6SLi!FD!BDfjEw2n(r2j(V zW>uyaaSKsJk&_drcC1yXjUwk1mR7~dh+d8w@I%k=2al9Fyj6;n<-Hu!0>5TtzM%fd z=xjm#I!-O9T+F?o&h~8dj7bZwjRX2Pwuy(FOflw`)MLzB@^q!oyj@0%mIgP^4K|tRyg3$3J0ob@qCNdpvE`qTHoUw(h3~+ z;(3^}Nj0)@@dVYhcoyO~O@XTA)f8xsT4)Mf#ZvR~a^pxxeOo&I!KXk1Z;hrvrEJHW z;#W?lXsqrjd7W3G#j@KdM-_|sgVQ}k^+5I#m40I!nkZTUj5CF=yHQ`YSTac#zT62G z3GVQXLd_Ju(O9DJjjm95_*RFZ!o_mhIJh=7U3Jg{2#|2rmSe^{&Wk$SWOw-1;AE3X zs9G#LO?0#tEqE;q=`b#5IMN&*oL^*XE??S--=+NDZbq;>&XBUXYtKF$qx${jQmG1%Asb8?-(pm ze8*Iz_zrU)ySUTeBza}wqQSD(?-17FKEN@( zo;ipi8$#ujIgV`6idUd@nu{3Lx2&kv>A7>EU;1$oil<%`)jHj+BK)isTvbo@sxiS` zgRZJmI!tOH9A4FO-PIs;qveB#Rc-3}_${xx8!M{$@gC=>^%<oPf6;n|h=4=XL z5WN3nVS5?8d{O7{LcFC2POhjTxDBdMi!+wmRFsc%9rbK2@edxssivmzikeecU%DgV zK8jEzJirn~!UGiv?0X?F=JaV9`Q@Sl_UCNbsOKj5IOBM@^nqAdDMUP|G6L7V%K33J zY|^^idZ%NQh~hj7176!OJu;qM@T77P3WLOW6$Vw~*}~Swt6GbAHE=yRhXxKf?uG3I z&ZdDwHm*LPpBA>6yarh?Rab5298wJ&_rkV{vq?3wb=9=672-Xdo!Tt%6cy1nR6_E`l>z$H)dXm`u{I>*G>I>$X>A>xkiN2r;i`!SX%x*x|EzK<7$;lq7= z>l()x(?XXQx7N|YB1%?bUFQz$08WOQFUx`J9i2ouPNtaV6%B)Jl~hb;Zg4CTwYUgI zlqE$j-lPtbtqGObiC}xLnypPWDL{vMRb* zdF97j#(9+&z1@*u5v5RrG2du*_!h!{@y5G|@QT$3oyNtwMH zW^2Mc}uC_Ki!$quE3$_c}_eOTLKr9h<}e?uvWT_2FcgbVE>Xh#1SsH0gLn!=o{k z)udbf0qkeZ+S%zY@+!?V%; zTnkOurJp*+TIJ}YDgmas>Xy>ys!59Gs{M1vqCgi@#!Z!s&P;VxkzX8hqzEpSZ)&u= zQGJ@TM%~jqjQ3jpq`<+@Z~g7VwrQ5{#}du*{WA67BL0ey`vRdyW#iUgP>g*23rBW% z!MFZo*%OX+;<%S%cq=dFC?gv-x$hS4mK&Fr>m^6GgTp}6;)Mbs}b=3SvX{^>s6zssYbX=_!>^xJ9$-W z=dMOiD&?Ga*kq@eDEJP+c}EK|+)H4HNgzzV_6=M!<#<(_=27kDw~op(^5>vn38kJw zdI>Cb3(!tmNT<+Fd#{R&TjT6kDgd?6l+VLbKvjA5dq;xJ5C7oP{2?C`e1bNw*9FH| zi};vZLDTL5*5slGcolktmMdeUMVs7)785Flp#(+$H&~+R|E8+v9!K#-w}&3U@`!uf zwu_Ee%wb3O3@PkV#%&OJyDvEcE#fXW$i1W8=47*=1VQ)}f}b31#6P?i#U7V4ym_w2 z-qy>GJ)(3qaKZ>zioM`!D)vM*Nz4AOsCl6>iO z2cEbh4n619n{(hfuUF;$YmUa&?$y*oZH9u$yqckaZc5GN9NKUUnZ=xA$k0}o_IE}2 zrB}|T{RjkUKLVd=mu~+nMEyQqjk@N2-QCYk9CQ~rub9 z9o1~lal-NS0$ooj~yGtMQ#MGL^nJoFYqd~5^-H@?z+?MhbTfz(IYI;QuL^L z;Y-nts%j~k^(P!fn|44tt84a`<82X`0Gf>Tz`g#IFp;BX==Rb@kgghtvay)NlAOC|2y_Y*LSG zrd}5HarPBwc{S31O4t7r=a7EjkbZjS_YP;1eq`(VDbX%)WaP$wA<-_HphCSIDxpvh zN`z9m1lhc}v$`z`$vo7Hn;L@?#V}6EA9hr(631{G>Z5oqhb4;Fa)}hL>_8C$QynM< z`Z?=vlwpG%AP?@Z9xA5=I6I1#yaH{JT*R=tMIr@j zUbb*Hw1~c3hQ_03qS_<7CaS3G)CPVXYD^F;crSX@9dE9?H1r}E&-fDPgoo4@mGmzJvLPQ#%mfXXgz+) zITVS8j9(HP8AFC*6gOYFFxIZ_1Hji&(NqdgqaRO%JEw|du7J9`dXnCF=Xg*g2$YLoo`9U7WI!_ z7!$2~R-;)W2v*?yp{E}APfU_A+HUYiJW7|K-}r6-Ym|hxC22`+$Gg;W{cN(HFA5o?)DZF2i*n^xxLrKnUd2L z4&TY^W1Qjb^{2YmhMp_DdaBYxPT%DWa@r7i&N;dWjC8mRe$gjh1f;StB%eXfg%ZFOoJ;P4nBgvE^M!2Zl+7nWvVqxrYuvol!2;@QohWNHb=I}D zKr&BpQuroE=ZASsotwnR+z80#+snvtuO?%r@q#$OdGsRAIZmM$aZV$J4hJC5aKDJN zvYB(VxWjAHD=asmPx0%vH#vu1VWH19TWf$aBN3ukSpH2_Z{rk24tpCXFIByb0}AQY z6_Y}Gb;U%Xw{iNma8@<9OmE}-0-cT@Hu*VKz22DB(wQR~a7)PaIyIE(bvTDiPa6|h zQFP*DGQE8b_4Z8!2;$o}S%tU&ipd3&VsgPmAs23Sm=Pf3+Bjo`iAR3atYP-!bl+h3 z_;_kiw0wHHdUx?EH&DG5rF%4obKD-S=4A3{rH4mr3-M@9GI_Ae!-I!?o$G|PmS-^iqkHfVx0O8DeK)jn0IyFT zl&)otrLtI~fLH>(qd0?WD2Nwo7YYG#YJoww~0li;$IaR%1cN(^6{AK8qux0+X zFx|ZA(ED|K=VBMN^nM*IuJj6a1kPi~7K>z$Ko=m*z*3=?|YdhyaK3E9Xd<7(Z|}B^LodcR0GFQO{V`m+SyxF;nhfW#oEgB zI-EnQfkWxAwzX}Q0M14A7I?O7o^c@n)>FDvNC#88GzEeI)1@Wo9HmPypw1<=WYzJ` z8a5Y_dAc-}cLJqLTgE#d1dd{c==U)H{l-;IOk#9)4|7y)*>0lKQK;DbLd6zNa<&${ zHM;dFwLwvdGWL?Qh3q{Uf1Kk*XP_8iQi6|0{P3bv3tY#@>SGsjGF&liW@PrUi>*NR z`q;&~+A{kkXQtq)@^8V~)}kirGyT0^lOgos+oQZO$`_9yh4MuReRsY%Wr}m2xXf$Q zihQxQ+8i%(4y|Y7dQ?jik2#qZvCSL?@3;;$Xr!)Wd(}G1_NtuY-W8j1GTGj=j#`ZUK@bzh z=2)WuA3!nrU{Xvzm?-4K?i^UrOl0z*QXR7o4Q4z2EaDYz68SJ$_hB;UxP5SPGWoE` z!w0PpA3!nrU{Xvzm?-4Kf_cv4!bBz?CMq8+-{MLDKd{ofxWD!5+O(-yjv%d>&%xUI z=ZL@NhEg1!K?;k*+H%Kh&ZB|XSVca+e`9p_{1&{rBx5sjozn`{^3VUT7Hy%kx>-57 ze5H=sGtbnaJ=1bfxlX_RVw!xkZ}KIK?KiY5mrCzL{DVO0;jL)-813?CLT@6FOzEExDSwmIGgk%dpX=*GJ1x71hz7- zMp`P=(@!1oS72*%HZ>1yLkn%Xg$xmGy6F%}xasyqCuq~{hWh%}m990g>Gnc0-*lUE zXX%ckSnJ#&`fwxYj$?+WWKUj&?l^K?EOgv=94Dd(h5jTgQRq*qSNI*r4Cr@!_+j7$ zm!EuNz0>0f2)gY!WP|e;Vdu8E!+!xMr<{ZYa-ff^rA*u893WP69z{N{ZJ56bx*ork zo%V+F2eF5X(8#<~PaSw3G;#143^;W1cZzf9JPJ5;4E7V}@MAFeeW}Ac^)p_mj6)Ca zAP)KnzZCSWVlg>j3mljF)Q1i#HL< zsL2g^xXn34bmLNFLsos&A45zWu)&fgvrfQy;RMbg6F`Jan9DgP6LORZhKjYkqM?Eg z1-Ek!PAo%YKWCr_Fa~{S52rK1W1LB|7EI#4mau`Zmw7Gn^`h?U?QMBcp4|XY5wyK{tc+}4TV*>n4yq7ufsXyxo$&q&LGb( zlIN0cD0k*uavdz>u1Dm-9x;m7BG-pEP{aI+iG!gA916A9IEPFH4*C8%=a|NMx$-t& z$9udc**;uuJO@E^m@{YrHJUxmIYzU1`m6lC#M$I82%^8%w_zgS4{R5*2GG(v7gj1< zTG!&lrKR;B)VCI9*C);-+bSgUrFA}^;PjD%8J{>cIp%A12a`^IwM%p1hXC|NDL6zu zcx`FO!h@3fvYbN6R5(&7nSv$Coz$P%Sl3s!JM5e(YH<^OyU+?iz?PNvMV zWkZ$Ow?hugivMY#GJ8-+8Kp@fWt1igC24S0lp;)IO0N`U*}a)0Z|>iG6<%#KeAOAufPoa>1mSTrg3{1^Z@K9bqDq3sXH@aBgv} z7N@vHh43KN-J_}s&VFHgdw z6J;B*C?prc8mRyZ;~cjONt{eBRBvP+g%qq&Kp=r)a>1mSTrg2oAT^i@tK?~C4PoMu zA0ds*(X{i7bESBJn?-&M()}33Ic`6uax(exvWFkj3-JRKlOHC<J zvx_WVU0r0|{?1uen8;-AsYc4Yj~b~X#n6W8=UPll7+o6i)sSUZbZG>$lrD|>V~A6J z7|<9>lph8(F7(o<-+o97cm3de*?g{exHEi-ht|~HIU9WC-XEQZL_F#<(j|9-7{|#T za+5AOyNO!70%eI@#PFkLW0fV|z6IN5TP{M|Wy{9u`lwlB{e6#@NBhg*_RUhnV6VFU zO?5NHRIeH@xogmtRfs{fWko^f;g(egwa}Ke3QKhw%OO{tiME>f2j8;F@z&^S;K!@Z zZGjsYna;KH>fdw5TEtdHX9ru`fb4a!wV^S7#Wme#LmA%YTCRkyBe)f;i`~}|pQ8xH z$uTTZoE%ee!oIQNeu&!ESY1aHzfs_|v=J*pR`}IwQL*xmSFDutsvBvln5lsFPxYqEJJUBr%HnsOrEGVx3LnECxa;n?>B|h_aWjvp?yf=c zQHVhlA4{R5a4p%1S|~n3nnG!36S?+pXMNjtB=eY9!CQ03L>Uy)L!QS(ETglSC=X<> zm?+a!#l&*YHp93QiV1E7>tc6IG(i!HiKbYhm}uIx@R(TMgw~Sf?OomvK{vG}ycc-ba@k5tw96&oCeLfbYO zoYObKqHDNRkOsO&z0Emv)dso`CoimH>KCI?x@e=MAwK#KEgn;E=nGIEPvW4n6kSk#oT3;gY{@(KbyTiWquE@Y;qRa{49CA*T(Q zd7NX&kk|CO#S+dYuR+k{HN9@JomV5Tx9DE)H*wHw;E>nHIEPwB4nBi-fpff{M*Bv0 z+fek7S2q-q+m>`TX5_XZQ<8HG8TS#YjkC#Z5H#GThnnBI-?NXX!>f_oHPY2!H#c$6 zZQzjGojHeEMh?0?lykh@9+<91+fX!#ep~n2&{Lur8&X3Lc^$zy+_>yLQshJvVL&q{+)6hX~Z{i$s+mPAKIfe|mO{Z?3a5lLOf`;3Bs>8nW9j`&o zeyuxu-NZp>fkVzdcxvToK4Pxpy4b<_V`|PUlD_OHS)NBh8o`SCJuTG9P)T3=TOVQ0guC^hClhEakf`@ z+jS*x@>-+>IP?Vfy#{?^12~sd+MErkAwy4vgm4b^H^>PWLr zohMPd9Pomp75;%@GGv&egB25s>hR5s;Hzar<-TIBAQ|oBEG6%aDp6Amdb_0ik)X6!fAYIs81*xH9E3b(k zSnJcwRY{!VJo0LXyCAW6i0cqHaEln*~dWh0x)`psR{ZNrev^WiL> z|G;tZVeuDloQ{Lx$BgMXxQl)g{0FZ=C&582_{blh(m@0ug^qoOK|YoL6NfLga!nLf zd2KrTif^IL@Zvd#&c5hz;3k|*XI~9ls6*g1dg3hJ6Eol$CZ+&vvf~qagO_x z?{!WlPgk^1rn(AHTSac1)ZIAAIphXCta_c3$&ITXZrmuu4Ny#Om=u#6CJG%^uJ7#XE=*){;R_EJ z4tH_AAfj8c2qhQFw3Hj)bVUbn26-@kowbrkG597Zq#CXt4#+&q# z@g@ox-?_i5kuZ_T_;*akC&}IeTn9ywR-O^`O!wfKrw1$U_l*zW)yaX7R^|YTz#0Yg zKBy%JOlrvi6NMZYFxZtXOk{H4FAoQn4{>b~?YTuX1g%@C0BX%S?f@FZ$>c(R4;O|M z;sPip7fg!D1rvo_m@~}PR+z}-LW@@BIk0lLONy1;B64Aw?!q$8As1-pc!!h8g>4=# z>?*_sP)shE6q5@k3c2uFHaz)hB9jY?JzSVE%Js6i#x2@&&)(6ZdvMvr82Cy9N$->V z#mVHsA08h3U5E#lbq`F6$paIGJZLc1RbH6LB()z#d+yqJ2B-aGfsjB(~ z-c~QVo{GiXZuiNmgOiQ>HSJ{Mms~x>2F|17RbJaLe0^(myjuHZ*LUIrE}GI7u(;E+j;IEPFE4qY$N+pZls z+hkW;UBO^pgA@SA{kH3P&ZdhcLvSYNprB9NHu}YqowK|zmOuktEEzs*=G6@!=wj)8 z&Y}F@kU7FRC<8wg7Iy$1z1Qvzs2sqVbiD*(biJgyKU_ZA1}^~I@Oll z^x<6c7tLJ`kH8rI((B|e@@nMo__iv(=9oC>FL20MjdRFY;E=Y)+3o;-7e&-8os=-<@idMMXcn8&?Ro{ zD%V1>oRjIg_8m^4ZEYJ;Xj_9d+kIX8&uZ5)ah%tt?Bug{D#7}Ub0|BZ*A^~uGVbk` zA8;H}W$CZ)8mn<%ueUtQ;FFHB_I*DZ&s8TeJTQr1t} zsq5AJXSC#iYw9S5JSf#(c~Gi77-QTMCJ!h(sm95aom6hGvfKyYI$p0PU=43CWYTp< zarroEVYo1hW&4=1J+ z?1U8*(@>ZclM5yaxj+wUnaJcqZx0vfL9KVVMdZTUx(jb}j@yMJoJ=kp^l;&`LRyODHv;bhmsW( zlM5!rEq`dz&+C_Q)?GFEy_vaLl@>e+E+ANB81O@r)UjFZ-72#xe%764jNclrK zFSY8Fp<#?*m>kkkZv4o#UQ}f~`ZYysd`Fe+$8}`Me!5q+#vN7W)5*la%m+A>2lV3{ z+KqujdB8Z%;dy{{R7aKUHC`v;Amp<3?J&g19(!3UD5Z75q?FbL6NT1=Qzu+0=GJL`-Rr2< zg*zS9ZvVxXu9>1aw}#A5>!i$2;~e+W){B$L{O-#9%s)c|t#KfXJAR)++yLd|hDkZO zVWN;5j<4W!+C)Y-EbuTG^cLkUh9`4QyG{s=8%Cbkbx-V^L!M+_E!IrD#mVH!rUE?K zQivy@oIEipCr?ZiG+Dk8>MSS6&+v)2+`)OEe#(~KQM}broq1d!I-PmQL-j@%w|3N* z=3lsx6pTM3g#{xm&A$ddVHNqR{4b-kRhd_3tFnnq-Tg@Klfx}bS%2J-hiC)M< zp+2RAY5vga%;zIp>S%R__@LD}4y{VY7xQamLWx%A8kvQz&hVPm>;hKjDnGcEh<2#J zdv$Kb$?i9-HuT$6RNl+oP*m>!5!UJ6ycQkJa5=;JUYY7>=70BHgT;6*LYHHsGu3K6 zA`_o{%M=T|YRq%jpgYU=W{+mdz&1BEh(EEyDXf#+&#wK3 zA~e2tu#|!$eW&p8{qkp50bfLvZ(V~I7K&$q0`Kv)ax#4oksf+A#y3c|`NcItgz;K5 zzFf{Qy>u2E-|AchZ$-l^S@+ZJ?W`5DaCoxyf2KcO>V~=mIBy zbYJFNx{d6 zWVfIW8riK_qLJO2Rp`u}{5#wN_5LJli@UBB;xH;OjqLc9lN*})*Znjz3~Z3Re9zTS zobeDF68{g7R0pF%8r30KqEQ{vnMRfUCi&4S^8SxnEd1E@)hcrTpRVbJeeu5CUvP_mBKH~g zSN+GU$1$>Di*ue#c(cLe?NmmY&|YkcLEreSGT=e)d)dxqDy_`nzW<$(0CGqT^mF5jGU z@A?)QG%5R!VnvF~SeE@K{Z}P>8``x6;Vt~N?@b7PYXFKNxHbaV5i+&{q#?*%0Lu^> zgU0Lz2qS(2cmd(bdjMCE_GB->BZPAZIj0e|djJlEwT}T-AvAjm&=ldNB7Q}(Cn4BE z0U{A{BLQAT_}2#T4530*fLMg*i2zR#rlkW+LFm*SpgqF7Qvh}$+?$gFcxMj4@8!VR z+XzRh031XZjU6x&VH3i7fXUfUSr_F}_vBL7B_jAeh z1>|*3F1egb?&gxKx#VUpxtL4t<&tZ;FNl`@O>B2z`qygQE#iI}xi;E{z^T9%?cK%giLz@V(MMmHY|r80*Pl!vB{^pz$Ko^AX5&nlTWF5c=gxTu>UPZWz@EBqA27rkOHxce4 z(6m^Bvt$>-lX;dRRprX!2^Db-yk8pOYw4zGe;;U_PDJ+e;Eb{6&aE7j(0%|h|{2<5i{R7P02 z17ICO;yVB}5K8U@D2+gKd=*alyj^;$SfEzxoX)5swO-kEWKyH-;)9J=sWxx*Jc?gH z*tiE^GXkv`X}DNiM8FkFtsO^j6`{4`DVAvI_+l@V`n{{SkAI}>0Q*UR#RwbD0=$Lr>(>Bx5PE$JFaY6Ogo_BHz5|$m zP~>}n;t0zTRwI^-c!58>J!fSU-deg|lea17xjLbtmBy%A^wS&I9~ z?t6M0SYY!ZXly-MXUS_pEvXi7?MD>5f>81SKp4V+hX5}iTzdp?6M?p-4Y*T%{8(=T z3o81C1r?W#7mlqZ{}C{+sTObJOB6eUaQ#n!+Xy}W0_cbE1;S|r+VooB9ys`^-Ub%P zkIV=yNshWcHleBc42Y`p#&S@89>Vv}0WKlX9{LJysVj=etU#^0&x#^`O790j+OQmA zaV76z-F*lZd;qE-Tqy={17T2cfMEzRB>>_P)+4-yu*Dx>2SN=2P#59jK!8sX8Uz8P zA><)^gwQ#@Bw%%fO$b{NVuAtU5!N7VLMU4bAO>Lt!fJ%*5Pv(w04ET}RRMSrfl{tYRiTtoRkfH=Rd12P^HDp3*&95O<;*AYNsbL7W5$+*G zVFnkAKp9+-Bq-UEP;r7aN!Lpo%|M)QeU?l}k+({e3QDDlTzPerOhE{!4G@e#so+e^ z3|FTsTUV!pPDmV9glo-mh{JV!j#a-z7}*S99Ky^DfO!a^%>l|HJVtnmklX>F7DCsK z0KE_rIsv32tU}m;P%9IlKEmcKfb9se;avfv5E^y^NJF5UwKJx$pJn1v9(9-tb+h7ACl5kfWsL?HZw;Ij$f-^~C;w*U-A7``P3Fl{S93xt%n0qP*6 zZo?A7j_m+@5abSkH3z6a0T31-OB5 z=mWnZIoU@6vv=nKe1NcLAC?dj4gjPgM0^MkjqvDWfWHvVeFE?u!jXdj#}Pg~ge8O~ zM*uPqs(uQPgwXqQfB^{gjsY}A2+uhV7>y9|1(pyVBRoa8asuENgmqs5yn!(NG{9_x z(PscAB8)kUC4^tk0o+0O`fGsi5gL9AkcLq9JAiTsCB6qJ`MqCGk!=49SVWlg1Hcr7 z0Y3r^MVN6JU=Bi`D*yu#+Fb?6LTLXpmJps@1F&2N_!Z#}!m(cfP9nT@17JHs)n5UU z5UjTVa{LhIAiRd~6yaZlAMOMEgmC8pzypLLj{u4z)Oifh2;maKRfKzg06a!0^(R0$ z!f#Ij?jxM|8{jm;)@J}a5#D}|@wf9iz-#{i*byfE3or$tp0xxFCBim@-3ZY>0Ob*m zA)G{buPDGigxul)E`+}kEWQ9^5GEoF@BbWIEL_Ud4PQg?^VDOLQ*_HO@y+Q0LmeJ zR~6tQ!rp2C2N2$>UIOB8dvz#oP5{`B5SIi{2|*+SltKur2@r`e1z`q4_gVmb5L(s- zXphjU4wev()CD+(u(KY(dk9zS1KdD3)BxZpLeB1nfFB_2X@n(&geCx~2oX&Iq7gc@ z0qBfSvmHP^gi`GRA`s>xEI^3q08kNOSth{i2+ghX4d1{4*S&=m>!NBLSKs zY)9CQusR##ZzEuK%TWOB5bBHuXoygL3_xXsyJGr#N72$9PGViD{JixFN}0g#Q5DFM16Onx0;Dngf406h^>R|C{VsIdl12*GOs za>5Y*MkullAbCANErh@g03is^5qvfR{Da`L3E-7C0A?Z#eG_0LLdIJFtr6lj15`$M z3t=0=%&h?P5dJ~%c^klY2i!@|3QwpnBPwW(tQ)$>E2&x|IjhI$;+8IQv1MVHkME8W zGCd+8#%kFCcYL%2AD`_dP?R?ci(E%X9Szmr4M7L`@Qk9NCf3jU>#%qb< z2sWcv%Kwsbq?fils0LDNyU2U-+6L=SUF62fTDt#5MFuV!)x_$vUD_&ZbF6NZfX8w%xcZHkkje=Z3jq0_$8%<1r?iipq+Ls!oJ`(awf|eRMj&;yuc_=}vD(fa{ zwvwFw_J4Jp{`u>%|JiYRr7^k>U`9bc=(W6k@K4qnTBYv8GQH!rm^@a3*BP^vOM7{$MgYYN9bA)eq z0{n<@co)Digr$1{Rw5*Q2vGCG96<3AKq-W02-c4Qo+DU40T^}=U=%{IA56~5%=>>om2x&iH3E{&Z0S+N-z6h`#;q*@c=Mmny4DcSp z&YUY)M0ouwz&eDS>j3i*`uzeh7@^?}fOLdLzhVg?@+LqGLa|!_{s<_W+=gr0u_ z^h3z~3&4f&H-hCUz(a(;5MKBjU=+fzX8@xSzDLOUA7anv0R0exiogmQitro4eT0h^ zfU5|XtXM+mSrnijLPjxw)(BrBoJDxKIKT{q3}1jY2!Vb8p$OLzZXwk5&jD=Y53mYh zJ;HMYYXHDNgkcEh5WYv~EC6~S%nbxsfZz%OScdRjNq~z8Ujzeug|H?BU?akVP=G%X zGQt2_1GLQ!i-2Mz!X1Q%2%F0S>_7;J1PDg>Eeha1!W6tGI1_>H3DQrd2gUfSTV+^q zpT-^<;7E|K*M+kKs+B*_VH!urfPy%La|qufOpgVagOC#kFdw06d4ObugbDyP5Rxkb z)IzYv1Nb2ns{{~$(5*5+9|XEnNslM^T!o+Kqx z;=L-Mfqw7%dQ~XV&+QgXfD-)}X;LDTY9dU*pO2v5qe!m{CHhGAT>JzpebY4xKOaV) z%KHvW^dYpRO`t@dyz0~xO7yaS(*>=esNRg|03~|-v{@#U=vklVSfWQm_TlY+dYl07 zzGlRw-Ye@j@hblAg|hzu{8w0xNo^30Us zVSy#>#V3uMJaNbi%d&mP=ACJ*b+Y&!90%8|KaKNqXI$0Xd5Z5?U{b~vs5Z4%p*GtI z`4x3bPvsuWbX7#Q4BOrJ* zJ72iGTD0f47+Y%?T%_BJjvhJog=Ou0^zVoH%(uW{0VI&w-S84Ve-fz2{D$SoUo*6` zVw;!VE%|y?M^-56?nrFMOa1U1KOC9E;;5IdBObcs-IiKFLV;QeHquX~*DX_1b^2v5 z^_M)<2L-!LZP~JfJPRX`_jzmWtkrLMD_Catwqm(98+oX!4?&RXu|81SV+iz-FW%iF zSgk(YWqLoYJ_Vh0bkG8P@|*s+gH|!fFQ7GOuipCqYC1|aea^e-`69uq)vDBLW=4?_ zCH`aNuL0L{Ei zbdjL0Tv%@owE>d{^l2b?_2$6Q!969*OERy_NUgg?T>B4EQGjUr zn#Eyxe`RY?R`Gy~9^R+L$zkKQ6!Dak_q?xlus-N6?~m7_L#rr#Cb`)Q7k3h(2lN81 zNH9Do;sbT$tjeQo1vGMRtX4;q^OV3wW{=bM6(B%Xr4%FpR+UG=JrkiPPra)piDm^= ziyg3}AVZ!{&>D!Yo&tvH;rf6o^#jB(&x+Xas7cyuW{ct3H$Hm$0%RIJ8iE-wYGbWp zCRge)@S)zLmj@w}XA$=Qkc#k@k{D=tZ@i*Sw}@5$AzHQoQL=U0G;M`dZ2b>WeX%pS znfmk6WVtmO>d|OMDCvvp@){{Ntm5Ga^ik<`sc+W+vBF-{d zIbrnTF2#?*vnuu)^2!3O(u!G{khc$P2(fHHBZtIx zn*^B(S(Z$e$*<GxR83i;nD!^@2dAW9`vmU;_@Sg^aov+QZCiJ8Z z!v6zb)f$RaPlM#jSG8ExM;XeJz4JAjyq>r^#G2GobyBt0w9l<+x;;Sj=%fm&ldARn zzdPyt0blr z;BOCuDk_6||9=?t_9E?!)!tK1vumls$qh-jERB;F?Al9WIVa;F%JmMdgzB@Fa>6RD zrF`T7!<>3|*__&H>s!jY;;3`-VE7hem$C)uk9BF|MV^=b%P!4V>2EG)_gUOr-agLs z_tv!K)?>Q&(5Q#^@yh#!{~z9ey;yr>z0p&Cu>@B3n_gzLS*nFukL{HMm%^xB*S-5+ z)g?n@-DO&q^-tXd;CPr&NttlvzfH(mu4S>UOrL9f^2@VdEe?~#DlO>}&KD0h^%}3x zMvDr)_$-4JBs`W;SnVJa*i~*g>(&<}aJQ44;{$3mH#! zZN%;ZH6?RRezC*GO&l}m#RmVO%cGm?sOILIl(&~j^1Dr1ZqZXfmUo*ki4&)Jg}4v2 zwgH@w@0j&;FIoFd@Y_^>_Qs|0(*CB_MEuI7D1icj__s8V1}Nj|>RjAbJS|9|%x0~T zxdrr!?OgShS6}v0i}G=%#660%bLG|8qQNf?M)wA~k)^puuOcVAos8}+|JjqWW6HE~4d z*Y#+ov1(?7M>CyvYHh@Ft_&w58;T}MZn0Z#&;DFE@VFir$!h6NKySsZUy&~OfXO{6 zi{tV_cWX|I*v}hs57S{zreWI9Hz&Z-TV}nhbutT4PX0BoPaVC#x2(QsvCUi;qA=EX zxv#}iq(~9D_C2k(xL%MTrO+nJsGFz058eEv0D%>IVMI;!Dcn2m)oO_neOMeCmR;Jb z)iVo#>up37ubc0+fEM#t7CF0i>C$FVk6}$y!?RZnPdM**Hd8z{D}8#I77e;$tF}*D zB${%&z_oUw6{jpdy`-b1j~u>Vi#JzA%h-<=$fIhU5$$_6~ z^_W!i0;DL%Kk=D1-XbP&OFXuXiG_&Dqo2dIR}Pn??Qh#LO%tziGHrhgk82U$=}S%@ zwGTr2GElzwh1Sg~`>4$jI5)n~(##Eb^u>#XnfC4pZI9T+Z6MRMFSX?&kCVZ)zWLeA zF5MW&W)4`7>2?4S6B*W*FBQ-#?V}yP(i#`Gk8b=*lj0Xs(|A?$Go!cz3re(+zJgaZ z33(S!YyXeE_YRM$_yYdjNhnDM(g+YBjb1_(q)11a5V~{{LMIST!pPSvuoXRr5{+=*NjZCtKv-@AztJ6^Unl+U3E|f0_O59zdD64!rttcye zHZ4EpI0(^Si7Pjwjf>xsi~=98b(zO>O+ z24wS|tl%$cv9!7TACC>aBQVoU zV8g|<23i4KGpDP~Y|=Bc{iU={HoDG0$>{02l2)5$$p63rZom~-XYZ4X(YYBt*~2So zO|=3#tus}vD}-~G_T;xC7$y->t4U9sM2H9hTXroio!scjs$5T7O>fEib;&hb)pAW2 zLi>%h;Wqk07R2^cx|KGI`t*`=2;1|br~ZUsj>>)N;hIf>B7q>aaSD7a_X3y#qcf9# zOIt~3MOoqXU9fgo`I#MlTU0JaJ1X{KNAIMy&kd>9}TJ(eZQ#c0`pUab6IF#2l*(6T9iL5fT_6UcKfEm13= zvn)lmtWPhs|0VQN`(K6oX$gd`k&(Knr>cT0J%VP@5qN00X>?*(uD{c6lh1px`+ujE zpkK=Ruw@M%!@BQ#xfosXWiNK?F(ki6plUH#rFHu!tr5LqCNSgFrvwvZv42hSLADbEX43;Y4 zaxpeDB%WP+mR3?LfJ?CoW_3S#o;FWg7vUpcz!^k6GXekqAe}VU=vufyZDIa+^@PBx zh525log}^D+2xmMZD@k54UOpfDy=mgAQxi`6XMzHS7}|e0&w0_lD+>LhSUir0?ugV zZEby>(F;|hd*s0A+BRiASrX5_vMJ^0GFcg}2Z|A81YIK+!{%U9c9|&o`J&)2qP$C% z#q$+PJvPCn1hMyhlwM?4yt+bx|JZz$I$EyI)q8oQ>xQBaxpd#Dyj`MN(?Hf zgtJP2M;4+ky%?F2!2T;HbHGA8Jl1lI#H`Hd-#|7wj3%C8hBF5zALO8 zC!Zy-^l;?_{X#ZI=Zht(%A?kf#hvs9MU`XZmjrblxhOMXTIf%2$R#-PTufjOi@}Vb zsf!~|{RpK2eQYLhK0;Zn70~%;scP^!YlATpnno!TbJ2pmrOef}ewhjj>1~--x^qmi z(wEO0)D6*y+6BW{cxlD!8OYGm$^`nhY!93q$3@kWN<6a~e8Mx3mFjhs)H2F@q)l&j zt&Gx*wv#0ECn6bYn_7!DwUnxQ;OY)jp>j%h8yzUs(8JcKu)e+3RaHO*r7M}#oAs}t z^q^BL`AOLhB_=D>r}{MEhMvIC8fNLZnh9y zuL^EZ1=+^ui{8X-9cla%2KHsg9xkfI9{8sO1W3S4Sk@M?(UVe<-ZLMmI=;1bvo3W+ zY~+BesT2IB(#hL->*P0Kiu_wPg=bB{2U3YAu$kSfE9>(TTO!|sc)LI{jOwX_CN0R5 z+#j}I2lq=)8s38)i+6-cC(~QimdHHZU1zMGGLVEOy6P)KXjmfXaBoB6mJZ)7Cc%lO z7tX&oLE`!O)COUGtZ@V79dC_Y(Lm`|(Cnsw1D#nwL#2@q+#HbEzCz(zHvWmfy5rjP zHT>H5Dt@TJt*pim5qx8{2tWM6FAo0B4@LNultTRQE%4`=w{WRK}^tigj(jUPVcbNGIK_=|u2gC8n#i^{{n^TG^n zb1K>kZ@2(#D%zQXHm0C`DQH^?+LeMfrJy}2XiEy(0p&gXr@xVc`cqMN3hGToozm+r z&^>tj1-b_>+n{^!x(>SMI`CK7bZo2tM&Hbfs+45iW2L4x`08U9co|w0K_%{wqmIWWC~)8Gf7& zP4)5I>{Efowoxk4+gWOFhz9>EmmF!MtSo#(Dsh|k1j?j4em1s+r6uVD|HU8+R*}~x zlKa5x3ktCjan8bQbUT<{3+lxRhDs%Fg&}=d_x8$mQm&7B9UlIc=>QF=B-Mpm4V5nH zekr_}zX$x@L#~cWD5=m#-7ih+th~!6c7!3aULW;r1pb2;TthenL+7W4u1p_weNj@P zOP1j3>Wfaw2c(;7j&C=p$l7npsLnFpQ}WPwNsi%G?$h^_;u_NibOzIUcuYG*l7&@J zsIyAkoYW-;RyFCWj3=qWN$~fVu1ZC^$Y4(AZc2#8oW0$^ocSJe-nG5S)}*C{vnJh@ zR%E3x4JznN3s4>QK@LnC)k7Ig4ydO29Owh@_Rrt40Bf~1BOf~&Vb4Pk8?2n#Q$49% z*i(ropGwBD*1h1Q@`SJo{-d)>+>(`<1FIIsE9vBpa2Wh;m;fhF_Y9`&Pf+ry4ohN* zy_F>P`*yhdjjf790 zzQu2yDBo8J*F-R_FGR3tUn$pp`+>tN!f6M;CkOtcvr61FRj6-vxjv7yR1M;P@AOwn z(KZHi;s+@H8gupz0CQT&=9C)<3*uhF9QcpUoIo{`nrCZHQPyV=B>6<)q>0=~yEfWO z(P;*&h7VRK-<6m;Sm{S53uFErtZX6+g&k0+vm;2gV|)(mm^(yaWRtLC6So6zo!Tzj z;kk8c2un;>hOi_1AaS+`TjGX307_SCTD9fI(IGyHZ>lltR#N@)Dav0 zz8a-eruqBnQ+euWrGT0{LsgqDjaF)tfPQK!$Bt3Xk%)e37DJ)V9C80%o_^V7aZ&dB zSa4Bo)g0g2U@bO9rd0QBS^T>_y(6{1*Rq!93RRz?* z)y#oawI_mAgN2je@6Quq7h{;grtXtGHsRcMbP{y1A+k-?CxcB>g-!4uolRk?O#`iM z8ZkwAL00x-$y1e*bhX}$z}#`e`}H3>THH?7Qk`aNPE!hy<-(Lc)09_e{h!&9wL_o-Iy5fjG@ z8a~W(rsdHqZn%_js@{%sVH5L_qy<-th3-ow9=-l7?ah!PnT6h0DiHcce<}SvceCV` zi*YmNjsA?L!nUqPz;mNQ5m~@7AneS>X51YbUrFgDv@F>7Ls+?v62y?nV;E} z+cvsJs>-nS=h9(kb(36-tzXkWbAnTWJLEJHy5@@;Tx9(WZy~AWykunZcCMT6M_O0H^E1+wQxT!~OO(wMF zM?!NAka`MU$a-hB(un4hi?JcO2C!?ZmBCs8Z27nhXnB;GK;RnXfQi6AYm`~Es$L*J zHwDh0@E*H{Z?K?M@ayssAHu%A#zs`x^+Ompo9GDyY&`d&(q1c|bA`BpMs|f7*gfl% zS2o&1hN7-38z77N%Eh}br?s&SVADTR)|=FCzftK<$C}j7y$Oa4BY)Q>r8E7&q<){x zu*0RPuWL#ZwWArE(rb(IlZ~#Hnb;J(ko=KcjG}`L*WPMgHR-R!5n(tFwCiVR@ zp`-k6Qh#-(Qd?VJ*T~i;mg3OWcfT^n%Y?^X?pJz8$+M<$pbBTNSHT_OI}a%D(2#+0 zkK=<}pj2X%ZLi+6I{g#nFpZXK;?}D)>~>UbmtpX0V~$Fh*FRN;+Q^#&S=&QOJ6c0V zz^oF(zCQ$WM_swtGquzhnAz*F5^K|naj%7Xri#w0=BfkL)nO$G8@sMPM+Q(527m3w6LK-TdK=HQE)Hbf&cUpy5y080ViQLr`j1{9H?KIhkK@e7f?63&@Ndt}{BTmdkZ8L4Ljs z5#A*iqhTO`cl;Oy_TGVo(&uIZZT?WInP^ZaJ~M&3e=1*^2voWY>!RPy1h(B(99jXT zGTe$d;xD-W`FGFX`#oTNk zsHon3p^?CQN9R0)?I5RKf`E$r&y@jGBY^j%t$VIipdXnDlz#y?G-w3Sl?PwI`r&|? zK-_;yQ>}o`GviEh2uG=im&!~+&&W{J_1$ZwHT^{{#;~0kymyox9t+V6lw|vD;IKbU z1XvwnAEOn}88^Y3akYKyX9@L5k}}&9oB+8Pjq^!jM|0b|Xa#h-rkd!&g(uv)U5p*h zW3QRb^bWVP@fBu^y!QIEl57I>h`6Wz53MUzWjN*5$!Bjw z-;s;4S#^`tB-IFD2DK<@uRuGS2;h?xn)>Ls=lLNdNg?cPV0m z?1ShGnTh$cFUbBDO_7VSEi>SH13XKk70{{rKn;;b6+YkaC;Yx#Zh!b?44l?8l5)K9 zCGKR^5OD;J2)7@mJ7p_z9h0{RT%_197xUo`A5bGZlbExJeXLeW*Mi;VEx1cg=iKIx zO&FM{c$-h*2z%vh5_J|+9)(q8jtIE*|4&_8;-YR#CB{VkL|un=h_t8J=rgIRy5Ey0 z+P;d~hDhBKgZoSbS0kWv%|W$UvU)X-*2maK&~TZlTWB5jCYe#(?xJO6NzA~$CG2%+ zWx1Fe=>rwj5nLnT=}wLG5~R!!cCsWmQ6r#h)=?AVFk1Jvz7G$9m$H{EZhhkVNzzzf z$C|kXnQv)(r-Ejen&F!9u+rf7p|XKE=nR%hjIsQj*{&BTz?PJ;Z=jQ;n(Cvf_(04o zxmfc+%%maeWea>D#y&*7YypLQ8(cb7`ciGaY=}DXmaAZ2=tDQid>n~>s{|v_cDa}b zCpWL?ek@ue1Z$``dQ@MZY#5SRyNZ1yoX5%k(#7VuiE%id45?->=1a~G$?-TM?kmzX z6F2T_)wI7$|CDXOz}%KfjDfkRcCvi6?6aVgNmcbHdzVFW$yIRjE>g$-xsB!-Ds@Eg zZYvrnmtfb-Gc{G2vNXr|*`dkJ5< zK&puuBN-SV43udMLrL1(_u4X_w6mYEk!9HgR00N?0eKFx8Q%@`%}nTMuj4~ETUb=e z48XmeS*nYDiH+{JkS%8>iyfe4H+vpJzm;V@Gxb+P*_IymO7tuF-=6z_FUiH2ZXobs zPkURf0On^@FZ(EZ&rINMFZ&Fw0G{rxh_{!cZzM|{)2#u|H#8=phNJ|0EgE7XfJ-@j z{gSLrZx}#Jn$%~fd&5Al5#T*Wie&{ecVZ|=AA4>aZD^p@O=edH!0T}8%KyQY(zd?# zVYGu>?D0QHjq7J$rGB>6vRMcIM&W^{&J?6Cr*z8MHv zV3aC3$XaTmCL<7Q*q>Zq*rf&?B_@0oQPi8eoLaQ`V*b5eow6~!lvJ|?33yiWK zG7(5wZ!b$rnhC5MZ69n95Dk3GOyI~EdpoUw&e7G)9F6f_KGt5*Mmrd&ZHB4+rj7g` zbWieldv~^a<6?iJ-d!k8EQ6gA%xD5m7)8l3}X)`+h5Qr z@_*2b@TvCF)Gil$q6AXQrrQ71O6hE=Gqk>1!T0E(ZVI0<^P~9HD|&YdsHs= z*s^(8rtd6!ak%YX{=d$cdR~p$J==bP(DSmaZbollCd*^X3V&e#js9jK+Q>{4<1sJA z-qS`O%d(i|q4Vrtu=%^y;GnT!eP};nQg^Od-F55inR4A2h9eo%*UdcyO2iqFTwe@ioAmVw*l}TleMVMY zT~16jYwDSg>?ziZ*0@pZ`t+nqY{N!-75crb6hrupRALO_YzSci)@PG_KfNGTRJRhE zZ-z7L8*(wa^TKfU^JaTDt$?mAb46QZ?P|zB-C`f)Lth!F&xf;VJM72lbNN58dE1c& zjnMZnsQY>+48@wd@bGq9T3lb(2kNMM3Yy9YuCA|4o)6FLyT_hk(~@;<`@n147Vou} z$mQp(^@g~VkMDQrc?5Rb+UZpVwT2QgZFlVe_1T)e_QmYkr}i_H|10Y%9ga#*4?-mR z$i*0m)+5;ahwK?90=16X16iNL_R4gOnbh6G_9iA$XzKfV0UxkOb)nHP&{Ll-(Mu38 z?95TS!$gI0%-)G^HWO(08Ju)!GDmV$bLa=fB@sYfdL zYhRe9p`e`@&a!$656=8=?C)sRV(+P=uj>xI``wu!im&F(*pueV4t)zt_ttt5j)zmb zVk~57T8LJM$EbKSscPTbYiI>@9dCixj`#QXb~~Yy4AgNW*|k&lnsl7}ACDOea?IdIH?FlPy*wbiFxft)tpL)|?j6bKa{HDDf z=`>2+K_<8Cd&$sI>JBm#p1lQUZW^R6XnVX_lbQOf9o|?qN7joSq4e+eK6HUxj2&Ul zD0cIA7-Tg9I%RvkDqDWr-WcBIBU4eC{~z`ibgNv9%GQly+y1bBs1?vD+i#`}_mQ9c z3A;eYWhh4c3#r5y@lP{1+_i7ib`CN{l$Zii0&z&_!>bmHE!Yy)Z)eZC} z{*G}znKk_#i+sqp7?Za{+|OR*8a=50(4kq6UPwvw$}6u&e#cfqF65XLMAXX`ddtEx zR|Pw&+Q=U{CWV`jGTVnb;^5RocC4;{MVW}Ht|=GhNXnIUeLn9PoK$n*oES4AjuUSe zb$mpNjgdM#@2Nh8$B2^!_~1E;cHuEBFv8K8Y6Nf`pBCZhP8*sD z@N1k>2rHRciQ~XWk&Z!8a_2MY7wS0BGs>}#CdkULPxX{ajIvc(a2+^-UKQ;aONNhO zVKI)0bfhG~AIYu9j((HoS7C3ABe zzZzyF^vv8cjxV$EOjS0s543J-Sx3ig#?ou54e7vx_VaC|^-_t^hs`t3lyijJ z$Ue1EUZ0kd;@wiTN(QTM%a~Qc(KZ`fo2#wzjde`5UgpK^P+N5}7P9jfsSWrDR@Bc@ ziLq7f*|9xg#nhjv*jEt%e@N9;!0%Ft5zvXJR%qtzN{;icbH`?`tnQeg zlhA4FW~L2CkTq{P{-d>Is%|*zWhRQrTdtPly=(%|NeaMswHzmDds!3q?KV=0F#x@J z0B+C(sgiz%?jsD8LF(FV`rD4}G}%J5pP4AO?Lb|})oj|y!G97(&yfs_NZtc!T*0xftV}K9+sd$T3zcfFpIw#?bM%n+aTN?1<0`cy3`o zY9@g5zs4k8LJbz4lUt~E{^9R9dS&Cefs*IKn>vQlo3ah)xoc91(R0I8&jmGe^z@6%CV1Fc$g7F;`nh zdu?5vo(X1p@bbs#c8+LYT2ZFz`rc$SS?sn^?>TCadgEB<_Z&580~rDC6BoYp*n>fZ19CD6%rb*v>--WNZ3yino2F~sW;0preK!*w)3eDT zc->wf$KY({4te~q*%!L#Y}p)4v>8%~G10cEiAMW5I`~jUs>*PSaM3_V1G-c$#Pq0UY$Z4u(PhkX|4kH^sf#6T^b~!*6cnPjckf z0z4+3(gO&X_*;^rnKyy!W&%%!IR4NI;INY~*)fLxZ6<)Dh{kKWzOh4OfE)yMi4`*1 zG1r$}nx*8+3?1!A^Cbb}bG!xhu^AO}^6d$ZeuNesukG3J;MpX{`?Q2yjBzYFUcDJt zBcN--Wiw@%#QS~@D9VOSaa4}B+{cRBM%2rH52rZB(Ppv{n4nFh5@Uki;0aoQ{XG@V z_Bu&5^^@c+VWvz|N4vJu9rbOrkA>`S-eg($OvlG`goWrGGf{XJureDx%h8(59?y== zaxho!{KGuBd&0(jp z$E#!X>G#U{lYQg)eWNwm>k1+MQe8KFkEk2{Yd(LnLv;t0tykYIdH2hJ|L8v!x*rJL z53N1wd0tRX8js826W@o8yUXCzAvE*#A{c*2;Dj7^(?`M#nXabf`sI8@6g2@fxYyOX zsiUZmdg`W;#V+1qm7|0YttiXFIM|ogkV~+4SDe5atcB#$)Ws3);95r=+T2W_{fCa~ zS^?c~5NT!@?gj?0b9A$jgq-`QxETs3f3m^RkPesa)48XDSJ9Ij9CzqcSrl7*>mwk} zm5b3uQzx+L8y&;60=gDg^rkCw;wA^&-my}q>g=p+CW}jv-dh~|@{%n%_f}Oi6z*bvp=~hyO}-&_0RRSMVNN^YA5S z`wuz#l6(_c#9_xk8aPqc|2z*`$MqA?0G61N*0`V-8}Ti#eUCWW`Owl9u>Jy8+!B^G z9Ay)^K0fSWDJ7KAFC2TKeE)Tg_t2Nq!Od>Adw+If9WXe zL%T_J^%;^R+9&hWbESFTINE1pBd9qudPF5w?psGUI!e}pHV&6cj5ZDzHs=4%@w1K2 zkm{-rHw2$>{6JIWV$W9DJSaA7mCcyQTAy@u(V}z%!bs6v*)+Ael}|a6vuQ3^jL|!F z%8{DQ;{Jwo7PG zesuKHR>cc_vww1YLNCen@j~CivyL$JRac|K*bx)mVE;%|grO7F>L7~Z1rzB zz9zJ(R9D~eTtcVJQ(u(4<#)$i(sdH6cH5CcyXz6s=($`VI!{tZF~(u!B*1R zj)~cvg2G6M6X82A9p!0l*;L*i%e^I)c#qteChsvTU38<2Y**fFT*PMq`yVKv0!W#jIX>i8u+HSpw}!ITLj~>cSiqQ>9y!n z3&vK#cm-x$>l!prtJ2w+s2=26^-) z%L~4&Yazcw$k#TP-{J@I9WCT{3i)>C@<;r^he;OlyM+8eRi12_j2j98o4DVxH*P@h z(sfw{ag$j^nqH1Vk>#U)DTlP;HJ~XIv?Og$O{jXr19{5T+PR~9qRd+=tHlvp;Ns}V7NnPgw980xr#b!3LjIMI z|Jo?8v&8x)od&Tb@j2RZXxe0 zOpsd(8(TtMeR2=5kS{3Y`x@nW8#TB%`o0CJuprIOmSh6nVF4~G zz*}>D7nkBogMp@qSr0-Mhd-Ggx-r#SMS6^24 zSu3rKOA57BSo=CH-@uJ|*aA3wjwrAK{_Zl;@7q;Ns}J7Nj=? zskxDqwTMZykgqP}iXe4FD!eJrbOvtAh<#m==f90|GQm;o!-FJOi@>r3&q`}-A^@uX8Zk1-S^jAGr zO6pd^{2Rjjt58=8MAVq{I`lsa`PM@InNgm%SA&bA#opH?n>35I5u|W7a=LpKmBh6) znCx27x)!u{f>zs{#=YIqLcF~YZ)Yy9H3l{d;^=4#T1P<};h~YMISpatzwb4q4hwoG zK~MA0{T4!fDU9_qpg(Q4V7w<7A9-gSS(V<59D4ydF~!Fb5>g55(RFV0f%w^*g~|A z5Zz@E#Tb8QA=+1ner*&rG$M}vX+i2QNVioIX$i|?xE(nARpI^bCKqK z2n*36LNwVRiq|hCOALm^(WMsPVFK(@!6a8o4#POuk^U|{U_l-($oquJd!Vj9c&9Do zM+o^7=JFW4-!0@v3i(@R@^SQ)h3F_D`oc`K48!RqEY*A7ju!GEscPPOnvQ{vwGbU6 zM9UdOv2QoA5FIN-8yZDtsRMYAn* zOb|L|2y3T8U2S?)46qQND8!k$IA+H#3;9Vxe!EegJIiQIEIng^n<8*04LFSWZ41$< zLiAUID0Xeh5`$rJG(rW7wII(Fez`fl zGyU9xJWr61iUu9hy7t+Y^k!_xLsMVO7oz8kqP(>lQXH%Fw<%pt#W{EK2vP-sPq>}gF>fS$fpbW$>#DnpExb#okHGj zCLc$)T8O%Y=q95mkB8I}-B;cP&RT$%3h)ovf;s6Q3(|5ydZdy_;`|(Trt1gNyV9@) z-ji{KAcri#WQ+)ex)?YAH_FXS=MT9226uuw{qczx)~H%~bHA)A>WyL2SKf^J7Rpu& zWpAs>EJ)nb5;)thByd3vJ@U`t^mcT^)=i$)yqPDw~+5{l-C)?EtzUT`dE-AWlI7u zDYP($3A^b#xJh=0h2Bh|cdO953F=C&{lD~;xBhPnD-H=O9^}LdvMFb+FUuCJY*C7q zTI4;kjtafS7paLA1$Cv?|6lsbTR+&sim!wf19D;oiCUDy*oPNsTZ=BY(EE+hyF}=9 zdRou3f9cO~gYj+)`EP~%4x>EJeh&_>B?g>_`>lVlz3GLN{)CYK z%^;84yKgM^o(Cs|=u3kro+Ef#qW{W6Th0P}Mu1B%#snkIoCdG*<@CmE*g(_q{RaVU zrb7LifB_j-wlL~PA>Yd=&*P@S#nBlSq_cuF)kw+;8MBc8S;(gwDD*xSdLKgFthkkB z|Nfd@isn!Ao~4(Bd_bByT1oQUZs{ve%SslcD}q$PNaAthx2CeYQ%sZZst|2#6xA7F z{gs(=?C_)X zdbFkm`7c4Pu9E$#LS1R@_5PKc+}i^DK!AJwuVC(E?`q+{q^gpA>v6Ix@^f+ty3NAK zC&I|h!pM)bt@r+wxBh1f@G}Aa@qY#L)_YgWTmMl`TmRyA^Afa#-FsHO7Dh(f)sZX$ z>PoTq{*|}BwFQ{uQlD&U`F{c)YXQzBz@u^kCK2}R^8|ZIyBCXdu}}8CS&M#Tp**ip zzD_7#qji_}uiRayEx-W+eByrv^JKAB8{qIB{ve??uR|SF*5trlFsqkiU*>U^q!ld4 z!Gc^?CHs|vy3*KwJg>7FZEPVQBIFww<$04OoaI+sy^OKYQ&8v`Y19KTW7B^!oqG!j zsT8A>(Hv6Bk$n<^SIe-29pdWHLl)K+5qdundNZ|NMfsmBP>JX$eqJo8Jv=A+86g6p1D+^L_L299rNM=q$wk^zAmJYEX zmk{JZ!p8nkR~lixf8|3)x&^qj04x6|;6oPRasvEGw%}^%Z2~Mn6$I#laBBbb9QK3E zOSS6Kmlot$L4GbwdBL9c@s;9Sdgj-(jX&=H)58B=$k@xx=|F2AWw4|x18g>G6}M*=^0kHh6QjJ&65UrG zi{dWtsaaQmqg-lgN^Rn?SnteXADZ2)e=XX|LQ#F8sD)6}6zb|@(Z@o*fsjuy%JU{` zaFBi$q(*`?Jv$Q4C2K86O$2GRk;MIez(VvLA-d08^t6R&Qz3f7D9S_D)Rn`K`PFgO zqR%W8H5ZDW2t|KGU46)cnD^XjA>{KhHMb;r9x~}G_f{1P(z}9GF*_25tepj^wIIbA zN!*Bm7NT)Nw4b@?Gz-x-LUgjZsMA8Utq`@VqU7(KhPP{DXG6Nzg4|A!cMGF-KwW)! zzqgQYFXX>5%Jc9_xc})Z4?~_Mx~!7!VD6lYU3(||`^Kt*i z)6_Q3PK9nHdg2YA+&|XDdN(Q>!>W9juMmrF>&)x(B+);!eTBlcZ2S{TXcTsB`hQ&V z89!{~wyx)g0Yl)>mmiwq z9~eKR^TTm|_<|pv^26i4{Hg3R{oqiNAG+{ECw};VALj7Gety`?4-5OlVIDvD4upe^ z9}e)tK7RN$2@W^-q1-4ql;(#OybVkF;j7_r_?#bp90P~b{4frxOivokE7lwhhwA*W zmj7opKXl`V&it^9|AXbT4r7y^ z=X&D}e%k<#W-3N96{DDn5lq48rC{VzFls3nv6Q5m(;*Bg7^)NuQwoMC1;dkqkx9X* zq+mo+Fd8WsiByb2Dn=j`y`PGnPere%pvP0u+o|YjPzHWWMF*#%b5p^w5dRePY6^NZ z6}_2?o=inArlJQ^(R-=rxzwcX(E3z#SSmUz6&;m|PD(`wrJ!?C$0of2zfZy)gBkuS zPjk$0>|8v_wruZWM z2~+$q|MZw2?(qX=cqC6`%1!R~=Saf00ge{Tf4 z$8`MV4(uQJ%M;i?@aGV)f8fsw)Ef^he7QMx6nq;gb`*SBEOr!pDJXUnd|xJZ6nw2C zc9g$(Z{Zy!310!Xl8*jV|u zi#@i%Cw%qbY@rL{m`;}%bUB5tdgG0{wh@D4v7>s6A%9Ij_Jhv-oMY%7gRY%I*UBYE zUGRp)B!B*MQ=Tp-FP)6-S_kiAf(AQF z5x-^XzwJYy~v4erL zcZf5TysMUwSHhae6&VFc7g6o6K~U}fs*Hl9AC}Z(Plq}~roSNIz5Cn|FZrkc_$M3O zXqe=;3_iWVKNaMkUi1H!;Gh2EpQ`XrzWl%S_$R_Yy~{tn;{WZ!Kl$*oe(-7R0^c#i z`;NwY7*X9bh?uyikzM`6m5~yykp=9bZT#?hs zoQWp@6PEF%cSXDnmrPm4c1?EHV2fO71@fx@U+rOpu=T^8(PV{zv2+s3x9uvUj$UKZ?W% zlHs3?bCxDG4Df2pRWCrR6VqI8vn}JDZ@W<}VgfY1pP=+!;uP^nG*IG~^H=}Y&JyfC z5!yD}BN)O?OoX=0FbGZs!AZ_@WSM9be8)yjg1??1bRhd>R<9|}7_!&E+U+qS=9sH3 zTXf%5j9di4xe(p+%h|}S&aN!T?t*?j4FG4M<@aHS*^^a2AfTpC5`;c@C=kM?Lubvk zLM4zDoY2P+zAQhR@z9lrB|mb7kkXn1U0cM^yZX&NeJ)w(~8LAV56@XvSRt-JR{MMY!in0pvyaN_`*-uH@OR<^>8zk70S)kfqT9`PE;6RtKGy zg4RsX0`o$ub$y-@%(l#CA*6|c+Ym~4fa|Ty$`o{CU=NmuEm{nHZ=67mM&uxt@H``c zjc?Bik`V@4vXO>Ke07gA4_m0f-0`8HWe5YW*_ZpVQ=8%6z@;qc7Rk+$>=5yl2KX`~ zJh2m-O->8s34t6@WGS{egl&J1l_B36K*x=ssymmqWtD#dGydqzqRC5ve7=&k@9awC z9t>eU4@CR1%UxJ7d1^pDHXrW?v?CwC>=#c3+4!kiEDtJyPYxcdLXo3XD7tQ#7?*WN|6k~Tq!Z{2SV3smj>A# z`JrzR>$#o<+h7&JeWRl@Q#yEIG&v!_-%8*rMZf{4KLhZKk9`AiMz$R{1%F`*uG$?s z@zqRcS@K-apGx$gCNLgeI|=mV2Yo}?@%_$V+hbGuLsNRpbm-K9--G;L2Vj9$W{ujZ zORmw4w)4L74QAhd0&`2u8h!7Mgc4ov#znxLPoX1s62$f@k?}({X7p_Hk*|o8x6?y zMkG!H`96bb;G&?NM_LyaSrmTAB%%as^C}~P9hwU^o;3h}Faq7Fng@QU2fBLRwQS}S zm|WKKpbTOyY`KEi=??%#*6L&N+6cp?;{6m>k1MlJVeC2l`Y7pXKz1`CaVQGwnX4cx|E-gf#R9oNAaP+0V^JQq zy=$&~?7_E?dZ`BP`$n!iqf3*60(n41x|a@lS)BxM;MUn-={^H-kCEu^fqB@w3X36k z1ok&!sk;kSAU6%PYbG?YTB5Ai++2aINHs=D!4K8J7>3=Z?!nlTh$C(~bFrhZGkjU4 zA-Vk6>(kK3VJPM`bwg7=UTPSi-3gF~O>#maR%yj(rP*)V8IpJXtAJz{s4X z;&cmGvQE9@gaz<9m=a)kHUX!bg0Y`9I1guU-wH5{%voU1lza`(f$Y}h(joJ|w7$tum=8OxCg2H035%#*?^Z}8QxfNd0}LHgDv>kXi_Mo^Scpa|M?zmoA^? zCI}ThB^6+FOM%BAex6`9d_T-U`8Mb~r9YJD zI;F?kf&YNF8>&!JZ-Zu)M%mSWU=32oK&)vb?uuO5mia%0>d69@q{7&xZ=fF>eg+fo zPfuYJaG-(K&kOCvzd&0iXiP_oCg}!{Vg%t?;m#v)R(M>1zSy9i6@LE$7L&&ejKfBT zXRQ+S64ok@1?Zu$2+yJSd`B%h-ylrMhlen3raCOTL-KI<$0FgCFk*Ca|03-dl7}5P8_|KSW2eoi-OG-G#a? zk~&Px+W|fW*@z#b1K9$YscfB06}R^&mUhh^-d@(0t-f17NNg^DAau-;bksizvG42a zDr%eQAxj&qFmq>Zq~R9r$`Y_eyGxL^OQd4CU1e=sJP_$Daw9KQ{j&a}EH~i1^SZ4o zfc4DdDoCyf=0%AK`*E?h^QO$Rrpy>+=~NQ1Q4L*QHgmi?bXPk;Cy(%VRkh_(OL^$j zJeV|IvDYOU2C?mqrIgeX#2OwV4t5O+y8KzaOuziBA$0}Ys(H{->tSFY zZ)`m*G25};`CMg4|Bbkb;XyN8UslZTssO+Kf=$rn8I0p5MC=7e+0qikF3eplF|iX= z4sw;YEih%mIBvp(Q>Ss{h`=3`aJb5=65=XvJ79`~;oAgCHbv`v^0s<9+|6Na1=+~gS_Avono=qCMO8w4eMu$7{%6k~1K^gGd#UY+xjrGTN|; z>z2MrG6Z9#VBo^6Z8293vdjQtCZMeLt%!j3oe;EdJ?*PVjvGK<7(tK@-Po{=OC!j0 z!FVbd?tJiP+XL1FvL2h329w7IFk_f3dY{GT`;#~F=N?`^o&s3MpM#yQCfLSZ=7Tl&_BUh)34Mp@ug;-Y+ z8&OMjj(Ba#_6&wKwy2pRaKX3dgN+dfm= z9#fodR=p#bze&u>JHY`rO_|rcGyixCEXSJJ@Js=gR^14K*))Ky_;G1j zk|}5(yA9?WCm-frQ;an{>F3Y<#=-@>T?X!UBX{K4rPIhQLAx$!xXbftYgcu0MP;Z< z%~hX>rKV&T?nu3ibCn{&+tslzKihT0J)U~}c)Fb{FAHn~cQIT(5A#fbT1hv&=H;d8 zpeU(uj|nlP{&p7g!r53-fV-|;FZmTj!plwJMR zFE2aQ0l@uD!Eg(miM_V5aH@K*BY>9(uu}r#6mzH(Ofhy-=3-MO=Ij0UToL3;!Td~O zUh4o|eSddX2&@0d&yStx3>F_Tr5`kziM55RrMe_3$V;=5#C_8aCds9|Wx~bT zVrxNeDUtF1h}3vjF#EcvE5z2!gO^Sjo9ytMG6J+MJJJi5!Q%vOw1k@x@2X-O;ekje zP075p7E2qrG{Cka>y#1qV?B{yh_S6*j*c1oby=__i zJyxBRhx;n|y-{U$s)IIe_g)>~s!2-j)DPM*P{If8B#-|v#(!OB^+^{2>Lfr7Tf>bd z5ZMq{ZyLdh-GqIr_6A}bBM~RzfN8GsWX?|Yeh2}?lQ|A#_fMDgXVqij%xRi|IN3;q z@o)^;CCuB7v_w`R8DhT0AimKk?#Z|-f^ku`$i-I$_0DF5lJf@6SyN6MhOP?OrTRSY zE-_Jlxil9m`jCZ^T)Xr>Cs3mEIp#tw!KmS36eiUS;+2i!p4j)_rQYn|LF8hE$GSpE zf`QZ1$U(Q-g&B(_hHE?^78nqzMua=oAuOZe8b4Ndf-8_55yXRn=m|U2@n`uaLf8)& z;QNelPuIRHkar{_*^^0Nnfh)LM3fv!402I1gAGjbW(FM-k-14NE z05y?8=cWOup$bxG_g8`7zh{e4#Ag zoC$EV({Q+sJken1xZR$?)wT^TlEuw}_30+T+OS)_0jt<-S1kF^AeEL^ z&U0Y(@v~t3i1sA1&Y^H^Fr)NZUv@fRSui?w7*~5L`n8p0#o|W)6 zfY=XQ)!2Z)VP~9=&C;at+yut&Wg40SyCqc+*2q>-!r^iiZ9F<~rnt$Xy!wCLuwRCk zs?(j+aM*Wl%Vy7mLJAR__C$@-Imx+>KM-_J>D@6vyB9c=8i(MvHPl z0E>K#J<(Q(U4P}y2Ml1i-4)1sKP?=}PTOF2yMX$CT>yi5sT#oiA8RxBK4GOub3uPc zqT@mf=|L`6xUG>XxV|YEZ&L`!1$Ru15#W&$7}v|MnX8m-m??9JDHE?|R$B^Z&}#&9 zmBc*#6`c5@u~oVT2C|*|mWSBj?rQETohz1@(sA_}=La{hoD}r$WIEo>y8?E8zcyul zY07-K0`}!ze9UGhxf)9_%r-PNdX+26_Kzv?k%ovvA>@UAD8wB5d1ZJ(vEZz}R~@da z?p23tyywf6;ff)Z_Uec03VS_ihVi-|3h{~;gdT!`u>u0Pv{jHVyIKJ5>FsJ@y$2K z``aquXLs+{oO4&+43kvkKDFZ(WsM5L)7vx5zBlE6*97RY0R43wu4*P6hW}hJfX;aV zRlWw@BHw=1+5Y=gAHn6>k|fW5y|aCxMCWW6O^1*=LcFFBhikHatlDSL)anLC)&2aL z*y6}lxG6XL_`|TF^JkdaoH(G~X;5AQ$wqF7*UCc%iCi`lh7bP{ws_8u-6AaBC|m6I zaefwb88T+Q0lC%-5(m}u0(n+OUi%t6{Nf7q@*fPeQ(kB|vgZ0!jTiY;idWl6xDtBr z8jP{84YdD^G#q2A2~cGjl<~0>10TZP{tWJAiTzX`^Kww)HRd?NCJ1g%nd^zngB!4Y z^~Wt&0n*I??`#Ff0e69br<%hr{00g2zJWX2JGUq~AdvgaknrT7fwt2_!?6-Nth=w{ zcNqKlcUu+gd3-$ZWwRD%M5{mFv-2-kK-R;mo(Hgf530jy+q8_5#CA~sAnvPAy^p6Q zgy<3Rtv+u!mswM_X!-L!keAX7n zPkhXEFjVUb&n_KQ^AW9xPG03muXi_h%kf(vh|^N`3sbz#+Zkf}w}|1a_p1z5k!9GZ|(8 z4e@}mFF>HNZ}jry9cB)0$!rtg%`%v$4r{o#a5S6z0EX|63@X+g@^l5y&dfQ%`blQZ zv#~DZjDc`c82R0ytdzm+L)?V%J&a+o*;v(SFuClU4)?rbPV+=$JDUWSWy2nUVXq9> z7e=gS3#RH}1`iH2)u^&0F|QyA+epZz{2fh5Y4j9IOK=u|~v=YQT z(!%TUVNYUVe}^AiD`tyeyB0bdlOji?UJ6@&k?d&Opj>QP>+rnn*Ac6ONueY9zFGiE zps(73StADbXqM&A_G9w%y`ntogWK<_^yV@hcWt4^mSq2iz(&tI25_Sz9z(M>jcj97 z)JPfiAb3eAd(f*$6uVXcu7nLUpoRz=2XPzm#S>XuMz%F7aFq-^eHJPOYVpenPaJDaNsgd5*$Phx^e}~Y)xkxU;SSKg(Z#}9{ur3r7YQBnB^{nt1a&GJ!Db&{5@Jj7 z=#aX_+@qds!)|e|I6RQIUoiJd%qkV&qVVPttQmA+Ggs{3rRq4g^=Q`6ixbVOlJLmH zuTVG&#z?58`r0!vfRT~xe&eD+ETA;F`l>1ak|`fA$dxa{%94;{tkD?QY&<4)W%mFa z$TIR5EzE-AisoUZ%R;xK$MpT#4@&slE7^|u7+(SUM7MHq9kszRbxN-*Yw%>2-qnZ<{sq2SjCCOg4mx`z~=7_*l!G296vVt}EI`Kp7Bv7f0Oy&M~{)!orOCXTocCO)kWCYJt8pA{vb zBx{s+j~s1T!MEUf%Wi_&S)zJ69u6PzFN%e-4H+d8PFJ^{v{%UH9N5H3pKMP zHSS=Au^s*qfh?dl7(c_HVX8p`_Li3iD)_Ot---xj=RaOa2|RLwJ0v?LzNg=$tq9M} zrk9T>qP{F*n?cEDgA!b}HLJ_2kZS^cSwaWxV}%(~XVi`;&bpj~tF{*m)N=-^ZYM0? z=c?8I>>)g}EiL3cu6g?exMs+vWx=*Qypp`;^5q5kVH@*hd_zdSIs#r(4~L~eU0ZcM zt*RLfS6q`C!_}^Vg4Rz@!`p05?}8caL50XXY(~?_0xTKcQD95dYlt_~fcDOR2Qo2T zXi)ST@Z~)xTe@enD&^LMu!&7U!y>(g`DPk$-Mpk3T)aFcG#u7z7|{|IOT$M;7GjH= z1NT!scfVKe_7=c}hnO(={xsn>v)$Iye$AqhU@^DDy3TZM*yjD^d0FjNa22ZL7t#W8 z#Mxy*?8pgtrN+_wCGxV1t-$CQmiUcke>3t6J}KgvFgh9E>C+rAd?)c8UR&%W;+hjL zw%u6>X}us09w2U{{y$oK=Rkc#X8Wq2kwVEZy%Kj?!%S9jO#yuIk8OxYle8om#7i5K z{$FIx!I+AkcmJ#sI+h!B@bzT7QZYsFO+c_EiVfurk?>9f9<#*rGNA7S{%buR&i#tB z-tcrEtFk#dFTN1S_NA!~7&dfGfcuMPlYa&IA3Yh)gbJ`3MPtJ8B1wKza`( zgap#)EeSRB(4>ceAVo?*Itamn0@7?Kf&?UaE_VkcKU7duz>Xr#f}#kBG?8XUML&+M#8NzQjZ~9A!k)iWoZe0*YAdSj1zFMR1d` zWF&f5m4h8azs|X>Z=XV$t~VU%I1uNc8J%8F`$;jsw=xS#E5&h&4A)sl@F_>Ip&3q5 zRCNz~i59!ZG*{47lPYtCMD4N0g5h`~W(X!z^8B3B7Ijw0j%Fmzy=G9s(ey}q2D#t0 zb~a?L9mxX@XDynpkWkZ75Z>SJViZ-S;uZ0a)%v>+TW*LRkT0MG$XRk zdpHB@Ga`ZD1sn1=JCb8wk*7%X?3d8Nr_#);df$NXr8+JAxN;PwEzXFRX^K+B=eDjQ zNj$Z+Wu7AX(-gVT*^3hTno2Nw&Aj(3SElmfj7ZK`%6yc~1&FhrMiK1qpr>*UBv(W6k&>1|cc8>Vv573SfT2IB+*uP&_sAM_ zy>X_@ndCasSziCzi25_iuClq>g*} zA`@<9@b0_5d)8gcwGmr75JfIkB*;?vk)|pkCz)yN9cNlpWN?BcZM=;;)`9EKjO13x z5;GFbupapnB55ma$mMnmJGw;9O`%h?Nps&XnMZHEoH&5q<2$2pMxP{<2r zB)2w3`tu)YzuCCw>|8y<%h6IllfhyNjj4f_YHS7>5#G+rnaCbpB`BQQoIrx5B=Jr2 z1Ry~?ur+7QR#f7nzN&~`mLiO`Pf-Pt1qs)bEbOk1Y>p2&57KPKo@HTEv=2Kj4OU@d z4%LLy=0=qw==OD(n%-wEqR6obz3Hh8NiV2!)>+HZ8zIVh9+`B?t@PE7biJ<&CQg}j zNYM{i>Fn7tjcaGng7p{(_F3t03J292d6aJZTw3?K70fGtte)SS)efd581P*GSn1as z={V>8ygDvO@jgP-)#d4P*kQ6OQy_HacczkGP^}Q3D)!2&b9N z0<4RP*#K9Fd}`4^74bB{lF+v)+mfrDWae6#x{~u;EgiwlY+ysRBIA;4k_3;pf_2T- z;?zs7v5xf7Haah|itJ0S5(!>u1>=4U8ss)gaxHgcE_Gϝj=l8H^dK+S^LP8={1 zPc527k^zfmdG;(aF}W^C+;3JK&!D|KDa&=vk%=S&7N!v=ab~8JFJv^3^o42IwggHs zQ$sjViis$>?KanK;=d^gUs%J0cs#L$2^^$y?xtRmIp;(>TuVQWynb3& z8$8c|^Og^m7ongY6r9EsbXSOQG#N{j-8$ZF)^QJFo z(Y z)^SC6)V8_}&7QNqkCM#mUJW{Hk=;Ab0wLYw?r>SZQhB(gDY`@_o zr6SS9^!?Cc)_$uiG*-Mcae^6V1#+r+2GHW4>P7`@_Ka545hf~OZXQp0+v*}U)Ms_0 zY5YOxbC|7wJMl#L+8z7lYaCD@tD%AVH!9?)mIn_}u2x~zNa$D8L0eOBU1qT{RQ1%h+vI$YG5(csb@BRlMflZBz@ePJ+Rrw^52~i$;!=WoK?TS2;>tC0 zo~0MSAFI>ZfdMfc2SvvZQxhuaSP??WUn3r>Ccb12=iM|1!wQ<_2tt%8?^`4PF4uXjm4<_B@wBi`WNj*l z!KT6fGl+D2R(P2soWsoXxP$G2+X#hzZiRpHEsb}5YNdVbNaMgp+`o4HCux6MXnH)H zLYpTB{R+CPviQi{&|EZg zA|fVJBhy{Pd~Lh+m$cy$Qm07MVVJ^edI|HzZ+H~+zo>otYHV#BLt#BR81VB!BR`6eDmOqD7%NThTBAy0Je zLvk?0{c&TV0~5IT(m(3gpdHtdXSdcN>xh_)Ct|=dVL7h&^#LKGC7KcG8RopeTqe{}ROp=N` zv+B}8qr6KP2+6^1=UptY9 zhhCxXWG&|_KKg0~>S0hA6+PAdf>xP$FnR%rW3DD-K?ebUSo3ZS5t3g8X#9|PxWs_>|RISrt={W7pAQ70t6GQ0t-y6hGwdzn_ z8ymKj9m~hOnkTwbv}p=E*^K2ZsDH=fFv7(f4I(9Xf{lB(oy+1jPlCIZDQ>Bm%lDYs zf98ZV#5+}LK;CC<++sUd=$2X~yW_Nv754)(7y3*tO>tM#cG_U?-vX9d6R^t)cF_u> z^EE*`Z=?O4bj>CYh(R&3sz<$u$oF%qoXEcvve040apL0)w*@? z#A02xLR=GfGEN?|U_(tXfA`HzyXeD)5%k>#?6wZJkq6qz+*D$+_`ETbA2*Rnv=oZ@ zykTWJl?5d}Vk0iF6Is^(vfU|2Bf!Mh%tTH~u{{SJ+9n(9Wjl=B`oCuG4A-|3cG?VM zufEs=S%cd3#KOfd%^~AAHtcabmTMi_5^XyA7&k>%1jTO9=OA3`LoMCaT%qErZBH;r zJeAWA(_qN;{-lSms@7gHamv%rWP|T&?M}e$TqkC8MuyJEp(B>7|5sa7zw{VgdKw$AhM-*e-R)5MVn^aKMeC$E6$8pqzJfH{hciJp9BAZWK;CIz!8ewB?(#xHx9aPLOOiX?GHP`i-74?Y? z#r2HugXr{zLj7x?0=u`gwT&XUp}YRFaLXzK>U8}&e8(Yd}Hp{a!@dlcmq5C z4tG6Tx=Sa??Is~f_8=57V0Qpyg8^X`p9fK%qN=Y@G?HRBKy9mX7%j(Hj z{HC0+DnIFjp?rVx0(D`lqyOji%g!naOlsggoY>e8dP}z-q8G@3kZLk5JR~7x=3BRv# zuN+y3(G#)?k&Y=&!98B)gi(HM6Pe~rJ8UCz*xpUVt-Zsg=FAy0zX@DJfAu%K z@LgQv!aM!A{$$9D(I|#CMfa*sPw#PuxmH=Lzk*qEA)VK?dQNfI$2*{yvrBS{8+tNm zc|waAYBJTG=E5CFsL)i~_hfC~`NnT!K1+MoGa|YFNlNlb>Beb?bkRo5Ku=x$q}79~;faV_O~P?5!No=0T#k*b^)Tz4<{C^`_zOHh331oP#6Zy$FsTQt$^9eBnx6R3NKR`N1Z5@hx0Z zyVu5@VdwIFy%+CCBYR$P{}&*%$S0mxT^IU`<4uC-=?Bn7thK>?2ArJ}9>C7{4F1$# zYAx;_7PhUHC@%+|QYD^nE^$YLrqw9sA#@@Y4nrqULi{{jFcBt1iqX&F~ zF1n6Oe~?VPbLSB>>$e=4uiugxN1Gl+lRKxtKRSW&jcD>c2HSn-NIzqvW0kRxZgy)L zOVg{b3=W&ON?w9aI4#?K{Atthg_T@ZN&;61wGK99TRRd;?oZdB!U{r>;@+dUn_HIE5w4I(KQBS^m|~+%wA1uf zQeRuGXdXr5ZWun0K;Qh^G?e~BOVY@OTxCZ>rwg^cinhmGXG4S0%b~#!ZM0ptpj}h6 zD*?1~l&D>@F@Co*{FS6XZy-t({VwM$7B2&#V>e3+OpP#^a*$|&QyZA<$ex|D%H38Q za7H%qeDS>=%py}mT&|CTd*mM{28$qppmA)*b#j{@V^ zI}Hqvc^H=TF;AakutQz>pF15_)|g#luzPDOZOG*ciD6Sm@Yw&?bM890k;aJK3c*7^ zhRG^aG#Kx|{PB6T+#NRJHaoHN8eahgt#@bQIvNu%C?fYP7hXi<{{CPb?h%2M_M44( z&Q9dBZ!s^rv$WK2WxGkCvo+y#JLh7~#<$c?w=P3&-51?0a8eZ?nIpXf>YN6DFx8od z+MJCTYWpf)FUiY$%-x9wV~iK4{5U%WtOBA7JFI~YYwPnn)c3` zSR6pLNL6G*@fP6tP40B<1;ty(ywd&N)^z&L3iJk>F({Q=Nvr)Nb`u2Jj&V8?%!SbD zEx>;Ryx63}9H=Udc+K5JTunX`WMyHvP{Vp*^Y!SXo~d(1}=DU@Oy%@yO72GaqjNnP+9sab)wbGVeWieQmSS z1>R92bdkNyJqQOIER|m$0AY(mvuyFp_)`VLd|0y9j#X(YH{m&j#tA@$Za~==a*`-w z2W<5n7h z(d>f1_gjcbsk_~|c=0@wI!F?ZpH~en30H>+>FjRzI9FRMuC)z^^N{`Njt||<@y>b1 zO_8{?$IDs^AHv+?W=!H3cpY)Zzssvo3u+ZXU+^S?64m@d)YhV0%hwL%eD>y$y2ETr!NnTB~u)-JAxt)qlksW(ALz1q-!R zr)48>WUB6Q%z1L#Nyw6Rfe`lD?q9p>)2#M@z*8I0=8_h%)a(Ri592zJITp&NvsiBB zki{eiPmhOx35>Mo*~$TB7A!pB;K(SoyLL8+_!>4C0+Kjolh?Y9_VUhamU zTISg-Yw@!!La1Q~-nX)(yM%nxJrKe^e|ckzdi+W)djEEvwEZX|_a#5LyHYt8eN1s! z7RB~PyD_PX4>6qh(Vatwda9q721|cLW|z$^;%M6sFxFeWqzECs14UpJe6pxTG@W^; zMI@!2b4O?^f0W(sa&q-RSHo&Ka}I5MDOL0cXvR<3#Nm!M`B!wbI}~M`q_BqcuC_Ww z|Ax3^tCfeh_p0h~`+!4R+Xt)cNOs3+s_*(sm2y>-20T(E{ zFXdJeS*e&*dI4f&(5``K(y4T*0M+G1I~Xuna&{)RtU~iHqMJw&pWAk+lEhQ#zzIM3 zdo#Q&t$USM#{b}!2>?yq{i+Mp7V+_cw@=brbYvAsqla|T@ zxNO`DKRO$Ckn3VlaOXTJJ2ismjKU*X0N_Zjy_1k{-Ta|;b$o~)}wNb=Yl1RL2 zrz1mX^(!rL(M8-=05_NgkY zAWJmQv8`h0{z_#yHexH|gP#ri@r|e%UDgIu_54;{o|6uehN}@GAFw{)2y9hKNL&-A)jVf) zkQ#U*9K=NAp|2zaZ>TF!#D0n>MnS-8@OwtJ-ZoedJB)|3m%_@LYV#Cqjt)~Jo2>PP zX{fd6I@*$+zmF=bryW&{ zuM|Ui?Qgh*%}dYhwFefpO5!0=J7|M{VTa>bZ-2TLQ{vbCK^a9pTgDGGsPV;9n(JI*C}(VO2bn)H;MB1|W3)*^&N30G*8q zWjh*kRIRckt=_NFZEBP25mGx)I4-HikqhH77`9GDY3cHF%Q}25Y~=JM|D-gZ8mE<| zY6BEA-(X_zTp@3!m8HA-7&Md0dy1!BwC=z9?Z^vCO*6_GX!8|wuE8W6JPD=3RWk0z ztTC+&XGTAT3B(j$viCvIYmV(=eqTVKPmpT&p zsk;>oBjgrROWC+XD3z@l+Zr>Ac@i z9AreaMqfJcJmnO+ksL#C{BZ?segYD8DsH1p)Yp;S%aP6PyHOjo?*&TAhb294rixl5 z{jN1_!b>x;l|S1NKFbl#i#T1{mDSZ=R`3@koHte2YgzQh?cvuiID*#&fZ1?Rvej@r zG|u^GRfLM^et_~gVX4p)_uu^TJ24Vd+LVgQw5}sYMkFiMZD6wDH_)-(qw?tsPp7g( zS2V?LLPL(A73=kejB|XU6#c$e^&jBk24NoDB2;|I?9f4kS6z0|D*f&^DLcoq&Se>{ z_7dDif)BLUn=^1#=;E-p%BHQX%;q*GE1{$-n%rc`oL~rRc(2aITlXfk4W{iYk!101 zE4dSQtBTmJk{)6aRG_e{^Sssu&iw9ESM=$uB9Zy$E?ksDH zHQ-(Ep-Dzwl#?l5hl6~%TG&PF94Z)3#2m`R;rYp1L(3YvI!I1i#S!aJEL!0`Sb`KQ zw_0l(u!S9{dqO?rqG!P-DxhVC0uigznc=WnhkBStjI*)F7;Lr_6l=8&-aZN4tDroQ&{2_WGHs6y z^`Vk|*G0dbRtx{b+NMMBM6_u$7Bkk; zA_O8GCAFQR@;qLg=aW&kQ0ezSdlP8ZVe@8u>=CsYZz6I>_UB9l*i$8Pl0y2IZioea z_hJWi*loNNl#d~dJZdL$RDJJ_4sxtO^uqNoQCMENV&aEemlGRT{o7fR19 zLa*?Sz?yf>-@Gh31kRq!n=XqVLDM~@1jaF1*6OeB))X_e3y$Kxg_54W2a|$hEU>9( zIm{rrEW!Jda~>~yHf6j(Sm^DvJy~>8tQm)G0nfp<(>&KFoC+8)| z12jojt(|iMo`}xbB=DBiWy9!ZW?l@v`fOQ*)>pB6DK?K$;3m<+Rb@4_+il3Mb|l88 z0xFEei{54{+ANc#{*7p^e-afxfHlSWkFAc??z6#*>~QY-cM@XQ7ZiM*g7efDqGoI5 zHqdH22)*en?T}&|P>h8hEPd~@{d}+e=Nza`{t$ucZ8RX*-9@{u5WIN6me}uul>gXZ z*X%GD;Q^%06da_;tO$4aAYJju;XN%ciiRYV#v)}JKC(qlwZ&5zkelqvWBJ@VcuC&E zL>$E%F5yEY99wqImQH3{SyU0xQE;6UsO%OE@JJo7birNAuL3nR8b1k2bPi z@i3Zu7C)QOs5C-L`AeEOiB@Fbzy&XKTU5}facK=#g8W=;Czz(q@#1NKv5juBmm=S8 zkXa9$1gEPbF3*OubmX%X^F9lcbK(>^GVif5F`99+52LIcyia`sLr zBUay{1bbDYjDe}c9;}FNbmVQY@pM~O*%`D*C!}IQ@4Hhd_=w zf)CrkdNaaJmAukgS~#+niWGDqNLekWu52cKAyJJV3uc7J(B@p+RjTrjHAK?z#1bMQ z%r2mRyOd^WxeDIW4A+myscvxO!tm-;whzY;nlb$Lnk7N%{Nj`99Tdh(qqFR#@tCso ziSSrz+#S8n_;CN<@ItipuwwrD>yWqK`0O95^Gw)dS~%8JM>RUUj-gRmE$r zO5-ofhH7pbxI}>wfd_yvT!)kI5N0x;DcUDynrZUz16s(=Sry3?`hYK1`^Z+pZhHwc z50}l?{!-klW-d`3TOlsD zpc~Sd-ssA$UU0{cI3G}`C?h4M@Hh_W^OSz=jm|OT`3#x%hFf_<>^u>#4*ePDMwThw z63GkLU}%Y8+#=dzHWXWZ;qPV9aXFSONbf52+Y-$iWGrgof{Iw`^(%(5H>~_EHa;&z zPWlafz)y;YW1GT2EUMA*GP$5eml|}nC&*{5WL&$mC{>p{RjYbknm(3x4b>wrq*;p!`vv!`j0+;hDy4yq#)XvU@ zFzBRbaB!r=v4oY5CGfsewZUBi-@NyUD(xdvX}rjWy2Mcb9;nNM*I?k?jwS7IEQtfR zlE2E5wX2H$hl$Q9Lip$vib$YJpWsY&`UH5G#R|U#uz3W;s+)B=kFy)#CFFIrMmJ20 zcnkh5YwW5|W5&31O+h5t8r=J&|{U5@ieEdwz^!kV|n@<(3+0iAA23^PMUr+gw zMZWF=rcNJ=_TA?O+V?|>_JBd-9c91}PTs_#)4h(c8RBUdZQ2e0hzw^gC@JvN)}B|$ z{~1V;EmyV{aFg-6K5R{|b>#Z|TvlLrq#aya+F9#@Kh@eB8|$p*NzhKIf{+!!uL*sh zqz>XYeri#|VUrTXLADnvdr~kno;d{rF>dGG1GDnMn;BI+8Cb)_19PW-Q%d)rQEP4n zYlA$gBDVn`w0^2Uhe?`jLtdS{RHZ&By^-Mhw9 z;g~f+uIWNYuf!?l}IYvF^yaych=QaY;|8 zpu~ja1x(PQ>9cT80)0On7c(qx+FkCK9;fqny@VUSa8*75aUlZw!?isD-OW&5%VgZX zNKXyATx7=~-MFrdrBHP-3=e5_2hc-5K6}#sycS9?Z|@pQVbdtWbwif)uStA;Lphl8 zV?0feNycJJESKqp!Mk+06uv=JC_VfcEVnk+6X9w^*|Xv6^>3p^A9^PVTntT$^CTgF z%YHaOw;8w5r9EzTSC+nxGNoxbpWFY=2UmyCEBm@8(#3sUgD7nxPJNEKjmC`h%%HV{ zyN6QP9=w5b6w}NJDetZwRV!jdhzjm}o{6uahI<(Z4M!OXSD{Ip1# zhV4B+(Su3VZ8Y;vZx_TZE1q!=^&c;7iushKP8%!?_V|aB;4`OW=_eFpXEc_87iJ*a zc0uEAA+#@|TPS@x0zua?EAp@f$z%AEWKVr99M@-OyE~&rURvZHMw~JK%xBoz(782e z{GFJbRiPD+1hh;|{D9jL4kzl><%Ot2Jk^t~jaMR$l_DB$1`*@QI~cWIk_PT*D|dtwm*>kbrh6J{D;0OS_}XMq;Z|r= zmTErb#NdJQ!%R<2ZHHoPld>K77+EZ`_v0KBt8e<2ZqZV1I<;qUN#D$U=i`L#au&rxp%juz-7SC15CRj_MvG-7)C*hrTwByMm$TcE+!t0Wt8ZMsyhnjApkRHvn2h#mU!ye zgnP6CagZVo(22ROd`C_nCk|Vpd#)!*TckMinL~(!lc;JNPqJ&SBkiGE(%QF$RIe)9 zMoBY#c;US6k(AsH9l-`i?(?_gwrP)E=0qi0am0fT3)<78r{*q1FAj?P(h0>=*!(f zA+j8ijm1-|q1iygyTCwW6>_vh!ayysN9!cpFeecAh6B5yH(ahjOC`wC8$SG5_h@R- z9Tk7d5&nb|oSVuWw^jV`Ba55V7Ygum_t=aIF})$Z~1 zcLPs^c21RmJBGq!#_);~V!1!V?Pw>pAZ^7h^gE$9dffzay@rWH%xV7%y1?@kQpX+g5>)})yq!N@$1U_VAZVXYIlSEidwu{qAS18Rsb zndd@@;(=At*uCBY${p%S)A}iRZwcqs9i1CaX~W=LJ*>!XPDs{d$Kjq-ZB7um>Z4B- z((-JAc{T1rB!0gYH8TLUu&j&gSxR46mP^@}+lT9F!E*fYpfC*g;u9>+gk$qnpJoQc z={S26(gUYbPvCzwCgPIvwjdF#KZQHQN(p8^dkY_aw%T}8`8%U9Sv{@v@ePYFmCd>D zE)44tN6SV-AIG^8CVx7DB(y5rXDvKZh@Lz&SXwQJE*&&A-C&wg)FVM2e6A!uvb9>w zCJsu2Y1g621@2nHw|F+SaIB}U)+(4fKV6O?M__sJ3B)+^Ea;(5s%JZ5n>b>59`)=v zPlk54lDANT^@U!RH;y_j>k&>1#-sKl9qGdz>D(aJOn^@mEBZ1?=T4Hvet06>Vu>Sj zaR8J18EBgOnL~zRWDA~*GCoyhd@RdAgNw!aeYnE)$)0rA2aaXzG|B*z%Ya)r_GS4` zc+vTM(<6vpor>Y_X0ULrp@dfy;6U)Vy+SGOv648vqeWTI>}h}FyJk;|IM*XwU6jZO zk#3SoD~`dQ2k!A?;|@9gF8#vfWl14^FXMAfKTL~0;)65P*ep}=^V1eZMSwWn9cTagp5)IJ_i_KyOED!TP z+>2rU1tsb_31$~yQQyDMBVK^$#KaD<1Cveu)BT=g?T}&~U?#7KG4j>Nddd@%2*I7W z*eX_BBoc`|kL(ZJ!z78nchM4{fE8Zu(z&QLt9wSM8xaw-4@amB<>Y(6o zYWWb15)^8k4OI&D+YZaU6OeaWV6^7As3NBIyoAHQzd74eL(8`PzDcNDus|+)y+h!Z zTW_u>1D8h_RtT7wP%&qDPdMbr6>3z_M%swO?L@9?^LZG)iY0NG63@RXsH0=#rSc^< z>f&2aa~B|>d0$fB4VCLN4C_?TOI}ye-nPNsFksv;p+s(&R`YCMgl_3i3BL^ZcF%pZ z_z@4XRNIi}4LfifTJ$JZ%zFRoUM=Pq$Zsl4xcP9e5ZdqzI*;t%+~%|ziInr3YByEG z{C41WGwX4*n|@)kDfbrNYeu}a$HcThKur3sml~pbh|kSKbT>yZx12?b(Q@XXG%=tu zmbZ#@Y_z;Sbib82(~-yqe)K7{oAqIIb|0EJ6GcFwHyy5iWg7h_Bo-%*T@_aJngBE# z23oZmh7)g>rS#U%%AZlXL0(Lu8?4<9qx36kY0=cl9S!q06qa`1GEWlyeia7dWm>Lx zxx04|{qVE58h!ewn={lTUvu}-ZWuP-mSwvo3f zjk%6iX#(*8c4P$xmvIU-hC#+^k}grKw8SVU?p-!6Pry$;i!fn@;y%M%-XYPEK{UF& zcL?oR1^0g1iTk9V%VvP?tY%;xp7^jgjwY3Qg0#KiG+>sm3m1ivCYhR$ryAXV!)}LN z;eI=CL#gNXB$PBMdqp;pGd=oLrs7uk-*vYqw&X?`TcN;J)<^p}Jg{Y?crf;+(-sY( z9aav4gcZc3mMaNPybN2D#YZ-SR2NSt1E_2l=u)?f-g$E=FPEc~ zH)IvISW3xzvQHR2RpE)p`9&w;v5uh&kM7Wl4W~E$=ZV4QDc9hXogG0>u7g*daAe~( z1P*L&(d(b{#A#8HH1h#;9*YuSF`kXEFU@=&zLXnTW=b@z z7tyQV8>>V#g+!yBiBG+RQKUo>S4uI_b#Z|#xmCEO&Zs#r1GQVBb_Aj- zQ=eC0>1|fjR%g`IS5eOk5=Gal!w7O8%fE`u74EbN3y|lm$RC}NQ#J#c5=CQv^md_y zB$ZL}YNwZ2&inmaP$o$Lr|!H^4KR037~4z&J)OKDX@G zri-TmO_D9ua62qDB$^H`LZdOb++SST?x}|JicYkA8;w<&uoLsH$CR8nH13zvhz)+) zi9Qu4#~nnRYlA|>G1``B-eEJ-#K>4UurFS;vl|u0QE>;_1{;k#w(B3DV>_ip#1V1+ z<$6z7`usyr4eYQvp$;<&ZOT6p(J*1;A;Yqs#&5}+{4v&qs>T?z&(b}J=wf5U48gn! ziN!O0(#fK&zNc@jnsl~~VOwiRZ6C0$h`s0!`zG+-la_<;1a9dxjq%3>+_2yM6b*Zf zLXA==Zq^sBg5uc=$G^))8Onlo)&?U9q*~kHeZ}`b!@lA(iuQC2j&5KN7a*jm`KhnW zdZs;Tqdjh?!BzUxk$s-p!SBU{-*(^FF_afIvIVcBYVRm1dD#T;bQ<+8ZoR!}ti(D2t~EM)?Hb^y-#tqpYA0C6w?C9-838P#WH=3kf@Obfn5LrjmA z#;Fx6jl&v+T@ae5_lu?xhp@$yjPC>*r+TcMA%e^0!1_)eM7)Yo+`L~E`tK`DHHXCd z{iwM%h#9R-K_%=ujQ~1z3>~1m$$`9LtTd^#Kb#wQ@>Q+ zN!R|7;+hnB%}`_t4WPnPP-H{-dtBFv?T-~6->S5x zX;K>*@9#Ky;uroaRzvb6tb>HtBLMdnEir3Fp4g;O@T(MaTRBjqGxSZx4X8-$3`=FNDPhuIasb8G!;0*NlNd zugk&$Y*0-a^dF-flR>W;24%^gyb8%1N?1KwQK-jHy7&n+?N0J zE4~HZJjl!0sfA?3G~@y9gSP5~SYbu5vkwjNHbFCGfj*Q1>G|_<+aTDRN<|@FIZ~jR zI&rsKxt#jq!7y(F7iK9!v`dm}oGatn-Y6P??Wl05?srG-ugulPRFigxCWYORe^FSE zSNJs;?$*Ar_9poGiwA^Id89W2i}dNU><-cCyMZB8Ckl7&o70%t0bY@v;E%XjQxA11 zNmBa;SnZsJdfh30q9)hq9NM|=kPk%DF!e75m(Aw2Ss2&J(Dp3s+_e=t7*gscW-jz9N5EERMq>PkAh*Jy%g* zF3i2;$Xst@axUZeYTky(1jJSS+F+KRlE|7={2Wr-M<+nmqmJCKY+M8<11LMuTUQIi z`nx!Dh`qEWx(2h4+DXW4z2B?{xp8DJIZ?olwi>YXfUg z@$rF`@&0U|$TIIonoKxOJnf>5N%WhL&m*QBpBqOfe;XJ^Cu@46G>Femz-!$>Jr|#Z%F9Rvb{>1_Chry^CgY6b^@$Kf9_XI|?rAaH&H~rLuWHO!we$hi{m#NU+Sk?h=3sng*dh~*bG^@L;O&Z0nJZ?Id9HZcMSG~a-$Pg< zpEZO=wn*HoCY+&>m}cm(cQ(Q>ve6N|!3O3OUf(rF?{P|kk(R`-YFu=!P7BxLl@4c` zcoVVU;Uw%~8*)6?^bYS(MNIK93FWksYk|&Fq$`hMr826f4VOcg(kf548`vNx8)fmQ|RfqN%8!~9jb7)$rv}L_)oT`V4Sw6Trr9}Cv;p_u{ zWO45#@f6F8HT>?)uMim0(VK8!6~Wx~t#gEz+u+C*Ig`4{BUyE27k>F*lsQ`+I9^pDN17hRW~;?vL+`p$jh~&!`yuwGV8lol4sG zjT*D#2M_dSX@4fufIe%xU=-^-$y+2uilh8L@07Db?V=5K-VWobW}`vgMp|ZyG-+Cj zSb0^nwZ6feb5^T~PXo0Lw z2AquqjoOSPR%74vtxA?%(o^`wqqrxd7dXckN}OAhNBo_C45`MWu=c2}tc59te~P7( zkA{2eX|JmaY*sv8Jdvo8ICmh%OYIdK>Ln%idSnsS7dXZ8+_4ef=GqyBJgJa+Isg^% z>>TNBseNrj9;joLFv#mdT9b;8oUuWu%C`X)NmL+!#uZ@+BaO^>a=0lL6wX^r-w=eywtUu&fCE!D2bA(Si2061a9db+FS`FXR1sTb5!?=-ju`ST9i)ye;{Dya zPE4|IbOdwA^3na?hT2&LJ|)4%O?5-|s2Rf|c*w?^y&Xz8=2!wR$DN*q&L%2Vo~Iad zTA#2Oje)ChVHPHF9AAbIf5{RZ;j+kSL`P6Pdk(Cudyd`>@nm3hWJD+>yfmyT_1TTH z(LGY7$-7A=PyUU00oN}3Wf-M!jyKcQ*|Fe`vS3V$^n%#t*S9tbrT5+(7EiCtg>T)D zaBmh4EF1N+H~@;NLA~M-sZDn*W~!|i4n@|_LnuAMTO)wM4a^fMDwpY})7{P|ui04($-yFPKme`Le6xLX%N+1*tWxBTqodcZnaHS4YwN>O0RY-^e9* z>E~y$<}9Sdr7lRxFKI8@HX@3if6`kO7rTU1rtbcsG^4wE$kU(JJcTJG7Lx@5x3xq) zdFP)IMN7QmwG@_${ZCeGZJOUh*%qZwdowUOWfCrH2@;U4bQ$>QrVXK@XS|JFH?2Ip0#oSSBp&l#T<%T5+>}vSxP><# zo6KCvg~i?!t#P_F7;AvGJow%-G3{)H_*j?t&}D%}uMC4G_-6q{Miweb>c z>KrlEy>8n7z4j~?O-kf1SE^qcyC#q@fz~fr8>=n1Nw`!>h&x;}HBT*mwHl8=f0Uqe z*)54X6p?#Bz~ZRjE%nk1ZJUj_)lTHaJI(D)bzP9e-xSdp&KP^f4K1Ft5r4E3dAlym zgRiGx>Wafrn89*Hi%CE%#e6#=iOzd)|1}}QYLfU2X_BWM$*=|p?_Whe3`MGwHGtQWMeWFO&uv0h_x4N z$aQuk4|XTp_Y9_Ovqx5ydG?PhdSV^A-$OR!0Xq^^?oTg2hpAOirkuJ| z%Cycl^x7xT+UH@V+wjG}S0V}48_y~TXDCV(_8;yqy8kR+DLpNnh_LfH4yuL z*lVzFgW58psY|X}IA5+`&4{P+*G5&QWB3YmgpX`{ZfUjs=HUZzU%c*3(C$#Q0!ibO zsVr~am!m@H_LE3&(9fWmI?dh`o9XGI^}ze2^jV;otbX_=n&(0VohPAKBTgakD%0BU zMyc)GIgZc=ZBU*K9C#bEfmamtB?;9dl@KcaZd5!KT^yy(L9cftKW8JeMh|WECTm|S z@=-}XppKZvOPM#mi{aoaN9aL6G<^-0D1dS5{2JC?rQd^!uOn@TV@vfsD!R}OSRa#I zek$T#Q+yCsC(vvu+hMj23e;BpWW6Vs&g{e?mJ8c4A#81cOcrY)o_5i4>i8{&3z7q< z>P}n&nxc3Uk7v*p0Sm|7EAvS7W+_@vCCA3ZnkPPeOpBsy;lhvP1_yG@A=6U!&i%7($Q=$e2m6+ zT@{2}1U7?JqkH#wMea-|t6i~JZOSLGTD`i`{5W0O3{6)a1K;V5qNa(3L9(&oh-ov` zbWNtKC7#NuXENHoYH%=Lkv2#%amKWnXR>etyi2QgVXTbpaK_XD*T)gZCY<&;Ot?rf zal}-}X;|+--9mJ@%?p*`aM;v={*a#@ms~gewg<*exl#GH+e#{N-bdOpp>m@Cs`HF5 zV9ZxlX*hx^O4IF_jp)}2|GXcsK^NR#LfKXmawK^50LH1G6#jdOM+}JfcpOBGeb&I6 zn%k+m{^rL1_THD?BrUd{G+Y#Q?gZ=bdE|hQ5bt5TSXia>WMLJeLvZPE@kR6gO^A3P zEm)s zNjl3P5H3pjML7|)=_o2N-de<1$09gx_~IBsN4F}XL>7SyTw`4;t&rsb5VjrkZM7ZG zQ~PAEN>;(hL52Q8qGhtfQ{FUc`#kcCea3~DEcgkI8tQq8#9C+jlURQES26yQ44KgI z6jraU^3P3e4X=~XEp@@L6#K#*r!jx1Utjt{9oo`I@54>WJx_Vlspyw6mFeX1G2v90 zj4fvVo@F%ys|9_~8JkMrRi0;m8j~RdM{MheIN4N)v6dR63JK$rir5=+Dgj$XmJ&GR z-S8dO!5>j|SYX2ANJMXJ2|1y#L!?k_GAP()GO+@j|08RAQ9lMv=M;In2)e3_m?>uuL}mMm+6`)dIb% zWS0v01+ht71L|A{daW2P`Wg|L+*~p?gwD?$s~T5?_(%p%CSs^~D%e;8%K64M>cz0;_v7nr!|lsH(7iSQwTBJ>9Blkgj}zk z;K;l?fXQZqf*s8^s`kn#)zY353_Xx8f$FK z?sU~#50_+}40!og*nGP0PxwWHhEmBGUMHgJe0@)6hSS1&5PI}A)F1PY@c})1ns^{R z!z3?z#{9qF8Fwo19TIH#M)~fFIJ)a^M3)6tWdd?{L9lBwD~wL4TSU@2jnCZcHn3(Fd}ueEyn=MX!%jrypK&M6UNE+2qhJoBT4| z(VPil>SyDsssZ7gs=<$36n7{nDT+Q%@Kr^^C%=|WHapYUZ!-=+KS~rWwTa$R4?d{} zP29CGZD;-Q!BlS<-ja!APU3S*u!L>jC(#E6Q|w~7EW~m1M@ha+El+`w#K{ll=E~rx zobloGY7NW;k5HYjG@rb2hW%hCMdj=f)x}yJMq6c_47tsK7V<#|niUYyy z*mu^3V>fIn{iGfpT!jXFv9@n4mR0a~a~F=okE>)CE~*a8;SMbRkfS4*T&s%k=XDquh8GU@qRYHms4aI>ua! z5;ltmGVFMzslP+xF?T^@AI4n8{LaMWhQZA2$rIw_3c(pG_@pD4{r2&uqABC_pg6l2 zLyO$#DY+HvOvFf85H?bLWb1yz#8aEZ41O$IjJyimL4vt?F?jjB3E?z4hg-1|xV0bb zdWE)>V3NRjZk`Z-@1i~0G_ZH8+#F@i&XTQ}tB{@ROQP((72#BM6jIXPXGm`{Tv3)V zoVpB=R#^-4FJc^S;cKF;Q^J=^;f*b3)BtHu_hLn=ZTW;~iXVl2&(%f=0j*ir58PV) zRowtX;q1)Tx;)t0mqOjvcvchY(2|nYdJ0S;A7YXDk_GSd_ip2Bs0C$9^Hrj=&+9!g zcMK3To>D)b5JeL@Le?Uk;+s@i2G?L`w8eM~iax0^44_H4A%esQLq z?Cz_krRA_2Xf<=>cGB|OeU0gzR}{qLM2R`H>xJ?zE~BC>(kDG2Qa=UhtspGUGd&^B z+nem9ZqB4j9dQhDPL8~8Ye-X#9_sB&q_?)%K{K5}zCI9XeU7|bYnEtiUtfY&0a*jL z#nwoSsmGWgdkloYdIoMJ-W#Z$%%RwP-$L!{9I-uRzI}d_pKwMo@YOVHcct1<*G(A-}2;?WUsDA2Zs6LwYX+haC9^OFu}j=wPa$P zx@6Nr|8ac^y~|fi%aK3km$|Ne$0JjbG{Tv071D{{<4S!KanDYcilf7ak(_415cEvt zclc^(gKXsw;PNfK9nWbO5AxM?%@HVEF~RSi^9?1;xx%Q=U|)0X{$^G!&t!IIZF)00 z`=h6`1~RuuNT|0Qp=4ar@k=*j2m+W_Y%;y1NcbhUZRm(e5ln7J^VXE71>Rz2)n!jD z$#DJ5bh_B2G=Vy8ERU6X|G`$qw+?z&p>S|>+O?~EC@UQ|Z#sYEF~1xEDZM{}Ms5V^ zo#t<76he_B&^0zxKVLq=*AkbZ#m`Nxtafw1z4`3m%8{7V^=mG>>fYkpIey{e=)iNU zqiM%WM=|J>-`x-BdRzR_Eq^W%Ei{O5;v&#nHYbZ4N%Ej|DbM3D~MN zO2FNk|0aghyqVYxyx*~ynf7ADf?#9|3ZeJLpi5leT&Ci(6oZ&i6|;1#FCA&P_;X7g z);Po8y&FOFS4u?(BC;@_Nl$X| zd^`dk7dFmBz=OQ}fo9k|-B**=PVi;8{&j?6t=S2>ewqgp<wR8~Nx$sPimv6FqL~^+&I{2mPiA`O}3Zq zvhgPV^%=ef+PC;{GftD3IXD#=O3TYvE7PAT@-^1Jv0;zfu{^LP-HXXybW3US2pmPj z_*3*&c>{{+y*850+>4+-R6I3LNP_6>*+B1M?Iqn0?X_2^Hhxq+(v=rQ(+}dE)Z#T@ zxQA(hqQzLCJpZac3(?SI1)X4m;xL?QOD9iEN}{P%ka_rSE40uLkz+=8-*E$I+H^a(bMsEyNhSHit6%q03{d{rQyq)q-CH!x-tq7032yWy> zPxw-C1Bd0^XD(uY<{DMR#W9m(XwYIzp7+|Yd+b<9j+wxdzS_uRz}SDxSacl*Hi5p| zP!g+Mvth3|V)JRy5-ejjq=T2?2K8E-+yHZM3?li`!9uCe(-_HW<8Vb_r<{%y72;eX z+<+Su8h~S?ntu1{C_1$qzL9nxJXJI*SD`4?JhUS`NT9s?@%fTvaJrGqHiw+UTl#uc=ll~u5b=iE#4HR&9ezVr!}Q_!-+qvUaM0DOr2f~DwY_8N?viM zE?p@MxB^1HWTUQkrrx&_RID!u>etTH1^)we*t4J>wNbyaQQ4m#T!rvHELYBFf^$vw zV~3V1_yDaazXaII_+p^_TzI#zQ~{e03bvY0f9rh|%|A35XT`sSc{tHdUassD@z(oh zT8CU~6yG-2Z>w0h?*Z*@C1jyl$e3&Bw@22VB9f9$u11SQ;!A8LEWSkvkN8l+`>KR@Z(TxZjVV=VVbqiu z3Z9Agk-Tjy;0=2Lo!4MDnm@R51=juH>#!W7iYP5{f@$_X0bKpcuNH`-tKVo03dZb}$Udmh72Z=Gje zH|){I?+fg;&pzi%!n!33iySse*m`2mHIx?Ijy`AlQN#ueoMM%DqFzEQ4rry%HDz&L z@`A61xGW@efD|@tUav2cDi4zJ$>To3nu$J^T`;16b*h zb_vW^q#nj1Uka*TOQtSjou1!_o*)Tl;zYQPG!^mQ9x|{-?OP(FQF?;cycQeN)^8H_ zpLbvJ)zrGGpCcK9|L2=OK@;8dGWIHqj^WVSnpa`u4oovG-?gO`)wv@bP*d82qty2| zAxbU6X5lY*;gdn+V2z18U-L!M>zjRvt|?aHL@SXO+Kz3(Y;tv5+R_L|{cLIJ|d?TUQx4Xg?rQJOepDy6U(nkf3x7g756ln4rW zVM-jVY*FhzL#=F;K5t=ia$7rT6}-~WuU4anf+hs9D&@Wn)gtR-pxD=>BCe3GTJHLW zyn~LZiQ*zJQHE}9?mHARk~(cgL&IyTGteDa-WXR~JmrRulq@=%Wgh=7W+}rJ8w)3X zHlnv^%6<>aDR?!t0}`*Mwj(=tTRWKcOq*JZmT&V#Xp0pW8H)Ve=&^`pn@+-fRR~U- z$4$+k(j8F7BFAFz;%a*_EP4ODwZY`s?yIZ4p^8DmB7ZSBA>EpHE8<>7&SxMTZi^4?Kw0vS(h(Cp8U|4rM1Ji#r5u7GaF~D zxTQx3Y&9zQc4`D|{1NPyHg+=`o97fwKSO)2^(p$m#67-fZIUWwyt$M>$ETRTrdFj5 zKckefwo*phO5vsasB6=L=U7XO7@dys`hlJMFp2q>%W4-} zqN$gJ%ZbNd=AyCT6iN$M=`OtD3(VKA+DiRH)riLkqm-@tF)PE#x;$?etxgA%Q;j}? zos=gIU}Zd`gVl>tk-iQAzU(Fq)`o+=6xU$M8fa$eon%9;zm3(`#^MRn1{`N`JtA2P z%q))LM<0VvE&K}I=)*SPY#WfffmaWsqMIb}Wit>J&Cy=8VP0^?tUikCusBU8^mW{f zDL97J-Xk{5AsdFPH*WW|c=~!1JT1H2 z(|U=6z1ik_t4de~8hQJB;w59fb05ZPQ+csvSL1aVEBc%#nC^eyWUwzg`~Y45awB=R zCvplo{qhh-aiSix6v2`8IyJ>bwmn*vgxhZo8St$qF6vtzJ;pTgD^*c!(bW{yI}|9I zh{JFUl#e}83Y!grqrm$^Y_@2d1}_;q(E7Nn08L2&cKI3B4aD)MCNHfZf9kRD-~NTM z!v}(~jn3#+_Q=)e7>l&@NR9a1e^9@Efrc+rP*2jS87aGM1&Zj*OBB&~kF;a{gSHKO z^fw|{n*{9!iIyV5RCU4a!_L0K@Mo<@ZUpXhm1)#=>c2;AVFR*pnEU04KJ4`A!Pv@) z!+|Y#xO92+is?3dRd#_lv;2!d*iDxJdDM0t!y$RqOSe}zP})01wB<^Q)Rq_Y$?<2O zzCm~PUe{lm>3V~!h}6~j3FmAdu(;RDBbD+hQ(2iQ)DKKIJEIDBe=^vQ4S0vnxfFir z-Zd0Yp{_wGlA;Ah$j6)i9zI@ImAA9ZOS5Nne{mMeo{vCC2NUCmW=1mNjTUPGB@18j zBUog@r2J5Hpkl>>KNHy$os18;aC6qVUSf!i)s9mKXe0MFthkr8sPe6<@Bx{h8i;+b z2j|C0n9%qelaM_^2pBa~}wLm7+zi^0G%ELjqX){~;Fpf|%rZ zHjocDX=(FV)KGx5Bx~0a3P<5LC^QN=1dsew z%ut779jF>{q)nbF0oFvNsmj(!X4A(kw)i2XS&3SRF4dPP%ZxTtlB&IftYwtZSbzQq zJ6UB$($7{6`VrYsK_(gLp!&k7BqgbDpu;8RhFIg3)vBf#)$8eYjZEq&t4x#_tW%U2 zlr;86z8WJ;>P)>q+tPJNK02;dxr{ZQe9~Eutla261d+mUYlL!<80E715tnOgYn0sX zlw1^Hg?Fv${7TYUZ!1BZj}3}MdA%?x|BQ(ByCl={SmTsp4MfowZXjg=jgL<)0ae2& zYm^d)-?-P;f(=AI#Nc91*TzvE+aH(Did_xAIdMKpUf9(KDtQ~3oLWhc7iOKKp=V1I zd9(i}FREk`Wqll3tCtutCVmRWK}&7n%6Jpw7@biR8}f#4@_dZtJ$yL>vfNWKvamBb zm^RPs@54e?4-seYDu)_~!fZ1P;lkL0D3SfdE*Ig~4YcY;jgD6#YeD5#H8XC@s#8P{ z zXHCFXHu{la!W?&^&&QbHG9>ay64dsX4Z($QgGsFSun@Yb5&=fYmHVDY3D$C!hMY^D zLQHAso(X>zw&q26jC96n-tIad%)pTS=hw)BJw>cM9_mTmG@)+yhT5_iHg{(a9a@6@T-+L@6m2BD`2_ZKmCKKNw+jUU@}g{L8LKbr zTGkqY14{9|$)hX44%v~WeEg4^CJ1$<$z`cz|CVyF|8A-@+`p+wbB#)H@?|+|EEYF; z64Z_aDaa@nDFu4pl(!aA=7RJfRut-#dSqe9ilI^LY7!DK!z1rh6EAt;uPay+l-;Vb zJ0)i7!9kjz9jOZg+U}8biMt=-i?^jNW>KdcMOshQL{|1S z()BXYk#_fMSqor5MVvU>Mbi%cd?*8F1UpJe2D32B2!GQZ;j@s(`Ck4J-{jvvlu?J2Ss;WQ|nDHxUc3 zb)8&hTm}oT4Qx0yPt^&XOnvkd9{ZU0{gz`b%1#7CPk0ZD6pK~1LJaqtu%bVV(TvnL zO_AzNoKWs*HlRn+&meEj9L=nGlpodPo{^G^rLF#~OLJ>s%Soe_$Ay;PH_;jyDuk>S zpnBhg(UvDYxh|q$oZV@Sg3E45^Gg#OS;)v%)@Y?{Q&FVYrTLYs)pe~=C~m>V^+Rq& zT7)I+L6I62>)pnhSLxi8-Nr4j5>aX_Mlo@z)}lDB-9VJ;nJBfbHNP@T)oHp!g&1Qf z3u%X&(2IY7N;SpEmto?g2ub4)(b9dX@@M5VMU=`WvI;sG`ChPLW4&-KSils`{9yqs`y*=}%r!%C+4sVtg}kii z=wX5Ew{GyJ2NSLAi>5czDhG9&GiMJA51zSf>avVwA}+sFXueq1oVq$l#Vpw*7xe;D z8s>s}GFFv0bFVXAJ*)+B7d_?hK8e-U8~O0`Q3>F)m^T{|p{`OkI);bMAX zzV~0ufo!pTSTOZd%I_xnUj;o&IjcG?a7ppMdC@Nx`jl6SG#4!pE$BJD3AFk9pf2Fh zxHA;YlA|kyaF~wT3en`+>ps>ZO5^6DvNzywsC_A|6#-cYd$)O56btPS>qTVdj9azG zf&D^6xKgvZd;SJ|j6wEDm3Wv$OuictXI>f>D~JahiE*s|e-S4Rfal{-iLDZ`9^(D^ zu``}Z4(k#O8sjYg|01qF5F^b~$e;H-u&HGPg}O=K0wsrsv4($PW$#fVEe`VcKufN2 z@?dLe<+ZBs-x9Ga*pPxbLxYw$$zP(Qs)vFzRy|tOppX8Nn+%U)@gFbuu_UqWx83R= zhJod=6UO&#_qCqGONCRwmr_`aL1^=_%z8VyuiWTJVPuj-m*)Rm%ULl;~9*;ea_IM#9sbe-i<*Xcsn zDJ?Z)qe^H0x}h)2SwA9*&7NuvQTC{Ub{Pd>lnSS9vDJ^&TR);8yEX_bnZNWXXq!n8 zh3V?{armkfK{21>N|61g)8gIuyya zKS2!*W5fS;HP!|ZQ~ttouAEsAft!W@c5AT%*r69FTPeS&>hGM55mmAvt|JkX`$7fL zrsO1?0W$}jHI1CrJacZ$vgXH;)1+*=#HqVj!{(x{e{7`dW1=IMfL3&3e-lqT)9Lj7 zn$$d7bEF^3m~YL8`&kT0Ut;2=q_19p@zqhmdsydXXg+ZB#&c&Fo3#+BK4hfZ@0o7R zBG5e-bWh#sYT%kBgHHENBxF@zXTw^yEkW=%p|xlzVzU!g$<48=#3R_&{v#up;}fV@ zfPQ0WEAru?xxDu;g}>Tbt&{D9Bihc15M03+OjSOZDn&422)t;o-T~er3Lxbe8Rnz;^ zHhV`#iKgx6)}m>nXzH-9VPTI~BEPSJP#)o3ZmrE+QG0ymQ#cejGKshJ>_@*)ZS*EH7X8v*J6y?5Dsg*>*tL!z8S|f>INNySq$u7Er?rwY zQ{|i{anj-^Quc|{8qTK7!#U-d9@!^(WT#0NzcrY2*`cy;mDtg$H^Knild>B$I!pmu zqEI!E!DI+8T5I`1L&ObhVR`pe_CI8HbybiryR``TGo&sN-4PY@2FswxfNNn!bps5)*iBk+%MZUYjNeI zN_<=*)`t(nwp%M$zBh7y=aG}VjjcQ2;{TJ%!UM6rQCF2(JyJEc#pr@;!))EhAV%x-0n2mrm`KpIJz|ZY9F!!SN^ytr3sW%{He(3AKGfI303t= z`>mDW?K_h&Lxx*YE4XSp9p|_8fVC+$8+oF9?U9nMHuF9NGffhdi4rBQ#nAPQW(5yf z16h$-*%ACg)e3GcNC`Hz>MF4a->7fWch;&n9GUd(B9Y(s#p2l#UW(~KfU+<5lr~y2mwna0j_F@`%!oS9t{~2$u577EMIJtw?LC8 zlT+LM_fd>wzZ2vK1$o#}M`_mc8|K4$`oU!fc^S(-BjsL=5(io7NtiB@VBDyH@n8rG zsewxlGJZhR>mM#p_R%mltbilpcpgi3_tyuS6_aJ$JAt(x1#xdBPD5vhYRe3|Z)<;q zLR>syOb|PE5}_U3ugHIBm==sgG*yl;?>~iJpz(*i{YVbXwz$^0VxHDb3ZucdOF}RU z>pRAatvih@Pu9gqR$hlct&d^A)0$Yvh$9E64gCHL+Q5+{ECm5Tg9z7h1s|r%DL)7k zwu^&s6cg^HaV1BRlWvrQPCu3H{~5jFy>l3FIaFa*qcE(V!xfMd#^CVPUD@G?0eND_ zO*ZbSphGd=owt@#P9Yz849J)UZ9%)9h9?)SMKE~qBmkG&7zFUq|LFB&^0UchY(cDe z@~U}a%LvB&G3-{5?NpFk~M%0T#C~?UnZ|gl``ZhF)B5YZaywYar0Id13?so zyfBu#j*Vc}8=%E~j?h`6o$8U+WiO?b-Kyq0C1SD?=vz?OATD)u=iK6vld9~M zTL@nKs&d|zI1#sq;d+L$6SuALm>o56Uh~LFi^%@DgAiRf4iiON8PZ;g_@8|SYlfa7 zEVVu|Aju1hM*`a$!~TBlMc7};RocTHd)Hb5Q>C1iEoluy&_h><@T$baT8|B2wm4fj zyTE^9XjZD|)MR%s5YKjZqbKgfJ@dQO$1+x=W0af@m+|FeEB?TeqT!|_3~8?!9t>g_ zj%c9Fu*oEvHDn)L9myu#Lva366VY;2;q3OBg{8G)schwa^uebE>j{|^J!T9DBUt>R zv3c0Rm)O2~%*1-c%t{7!{GqipPGulnU&*X6uqMh26VEd<4;j_3k6~0LJBV6~gVWRG zo`7-7f{LMR+ZtFGo%Ktbf-xF)Z`Q*l?Ek0$s`^k21!aWRUT;e2ImQTU8mGj51)q z4RHUXC!N<4A8uAj=!BkX2>(NFj$2zvQKdg#VSUCQs))Nr5g4V1u_qUn;(DTnszAcB7}`OjTq(_2f%E3R-Lu zMDB6%+_nnJ_c)}BpO0n8DTE(lL@F}9(2npn6?1`}ieaCLoT6QAylthFztmJbG1Al8 zrzii~)PgwBd0YSsxsRNB=uyT!O$KjYu`2r9SP$k(jl?5gTZB@!6P1uss*~JJXa@*T z&ZRoXd9l5I_;qpo+I@<+NGHu!X~KWIzb#tnppt$llhP>A#plgZy;pm&*#YQ)Qca|- zI*AUbc_+bG;yypb5o#gZ>X)9azj=8s?3YshA~3thug-fJ@QW`-V0`4 zYH?14+X^WGokb<{W#^{3M)lM|y43Y%b-#txY>t3s;(p0#=#~vTN-g}UaHWvv)H9=C zO+7P>hpL`O75d>aR?{_51t&{_F^?X{!Xn4R&Ep;+&Np?5lNz|1oi(GOtS^(-R#+LV zvZYIGld z2je(#KK3Nq9^sL8iAP#$;M(U0?NOEXutcl3Z9SFo>SbkzJhJci$c{^>Q`wY)w(`nz zmHny2jw$aL2I4Tbs34pyigx0LN>?sRS#sYaJ2t7NvURbx61a?g$qe*pu`F$o%c)1O zLnVJ-3`J;-LpxJ|e=j@8`PiY^=uME#WGE<1lc7-i(jdVWgX0cKNJmMCE8^tCP_j|1 zP+6J5h9C(UBOo;vZ)#w1tFtZa#@Ulo)@u2;qE$vvJ-`}rQoKMiq|Agy#*)Yuuc2f{tXu@50O>oClt{L>}*90O23+n zvd5B1R|+Hp=>L&s0MvwDEpID^Dm z-|9B(?^XHWj%$1vVNjYQ*(0wBI1vQ<3ivW756q1mPngX%l-CZdYdbb*p7WOmg|flTabZCjkOL#5m*QId-tUmCvBwmP;1%-VQT ze}hneZCA|}sP^8h3oq=ZN_t%))vGV`3}g0I$el$&FtsZl=`We+DWvr(*;X3fxn&2+ z#J`*5Yw6J}w1(Is!}H>Pw+ZS+;Xd7r4p;7O!Z(uir|u}S0UC)KLO@knfZiQJ|6t}A zGeLDTDw(*G%-mG>DmOyi>nFH-%iL7?LL1vkDm_hP-E=at6O^K7J2}zBRsi>NP}Z!H z*!75IkM_uvgGVL=vaAKz?X|)rE2o=gA!K^?W+?vSg7SNbQiLa6bU|#?>YOO$I}_bO zp*mu^ZBI#I$#pGIhA#!{Uoxv+hB|fk-4j$7^ofc8p^2aB=69`7H;Z%^bv>Tl-sd*b zqY9eJS<4?&&BIbi{Kzoe%g>+Im$b)VDV5!71Aiq|Wp8C<*9S{_5+1g3IT$z^h$~}| z)5IueyA^VBe*j-MLzOeZD2K+Yl!^x*pxDQHBp&4=p86%yk;CxEJmjX~#;SH0ZtPNp zeQ6Yy+TK5GA0i@6S~@)wd{z-@v6=% zbqzo9r}c61p7WTn90VUy*`Q9g;#fa(Xg|IRU!=b?LY-D=NyTY_T7L+)eNuwmA z110tc@o{aMkqx=%&L$?)y4#9i%?v5HL}H_$0%c?Jgo%Nok6CD>oJW+(1(XGkOrxMY zHycgT;1Qk@LVl2h#Pg$Ws4YD(V`4Zf*9&?dB_UGrAMT+QKRHIDb0+3vLucd!;p~4> z`?WGCAT z!V$-BO#OHP{!|QXBmvaQwg1>w2@{_r04qB*0j@)N8dY=`T-@Iip?0u(CeJs0$)SZ%4 zeN;c?#KcH8Z!m80+3r!`7EPdASdP+E@XExZtY@0d$MUNXaa$I_qwL$7O)4a9d@ z5w=L zj>|bc-qzOgjgf87f3uaHXsgEWm*#8_bheyHwhwT+s-Yl$bK@Z+MH%ZxDo=yWJ2pO4 z9o3X%Pyd7yR}8u5+BuF3X8hUEhkUC1IQQ}=+X9rry^Nk)TrbUlDCt`=(E)xS*xE>J z{B8>MsG!hEa0#bOu@zKWn&_JK5{_WwUa}FjVTS@%N9CNfhhhyBDLP4}b~RVs znU*>DF7b2^!oqUWm{{j^JG?cxi2zKDGgG z80+{Gx}n8J-US|cscG%87~REpg7=`rt9KWa&&f+{W#NwUESB`$>yeiXZNeuov?qf1 zp~Neqr4=)xaW5evb_T-V-3Y1Jkin*6BNwH5-HbxiDJZ3IS1=-jO7T8=g=QoutZznM zy<1R<;D_$P@Ay7?@omP0{Hq*{AwN|4Qe{3pqd^+YZgt4;VrK(ahAXX1q|LDvoS)0v zq>omH)B=aEKqO#_N}eH;QyWaYQ_?bmX&yzHVB#HX=EY2A8&>yITV-Xl%DYkK#Z+dh zvd%=b#!N)@ZIIPgUAd|f{Uj6htd3X(DY(GPUPQTIqC97&q`Ah`c0@sa`-%ecLI>t* zaT$eZlCv@r$PH1@xf#mlolZ%&TtlXDfdh>oTCc_kB3TttM;3w61GL_NXhN~iF!xc@ zB%)eht@vpSQE&~$5a}w_$1)X-AE+ukS%cU`9}`ttUn+D_DHmMKFFLGg1kGF~69DT5n?f z+{{QB`g|uc^qOG2EHmm;y`*Sdq16E_^gbr$E}FQ1)VV2Zkq@SNz=zT2?sF8l%+dRN+s_`$nAmX-R8r?sQ(+9B93VevR?kKtYc4&@^@R02;`} zP_3^=?p_|bQ})?1u!Wy;0VknpwE8g6rFb|yFl(|pZvVuighd`D&=mFaWs{4s_zO4= zUj)TUvb1t$D{`Ef9L9Pa zfrC|ye{Zs)!u{Q?sKfWRB1(IViugs<5}{^9AjCaRtKnp|(FrB}Tk@x32-mE?UT?V( z^*)9u+cZ_(Oo?5$BCzLSVZWeF;0qSnv9i$E5Lp}VQ2?!ZIPzk0VYYZqPLQ%ym9j~a zVlXO*3TN^0u3*px{!3GYVXa4DWK`=;V%@{_{_NaKx11tdB5wOBRLDy@ZQ+S41Jr95 z&i4<@HM&k@Af!>+ET`PW}T#G5fFzb*%F0SKYoy>cKN` z*>j5@8FDTce_Ef@Qv-#fH<=aAZ|kenAHbfD!XjCNAlgs%IFAD>b=qY5Q}fRnS5XT{ zYM5#a&`gRZ#cQ9(7;TVHpEa$97qptEhq0-igExc~yntac+D@KILjvHi@&xo8pxM=u zUoc}^`y%?f6>9$E7}chzDwu;=fzsoIU0IfTq+e{Jrw*+3PjEE8#~up4z@pq!k^K{T7`92dljS_laL0tPUHFJ{c$eF|RkpksT@|4ViBGmZMql9}V3ABJ< z@--|Vh));RgDnaTA%g}u`mzm5K+o$ioc#QIc_0$aD%2BMPBw$GHQ5Z#8ck(^E0Fy7 zpKU%$XB=(MkD<^7>4tNQA*aS&L~IP(pCL%Hnp7MHr3Rg8xOe>~e1hq!+Sty_)pj56 z<($e4!lO)Y*5Q9R?yy3AYbE2_jR`{gvFVz@kVW3U4U62CE-u{F^mI2yunSvc#TuH4 z*O`c6iKCSps=imH)N}g-8BY5xf><`K!~Tg9FEyGMOmt*8L=gV%laJBEk zb@~khOfUY_)NEPU_SPshDcxjjet*E&s;PXHB|djcgSG+8{vuQD332_N2NC5=BFNf` z+=I3CQAMOlA~b6w_Qioygd+v7-V^&r8atUCjKgGhG_KnDz!s%g2a1#Pwfu3#oJwIy zi^eY5+OmO~tr5$lN45gWQB~=~lG1v#iE3bKgDHNj{bQ`9IHdDR#kile#;ISoQ^i09 z>^KJRiLI#eTxEYMvFiaRBHmwRiaO2l$RqoGBRhoyWDqUTQI4yq;@4B@hY#|epcTJj3egP+;sfn=bgg%X0KkdGf2^2sZ3O znAixaY%vM@VvuGT)b+NSmc!SrQ0`unIbFSORpqjY5y0!U6N}N~VAqS;t7h$QFyFf|Vw_!a!#Jw{d> zPT+x+#_RS?<9yihg(#*6f*Rhqi<%!6Ex6g~J0SsLisv^YIZh=|$t^#!CB0D6U+_QX zDOyTJfqPTK)VnB)4WVXUDLh1~!?Z56e5^f?#d}TjW&Hy&;*P@)-9v2!hiFDicGe@v zUQB7D^0k!t$kO7&r}?vdrLn4*cScGx6JO&YB1q6+h-SaE)_Pcoy|^+-BK{5_d8Ew7rtckm9s zR#28fp(kW-KDxtMxo#44MbBAM_s={~H)yCRDgU8TNx9Sw%;_^Ngq?}9M=3t|oqIv$ z9x5_6*HA5EpRU5fqa&TC#bOJkEl8=Ma#xkP$?y(FA*j2u{WRf1D3wg)NoI1&gOC_| zqS8<0?Je`tE}AFvriJF@x5q0zO^n^ljMUy#D_}3LEX7Xb#`gLanebL|JI)2noQ6AF z`RGmLlxX zJXG*_7Cy(-l%qu}%YUKXOj?M4W%ADQ^QWRIj~=F30#)6|3iD+FMeVUT7>LMQN#s;} zlY^&6uqQ?Bd2uI|Cvu#A=YgEcEl+WKc}s@iognd|*jiwL*Cm(17Xcu7WilB{)4wKu%Ay{3Lj>Pg&02HkNZ9iB5YYLjCH%j>k>U z$HM&VL41k#64;9c%P+NXIaM#xbxI=Uc;0zr|JRM3w>p@Ef$f z;j6s4#G0~1D#!!%r{`tyNiex;!;K9^<>6Y3PHsqa1!OZ8cXOsbGLy><31Bw|PLF26 z718dbndrI?7wyhR!!>KWT@e|)OfW8y7;`Gy+b9c74D-wkG(pm>ioG(NVNz_rM8o)2 zFQL=W{?o<4SozvS`<0oN+N^oi?A39I3(?+}X)#;!q4I}`=dPKDEdEdpSbPC?&WdW9 zk6Au-8@rQx^nSwh1hLpAN_=k!IYjWMRLBZ)k9r#vj;XPsVddc3Fdyu^)0dUVAJ;oX)RcSRWvm;n8L+FKCDGuuuc}N6OF9esESi#7Pua$$9be4 z&7W3h@#lL6T1IGQK)H?kr4r$$klyQ!5=19)V>&u0zJ>U6kL0U8l8eZ3eUM)kgj!obf0Dw{T^`RX(%{Ij%6v7p`WQnjhpy7;`kVs~Z8{d*prNk(UNS zyBpg}!f7V*@)9|XgNQsXXhs0r+63W@vTVs#H+Q`he?heIBSr|jX@S4SX*RN(7HenZ zRToeU6ygv#)zZQZCnxWWFjlQO1Yr&df~2u*uaR0)K{k`v!d@7QQAq1gBpTgPrc4D{ zR7-mlUyS0e^?Y6HtdZ_UQmqxr@ms-rK;k9)Aj(C(X9SDYzgU*y&b!AWFWE=OHsF0M zcppf-x@i#k<6$$@@EX>txRd|pk(|~cjcaR9QVNcuJ^#4pTyOKqKtNnrcq(~E8C&4U zQKHF|vVn}k{-M33(hNW6)8dU~N-_)5_5D(q1sy)$z{H!Z^HO7i;?s?SCO2KB7{E?{ zHX}kfFVj?knX*7Fd;seRV6h$Tg_KDqdEGqBl8&b zaz=u1jeSOoOwT=9Do5Q)K%R#^d^JP$k8|PI?#}mHvjmzn_@KMJoKi_8Pm;;qCk&7q z@nU$BXyPtCT3CyuJAn_T#K$nVQcMfH0i3j+v>>{&q33b~Lk+H(={! zFQqI{HJ&TeYVH7WZ|!BrB_=rFK$&ggo}qJ-9ilvSJCs*<)#+<5sC++~qTg;w(6`a` ztTZ!}#rCs@D+f(-_F=iB>#PiZ97&#!F@kzBnhkHb(mh99zIXrwT?qT)fgN{Ondp8O zYGbwHp>IWqjmGVT2H4AB!S~ZM=m+w%r$4$v+~nF3-{V%$k$SLb{=FRH&ch#2Q!UYw z`%rTr+=u3ZwuwYbo&(Xwr_EHiwKg=;;@TB6Esb`147QhmzfIc0C^c;6y*A~NAl~(x`*~24Z$YalC_j;&30c*TT&}K=H-WP;b!?xUChrw&uNP?t}W!)I9 zH_i5#V}>hT5Bvl+aVlh0SrGUN{d?MMM|S#E%T#(mO6n6r3)B>Rr?r)Vs>6gbGFpG)1?q z+Ug=yoh{`&l9%C6>r1MO1wrHNm6bG=xVw=!bi6&)@{vcnPDVQNyar9c*nFW%H_u2% zT`O`T4@*8bQw^8T@yI@t*p<^`gh8O_JQ_q~?$ib;%j9Flj;gW`8)f4Pj&gA9scd+* zONOx@Lq)Yp(=~JFC!?x9Rf!%Mh$s}lC=hj0o(+OF239uAY4aO_#>K@eHRMvX|T8AnsVMU1$)wY$TyiOy9Xv(s-Pcbx>sK}D$F0xludZ|>{ z)u8LP3#V)0G%y4(cyg0^%~I#Ou$#_J%kq!RTEZ_$W&4)c%PNah>iH72%Ogp)WEr?x zJrP{EFzo5yXj(4vKj!!WX+AD%R+JjJJf;dcq6^XOp^eoZ%_{m}HOaTSG^w->jMqww zc&p{09z0VSAM1=_^B36ivBleGd9iqgru>0UDdqK_BCmfNuN523E!JCZFRjF3!j(J5 z1t&;8nm)Nm{D~{S)VD{MaJK?e4R5`E9oSMhZ7Hys##@;&NvR^R~ zUqZ}JcG;h=wimJZGmD=M$Dd4;lCCd$3$2UJr@#exkhv!s3oO?}QDAQ;Xof%@`(K~U z79P8$s^G39bGxcX7z1~ln1M(#aVMI&$ruW+L$8GO+g#2X{JH7;>mWn zJFQgm<`OygbcnZn$vNsAIBr?-K;Fcub)||ge(2r^du3?WK=yn68;mroseF}XKHY$a)rYIjk3v=|nE1+Nh&G~3hGqyf zA^c*$y^_*LkQC^J$dnv^`VeU2K5o@e5n zW9B83P5sVZUD=OGldI^lWm;Od586^9g7lS%@qcDU8dT0Yg4whCs-}O)lxO+T3Z&_R zTj~U}a#!$@9SkX=+5xhY>;T1OvV%j1R^sl1Kjs9ny2tE3O3}%pDr1F6anw~>_(fMx z-8+UsXe@s!dv^sUYX(5ce{tL%qqJ5z5S`XI^fg_>8m{(XKm369peeCQu0kXJKr{vQ zCu#N#Alt({>+Y%QIoHVC7Q>?1s~Q$2Wf3iV(;vBxOcUhHPbfMRUe z3rhgv*LoWCevU*9s+y&S7*`ub**%J)VX^mFOp0Gr6Y`_PPUB)C-rq1wbuZ5lF%{;c za%y2pIYU_<{Ui1oH^T1kQm7ovvO#9J6M)wG!%OB$^C zq-TYxvF2Jr25xVwW|J3`x{5ZO4ZUd3k1dt-y?r!kIHHuRFc7=qKJbuS|$ zWyO<*2oca|zK6~z8B16Gw7$|gQ!^AAU({chRe;v?VgU)UFEX;zK;z)nEX;w~TqQW) zqlhe%2(rbTs|cAN5bWO=*~uQy+{O}&q1Wt1v6@874N3Q18Zp&NWR9s`QrWKhIxAAm z{Z~TX3!^-J$r*%3F}}$HtI9Q@lGE{6F9IU}`)3$VVV2SWCJ@J_Hgqdg@&QsCW3@AP z=Ws3xeQyY;#PFx}mAq5*BH;Ti{=J2XkT!z2rI8q2S3?|z;)$-YiHooBl%p9(KlD93|DUF@sXH;UFz8NZN#t?w?dnYPIgjM0P2@BtsA_SPRJ^7O zm)$a5a@ogLJj=V}8Ra#A1 z8Z9-Xe$L_Lh*7HHH|}GD%F{KwAu6l4qoDG!O4UcEa&7M}r=*!!x=*JO0ixvL1F*m! zi>j9ViR&j;`8r~iWh&VcnT%o^XK&jBa`Mj$Vi|spC}p9Eb)JcpT0DopqnL6?W!*2c zqRq<>!n`5?@wJKYD-$7kIXePD_(&zZFB5VXC;Q+$e|D?zJav%qhl%yBiIqCU!@-VH zaN3@ZLCwiGL$Uy^GbCnf(mXZ5HDi!D1Q9XAl(9VGdn4450LPrT8_C>SKSJF5!W;z{ z8)BxdCuo(AkQhGK1S>GLOf=*e9N~z-Hct{XSr+6PZG^FHDf4_-tw=|>GI55{y2j0L zx2~i-ju@;-A-eT4oy$8dqkL{6S*nMy!Hj!PF$+XrjC(7Z+GKbGo zXODk0QJ*nW(?}zG&b(-`<;;7gsKd%ksRU_=!D|%+c(WE6F57r-67a?>046tDsi@MH zmubnN?&(B!TIZ=op_IiB-D_;AnPT)UWe3&Vj|w{ClpZQ?SDBZ*#H2!w1f{cyt%J@+ zmVgp7Spw1T-8Rp)=ytg(BwH3j6UWrjO!?ouV0I+V5utoy61QlkZV=p%zln!d->Q5E zWIoN3*|sal-^w#_ZrL{`zCA*H%Puy2wrF^$(>_wzQAT;J(mrsbeSzjT`QSWpZoTrS ziSaiRBRNKQiaN@}zfPNv+8i@WvIX*tNJYmfSE1#dWh}JFS)v~6deSh+w}hhv+-zcP zEVI(+2dpvt*oSbXfr&6#5GuQn0A7QUv7XD#`#wnCzrwNd(}bK%S&o=|TnNDlk*umHH3b65I(JHJp(S4@s?wF-jXcuh+ zJDs}Pk6kS92*vp*B;eA23ZNhR(>^ifyh+MgvlQ|cx0iQRQha6$XDc_Wuu==4@be|1 zcLaOvJ3oT$PeRj&&6O+NLMd;}tQ5okxq<`hO;lDm*cz)I!xoj}&Af2-q=G{nT7ml` zIKSjWm*x+IZ!TpI&Ba(MJ4!1(XVbD1SwJ()dZmV1eV8sFtiXH`dB$n91_2%21d#2Z zculrLtBJ}LnJ@OVD=XBL>p$&OOWSe15^Osm&VN5*_{o|!V-L_0*# zD!WnWylp}8>Gq+|hGjQ!6i~K-o}V1q$8Y&3~lr>1~zVIgW7 z5G`p0FZ70*f~yj@K1WK_G1mDZ?DdFM;mS`Y>I)`n>cT6tkwHOZiH$Qi!zGRyD4vmpS!?``S86DEC$E{*W1|GhF!rTEDv{ z?d}Nel&}wlt>S(tZmY^WEb(3PDV2}mqUT3t7x=QDk1z0JUE4W=l!Up`?UW&{@c33c zM>t~WDLZZQ#Zv|5YHb)5_<{B)@P>#=@H5s^_^;(?D>Y?{J2;YXb_acB7*QiiyAz#f z^|@LPNM(MiBbu<`D(Mg-DNVUMIyvg#%nnba{Y|74%f8>)QCzX9q@Nl|UB%_YVn4=7 z)n_}b4re#IAP1Ivl#y+cLB4ps&56FORObbu?4v%&)DuWo5lpBVa)oLbiJ9DPK`;wQ zgP0>8#e8cLLoFNK7aY{xQCNAUrssuG28;#E7I{*-cf>UJ+wPF@%%hCQCK)NVRjI5{ zPe&0PtFh!5TD8LL+;O*ZrJ)6}4;qHVQVQb4j|?STkUw=RVG0Z^+=xqzlX_wJ_JI)5 z#wY@#05t(Yy&Xj@Ej_X~GqJn!rxZ@XBi$z%iS?YR-3d8Ex{vqBKE}jO?m+9u!+lxT zevZ8G{YV53mUhn`SB!v+iC-N^-y3q~Gtcbp`a252=ObbqDg9r>sJ?!T{m+&8=RJxz ztBIfv40YFIqi`@Cu3+eV(Ezj>=%~(blet9hmwa=gKUM;%v+2}3eK-icQ^onB>X+wl zs8euM>*Izx!dcnDjyP-|z*n+!SIWg6t`x_jd^wi3-&xv+bsvH_NDq~`t3-^!P#sHW zBVC98rt2~cD$ZA#vLq%lU{dkgYgEDH;iw+7jKtGD5>qSPV+301Ju2}oiCFiBh&?W4 zVGQd!66{|Z*|&LQr)Fg0C{*p=RQ6wF_6$cn>oVF=4A*`eGWEuP(=8Z-2tg!sUPDz5 zW9P28qV2;t+kpiO^ROvnp&_pMzUo#^0sObZ2{)FLZ5#?VSx{mVm_~_SK9prakwGGLoz6%3(bSLuO>MP;C?^K9^4Y5i9_}@!Y(oc8!iU%z(&o^ zcat$5JSvEAFNj8jFe+tAQMT~qLO*tR)2eWO6S%vUxDvzzFLj4w$1DnFkEdWP_*{_V zS`dw#ESYlr;GRX^?C4Ys*Kk9)J2`Fy@j&j%@nH6Rnj=g}SSYG8`usaC6LHJ(3W(z+ z+;=mPeEhd26LAq2Qd+B=E&hu$mR*|Zh~%^D?!=8e5>s}-_WanpS&nFBqRKu_V%IIu z(GBMfJjrr+vF|pmioo)IgNP9xMNsv&WTASmSJ^+8*!Aj7S?&@MXThwxdjjkp*#`#jB1wLW zxYu4ynn&}dC*&v+-<^uY$CN`WD`I&&Zl>P`r|2Hr@(t=As zxsYwcSP6Ev^QuTC*~DK*<*&KO-4T5^I6Duf)LrkFWCxZw@+-Ye@Ap`wbvh(>!6#^V zW=iiBSPchsn(4hvRqmukS_eb#FU(n-N1dd`Z7!cU~ zh_;;2Ik2pBd9-rO^!^d^`%h0hs=16vE+NwAkdB_UHm z(U9q(Xor95sH?nF*tvT-RW%cdUFFE53{q*gjmZut8^I~J2HJjX$!lBe(y+83wr^DS z2SHoYaFUpnx92<3Si03wxzLw*GCKV&TK5)S>2G)=zncGsntRM#K}&9?0hqD9?Qh5W zwRg4}!fx-MFxu^78|H{Ms7l@XIY(6rlj-hh#l$(%iVJ)ba@*B)h$6!s7(AZP-;ZF& z9LVrv#`ll#L{;}H$qyOS3|F}?zsN1u@`v%oyT%t^tj6q7;1W^9&^SUfR-Ch9@wfBV zS9a69m$=uM>TBQwm66_OTh^d-OKR^*W`Y|d1!1^Sc!_((+5EYqhSFN5NnY!yjf3W0 zDo8Xmg~y^UQLW%o%q@8f@@#@lO(2&n*rgB?_lS@|w@hf*suAs9}jry} zBsOnF(4va;E}2yMZRm(AYVS)qhO=}8X}D4r+iq2doy4n;cpu_ik)`E zhG$2+?z|^|DeuN z9GA~7Ez5?SbNJvOyr(tX%;EGo#AF@YcOL}hh{F0*quHCNwlcR<|f7oqV`nEJS;U`CtLY#eZ z`loP17cDE9ECq6Cz90WB zT~=!9GMs};?rQ7wZ}F&g`ghrE%oRtagd_Cn&JJHZVATOn zISj7_SjAyYeL&s@fRKiOwH)R(0^H@$xiKKVC7>IJl^lNJkf#-(Er*31er=UIGgo@e z*7$cChaWgZv;oAm2Nd}Tkip@b?tpJU29z8K*v+BH5WqYREk*%qjRu5_0i5PAXe^-c zIKYnafHNE#P62eB3aC8|ki#MK?F``S1%Tj1fM*<9E(U!03E&GGAjA%s!eN>NknIFa zSPi(qq1@+y@f@ymsJ9l-Z5^Q9X28c=04=uy)^Z5m0VuQ^u<$Fu$UT|BQ+ohaz5(1k z4CrzMF!+0b_ffz-4h@e1qD}y2a>#!cka!Ld@gramhw~Qz8*T#f-v+$r(D@GF;IDvR zo&a7x1zdXusPY$J)r;J@GSh!mymF=gof~l73sBV?VD$xzMLaBhZX{r69>8%9Nzs6W zI6&oiKuiK)B!{G;fJ@~7O_Bg*D*$G3cvuP0GzGAyKET!h@QOo^#(57wm8JO#J&ThtOGoE*x^r22AB}l0)-2QR=#4mW}TPl5p#LjdJN0T03f+wuV3a44P`3#<_bh>Zt~ z<8ZSu;CVTKZxY}EhsG5En=1j%)B@b84LDi{kWd#eCmFD@DPUhS!0P6JHynDm0u=8E zsL=@!+Ziy9!_AKXce;AR{u*`1zgIbo>jC&*Pr$%5z|>v<-`;?-eE{400-XH-^*#n9 z^amW^&}aZ4BOTCUAmA2J3fQ=kJb^z||0KE7TaCIl3^8Wx&ck_>X0p4E& zDx3r~JOwCq8ZiBICUC+zz~>wyt^tZ&2L#*z^x?4l7U0}{KDO;{o{+0NVhW>Dh(x?_&;~iUYDr01`?9 zmT>4_8=%w${LUez9^hRHz`Gs5-X1Wc1K?*45nTZ7x&h8`sL&nY;BavupwM8z|2V81 z0(j1$TjmI0p^<VF1kzXnkAbHFkV|E>cZ-wwFG190X` zK&hR8#k&C4_5mL42b@0uNIVF*^etfL3Bb{lfK8`-V1GWR@$cZXfI(LQnb!b)t^@XS zD0UOD>36_^KLBg~1ia(W_W>aKFF@(%fY29!0UXZ$4G2czFT3b2#Dy=o$qW znitS68j!h#_5R?QMSrKrdCgAs4fRnWW z#p?hT)B}`B2Kc7{qB#s`4w%#ekk%6LHHX4&0Ixe_0%vptoa_V$=>)(v!C@Bzlv)L7$Kf1@)>dDX{}n6#?PCK>vjd)R80-MtB7}xBGys2Y{U% z?mh%GeFQkhp~GXq_9uYr9KxOfdj18t`y8huy-(CSa{R8-cL+{tT{HFlZue=4Y zTz=r^P&7B-jyIr}4Gl0!f0+&NZ=QyLmmHE>0ou0)B(?#3 z%ArasU|m~4bUQ%p_JCm>01G%g{s?fYD_~zYz~1hF8a?>4o`8x209!ds7zk)H46tY< z;4O#DePe*<#{u4Puw?-Lnha<<1<+tB;0q2TrUAmI1Ilq2I~&k`4xmvMpz&NlyZL~6 z3jm{*0*WjHSh4|6IXue&gsYvyfW%R7KpzX0C;3i$Ib;Mi|~wZ8*O z{{hH-4=|m>zZ|YT1w48NusjD;dja^F!_$|5h*yAzuK_3i1#EZ&*!UJO=N(|wdq54v z9|f!U!~P28#=pln?DPW6^#Q!$FvJ(o(+}{AKj3r#;O}6-#Sp-eP{8+LfRqS8*+{_s zJb>d-fFJS#{ud4KjRD-{a4|pNQUO5QLV!B4fXut`!0!?OUls=JECMKB43NJ#;BqOz zuF`+8{uY!GI@2{9%8mhvMH&!vLFy1LlnYj2Q{oFb*(# zJYehuz_^Kkza{~G&H%id2Dm;QaB>FV)J#Cr*?>xO0AFxOUI2()2nbmO2we=Ay96-$ z6TpV0fC8DzfD1VE%K@}yfH5lo?N$ORehR3x3J`7uyy1{!2ZT5P?>M}70w#P0=(`5c z@N+=nwScu8GS>s%bEvZkP+&9Q9}Yil0eria+uySP;otIK1A@N+yyft2AK>EyfDaD> zK0OQ=e*`e#dqDb8z};hjv&R8_PXij90sN1{uCsteKLSF|14jG=NWBb5z5+8j^_V0i?e*g;n3GlfG_~rp%jhxQ-+<1q0CWEVyy5WtHK5^X-#Anc0DQ{f9f!0)zE{6hs2m@Fn z0$_iCMdIIvQGmSBfJYqG#Q=ix10EItjE@C`#sLa(IL{#?9xx>VP`WT6u?QfkC?Iz+ zfKPEihZ2BaN&=p8_^lMcyDXr5B4B)FK>f^Wz!}v61?vDVb68dvkXjFr)fDii6`(;X z;2noOZ2=2D2!L~_kaI|(NCf(F)2Gp+=PT(WDOh*{0l!of8PT?2=1RYvPa+HqtiwW7&=6}%43yT6c){*sAv`iMYAYQm_^QN7P+Q# zNQW#^A&WG~8cjm_9}p5)!xxS;<)3V}?uDbJ?>~@OGCdc2{Q|26@v!_$M-~3J-%CeR z{&(9;MCCjXoH z%F&Gf{o$3PHvjAQ4`!YD_y36BW&Go4%s(Fy&vRZ2S=C=V8t}&%uN@8f-|t?Fp9TIa zUTgHPpr5M#-KReP`(KfUa&H`E`Fma8U?&3pE_x&0JO0K|jel0&V#)-6>%A4~On58O zwqO1H&s)J?<(>Hbkayz!_3uQU+-=8uEPF3_&%LMjvxA*H3$xoed1hqK zbJpR1esEG2d0Cv4w&oUR6Ryiri?b2`d)4BkEQ(U-W!6z~R_4zaD9*b4?M}J=LmXbjaoL9JzDLbFLyeA*2Kq2<}=C1*_yw0(#M&?|AzVs zvCVy*l-09+g_r}rlo{+_Uy+QOej@qP{X}*g_Y>cH`#Z@TYx@iS;r=2U*7-ZhlJ5G8 zY>W#KpSuMJdCLRD?@kAZx7H9_L_8$r%` zJUOw!A~(AS3o$E##qZAri{yobILTr^3=#B;LWJ6fL!522T9QB1S&@^q4izuW3l(WT z7wT+5Lc&B|d>rOX<)8P2i9C80Cem6lTznoLuI5F!vtfiNB0e@vkFJL%ds_$gHrz?( zUnWAl*Ed3##)b%?kCJ1AF%OP$mgl^-81eg4>fbl&@5<&E z`gPCmETk%JVbk(Et7{()<#*=OKHSRhtfGA=Sio7{4^@FTrxw<=fU|=3)iU|R$pX?# zeg&NswV$OFbe7jXj4kM_qkeX__;m5_^_D&%aTeTa*7cGo`4h;??*KHQF#Ormm}vy=AC z(l}>l?ZaPj&eqz8rtuQ>%6N(G?|6x=d4jWDMM>3WC!zWt0B>lPrB6ELo{}g0Ym8yo z)ACLn!muhPkWFqGgd{o?7Py67MzxlJcvtgu^ zJ&*Dz2((2h%vr=)lx+sS?f)wQow4lmrhc>8z_Z8)O@g%7AfuB6E~+ z#<3@5Vtv_^MzMKZCY>v%l(T_G)V!3lsrF$7J`|T!dt3oT-&a)Bl4F(dQT>|vmXrjjFgetWu*4xP8o@yTv;ilbIM9TyI59IJucCis>vCXC>7=D zM2VneIf;5yIcF0&t0H?NNkM&BW;rJ&@p~rdc^_6@daY}DXMIi7=jEL>WR3?zz)=p1 z-|9HAXM1(-P`1BQ;Q;ODrIRG0F-ekP9!iq(KCFV2&TbW)ZDbKUCPD-b-b0C&V#CgR z1+ph^9lkCRITfW0Z(UK6u%e=~k<7DxGI*k9utSx>Gcl@2jEjQRsN`%QTV>`9{POk; zh23i8jL9ih#MO%CVkav}ipErylF+}hq{ptxQsoS&B7M`Tid2U;RB_j^^diV@x`a(l zgoX$I@D62LynTZFmuYs_s;X2?*H?9Zpe4alO;W6NHD@b1<)avQ_cIn-9CaeBY*FlP zu2|Gts}t;AHL0rAt}bb~pt|(U&FYejvNhaG>EDfzF?0(HsRiA)H7FL&7SHkx(e%4s zLn10yQzDvJ(^*IR*#Y@O?pl&1cdI2?|GHY5uRxW4^#KUKaX=*SK+Gd{ zIA2%li>lXieyn}7ww_d^mSoAn>X%fD!3I*35Y*6FQMT01@XpiUdjZK|}g9i6W)2qoWdX;>++4k}%M@NI@ z{yEK^fwJC>^5GXd@(I1|-O6}tnzm@}?5KU%&|E6whs~wxS*?XswZ^s3yuMs)TMMb~ zc(;_yxN}Qq^UhNDdoBS=JSm)8bieb%(ngOOI%;IOzGKn`A)YXFgqB)v$1zxI#N8;h zukKO`9|aeU_I8wHZ(2G_$OFJLd?`{BtT>_pV2Y9$mq&iX#uq6$tL0|lBb<5J&0fnx z*u9?110&?$Z0Bp3X0iWk>$>BjI=Z%nUY9OKDVA6fdu)JWiLs$kV@2$OQY=wa6zr%d z*cb(Yy=#d{R4^vdyf#wo4NHt&)L3H0L}Oy(d(PauyEE(OAN<^To;&r-nRez(QBNgQ zt394r4jD9+eaxQqRO&YsGEq+9ZL}2E#Mfzup8}i=gwF)$&O?f&A2)N8GL%Q~Cta$t zqAvia_ff1__Sr^GEOf#;7b#a8JA!DZcqbGVt{nVnh1Pz?1z-I@MuBResXrJcdJ(77t>v&5Ll z>C265MamyUX^V1j%E5Y}US7tQ zrQjt!Sm|dj^#F!(4YkZbHRhBow`&j}k5hdypMjBn5}EqWSAwrEEkK zIGgqEt8@^vkvasy-^4H-)lk`y#vZIR!=iaY$gXT6d)C*~DS5H?k{#O4apo*~vukfc z9mL3MkmZ{D5Ek7RWpvG2=Pu>Qtv66SfBBixO|0$^%F)CjX!eb$PS@j&1I04_G!Cc_ zo77L~B7XD{S;1|YpveKsQO$SU=xIy#3QyWr`(z zW0)%o+Yl!AnNvg=GF>Z&>$Y`nENf$!lO!7x$ehnDr7F8M4&~TV9Om6rkd5FJpcydn zQ&(?;X5yy+?h+O zUFK5LLT;WnvEnpVTDys>ROSJ5!D}#&V#SiiC{j0UI}fyl^Rzx>Ojhm_Yl(9c zS>yez_aG(6Q_9lY1;7okgV(ZDJh#`VW)eM;=8rZ zm+7W8cM`L^Mgb$vfQDX(5|ySmuPF)H3XT@uq`-vZ)C$#$Js_fa@J7@LIlc{OMmsMG1%5SMx3ujrbhkgnC?M^;AsyHk0X<;MQ*=O598L&eY zRf>Tn$70Od@qC?w9M@Q~V{Kcc)s2zqES9Q!5h!axF?S=*EBa@hy_E0GM0|#P#hgSn zohfW#k(Sf9z-#TR%6hL;ah;e<09nt@-lGkXg(DPKmcPA))XvNIfHLw&ZS;z~xek6J z_Oy^Y>0~mx-S;CqI|iK;s1-{-(85m2=SiY?BOg#YsK1ddb#k3FCzIW&Cp0A(F-ob% zdi7}OBI$w~zk<{45D9CIoKY=3Dg# zZ0RCLV?`#ymyc-jls!t3`thHHHalu;y16YSH6KNm#a1VnZnQikd6J#+I24Z00Mh-| zTg(6!5dQN8tr>b-xAOi#_4tyNasZrtn)GFwZ!1@p^{-|A8RK<(H-{OTN;Ll^zQN4`)I*h(hS_P0>58Pt#0v~p*G$6C3G z6koEPehLatvGjba8d96SC-{@wG&1@z-LY2in|h^{ov%3L47?4B;SX)z>h`u(4N0;N z0*PPtvMS@V$k=2BccfQ;>>#Cbn=H2PKIf7{s0}+XPLX=TOETv^{uh_e#$x`j`~{%a z-QPs1Iw{ZoQpEX<-dY znk_pSr_}Nn#_|oe2oHo6Iv?sYtFxV5p&EnY6$deg)5vsvhKE)NK2(EZ&B_P0k+r}Q z4-jKK+1z+Vs=-7ucHiS^#a8B!kkFK%EM9RDi+GeM?mjsaltyB3W3rGBti^Pbl^Scy z+q$r_|Jq2k7ZeCW%^)l0HWXSVyK>ta;^)oCtlln|bx1|k-0ZbJNUD`;WNJSW<8TVl zLT~xg$ppIBVk0IhVPa)8u7&Vx&8%{UDb4kRB z9<&~>6Q6HuF(!2(+kSsIHC~AHF@DocrJyJGU+CJ$Aj1)O}wOr$ZO*+!5Uuj`_>mTgyd=0Ukdx zMwRi1-`YE|;`sI6Qd-sMPD92(EkB%-{9Ai3sZG}r=g~kaF^(3H3X8wq-c^)|H^k^Q zh^5a%twUM3i>(_&Hzr05=B=xK{=f3}Iw^%obf2Qj5E2Y6g@SkOog~Ttx@e&v0%6t| zjVCG6FjP#0*Td8{9bg%kp&c6;8 zg6&KfQ>N#ty*%Pfq%@ltOxIa1XKBixipr9vDbnmuW>pZY&0^B2EyOxbUySg*i%H`&W8r_<%X8QhgxX|iJ-cLNWUy5G-Wh=V zWYEX$#Yjg`_=XH>IO859&+0Y`_gO-jXuyWrJ4k)+Bf4p{3a+P80cPtQq*=Ftz?Vy` zSmmt{thBk2p;AVymjaGlszzKqQ|{E!1a1UK>KvbXvA_@qX|Aw~7&VshQ2}B*OQ|cC zCX{44ZkZZ+R!2G4cQXNgipNN1DXqkh{v-ivmaTr&pka5F1!?dVWXL{}98JymGVrYFmea`Y6Fy-t*&dbP{6KeAq)rvIe?9cEB_Me>yn z(qtxqE@71zs4F#KX-ST5V!WjUp4~|5#b_77TlCgOg!kAa2(kXmdU^6O6oxJFY!hjI z9~O9jy}WbsJ)xg$rg{oyVSldoko4BT%|P#M<}(~`7V960XMxicY5DyRQ5I~WYzMPw zzmEQ5jjh=NFyu?|dr(}xn@Wnh>6c)YfW@~TAmt7ekqb+HzFzJQr9@o4Ra5>!RU8~x zAu{MU0Qba8!%%i z-qX>Q75&oDVlFdb7nlcjv2OE}+F}~lD17368n-2Bok~~lp6)|s^@J=Zg+)2DoAVTV z@zeK28NQ#ro~P6mn=O^D>fJu1jhty|QLfcOEk~M%zk)ORkUAC-g`INFm78MfAy9rh zq-w_4?NI?zUH?Vsr$^KXdg*d?ZO0^zN*X=Jw3*KZeDD#lS{yaj`KQP5Q>gP8Abise zs|@I+b5ZuJ;Cz%cubD-ZIVaRMO%KV1@8xQ_&QexZoB(CnNwtd%56E?6r<^)T$}#UG z7&}f=KWi)2-~qa)_)V$Wz&!bguAL;^wwEq3?m4Sg0%rtG>g2%k`pXF%Jqy||=lRT2 zEeB|Fg`GbS%8wVd8mFQr?(8Hj)sE2($*{|sf}+H7e(WT#DkJIsWV0(mZR|hRNm_A4 z(Y?y2SJY(_&v4pe#fG(8tVkN^J<;0SQ0JvanzWVm=?yTh-w<-c5K}c4Vc*$Stivb7 z>wZ&?i9BR?mJ%Ft6SN6;)O-!kP=drbX59h!*Il(80D5|-%#d_Um3ts8z9%%)@JXGe zhGN8cc~4U=(J7rJ#cq8c=&1W@y#+<(;vML=x$^Gu6r$KXK(AS%G!?s(_X7Z>0QfwD z*Ojh)t}T1JM3Hh(M!diO{D2qQA=gDx%T*tO`0kOGRsBz$JtT2g0+Fo=UcH0xRJ8;I6e>zKJ)jndhhI2pCle|x5U+-+g0v)>8 ziLKI&F4KPb+?139i|Co_6)JY%-9&lvx3Pa;p-Z_kgEYs2U!ytl<||0Clazb}qxmg{Qj&i47H43D-PdRI;XB32#E-j`ngF zX*=DDF8}tbY)!j$oT6iUZ*{R37Y{K+3B=W4b(nZZmxP5P^|xXN3vf*FY*1GZu~?Id zch!weqMRiqclDN9?Hb)Oz6t-Ig(~XK9?tD5b^d40VEpQ0t!|7W0(Ta%ysOk~7wCd= z4Oez{g}m$yr8~=~-Pp=ZbkFiZUG3QZJzaIp#9Tk38_kPwnOQB=A}{YPlvGLEP3~=HeHLZ8)&U|jG`&I9xQRxCyr9VKc-vL&OwxC9|np% zeW@MrN-|CtS0pJhKt&K9Oh7H|PTPhGry3A*^CXt~^Ejn{H_q?;3vFGcR z5TBkM`bxF6jqZO>kEGf{mHpODItw}77U0=-T9x&_+fCZ0ywwiq4{&ozl?Bj)#bo5# zO7(fTJt(?xwZ@|V>Eujo?xwr)A!ByOBKso*tssU0K)e&=M`XTS>~ZHr`RXptG+9lWMX`Mog&q_ab1lDuhh zYbYqqW7P7FPLNMtJJE&yV=*Mdl8(Gg;p2vr;DxZD9o?l7emXe-*o0jVrqmNP(08#2 zA3TD>>v+khVe#ZCAbF%3Uqq3`{3)GW2>hd=f!F2KY{<2MKU~|AOx|RQj+H&@F0IfT zklz9Q7+yk_yiTzeGgVCf2(rhjEn4ByL*BsElcR#raa>+~Cr_R>LY_T_lM4ggc=hA# zS{5G%kz0cu8k*F|0zE)z^EkEMrzVV*+N~2gLzoy(9U-Lp7s;dP{BYDbiIPgL6533l z?>`a?^eH(`I5R<2J3Vq0ho*uay-DCgI8;#8?C1pi6yP1?YJt=&KQ3wfYY!hW=F5bx zovGIJvzI-*KUi(}ke7y(Y1VAgLG)8l{FwfJ4+nVw%^)uh!=|f44LH&%D3V(!X8Cq75Pe)c9+*4kcZYJ*#=kSE`2BoI6P{ud2*oY1Cvb4x-Y|kN$0c`$9u}> zv{T4EMOlWmy5(^&Uui7XbvgO1IJ6|EK+@9^GV{(<^pe&?UlFaFIXhmm2#wVPF59iflJ+|H zLrJ_vUOfKTrAZl=b4W2fho~))wHH5ymbm;s62<@=%S6lj2v$UlKC4a- z0=xI|XFBUVd7ue92}-k5$Qzy0gHvA`YNJj8u6CN07)&huc*E zp4Y6&2E&I1ZIU+!5sg-C8~EEZMH`#NAkgPoAB8h&+mz zGm!^A#V#At4}$o(ue&ThtPG^9cy5=b!bPw8;^gmgU+EmF^br{CpIFoJmbXf|@wl%= zT0NhD^czUL0m|1St&*TT`H=7~asKy|T7f4O$b!C=%Xa)J7@p5GHNkU}Z2y@&4Amkh zF{iZ*AMD&uTAMy1=P_}f?CIB#;;`lYe3-sop4{sWl4}`vM>gV1rLEX7A>?hw+u26l zkBr=gdQJb5ENmL(*+{}vhdk0$bII8%8*kMmA2sh>Y)my!-&2$sXL4NgIb6VUZPh!u zUm#0vmS-!s*f=6Ra5u*h$g*4HS@hI@$@@)r57y@^rK?zgAsz@H>S?1+3?mly50oRH zLB4Xj*0E9B5qM1*w<0$>w!t=wt+ZlzkzD|Dxdvi=r^6`zwUpY*zjiVpc9_Vz66 zQGc%whTRPE_M;;ntt-)t(nehnc>tOWlv`t>=gLc*Y=WQQ!5ZX)rC0sjmz8f*q|Pvo zyazpRuT>H#FeCX|UaM3lw?Y@gZPY#tN-aqc?hzaoVJ=8bu@NK59Z^{a8+Bz_SkVXl z=&#ScManyJR#bVgjk<-aQikPuvE&_cR;|dN(Te_<)l ze$X-JlQX1K;BmdAujpe-Jf!)72wx}Wi$PlMdglxblBLXzJSt_yXfZ_t|DXv!BUeiY zhG}&iRxHn)PZJsxqY7fosDag3Z2mwC^O-Pm(KHWXqO!96Bxm7LXS zP<08uK)#)v63i`R$6~_<=~&{hLH2TC0?7B%CSq#BrZG=^tw`o4-w|&~qSp10pf7Vx z8YGRb>&bc49Z>kjJg1aT%d^;*{+mb~yFjQLn8c|5o*8nc}K0ifU`} zd$ni@x*Hjlrlli-l0$>5HxnbsA-7niaEqmmwMFC`OBieaBZpZu4d;e6!vls|m~7P| z{=+YA)UEg8?-Z%8bRZ{Noi=GY@!5Auu$aAms}T=O?;LX`Hs zBJH@YCiFVeEvGI2z)yxs!~bh?(F6-Y|h+a(iTfY@?o~;XSD^g+++OZ{`DJqHyc`NY`(AZWaF7#MP=L)M)b9V}CCx24bYBK#^SO_HVlMRaB5u+73*`EzC8G>df>SB@^^ zy>8%3HGAn^u~q^9-wJU&vA#u4cvn7nA=XWvBA+4mcj#+7k6_-4zU;)x%VVu`uE$Et zLB}d^_~lX+Ubw+}b}iN&3xinH$GupoU)QJ#+TT@e)dAkfllNh(T7lEkirqRO?;Q`L zaHt%fM8t^^7N+CBk~hA=ek}Q*(q63TA>^Ph#@kl4h{1QkEcxLGD|Y?z2q|lc-rz;~ z*s2qTuoBq}?lT{t`PeQmQ96jRZ>R8{emG+J5&K^egGWkD81F}E*RfSQ$<3#Ex(|l? z?}I_v6Jo1&5~8rOjFDDsdFn_hdq+bk12t{c_AbpBDX$W@*982kCR@25qS!uvq-0ZJ zTMJ+xWP_VBmA@J(S$QXtPr{K+ZOMKTGo_!E56_N&B#(vrLT%OQCn(aa?PMrW+`gyH zbu2l4Ml9(cjgk&Cb~Xm(4Jce%vwcUo2Za8A!stl85c@Y}BYu%*u9KT0JT(F(pz#Ld zoD)0vi)XSdmoA{%S z`nba`jrw*S*oZ^&u8cQP+YqowW3@#GY8LU-yOoPk$dET-nO$YW%5 z53Tb>d^y^kxhSJ0WgFWAl&^bG--FS@m!thfeeyp7t$I`A_^>mFWxKuL-T?Ow)LICr z&i8|p{Qm}kGv#xwhKa*;O~y!;uJba#SgMLpF?-G< z5w06W6(H?M1&u=Z%TeZHTeHBL8|0%(>(Su!9&IYOH7h)-c#CIk!-??~+-9mxmNE`M zg^Aityt8vu-hO>TJ~r!3X3tNcLCTLQ)*tl!!bC9kCu#LjGB!=Y^W(M z`-e^eyk!b~7Q|u?kF{8p|4Q(M=~VZ4gs#N~tOO2^mF-kxrh#&Onx^QG0H*JU$2zgF z-^MzM8F@myiPO0@!RqDGSlQG(bvod~fQ`kpW+!ismB-~jh*Lj>YQByrA#G9+UYx?- zoKym;C5%XxtvE{vZ8?JtJE_zZzv?mr;rnLruh@>0iZt$>B(UR5`Y6D6$_H`woeB8p zO!_uNjPnwO_nO5TpHixcThh~Kv3{qNx>^u9QH?)5mn}J^wAL=E@}N6&@wM%IO%_d; zRHu$fNS=uE0h2u-Cx?MYO9)MH?=HhnRdB874(p)>%>T4$Oyfb$ z#|0Y&jl&JeSL>I6R}KPv`m_?LH6KTJ6IyEtWO@kDm@~M}Qsgq;XvoDW&B@QJ{R)%pRik3nRDgB-kwoBs;?cxD)E0}srIY_x!Gz6 z(R17|i9M^hu%z7a#>;{{zNpop)L5hDqVbmTMk{0vhLXqG>T99s!%&Jj&f{VCp1i?d zs)t78khUD0xi&`5)5#l5mKr>sN;%;CFUOn@GaLxxJwrFDVeL{jQbfp?Zq3x zSiMPLq#5Fjr}3PzaT6GozocR}6m#cBj)vR7$FMqxY#{f-LheQZ;jLL5jK&yND;|eg zzr~rr0dnXvPb% zJfcRFwF)q}aD(Az+_vDb>khyxii`z`D#lNtAiII^g6w<*!Atzzbf1EMe1XuFJ5`}b z`W+iEZ$6KA^b;dc$jNf^Z;fIfoH-%DMTmdcx7dNZhwbSamrOezJZhUC@Ll8{TNdeq z8jSruUhc9-3Er?<>u~x@rX?-^c-wBE_kr^6Qhv#_V&mv5LYpG$4)0N>h|8u85spUh z0ov`NR`Kr-$2;Zx7jIg1a*8eY2fbIT^sKKoII>u)3C43(PFY2iNk36{Yo^^2;^A|D zLipC7wd%-h!=4|G_hrSSCzy=?Ic*OZ@dJOs*cgb?7hf^iz;JZ@FF?zIa<$IW51Kha zYV}ILf-?S?xdxnA`q>G_-4z~73OTQSdK~?|71E%BveM%dyjb+@2~xj)PyVe_PYM;n zbpK8;-mu_NWu62j`z&ho7A$&!da&%y6OGeBPSKNZ>`UjxSW3oBl=S$6^Psf7$PQjJ zt=RadgDxWc@I_W~U8z}Zbkfu{qI_K>aLDiG#>5`cb*$gh&uuVSmhxC8{0?II?`mJq zzOEQAH*v7iC4dVrQ4&V0Rvx~V!Yg0Kit08Bc5v53<64NLZkK`PTsB4N#0K6l&80bG z3o!z&Xq}JOaqOOI@8A_7CeYj@ZFYtzjjn0~8ILOT_ld^cG@e@ftDt;z zP1E3J})iZ);t(^e4y}DAsKI!wshO7EiO=Z4let z(JIU377S@_c1ti?2Xab}JD|L}Lqokc1H-tH!a>_V0M7e^OJTS;vaKTEJ^*S(|0xMc zNmIv5LiCCVNAH_UA#3VOSsitL`I*}xs8j#%2RPl4_R zS~&{+I;K299u$#sGqtdnr}d>B_=oWG)+NIhc$>x z;zyD=TqU^Txu&-Yf)Y)Khx}{TzX13Co3{{F_N^?w9{xAr3okUKg~T0MySqw&IPU&I ze(Tr3WxYD?4)_N@h2dmBIkTtiad9lXtN4mjjT3~neyz@d%I+%0J$|0IyZ-|0`k&U8 z$@j4Q>FtwmIwatn&;JAGM}bpQJ8kFaF+v->Hs;Od4SouF8~K_Kb;cWz{F5}W-y)~}Q8sp}P#yR*NfN3Ng;&40rrtPL7)z3rVj7dQU^rljugqf#T?!IAVBWvZS=8w8G?HB@lYtgGE19LPWK6g~D5TYBHGV&*pxX?7{SpO_#R#*Ihw~ z-|WfuJvLqQ=i%Q|_~%|)fnECLo3AKxe4H2Xu0B){I9;fltn(Q@+GIM%8K2V&5dVQe z&5`y*F`C(P(7qZa>&vb@QEK>%9%HhoQ`4pwBRu>FG;Rg(@S5~=M7kf9)SHE7COf!F zb^Dbc3x6uFQ|{0gwgIZdtyqyPX%-)PgraSA6-0E7EW0q-MO0kftAp_m{-}ye7l@xi zHx8_U-_$OA!Ekz8vI~2^J=u5$$g|vzC_%wm7vz+*i^-;|8k`dr430-FcJ>X5b>o>5 zEDCi^dJyBgI?SzHF`Dx5kA9^$GKSa1^=q1JCYH-REvYV0zk2MOawSmP&EQ`})nf)MJv1sDfha;iIc?zgBS>y({dw$!eE>`iM|RJjF_#mw!L|x#F(v(Q$@9 zz0UChf7IIgHWWXF+NvJP_C8mnF}?v&-ZZyU*9$i;>D<`6=5CH+q>e2>ncTq`X=-OV z(!35V_zx6lN1G{jY)Ag&AgNOy#&_|9I%?{XbHcYymL`#L9YINqVv}CtR6AnpWLvg< z|72-~J0}W^s+|Nz`rq=3%7Y#nx!XxoJd~4ObyH2JD!gu95+$&w+Fg=9pMtaKc2kUd zznsyyCm5Z2ku(|&0(p49UI-7sw(kp*X*myX*c;(Xc{psDhE0)Hz_|q0il#i*Wkuts z7|)0Km(8OA=8$p6H5zItztJyEC$yZhr4J}J{pfq6oe~fC?uYOOu#w@TRM^*30;OTE zZGXUB1{fR5=X3lNBp_)33;IWCCCXeT$nkZDYZ0dXBM*B|=_!_dL)p%MOn%LHHcry( zEZc_RD_R8|u$t=6%9VVxA0|%PHw>h&VzkCjdL>V|evAR?kA!(8L`Q#N$Fe(2H6By* z2tFQ8smH3#dgedaWJUIzDmUxNSWtrF)L{_$0OeoBc-wy-?~oGH{|S~@kle^FiY z`^Do}F$IjrtjSAEl6XdHjQ&C@?^_~ln`SDnr`QkoO#}E_0l>za=6rgOEFGb7oE zJMac^&~BO}@f|^k&zws&BnjBp6h2}eS24J9957AZNts0N@Z85ARcGy)kDo%Zbo84v zJfE7n=4U#vGOy|OtgQYt<32PmYa`-?E@ubcD$PXkp0*g_oiglLA9q8b`e{(zX;v)k zo#_TT|Gr-ac+HpC(N?6$t4N(D?HqMl0$z)yT@uXnsbo3aLwKR3!)7{w3ifJx#G*ecCPC!X6%YXO(7wPR%pi3T}9Qv8KtME8&7z69PSDj zWu(n~P*K^PQp`q89Dh&v;%%Dj5YBeI$v643;+%>t;Pm|xB_Mg_obc)?QkNJ>Z%l=4 zCEX2^$*KlvwG+7&V9-~ZO!4o}v`mpiJ?tw`g1_cEUP~g)%3wS?=ecO|H7Fat(KLK^ zzu69IRt^qIai}gy`8ImoY9=1H;*Ep3@Y&)Ne_4VVJ$>czovQtA6sNedXlsMKFe(w^I?VlWQuM2@SW-gqQWic_Qk zUwzeBj~ULg~)Rc1(r54!f35UhJ(==CyyrlXHcBh7D7RlHZ8DNeAfE~;MwC^!vpu0OF#H9@VZB+ z!w1pl@|oYq^kSOLQLT~zd$6>>~jq8UBDP%;G6N` z40ra_YNn(YUJ~V(Xlr*VG1Zd1+p78t}w3Vr7G)V}(6uTI@!p zo&j@cDIXJqSTPb}kA}^ZwEe_VP=?{sg{C_kC_m0jKW(O@@)OR2cIli}sjgiLOm`f4 zgFK+8<9;}=uJ8ER9ld*|g@m6!4^Ho^G;pI+@1AKfaJ9V%*#37luQ~T;IS{1rMDfhdE(5LmEp3qGlwP0Al9bqx zTcEVPO}z=H0@1UKhNt}d?zaK9yTc1>H1py>k2?S!|G@`@7NR-F!~|afgA+%2`b+!0 z)#!(%+KE$*mM=j$g+Jcu^z;G;)_YH?Jl{D^&nB*W z%ll~%acr6HXsXoXx6-4E>)(;osj0E_%c;_i(O2)lnEqZBB+3svkWnC~v-mwI{VPa= zNkhn#3WRTji@ZS6eeSbmi-(V^;K`xfDy&Zj71go20kfs0`Pam7g2ziAgVFsGFMmK) zgztvK#0K~>y6Nm{VpAU>a4qa83Dk|5ZK3dY(c_T&9n@3-`>?VBv!&_A5*sic*|6A; z)Ck~!VZ>|;_4S50!))2aP?b|h8nhB@f%eAgzN0aQ>OoVb4mjKnjC1xZxG@-!OJ>W% z&TV_3#SZrBcI%3Y*%nIY6g^?-@4*y5Lzr0ff1DBis|za%rgXn5aAYq22BQZIUUL^* z!1&J9o;B%$!3Gr5RTvKc>I(RK9ZRRdibs(C?`$dKhjd_sxwBFuBPYNhjb@Sbil&Q) zG4HN(q^;rx9zZwYA{gbcwCNn2^zST?Ei)c^g0ja;%OW_^7WYwlmGehfT2_aa3~M^a zfdy7K7%w~XG92>;gZZdJSH3k>7P{|zfHs7`%<2Zou)@X{;TL>abQm&L7CXn2Ydf)W z{~*S%eyl^d%5Y-`7tN9S(gi;-4&g3cDq>2Xp+h?;*e z+*nYMLCXKPAz*B*spg+Ep1qdyzpEw~HEOH*=Zumw1@iPbv^FSjYqOOhXrLhfH2GZF zw+^A95PUiT<#U7b-f7Y}_QL-q&~?Y^JwW za~hJmK&MJilTNI*Gz92|l)1?e770eb4*b*LP@vC3Dc91;iBn^Q7ko^OfjP#nX?D!{ zNSeGP^J)gl_+~-IwQ;5=~IWH1GXO>>mAeCr9a}Zj#pb}}xoV=eVZL@Tt zM`2sF4wM+e+<8v)k_Zl$bn+#AjEKmRRZ5K&_cA$rPHx96;^LH=StN%Pl7GyQg z;_$G9NWTuDfG8YFWXhd}@@4N`khklQ@@eEtEUmj~O!77XhZw|Vw#SUp*T{y7+o z-9u=2K@VIu&wS60*T97#fd3h(Mo{8aX!4E3(X+#V7RIOr1nSOmQ3PqGRYZ>sXAQSk zx1ErHYmQ%`$#(&drEoYX*|BOfamLhnk|x#1g5Wq(9Y{csX3PE~0sg7wFw%Lx`Svr9 z+-4MD_XKr-CphQgJPXSEaiG+Tqx$_=90Xd&Av`Zm8@KT((>xe(#47Hj3;pH{41Ae(1&T?~#FvdWct zxtGBKrEy?2J})#~o#$~i%>XYqgU_ed>K0lYM}JM|=v7SLOrB3gEJwKW3N`N~%?zIG z$-fJvK2m)J81Gi7^O2yc3#GBdISb(XEIt)MqHe60??S2nyJUkfVo5s1px${MLYx%7Pk0 z|8hdmh=o%3%_Ktq992PaM#ZFs((-vs4j9dtC@Z>F2D7s@Ui;Auq(}Lr%Z)Dq^6)R# zBRncsm1cbA!xFw(DAn(0xnKn6Q570Jn({B3Og_cP?v{2gKX}ST7O8J^_ zB63d_d3K>Z&C}(Bb0eQ+e{85NYQ8rV-ft6&^}^VpcU)xk!LDKBLNMMHvZrlPb^5eI z+`y~4NU9iTJs3~)Y6Bq-Y47O3G0Vk8i!2nvdm`;DqN-~qCfRNq!X37&6JPp_#kP|bh2M5C z9&A@T8)p=?lZTssiE(&`I%(jHhL;ve0(Ef*7@LY%P@Y@s1m ze-F50iCV|5;RcI34&4j*?OwH702@7fa9MTQ2k`Me%C_<8Cm#Nm!k_F{8vseVvG!jV z%9F)+`#~9SkQ78P%SNtPMCoD+4Kem0IL%9_L|CiT&9Ip0^eq8=@R-m+a|UL7sLOMI z1#SExwYw05HLjZ>Eoo8?fidtfFC!w)*qz#cX#{j-NM>QdB#*IFW@TOo&jUi z8C6wq#+jWN@oCAaFl0A>u&>p`KLC`itb{t zm}aHj1>W->7ba;5J?tKU2KUt|BffKD@9q@J`|fS;gVOK;7k4bP?<{d-J8YLqvfAze zC=N*8tfP5cVGj!BIf&n%AU^n0)%3bnOQjLi`XRu6&sCw0{cNel>~`;Cz)PN}5(e0K z(TrFB`X>P2JW+>7fLJOHUTV?h9G`;o_NglWoD&(pRGMTsJp<#na%~zwvD{p+RGJOm zEeE6PbFHFvE0#(}siU6*{p4SA)(cfL;yb)g zbI`I3&xv#UrCLtT39PW3)c*AnoMEqcV+XOo14~`txpJvA;wHQTr7beb*PI7@mRT%^ z2L22DlXtAb+Yq$2WSL|lv*bTukN#8Df3n>&>CW350`I(5+Yq2LJ5X(zMOXRzH8}m> z@U8-Z>S2(y*O)gz2fS4$dL_&3S$^0uN!Z4|1>xvhE?a>IH#(x(oTk8Bw@|+m!XnHlb7pN!1%<p996ly{(TJCEoq%cLc@vmMYQb`I*+P08zJ7Avc}gm-juPz|Qjd*F;L{p~Wz zn!c3-C`;jTo*U{LDcB;7Hb|Faa*6i@JbvPeq}g}^Esy#>nX(b(@2-G<)H#r`9U87hrW;F}kSWRjF&!wG?pl>`Lk#`w zOz9wWgF7e}kUu_D1TM>zZ)*PK0l1kLV$e2Z<;|ifFTmD5TC<*WmMS2s$0DP1!-u<>sf$xXeEG z2WNZ@O(1jo>V2iVbSX6e-^Cw(SjUu-<;E+=YPSw#t^;Jdg@8bO@pB+L0o@y|F;4Hw z7Pnq5X`^#QnTWHIA($=&j?=?Y&H#gC2b3BFMp7^=Ey$RcM>411a>?E|Ef^Hv5T0=_ z*86jVw0@`;0yF@-@Pmv=OiW%bO%NK^1S7DPgL=!CC*d?oFCV5ht_99t;BXUZq~Xfi z4KzshwN+|^@)Dc*-BHJgMLxv0t^>65M=JWX;c`31zF)2rEff2H1jdhbwF-_;sE?n5 z3E%CyRKWo(;`DMIYnY&yPkGAmUHotLNN?f7;vj=$8+^AOz!!KVWssqTxahWOi0~S$ zLm$*k&>vZDEU?20NehKG0%3e}tv^H#Hb~bpQkny8(#njwvBJRyX=2r(6)00a<`V72 zR#eTZ#v%P}x6Xhyd4Me#|m^iRM}89RW_tCzORyf^EE-t`Vy~;}hVIdTRLIETc0I z{_&fh0GmdOMbr;7Sh4aYdMnwsp<^_dPoi1iFoV(g3yUU6mNe{MmSaHTh{WLu zV@4!OdD+tklm`;CBA2wXAZCp z6G|^^o1^9rY^zao2aDh0HElD>pSBiIdfM8I@<((96p!ep2{3Xy z2!*9z!mxV1H-++nPM!eOj{ zau;_TO^fFVlaD*|$J`f=@UdM7TLI;6R|NDXe5{zi?NBI}c={|6?PNw(#~NvKMfg(- znEYm#qvmci)P#B0KeRwZr|6%Ie((7I{W(2oN?h z$Rbb{ep()aqu`@Wqa`9~JFRI|rp%;jJJUE?qh^veowkV`Yo|7&{oQ-+E}L}vPye~+ z-gADR@A=*DJ@@w;>RHiuWJR-^xw%{8*1C0Wz1!e6x`W*&x7i)y4)wwfJ~8v|O?Xtr zM*8U6I+VR31}PDS|*FD;WPH!f!X-dN_(ADRrdc&B1wkfSS>_ECH%K6THClsDs4boWgmUJG&SjOw<*yAhhm<5`JeF<{mI*;qYFF2#fgYTlJQ1pMw=4 zx+TnlqxJAKpR*gSt4x_J9ZUAXa?PCGthdmX!SaO^t@@?HqrdLPwfQUtO}k(TD;8qw zRk2qUF;0)8&zKf7rx2q@zgT~x`DNBBs3w)_5fnWt)KNjvqo2Y*G(ZEpAg~D)yDT!F z*v&9GPZNzHsk&J9I{{OS58lN7D!9*7?%!fNdfa})oXLYFY-u#T!0FkC=yCae80T5i z_I#_Q>z6Ec2U@hP3z@A~SDvFy)sS^scxfF#9J0RW|LwDp#9$xH% zRJ_^=-{uVpkZG(Hig{=|3|71|0S0V61W8(XzW07c3Qiw_MZ8-?YdReaH>T^;_=p3q zjX(@PCicbf!#W)v>;f|%c3{bMb0+JQH_O)?B;s+jX+DPMa3iL5!(vYPZS97W!j=MZ zWMvQhh5KB3-U}((CuAwIxX^qY@q*L0w4l$oboGfLAG?2JD#YnNNYVsY5sV@I@Dl%I z)(>_MJ^iqf=Q?nv9};Av|J)Bw_84D8aMAE9gg)b!!iRgZ5Bpd$b`L|AF~OV6H zG+Bh#h9HZ;?&FZFmuK>vxcW3?;iun+XPG2)?Lv3w0OYd0*f#)cXt*%|U93UycEMW$ z_7(P`p_C-UHm@|-qj9+Eyl;71=p++(?(6x*(d64ge@N)dGrs(` z4O0#KKYA)i9A8S=NA)N1JYe8uM}cNCuz{%R)^sb9E;5-z@%-YDXflS(K^bYNr{`y z)1XhH+3%{GIF(IulsVr<_Ayw`2ZTI3j5o*N4R!`!8HYw1J{*TGeoCbet8{X}n?5)R zMf|sd)?6jmT9)b;u#d6l6j=Bt%6wolRzmNpa#vM3c}^tr9nLBg|LG6-^=T?R5fzwl z1~$o~>kJ&?VHLvj$10lQN3*c~2e6ti6Fh&a0%uOc3w)g_K;w}gl0cyX!Gz9`sL4;ygTx|~w(`~vs^Q1vi`pLcT~LU@ z3ve_-Za38R=u$0TM1)qp$Dg-BqEW7oflV;mpte1HFa?j;75w}?ND5Wj#AYgNYOjdH zQy1xNUage7@*-`#^W{ps_Ry4stKNrjy!jJ4`Z134KZOliwW7wM^b6?at$v_+7BJ$^ zE<>FO;}%BRbR8y?sc{v3kvdRD;zGn zcZ0cJ`i7IrboKiX@6SX@eabI&{(nm~KAx3|5mJ-Yzl3${t6CrVwQdDy@tR6(z9ibj z(MtjQ|Natm@JD{;pR>%Y6VsRd;9Ns-fDegRpp(yW`FxLb`F%H{ej2jmrbN5N=!^v2 J!{TY!^dG*P@In9p delta 2685 zcmaJ?Yfuzd7Utd=hQ|yC5JG?vVF1m*vM5H&Rf(c#vT963Yu8Fj3NYgIG~)mQNz~Pq zWRf*JM3})7F&IEh)HOy-bV^GiaaSxKF}j-FB*q7MR32rLO;swDP|@tUeFvtuD!YIB zcHeWp?|l8;?sM9A%iSR^v%pQv;$_F3t6K9TGgW*cH zWqTDQ;x|<=1}`ju%;?pXYs;S~tEnwc}8FbhBHuuQhB#a)cNLt7b&5>{67kQC@JC}KfxO=u*5k4!=rJ@Y z42LY?i5Sxi8Q~(Pq%=A3ven@5_cTL1<9iiM+Xb0MtGY+QTU()&?^bYb3l#BF3bwbv z{bD`W0({W1R2V~%N3h<9dscsTQE9CQj1vj@sO2lqa*s2aF z7@J{E_ih^w!*^Suh;g*FLALo9$tZ|1c8+O0ZfJv4quBL+XHUn0Hps=JTdB;Y1w5Q5 zIkCGJCM4%Li8QR(rzA8PYHHW|p7Yg{LsTYLu%>TsHH1dZoe?6=!$`Z?PAvL|IZME8 zhak(M3nk#UUMS|I`Vk-O4Vo6)9yF~Chc=nY{GILK;lYgj7a@Z+V(E)|uT#ho+MKfk zc5!LYdRDDz@@}(-GBnM+`o22axIPv6O$i^GH z=m-5?@_gsS1usJ(Gh(w`F24*dbjW30kj*Kmfs@3C5CDJO1^LuDx;rVJrHW&X!|V4N zBd}w-DU#*m#%}5ivqU^yQxlp@;2DyS@-;rOHNy9Y9+=D?*ZA0Se4__uFcrV)f$6l^ zcas)HVwVT7RvmU;FHB->QcH`bWkPa~`aeFgUY(|~MA9XB2`4mR)gCbN5m8-x;6XMZ ziThQ5+$(U5@k=URd=<8`ixSu$5R@`1$jyF|kRMchd>`125fyZr)p0Cde9UGX>V@3U zRJskr%lpVaO4IBRTO*Z=_rpSVpGZyDejS#HSN6lE@M%OP{v5oXWOm|hKSZ%Z+30qSWLhDZrjB~C@*qrM z%|RC4P=U5LUw;)D&VI1UOMqm7m4R#MOI5tq@y zP<0}Ra(MfGn};_FVLFEPL+%(cfN0dw<&Lpa-4DZT8Gim2 zq*}Dea8qDq_e;jE(=d;J;Sw`4mnO|;F1-9hWGcRP4#IKvAYHDUgbW%y{vS`mB4eOw zCS%Fp!N;Pp`XuCW3w=-lOstqIkDZ2;n7~|_*cKwXqP`l-mazMRFs)Pszw5$G3i%dG57tcZydtO4H t4MMfo8#p(LN*=9s&w2W+yCq;(5D<=c&r=7W7ZNqF-~xyt^WX(|^gkG|!65(u diff --git a/docs/build/doctrees/source/autots.models.doctree b/docs/build/doctrees/source/autots.models.doctree index dc404e796c1a3c91d0e76aa73ca72ad459f86c10..249b1bb37e5571831ccfd05b4effe7f6e86adefc 100644 GIT binary patch delta 410045 zcmcG1XM9#g^EPMimck8$Kmvr2gepNGkswkOkftD2EQkUT0wL7UR8R;4(o0NWks72I zA)yM=LT>^=MF9)gQ55*=^H@-PubJ6%7scPhmzNKm?C$LBHM@IeXJ_Z^ePjPh>+RX= ztgMOFM3w8f&+=}o=ZM*0P216NgQJ?Ix4q-;sV}#5gy?ZiB75$*^p@j!WewT!P`)GF zUszr@$*k68$JPSJx~@^POq}js#x!w=B=x1>k~&Moj2D}fihC7R9EqM zMAvf^>s?G|XBKa*?(3aX@Wc~3sYm#Os*aGfW)h@yVH0_vRwDurO*3Hn?D+w zsD@Jgmila(qk~mPXWw#^(Y=#D8bbx$V?$Zk2}UcXgb*FNot&_}Mgr>b{*=Zrs6PaS8e)FlH6Ns{R*b8#HEWx5q0 z(=S3&vJZ)^elaq|_7Rz+R9C#_D3voLx*CwR*pR}%H}pEy>jLw$7Er;a74 znR>%fQP0V6G*j>O(Y;ba;?)OzbVRfjtCyyP)K*1(a;~h1(`SE*ub@8bqw_y=q)_Fr zKXdF<$NS_I^{wu`*{4{s^h)il^q7nzeRjNm*)hdZzk)to2HAJc#R)2WPSW6M;+biUCU!t)y;o%M5(H2di-d2 zTlHX?zB0pEPc=%@1xp>zlx~X38Oh#a#inGuT^xS`QL4)s4f>qSFUwH1!qKWSJ?A(* z-6-1{lB5#Sbn5R`O;sr^C;6+&Iaxy%tC49s`H)r5%9Qpp({$%7cLz1iv^O~o($`X5 z0OL>1{1fi$<<#n-O3!ab)$=e8_n6{CMTvwKLKT4^9G69~%;gk1*0j$jD8 z{{;eS69m*|2zc)M*^!4dLs;U6P>>s1MgMoDCrjNl4gVkw|Ik-vw7Vbox#iH~i#yBY z?5|voW*PT;NWVMxJ2+6|;J}UJdHom1gGh7Z-}xG+$*te|)zL#e*iXj0VLu-4hW%u` zyO_2+{;EY@s_i$ib>arGGeFAwryx?pJeGL#EEzf2E|(`@-P~y+57R9U9IobXC{QwCgFW zgK+HiTS$~@o6bYjHeIKluQXoj@=k2 zXXr9Dsz0raN#1w-MZ^2+=C07%-rd3c%UKUZ&FpV?{Ve*6yM9)G>iSUhF)g6)K)9cq z>0TWwx%95q)yl~z+=_5MN`o^y(m7qvsqKl=H%dEG)fzNTFW8FyRC3h20!+;-u^s(E z5-sT;Ako1x&U@9-{`zJaXK(LzA{Jqm_1CFoov-M%)t$9r8(1!Hp1<&2BhIp5<|NKH z$dZ}#E&avfd>bTA9>xLURF8H}vsJ^#(at57r4#DdljhI<#q`b2B^vC&8(7NH4QpX~ zCDn13%t?xgQe`sqvLlWfLe4V=Io46hsl*e8GHO^4TCItwrapVp(ZM%m9?sw?QznB) zzElQl8w-y*&PvR`Zw5^t>qTzh_4rtY4Cox|HO|P%Kb%52G;L6M{J4;j)>41vg;Mz~ zUu9%8@0e`8|268ZvKLxmwl>{)R^kVB@9f z09iy|`j_^>h1v%fYTwagKry}SWMm^`Fo5oU09WpDp0G9s09Ypg)-iy`pvHVc?+NM8uW4RDLk5V-{w0G|_RkqQVqxf`DrBIT&#r-Hgmz#( zsbQ(|14*saal~Xq>6^`+Wpw^btSYX7cI9PV+%*-3npA!9-~TqL%B!XWSkpHpb@i#b&T24KayqVyjp{;{DU)~fk#}TrJ+7O(Rb+#QQwI+0IxH=% zOIp8SX~T#2A2L{XSQ=VGC%+UDrL&@)Az=X}B{n#kRh;51R_vd(+7B7gzwbRen&&%0 zWPe&V?ZpvkgZuRC)3;Il^FxLVjDIk`>#&hJu5o+?U1D|YK7Au4ew5z(R%}JRe{Wn# zz2ba@t@@K*F)@1LhZQR6E&Jmd>W{t+E2%HP7*k%4{is3}|904sKCqa+(j>C38aj|y zjP!vyD>UOA9fXSHLXYe>jj|4608_q)EX*ye-gJ#DstICop7J^vX!E<9|LjHAhs1A z7P_Htm!}*u6*>vCq(M5np4A*W1-vWiIbW9PuA8-U#8^Fa^R|Fxs9(0JS`|TD2Z5E9HxvrL(R_GQ=1)VlXe0RQ|lPMqmX7na5lS zBzP`s9YmlD`grPEyP1Lkg2W7GuQX3r>jNrDQAL993#Jo%$Rd01FA=G0w-I_o;?y~L73|(fE910}S z&3A{?w9YXNcN!qrqk8W%VV$h+g_glXcG}+HO5_NV@XCqTx|6~f#QIR_Dxv(hRt(UV4wP(g}&au$+9T}-k zhm~`Aavi<=dFRvo=Ic^vPIpfIxN3T7s*`V;E}JX0tQ2b~>!6aEqJ#b%N>fC|X0qZ&igZxj zOrH)?wK93)8oEb)bfklx$`l=B3e)UDedPm3V>KLH;A{I+N2CGU*&nTF!cuZHTo5xd zSszZxWGo8=i#0_j40hH~YlO`dGp*e9qCrI&K`n(q6rW=jAv9eeRBu~FH#qc0N|m0ofWNmlqE_OM5g*H zm)vu$$NbeF8OF2w8KH$DwI0z0!!fzji6+JI$T0El>YYPLkJk4zWCyP`N~mTrl^QjS z9lX{eKN~}^&PPDrQ0r}OS?8t3Kg0T%YFceWYuc@z6LO#;yZf>TWf1+yWuWwn_=jIa zR52p%xZ<7<1GZ?K>7j_>EMgVPi52C7EK)AXLImaKh!`$%S}iEAroQoTcpW|T`S2#H zsn9;fv^r}xR^;I#Eu5P^j)rP@5EY9&UKl2gF4Iw#pr(4+LW~jnwj+k?@%!90xE3oC zAS21wGHcSQ2I`I=654|tW)jj5Rs?Y*H+KvzN+X|7|GcJ{5Uv?fKHEu0jE*a#_k3=J z-4p7|w2hH~9KZSTskBM6?4tDHHEvV-@ZxYCaWBj}?q^y*K$FnEsVY7KFW?ipSCfjB zWr#yY@LPytdRwcH;I|bin*1pvj4x-n?wq4)SiVB6ZMszJdn&3Tfd;V6`0 zwlS7Dg>hrl&w}NKU{NCl3zCGT)JPWj1`v``s60}XLZy-1FNUazkErwGD$yD#{bCBA z_7y@YMC!VSQb&g5f~`tqmA!@z#P~pWE9KMaumz)1)wQ@x>natcsILU*FH9&(1z7~tr3*Hr zJBBV%(T=ZPD5i%dg+GEtk22?F#6PP$^$M$Ky~w1s{G=)prYp`F;g99&>=23+vNpkF zteKyXy!`u1cV~_|`z>298yrIdY9Wh8>J`o+`3=qVU>Z`*Z*Ufi4kBCh&L79kvo=c+ zovUtqk;iGj)Mv2BBJofASvoepDDNs3Llz24uvt1k7UG}%#Ohg%NajXoBKgixBd6EP6#-gX$3kidM-Y>^&r30O zYp8%eti^f};zsLEiY$qPNApW& zsAt&J3}%4=V+z;Ug|rVXs~@`t)xTXJfx?D#vti6Mbw(ha6iA;KNJtW-@0pL|}8$@D7QhS-in)}s=UneAns+J2gxtX zJV25aT*t^_Akq7JKR(@rQ?02)YWP>+P7C*)Zp1{nprE9 zamd~3NW{LBS6fqf*e;~*Rqu%uD6^%gnH)PzU3;0O_*SI&-2g$7`ZYw4|6C@A<69$% zRe|!@o!(zXy~1R5d}PRxIn;!*jLmJR+6GbaBzjtS`6m&ovv{WcVg4$}p|Q$hzNCZ= z$*dp}2&%VU1!NegwmX9ER;x* zI(l@h44^4|%2!AOmi z=SOJ*DZ*1M>u-4e7{}Vi5Ld`z@JP}4-jgMLV+!y06%v+~;Dqr-nT_S%%JD(??wwDZUpe{xm?41bZu7FRS26 zQAp7W6-%i~I=@qKI94u&Hc{nY<%wg68~BKU1-8Ex<7z}ziP7V}GRzw*mCD51gK`_r zt(RlcVfIrSY=4bI6Eqk&rql z)A3a>WHTmkG+lA#zf&0N8=pDq>DcWR>(cRTO1ZxsFy)%2Mv){nsxARClQW$DL~IKj zJsGy6=jrkYfYQsZIG)s*h;hqLSmEA2}la zh5jSb;|I|>+wl1QgNKhuOYIXsq%Y`)`Ofa*+dl@1K4}AWlPiwiuK&OMpDXV7I;}+a zQ8Z!G-x4_NCZ+P0bA`!qv$MzDUH%69q`6i43IDM2SRfFj0V{=;rsLR{UYhtNucFATY32!-;nZ2s{Z8 zcrqYLB0v!j!V^QB6AcuJPaJHpWC)gwi4r$9!C=X{1C~j5iv>Ih3wSaXJUMC+*#xFv z5Eu?x+-1OQpQux(ghW{e%ozjb)E&SS-7T2y0tT!Z44xdyh-?D0B?t^hGP)u; zCh;JtNzySflO%w$+$4@cFyoULJLxXRN9pFtuCfa37zUmk*{CKljK6Fc6xjHK>M}_t zN(aHv!C>fTF!Tw=(En~RbPx<+#~ASB&_=X^u2AhJNnplFs8(NS;}U~pfgo8hN#30; z21$M}l5Ka3WPu<7J4S*h$2p=ELZW?0IL>kATxT2A6mf%JAl%_Q1L$i3^tI`l+Xm3B zU_ixQyUXGES^$9^1HzMoAJGZ{`a%F%CrK$+o)=X*#5yLg_>Gb^!>t{ht@G+QL$Dj= zSHD!{&~P;z>Ysujm;4wNMKN0?{}D}4_vI4hb;s|Vp*rib!yOnYk-t8y92ijGWMuk3 zV+!=`^h)Q#zkx~y!INc%(V9gZ`yGo1FJC(#3_S!SjZuJBLhu#`Y9>{2jaw- zYriA4-}Ti-2GzdguZlXgU^1qX z38}X_a&3RC>0>~Obq><{V@>-=3mj|OYcgxEUXuf2O<$67jx`-MnPa$WjRBv)1&?|l z!&oXo3mzDfP6tDNLGa|@Q)JT%^4w&JWO{5e2O~W?IUx8Ha&Yiz*Pub-;L}-?IV5Qo zHOetY`{*wY8Qcc}5PXVPh=Wg0{Tao)ubzwsVvbvfiIYK z&=alq{}~b&`OqCk@@AoDuyuhZoO!c8nEda2=2b#Y%Fz+|ivb-ecFh>zJYt5h@xmQ9>i~Pk?r%2@N zxnQgmYPuW%WZtZxzj)rPn8J~>Y%IrS6ruYOYI?>K9eZa5T(Gplzs#Pz6P`GpJq4>O z{d4y0E$zIoT-ASyC_!R3OId9Y{(zA%vuD?oV)~AJ-ii+E=tZeL45y~ZFl?Rj_hG2~ z&&Kqix}NBApZwb}%&F^%iM#_wJ@ZIdjQ12ZDkHFC3WxeyUk8l9c7O2~W(0Nw!=w@T z6In6>x9Kk)f!jeNuzdja6;&fa56{K`oM*Xih_35efrXmQbus00(tk)}gEu4AK zw+va**2`0Q!#iuLYSa3ul+yN18!<}A0qk}hjFM%>pV)#a5qPKt3>g?&T9AXKl-Ib;RIOyiZf zv5y1gK%-dIh0&bSVWqv1Q+?C98d@f;Qex`gr*qsLhBm8_r%btLr~Qjo$!p{(7nyK} zYWq;&twxQ?bS{P7vZJBX7^%)LC>^QuYsnWKDS>maa}!Tl_53tiYWu-uLOr9K{hkmV z`T}rZg@pwE_~^M(&hgRN(|Co=o+k0p>!eF4K6>>uSz9-NL*Uv>CXc|d@3M51&J?U`WHWvpQrI=WgiSX+D!g-w}8Nw0D&z5 za(p_?L{KB25MA;k;t1+Gx+oK-4I3Vb)2Ul@jiIhmddLauA&RV_Lbf`ZO%KA;YWiJv z5SRjwFg-I`nZG)$ay-g;IVFcwRyC&E-NdogQ>KYU@&dX5A194K7a+D8E-*slx1%Nj z0*|u9SmO+r(ZWiLaK>cJn=VWy0k<&W7;8)ywrENPO?0+s_Dy4pW*_x5TQmnqM%If5 z&@(e1Korqueek7HDtVRUOC>lfxb9yQIO6&*@LOvhTjeS z_zc#EhAz`bM^3+Sz=Y@!o5@VOQ15KyY^N523shn?oiNT-%aJgnm@Z6=?y0s4j(ov! zz~IOi9A||^zTo&g0LQ0-!_fWVqaz$)GX;k!EH{&d0TVkcSyi9OSn?T*N`Re$kYv?# zCa)fiXR^81eqI)=JtS!D=q@}O&y;iEL8y;Y3;#KA|Cu_uKMvT1da_N;OT%1&W3yUr z7jitZDqtv72&L;pw{R@7Iw4q&2$qi+3lfCoYhi#Cg-QNOP|O*@&okMqG<2nBvD`>e zr^L^a6~h$P@fDijW7T99du34$AUr-1=?T?z(?^^SswZY~&vc%}>uT>=vaTXYcrt}m zXXMhlI$@SL^T*9%FotL`6Iq>g!Zf(8)*CRUaHo$0qKu>FzEHBfIx1*DK-Mirh@ypFq{M7SVuk6#S*|j=Q)gGS#iZ(<+0-?NmtZva&z7zc zKB^@bDsZ9LV%23f_X`T`ezCqTH&P9l&0W%OHh0NOv!zRrq%N5(Ec(rsbDTH8!XBf! zLh+VR%$+S~9PgO=ru4Y4l+QRmr26I@2Q}F3Zd$r&x5R_|myrYwb3DGa&}>maP5bQ_ zjU3tQBggdY5ATPLK{!6s(sn0l4$uFGnN|){kp;03lka1Q9NP0dPdRdyim0W66)p+d zGW0lowgDiAHa63kDcK!Kb0j!FfI|P+&DjS22xJLHRI>X#c3_q9@JBE;fqX|mzRSb{ z5?KWDk`N*GUd@s7C4}muo;l;bI!EG0vUTTZSBixcU1(4;TgLAy^H8zAQttm++5Y}V zeeQp0O|{DAmkcR-$sW&^nPdu6eT8Hb4gnV&2%^juYF3%>IciEaPo#<2Jdx%ZAV?;3 zs9`Y!$HeSnIw3ixm6a{8)@Ed5mYopxo3llRk4#ll`n9i=W%xNj2Gn2~&Z5sa^wke zsHs7IX6;{RT}p8x#La&|HRg3z9Hzz_fi-vztrmDx|C9^goY?44fr3qEXCP$ypg_E_ zx^#+8I4I{wP$IPkIQ!zQXN(^S#_#+XkwX}N^|5q(^tzm)sjwW(fIx-s&fy`bga`H% z?i?9{dvjzOnbJnSQXYawh>3ZPQG-{hr9apd*L#b1=P5A^77`#{f$zs*+R%5?vMUhiBv&>NI12YN$t$tW^+WDLlKi%N8P#)r9bI`KYw z5tnDwxT~ZB3s{ns&n(%>=f9RXJ?%J;t^AO= z0f_j15AuKeP(8({)Khc$WX&2XMT}}tFsfm9iwZ2Mhrp71h>|#1!-IB0U43v?M@({B z*6IK(%LU8wxjaPp8j4}&B~*>Jf}!laTPWa2P{5I);JI|Na|zOnCC`V2Pfh47%lat* z&vn6beXbm6h0K#Fe$R2IUzf zi-VE8dACTwj*x&IA#qHeS4>}98rBmT3}vDZ3J=byys$6ThX%=ej6~P^#B7<>HG}19 zFqR+h77G{xi!kIDiCK489yW>d_(eJ!3@GS~t%{bxiqkw;aasneftDGQqJw5kLw%Ps z2JEPdz>WtCPd;NqHVsxqZ4VarP}BL&57l4;Btw8?7$6f2kgQ-JlkOG>*bxx0WU-0!sj#0LyayXB&=QxwxjFU&S_h-XiBXsBpgLr1@g! zbLz6@Ew%bs>&%g%eRQ)W&O!Q@uV6V*5cp4!fKJ}7qm-_l_!!X5#{5SuF0&6&1V?;0 zFKT>%Rgsv)hR6yRJzqCl>5S4>mpUKx{z%ou`E^0-=BZXw?}cEF5f5d>3MG{aURuy+hg(%ajGNJWST=aWOax<0?s*#N-+ z;LHbSk=`bLn(_1HT;Rdr7D&*A$Pz&p(O)d+A{I0h14hefllgou@Wg88XcD(*weuJv zME&v=%-2IVI!qUM*EmCT*R{??_==H*JZ6MEG+)k5zm)9D5bzZ^e~ArkS}xD$ZB#Lx zd=vO@R4ATe&1ahj^};qd)2;Hl=msVP?NG|T!PY81o4*NT8Y#2Uw(3jmq)8=GtT(8( z^AKdh7swTLZ2#~Oy>YFxxW4h0vmLIQ@o{S_+@2L~NZH00Zn+>Z{E0QP$p8ZwK0__= z_v1k`QXBjuRWTo%+v#t}oO>?c*}!{{=w-MzVkl_NZ472XL$UY`dnlIBUpy2`-mvG~ zvi+WxIwsm(k&LEN`mdADFnzti*-+l3TKb92&h9u}hg@=wqPDz&ZwuV~Hbv;(Td=~N z_DPMXv}HeI=gxNs9eIO?MnC=^^TvJ7U81)mO=E*3%wwJSUso6Un>qqjxFfazsF|{d z@ks}{uQ#H|Oxdy9omEwp1=10_w&Na-!$dC~k&i~~^WJ-P!Y?vyOY4UYi>ddZmrjrk zam@vOgU@Qt)PBF@LkoDG0)YQ~_etT%=2w>mteU$l@SpGM%-pOaiUI zDwH+`YmgNPZln;wjWsi#e7K8j(##zfhyr|Q0V}}93;YUDK?rt*<_C2eyEC&Euq!l+ z8fC3hK!5QJC;)mK?%G;scX-%60W%x1~qv$Q3!{eki4v-KL2Y9{x-M8N`7{u4aE=AGsD^ z$QvBP3a>O(QnYQ;YWOcefF5ssVnZqThZy|P>&k9P^R60L(Uf73&cgH-63=gouG~t z7&z=G<2~pv9Ghnu&>oz5^cN4#yoEG4wx&D?32}ltxolX~fFWx5a*2`@ zw^EKE7S|7zvb?+&a_k9KsR+vV>g%h^#OcFFoljfv*mB>~g-{z7njjUM@KG@L~6 zP`YH*LjOB=+*wPVF~Tpe?=Gt^-jF83^o%)AzF6Zg{($?U zPVwOOs4K1`OXlef`ir~bMo?F*S;$>+`lRzkQBa9`*eT~+6}m{4debX=rv{1z_;+<^8MZD3jvq(1mNYX~T2_A3>R75VhLpvK5s#8Cp z8);v>DF?wZ*cUg|`RAQp^&N2HY)p}2AcMr%&FMLVzQQB%-hlnk?vA@ zX$f}|b>Ct!TI((rotUy1gB!3j{u0dYs1w17jA-V>Ml}C5HqX(B^Vo=vS}ZneB$(r9 zPGuMreHn%7i(+#u=M9}}*_RcjhJ;m8;|#8s7qcV`>TU!&(;Vup7IUwZ`K50z8k6dlP`S|UumOKc{5B!^kT z>yQeXn!FCRSZ)@HeXQxjxDFUO%mf%8)R(?@mY&zGgj1hwSHi0YFL5@- z?ExT8QH4vyO5X#>wEaLmTbkWQnw5TO3cq*Wr@k`MgkN($>fKHBBF$79nn_3`odQ-++ug?yR7}A>8PrN0!Ri9KPXf?2V(UB2Cy*8Jn?jOm78HsY;&{a7vWy8m!h-WedruG;CZnD(kf9E;h%N#ZM0CZgZzGEPWo56J{GBm?|I(&QFyQf!we<1q1- zvz2!O(aSgtUMd^FKW;fEsjhjnFeG^g`O7=!iAgg!xCt7k0eSW~4Wz$#oCfC6IE9-VaW#iY&F+I`WeghnA(JXqdUV;WcSL(JUN3`%2ikGfs}OXS5Wzm(aKfZ zQt!zCoI#i4GOjCmVnQHECd73-U_u~8C%o1&SP2)@TMo(#_{V=M!g2^J&?%V=SP6k(YWfMv=u z#$xDJ`REACR)a+f_3Bn`1W(az1!$_O+zqDAG9m>MvP4ei$sznz0rQoB`Ne=ilB{x< zUe*@Mf_4C3EtBJ;Xv)He%l`=*pd#O7M20vykeFYvJXEHwq9JG>NFcX^!ROJ|Er*XF z0xsuC3@+aeHiD`3**;;>)|njnE;^9In^9t3=gWurt*da;30?g{%#Dv$%>mZ0?N=FfpCUrTW7 zO}Vv#b9nQE9KJrHwov&mC8)Wa`w~nDM;j?NRT%6OoJHMfXmC$DHDt5p3&U_jH}W{R z98_kU`NFViQbMk?*Oqg4!sTECMHu_|Uif5nRRGJ^mJ8CiCC`s^DQGDu|lS03$74ws@Ze}^{1h=o}=OvP&2>*#H*2A_7ayNm5^Zro6L>r{lnZT z)(RU~!f3imC1AJ*}SVSIPb^auttEs88ywy364K zA8W5w7OI2$1j(0^u@<8h0#a%fj}NTQqQO{_;?GBit7_V4%j>M&;a**%o~s$=A|DXs)N^%HQ}HPc)_cdKRfs#;BBnw^-K?Q2 zRDUuNF3!Hgp)g3{ErN`6Rxp2+?D5}T#S8G(Riq8nkyX5oTU&MJFc@HT1)O?+6>s!G zK{^!m*c?Mcw&9^siFWN-C?dZmUacJsTnXwwtMtVNt_QuENW~I+70tk<`N{p&x~toO z%scelDoJG7Fx=wm)~bLvEK+xV$(<5fYBj%HXvpusyoZWv^N&BMs;hY%tFHF@FRcf; zJg3wEkJU(9W8B>nn}SQ=YxW-+SECGqUbCvY^H_ITaFubylN^}1&;81HcQSU6;D+n5 z@vW9BwVL*gmRGX)GcDlfz2mDv9mM8fm({#?>_Rx$9GpOZu}wJv62OOv;Vyj8b&#HX z&clPtC(xT|)UfT%{FH>1SS!Qsk05q5kHXf7JtzdK+!{6(^H;MoQ&nHX zGYW;YPHd3Q<6!SMXrLvebp2|XRXGsR%&KOsT=%LrYxLk&uE)LWiBx9QJd8Wtl-_BL znD%r1MeWy!X+JNRF`4%L*4V?4PJi(*q_3f22t7*+L2Slc^cK98Ll&2D>D_Hy!)aLH zllw`%iiYS5fw5~SJx*Vbu$p+sf{VdE2jZ8-8}TA;?F9C4UgP-G4KB_{T;=qS3)~*H zY>nQ~*455ChboFBW7e?0QLQtQjP@6;Hj<19ZiXZ&M3zjb1N0Y5av(^O(Q9;e85|3o zc+8b)>y3WxU9YQ4B8lU}HN|w&&NyD>8tOSuxx6|qt2Ay^sOKqA|F?#9#E)xuK4F(K z+cxTuMf0hIWU=}6;~KG*;w6u4rG)=6qbjatdk@S=!+f_!&cRwT16Eqi*0QbAg>%U4 zLk2~I^%9c&!zq+wD)SZUFk}FdE02`QlYNzuL6;pM{GLdtGIC61)@|qvdnB)#kvu0O zNxE(M6Rv7%`&xbC30EucRU(zKdw-43`-o^k?j!zC;6|mYM!%t3OR3$snToy+cwb03 zET?EKxWs0lF`p08x-RAXb-?#)S-*Y1mXFT$)_G8T&Dw^9C~KWq5bkvt_W(cSb}+o7 zY6B-)DZz=CC_MS&0A$k=_3c_QA--BG9|ttio!_KgKKUJl|a>@ooWuEdc^s0_1pLo$)*(pAgkYbMy;5K*S#hObI|VQ4mdJM30eP zB(Mx-fe#D^4K2M}G+;?+z>>QMPxe3}o4}0sfng8i=WE4zShSX%ho{$y2NJ3jIQ$;S z&(JszuJJ(rBsh%+^2R!0@)-~#9so?(1BqF}tH}F7Q;}DZ^6PjNDNi!-DpGO1{nA%l zZ?7VB^SXCB+03F%VV7oZbC-u{MAxuCONJHKt?8>eZ~hQyN}hnd(JS4RW%U%o{c}Sqc~N3F-ebLZCYtnj#UKom znb8?sFwKs<{s@Y-@Vz)1<2QHQdR90HY^4sRi$;(GeWTm0heLklh{PG zWcJx$JYm9Mm|f=cS!8YCRTB-6t{Ssmd=_sAin$wfGDW2B++wR{zpAArO&85Kl6ZZk8J!ZM`MS+9#Ctl#V~+Zmcd4 z(3(`AF7hIg4Jr4YYoiRP@KTW*b;47g6!4)B4RpzbiseY45`!zkpwK}0$w0Wik$VH#6#s8+VhDu- zA!d{G1qzdU*@X%zzMs0mChi8XHyB=;?CP#MZK7_#J=0f;+%;5>P23GgHa~~tz)iTP z2I^uHO&m2A3~V>$=uHH}rkn4hqjzkTz_1Iq+J$76meC#BMpsb>1j}QaY%Cm4e97Sd zaFfInUuA6SL#D#rl%yOqTd=`ukFCIl>&4SCgmf)?IzsdD7bR^^2mNh(I(p!5V^TDR zuEKVSZwM-pFP@Ha`4UiEA)jne6HpwL@Aq|7%@H^SSSA?wB0F?6=8uPTwxzK;6= z!L$;dujh1xaroFA*OMwdpEs4K=eRoRN$+Du$Jg`5sr+KP=ho7!um33qRzQuYbvP)%5oABX5TmOoWU&ivGZMGAHKadOCifqo&@M?J7<`S92)e zzoAqg=gZAL7l=u02HIkai+){8{gN+UfuHi(()lUhznfIW3&b@LibaM(qDvHD1Op7N zz2GMXml;ZXw*+QnQGgj+6nJtl46@0hxPdmvy!j!Y!xZ=Lat%-|3j{{90*2A7z;AG= zZU)Aa1#E036o}WR``w}ePeKEpY;83wD5l5P3QMAl1TXfsXv@H%SjF%1#WuNs*#+C= ze13pq0=>!xN;~RE-@vhfl2E_~N&^P>63x{G{im0o+r3ocy(p@Q$U?$!4B`$=4&`*N3Sn3+24ncDAckG7*e)$JolTx6!JMSDO7R~xyC^ECY%}Q5gHF&cg zu+r7kdyYtDqp=60gzc{G^A*gBp?%7Rcz62?M{Jf2@19`Rv`w6~*&dMD^cN4v?9II4 z4X06z&Df2e!GT@8|L8HNP1J-@-#!&Y+FHn^tfQCFelI3nye=x0AbmTX;J zexvK8D!+wSAp8u#4J6rqQVXHHBJi;VD#h3r~ZH zEut?6a678s7S@+9ZIP*jBgz4y z#>)#WlO%n2VLP_DUjQh!x$4#yQMkWS?br;o?BC)>A;c1$&)dt=TUpzc-pX5CtCke; zX6~M?qH}9+14=Z_lkp_aYKTY3FxMxyZg z(E|MCm2R=kUO#w)+n7uxS$wd^?0m@8AgUA5a;?t3TAjI;Y;9u>yOt_P#x~j7s$tvo z_|L2qYn$(T_rBZYd-sw~LZ`dBm(JRQ%lUhE z>xAn!ORWcY{QA}EZM+!m+$M_=l4MOE#RIDmQnVUf*ygijtq-X4#L;SKfAZ1NnqzGj zMPUj{Za0i{_!;Qv*zK%0PzWX9SPp@C*LweU#&X|w#?o@TU_p|wbP*Ov5tcsSU|ZF_ zwzJ|gbYp#Vz@htxdiZGD6fW=;`nIlX1PcgAAuZn~Th~H?vPYntF;I{sD4z(IJ=?b5kVi$x5twFB0Wix2K z&8Q4f+}nnTQPqB1P?^HUb|L@BmU{GU?j01Gf#MD6^KWzK^mv;)XDF(WrvpjCFcuHY z-yX;%408;I8G^wOt+R<3!`lXfDLi5q%17_-3kDP#42!;Wy`X*&3|HUIq0d4MgR5`r z{I6VXROn8IjY3o9g|AVi@=k_bX(u;RB!1@_rDkv)x(~Oyr-oXvle-7WR7$Sd$=x$$r_AGB;9$>V z`Yk!NeJ72TP5r)2&5%Er=Iz28b|KB=NPXf5R|R!j5KZwR>hq)P2^GDIC6C<216FO9 z3>cC$VD)zC)a4;57IJC8TJ4fa(|i|C8bj36CSo9ic1hov!ZCKCY~QEu;@(FgdWAJj zR*k4KdfNZtYlt^@=_}1JLj_5`L9#@U?8O692PslFXTipPuTBXVL-(CcC-)B-Fj9#7 zhdMX+NLA`JWQ9AwDwo)I0ngHm-5!#+jL+njS<&-(%xu80O`_ zt{&C-qioYY7Drnuum5 zbn+$os;GsBzbg8_claQsG-q&Kw@8dQ6ZT11ZxA}b^J$8%lBYn3-d1NpsU21@%j_SMH z@A??ATU;O92D?7=wt#P`v80z%J$AGI<2ArAEp^|mFDv(()=c8cSH?Nzb86hEe6Qw8 zAn}KNyr~OXds0G|5{K9fm;xN}v4?7>sGYmnj@^k0_>>wyz=z!0bPBD`>=rZjed>S! zGd2)x&@nVvk%<9zcF$O$2%mdkk!LcU*1BZF2Ck>7+f}_hG39T4laHI$0 z7<9Kdz>aW$9pj)RLOk#w7#)LP=sd4`xq8#!SRy!{uM(o~XL-W~W>G((VjZW-nWl zs?=V6b3h38-%gx$^eBz9ju#@`&#PK{S+&>L%Pu!}mA$Okic+vTwUDBwQiLe6E6;kW z=uT5&N)`u|v0N+fm91a+UfGr71sPJ-T}SoatA{@2j?&x8x|@3|6TNK5y?Z5w*&ED) z_S_?pC8qW$`iuA6qxQ0a4(aT#@rHi46aRNZwjQm9OJI4 zZW$>nR&>|)E+%r3ata!WW*`(MGWa=?XBUc?pI*FY#nI zBeLlQsj-hIq7|i^_xHqU4l|0}7cd(k3~$D!1oa?$^Pb+vyRoMU3Gb_>(qBB-Qy~Ss zc^GW=<~6R2H^EHhE0x^?DE>4R>o7Z4mh7W%V9j*CT?Om#PAW}N+i+G+0Z9e><^NgKRD#qbWmk?nEvw~ zcT4IMd|hb7jZ4BSd^shqvc6i={SwTLn;CYuG}!-ly1Y5=@i++s34HGp-WaPkv!cW?u+EeVyq*W!*muXg6+b#X_ezx`uCw!8L=4?)6ZLHzu z$l5R@+XG4Do5Vv*!$t#$$Y^N0U;LU4&{bwA9^EfPk&Ge=g<(U0T}^R%Sqiq;w`-!$ z_=Ci+%;>aFa<}k4N-Sh_QqV`v(Aqk#gf#-cumq?z#qC+oPxJkLaeJl&w@f4GDzrz? zO@HwSx(jIpL%YioUJw0gf0gJTNB$~t)58vrs9+4DOJBdwUDknGaxFH~a{jn_?kp8w z$ePFAYpJG%GE4DoVq(56TBOL4D8@S@QPwqQAHgdIj}CxkBy(e2$nP^735%p@I8B`;~t3 z0W7O8iHvGwp?salUGP>*cZjZ#Rl2l3+|d25np4P2)Qm#jeJm-I-3OAi``Ca7et%^K z`iOr$a&IB5{!t14W4i9*%6i}kyc8T|v^JU`nAZV%-jKKRj_j zM>woROBmqS%sRj1iOeb0E>?}?YRI|ril-J;W7qC1sW$BZx4Xzx!zGcZrY~=C#e+R3^0aIg54b#IPjtc4!n4Q!;^iwcsAeVN=BEk^YnN07JWL|*&t{y2-+X? z`*KxZ1EV*?z>lbxQ*{oCS)6{iXuy}yfG?qOv_EK~mXL1^Nf!B%Zk3Kw0K{KRE;fMP z5I}Dn)R}v+Gc!;&1wl#J=cKRiV}sxe3_W>uf58Q2^y4Q#0|JjMd3Eox;B_XaE}hp!yJE&=+9a z{n*YQ60da0=iJHaE9tM`@*Pv3bB9>!7TCcd{mUWN(4mJ#L;r#fc@2)r!`vha$tzRy zu-_|F?Jye+C?QSWg6XVZbn;YBqUwBD^rI>4X*1Dprn=jxL5KCt9jdc+h!mvbCrHQ6 z=+_Q2j#m#ej$DHSN#g&eut17%Yz@GXFE|X{X&)Ww>5mN#Q}~^)(C3W)6`XLO1_Dyn zKOGWhbi@&c;yuDp;*Lm{AW2Ya;{ivN_lP+0njS%)1O`zxKEfSisJr>7S??c_jxmKJ zeT8u1)m9V03SdwOFiv!gxT6;dn)!leok4>np?Og20$h^o|G)L-(ak#}~=q zcPx1mWeSTOWs#7w9nd9?G8E+4W5f>V8b`TfsvPBxsee>D21%X+!lepw$(Q)VQT8R$ zRjV64a&ln^huDO?sJ(Jju$aQ>cA+?--w+@uGy}vTIGatKjYlN}XTRXu=%eCgF!*iY zO+djRaY21UuNu3cE+55Tl(bz?^tbJTI*-52>%ZlY-v#v*M5G_+x_(r`Z*D?VJNyQh zd_rFAtE#wS)UBiJgYt4Cyj25tee>1osXBkYyOF;9B399_j)qOq5wxi0gj9UPj*8go3^*p0#V4C{+{ zo$3zZPkgMtLX*_KR5|OotbRR?%bprnxu817)Q&z*Zy>%6M-IXjcbAB@j`O~H0p)a7 zD5tj$HTiu)WA+;M+;LeqTce29&2O*}O?FpS?;w9JJ{G!Xio2HgIii=v^AWUUzV(6a z!1y^HzG;EX>Js{usqW&c@OZ$~z94iI6d!V)SjA>Mr;B!b#$w;c95@{QyW>2)zdP>t zo+!r&adZ|tArstnB6xzo18!ninwQ<4;9y1r3T8Z@c(UgN*)*cx9G4+Hf1HQ#z2p8N zB;;)8JQCDLyv~<9!FEnL0>SJ2qx2UW36Gv&I|pwxJ5Bz06hB47bD&9E%z-(x-1X>f z&-xR-5}pfl=D17qFU#ok+3pur?-OhWsh%f-X|mPm6RfC5onS>h1;46Dr*ue?qMnBb zRxqS!%~*4S)(rL&(2F1FC-__MtT@3do8fZ6$Ay;Kv*>Da%bCJY?Lzs;=Nj6;%7#Lk zPs2`#9o7^5U~HmHR3|4*Hx!X)fLfLylvw@gT!b;RQ^1SZ?YZtJyqQ!{Cf2hjP00(B07cB$11h%};V16mA{$OWDj{JV>N0-u!P3MCQ!Nt{ycRxiayl&|fU* zlpsNyon%2r9}7z$LCfimixJUmbk6q0?i_1bfQXAv>dxzNG3IRd1G@MsXq=cV{Mssg z9E77->pXP+){`{t=*P0pc^Xg(vku?506Uejd4Sypi;{IcvRlIcn0KF_q2e59Fx~bevb1cVg!2(+P;bAIF z!Kbza1t;#Qx1py{k@VsNTt+E-SBgvjKmg}v!|Ew$gj84a)4VgqM^)5{ZuX-)+B(BZ zb`aC@2T|S6FvBszu=^R_pyDK(tMI+{rGCVPnB#v#cNp5$HZ3bq1hNq@Q+CiUlTUn# zq#=9&MFarlL^tsc)%uQ`;46f_7F56bQ6Yy$&3%@q4N^2}<<9y?t;|`S`hV_3TnWR@ zR39Cg70u4ds2L_5e1-N#^;s~&z@gk8INqp^Jj)X(^DIxG31?*jAxTiOg-a%KX`{OQ ztOUI*JrU@5%rCLK%p5czF7nzonaxBbg7>z zM`PqOX%<{T1`pLAXJuM|B1IuVK&(3YiZ|p*o&T$=iApSDFn=&&SQtczdqD_{^(66W zglat8eYlL6&?h|j5l(J|h6x0Ar_fJ@Sh&lc+NaQu$wfSQ-e6*V<0nrAtBAR+7H*S^ z_!mQPE+>%QaWqlegyLPH*jB_&cOB*pdB7Cu3~xw%{H-~vi{erfXlhAqsYm#OxYm+M=1G%d&&fH$3d6vZ zZuXV(A;NyDZ+<-iHApVIsf$7h93Wt$_js6UF`aykhAh$=4JixZ(rIO))q5hD)lTwCJz3!y(Lrs5wkPNFiC&xc zSVa2$3$!d84b_++DjveA!Z0s2-p5eJ(STSkN{;rlP?JC47jnV}3}vo?GC^nGizb#c z7kt}Wlo;|5?#3=vE97-mASevU8Ji^H9w^^W3<^{Dy`Y$Y++Sc!{3Zy{mO;RwYNhq~ z6dCOj=Ot7vo^#mmQR2K!%YKbuGlch{e?iMps9Jq2apEUzb{>CG()JV5-?pEyD*iTB zJ{D}>XL_y9v!4(io1Q5l3GjphQ#;lEygx{-`*{gcWA1E>*FSCUBKpHUShYG&uE7$6 z(6(X!@cCjpzPS=Q#Ii=PJai2$<}Q72LH1XueFgNxI=f*=KYc7IB+eg+@*44p&44Y& z4nkaCgg(;jM#($RHgn#2@e=No&Z2vGwx5^%!#mUg0jG0;kb}Zcz$5iDXIbmK*vm+= zmk=$Gy}THuWG^o`&tAft0T_M|3_l14<^E8P2puq;L(GrYpFS^Jh>#EO5)62f@eZDB zyyMBvLSz$|?*hR{%-Vw=@_q&iHli_ZI%xQz#H@8OU^?CbOxL>w)9^zE1D*_qlJFPe z0WA1H7h)z#zf{)zd+}2ZmPvwT(uZ<(y2M~vcn2(bcZ+3`U;$6Yf+zpT2C@mvt2P+< zjg1cskRkz6WPp5UfP8ZYAlL2|NRa>mPX>Y~|Ih}q2?)&RfL>W#!ZU<^v8QE-x$GzQ zBc8UgAIY@6pNdkfdV1L-f1fcAd~}yH1}rgSumay~8B#@o^MX={EsE8tt?*q=1>)=* zq`;rHfa3PU>MyYRf5Zc(Uuqpvhc6$3@AV(RCfqGBFePC91sHhKZ(JbBz~JyTz-Sk$ z&&w|KHK-amnZe#8p) z?4XLzS&tKMaih%5^0ErVH+xZ@5c<})(}e(Mayn6(bCR?RtOn60ds66oU#vzbPf_D8 z@O&C~!S7ARFV$039>2K=2BC>H#@(dW0&oe`hixfsRCtg+1heF7(1*At6p9 zMHBpGVwtF3y5Ro+?W|xqC0I@wEP2by)v~_wWBJ@*Ic#~=TNgwvesi~&z?;+}coQba zsSD=&GvpH}xZwqqzFEteNQo*rd8<4s?E=jw{MsJn=uWRXJPN(cj_(hH29x~@Z(U%= z_ge&t{R{VB#9!>3xc?$MCouom@%?*c&&!yYokoQ8)k)Pn6~)J0uBvAw?B(q4n3^0n z_}E3=c|=GWku0?OQGpm_y)UwvJW@zGEDl*@Fv4U2kxqIwI@-EOrjMS}J%sPy=#W4Q zSfIDtEa>)GK=wtpB@LrZL5#>`Ll7~5k*RA)P6m=lRNMuo;kgeYvQK(m6yNt_=n6CU zdt5YUDJU{?|K3Dw(SN_FpHB32^!6Z9nfs4k6mPc!hod1$j*Lex>V!Tak@`_rXf^Mn z!7RzgUEz}5^)d7pcYVwy_Ho0IAY0%O^b>sCi|_S}AZ2u9oE#FjK+*`EiQ?0wJ!OD>rvNJU3I;rU#shB<848t zB3zwI;^cmgg)5O!+h6p|C2`}|31&2mTc$#g@dwGeC}TeqW*>5RYXMhmMp=8kF<*ao`U#f$p7qO zTefo-125_t&utf(de+VO)OMDs(R$n%EcoFgfto}mgHtw@ zl<<*a`+7GeLQF~)#VEhsV$Yfud%$h6aZSD1YV;1hu&K8&^emA|i#-H*X0sUd4wN?; zV9M#^&Ae08m>s-1%z8*bIhU~CzXR#hi;<0^$HwMhPR!e(pWneE`1u{8$zCl{yc7D} z9WoVN3l`y`cQpC`o9G2E5_90iq8Bc!vJng^r=Hm%Q_&}PxU%o`eWIS@0g-VFWM23DTbqB+V-AX1HR8PI5Hfsh8ZYQmmb# z((YzZbdE&Py{sr2?_?C<%Jl-5RoVz95CzDErs${_noKO%A(M&wckpClCW=fd?FBnA zHN)1hCy*((=W4!GU%j-`R%tKWDG8qdO3Xr#kX72~7(8M;6w&8+#MrchM~qF>o;+e~ zp%U>oy=A98Vz4^fq7|2@v$34v#G8L&b@pajr*PsOPU0P$Sk&21cJ%gBp3^&xI{V^I zUKpR=N$PCA#_A-Z=8nWQR*(gC_1G=mD1D+ctl{N$iB=o&cGiizM63N=7tB>McZpUz zGM=^C6}m#8s7AYZRebd>UKO|9B}z$nAxU)m`>|3ZIRZZ|(TDGHm*_)wv78V}H600H zzJ-sL=(B)|^x7u!X(y7j$=;scEVUe*YIVacwBu%D?vnR;Fr;=F{q}l6^bsS{-#v^E zn57#6fJyBXX7CZBw^f7PjOQa456wU6 z;p-cAa|K<$n=7c_ZmA%63Ct+rbUjQSba~Y@aDf_c#(|`4(fv%`&6Q-R=iAhbY3XjM zBuY%jZ|z7q2K+GtQb-Ar7*%hV*?0A`p!r_V>@#TKB{ZktrPH>%scLW^c>dEQl5OR` z^*dt`TB{1h7AW{=-cVPUJPl!P;+i>e_GMKaC|<-nXn@EAL~^P2O_B}C_d&n&kTh0^ z={huo02ox7oY|n?Wi*=0Ny1cQvjm!WZYCm>)c!9S z5K9GwAzEh>F^bIw1=3`-fK9-T)P)~ni2wQ}g92&ob|O8d^6X(4mjy=R9)STb!Kku_ zVO%ya^7lwx)ZN2%VTd}}L=5A`JyIDaa-<#UDlYYrR}B`>*jO453XD~c3zkRsaFsl3 zu)s@LUKLL8(FgwF9#`b75jckKCx?!{@Vy3(iTsNrJ&*3WO0OLnXlq@ihrR_cWPt#M zX`XK;c_-slI*Vec|CaxQ`)^I5rT&W$^a7$Npx^XawHJElvug7P*AZd?-WuxA(q}b> zIN^OeiMyNQJmvqmO0U`&Y_2c7ZK?YL$Tein)nGe3gKNdciI*i16UE^(Tku72RU5(Rthb z&DCDPC<&C>#~%lXsiP(A)7!pRO_`U<;3#XA;F|G$R2AL#6N3x%2G^hmz4xi>_UWRj zcuIcBdZ?Rw?BmZ5cbZwB!aG!QDBQ>IPfys#qlo+d^q75IWrldRLrid<*~g!u&FK{< zlJ41A4Ng#mgReot8&$VT6152>+2P4kyY{hU*u+#Y`03hkE@)A9P`H|R}#Vmi3r zRYq6bFUn}ng{RY1cZo83+T-3)%Cn#Mspjr?vbk!%PMzcZ4pWPwP4?VBZLW8;LWH|T zwLQnO7J6>4ay}oWPcO#QiIvbdNm`!z58BUD|3OGiTUDn>6i@vp?w6_m9Y`HM^$*7y zp>+W-nrMR;PjShmy{ZVNDQ^G$GR5t?pS93$g@JfYK)hx^d=>^`Jylk&nzdgh{a=(7 z3s@2suw*Q7SqY6`!m>OZi|klEABN|w;5oZr6wwI>WC0R75P_xKfil($*bx@6E7|MI zw%~&b8i9o5?+7IN!c%DV_6KAI(&hlSO`8Lv(oEe-bIDwlqHc@?GN`OTz>t7|Ay*3A zorgWG;AbeU4}>*PRsGx%&(mt2fig#+%n>MRxv7yCBZ0hHRv=(UK){ZH!2Ruc?@jPC zkXeyHSTDcZ0NE};wi_US8z3hmft)ET5U?X4V8=ke>K^G{hZx7MXQA(dPF8PP$m{j-c61l)kas;O7*g8my!NgWSw;SOKEs`jVdEVTP8 zTc3H+I|JV-GBgVL34&$9pYjRM5-g8IVtKr*Sip_2Ob{$!di<=X1-y)9tb>J@?-9!Q z4PlTz5lEky>VeIIs^^DDNWYd961Wj094e;j0aMn(Ici%PGCp91?;%Dz@7gFR<;PH-r_xIHxyUSm^Zy& zsD1`WZvoO9B(y(ni~(}117t}#Z@t=O#Q|=F1Kbz~+|O5dABCTB^oYcysCrADv)qMK+7kq+HNA*8Fl z9iK)ozK)^ND%9sy`&nbSWEGYd6%O$VUnL*Xd8@rYsrrX_G|xRGJM3#7Vg;URFTrgN z@g%0#A(_0xOB-5-fk#)IemcbS1SDboTk;`Cr%(g*v=urYQBVh`^XSiqr2U=8OdNeP z-#Z}Ff%^~Xt?zs5hH6l1QOPADQ~MUw*~p5{Z+`ND_crzDA$LetOAm?eW)US!FGiNm z)dXtwA?dE~9HQ>3FPy^kVa!HY-NwF=+E8smS!dx1!mojnc9m`hhw$&W~4fV|E-CjeGS-zNB$KgCMErv-FGW`7GD7 z|0;HAY(wWF+}i_#~v z{A}+97YW%7 z^hc?FGdWB;#`ThPOa}Wp$D}55jzz$zcdU#R0zUk#)iJ3Mc-eA*TnI)2a)IRldy~*{ zvUS3mfLDz>%0eCQvvAn&9vF=WqV!}#7_I6~?4Qp%&_a3ut2>0NQ51cPow*xOM z&jX1`ZH11(gTb(f?#P3|@}oQ$ET?+q!QeG28h`Asp(?N=9ukR72*)Dy_?&pwel{V@ zqJU&5c8*Zqw;J!c9opV{`DAt$lH!NJL11Zxo8swdULd1)Yun~wT<@% zb?lf}5Wc12${2POHP*(Hq#roq#fDuJn=TKHh+hp0!Zk{jJI>#0+;J8qna4$xz)PZ} z9vp}g_-GJnecaXKH9xNN@4#CCLf6lsqhV&$arx*ClgV}@ls?`L>V9y6*gz!2h9_{` zm<*m198U?3*9;DL3CG&wdgumU0dgZ8--O}#@;J*aL$}YNBOIp;j;D_6^*?y9ud<%M zK!MV>7+6qP)b)!-5y2$I0>@=PJRbh4hZxc*Ry)C}vPMMPn0%zWYb(sEoshloy_r1h zHN@^G7?zLiJbyN{DP}Dq*f`k2=Y76hri&O~fO{ ze8B;R%wee=$;JY;LO?V5cjh=FWOKf;FcG#%^n z4YYciWTR@OT7Pk8x``8rO|08r+@o*=57{rgg=whq?xg@c0@BITOillbyOSZs!}TsH z^{7{w9c>vg6l=mL^t2!_e8D6P5i|y3pIBdS9Q7e?+|{=WIt&FUj-W#j_4o5kq+55- zpdvuwszRqwk-fC5;q;$kjFLdrJjMM7KKc?Ho|4XGBHK8TG$|+oCkO<@*&XZEuY(!7 z+lM%`_H=@;y(&J%BI@Q-ETX2K5)pOtDP3|SZqN~4h$PYQB%v}F70eevh#?X3wnImN z))_!1a!uOD+%eTR-t|uYVK~(yn`FHqKUrIjwY3UlD?E1Uje(5h)Cz%Ua28UZlG( zP!j0BosmlU>5N{|fU;zwzilFJ8g*6=O~dQI5|?n6ivkARr)PYdQbA>$}cUfae(zik`KQJT5Q5@zEu$Ht;gBRgCO;<p*XECJszsBA2eadXwt` zgY)!o@SIp!I1kp6TskHemV`;w>dS_ct9cHeNk8Xg``1~W-N<)HRYMj~ z?%3O2>*|Pff1O?ZPGjF71;p z2A$*8!=Q7l&Q(*+$?9R^Ib)4Ms_=DGc)239Kj1^F7x3YA6uE4TImgR}{x~j38;<&( zBWsL$%VhqVWd54T{4vz>ttw=m)%8CaZ2@g0j9=QHam}VfDmc743;yKjGH(TZYD_>B}f4Q}4{wrTl zYuvmB{VAptCA0j=eBs`agINzs(MQo z-*Pp@0Gc3xCj862S+|*u$q3H*SdaWCqQ}dM2s{Z9crqfm{vzKv_!$v4DP4)^e37q2 zZ7_&F5k#K|BK3=@q96Yg&~If01eOE{EEy2ojGn&h;AcP|MgS61&Ay(#XK10h0GEq) z`_}TR;CXJiAeLYB)mNja0+n?>;)AbozKm@KZUAHj_41MDrK2KS$1ANb=+x9m9jPx%Ex7e0&Y|(%LEFTW(@Q_q!3C_7Q0Z`U~|qGY#{x~ zU;|<77;G@2!C>>A`s*y)YDxzC`eUzA;xa#uYUFz=d&*yMcX#tZ8Lyuo;=9$#BO191 zsm=wl;ncbyo3L@GiyhVW0!>SB>Y76IiZ)3Z)&<^(JzQv3d|seHL(>tY=7|O}v=uxx zFUUkA0a2ul$AG_f7%YbmT+q9Q`3gfdiBx73<&cqm@$};+H#*&i?bHKlcxTjnwB@l2 z?huaZV_^Jv@M7YYUW`l~gAOib;dnmg_wEJm)bCyp%_Nz0a3Gh9N@x8x0xaoAw}4If zxc&h7&3q+dTn9h;&cKhqGq`+V5`w7-S6+}dTYQ1r>^YoLb=nL?U=?0DLM*y4pk^)H zo(rtP+e4YM7B1-`ez6KK=_0G}(BOP-B%#=MKU$qGM}I&}IZbcz-J$AU6k9{i#np(3 zvQ*oPJVkANk*BELFUk}ZUYeo~frD8)d^Bqxf01VGY{8+~Ot=NdOayHU&g~a@4r{o~ za=6gC_34W;hc%JQ?MS%}X%+IoItP)|X_{XY6HX3FX=n%QWQS#3h^@HPleL~GBwe+JJ7u`FO)$gbavh7rN<9A*Z+fI$h49P}v7C}lSl=B@REDCG4xB|ZSHsuxHOF~Ng0BXIZzpj5F};j zPQSPe-7m47$CM#(iOXJ!s0i5U7p z*pYs7>m?RLdpJ+hJ|F<*9laHpcpVSFNy>*o{CeC6M$Zs^nUkjKL<%8=CPL^yNOcLJ zt(piisab-d_;zQ!!?fH@Zp-~T6FceJUDoPeUx&~gL@F&e92o5bAze9tIS|t7pDaF{ zS68pQ&zGTYxXgAPYq&skj)n}q3{L6A$k4Ix;IU;YhRo~kyiC$d@BIMF_eF6r&8_(o z$y4!?%OblLf=RgSYDfP6CcD55vP-zJMVk3eU+ihhVQi6}dRa#1Nnj2OkF_Zb%~y;@ zeFYNR$^%UxTZe0ABFdJs-R^>Y^z9}%g5+aC^u z8mMF}J?jR_lUw>*;09F}Crdt0Y@lkB;y#e8Y#jA*bw-)$2aHxO3Y5ow-XedXswep> zOBcT6=}j4w%*H#RiTFTj#OA0;=u6m9G5)d$`=KZ{2IxU3Hko+FU!@BVCp7SnLAKns z#>8{qRXYEjV4j+B6}B^h%b2Tl){z8G$EQTlM|gY~9?=nbe0b$Dj}NaTTfvu>V z$hI6{S#feRq=-%3-=SXFAee)*!px5ZfK4%lDLnC(CHG9Ue8yJ=x08Xc2(#h!Tm88z zh`ef)8={+UBH>X!RXuIsz3#$85W~ZBOau>JhPUYoc(?w6eDt}}e9D@&K8N4Hje5HL0netx8f()m>aId+P1l7bi#ICYQGr9b=UIfytHBGX`6Az3vBpZWOS|1-|bZY%2`5PYpKQDo5D1nw$_#m8SM6o!Bv9 zvYcw!Wl$N~3ob2JSwOG&}_XZRj-@!;FTC9hK*#c_<=H z(UxFs;Y(f5=8I`RAr-z0hQ_Dp8MEUn;uQ}9N>upVYI6$@9pUYv5A87B?+XL<7hy?I z5yVij*TgP7g)vsBdnnAs`nSPq5~*@g+{c&+wRC0_x3tYv)pO%db}W~pnn!ULq<9D6 z3oCqus#lcs!J;VXgTvsW4=VTxo%SEVxb@Zse{~8WZ0bI+9vdjZAXjn$+5j5n4Y7L8 z~RvMMJ0GJ%e@W+-j9lacqp6_J$bga5kfUE+cN*Q8Cit5buDxu+BF|&5V%_cQ=q= zyijutBKR56bHd1TcMK%L~nU z1Lg)S5astp7qPSSdZiM`Pu;e>SIP!|>Co7kmK$BPIZ$8ad!=ZIc8V7FrEh@h=#`?i z^GebB!liEselFV0h7tT+*;C=C%AV+z%C_mAaOnt-PKgfi`=oaKn{GTlZn*_YeP~dD z$U#;88{h5fM}umcLG_101wW%YX}H19qTJ(i>s!C;3zXNt=VYa#5|}#OCv`=ssjhN; zQdc&&Yb4&Y&1>lwH~U(v_CBdC5IDHH?eMf!Lrls6KD};RLY}(aC$$GZ5t7x?;*Ir3Nykiz4eq89r^%ZOn!5HdfesMB>m_2zBkmTK3$j`sIR~H!8gh? z*JrKH|Iydh@@xb1sXzI&+KxIL8-SQNl^K;WY5eH<#XG?Xr6~TDI94hKC0>IZl`?Cb zK5-;CPG=qu29qgJrj1=jWptTzQ}J)$*Xnq1f;#pe{7(Eo{95YE$1&{v^b0Cs8yaqQ zpk91>@mAuT(aD3HQI3<<5^u&GDpqO$;~?(2_6PikPA|sHapt*lFGApQ6svBk`DK0& zcgeS*j+p9E9I0+qQ@>t+dqTg0R!AK_wU4M-E_5Xe^WjR)^?Ai$R`i!YS&>VV{Azwn zTVBkw5WtiCEWb?hGvNOzFcl^MDQM}ent=l44@gVG1-g!y<|A0% zh0MT&F1*UJ17&N`V(?;M~#C9T=5j}SWqSl9fFIy+1mW~)aaH-i;bdVR=xRh{R z?LZx;mwSU{Y%=g+EaXy?9YK>#J_@r50vOD}E5M9825o2aATRfEZEQl_K#FP-a7RiuKAtzIM9&U%tKyqAsy|sJ4FUFJCwHW{_9Ho>!5@^f~q-`uHVZw4Qs) zcdPn5D1+Dfpw1r^s;xc>>KRLdx2T;a{MVoimxsXzD>4N?&n5l=QY;P0KQuX*i$Slb zQfyub+1Ly64^ajh@LmMPf?#1fk9Dk8^>yi8*gfoIMOv(-zc}No9r}<`%Q*Kk_|rJ| z`{;6`Rdy_oJM#uSo2U6{EE_-T=QCqjw5ukdBIQTJSQhKZzjSAyhNc^*ROeXH+jNMP zZVs1a6(6&>DOQv>gJW5;=MD#haLEpQMyX{6Wm_o?F5HgfQag4)L0Uf*T}L5++p!(8 zA$?23Skbp!9ZT({fOusf&>-}3L~Wf61S+U0VD)6VjFc&qCu>ZW(=XPyEJrfZw@?H7 z^`+MR{GQ$lmLCoLvxtp9)DHuts!8G>Y}$U2&U_X zQT{5St&~do(g)}uE6UZJxAn0Y-FjinL^UZy{V6Z>zDqMcq{n?3s2lnqBD0cD15Hw9 zfwwfpZ2HAbF+0Rf;m4OpQ;7Ft^|-V^Yuz!%e>1np$@1P|8oku7t9bnr)ypV5^iiH= zAsQtd~Olp1ve^tE2GP#Wad+KOY0FFcz{4A;-h?9N=znyO0k|!ss=S{k&O}f`jI{1sK z2J+SWCLR3TAL9{DGVX#~nQ?K_SZBi;>)RxMCGYk)>5rxFCZ}NQq`yKa4k4!1{y|44 z*|x5B)lbykIGIytbj3}InYVg!!YXr7d4G&5MI}B~ZlwALge2b15To>BWWD6-IC+`? zZx@a09x!_Qgm@8gaCyR$BXO)H$JrX1yXNM`qshar7bUo&w!h+|1{0QW%swnWW8cGE>4X~aMKP=%%MKR1I#}WU6ltI)HM$haVqPjhJ~@lMPGI3G3sVES%!MMi1%fkJi7}@ZX^BPY~VyFeKrP1vLF!?*NCW1-HOa;e+v7kEP(z0Z^gse%j*zvK64zK)5@yYt$I{ti>mMG$eh(1WjrTn1KR}B(b zCc>sLV`QMFDohkq^%Etlu7(x-3~Okj3rh`56v>Ck^*@!XiCy_z1WHQ+?~z1-MSjxb zYl-*NPc(Y`7Y!sL03?-Q^!OheOz#V(O$O8ZhR<(?&->uRdi)~@h}7f%X^`1T@M01} zBR@e)E+^3J_^J}`A(kh*dFo(S$lT&Uk)n7Y^PtV=o$Pv>>QGKbkn3=@G)+cQo~? zT@rUIJZ?aUJd4qWq^Vbflcc8lCrM4+1{XDjElpYD(a-J_R`3oT8)%73(;3hsNnArV z(aR=3@L)Xe2_8FogB#5{`E3G45xMD3{}%c?t3#lhkXQiY8n@XwgJi!T!9!)#HE{1d zAyF0JB^_dNvOqCZR|}QeZ=keJ=Bhy|E>0IWnl*^WdM2f)0m<^kQ5u6swe$CZ=48lp zXaL3~3!eMnQXhh!8>>WkdB!DM@*?sw18I>VSZy+cpLMmL8wPg#_ijAvYD+o2(ba;8 zb+vYG=Y<$o+n3x65#ui}O^)cqwD_8k=KS5j%X60M<)uiJ+7#(RCx1WHvb?l*)ACZL z8{krz;O8>+GkoCZ@8Z_-Vc*55^738S#1Fc}-0brWCOdwq#Cw{SxAds4xISowK}7@x z6>CJlHVHp3FB;LG4NCZl4kC~zPLUFu7l(rq!nC3DX&_;3=vf%Ti^*$iL+Q7z4ZRP) z%}i=Yf~yVHJ01)q=)o6bJ9}bMEM0WIY9<~$W_9SC^HuBVm2+)nD4ygMWhiIE%24nZ zWoTZt=>GcmUjFjxLisR_Xtfk4&wt8`Ms!6_|1y=EBC|I>PRq&c=s<7(2-TFM^Fr51 za#BPho)nR)3!-Q`*NLLii!sEJ5>ky$k%j7r6q&`rB~722j-p_Lfpw>pgD*v%fu!NH zxQOC}X&{TigeNBC(!^v0Du5J^)(Aa!b|4>D45M;typ&a`EW?O`Vjvdt4kQB zj@a!(+d<&6UUrzk84?Mn_K32=>8OW3i_IV%b>YH5wx?sNrQ6)(zm3@QJhFYNsE160 z>oHHZ*&(P~4 zPK)g^aNsf=oSUP@I(G$}i)DqgN8s!cIC}sma}*ZYV9#)N3mi2#g+5@JWm^NN0p(up zP8^=2*U!dNgLJL7=N||-)}Q4aOpMZpM*DA8_)J-ec2}|gMrdwVE`ia2x7_utpcAVk z(4@7gt~1teo&X&~6gboNy*E|Qd=Vc;>z}9Kw zVOuGMur(Axyxbg#C|Yjztl-RpZ>}KA&8`(hH$YNr$?g8kxX(Z{E7W7e&AFMJlQ{4-C9xf zIio7V)+^B))qNFZY`zDDr#Wj0TpF9<=dpQFMH%Da=dpPuc1=UCmPukeT(5RTb-Y1! zDBBfmPT#nkc;NmOaA;j(#~+Y*&pm+0sRT8^z*C-BL=o&tnx@yk6-ZV$ zp&X=Kquy2LF6{eBNwajnyZqfl(}-4j(};?;PHh^lTwVX3bf)OgaF?WV8mrV|M_iGE zJe1ie&2E9l^ov`dahhn=@I6w08(xw0PlbBybIDQq!}hqm1|w`pCy@PR=X8Gy`bhIv zgy>srsb9W6I!AwSkH05gegPcwwRTQ(DSqh?eO;(CGBbT*aGHEg?bF=y-agY`(=!(3 zeR8J1V`wlDOL;ruF$!DLX5A51;0`X$WK-adVR`7ep9Zc;nTrtVZYA`K3tJLd*bZsh zIul>0H{KAP8CK3?_xYPT!l>u{{-<%SnTwZ~nO#KzXx`c?)H|E%=O6HYhbz(%DWc}1 zH13A<(i>HWTs4e5X=59%q6V2>921?2S2lR5a-4$9P3r%nM;=C{(oPlRz>;chn#eg! z|35aF$5-N&1gve=CxNC4UKVrp$t!mYAczus)}joBYt!z+ed$i>wv_~WZy~2mM+jo% z!-=ZE)3y>MU*pOxt;w89uDI+r%b%6?Kd_Ilq)V?&s%=%$L%S!{WM<48%P?#wX0Ucv zuRF1%4#fSN4t7x31!occlH1^GOs85RohnElv%IZaUeA5NpW>GZ?snksG{@gIw1$#O z7h9Gl0(!_Zm7lTpO1b!k_Y)b_L_nj7`Kp#u)DKjGkW^e{&X(RYusGwp0funZ;LOcv zezs~SR5q%?$}$k=Xo}+lNj3DzP0%KdT~nidZf<2@4%ZHX?SGZj;K!1hT$0oYm2K@{ zWs%e&;mXIO0+nqIp$llB0R$H_gZkQN2pv=tI6WWSY6+ICBP=U8@MImK!8Q=sL`P__ z^}7OFn4ZuD_=*7t*XRiyY@hrmw$I9n4eYq$$fb&V1>i(eXu!R61vqCOgB>{3POSAi zQ^{!kDjAJoy3rV>n{Hrh4AW)zZ+W;c#@E&*yD`h>t6@$dCF=|Eb&)}8Swu(X5fk+; z`a&w3=nKK#=nKQW^QPj^6Y=v+M z8~mJKSHll}1~)V#4BWsB0f$Id8oIQM?U4+@X7kb#@2Q_*D-8t~XGV+tbX#d?K)r83 zZ8D(XXHdTxM(=}>Xbll?h1SqOGf6D$fjf!?0eMLdL*;W6gN7Yjm18}`&!`L$ErSS= z0GkJGOKL-_1Cipi@cVJ8n3Yg_T78HaX6FAyry+>PkP(vIbyc|5tSNf^2`K3%;O2O0 zOawDki9^Mp76~Xj_6;XCOl9ccA}UgRpbtT9h}XCY7B2v{8d!S-*4Qb@4lGP-sTM%N zRxy<+3bIQE7s9!IDs9pA)>4^tjy%KVRLOk0ZbFw-axGo^#w2A4Wm z|4ivKh84UFX|{p%NTyU3!Wq)bLI-_e(ZA4by=M^F(Hp|p(4O9H1`Wj z9~v;{44C~UmzXRrxMzQ+*w&mCP{vfXoV&6Q`(CX59i%JOfF}~)KulysemJ}sjvnf6_`eJTiYMwCSKv-c+u%^{dn1X`j zjCHFdvJXP2QB@hDP5q!l&0o%Z=7-g;9lw<0;ad_4Ch1C>{8`otrs4H3GO>HbN1O2W z;@1=<2tPLn@jxERBM3hig!`DM0tF*HD~TM0rwl@&R*Bj24S}4$p(@$jsFsPYE79;W z!meBWRaCQVX;(^OI&H!<@3pFDwlr)vofRLfscy>V?q+q4OZ38;?gMXUZZ2;kcBSLW00NO5q z&Kp+S;Zjp#(?*3L9uB@PsrA=eur50cCcbzvIX0tX8$L)6A4QrXyy zabr|FEWkijq>zOTtngR=aI2U}Sqk1ayP#x9*oz!H2+?%jZ=m-Defre4FNJ2@2lt z%lU|k8=pMy_ib6~pFphK{l47*#^hJMI%~IA|5NH8XkqXimx+DcTOY7|`p)8V^__WF zG`;x;THaH8t5D6jrCiWInpi=djad}!seMSI*3F3us{3#Nl9Z%ySxNe=Np`^ss;2;+ zHYPkz)e^S!h=3oi(gqWrL6b`}==)G$-b;%B)&kC`E*lf>hTqvs`$HIQn`u>M4bk~mt|1i!msdli*;Wl} z$mX=Gai)m&O4yJZ*C=C6fg3|2mmpQHVRq3XfFV_^;nWmwR^?mQZ#9@k8BB12siT@{ z;7q>)&V6Nt14ayoT!J$SaE1gRND;trMnu3ls@51J?;0d<8OgT>$;K;?Y$+=eFk&R+ z5|Vd;WZmDMMG66oWMu>r+>1{SqT+y0UHbn2!M2O5YD$B_$}Nw=i@!7<6!{!f*hX(eWOap;y4WxvcQO zjNy?BcnWUeOM$lJGP({mBRiA#AODXyiQv|mHmKn8ih4yDsyD7c^>$fNff=JBmr%jI z^}PRCav9b9FjV$ZT1~4i8*fIlD9lkeSLe;N)k$>HX4-xi{bLnm9NPiTT=WmXU^%Wa z#4Xza{IzsR+eBW8w$Ra+{kLK?K&(tuGHc0h+RC*=GuGUVYEnyv(vHlFYyb#hwN;xUs^7EuT66q~MH;;_EKH6awyZp8+1p_^-hzT*lu)etU=tm+|1ltx7I^3UAgjh5!U`v%ZF! zsDbUZ%WKIt`*rU}-(p=3!*t$Yg3Fj#zXWT3A!fsLmLm~XAQGxOz>ws8N=_M}fgwX9 zmpUBW8M)Xq2$zwa6J*wMYC*Gs`$d4D4czl3j5lzX)Zz`nsB_l8#84fJ5~C8Df%GSU z#`>2XR7CU1Ug~-1k`{u?|*@U8k5(|swCC(ib;63_?d9}Js9klMMHCh*+M2TwiRbx zjx1YjcDoD+u(O`f>sw*za)g59iUgbLUzf`BM2=W5F!w0BR+cXW4w~0oymQQ3gYQID znEINXBVWa&9QUj6B?aoKoZ9kLbV&-d3C*Si@>NXDu`L*~E0`YExmLc6q|g+Xu6}LV z89X&2FWy7jp|;&79qAXhNypk^!+;o}&t(d>U(z1hhsp=0Q`59e4cx2e*7a7=%Toe< zA(N?SB2k9arr3`|L%_=vYJ6=eRKMC>s31)kMVnknCnVv7+llf4uby7t8>8+s#nkn^ z$$CwNK+Vv2;v;1pSevaE3-i2vtXW~j9N>~XVv0F1B6lw4G6YH2dx3s&F<*!*<^ZHl z3#@U(Wv@zs1=dGlg<$f(@@^qvD zemfoS6Yg))^^tUHbgpOs;OBk9Q%pMe*($K9wis^Lx;6QYX~%b^9X)7A{bV+_XFZ8D z*?~@>Z-`dfY84c;&hFqPxw60Ht$ArIsXNfT`}thi5xfeKw1woIT<&Vf#8LaJZ2(0V zReYN(QW-AKn)V|tT~zT0GA3dCC(?!s<0r}g--Iz3u*4&mgz>kzM%Rx37I_k4C)QAb@QP4@gEH8S?6g7(NeHB!(N-DI+NGV^HLh7>3JY7%pQ< ztrLlf_5rJ6L{in)lhS;2rGgCUn{=;k^`sgD3gGb{{^ zGYk0)4MRsn-a)m|l^iS3$!YuVXLY1;*CTt#k#A}nW&V$KM4A5`s**;N^}4hV>XAni zN=xc|bPyg+Rz>tc9!^ljJe-`TcIM&a5|xj?=}UD)oli3$QRmY-)YYleaD?RttMgaV ziipz(>)PpqbvZq$^V_ZdzCpn9sA>qJYduh>gYYH8i%&$Z^~kJ?^=SW?Vfw`DfjGUr zai9nnY=A0VuUp{D2qD_eyLDZ&{kI9sa9xFl=3rOQuui}HHGv_@8bL(35&SYX0M!-w zGC^kzMo_}_mD3Q!;$^0Q8d_IWA@ewqdolQ&x;krpx!N}M8xA$ALOvjVO%)O|udkih z2U`Z(TR%%~V;`zkfb=InEtd<2bo!8K1dT=C5d#g^4*?qAJc1x%r()}gf(m{bcvVKd zFjZ$-JrQs=aTAxAwMXshiGZTS{c#LjqCH1Y;e4&fP4z_3A)b&ag!8o?ch(aDIi(&~ znR)~+w82o2uN(vKPWpHzPz7(_PRuPz-| z(*Xm?jz8_hyZU@jo2Q~{Bt5P+HfnQ4+0irHXx(d@&3R*lg(_ESYO5Tra zGREh~1Sh`Aq%{0VH`ApL;*$nNR{x;kY2tZ-22&Dv@>{E*F@1rw`_@=uR-kUp7g;l1 z2x;E}f~cIBby0SFn+JlZ^0D23g2G-9eL7$Is-0#{L>h+pg+R0^eu$uO75=a;*+?lj zGziMuXi#7r?yP5|XY+Mp4r~QWN-*Om4;c=uCr}1>c&eYH3m=8*Z^dBT_)-080fsm( zOdE%kK@}033_UhCKHV}DgB=P!7_n(6B=>Dh#?=Q#2Grd*VS(}>%kPy@_3X?IF13B+|cIN{Q~a#hh^H)|l(X(zqW zO-flX?2!`I?U$?!oD1U|CPk95-ugZcW4j4b5^R#@WSGFM_73hR4enQk1JAJ$#$4Bg zaYY#S%#9M}-s1CxL2M`58<~g^|HWaX(6Fg+RmEb{=Mm&sE-aj@TWr>Il%w>{xG{kt zP?~WHy7(o#K68h4`eOH%JXh!N?2{0 z#~d08;u~t7Vj`|v%0*z-nh+Rcy)DE9^GySD9TN*ogfYy`E>8q;$Nimx%=;BP3{0E+ zUx(a!Q()p^k=MnxXVaumh=>scEuS110ksnmF-!#6U10k5nEAN1f~g7TH4UXYJ2AE3 zL>S||(PfIDx#MEn$j{ zG)AkKMrQWVh$}!P!{ymSBQCtE+Q`fv8ga>00sJ(r$r}`Gq4EsT^@a$39)5ZoCU*RA zH=d2kqNUm;GbENP!qR2v3(z2UY4$EWTqd;+kD@A z=wgdW_Dv%>bg|PE6n@iJd2d?eJeo~XmFk9>q>5V9+a{^j_-z)b z>2YH4g$e%pxU9LK%yGOEZi0a3J3zzG# ze;B^LSKu31R(xQ_6-X{s;I&OGz4)Q1=O{N`*|%yUdImJDV?u+L(}nf8fd!Y;Fu3O1 zt+p4gfb~jQVSyRLB9~x24p?kTLjc2iECSY1YgZVe-wYzSjObJtq7zpjI$c&oV8)2Z zB}Bgg5u4Nyz=(d1KvY$K^ju)E1%2I4hzzzO)VN044=%Nz?))=`J5tp*zb3MC6<$-u z&IL}4iCkb(a1Sqnk^nA4%DyJD?KUkA?8UZX7t(kG2`*c#9+NoMTs?dRs@Y{l1!jzj zTtWr6^|HV`av9Z_D^NvP`92Lp_pw0-m)cQJ+F>f}`zxURQdVf-#L&nkXmHuY2bZCJ za0RqhPe%Q$LQO@fhK=ZKURNw~9O%UT%C9=j))LaL}_ z{lRO25RE5n_xt;`KtFX)Q@QTqP84PauDbx)ooXRoccV*CpJ*z!zQ>!gtxvsa!e4DF z!~2IwjNzT$BioJbPMI$!WMJzPYnnj33vGa1Zq7DE-))oCkG z`oqX%8!&cX5y%bACVFGc07u)zr~bySExM+y)ylwRb+RcBjLP3k^ocRecu<^;-B)yd z1mBKRt(i1lW;1C#xM;lka+c?sX3~Oi7xy!%U9K!%e)ePR+BYq&T6tun$v{a@yx8xw&Pu`OV49V zWZw07W65yp=5pc*?4af{fwgnGRpLES&BcJHe>ek~gx!aPrKo2j>?h~ZhP-3yC~Cv> z`OBzr>hlMhIemWrx! zh-}!Z^+9vHMLwio+#(;Mgt%eJ5BWed$Adr;msqGT>X>Y!rd}He=w~+sT8apH(=$xB z{tQaJpHKyK!OwRn@;DP(S@W~Y2(nAKx4D#X6Pn6=)p=jQQgzytaLgBhYeIX8UP`zH z6^TPfWVTb6OyM@W(dSL!wnXH>g)85}E?f%z;=-l0h$!4Xhw6 zEr?WFs}{I9hP$MeB7=8-7nr6JT8hE076Qp&SG^??r5A&@Yp`q6Qe<$emLh}U@&MWw zX~|&MtEGtFen=ZGesQV8e;2=Cz(S5(62Gll8iO4Ic;sx}Qbg}HEyG0bTmxg4fdSVM zz3N4SWhtz8QJczE@Ru>W3+JO^mjYy@0Rp(6z8$h zK(#2f5J6@1p zN?0*Ygt5LYT9;NvYhc65BwSvJu=iydebNeQg)vC}t}Y<(0&+9sPT#$21o z^L;C}pe5tlTV%Q06-U?xi zc&>yo;#n?YM4zkxqeMgkR*lxHqjDFa1L4iC9gN~)-78HjJfAnBG z#gU5ppn-c{c+6OrPzf_<7VG{(7VDmaV95u2Dj^`!0+?DTnpbe)Bn>4Aab>yPrcmUz z9bXj2l5K#43q_EFfFMQzq8I_E7Rs12u~5dG2jS9~13%|9-{b^8&u(5S3^M{QHLz^r zbuKZ(+H7E%c>Q60oYdlegb)lcd?k=NWUwL3Zfri?gB$W2#TKZ`f(-Toc#SR;VcgFU zB1&5Xu(}$CA_Rrme(GK;H3tIj8l9Mcm8=LV@!?W+VoS|zlZ*@}acqOQ^@a$!p+V_1 zG}#BO$0@ErJ$kM5$!D2V)V2uY4o0{*TM8gE)rXu-7}PZeDhL?rPfTE^;Xb*S853BW z=&uMOHW^+8H9qaP0f~c>ZH5)w=)(Ks3amEL)HUH!QjIFz;B-eqC~8+wX-L;fy_Pq#N%-2Geluj{ybm%2RRVWz{ddEDI9!lHRe#s1e&%ItYYE5EHWBWcq6vMI)yyXg{-NwhT8H8A*HyD zjzajO_nb#bNw#AkL|AX_J~f@wPWm5`aMiST5-AEIoV}Pcef0>jio^I)0Lf83r#PxI zuD~J$ETIr?qurem>}fqJT+s_*6dpPpn^&G>VwO<|T2DbQ2@$=F@nAbWCNJ0l&+bLS zwcZudO)lxX?WApf3u9=g{*0jFHaepVN80@mDXDqv>~WjbXfth~{JH2E6vq9~rotw$ za4K#l=y^ut+e0F|(A%p8hgdzBl!xE0?WG?M6@J)3VBu-6i751#Fn*w7(L7VaTs!UE z?YWWcG|xn)VWh7JXF9@VIIni85L7ZLHdzm@6|9WYZ;Te15n2z;7V6v*H3C{>DjCE5 z&A>e(ObPC90{35+sR9)@QmihT00}jBZ*qV6z zkx&^RlDyn79fgVe@gRa*M>5tcCm6YiTxsJ9G0V`uzfv<@fX$G+exrisVL+s4-je`& zyH))4gX5v1XS7@INl3-r6ud|EJwdk2z}_Ip;N{}|C<)x+Z8LNSCChD6JUpOC#X}_R zT)`}oMLxV#Je35$GYlb+<$}pj|8hrc70o+Rz?sIOW|)K0Iv51BWyNL&FZDOor-O{J z@Y_YpZW!#X#&(cV=vJJU#@<^s9WITq@YA=gW*JcMR~Zr8UOmsCdg&@-lgt)|rw!%X zh7x`rW!D)_cKl|E$L&<5_rzkKJu?!!D8iP^h^=jBs$*xEh9eXtPNH<;12W?=xbXBL zLa@!IgNXJ_CLlS26RF^pthXMsQc1jLGz*TipcsF^i1&sar2*S>3K1r-FF%Cd)=PMT zf{JR5-f>FuCz)1&;ahQ?; zd?HBzfJ==BLZ#Gp{B|e)E zl!-!sffhO1(E45%oQT~41WgZlAr?1&%|@ML#z4Rx(OHkf_lf{}q>~wXJ`i&EJ6dgk z3BCU8aeM`H2i8orI!TrN!8z-#9c$q#2jX~AkUi2#2Awn4Lz-Q7;3nc74doDrl3Vn4;gz>I zgi(Sx-Q~oi;*xYu=U@f~KFW~CMC4$@`?7OzD((hz;4L!nRtig6Oj?VC=_kSz6fBIk z5k=VejT^r>?|n=L-^m3)aw?3EA;5C+IaCG>uHW7uA{TchKWC4H2xDn$a?Nq6kuw(; z=9VX8o7%9hiy+`pu!qiCgi#Rmb}UtT3pp03>0P8#&t*!He$#d0OQ_K2U4Eb{9TM9LNAVeELhm%Q zbMkcq(6FAW1EnN_~@uNVjGf&<-r$H2J( zsAbtJze4NB7NFU!NZD@Q$l5?UO5UKf zqZ@va*WRE+zwHf5Z{xR7#LsCZiui;v!JAYm>ZfvSWj%LHuwB$)aM0-uqq3p$LUGK= z`GWxDoSZ+4+M<0*0HG zaW_79{`a~27c~vgAq<|aDbnUY*3L{MB0NDSwuFp(%w6QxHP>;H@G9% zH8jYriVon`D%2{}AtE&!s8%6JbkM8m7aOQn0~Eb)f)cSk^rdORX-@HOxHDL+wwmH? zLh;1RMkO0`7oL4OU`qB!k(lFm8{{Chk?%6dzjTqme>Y~)-tKze-NDYGT|_FjoUaY? zuOm`3@`~MUi?(Wod>wAM$RdIJc{N7-zP$7{D-a61!P)*l~NX>Zf zB9x--r(cZsZWk}tbfr~Zm@G(zpZQ)epxdwVrjR$Nb6&0BY#;x#$$raAv~0lk$6raSpDtK?1k*G6C-gYTrYwbT@!exRp+k z-w`H|S+;o{oY?q8E*YQldzdrM2w>w=J!D08rgTi3$j+43gSQ-@1Z*an6H!ZS<{1oD z^n}o0%99&@F8$($pNnMSpV-{TgJY?E`6#>Hlrj3&Il)DA(d5?S2j6+)_727!w#sd+qo1}K&>n3~1aCw}A=%7ay3EJ=t2u7;gHFUU#3{o~T zy!p1pWyXUkF8tjhD@B_Kw`|x%sCvEx72D{Eif14oWAU~YRYl_MB~+04=+^X*k8W`f z{^;UZ`17+>$vu1b)v^5f5RVo$rZCebf$tw}w(wfsCTq!%ykAr|{S8@<)SzSi8j+3|YtoM589@Kn&J zFV{=vPnPe=bDQ+sQ^Alv{&I4rj(RG1gEfaMLk=E4)>AIkiy-b0dJH&Br99VDD&>Km zjwE{N>0qXMv#0**>0q zKhEhT{TNBP@15-_cSB&D0t+4sI`@*v;b6&{CWiSd4mI#jZWfw zP2%}(Vg&IFcc~|VG2&zJ_@?Kbe77lY|)Lofa2i@}DWGejy4TnY<E;ELh`ui(pOajcyTkLC^;9{I7x)OjxjzOM>-WFSGpt0W4Tg_mbTPe?e{i8eT4f zu8eYHIe%SmK?2v={h;$pN$+r9RH_9mwEdw*Z`uAZq^y|0jxmu-n6B%MnK`{%gaF2L zZEqKob06t~FkmGH7+l_q`f6Aey?h0%*UJhE%orBA1giwFX131mgK{#e$HP!L`yY;@ zk!W1nh3cbmX?ri(|8SfUxkKs^px{O~dm!+P(1F+-o!K9owJ)N2iN}%NE)UuRfv&@Y zTWLfG<-rYg&VySGDjW}PIelzFk<%w~a6A4kX1o~O=#FUTdr#BF9pf^!cU5o%%w)iV z-2vEqpj!30lJ471aS8fFhv>SYR>;Cg!lFJR39sqHk}&8F4;3`}e#M0cqGDoi0{yIL z3>Ssn=j*(EQMmfIOPo(vS`(}mDk5I;B{lCOcS?_66TAZ_Zn$2?4lnNuHFIf3;R-I= zz}7qh0?W#K5hPV`AN^ukd7o54(2N+wXkO{PwL^1gb>wWnK=O2b`)AQGS{n{sNZFiuLtnJjMK6=0>!Rv^Dy@rblj*2mPY&LbijIxzVThm8# zrM=lCl#$}=YgfFVesRV7@kRh9R#a&*tDjwmirQ!x z?64V72oKeV-1G>t%fQ2Rm52_*ijs>>A-4DTgEOl)^zMEOK#PKJ*nISUx(Ic3$`F{?!RYm=HO&n?oj^<0~hMPv|OL*ny z;8$v7KclQbAbkdd`{}xi%iW~zG2wT*;ZOYv<%c%m^MH#MnlFMsEi~chh2}f`M7aS! zS1kD5xE}(`<>P;iI%WIgCGVkU4lStn-brU}?9j z?JvQrq6UaP5`My}$_7guS+7HH?nZOZdTD_4EJWL_$)9Xw&*o3|8gw@2 zlkGv@5`VH^4#2M-=t+lyHACI#gOE?Q89E!ywxP?6)!hyU-%#HU5S1c5+v0pt71hQ8 zaz1j+kzge&c?a0ZC)H(CMi+GI-|$5Afum3t?&V_RPR~=BQ5loQkDgz=AGD;A_|=Cr zm5M1T#`Tn04KLm@2T2RS<;5G06(Ww0?ll|~SshIW{rAQ|QU*gVfyo?X=~a7uLvUbd{dJ-G zQI(3*2RW_5=PdO;-<{YQ2qa|?X|vS@_j$N=bt{^T~+;5 zb&eCvlp>w(o+)5u5abdFxLLA?rjg49lUj*4aydc&xKm_it`jr{R4_f8RZ8PTe^a`oKCVdg4HTBwHA*)v-?cc{{X7 z!KI_|uWYeXbUz0M`AP_JUpgr~Z z&{UGlyFGtJLT6P%XE~u?M7Mp`mOXm}p$C!!`nfynPPs#$Vc`?e=27KKyi)*BZzn+`l7;`}fwJEj_2T z%B#C2gsRY^gTy}-fNB2mnkNAvH}i+eP$PhdW1g=ACPXA5;%@p&4xbnEG8XvfGKL$r>^q zdC|LWm#DdGD^SqBWQY^vt%L@hb;iT^j?&S@&=iv7PGz&&odL+CS+$E4v3W&8BXPP3 z`kM`r+DW086k_?=gi##fui6YJ0f}iSBD_?$r)cPsg$H4YnHR|Bcaeq#uHVjX5CUGW zTL}f|oQ1C|-sNdM2<6XjUdf^Y0ZAq%k76sLhyoI!{sLI~yyExJ&P+b< z03a@)qOqR1C=@oTC#r45?1#Nx4a;Ut0hj^q)e*@)c7+#-i z-3>X(-AEhy$K6O997m!3H)zBguSHWsuX^hJCpFYp_3kDc#XWFTuxjWhHO}B3WpEGc zroVhJ^t5`_gfDj zn@RmIYlPN&>hG-?nxJTb86M!=aq`+&!KxzZ1rbN)xaGPztf6WS;Ia6;H*1 zd{UD9G!>8FJzd(*`^$$D?k-CHE=p3acBvDptscjh7AmdwidF4E{BGQ^8=O_0hk$BJ4W<5q-#n0% ztYh1vg8X49bN3Le@bd(`C_c1AlHB+Temu{>ABLZ1;OVne6&2}$O~_CIBIcR6oBR{P zWSx-`&>dt{0^H~UMkf3`6Cc+@N(B5|B2IMIk;h@!MLk5zSAdDMeBEG!pS9d+O%6$XN3eTQ!}_0awI#+8M`)YlBCSM>P#D3(7NP$WDa$FO}_L<*;pZB1(g<_o-}B>>i{S$REGt++td;s= zx^2EuMIh+jm|-I?^#!3`qA&R~VoT%nEVm)>avdpygRf{ctwAKIoI(}3&>P)QyRP3V-H$Z)+Ddm8z%Bo7WYh(g6zf*mUtW;B~{hLG^w+QcJ=HvDl}UyNt2TN zDj-pvU2mYl&n0P(Nd|r{%BL9{zxn6a+2e-zGeZnN>-nP*=Enc&$Frh2`rJiP5VN8N zfj)lPmfM>M=syVW5cd&9O}wfNA=K@|&tmgvQZFn&BA?zPtoYO6xc6{qTozJ zjitn?*#VWSeEIpI*KiF1)VPL#E5@je*pK#LB8YWg=E;j0^McWRi-bk%zTpM_CaXuR zD1hD{eb*O>AQpKwK*hS>;Gm%HAZOiOB>2|Ik76=wjBfk6T^3u@2;tQ(m!^bALprhc zm6?dM9zm}5y%&Y%;gS+dq_g@>UK9&puNNXE`w_-?(KnlfiHs_%Ui$+M;k!?;`ek;o z;h5=jAc*aN3!k1~mkbv^UBL)qL*T~ekM{kV-eL7>0^-;ZNZjfhD(y27Kq>;Cv+RXy z;)_@Y!1VwT+X1B#0N4)TbM276Jk(F+=_^fDq^~qp#o$s?1wR=;RqD%4UQDE~R9aOZ z0W`p%hm$>+wfjnib-A7qE|x;gOIlxPNZt5he!N#v)fBu4Ow&dXxeza{3caY78;FYy z#Ek|b{0wow5e7fEre_U8ycO#sJY|Tl8DjXkHT}s5gP$h}el$0xx%%Cu+W;+RiVL75 zh^Sj2KeW~Qwq1l;CO5vGA5Yn#TK5x05$`Jc^}5gts#ibBi|%;1oI1!Ma49d~XGJH8 zoS5$Y?wXILHjOUVNbvkechaTR%qgx8?7nBtWH1x##c^5a4up0@Dvv>(r!RvjpsBHq>X zg$#_+S`8FUn-3ICpMgu&4Sv=%&B%eDC%L2G|JT%N*gz?NF4IDv>DFc}O&Dx$^fo`5 zOWv4w6Y{GJ0}wK}3xe z`N?_}2Z{CE_*#B^>yx4Bs>L9&9^wgH%n2-W(Srl3`yer2=Rsn=0dUED@H4t`MiBgT z_f^d^=;-kZuTIP|#A^*P{9I6W7-4Sw+kQM3lnX2@Q$YbS7Zex4_rin&di6>V6g=JTu$-~7ER%Iv!U1dP%l+}uqb*z-teIsQ4=mH3O`@(H)7!B3ef@nf91lH zgT*L)4Ke(z=V&9#ji2tvv!07sSSCF|%z7e4w)A$x1V5ks*!03_Ek_WU;=E76 zs(xxzMZBvjZqeq`Gp>Xhso#vgKa0M&@jt$%leqA$oQ3d;5sA|^A9Qf$x_cA z!&(LCWJ}OTz3{`(0Bbx;<$IT-hj1R@A_Y;)SPo&F_);OGq5S9}*uA9(RW?%?#$5lU zafhsRT5r0z<09t38MeZ{!Dg5%=#(c&Q4neIKBq@oxI|wCh@e8eu8cGH*iZKK0I6&J z3!h?B4HwsW+L&Xg6tseHsi48nxmac>7uc8_Lj}F6fdDFMfhzUjP^s|X;saK~#6qaP zcO5GA-4)u;k7tmZ&Lk93V}?pq0FjH3UQkooAe?Uyt}zJVXN230F!*`B_Sn$iBE?~Y z&87d`r{~7#x&i0L-RypyQUoed z5H2J?U9cd|;hN${RQ!fmOp#%x2()3=g=s~faZ7+|IZR9lQOt+61eeb$qUW~6hj)gF z^h&SBB)Zb4_*5*NPo6HIz_tX+H6&gqE2U?>n5UMtkr^2DIs+|6;2Li2PhD+WX5*0UGTEKO~_@T0lZ*t?B@^Hy|(0C^1 zuNXZvTuNu^a4DUQ;Zo^@pUWA%ug9fY7=Yn@GW8rn@w%vouIq3yDX6)mjPuAj<7XLU zZuAl_nja-wZ$Kg1HRG0_vBPr2U^)bHYML*?B~0*hDxVt#;b&C0GNHO|P`UKEMuB7%AN5LOuJ(RGNUZyE^Sr$gI&_H8^WUU*$&5!nmxGKW{1(BDx z{MCvN4fmB1^3{rO3|{zMjd+_fuu~;Fc$2$F9lqF4+h}}pGW$sUBd>e-g8sXQFV@qB zm~2(PguOyKNjc|w@eV39Qa)ReFj78Sq4JNU9kfLLZiUJ-GV0((F_7?wD>xxOc!3n; zQ|ghyB`VS`T&zh0V*NuHsQ_leV@J{#C99ef6l)8vQ6al!Hnl7m zmzU$@(eZ7FqEnljNn~Og_9XdU?ZtSkC7ob(s$@BWINfEEN>E1-f{$gW3FDGXX6|+f_8*di=bEokwrTYv)!lBOej?KChiuWf`Td1UtXVHi|csxb$8jZS}T7?VR$)r}Df_5!et>RFt$tYGUzR6vZ z+q$e^<%ChB5pQmfrhly4=uEn$7qZuSx(z67_fZQ+$)5GRXtBCfB2MqFHVOu!INva* zrF^?fL_oorcU7=u5xW*CIK7BH*j2DJ6r3#zIT_K#xkc>lOZdArN-5T2(JxcweY1v%DKBl1oW*r z`ff$@=~A#J^xg6wyP2zRMd(v&v=q%+cS(+m<^WHrfu2$WMJdA0)$V3#dz@D^my|&z zm^NA;Dr1*WGejGEYP5L$!2QU#KoBcfC7{Q|yXtZ1ejCqCjMU%XZ$IMdQ3ZNT7Cr3A zfrRFiwI52@=V`Ft(_nul4Q6C@YUrBl?c#d&dv;bmF1wRGoUPTM1zo5cd=m2A*72`$ zc477IXkF+5J4szOd37N=QC6jz@%9TNhrBZ`jPme>8WJ9%@seYAeKyxqW6 zxf&pyHCcD|E~#_YsWEPOjG=#A9%IG?Tg=2&c5QudAQZ2(2B-egmnYj^PWFAjOjiB* z>|EhMD_Rh;biK0KlC8qpnvKb2(Uh3N@%a%NEUx&r02SA}L4#I0&CN+iZbMtpKi0NICT-K(IQ8_Rbp^wk`@I`aIq`Z- zW!qPIcV)YHmagE}bH2+`0!OKQ4Le6C$(c;Aa6`kpLm`tF3EAO&Lizu&-wI^^_-tc&v8}lMP4>GdeD9jo7~W(ru{~=RQ>CNb`9)y zdpZ^iM6-?!1FEdLt153*vmYc?{#(tiR^S{`aL10O-E0W8)|iZ2696#xA-iV6=cEQJ zbd~)Tz2XpA_oi!vqj*EQ`(fkI>drBPF8^s~vRpQ8~-GTIvFyuTK@8n=D9T+6Pe8jqEZy*^mHN~PP?w(F~QM!7%~r`j^0T&=NOt?u5k66f4-`p3#)HWsbin|1BM zo^mbg*@aZovAXk9c7mE`l$;fid$JzRb}lzc2BKKWHUTAH79}$cE@#(A#{;Ey*0+ln z*beELienonHGQnURo{L=WsH^K^;-mjyJrlq^Xjb)?5bHVAWW~QnXQn{+7LtGD`RP% zm#QmS*(>S^4edgO0@E2vC9RO0#C~_I-qR5M16&*qPS$@m1fn0AzpDBY_WU^K1A1a3 zyTt#e2#nzbesE>m6SmLBoC9uxp|m0F4##dZDRNLGOwa^b1RYuJYClN-SnUVL2P;hec2OE1YG)U5vlS00`pUKlC|mn+yEbmcddemTqFLGJ z0?IblTemwUGc|s>o{({V>JxUU0{#B2=5tW9>3C_;n+DQ9^aRT6I8ur8bUgiI<;G`H z4tY8;Iy;Mb%Don)+`^#nr;wAl>`xgzr*_GtqS3LeTUtQ3xp&hI`B+GAZf{4Z_#!jQ z7T6Clnes6W3eGnQ&W}z-w|N>0oeb}V37{?C{MxT9WZ+O%Fh;c4b=E{ zn7;ZZ&W?Zfj6J}*!?CO3BY1k)Np(bfHd|xBWt-vKIH5QSq|?H=nd`Ji%453H@Ug zo8Y`M-I{R698){n13VQ=b+J3E&J(zOR?h(57JHC>s4Ke1p$79n!JMNn1hQI{y4lIP zVmG^|lSgp4+sr7RYdzh!z!sqNK)W=4x_b2Gu`Er_EYxA6K>yFE^v{pYG z^fwIp?}47KKfLd!|D8equAtAw>!v(G%d6}4w)4g=kQrL;iMnuayOI4Jv5GdAjW(A9 z(pZ}k6J2de(m&RwK}e+;W%CRjhc7*%#=_O%~XFB@2s zCra6A-q+5l7x%Nfsq~3b=$9ad9-w%2qS$w`pR_i>$N9kj=#SEoF;OQDKXMTG2n&sud)ds%$NA8tUZX_GHqk%PdTdE)BPPsh*R#l*DwKWa+JIi&T@Q>iP&w zG!f($n8A~zz;v7>cbEKfU3lRryRciVr%ck9N7|3sgNaiBcb+8Wr*l9U1AdiYayBfY ze++n$518jWSbT2mWy4#e?QLqC0lbL-56N!;PpA~is~;R|?@*_VxsQpt)!|9943>&=6*3+=T@3M`YjG^;5!#2t!H_PzB&wNV^AN(%gLoeB# z)K0^<)$koLeDE{hMZ*Wb%g0+ku%nyH877z4NiI{{%Zu+nPnN~^3?h|mebZ#?n*nal z)+|%pY|TplI9sz$@ya1*>o3!!S-|b9vb*O_w>wy>$P{U=3gT-n=u>ttn`!s5R8@SJ zgic(iAQWvvw(<~(n~jGT#Ng4g^l7_?hvNVT9jJkc-2QhVNU$_ov~5pZKgC z+WHn7%J8~uNj-Dt(_I(Zt*m5ieUCG9bf`7)CDs$~G=W^+ltK_os3j8MbtT-<_C!1@ z=P^HOn6Xp^W*w=4O>V{-A=OwA8*m6|H4Hn3kaNfF>lUP>UJj6E3jeRW{uqu=UGTWE)}mE1^0Ri#=Jh&Y-M*^YbRMJd^JJK zYOaC>X!tS*V2qk8r;3`>rh01f;_A0kWpQ;Sk&2o#r@Ak&j=%>X*wXy)=nS9a##DLV zYGxn-ZX5( zr#-q(*i_7P>Am208M$dX;^*cSQx*>TWr6p-N=%o1 zuPa0olpN<;UwMpfvmaIW7Fj=iO>x! zt^9PvZmp&WyP7avUTc8MFFP%s&aXA#Yh=t_bY!-N%PmC`(N9~HAisM)geLaxf+~a@ z{>{z{B>b`kyzd;t-YHy0gq6>KA)0X%41zcq;PvJ7z-J!aWz z3mE8Ki|_9h86@(H4dl|J8*m4m#5f-=Lwo1n&~_)Dvcr~z0~C2tkohr?LNmlzaQRW% zREgtvKvHJN^A;|&2WQ-)(IAYWkxS6v9ynv4BbT75{P;L(DXb>Dc^Dq9@C_;tQ%{2l zF26c7E(+7=OqeFzD<%kIOym+KxYy26r)w~E&xC2xd3!HjYw}TTH>lt;s&}GLoyvsj z+`XcLFh)f#p@MtnqCJURw$zp=RPMVQ_yz|To15YLbE!J026)03pLgf5NU_*lRM+^K zq>Mnl<~I$HmHY(n7Aj@jS|`rLKW?oPX9h>eDJ$`gRf%g_C>>&X81-KKKN%|1K%{m2fxeL{0nHl%J3~Wd|M44 z{7^JrKlUX~4;(Vg2qb2!5ouj~ex=)vUD>l#TEm$#&M80B8|UyDj;pie3`avEl|G;% z%;&vuSpF+y+;_924`@9nst<^x?>2mm@AZ|4drtig3hDuF&*B~csc{dG^o`xmDxgy; zh0UXMd1p(@1eaUR(6@F2d|!|V_z|>nv*nedO0$El(pAX4Yf}zExxTZ@;Y;403y&{4@Mno>PGH@GT$16E-8QG*v$k3|exE_~B2NghUaArrEY!j<+|Owc-C1E^IKGmz1gpJc?sjUs0!oN=jej+zhCVk>Q$rk0#RDQ<ZFYDV)BSUU+1K(f`$f#b7*m@v zB|S{T45qn)X;vmo^Y0ZC(?vQRd{$@x+<+Q^xHPpwQiofwp z_gvWz@n?9gW1L3z{~*mwv}5N{2b2ed^t2T%9Nvj>N~(hMbnz^pjGgE8KfgjpS|0f| zz|8Z}2S6n_%hNx`S$?}*{MV))>16>`R^FAX33E+0)I)g8n4yWz_@UvR?D>E)jv>_8DA$Lj5B`id^h7?r+=LBuS1#W0*cex)$||nI2=OT7qo0# zJ&!ZqQW?+zM@3=|%*Wm74TY=iM)v<Z0Fb_}^w~ee;ogMF5BeT<`^e$`yb@lwUt{zta}4U6B;MrDHbIfmgur zEmLEIuONh$ue0il&tnw}URS{FvQ9nRMO!fdeO|$Z!uNo-28L^pms74GOz^r)yx#qo zFts*JcytIlZd^jJ>Ddu zQ$?p1zSaQ5ygr&+*ZCuv7n7RO9Ae=@c_{taN=_FG@6Nhp@%HNrSsq=w0TI88dVr(- zcTx8eNn#q1VZw11<6GwDRgg;yWtadLBk$%|UF0}k1^Et2(rc(Uz#hG1G>80mTQY(W z9>S2z1KWlAPO9^;f}cC&3kzj@a2AtSdJT1NRcC@Kp=C^46knmH?j+IMI$OP)8dj$n~42oO=1((6}&IG1(O{cxuW5Db%VBj*CziOiQK5OiAIun%h z_X-8l7z()r1ujF`nhDCGS`Lb=t~c79pWZQW;QF&Q9LxX#&rfr|8qBeLuij&hK_DX{ zmk`1Ixehib;WDy6G9f!q*BNNFj6&A*RVhPoePmsHWF0dh>vpfmAdr!fOUU4!ukX|& zmytDk)h|olQ1dkE6b&`^qPWw?rgkmlp(bi64>k7&+6*3QqKxxU)1o}&q2@M1$UXVC zSA#uysYcFJZwU8MBjKl!nBIXjr_pj<}O`ON=4~bKnt)ozyh9E}+!gvUBhu|{szvv$W|H}u? zhbKBTb0+h46rYp8IHR`S-vXBc`ZRZzsC@Wd4UI$M7nySuZhX3`ut>&dWfyUCt{w&{ zjX&W>(=7W6s`(-r+#!$}XgrE{YhpOh!dJ2-+7RjLUUHG>ZsXe_W}scCmGgk=vq-kIqw{TIpBRU{ytjWHcTVvHH|kBu<{;4vO^ zcjv<3rn^bFB=NYHnaORPxoV9VLakV|`(|6Gyrm8p_4gR{PaE~&_tpQvsE9*HQgUc$X8AuSW>u>9GJoFkOC_8HR;CiA$LY` z4I8!3<)rMeqEYRP<+GlP;{!GeEH=3dIJ40xqLC7KP$%prD1dxe!J> z9w+V<4TLcoatRGwMzbyo4K+Jk2IbFzXX?4tX$FMU>NI|hTOAmcTb*Tr{Nq*!aJbc( zOK`aI=3eZU*W8PPtxo^W4xiJs{)v>+1-m$XRJp~nG+r8%-WknmU7dxh{$i=HwHM3E zc#XxnQa9%z^|T3p!Vl-7RT`<9#;N*Zsi4IcXKtMG>GEBj{HAdlu~^UO?liNj6Q`84 z5{spADiILI^>GGi#rn;pe_S7DX43DE9?lS|h`97JTCEk;VpcBpH^v{<={+${c+2Rp z*XXblkC@RZ0Fb&m>@Yek{g)1Tblu)g9{04@r;Blj(P?1sAXZUgxlv+yKpHFY6G3Ms zZqh$i;$|i#CZ;)jH<0&}`ONGO1MytQ)IQEzD(4c(u53$WyV;Mv^Jk&yDtU?IS>h7T zvzP))@PVe=g}STiCZg&RX?>eO4qD%ssvx+2r%(;`_!4P(LBI`00TA|eo>ng!#x%n? zN*ERV)YhnJh7W$?;}qNcQ|J-3$}lcBj9U#O{LFaBFv9O9$i*nz5-$t#FOgz&-x9B# zpE=OEUtL|I_Y8C%vGWtDm^=pdpmzSw?JSekcc72>&9c>N1uGVd$DRO-(COZBy3 zP9J>llcIE`efT7tAH{knAaPTD$}APVYFHSbGo<6Wxt8glCOU0YITK!bnN+aq%cO#p zUdC^`;4O_wPO@sUOlldZxX^=}Ge4LR5A42T3(IFe;{G8``Q?dT%kb}?rMk`(Tx7UI z_{7@Z7;AqMgiN2&8%iu}?P2tftvw7dX<^AV*tD0hWCxEm)mfqDF5@doY9@5tVq+9K z%W?EmFFUPOI<%rINi!kH6xQV+qOa$5n1j#d_TC%rqBbql>DqZn7v5()*}@O$clL#A z>Z-l$QWVWP2W7C%Q}NEQ`>B(-l?0Y`&bA!?Rzm6wr;NRvk`|q(!J0IZofbgDpAO7R zEUa?^{bQXImIrmdG1KW!I^!7da#eA;=v;2O?z|bFc!18i^}g9oBUO93=v)qhjLx-| z`#P(3%cVrLK_Hcgmdjav^}Gr16%`Iks7WS#oFC5i2+C)Blv*BTkGiA?+haBTtGitP zKF=v-*CJSAk21@}9%TYZ*&f@8h3&C}{;@rF`1Zia{ z8y7gXPF?6csXj4AIprtyakNo>HcH+wN`7yQk~5u+Wo6UXE@0c7f~j=ef1J)WVV$dp z7tS^bif5Y~jkd{Wqzv1nemeerwp>qI?ES zuQC$R-@WE^F$JZDp0XG-i9YF4T6(5?r6sIaE^(Tw5$RG|dP1ZrEyJ-D>edi7#~1*o zILH7~)1|Pyk*MpFGiDk&L;_J9}6MhS{$qjXJ=Dk!5!8#c;S`Zp?Ff4Lk5WjG-c zqjXP~g3>(zl8y2cv9M8Y(myuJ%}hqAxB{aqYAk3J`QZvIK*#F-7tsxJ>zZ{1o`@V% zfLqtaR(^@04$?-9Ym2`wO?ux7-=u{L0=bxUJN+ZC zdHH8XeqCvWlRsgBd#NfPDJf=FE5yu-g5+@<=*?z+o5Zl0kI+9h^ASKdZL+n_S?$%w zi|d?j)+Y>JEc^j!)FGSczhZ;(E&awv}#Wq`Qrgp$it@=E->zCxea;1sdHr&L7QD=T#WDNfx`AYInA5^=Du zDfEwZO@;uA!{g{Iz0ztF^WAZ^)ZpU}S!E48x&_3$YIFE(oc$<%>024Xg|_FHrkItqv@x2ioxbKjHA!KRo3fwVkndPOO~R#+b(CZ%C<_(r&j48$*$d4 z{K~sZjHy<6#>}%yjQQ9e44=xalBT*e7I?!+^KOS!@l|5W1}3IXbWFxxr>*KBG3v=x zV#?k~gG>oO2L18+@II%A8VWdc#{_|FPl)Zb-|4F680HyGVz#UK5UpT8D{u76R#osM$WdD&&GKeRG#zjPIMmTgK;De)oT39w@SA=op8 zIbNj?<$<-kye1IRG=a|z_%`)NBfQ+ig63C}Kg`Yo7yneN0C;2f0Bzen@ zJH2$D-=$AihYaII!w5fT$>)X0$yXCyo9)~bMY3_R?+RfIH zYw(;(I9~U-;H2PWH`8$AAEcqd$L^mmIL#~^$^ucUTC#>8>a#Wp4}YT>Vf?V-0Sd!u z@gX_$S&)y{4)GCj4#LaSPwAnbmWt?KE;)tN={54^q09JPfYEIA5hmJj1W~6 zdE;{lbo{A#nFmz-S}8n;=Q8l>8lB@kr@4AytrXHSYvoD78gS`JLHPMe!KOw~nYFMp zo;p=eBfxts^x7KvuG1511)|F}NVr%E73B$Qr6?nwzI$TOQ8YI=v(vH^R?7@R1iA?G ze*}cP4Z`gP;W2{{enxo7Al&XE{K`jIEc8n3eR8Zb&Bb~Rd?n+{0t2)EW1x~aK(%Z= zK2A)DkZV12me%7FkdyE*)ES>Tg{}LUh6gwZchQ#l%$aG`r>G*j&BfS!xKvKBN#Zmv zNt8!qYrig;-%+H(OOG1krE`!xArG*+IG;D9lY|srdg|Aj7bOj0D~{kfe?|xoz4fbm z=ZPfAXAq(!@k76E;wQbtS>yLuA{8E&;6EM#wI9~cOu*`b!d16b(Qqex{pwmmL=G@y ze?!zQKtb}M3IuUcFU?f^V5&kGz3Hl#$&nk(1S%0-=FP=ki~J`3_O>K`er28m&kKZ7LPU;pw0?y9US2D{NQ4N$s}=lm9!#Us-*CfL{)2@yf+Fzzx&x5etP%QfW&p86~!a+gtE)h+h-w+YUnzt zp>F(SKb{}{%zo3!ujbd~GI&^Q$831s?)ke0zVzfT!Aev0s(-Y(G7r66N+QF$EPu z7~x|^9Q^#^aF6x!;;@^|UDiwCbm_;byw6N>@UsDL!XK5v>PLoG)-vQdaaWHXXD4>b z-288f@mz7G{CFN&q`oP3L%eG@eqOjv(=4^rBX5fFn!PE7uLE4d20vr#ZG^$k*ha!1 zjcw?gVmg=p6`!8Ltuo-;_^n<%UK6gU4hc4_=w7TI$)hjau<|K%UOcD_cE3ERd;%kY zS8|oqbF6UD)EPAJkO}&m_(xv%9a;MC&Ll@tPcK87r`FJr#@t!rkNAECb?GC%KfNg* z@m04F;5{aL{Y~1cO41j8DOxb*Hc0p@zE>$V-Y%Q5M!w=ZB_`YlPj!$A3+Kk?4yV~0 zyfnW68xLVl<;k9)UyKbG*0=Ly57R%ajAaSOt1s}DIK3|RXO?h7bUwElpgS2?Hd_)s zopvPGL*4+!(cfkbKaRl=C{oqK8)V%1&;}lN;^;aDx07J&Aw9ljM9%h?Brq~>uC_sz z#EWk5?3h0WmeXgmhl{CU8}zO0;W~CTAAPY6GPNoekio0Z(-0&h!0GglM}X5e$b1wk z#l?oVl4|_4>y6lOD{Hl=#*6&v8!)uU9j)76vEdy0M$Ygf)_&1sw^4BW2ANu?`w+Gn zH5O-9qf#hbN`1^~tMlb1UJt>+(xO_F8MN_oa^-lBu~>9H-4YQ$2_{xG>LyF zgp<_CjnedhikqHR8}-tB;fdBYf~4WNnGWh4@>c@C1B9jMC)Q z)LuIIu}En=p3U;`Nf!&>8K97-glH;#QnumeVagQvqlYOIwn~N|p5|0YpW9qwryv^s-^3}dKn>Pv&`bA#)a!396#`o|;$KjVtq7Q|(56I?ERImAqJm>MiDG#)+$I|d#;h0s=d!>9V_Q)KuwWE=jG*Bw65 ze|PwlLS2t^pblE|;P7eWHW@xm-e!hRFCoAiK26*fHGG;25*|KrYCL?ZzmbMd;}oRe zkWMm&Syoni6~LJEhHc~HzItk{a5uGno7^lcTs!=nLJXbp)lZJ2X(ox zCZ?f>luPAx!UNSuunsPjtM|6axhS}NQ|TuFJr-9*{RoV7y!RH_AjQ7#zNu+@LU=1a z8YLUUy%7!pdH?IiAKq?Z-FG^wTE^@wxm5A(0s=1I zqkCB5=rFBSUDtaFQ+vJ)o@KinjjFx<9zj7MgCdte!R^{G+>l%Xg|FJl1iVgx99l3-K?)jED@eY^K?Fpi5+c9@>{Z;euGb+~( zDPP%f(4WrT!R7K*bcd9$#2s?l&CSwcJMJ+{A&3!?ONihyBDh@6vh4878D;0RN5Y-d zlLpOW1`S+fWpnksLDM@EniuaC4FoY7atRIGp{>IYlFMk?WI|J+O}LL*WzZ})Xy7uM zJqFFrOlbDqD;fx5G~^N*xQqraqgj#(&1a8>Ur;|8G(Q+La0v}w0bQ{OJrV}_OEcHM zY&-8UvmlEBkxPK!e%LNtk6Z@yZ6-jA9}f@2zyS%D*KN*P*;TcjTzqKEx+GFbXE@mk zVP%nlJ#rUdkKQXV$Yo&U5-_++o($JSI&;$_DHe9hmqyAeY7)Ey+h@1Q(a8fGh=beP z=;&n3FlxU$=4h-7?ZP~^PWx~}4!Y33G%vAN(EZwnv+2fz%M{gdPh*sdLFOVFvt!3P zX8le}XCnOb>2Pc77}4;M%Q`Gt-i*m*D^RakR=S$?sUQ8JA8kPu+BbwycRF@pr%Y>C z@AUdNOl#4-eE3Ybu=;DK{@*j03LYQ^>B(N-DZ5S2J{#_dLlkY7M;?&gXRS{YvrBfI zUJsK0kEJFWyx>#hF>^Q+r)CsNKDLYP~PT{W9UG?h}{s5EmTdN~ARq8JC z_Sc_;Vx5?@og4H&8^blMRs=)FpUrp4+`h>!nfj(86*Kc}yh~KAuq%_Q)w+g@suy?Z z_Fcm@?Z(6)s;2BBRr^{)qqMB#M-MVurUa5;EoUJ}w46=WiF#737UUxLRs6P zQG(2kX@Z(FXMTki?^=P}i3wS#4Q694@x&|2aYR;itUm@$w#FJmIzzB(%Nr zmY9VGV+g_sM`p-dcj?(Z!#k{Z$)rj1`)w_3Z-sb+;o>gMTRO{oh09s^oG`4ODVitB zrFw^(Sk`a8;eSS=GkAuXwGe)MmnvTGdp?|iR|iNUvm@MPZ}UR9Iler|?9T{0zR+vZRtWJ0jPeB_+!b*3 z#qbCmHe>;Fjeu320EGAgw)z4P?g~in7k<(@Edq`k0Uvk*5W)-CulElZvA*^NAUsMy z9^HNb4Ec{pxh+zZy@$v4F}HW~!I3<=*VlRSt3rEdwA$A41$;j++(xDDk@0<{Ju>dC zFU$&l-kAA*5GryT=50fPZt67iRlN;!k3BLu7z&pr2k`T#dGa0^RKw4cOT8yJ@twa% z2H`IKR-c{+;fD+u6R-Om!~!!dHN^DT6E*qOXAsUg3_=$m&whVpfT@rrhnL{XL!x`$|MT$;}2tQBhfK837a?deQvMJ5|U|{NC2bR`Ai1*pn{)MTx?Q=pJy=};g6nOtuqK+`V&4qBfMe|y76E7@!mvN-7*M4 zs?I$~JgPIaNYeef=gnbX1u~QP&iyireQ++ueBZDw#MoofqC|{VjZ*|Cb!eJ9t3v1!?ykkXh-6IlxjV?YF43|0`+JU06ux zM|TPwkVkhCz=gpHx<{TN)BH-M9*`MKr2{g9fy*^g zLc{Z@0&htU<$X(X2ri?k@RsCIxwitgDO>5Sd(5f4y8qXaybAId3|s<(8~4^Xkrb8t zEia$gGCYgwVX$;DSl}|25eCc9Ojt(UE0!*T1@agRT$(}QVKBzhF%uS=K&h<;%SM9* zE@L@vupG&R<>b9$*(g{bkFmhzNz+EbvOWrnH)|@55<=Hp6As9Qv-kr%YuZVz2hEz= zd={6W!)wFMsm7De&A@~D!*${6c4cCa z<}&f1KRZ&R4$4`)!hZblgEBKp45YzxhWQAR!TtjJ$8&}S2W4giTTtUu7~FIV=un;# z1<4`>8 z_ie)jvz$&*adN^QJ zs>GtzY%{n7HEex9rbB+T}hFZm-H`NaeaeLuMZ}4J-W2+Dup#{4}V- z!>|yMVh3%=1C?TjygF7i?qSL~9;l>c;NQcCbo+zh@^*DHy%ez$SlpzO%OwK2!KYe> z6AKrB5%iDC(Fow9qwSREvEhb#2o`|I)L4cF7<>kDk_WcVFx5CM%k(c1s89(*dSRsX}gozvl13(r@%1o6%sNHhrgA2#Pf^cf8Q zz{Lk79(X7Gv4zD#G6!A%P+Jg@6zQcmp2f+DBND+CcMFMFFNyPQ&i18&NT~+McQtGo}+nMS*7%JYvYE`lcPxQktT@3ft zc@yI>MZ#l7Ro|9rViUNuzg$(1PmU|C9)DZrv53CbIaEjWgrClmR_d55Szo^tuB5s_ zVp7igNdQltF2WY{Wp*_KNe;&J#0Y-P2%ai}-w?quQ{OhHRQDOl{7L%}NUleyfZ8R( zv17q#E*msc-v@J>yN@qRVtHJva3KaN)Qd|5syKA=eSq0-Y17&>66F!xDqJoVa-NFnV5#c z!DIaGpM=k=ZYV*t3)bm~j3D9SUOv(tqzbEHM|c=%4c6Dn#+B3f%v`11BS?>^?XaXH zI(ca%o&@mtm0TLX!gW3m&mxz`uk;zIvZ%AX(bOJ1v@?--HN0MJF$gvo1aN%>#|#2w zQQ5c$)J)J~jGz0&{{aHL41!z&0r#;l!b8br5IF4kFAy!h3@=o742a(i2)I6oxT9hQ zM_Z{-fj8n@B=JY@ZVm`wB;*njxG#JaZbdF5`R`qjJp45dz%)H78Pf2mWC&agT`THw zhEvF8B=tm=moe_Z6_0AOvG_INM#wR|mVjf< z9LBE+qqOmp2^$0L4vkeTJQQ0oE;(T)WfM1?n+O~?oSTkHPlfi47kC$bAMQzw9UuCl z(!RUr58Z_v*@8IZiR^7G{`Vnfbu+6~j+gC@qLDa`;n0BmyA3+Tw z+A)tO#gC#k(R##>YUW4%^LMzH)x(eK;zu3&Is78M0`Gzt?niM?7Ol)t8J{17A~Zhd zCgnpiB{wNckKx~kM|G`V@#*OI$Oh7t9X=|f^ym9T^68I$#RY}~zhY-+6{o4UY|Wj= z&hV+z@dU?-oaODqQARu}_hG5&|*YT6ee(d5~e$98Z117k$%Pv0uP8LRw! zOxL`Pt|#|#>5`n|l4U<1qs&xgO>ikMm~&FqH{rGYaLP!1rD>eGB@MycrwuTaFZz^} zd1~5mUGD%o9zU2ePOUWL%OpJJ=VR!3&Z|e&zT@+jU&-;=FfU zIuZDJ^$p3duNoPxelqfYI4(WsUvO!K8h&12&2>V$PWb2a4>eJV@SCo)m@*w4UPtcV zI$b|A~8WS=<}RkFXPLdGRK;{^VFeN5+$jg+## zq>>^f`yBQK=@p7Tv612GIKDPQuTY%z&0@Pop)w*D}dczn_qX=vNRUK)+lM%}+Kb(nMuHDMRRAAvHP#lQQ2)(aD`=D%t51X3q+n%;|$xVQ-WZY;e(%FNm*j};OD_z zUQSr^;4YZ2<6n33;EN=FLmYe3Ev|2!!oS#)x>?~!MLQdUO>w=2ib2Ko&BBqb>c}Z6 zt~aT)NO8_MCB^ktpaAil<0BHu#r0$Q$Hnzy=zuwg+w|Tl95BhDmSPC^=G5WjQUy^%ex0;u>>WiYs@Q1y75G6A(znHTP+5Vk?{A3SO`@ zvCU0*V?UfH4_!@oM?ah!+7Tvvh#$@k?K~4c%Ma(4cD)H->xXkI5`@n~?jMlJUjLZw zw3{ub>0h?fx?Pz_aXSVcWA+;;b(AgZ%S2vM7fwsITqmnYwwygJ*>WRbD9)B|NF-;= zxAc#*<=fMNY`Kn-w9c-lN0p5XplrEWHnQ2W6dGiA2KV=Ajlj{AHBIqpDURS7+~0&z zW^j=+oHM)s#$d<7Q85sus^SQwoJl&vBN=?`okDARp)##|Qi31zgLw?oSAzTa!90F> zNrET(!8~?ZF2RfaU>>(%+nAEvF2ONLXQcPD&P({2GhEAXKBMjMxEcyxzDV{1d3kpX zkMMOFhOt=E8SehDo!)<{8I0Zcj%?xO<{-JIgD~D8D=J~!w;_yrLaVZb&8eEbI!z?K z-cVIAOnBY^vZX^r7~i667bV=K>l&n^ei0Y*n0L#AxjT5xF6g;ibU{sv;-fG+9)M5D zAWb?4>r$-^Qn5XDa2Rh0gN)mqB(jU#$_SPMF5thTE_ekz{)}6|ue^hQ@n`h#ha+X| z2!c%kzI|E>_~nNqFIXQ703P=J=~sde@EI8DDsKnM92fGRNh}xgU+5nf@?W4}RNM0> zstC0`(`!d2)7X!n(&8cd*|L$G`eyA&{BB(*Qo&O8S!s`A&)$tlPpuc}pxe!)^%8o) zBKE9T0}7p$wy942$j_?sS#F!KJ-KxOhWB$y#N< z1?^w=gG*g4{M@090V+CG3qNS?SGOVaI)8 z+|OP*fP$Y(d#p~@s4jG{1wnkzp^yY+6l?Dl$9(5x z6yS1I^|&zMA$(Q?3gN=&(zNwxNb*lDB6X}zOvGgoK`zcsEhF8nVHB0B2Az|NIfW^u zVj_&8F7O1#3_6E>hiZju0*IU|zs_Qm0Vv{|@D-B|oIm2V7G`Rkp<20!LxI~`> zh){jZ7qY%*O2!RR7x$GmC=fB{r6c=CgsQmnl27pSSRv`WR-{?mpFRF(OU+Q@& zEREsPDpsmaUXE3)cJRIqdz=?N)pO@%DBk(u!hYk^^}OtY8=i5(qgSj#d6^|RTzN}O zT)p(Tcztzy)}m-ddEAWjU0mGb1uF$N2r(!^UV~5sl}5(RXU^kak+b^QC$Z5}i0YE` zXxUJVsK-0}WaJff@x1hSS^fBP=cO^o7N~yQ7<@}2xiR>T{&8dQ-T6RckoBxI2I=iF zPD5kBSDC6kjgCvH3sU?4hOXmqV~v}L8|@%8pW1*~Y(e36~jEU^(MVh{i z#iVyB>WNWcq`u8fc$$~6>D87S9IeqxJCEMMf{7up!4*Jl&~WRcKb3^3c6a*xlg1&`Z9)&?<3;<@2#{D zo^nV*{{RNS@qgIl@0EwzL75E(kh$!`=aauUk5!sJNo@a zes&aic@6D$paSrIU&VLz#UCR@6Dm@QTmd`NKdykC-{lHOl?{t%E%fXCdB!R`2JHq! z&RW9>yV)@q{I13uxu){n>5r2rUk{9Q!g@E8aKAekqD=*S>0Rk}R}6|Aw3ZQ#96fyv z;i!W-7J`&Ff{L7rBJ9tj zYASeWuBQtefcSoU6RKL5xRl~afVkae&=oWQ7u0_5Mita)WP4tlcQTjFLGyeWS()623WOoBh^_krS&-nQP+%+U&kTCt_u;pT!0|1_YltYK8T3TIq*`H zIcJg`*qqK~{F`}6x0(oMo7P%ZW=fa6tA)>x$ zQshTf?K1a5F;y;Gy8ot_YSe5zsMk%7bXJWoOAmx7*MyBOiwS#7iL6!6T$ZlpDFjjv z)b6r=@uf&NHOPebyR0pG*#s%jxDsA|=;X2tE8*o0ua)p;UbR!pAd;4GK*Y9#=vyyG zo>#|>=(i!0#;li(Z1{Q1`h^h=f7|JiI_g&=JgHy2KMuKRgoDTxK6(ba=loZ6mpftF z4P@D+;1cdUS44K|6#))^QV%RQHin;o2V~bb#7`Sy_-S&bdKqDE{188$7aJ$BuuO}M zAm&+>i(r{yB0nt|ZMY&`sT;q~kLRxSB`}zwTmmb=uwKv8l!^|Q!0)c$ zU(?IF#{5V*yAhQGDS?$PNA1ilnje|3e!4;$1EjyKB~a;7m+I z>EYeAv#&&YsHFE~GpEpd(!Idt%^doGn@Yt4EVyWf=WJ6xc6Zkvgpla&<-04=y?~Ls z7jmh4fqPCz%9G2RIQezTrx;=8eNQ&lM!g!Drk*#6_cDpY_4+n7-XuPT5`RE711)W= zP5eL72QQ~jE~O85-fNK-2q1+Jh!p-p8p|8A6axVMM_)+8ZODKfDlUt>gf)h1|A~{^G#Ip8{3?+}XIWOm$qtN?z&kpdjImjh*z^$JiX$A59zllr16Sp1;Z#OMBg%zKl zzBaqEkV`ZM`1=Zv0Z@>53{WZ11o0REICu=ujEur9UK%0d7BB7nV2k(0%E(x5@$is< zer#1_sx^@mlQBTd*!Rt&k!bp=>-0CVhP`NYhWtyU+oum*%n_grtzVS!P*e%yY z2IFNMkl<;f9cA*-xBsXWOn+a~qi}SP22p%7`T*e23dlJYNZkZNsD|QYMM{EaYDBa@ zQVwFcjsjFvid;uWydPCZ7m%`CNB^RK3*KLN2~UBHc_UKLo=dD!Pe;8kJ;kViH0~)v zAGmh2=^xt-AB~RccpK_N>mpMUzJ$C^jf8A1d}!HL;tFM zps#MkFe8=H6K#_|U~NN5Q4mOwJia!9xVWHlgmdHy~xf9=`b znc44_vpYMpXAhEk;?A=B zcV4wj5;e!u5S$@J|5lI$wK{z2?;+;{=%Jhgle*O+D!VASjXm7Zkn5d+ej zf++U3^mw($7?9v}VzU1-Abq$;G$zO+O-Mf<<4x1VO44ZZIm=k7ybb4T;C?g`WAfSC zQ~gIC4^aF|qP@8a!{OVHV;@%aew3k?@uT!iGlZlSASNwC(g%F@erH$LqCX_D{hx;Etc$x-Dlxb;S4XIba1WT z>+CL?=%>%b#^|)~V~6349!T1_k!_dz{$5!#zWY8_<9MFkEKte|61;LmZ?E3*19o}k z!Ax~(ue?NmbCQ^0k;VhmjSphUjEy+&H_{NVICrR8`{eBb5jXzMy}Hehu|rkoeKPtx z?32-7h!CScs>42-fFJehcde9cHOdqLDt7%&-xu!soh;HVIHl@iHhaJ!=V7~YACG=J z`$fq{)RTh`Avf=bI<#@0Ox7sD##eLzX4x+dzR&i_8?e`i`iyy(#`aE8#|KyUMpTXgst)AS*}J{6JD7bWcCm$%S0su5&eLwc><|$04q@8M z@%cD`#RU9|o`L(t0Chb94KYB)?3Wz^7+EEykW^BH>wbzIL?IiXTJM){Hd=t5&fd*G z7Q4b)6oTM>g8*T0n}9Pz4uVxcKp)ynghbjaJpcb7fdEEAAt6Ed{4cT7DP$xILy*|& zvC2ce=_`pkfJeG<`hH!~xLQx^X9nQ3W{USW~3qw|Ku}^|;fqkKp^b z`OPp@^5NW;2jp-ra{KBT`7}<*t<@6Z%$(EffV}%X&%y*(M67vg1ky-J9CAR%l*e{~ z@s5*kb&`2BhfCqneD#5l(R>Yo=Fz;8o~}8dN1cP`yB8HMqdEV8%#$0>#m=|z1A=BU zkbUkvhvta`;tR;9B$+3HnbqkxNi4U|CVJxb*(B{_A4A1bIy|(^6wi6BvmKI>Ra7|l7rfK6o2W4DvO>ZO`*;kE1 zI*pBC_**L7BOlJfwaq{141#w32qxF|E_$M`v3+zd;dX5f>YEB+D-CjMIR5^gBuT5=n#KIj-PA1(Cs z#yx&c6RdU$drO+&(Mxp5*7Ed#6*AZiUzle2^q~IS@{ECtld|N$r@%qV-*329$J^R< z^q?hQH@iIX!WMH7^T}8*Z>!RXx*rBgX&AVOPeNO+1nMtE!&ry4%dO zG`%3gvlt)VP!;6Q1bxcPpLHrwe-Y{F4p%M{^2h?A-G?K~WMoZ?^30;6+}*u-xKnIN zSFiD-PcD;L=OM|uFFcEuU<;QqfJ>F20@TvDzX6Cy6GRGYlkh{>&5R^ogCUliIUET$ zbGI^QzZ3$dgiFaLt+L99HPJUm{*uPXi}_a zxT=3hYyklXH6>;p(jJdzu4;csG^*B+Ko;CS2x&ioIIC+z4~e>lIIC-u5dSZAZ9Ix4 z^Dv0GJ)0kr2_U>YZqHbh7c?Q{P$juNSI|?=Aw9zH$#G{9OleQ=p%9(sZNF!Udg_oE zHeX$uWPECNJ^8zX#}A3A^L3EXhXm_MR!T9d%Zu>5`2g@pzDqh2Gt0) z4-G(fYVAQ?@WrtA03i!eVpbdyB?e5aI#5We1Hvy7Jl!Z{)uHr|XbI~pXI5|o%&z5GhLznjB)GC4 zt~d&s)biBSb7DOS`e3prAD1mNv8?wf!~p39J~E|EPw_0mdJh_z*GC{7^SW!uVN0(% zo|>TNqNa9cOU!){+ai6`le-M;)d?nI10JY&Fb+8^FL%qZit=D=b~t1(UPG_u!c81oN@492B(Jg>sFJAIUwZ{4Y)D-1|#@+je}c|<(DSw!7X&l_4V zDhfqlSfa(*0)MEU=S8cNWb;)@?T^UNL>L^Juy=qzPYpUEBXbDB3>lf#kI2Xb4~b;5e1!BhGOoSl zqDxRT>D7}Ui}dOj{vQZnV+ip45d=h^%=LUvAw#$~1VT`)&PP$CR@VhCdSNn-@C$>+ zo7>QHw{@OdXX&c_ku}n(@ltzN!ye|$5leS$RXanEZ{#U}`MhvEUIN}u8=@Ex;Z|cv zuDx_hS)@9{(rfE&5$;HLh@g{PdhMlOl||O9N%H00Bntk@H9u_huquv5U{!n)H3Gk| z4Ugi9U)Y96gD))WUH3Hcu-?TkQ*TqxRQ%D1v9i|D>1c@Nh3PCtUwt)>Rty#reoZ?; zw81p!Xoy-q(TEuxpMYwz`gP+`StRe`EVgUTb+UM&3zx?4Lc60O@4|Id5q=k*rKjtT z>L2krk$Vt3^!f^2-_8PHpd%R9h+#atx?ZF>?W;FK{2Pd#i%{}*6+e6yp zlcOO=aHceeFXns;bT7<7)V(_bk!jVPV)vNlSlkjiL%CDuQ>M}~E|SRVWwoQELW=Ud0%mT@Pr{&ZTYeDQ zmiwp?xGhKigr|K+VT$wAb?+fIY0HmHTYeNKiQ95Av2a^Xp(k$3DS#O2j(@40NBqa+ zP3hO(Gsjw}OKvlkp1XcBmY$9sJj=r4JtIgRw%cj7 zX{YDV0;JG~^HEi;JM@y7-h6%Vw%9n&3WCTr-A+#{e$pEYJh{~$rP8FP^YrxF(Sxxw ztUB&_VIa7+KN1_)b}v0~ZTD8FZA53!)ZoY|>Fjw8do8=Rs{AMVv}Y?Of`a)dhu@rX zrySQYsqDJ0p4BiLmdrN`T--5Pzv>fP3xy~zUCoIikD{dd;Dc#m(4l9VR2N7j%?C6z zC|urS_&VUz#DKoP2R09roFc}XB5so+5alB7H;e?g9<%7x!jQAE;>Sk zC?5~TWhjKz&c!iWlgrj~7#Rs`*ug1~visUD`<$>)lr-h5^oE7r*2>PUp$iwHI7C@% z#sxbI(OP6VM-smP-eY=JU(ZeS#TjMM4Zcl(mWJ#s)UfbV64$hl<++;vY-)O=aD~=% zlp&oZMI*{Jz1tCHQ!EWqaBcD5G9U=AEl9bxcKL4$3q`56_&$MZYv;ntN3}(iYm3>+ zt}T-6+VbljKAiX+I2rN|L>#lF>4L1%(nf7m07E$wibKiRLfr+ zg+Ud9pLE&2*n*NSJCGoSXbcg*h{gaW)@3OqT^1qhvIu#-&i_SJhO0r(2Dzc0N$NgR z@ZD1I-M`3PH&2-|A4i#_DvSjgsS2z9pR&QnWm8CHBb+td(~d$e`_2kw=a2AAQ@c#r zIH^XJ-f7A{ZpuDZq3o0YPubw(vMHpp5jGy>X-^@S{bfkmK|Q50zR@H-B^8Z9dP*%6 zPUb(X7|+rhVqfIj;JDpcyz{s++LMCc9uN%~WXb&3?l?=b8sImx@D8nt^u@3=G6ACN zd7p4PZ1!Tk11-vW$5^Tr&z2KVl+2bBj)$)eyKnF~N3|y1=$UBUsjVkvZBTa{7h?yH zxw~%ibj9cX$ZX@jgP@B7wD`F8jPVrXM?pZIr=C47E9cY4Wkm?52dwQSQsW2QvtFh%sDQK#GJ4)c{%uwSh#}U(-SWT-&d&MH{+beZ`17Yr~^D} zb`4!8k2|YhQ=L5?*Vo)u?CFPF{p3mwigVeuw8#g|OFL z&q~!3#~$gk(;g6Iiq1Z@srEeVMbvfSd2}ZO@=EW-#~8ZnR*~wfVK^f>7bnQ+H+B;j zc&?`+_&0WE7T}6@buSR&o>R5>lvs-pN0Z4VrwdNeT~OQ9^QYKGh)7%qzcdH!yDW0^*nB=Pf_F@)tae~Ac#y=-y2}sH3KE#M$ll8*U5f z6??0$`JktD) zsCY<}qNq&oXnoy(Fr|_LRCt=P=?{>gSH;&#!q3JT+;meO2pHU5_z8Kh*qN#t%B71x z=AIUO$Y=T|9eT#M*5I@Aw-|hdr`d#@r#?2&KtRx3r2x*?k{moO&9>J-bA3+JKQuEW za8Z94QF|eZ|DRXmjM(`2W)d4t*?h$Fd&H+zGePxX_s%TrCxijv%kNyR&kH0lewxyqJ^B>tZ221z1C z*+x0?tn`J=b$b{WA;pbCgoCVQAj(*WKk$VL22|hDd7mfa11KV6dl~5LF-@0k>T^Gs zetBE)>g#u#frA7F`=iM0_(43@T(<1tB?El9Y|{q&iver6RAjjf9E#Jx36#sgLA{w5r#N_GdCM?`ex3? zHlth`(x!jJp=WHX3^qIe6(^tX)OyDNL%!X1wbwx7+GTLY=u4ckTg1MIq&dUh2^ZPmZP+HKKpU0)D5$9zLg2)ECbR&MAGV?qS zLF;B+e%70#78qGKpQn2I^{UhUc>U&S)RMkEK&s8m-+ZnWX7%EE8NXW)()dN3>-Vui zf;f-g-CR9q{O&R}v+2(ZJ+yTKW8qfci!uoq0;?vc$cM&Aqi;VkvWSZDA&Kzu;?aMv ztBch@CTHQ)6_8)=^Hql>Q@#O1OTRl+l(#@v%AQEuLRD0ay6(jkE^{XULwM8^*>>En@$(1+sXvN+C9@t`E@&R%ApT z6~epK(hIt*U(Fl{UhM6jzt$q5wh2H`3^Flb7Kev0z)MW$aq5*@Dz*seOSv6m(=A%_HzlQf$?5~yVF9>5m z6cQkWlfLroqL2Zd3kUT64$m|A(Hs}dhrSAal>vm19YRAxKwVb>)bPrJf-nX}A%Q}8 z?rZGl5i+RuzlM$>eexU6Z7@+dpdK=y5C#VlR2rwbo~?jvb!Cx3A|s=akRiOZ3)e&- zWMuaTk>Oo?9q+XRYPSJ}kh||(2%a+)@LZ@Y9tdMR6cQeUU;lt@7(&MLT@Vi&=+^G` zY*yL7$-7_gH|aWr)OD);Z}RT9`7L}bb^NW8V+n#7421*+Vfl}qq1bp{6?&H+k_Ybf z^i(%7jt0>;KtA@7Nd9Io?$toZ&};w3olMhm9UZ&5TBLgWf-btgW)7v~s24Ag8_+ct zvz>hh@o1Wb*^{<+zh|I&6#{Uznp*ptc+oIfH`kMoc%pRc#K2AJKfj5N_&)wENT-wD z`%TX)iJ7SOoAf=ui574YVrU15IB);203Ruxi1V5aK3?P2QZ;1%`tEO<*SHrT;*_UT z8ZU1P@aL@uW4ceeb?THs0~?K0XzlrxEh|KqoWRjhCdm zM_-Z!XAA^{E;zL){!a@Iq;NM=h;DZEx&&YA%Bl?%61eBOqZn91p(M=D_8I$SvrFu? z1!^{5t`2J~Heb$$xE0>ixY<-LTRPUz6I(jgfQ?*R=wCi|)Z`bq2@%0Ltz7-_FPFgbsq_ej`4mw+HJf$z5@}#Rqmv#JU+!D8gNTpxjMg!6J zwQq-U^UcZ~FWa>)peL?%!R7E;Ke5i2p&wp|BO47ad#dU6XFP4G5%^>e>f2h6KI?hX z8pgQU$EB{j9G>geqdQie3!M~I!*;BP6_1mrWHiC$##CF`bWTCJwCRLm4>I1yB8fL7 zt0*a3uOH>=n@$?ZgHhA|)%wOsMYr6tjJ389z2pf!zp>A67s3MH3KPhCfls(x+K<|$ zeitNiO}Wh5mgaQfp4}HybXh(tmsT+qkS6zBU57?9{W0OP^hY6TVfy3oUp<*IRj&YU zB)@;UtX`dD{qwJ|I8Pu(>77BBb@_U4*3umh+(v6_GoSfw(m;nK=87EA8WdI>cVIn; zmtmVpPuzi-SGWVCF-egkIPfwbEM0!tGllvM9!VajotJ0VNz>J?!2aBkiWUE)YI`L} zG1uJ|GEM#ZUXl7Whj3HBH-7ivw$dy5hu=LN+8vc@ckT?$)W1CWR7IYQ=lF;P{#iln|q8HtieMJ^JoOc49vjPgXF5ddPh{HK6VCSPyzsq(y zWq~(=j#?p^g@BSba;vXcOG{SFz>mzhDvMu;jmI}vj0t~*FhXAXT@EB3{ z^z4%82d%o2&ws5<|3j8Wgsi`|GQ9X}rE30%tc-0SBXngX;QzQXLI|&n6w=C={s)Z2 zt6bd`5_n}y`9mD0Nq^{!wJ{oJSQ#lJnQV|CF0U=_UJx>g~9VZ9jwE9hp8NAr-IH3CgYZdTVH>}FN*e~KRD|I>8%Cg?#~ zma300nO~1-qU!xAeEvTjK60pH(6C1GNZ3ebjRXzN8cAQO5o;uc5H9mz;h*ArA^nqo zpgx~$6G8U{AKZkpLjQ<6M>~0D9~opHY1p%2gD|d}Zm0CvB=5IsGAiP))_@&1#eeE4 zwY*v(#J%e+b%$i{ICVc0G^ueP)l^1)@t?*AlbPZjPSos!c_qa=%Th0+DDuH<{8Q|! zh~pI&AIusw$_LPvAh)qTaFaJ$Zyn^VsvDdBtAxMAQfITZ5H<_W+3T?v==ztaZg%!SN9s@Yylqs`U!t-jpJ%V1P#WAb z>bAcG-ORrP-Mt8b&YGz=4EJTJz>QnNa_ zLonI7`z2TXW!y3+4I~uJ6Y@{!L2}FBw137(tTk{&vtH)YMMaq9$uEN>Ui&h%RpiTa zS$~Ud(`rT>se17d|F9so#(ztL**w=U4~w96XP8K(Q*1WH1V<|QWvp35Qb^fBd{3W^ zzusCb_#QO)o?=OQv6Yx)OIjzA9t1wVOzl0v=Uk>{H{e?aBxG^Leh`opC6GTkAZ-e0 z{HVG@luzC%J$(!?B5HSQy=LBF__MiZj9D4uuhJ#EeVJA^QA#r+$=ZXY7DScjioZ(9 z5v!iUMYeVuU{^yrf=LykB|j%*S`%5AUVOP~5>7|4Ff7IpMihnfYUSXd9U+i|M@AT| zCOaoUA0GX*ic>a*5@AEMXqP|RdR0(Tx7ZZ;`wt05bi)RJW86JC9W}P%Nmj0l1`YYj zpdV9ttP318H9qIm7)b;YyKwE9=WFIVXsWEdNEjR+9MRBvOK!!u&lEaU109I^syu{a zea-FcPEIygw!coF;p-~*FWW5#*1}P7*~%`u*zh1uHC3~rvmH-p70kcK$)|d%Wf?fRTpo-J{pY)dm z7DVj4!wd{|gneLOZ53EM4XmvK>wtl^RbZ7@fOSe>39%KUW9MNcZZ)V9UD8%2H!GOC zp<@Dmg5i?>+Zx2Pyf3bN>+6#4>*bQ}8;%eoOCip$QL#utG-GN~S9LqWkakkD4cTHL zLzKtoQ$~uNy)Kwd<5RuGQj9~_9-yG*0g9q_R*N&}5h-nvlw(QNf~d|0QSsRPOX^11 z_7GrQID8Rg1JH9={^+Zg19QA7ZO2CxlMSeN4`~7H>`1GkBx*Z5D9d(sd`hdXEblM; z8RG1yTSf2uE^(NvQ5EzAIXjx@k_FhY@ZbF!;HH?*uqobgK0QgbuA-a%5SQoXV%U-c z`Qq}pevo%6^x(pWd|B>3Kw%2XsG>d9{9`Q~Lt0>K(AQFSN-z?_160QlKSmgsP(KEQWGwUfN!auRe{I(^)Q|lb zNSLpEP1I!k%=$@Rwkn3?{)ubwQymA%y9Nn`gyg#rB;RnG>pQqCBLEmS- zAfBAMRV&#-(K>yZFM#chrG0f2L>CTD?2YJ>Wxl2=qN>w6Qxon+7cvn%er6)~R>m6Fdh}iGf5R zbr}8)N^P^L0-AR!i>5@-lrS1sNmZq{woNU-^>Ga6DS-o%5k`FN<#FC9HI6&4Hr-}~ zkJKqyuWD2!N)4={i*8QFXD0Y)HQuLdE zPt%TF-4G$G3?qY4Kn|(f21LCp+JjJAD@YKSF=IY&V9`mn> z6K0GFu{7TW2=`3zUhS?&Vq|KGjnE}+{aJd)8Y-=sbVtjFS;sZYR7um2a| z3Vr>7!R(#QTxYv6A%I^tg#5B0EWMQ2kOb4q2Hj}Yld!?k4pOna2lGVYiA`CaNL{iez9sea^atX)==;{kr%QK# zH5DC<0E`K}J$ti2SlvrjETiYL40uM32Tbao2J3e?;A12sCup4J%`3Lx0P- zi%62*`IVlycYc-LiN;$;!>&%GF3k;e)E)kXmPgm@SeG2yHGSuJYv}bos;24ww|V

    Zfw-5udQ`BgsZmnZh^X+Y{yoQA$K4oo4@Q}{Nw3O}h}Ye2_olg1 ziC=0S9Yr;ti=*}^)qK|*Myu89uq@=zjrk8ZECCcv)6IM;5){9WvOOIP-RFaNZ6#mOd68G7QIvwe*|& zyvgoaBwEJd4NUiA0&-ao6#;bt8au{yk0Z1^q|mjf zR!JO?!#GGDDRc-+pGjy#A>&A_7R2G1njm&iHOYV(Z@?f7Dp6{_L3BqrqPr@K2*MZ< zLPmtp>h8ZzA!I~j97OYr60_BRxTRQYQ5#WxS_WT3cPvlrss005)TJMw@L-o_ZdzQD zqAUwF)rn2iw=7TiKLEYq-`O2y&-I{@-m8+=4JFx>S10+uZqDF&sSH)1eejW z5B!bYFVMclu@>TAYObfMsHOd1N{&Nl*xf;Pw_z{-Q(U_rt@KWIkv((6%mh)YHa-5B zccP`TVsz>3KxlGP!+tG|r7S$$|Swjrc_{ns%vogiL*CcdFM7$frs#YySw5~I^UO^nkMp7ma* zE*s{HhB>l2GrKOLE+e1wwpW4b!VLoA=1QhK@9m=+RX2(#LMpbcaH^c@Y*JFa3?t$} zMo-uJ{nU+yag<@4ZWs|KbBK=ZRzF$IHQY!Hat~PTovv0G?q!Di1p|0lb!=PLcsr># z3?~SJoONIFUa!6|oSz!bA5FQ4)BamOdjQK9oti{Kkn_{EsH$>HRsS-av2JN$#Mvs5 z>XtS_JjgiwW&9tdg)ovS^$6LM4PP_2o<1Bp`RMy<#;JjZ8Hqt=It!^L3AJmyTj|oB z_)F1k2F7@yq>g0mJ#>7=h{}RBbL=KUI@GWYu>%;W3)`Pzk$Cd4(@yi2~x)R27uQ?Z)oRg zqpQ8)9pFONrcrNrt6A!Z!FZU6r4Apu;V4AwzP-`=j{jUxNZ;|PD71J_l%*ed6Yh>H zZd$?N*FB$JCH2;uCoC)e1GIF|V0RRN)+#1e+~ywlU~L`yrngS@yO+&hCVve*=cZY- zQO%TMQ!IVWVv61L-X?ED3rC`xo;EsL4MP+mbuu5dZ1G;Jz|!P{wUn2VIG3=)GaX9lJ0i5@bDk389}Roj{9gh2Zv)vwQE}*#dx0RQ zQIbH$H+X=otCjoG_~85I8oG2-T%u}NQ;-^t-a!tM%SeZ?TtaGS#)Z)|ZG`*iZe$=Ckdp#(F?`)f+O;`oXUQX!3X;+GtGl=Q8?K)1L^M^MQ1V&mK_ID<^MBidAr zk{IX_mQ8A}Eg47ILx^ZOfM=ofGEDvV>$4Z3MNh?`TkyHJ5LZ1TS*|Mx#0u0bN)qP= zk{D?|Q^|R5N+YO4FIR-xIaU;2o2$s-vI4s74=AxyS+-t3*Gj>zie>-Xp;824dY~b$ z@@KFCo$;6SyY*VKZ~0-rTW|Tw+Zfk`1VOJdpkX(#K_iI;;|JuZnt-M>fX1eQ(v}ye z4-Yo*mj<=XhR^V9Hfxoj#!(3pPL32qrJ_8dts@S^0sYVze}anh@PYs~!p)8R@;BbQ zRAZ#O6Y?w%H?V5w(bJ2QS|Ca|Rc|9I7xA(2J=F-0>@oP`0(%$?F~rjiG2&#b)@zj? zjv@TdQW**z<3bAm7Yr$Ev3{Hd8jE#^K(<&@sf1#qgQ94+KL_C0j$~)=bh6oMeL$+J zkk88(4XE9_z4xd~9$7RmNM&J|_yqel_W8}}UbZTy!XnhzFkTIoRF%9etAXg{5DQLtA{=Pq8=jOZr8uB zNgAeZ@XH%A(l67&G=yZuL!5>nie)>p?$PKs{&Z5NEg5YetNnzsQ{SQ(+bWF%N$fMy;ZL7AE}9tsuppqkc72MD~XHiC7qN{CR|vhrE}fGIWp>>;(Rx zCztcki>|DIsIgWnO5%RO&l~6G`g3V9C^r_3aP@>O(G8(Wd>ZJJcOzaSQD27y@I+DD zzeUfse`^4qjV9O_OMLglnQCM}TwCJ-fn8h0j7nTvW3eIyU0X8(?Aof%C9rGj#u|G1 z4{^yD|u7SYR$^pONUO;5Wi5aqrHh)nXZfT*A6e)aam-@d7?awG1lX#Y*5 zy~QYyusiG-X^G$!4o{Pm6w=+;XtJZ4|9%{oVhQ|F#1@DqzZiw&+`uA6()mk`uOO3* zC*M-rg!simYa;4xEgYK11PUQ+B0xwc0@oHa4*SKBz&3(617fv!9g^V}Q`O?cdJ+*Q zC@2I9l@=%Fo8&n0KOKW$GM{ANXA+e{0zr%fAsZ_YvOf$V198PUK;REk*BT%L3=o7t zXPBC3(2TEuW^!fGKpLY#$Y>CfKTIKHH2p%*kTGY38Uta+M_cDDkLzR$1A|;U&Z&JI&I(_H*gTLr49d5BTF0ojH9DJ*HvtH zRn_=Pb`=CM9E1$#IN&UKBm;jgFmR3u9NdG+FGu=!@iA&W4c={R1t(ZkUQW=}f>?LmVXK&^4K-9`=7lcDbfYi0f;6ywV4%`|7)=5VPz*hs2BP>);E%QEFGbv6;4r;_0KM zo4(L6lwZe-E9^KBkcI6S2}vnN>Ff&oJ6>M6-vOLndxY!@^Cw6zdUQcIe=fX)kxg>r z62f~Bz>Lk*%#F4`3_`dE5%Tax$o?>dG@fwlMp<`E_{Ts7BOXowAzDZGzta_|0GADU zL&6%04SCrKV#v!T7`*=9B1ADSSBJajYsVV(7_Uf&Fy6f4X0PuBfXd{O$K&$m*| zND#m0v;?I)tj%aab8TD7l5Y#t0|~l(LtLH(VdU{ziICRHg$c4=y_g`2CF1Py+JZPd zUgiHx)Z%dW2zVx#h7vdiB3uKWw=rkl`cr~wRhi1#4?5^L#FNY!YXMEgaXA2%_N5g zjvID-O%5xA9bfGe?QZBmPuvY1Kn^oZG+rAo|@sSp+8Rc zCDHm+`gVLv>VmF%bc(MSUVlI^j<3PkDw^E+?!l06UYc=51#MGQ4huh&Bm~k-Givk2G~l zuH&nwU&-*fok`|chVNdunw`qMk|IQyESi7LJ6X6`v%^d^SZ{ znMVq%UM)C9kN%@-J}#JJ)vGj7@e%y~!rRC2jtuf5Wy#8ft2xe^GZO4l*`D}{)9Bkw zpRNh%)8rgqQuISfc&}WT48>(MAjcQ)-bQ@Vy=&1@ZT)+20U!_?{pU;@eA#TbYjye~ zz|tgk8d+p?#xi5|2MGD5Wv z0xV9X3R3`t@Pvr4^y!2;Xh!xSA&U91DWXNI5^@l*2g!#X!RZ85vz8!02oDk+4P_5j zy;`CIorO$NfpTh95(MNh2$Dx0B!uuFwI#W9M5%f$8-?RP8fBmiGf)sZ{-YTN(DVv` zW>yvuq%k0p`aD{tmiUhlWkA;l0kQjN3!3LipSXWkqa9!17Gv+x76_uX?M;*%?9uou#hjMdv(Kk7tDQ zkVuCxFqN_Qs4?vd#9&S8HO_Fjjs?VfgwU{Gm29(Ll`QPA(DItqzP0cApt<(_*1lxr zN=z1Wt;$H2r6)0&UZc!NGS&u=IXw=icVZv%wbMVh^9@qXliAPYMwX2vAGaKmk#bAFF>5Z+6)AbI-C1i%3#%A8L;Vkn#Cc)Le}8H-i+0ojJyKhP(V3DRja)SQ*qvgrZ? z)19VE{Wz411Y?LqN=86Z*aQ^iPGhGJt^ys6KRBPh7OQ;+qR-Z6JH<58>C=1}_K3xJ zY`V}WkC4Na#py^YjK&X=xShvIas7YDNQFCsscsFUDk%5)bkq=E5;R9b#?=6~{f2$9 z$A7K$gs{;4G%M1iv0oCwtc4(rC2w{lQxaLaKcl2<-Q*&^EjJC0#WaZA<~$O{$;ffn z4&YGB8zOa8x=eM52giu2kuLf#5`!(jWrS~>%1RgeRvrATn{@Vkgru`0PGD7MBaPxf zss^Y3gT1>jodgPl&2>=C5uBtm*q5N9!0j2Ogu60NSwHed={oFD1< z18_)dJvQ!!1#T23VGjn<2pzuSKpM31HCZWWg6S&~vcicKJ0jn7Ar>+c9sV8e3OJDhPukmA|H$TUWY& z4v^7A`H(?~I3s-Al!!PZe7OR`H3p$g|FJ{Q2zMETcK%@}pB)tC1{m_~7GwuSwR(ap zqMqPNKuE(9amJNdPg)Lf_E5A$NZ-}iZ%dw`>tpB;XAi|tBgf7k@8q+GVkXN8_fXJR zOe$c$bF%>~b^vfipQTFWz9ai;vrUBfPG!>Y3v% z=xk!Vu3{<-*WuZ$6AS&CycFGN55b3QtV}#n)b>))v+bqG$Ftch<8p5HQbc5mmm)UP zcq!ml*^alIKftMh_c`dLNQRFTAK+By64*=8Em^!2`2MCb?KwIsNP__{LoOa`1SqC7 zS0=kBHm!Kbmu~sHJz>|USepTh{U=CZSQ{N!Y+1R3`&29|llhg#hiaMPH^FPd zev|(DanE?iH+_lvWQnh-%Y}hj{(NeV?)8kXpVdgu{}Gc2o&9p<)HmN0t$NW{p!+|I z&1P3!_M_Py71ZZrtg0RUW=qD$5uBxCCq>6w^+kc0s7vTn|FXnZh$9J5!?i6b$Md;!SxBlrQ*l-EE0k42fCw9cPO5tRUi> zI;Oqoo1s?Kmx*Gt)FS9e-ADpbicvB-Qt*Rjs-(OKp8`9*2nflUV&Pw0l*jMD0f?hH z;t1G7=ZMEBZsysrIRZksI}!5ON65|;gxs6|0eagmwh^>^EE>%~Ul##88@93tt5~K8 zFMVC~8$$ZJ=r<~t4O{iI@x+F$`q^TcLg%w(3YRy{REXeHp*!`qKcmw1n=kt&yHKQb0^zBC6m1&AwFCEl2;g+1JXQPqb3M^c?n~sD3%- zoUW7A2RNx(>0y$&T4RwUgK8W-@t_(PUahno`6!BSU*d_S{oB5Lo>wH!9h_`*w`rtdhQl*hh*2<-N!wGCupGOI_Z(XWAClP%ekm(Egr8%O} zew4$So6sC?Mq%HSv5KBHg#Mw24+jVl)DU<1bkz%)Iz7&XqY2AunZXB#-C37jUyP&3S7fBXrIqkpDR6K?u)z z2zky!$PN>PJm)=>E9?FJ2=UR4e(Vw~vJ7LNfq{@dyRm)^fpI=p)Q|Tdos^~Y{YzLSOx#Ep~PfEz|{y5f)3PmfBh&7Ux5*szs~CE$ANl2xlQAk{e|K zAOySGcB8ClAa0aLS)d4500tv~{U{hayxjaNY}E2{gEr^o<~?e2UT#XMqC7K{LL~W7 zFtM>8#Y_7ZbMPN(IQdaFW{MvLp<(|r$o{2axBV!8eB*PDz2EVzZ=B^i*1-5t&fvc^ zk+t&hdm6lDa*xnqbO4=s@Axg|mJ{FkuCuD>oe?(kNvzSao=3FH3a(FEz$xVg!KGzz6 ztDXXKiU4H1h(f_7@rIMvzdMZhhmuk)NWTY%OhHpiJ$jYiX{Du82}N}1{o%d76#SSA zd14AiI!`<44dvAP>nvK&`y?hFa(ERlHKOVG@2dvES3)*=g(5P>UPeh3uaR2Y6bTC8^G}T{}`bKs7jVl}t0>EH}l%$(0A3 zh;l>Lp=gDMOlvCrY_qfrvM|!#BoG&~eHfQw*9F@JBb3itj}wX}AK?_1pmd=nHJ`Pf z#|3gr-riJNa*-fJlv@%GEE0w&BYcG!!n^tW+KU_~bPb2of&YW$D2#BUpU;S{qnP4J?GT?NaLutTq1t z>y^sFf-r`KkYOzaEVdvbfnhBUhs8UKA>4YhG3bGorj0?@W@3lJt6`tM&d}G?!>4t- z;{!=Lw!OcKUY_Llx~ky4qaFWL;^JWqpznR+tOUruyU6t@%1S z&7bYYUGw(Kub>CeZ9{zI`i}gNBiFI{{+4=Vx<5wE$(O^{OHmT-q!trmkPlnG3lwx@{w=B>M)#bEwz*ru8v5qnN^vt^g}wO@!kvYXM>RsW4ywpt~ zp4^n35R#^eI4yUoKW?EWqYmP%Y2JW1-8w`QW2o8CtQWS~aAb2)Ol&c?J7Rd~+>hCu zj5&7x3dwgh0ZcxC{X%mYOCaE})S$VT4N(uf)pDEjSfbCeZ-iA1%a`unz+XG^V~{-P zx<>DOG$vU;*ubCa&Lt+X!^A4|&g zXX%w_yiYXn0{FI@4q)>uCkL<_`)ldH8~NR|T=5ZW?tnWQ`)BE8W3f7u|x(s2%os+Ys7GhYh$V2x`E1~eKsX2z&#MK>2s#%=oSn#^dy)h-yI z3)6h@dTCRCqJFs;+pKMiT{o&6TwzL8z2a0gs|8n8UoH;h=y_{Wlc9T>3U;C=u3#q+ z(Ft=?!7HdQox=VG>{9gScHD&vn zp@qzK1Hgj0t}bg^>?4Vx4h**+Hg73|_N*^Dp#R<0AMc((l4Q^hLMy>|s5-QiS@3L| zNO*+v{axt5b=#J5OV6N|G6xny5{4p54;l{D)Rr<4PHZU?Awpig7J!#->6zbB)Sr96 z8#)ORs(+jWA%G`Agggl%WP>3>UfRdE6kTHsLb|2r9Rpyq0f3Ni>Dg%jeA!a0aw{R1 zl%8)Y3j~4~2ni%pAwo74B4i*N9Uwtdp@nOe=3rd00kcXgX%d9Nqt-YJ$^>joO==Ym zEv;20+XxaF8bXGKknih3$k4DAp_`0w>?Px7T7~Gdsv8(CFY4Ikayoxj)fXKElc9A3 z19PmzqW~t@*~WB;&!-qY+#(+QA$l4YBYMIpK%(`iuZZUL2;+y>qd{RKm)9fo2Cqje zsW*5%dV(s?6T=e_OGZRYYivY37-qO5cGqI~0_Z9qgob@hkbR9|w~dGs`uK;^6(FpY zY&z4&Khko&-%6~AIPORlV#C|}IQ3>9$bJv`p3<5v^t7k_t#p-%^}Kr3JKpZr0U|f{ zM9|pp<9_rsoy?Bv?@y!Ov=9y36T@kWrhw*`&ogRh*ERkVdUEeN9=)o6WDWgzp+67T zQ!Kd)`upF2Pp&q6D1R5kuz3+_yhBW*G(n3bwlOr7q!1ee%y&f#jD68&>>b9)`@c>gVK-=~#vq^@DcVXCwreXlQnVF>y^XkB#Hj^GwEgcER72Xza!N#`2F`Mr z7~|b-rTOgqrB1$cV@8Pq3L*p4F(ba!R{Hr(1M(Au)X#`>f!`T{h?63qerA-;F|;FX z^?V<`NI~6B!K7bQV%|8=^B|0+BsOjviB@VD5!(?PFcH5qpdyS_e#d;lKicg|d3ma! zoxC&ynN(gHq!C73!9&IB#l>~vakPqGnp-%@zKf4-krPC{8 z6Jb9YB0FeR+{A>s<8bVbHoPLo-4xz)$F8`8DDu>HgL}U)V1lXzj12pvh~D;o6@txb z*7Yx80ScOEYZ=sfRVkBjha|L@Q3%020y5jn2tb_k^PGILEUHfJd6Zh)gE(DiTed8! zVeO^!ufvt1qyliHcKnF1%X3qED zjdi-@1H7ty%7}lCM=C=#`d+d6*%cs!)kTD)F1p%vG-nf$!1`kAj-peyfMhZyE($?% zzd=GFA$c|g$twIQj7|YgL;<8*KVMly5XOiQvI2{c4T=aE(83TvWKi4_0_Zyf2w~8w zh%0Zn7r1>+RzOu=SyYh7s1PzLglttr$f&*vK^3$rW){c>sCI$$7=>h2Y*QeXAZ%ZD zk`7LGPP?7j6;!h4AdC?qsG+Lcx@*!FHY$sTkDCPcs@YE zY+k$zQpr?37nsSsh>*>TD{xSccGZu9otz4ffh}|j=udGosfA4e5Wqc#kcT!xHZ3CL zp?!NNngMF-CNI>B!f8P6obhNtI(i7Kyp7uz)a|7?oPyCbnBO|!k}{9&4Y;3+sLD2a|A(sUSVM>I=_ZAWYcRh|xqfpcdU+))%NipC8# z&r}|1P9UMh5W8QS$Q9EWFCwlmx8^gIKARSokIexOsL0M@P`rSqFas*0vka)ys3#ex zvE)4coWE|=Go694>VN@y$D=W+`j_YYY3>LlnSoS}hPN$>SW2mIIgxmlB+Fo1jn*Nn zVtH6$Y*l<8lB82UpeOE>4?s>vH@s-H{+z`yp!>`hFN&$E57xwW8H=CvC+S+HxCG(V zcf2w3%2itfGe27z(S6fi^q;^Vg{f`iX7k;hDQzy>72UfDy_lX)m^y#cIaud+*Z9-b zAD#7qHU2j46HZ0H>nukTt9B7n;w~pkb&>jg7bckNm)ym!UkW{O{Zc?4QomiDrGBT^ z`iq^(Wx+cC{i-<}GBo6_?xGuSN#haOTEF+Q|1*VK3fPj^6S7E$9EOk-EyP(TngEov zQAC`T$T?kDU;AGJZdMl=aA4zM(iP&!j`*}G?s0@PU%d>mWJg4t=c~87$b5x3t6W{X zD7vvheQWr3bb)ggzl$+!h_V^+tYJgkE{>miOhCfAly6PX_ z@aMa`5UC8a#%Kew6DD<)>1@tx_H>3OZ4K9+%TQ6LZO-hTTLcNAlbeU)|1`Nl3{P$dd2&O@CPRe08g&+- zO@8;rsg7O6Y^V*Cr3MN@HXE)34>@qwFb^h@1T_QVNxONavUnhi@sLci93o`PAwtHp zI2=#VdZ-Q?PzMYsgh9)px@3@D{BLAeDvJyP85u%GhL8=12pQSlaAdS@V1_ z7t#Ryv~Fj2m2-yex=ClZ?iSM7_Bq48-Q=8M?{2)d@J};ZgTV;kbA}i-ytXtB8rVK{zr=Dq+0C3Ye7>8!?N4^2_ec&JuIwfU4S)aGKU}?qYT`z4_eyF5!LX&9 z*aKhx#9vE&(v2sY3i*7tFy~YMTubc-0eLR=02R$QClS(ogE-GOR}2Eg+3-`ndzj%z zMRk{n#iq|hKFv>v^MsPuT_zO7=_5`nB%2Npe)$Dn`TpHyk^v3R7ToV&CEIUI` zfQ^fdc^3?>vj&&yA-K*8uGk*Z1juGfRP7%BV2MiY!R>}GFS#yl9UcbPs|PomoqfGz zBg)`Lk3iRs?IGw;jE!#Rcm7UlZVzd-IY31{`jDVgh;xrVZi+&jSCE$(o@0VqBglgE zA3O96ZI?g`<{x(QosY!J4LB5HgQL3vRJEQ0E~2M^OF&4&4RHpSiF-0=_)r{Hyrh;r z?Qtz1{S`fWmAO|{7mkmZ5IowJ*HeZe_zGLX9^r^#%%gkCC?v7JU=%vp4&>W=a(mL{ zuL*H}z2meMuP_o1@5g@XQ3HF4f&Hw3jX1;JU<6W}jE^7m{D&^zYA}L`?oPEqAj%j| z7>p!?Y?GHAnGVRvUIKDSI7nkCZL89IN&6=ElJ;$cklGh<7TUI#p5GKEC`1Wo-(LTK zvsW)^OPgnWkcV;3>?Lh!XD4F^C#F>_txbtV1i|Sc7z~>##V?#q!3Pg{lHXV-?)#~8?xha6iE1vUIzwJ80>@0 zL@GW~sQNfa9Y$6DO&}L{^impw1sQ>@@*U=Sw&j*e9^cX1oBJCd0J8|j`!0&cI13Sq z6yB(uk+iVy+)oHzkT4ef|D;)*xu4en#ub0fq;+kgdSOICYc9@1fsiqS(r#eKmfMHf z_ylH;K7xBFvxprUX$)b!kkJWiBymIEMoHoK^WyKah0WvSM7zzoER2&|`x!2PTH7XC zA4UZ5bVY9vIH(A?3ym$uM!y$wx>evC1NtbF3uvS<=<|+LBr)i!x~K!jpglVHn%-;V z6|=c;{|b@t4G2hM#PFnbh?DceHW@r6p=5lJ6thQ%xI)5YH#8q2y@5%2B#*pC+IX4> zq=TeL;!){{LkgcGT`Wb|VCDASYou<^Ngkto5JKrku&=RD`T4CO+ZIm7XGy=5w6JTe zAwur)HGDsZ@Bt1t!mliz57Huu@AEC|gI1wIK?!t?wO1oah8vQCy=Lz8r95=IE32>A zhT)z@Ql84{8*DJ%nuKdmY=Kz@O^Zy!pONmyrr{xd@kCMEG)&L7X?P2s&5mU`)H1%! zx39U)7loVKdll!xeXP4OFgv z4idiA*B}{SkRS|NgVjVZk(q3K1vHZ@iw4pd4MIkPkS)Oo8BMs2 z3EpJTyiozomdc`mAV!0byXmQZFh23Ez6Q?Y72wFNz6Q>50|y~nfL;BiajwGEEo8j6 zyQ*scN_G_lF&u;p=Q!Z7^%n`;I>#J1Z24W!qev{jPxFhDt)A#B#znjb&Uw;TY6ti{ zX%p8lj6^mB=O+YkuWx^`)eJ{S_xkp45U8TJrUasN>%_oKY8H}d19c1Tkiegn)YSfB zS$Wu`KY)-dD^KO0~*af6TNq2Xu=vy+>G#^S4eA%aXKm=Ow-aY@kj z{<=6hknNsAq+%i&(m%xPyQ_c5sZz`wEeURn`ntcEeUGCgzQUK-afL5{(W%nEaSJDz zeSZf)ddU$M&{yYvT{d{H~P zF!B2%2#MHCSu2Hu^(&dKbcC89$qUS$E;{r;hr|`vc=wNUN@>}53M^3WoQ)_28Y(_>_BamIzVsF4s>we zNu)BgCKoz}V3jpMjHHvC{JI0gNIE%8IvYvb53u{D13huybO1RSN%4}==$lkXM$&cE zReV$wt>0Gv^rFAMj%gU^t%eMcmv8WZknE^Nfv)bskZ9hMaRa0>{XlHqlQ$a$Qln>s zvhFZ-8W2_p*J%ZkWW24UC$7`V@H!PD z+9dFTGmqTTG;pta%~a);0dj3GznE*T4t%CQMGj3NAAyf{?B64#O&j7gz|>Iyq)jp6 zye;}|0NZ^3*T_1LD=p2)0w+&0rI1Kw-LLEfu)T`~uolxv9lKnVS%2 zb*glLSbh5&Ht4^^Hqx;50Xc5z#s8hyT!N@w7|&?0IE}c?^wb*ZsZ7?a%hJ%qea{fO|Xggjk(n?2#}19zxmL-77_!h;B&@DTDXz4+}F{pk@=%y&&i zBKu6=8E9_m9V8fP4iXFq`KI1MvR2j`Bx~ha$R)KVXHX@9Kn?>Td1MMk$T#&uF5lEU zNN(yKD4yG=KTle%Mj0r>3>1Wp5qO3HG`#|#nUw_uX$**@(oMaC%uT%p(Dgw;Z2QF| zN{!E79IQrL(oMa0*>@H?f_(&0<#8dKGNB; zPhbuX)RaGgJx%Mutb;@}2idJR=-Ar=t#NpRvj#|(YCc%cpC4$6U!QYwu_U{|p-Xg) z7Pu*u)9-Z1PxTG7x1N&Z$DHIv{Q}omZ%XoOz(V$y4+$mPUyuT$Rkrmtr!2p%c0PWK z&a(ml@T?GC71ncN2lIZ*lS3`W`>pfzlrvcGC=6t{v#9d&?t3AA7nUjf`7)$EFh84r z`>AW~)_2hpcb*H!Sg7+tT0chD9vB$ubiulTfv0utr?G9KkM>oJA|enHI%G?bOEI!XaqqCNH5Z)s0i2<3)mIQ@0poB=iHm` z`}@4yfA;R~?Ci6%^~}!hJ_u5~K03J3Z6sPf*jDOfh#NIfqC7|`^)l0qo9-sdnS!cZ z%~7~PzH9)s&5KZQ{JTBy?sikX?ndRlfF;sJ9wPUK)b0tuzE*L}j=Qp(iEgZrF?daYN|UF0vs+r}{cjtKjP! zE~WZjP?_y`S4E9)CxJ!MeMxE_3Wq&g?|3jW^*$FtRPQ<+OOvaqi7_O*o)1}tQ0U8lXs zt5$oK7o88Vqn>i3YV`HB!u#G%R8KdGn^I&(5NDj#UZhzO5JZ|Y>0ib6dR{+YX>U0~ zCerk_mqz4`0P9NYMM}rgT0;L=T1(nTHlp+Wef?QXDFb|;Kr7}*NNq*A2l{fXTnS^b zY;|+m&tiEM4>dStJ8#PNo=8L=+l48CzCv!g5iE~_`u3ZU;`WCFxG#&}^?eW3F~6k> z=<^xAS}@S!cuHEbgACEQ?BY!sq7lOH7Q);bA*`)M5cf}H++wJ2IObi#Oy7NK7s^dTF5+!L?nDp?@~uo?cXiyz<**UJ0VBvy zO!&tV?m1u!@=p`-tDAtQP+Y@v66>d8ouop*ho(>c(II~WeW-=6l0pd0ny^k|!bUD3 z&zT)1xUCz^tEQn6Jje~^`iU$K*Uw8GWw3gK#K+BgK_~osqobbnoUf#JCka5RVns)( ziWLzuajRlArQ@ntL;tuc)^v)jij&Wq!HTt9-Dlti#kcg1!=_oQoKA90TB#YnV*0t6 zzK3v9iDS7{=YXx5Q;va;|(8BDt^(Uc*C6H2s|< z+$@7&XZ$O16&dX6Br@0)0mYR;WlF~~s6zi(230yo%HWwfbd1s~CB1j9 z?<3T0ty8uL8g+IeitFJAi^S-2^ROG&T1Z$9jlkN-p%th}4jtzE*5jH&V#7(xjgnco)JHkUtgy%u-(ad>`vItA-DQa{I_LK#K98k(qfi)mRCl=M zfhdXBzj~vi^`T|HT52Q&K%-B0p=n+8^yR*8>SZIj zRc?5*6_F7mt_b?P`Zc1uFYP<;_?S^ynS!BZJ zyW!k?BBjaArwgucrH((Es+610uCDkux{E%(&R4-Zg5)pFC#{P#pTzaP6t$pE9JFR{QC=q+lG&kKd8J?DW7$f(fG3n5x9Le zm(sD+570lB`hiq;H2xp}`_ApYG*{d;cK9;XhrmqYzJ#*SzRS(+zCyayYrfj*8-$R| zFM*wr`PT>{nO}R&*HZ8K$)2`pm))zZQo-+DC`_-P?EGA(=|_34|q0b(YKNWwytEvy*`B4Lf#jWyIt zBZ6f{1UgMO*n`j39236N4d;gYo(VtUhI7;VlEafNIMiZ)Ns|`)DafehdD5lD!p|)a z*|4M|VX>q$(xm0hA~CR}E2QJ!EO6Y1wa^SIh=_DpnhXbJ-o_|eEnS9#p>BNTbQunY zMU>qYc?$7mk^hJOvB>{}G-2bxP~fNW;OINPbhm-F+3y>oI^nH&YM||KV3HbWMy{`+ z>IV;ryB!#sw%Hd!B<`pK==YiM(5yNhiAhT^I$ghY04?-I6TZj|=Ye^<3E%97v)m&2 zliYB%V^-lnC4K9s5|tYapz^Tn&d@*dI<0ir$la}+F9NMOIX z85Tqk3GDu(Q0tV2hXfYiO$6reCSCUd6MnyhTX;q`CQyE1(w$;?Sg~wwxw45V+|8Cv zTl!bHn{IU6m*6c3j}gL;MhHJfU~+}flhUyedeJ`?La%O-U3Kz_@Cl^AN#Alc2~erQ zjO#`d$V+OjDf&3dS!6xO6#dF6-(vlBOu&48ywpvfJ&o~duPOAKMi>aEMYg(N!q2$j zJl%h5!oPCE`NJfi-cc?fYt(zXi(J8~>sen5T#n>K1-o-!)(!lDGHil_02rmk>VK*i z4_dhLf_UJzVVvB^O$=0Cm@zJ&0-K-D`O>gbcGx^6Y%Dz5g#@&Ri4Zn!!;@V$i>DkG zct6Ui$w8&i*m zP-bevA6)i5YkefeBxUPmBkc>_McMVU8+FT#y7vQoI2F~2)dR^Ys)y7MQXKif*8ndi zaBx`(j=F$6d99fFA&xFg`p{PyXUCbMo={j9NV429iiQK!*4#jx+6tUieSt!YOW9_% ziKTGq-1aWMsF5gd`mB%mdw?2S+GrT8^LHV@%WbZNdo`AIQ5iGrldqZCe? z^xxCdmYGHWSY|Lu51)}Hf(0pN+kFt3& z2Jzz-m_z?qnmHm(>f)162K}BJUZubL#&=a62D3tO_ZBFQ%ZCp3)c@S{E%O|NAX9gh zsHZ1%^xv-weCHdWKJ6*Xj89w`pvHZUkEq)cRm?Ce9JlxhP4R4;~Qt5Kk`>fTFEEWrAMyh8+lYTZjtQcQ)vO<;un z_;=s^YEmybsbFYVxU{ui!;UPjp~QhPFlJ7B+}JLE`WmaFy?EJ2(I{H>^Cg2wu)kU$ zP2Dhvt_q?b45F*T=WoO3szFq|Hz69SvLS;Ue@GSSEuai}RYa481ju>yS+}>KGSQE^ z(R@qGGra{BqFq#cv|~VT=>~mziz&ufxMYd}KbvCAFr3JL0S5F-dxsg&+u*VVoResm zn~2dJ5Ohxb88@CUY5CZ|>!TAN4ph(g6zZGoz1439+)o0|%CA>94am)~2x42LSe?=o zqaeI&hg6Zgd?MA6Tw)(FJ+@Qe@Uuxl*esa!HVxD#2F$OM6AJ_B*oB!VN?{WQ6yTXu z+xm$Cs;7F7JPP! z<4y{OcbVbYkzY8GKTdtDil{39o zA)VD0`0!%K(?Y?P+qeX$Wx!mjYvZfiS6ZG)f$emYg7I}{o>=499EUjZY^^=K+J$q`2;+ zxV^hnHRebtP3&K8EFC&1tP|VI(vCn7N~>4)7r~LVwbvfV%JdTn)?zv_fJYd&7+e_A zDUj?b(@*Ki+3FGWd?bl%f=?OJo=mFXWmEEDVccwz$qosdkqFI&N~VISfw5^2|-{oe7Y=V$hIck)BSbpXEC;# zWbpC{pzBwQ_|;I8lmfY8^xuj85o%U{eS3#L8A&KdeJMRqn#%lqe_g!1{~@)(q=Mh1 zI$7R7UF|m+?lnM9n;hZi!#vHu#jBbhnY0KrX_r;>k5<2!w6{%K&j2YT{M#$}TdJ4= zA{_WlvPqTw168#FBAZGBxDDxoz0q>no)RI{f^-iG;X?)p;gfys2Skqk&km3=%%o65 z5l_QE{4DQG1I3P?EAgI61H@2Ly=1U~fUwaB!57KAE(tw5K$v?r`aX5gpxq&aGC?;v zS0o|NEQ|$B9A-AGrR(TcHT;3(6b#yC1vvo!$ZHlg{NLVVOQN}47BgNQ38PydR72C%+?%&<}MY$xA&Q(?b8^9+pgzHQ*I>-iilly?wYHuSeuPY>cXsA@4twp7si z8taY^`3I=Jh@o$bo`|7ui}XQag*w@UPk>9q+(S|g22D}2A zkhA_x8zh#$O~Ju*z2Y8pFg>P;zqERLkY3WnU)P&P38a%f308DH%9(+sx~L^S4vK4H6s9pMag(I$W}z zS49Vl5oe*n($0$wj%?>|gQ4AZBicC_aQ(sM`h&}6^KiNTZlNT&W>b9!oOB9g|DOE) z)gyxiMU%mdLg!2jMC(bbgUwY3gQM+WY2}H7rImNOTRdP%cnnK^Cy1EOtzNjigwf6L z>Y>37DsENZFiL4vS5P8qRToiNWZVx4vk~T#5%tMNm_Wxyn2CgrKj1dfKmLH*h%CrP z1C5f6`~Pa{p8`)#W;1_DOT9Z-TH*e|8UZsj8S<+S2kWc{gUJ?Bl702paIvU|$xZHa z`1<(`RYSAKB?u3%j$q|>V}`6)5@{3)x80{;TfWa*cXuxKAh|M=VsUVGF&5@8eLifGcLMqL*klV_ab{EXHQep!QBE{p z-Z!0@%jJD{kpnNj4N(2&B8&-TGGi+ebRN{V43R+{{>k-1m4Sgf8@xQm9~&ZLJp9}P zVgQ*=D12fh^08ra%dml;)BR)8!B6QtF+=2tLSU#!G8Qh)DHUOZLl@eRpDwtrJyi08 z-_DQqQ>YNT?L`AA^|(Lsw!N-B{pF&c9U9U0a9so)PFUO1U)mcz#A$qYGIZ-@!4FiI zp)$o3ZzJomCuu3xaVVcl(BoG?SobZ7t5|3-n4)7LXM0+CTg@3NWBJUXGNZtylL^)u zow+oSY^~JROQd+FOa5O*^6zJh5rHFap%obrLe zanay_OPAHa5RP$tYjEI-Iq1fRtPRwxe*13WfEB|bmUIO4;!q3>)e9#n1TdcSk$Cus zLZx9MmvX~IE^yr=3Jq{cG#$RIH;kt_8_`3Ei+8!H%N%j zC}a}A@_f6@U=)U?w*e3yol(dHD>|bv0eL%hYoAfb8YX8H<}yE-A15GzVZetJ&`fxK zyc5whd49}6tEQ{Za!ArVKklIt@+h?jEY1ALhZMZ@i6P2STA|Y+g&_mwkOEwj{D_nM zh)E7z<=K~Uqt&fJ-hw)7gugc{LwUJZVWj`6x{eaiX4Xe=$$|z0S+d?V3daI}7$(Zd zkEr01@%IQKRdf5%{&%6a8uB`3MkwWRVMFU}fies36jgr@)04*dAIBBt6shM=EQoIr ziSztDOzE1dN~GiUAtz-mJC;&@KNjCEPf5zOL$F&P&Yj`@q+LAxc(!$4>VT;dI<|woms@#~~h0!e=a6j*u5- zC)KQ4TYvnVzYXq!m%Q-`w6`TOlqQruLYmOL=lwmc(M-cOcEd-=M@7a6-EM~eDJUH| zdD`t#L0leA-y2aG;KF-kH@++s(v@cVYvEcAqGARwy9~G@BJ<>mXokG0B5uv|2V#1V z@VFw5(!U-fbl(^J6}{;MRVt$S2&stX6y%_HE8-HR<6e82{&7WImWqI&v8dg{0^@V4 zESK-*`2Bk8Y=5@(qm+(K@4ttLBWSv!KP4VEt1K^~?cDDfDYDxz*Pp8YI$(Ch79O;B z#EOrUWoKj(F8WvDMfZ%fi(Z%hc}D8se18@1J@A;K-^6|GwD=r0-=B`lyMTtZ39;U9 z2#tuR{zzGT-i!d~h{yjd@n-R~p?@r%Hb{d(tu&ey4W`1a#fWY_`;?ims7jy2E{m%4 zt1&|Vl;!^hx3SpS7U#yBK2pal^sn=zk5u~X&f;}*ZY}hev2b~!O%_`$(=7o}al@Ur z*gsMsE$`UW%Erqno|h4KqaiK|+01GA7K)cgQa`R#a3Lo4RftbKRjF=v@j!E(xy0X{ zjQ*)YsJ^_2wJT)*NV%h{@lv$K_k@ObHzR3y1Lx#Ye+6ZIPDIJ-#z)fBJ%9_P;rc(l&?B~TY7 zXJoBif;IO-2UM_Jl+$`|yk*aB^Fi7|q&*cicA7A}1-7sIVsfhyJ*5guasIC7IQ{4wId zYdA*ahIoe8(WPg2eUOd>XUC6p<9QpWcw(uLnl?tHS4`LXHc;II(a9a_%MG+82HGZp zrr_tyb{l5!Gq@9Zz#TE*Z2He#dItBC0f%_*R%4~C@bV?=#m5S)B`z#%-ryzm*Zq&F zDq}@#6~>C#9)L^L3O_d>!wcTl(@Hk7#zu9Ha3?8NK5?u_jhNv* zUZm#!4)1L?$x$VPYN?>33{9odu8rDhaBVZVat$u{rTqvm&$h9$XQOT)AiTj{HH5#I zOyTDp8;@RnCs0?JXu2NaFN{&}@@7pL@b4SdEh)N=TDEg+7#Cv3g?w6a_$m|aG%Rzs0 zympzAFDPfW#_QZ);_*zp2Y%w{8LxL#560<#{KdWydpQmmeH*k7Iw!BGS$nLul^Njl>1g)ec3%|OFul4Lsnr$7QS zt$ozrlenP$zb$p9T0Z=i-y9>ub}k*f|~_btPcv8u14Zt|PILc=}<_=UE9XK6jgOW(&Q;vaeKO)dIw zZ))wwf3wzGK2kQdn&U-r+SFN~IC@c8*S=DDJhV5u|nb%Kp{hEB?WF`V?iv{czLq7FP5J{;A52edPnc#%RE?89jVa z-kHK7A69Lk;ccxI5}nzmEqV8OH~zNE$z2^|Y9e%rF{p`VUfoj@LRJJuPJTiESb;pL1_ErSUwBH*%WBPSX2&m8wE6C)Ih9w)w(8 z(>mfNRR>L}$ff%JD6BwN@)YRfyDboyO@6K9eK2ETj9h03!-N`GxIeR)-uIP15gL@q zWzftssb#6m$O&ZVsZKR=PCczZ~Ut<^>EJI-s@#bt-@sm zT;_093g#Xzv=(`wJ#)9vz>%TBWoU4(eGA(GxD2gMrco@mjQ@iJ znb5m=?{dZW{)wKZ=tZoDc;W~DY-_8Al0fz()J9-kQL-Ms+@8|xsoZ|&W_d*HI5DW~#5~4t zgz$|rVlTu<3hs44Z^rnF3gc|=-~8p&w8?sM09J@AfAd%O?xjTX)xH5Tw|7plC_p~^ zWnV(i{@p)Ay)aqE&@~+4?w78d%;P9>#5g(uN-|EzgVau7ra=KN-!pbn;<&{h13MZn zPa}Ewa5;_qW?G0CF2RIb3|ww8aCx^BF1MKNlc~i>3t0(T(zCt zOvyov&r%N~fcAPCBR%a#wuVa|S9sj$zF=jQIz=Zw6`u?%)?gzwWC}0D6KR?V--k4_ zt!)!Aa0)M4Z5FeH1vHwxN?J07zZ~q?4HB!SU?#>R66*CSvS0$99Yy@rk&3qL z)HRff9&N4Q#(xAMkX>}eh+KIm?pFkf?0=(wEc@R?_Jz=&X_~GuMRwxeD;SuKD#+;) z6)0%obEH;nyL)@5Y6LFOKg3uKz22!#(aKDfq7|I#7LB^X$Atq`RT3hpFbPEh4|>Z` zA}LJasZ^Lr_;^7EM!!|ajecONl%;S)He8lg2$Hh2rhi84`yn*N3 z@#-UQV5`+HtU$e{>Wn{2)_bFP;C@nN5fEP5O+Z2DLuH=MsvWGa;N^i~IeFzX06{!3 zjKS4#G@QNRCVtH%epeF1%Zbmqi4jDJJ!7USdI!R~=_dZtB>qDZlNTFq_}*FlkQtH? zWarG|Sy_roR;8v1M$KS+Rc;dutOkFNp+b< zb@;e&S zdM7x^Cz#~vBSpnNaipFW3VdSCrm}J45iRA+X?kgVV6lQ*t7KpYHq7n#Snn&~X22sl zu~gtRMp7rbn29EP^O@6(_HuASpfmAe?d5L?fo>kp2Z&?s> zQa%0e3&EQD`no_N-KAXM8GMXUC5Q_1A_0-I|B5=IXGe>che9#GPJG;SHE$#ht1#!4 z547^Y-WEjCN(0m7`@E{8BSj``&xSmKtJ&)c6{-0^#ReI;O#Sg-JDv1lFiFoZ87Qb% zRtW?wJl^myY$Q!GD1C{!Nyc3O`*8q8R<4EytBNohPqn~9cx;SlblP9}>)`!8Zeg+0 z<$2K!Os&sMiVh%(ErwqgYKFU3;2spJTSsyEl7ag^1+`mvJ-)2!Je@V2us>j|Ce05K zX&CF@%$cwnnj-o}Q}m6s(^=Drd%;qgnf{9)8z-qct^0|R#cI{mwVFeOO@tU1JtHKG zLU7YCajS{_U0AK-j3y<~^FNF0WJ6S)pOZPnq<}KYq+onAh-H17UA7ZRnojFw&QGUh zL?zSxVf1AQA+ER;=wRXYU>n?S2B-gQiJV!2yBVAA*a`t`?z#Ipol+*)7=sGK+uo|^ zgSyr1LWvH>FAYXXiB^~UG)jeJj4@WHKTW*PlueLQC%W-865Yq~tO`LA1Cz~~pCCeM znU6frRjuQnH82%INO`2kQb?(vPI1^LtiGu%6eqTi7fS&*SFrZb=bD zCCwK*-RPcUX2|lxJ45HjVJD$RN3?(5NkB-V4H9P4%83s!BV0ghVU&9sToE{D*d&!t4e!DYy(I9g7nzlQva4v6 zUYtQ{n%a6(*B~D2xdxq>o36#fNO#txJ0%dV83?B&o%+sX2fv+N%%gz}y*C{dNC)%O zOc8CIKHFCoXC(uulYS}O$`SRr7xd&YP&dDzTc5_`Ys{J;BMn2|z^qBq zHsjYLh^P_k<4*@lSqGVtA%oP0d^I^Z8rlE{@?``08>SY>2xG{j!WCSqc`zeTpjF7B}Xg=X2KeP=rz!X3v3>7ps)Q#-|BXMI5 zqLNkjS-KXrJfahj2;sI!%yiNeOuDl~s*9O_R5Iw=8+h@fcgA zrDlsr?IiV`B#iV4=1NFyg0>C;x7f+4K-q(-7$wMTl%X`V*a@5`_p>px_3cyC&K#Tw z;g-iJ;o+9LNl->i${P$yqM_Z8LjnR`MtR;rX%pOV2)L168;eHzgM*TG?w$`;r`fqr zkH9)8Np~!Qobt^PQTp*&205L1EGC}5@TsLCUb-`AtX_epcp-&?B5VGB#1Xn?E;)jD z;%m<=7t)&(HWiL6+Ds9|Qy{Ekh$-(BnF_+PCS@u116IA05C9nFKi5qOI4pseh<|-5 z0aI*@py0XiO+i4%)$$Qbc@P*9c)cGaaF!Azt5Ze-*Ic*=VwT^zEGdX&@Gl2BGFW{u zf#k*1IDfa?NbHUgK_Ug24uvo#yDx%_W$+LMVW1it*OCS*Vk#0yTM6YPvgU^(9qtHV z0l@wc+^M13fQPxf5yUcph6O~_POVcBGEhSTS$KAaxzga8Jy%-7E1Wpk0Y4I+G^!$qo5D9?JZ-YyBgjY&s=z$j7Bx>t+r1U^ zydDA;lAkI&Pj)}yCn>0!^JK+g$2WB2NdT%DK8IHG9ck+kcIK2AK9;ypFozHA7;#8OE5TJ#ydOF18yRg;3Ke` zqD^_k^8;FLw6m+J(&md4L1P1Cn}NnpE#|Qdc|rWUzUKoCriMU zfJ@-um-dt;B7~p8-Jd0U^S1PAW{LD{`sOY@gX@TNBt1L6j~mZs10%CUa)`Gj$8WRG zGq`3MT+0nE_!-wG!v}u0``(ua*KR|1*3iLEeNA06eC+t|+<5L}cbHF}P6lG`WR%&h z*vi%dkqNw9#_|iKjPNtIT5de|vBnFejEJ|($eNl+eE=(-&rZ|UJ0+9#nY{t8v$40g&+NFWk75e~Q3{ORJ;ymfWt1@87Ra7sgDl(xvS_4^>o(kB-M=BeGlFgzB+>`!I$`9}=x zyQtq=pru17SE8(Yz-LD|NW;H?@TYA}bpi2YhkTZ@NazQ>jlHG$g8E?r+ftJn?>Njq zZ=zh-$x`_iiWRlBP}J}R7NSDJb}hrD7omm+16ISsB{jU~CTfItEfK(a_^%eo&dukL z2fgXjaG@A;*IQ`zlHd}8)&@a~g|fR9S}5C<&)h8%FqAE%g=PzBp=?(oT(*!Fx#vsI~<8#GJvpjmmhXuyrpz~$`;xV%jXm(ffPLo+xyU0pC}&KNXsT^skW z4Vo|Vpt*UsXuyrpz-2UWA6gxFK*41+ry|gl(_8D8o?>CA>IRlEX+;X)p`}GqTjbKt zXC02?H<<2U6j@<)7u{vk0WSsxmzz$hMM}TZur#K#MS?1{$f+^j^!tRHl5FXmxCmruspc-Ci>O>>XK|ghAJuq?jVSlT30EkHFiSq20Hc;A;lK zVhW?s;~N7B>Yqir*Tz5{?<%4fb@eQi+unFn1sBVClE!tT?sG<*;!#4G5BKCyk1w@Y zdVFXx_jqJTn{TStV(Du&7EA5HrHwcB*kbAJ4s(a z83JcGYQtfX3HpZ(ab@)VZv|SbS=q8Z z`g}IU?Djqnwx**j$(CYG&WJFl*0se+ONySwN*Q#K6 zAwB+YddP3k;|KJOKZD8e?f50w2)C8MCwh(l)dnkSX@g+Rt>`Dnls5mK5*B=DM$4dv zD_`#5le(#v0j;lqAOk`K*@>I%#%?}#osmDEn9+iGzJpjz)ZA-eY(tRA%ewvTlA)v9 z|6jm28{kNvJ`Bn!n;DP4mj$Yw)fa9o>HB|nk%PiU&cpF_xAK29t?a`*t!&cqKw@#< zi_*$k4IP}(r{{1v>v!OIAi?`1agfG#HJi`+S*7*uzfc`~dBP733MM(@GuLr(RT4Vw zgYmd9=pP&oW-GHKut$#p1YVM@nilmo^mNRHO(dGVC?hpoKKh4i^C$;4kw|+{M(dv7 z5k6WI{L-KXeQ*WrM^2T5Q?Z1x{`l+r_hbiR>(^SC`1twt5Nm zH`!KRzQkE+HP8pI1)foFqtrM$=v_`Ck=^8dOJp~B==H#T>LgOom7tOFyp#O*^*~RL z`UC_tP<{-MG*jP#i<#Q`SSJ%En4g7*SP=`_l&Dawp8jQ^HeSYHnv9Ea$#@fx$CeM4$i6Y|+o0S?oz{1$ z42$E4x-NNXA%U$T;zwSFw@ea*ZzF1f=cIVuNs)fV;Nw-N&GD=gPv>HA;X9$@ola2L z=yEw@Z&6wvU7gPni}<`%+| z7REM9T)%Hv@}6-&qG(OAHay-hhAj+oV&P3%Cc=Zd!N9|2PF5)#Azvx1K)_SV4ngNk zDUM2Mi$JuKop6#(z5yW;*X*e{aLPQtbRyYm2RQP-!pqtXMCEQ~{3Al33o8o`Y3=3o86hxf7;X&;Vz`C|k6#lL&>$zmt5>BJOtA3&HRyC%PfQ(@)NV|C zA6++!N>*K$OI2kECGT}3Odh~CEQyHsilD_rkemszwSTh(EYWc9*vK^eDS#kG`zG@y zHM~u9ID&|DlyX1a1*T*HgOu=kAYi$m?mLQ0R$m*ycbHUX?vE~MnXC)x^y)&vXiJhe z5841$Ty)qETo`Q~CkZ2cSf|$t)pufBJF$E}U8=UgkVg)rx24H1isQ^0MbXGHe1%99 z<|NfIuEEPW;j5Uy!OQyt>p4NBDAyR$JwggExB8>P$d0|}#BzK8Oc;f44=IqcvJ#oa zY{EvBoimkD6~)dtsbdW=6~9uZCHPrYS!JbsQ^9W+vA#FhMy0HjdF3IDFf^~UgiBw5 z@KXU*7sCgB{s0^dKb@1Z8%qC`B6^#Crc2Mbw83S^uM3M$kBig0qJs%)rvV2d8(iy{ zU_W)zfIDiyePF=B&)~i?%;0Ao_Ma;wb=bcea5jD1DiI3&46fWN5t<#JOfGHF)2X&BoU zgAF|R5)n6=CKGkcKtr?*ZC417$9!U-eQcoJGSJ|sMuXgV;{;wH`wt${gQhjl=1x&< zbqmSn4v|qSsJ7Zk25{Aoj2oLB{g@lgy8mZai`)=zgFBNDoS+7-7P<9ZEpi(Nm*fUN zXET%eB!fN8a%!1Dm)5XUIlIAG_{Or)*~wmalF?GZ24}~fbz|u^lxqeXqHSy?$^{3g z-wn2(4YmSn1RMN}EpCm7fc)4IRh8EKU(u;@YlOJIA%>qfC!R3O?D)2BJa10)U}kwX zCqT^o9XZm#jayK->fq%DGJB0wf(>w~8_zxdl{Hcch_?$`sY-CH%3ULsun(B1$G>N= z!Oy!)h7G*j;eUWXtiwZZp7pG09Ux)R6k03D;AdokwSvr!ujs~;d6BBUR*)gyM%LqA zAZxx>kUg#bUr;p(SKSLV}e;711a;=O-HvJ-(o^h=)xJB}N9#M{8g;zo6QStQo=WtN!MJuo%OY!439Xbd9|FtYjZhlva(xehjv zaA7vONf_Ik2Ads!SmLd&=m%JljII}~sxBCOpt12KJ{TONzBBl~7JTXsT&hv{rRA&> zIgpNF=C~Ih_nvHujNC~ zS&v>P@*BQRTHJGR2_O87Z;{Chex6{~Gd^ebLziS|Hu-*+oS~gI(Cqk++;|=*zcH{7 zZ^P=C5*(^LSVz#u-oFM`4DQ1vSnxBfGV4Wb@H4Dh>q%@5ELCH@bOf9JNtd2+byzPV zv*UZa@r-N4dJz}mZCuYi8cbJn4Xzh}hlY-q3@-Sk=@>rn^WN>=JhFbf50QT|uRKE}Mbg=70|3{F-$y+ z-=Y!j!o&9%V(miCd@?u`559tjEc%|=z~#hk^xz|(iwL5kTEm1FdC5LzIwx}MWB9`E z$s5Gvsm*g(taE7*!fU?`E!JBfYmxuvF^oR<)CD@>_eT6C5y5Mtyq)c2Zch)zw;XCEfMayM+NhtRaS*yAm(igWdCS9TdDkQ43xh1lbmp zfNAGVe{EH4lL!H>Yg9aO2!vb7o9OuK#8Rc-ibA#>kmF)XOQnfKt- zlP3IexTL-4uvtb=_<6YOy;+7!_<3AHIv$sTn;rFewav0s8Vi=r4lo9WCSx(B%-F2E zj}1QLtw!{+W#!xK+7##kIhb5=e_O1!cdZ)g)8m3g)ZER|!Pg^0>fmdMK|()d#`Xkn zZI))81Dw>i;j%r!8GxZX7*8QN_3d*=7T&jKklzel5q%pBxWeFa<2P~wYg5QXs%1Uc};Ya8NtGO|D8}dy?b(S6fVC@d<*LtvMBM~ zy9Gm0B;oa~u~T*HTr9#KMoyU0aGlNMx6I-RLA==MPCS@`CNw>ktba`>h(0BX7q4i6E)3JM@q1>yFe{A@nn9h*h?Tr2*eV%+>bw!79ZycgnQc z!Fb&$+LBIbTZinke0ud!yT)R+y4D~~Fu+kl)*DojDWTcx0U z(=ZC!(H&_D%nvTb#pq6wGcA6Xh)a`J}y{>F(= zHC$=OS<@!b`K@AX@Dl~KCa;~A4GoIo4QYcrYMbDWry%(XK@hj_DoiE75k^`wz3D`# zjCOX0{ulNKwh4BdzaBI4tTDOhO46J=Z*W}N{ zK%qU`xWgbz*U;dy#Ir%)g>5o~!(~H*?>LSP`o7sFqxcVC5k88qB>#UK#leF|akxB+ z!(}@IxIBuVMGcaj!D+a#Gf)+`%QTX>T`<5U8v|8;yG$c>VKPED)~M~WMr*kJE`fj% z0kLol^rKLD1uvTyz-1hzw>vl-^8z)*fEl=5$1IKWTie4HN6#5RQ}Y0takqfLlmQJC zK=86v0o)zS;%Xr;TQ0mDIl*$0<;Wh$lxDjeR0bIpoB$`9k&hy441`jzwo$=HD5wr4 zsVmHo8Q`o&?qy6`t7_(pA|`BDfQEu8v$nT)M4Keb0FpINnu?0XlV<)M_{U>Ye(blB zVF4yhHY`|5-!slGJ|*|8-6)0ya82?OPVy2aIT;qv6N~fb7Rj&6Z3_1B(AjlfJ-x9h zc-pG2Z-0np&NrP_-U0gpdJK)t_WExMmeBRL1Ru5P3k^-bUeMSu9^4_H9s3$Q*eHn;Kr zm+VYjkt+J)_Fzk06C9U;NoJUd@yda3VOrhketk)RGHVL?Utfs3H?x6JSJ_g7*kt6y(hR{)qjl# zgnSQxKwD`z|Mi+~`c|;7df+wgxmIn-CGFn)MN|?%><#W!-6fGqeT_#E91mUnZK#$` zTj`0{AAS>x*7KGIDq?X3eARW5RWPaYSg;Qt&{#k;ptT_5`jWWn3k3o@9?amU=Gs_yA$BZ}R57jgnaMg*4;!5wrcn5Ez{qF*8r(Ew-Fkg!|Ds}@nEke&v(5UP^~ zxVAf`kvxOUokmhg&pr~Iq6;x3wopqD zH$1iuiTv!bV6(t~t@y<|Wj2C~88J~e@#fE`2OSSa>t?@%s_C-0?%pt{p+7qwjQ#&| z0k%XvzkB}tFh6I!lU=+#45MH0FkFH9q>Q7~CukT3!kCl6vi>>LD0mqDgerrF;ZLw8 zqhT21C|}*Zewto#GI&ni-bwl#dB*bloqFY|;9>i^Zib9u}I-F*vbGgUo7(SnIJ9}X}rr^Eb=&|O;(L} z(O@OkUk!HY^ntikWYFkP6CL}0@ELR$>mM_)dmB*xQsz#(!~*QV`*=+f)x|YA^8$<64QR0+vg6q6CVXzV!UJuGK>WUkItiai3wOyomeDZ*4a_7GqU*j z*X@$Z0iSf(R?BUI3x~v1#!1}tnE1+86;5cDu&)d1`Vz(m!gFz11U-NG05s&V@vxIU z8=1_kQwal^`xxFCkwmq~Pz-ma5l}i98l_W8#8+1+0^5mciJ_|z7D^E;Z1;dzY<(6A zUNmJ2;%^0zv9Z`84$JOWwzIO~<{G#r)wRe}4EH+@Be;g>P9zZ~fq4FA1(kuz zhFRrwt{)L(n^O7>X$nb9tD`%{$K#44ZVuSv@W&^6O21)@vRX+hGE1_NHaDbrMHr+C zUf!b^DjAcB9D-7A2XTjoiRT@Pxy(s+D8g8=lAHj=lr#z8;o`nQ4C@nEM)t0-gO@jB z&I$JUt74LYotjp@(da2`gmsg%;-Y?Oiu#9(4nfSYpuSNC0wIGc1aa#RQINTG!p7*! zkse?ts~wSyk)}`(uT5;CmJvjBewE(^?ZSk-S^=fqANYXi+(B^bc%s{dOIBmfWRC@c zlr+5f6;1%m_gP;t3F8F~;q^esVu)qw+#03>|81}q=ODp~Fvgl7Vch%?#$fN0F#1%c zR&};7+TWWZWjk5Z$Yhgi;}T%XkKo!gcs>~+(z6goJCWFCV^rv^MCKso%a3PE9QD^3 zZ|W3oaKwPO5fLIy&|!%XM!QF{vC;D2@`iy+G=(8r7YIUf>xO}apXG2XlEyhPZ2cps z2r+0K#Et37?2Uf~AH#O`?OLYe#_pCzQBh~rim$8SW!|-kBAL7l_)$(EMrC$eNP#Y^ zL3}l+v^YholY$%YK;kDOxy=(-G7HbeR;W76ahZSyauAq?yLfXb6+7CXlVN3rL5B}Q zLI*E5JLUrqV>|O-u$|m3bq^Z8r^imf(0+HJA)dh($Zir}2PL8VlU3Xv(fm?kTK!{i zK9?_)s%pS|jx@JctA zp;A*3P1}?SbZ&Q+&kbMz` zj3%~E_K3I;&*Hd8w|?A=V+gwalfN1Ta8I#GN=1^K_r>WKiiQF(!zD`Y-;~tIFVP$7 zZ#^tY==%)MAO8mvZ)+x&xvjBYO+l$l1a)vsz!*vmCZM^uXgDf+cv@G@Z0Cc zyN~0Z5O8#B{L}GxN&R~$*E{Y%1Efqjq(gUxl}&ub5>2ags5>LmdU6iS5d<$b#`@p3hgt!rQl<<6BccHoVwM zp{JnM=KS{Wiw!`PV$|9WM%)P74c!@5n!xCp{I=3bhl@6{c1oh?w(&eq^USx+;4?{1 z34+P`Mkh>qK9q^przY}ij#QJOyCH=QUFD8*d4vxXt-H%ox=ghYZmoYuYPIM)Qmdum zQqO>&8{WO|NW+7ltF;mQrdk^}y+aZI^rvKEXXKc3_+k@D66@LG^ z@qg9|b-|5sDFacXh_+!}x<51r2Tp4BHxqBU{ZgaJL@5e?1Pyr+&5&s@+C`Py&+5Fd z^zF2mSp9ulEG?g<*hh8rLq%#k&9Bvd5hT)EUx%ev2q3h0#(?u6-9FKfY10c%E)+ES z0f2i^FvDwOo?bW9)7rt5dQ}P*t_JfvF6J$U-zkTmXUl%m6t4-^GoKc4v3_W<+Ufpq z(kTS7YzyYfJPkkJ*O4pD2wtZ}s`9x~?-Xcez*ifD`m2Vy(kAQWN}Fs3m)a!!T<`6L znWtW^U{w8bWi(9cTBMvK&|bMBP&?H$0|9K42blz&iz041VG4fFmcoLC3#BUu#6pRg^9IoX%ukp7we{W!@%M=$Xv>qKDB{M-F=(9gdv5}Y$!-4uF;5!O zEVRt}Q3}iE35^cLCWWQ9>5e}cTCQLu$j8|4ImmoSWrcXQPx9f8R@y8nK~V|)plEXK zlada~=F`0gMcqd(*#|v(P&S|b1GZ$t@Hoy$8iW$+}lh zo*rLIRXr%XJe9zhEx; ztBDY`=n$Hq(hZ_6f=FMP8y~G#rea@>o<2|`4W?mvFpa)jOyEnHgzxoiEMPf@jqQpT z)1x{;q0e4^XS-t_e1XoPUTTZM_o|T?Tu7|BI$(gklLy$lcMA-RSXeNiBw@kp?Ha00 zE(>dY9x%CGLsQfr2Fx!83|s;O^|O_YwPKM&krfwx=q@V`d>G3wf(735X`z-1E@S!8 z#lpL&<+*8<(`9SKKzm601jP@E#Sn%EHt9MwGv2R%7#OOcw{{CP^z6sj#=DUI?xC(& z9RsZ~@acUBYVH}u>e3LDqO11^4ZsZuh?W}=4vA6M*h6COfRnR`VKrU$A(;$dflIui zFH|UvhR-8Ev~>ugk>A2i70ctR)3aX7L-H{A}g;7<3f6;iDV4hY#lYJs7_A z zXK?5RdCMXH;Lvy+Bp$Mc77$NVEMpzcL1ZBd^@gxywE(-+cGcPj<+gp(P56dFU=Jv6}4LeG?FGG*>t>l^ZN}!*2ggNX8HMO7~ zF(UM+cMc_$_BQ&kd#?;#Oa3~RXSB^!bd*bTpU&D6U(-7}B15)=YI?-3p=R`tYpB@~ zuAxHcl++qW9Tq#N?W01|xTCJFR)D+X5o`t`JJV6qjwo%%v=F;41la`~dPEA?@yLHG z;Igry8fvO3;MzI`;`Fa$Lsh*)DZP}k%Mmg3!qu!!0Xw_V&?Zs=yF_Hj1zd|DX@W1) zKQ7?Qkp=90L<+cUYka(nNe_-MR$Mok5US-4Ov@*P*3q}VU0${ONKWQNs4J}t42cJw zGhj^Z@e{6eoiQpd9*-As+qgwk$qE#FOjqgKd!W?X{(Jt!|J4-#LDA{^9|@#6BY;=Y z6?E>K2%`NF1RAIXtE)od!fPHN*q5Rb38 zAn;9mUc$@G{UrF2EgDWX6D8^Ya8<-!bfHZyyCp{@Ep)Jy7G7SFpFE=Y#fx)p+S8Ku zI;YjqjY=fI&W5iK_+HYUmb41_vem|Jw^5uht#B70{oii3WF|JYiyxD2c6DZ`uJ;5b zl?M365qVoac#JLgvk%IuIz=y^6)Fw`$IOHAeN>HOvgoaLjC&5Uvn{{w*Q;iS-d0Z> zljYST$7CRfOQv6{%P}zn=%`ztz&OkA%cp`#`0BSf`TyHM4kkR1!{vb-?zeM8V-;K) z$gLD&T1_=N7WTgUVgn@00D;T)UmFb&XiFIg?YIvGe_91^zFR``rQqM+OF$B?Xs_!Qe8k z4;)-B^n%;nyz;|tfp;Su;$0bRsy#qoHps}f!?HN`vV`! zMrL4dL^MvGJRxqHJbgo{R6Kc(KqfMB;nnPO@ek4@NmgJ*>(SSu*~zCb&tSfO9S^b< zm=CT=J;h0l2YVSdoQSwn|j3bj>R zkISdt7AmlG3DEF~mfV*@Yt>$fFJ|KDQ*iEaW4-X%^3VX{$kq$vSA;fNo@+S3yf*|X4DB$;v0t3omglCpHd5P<2v1hjO=+x44#m; zoHrX-uNYW+3@n`VB3MU(1hT=wHwN|r1H<#!C&V7%qCsS+e->&5W;|F!aq%Uso01Ea zW_DII1te2En<13ucvgTQ$i~HX2z4n+*3q?3%9Qq~aHAy_Ou=s4gmU*8;RgyfLBQrI z63GEX8)EuN5t>OciBlkb)@=;`bC@M*cTMy%hanptyvp$m5P1;5e8CfDL;e883BtDx z!ZS=Rdoxfe6T**$At-qLcS{nH>46RKTLaJ}D6DJ!9G?t*HUkXmvpvEwAY4cjvP}VvC}D&b80GpCJ&cHGKNz6|(E~Zk zp8I9alNT=+49G78B)q%~_*wYD%R5K~PRkCGEkJcz02*>t7V|UpXZX2e)I2TvQaiq( z8&BKo`uX1sG!WQr@ZjE157qs&blKF?(q)IhC1ol6giB2_jNoTrS$TlXF~Ds4O+t?y z#@l~mHr#D++0jQ_cF>Ym*Dv2OxIo~D3|r^})b|G1HwM^W1{nMdtnhmx0r(kMsrMo! z7JN@6X45|)^wu{5?2-3GV2EyA53fAA+|u8L73JA~4KBpn@+x{L^t2lDp2%y&dm^vr z;gY=IXIP63Blvk!VFUcM;bB+gS_8|b&vog!BHuH(5YLx1ghkUWD*KO>Ptf=0D=F;^ zL^imx$3jD3n7TTuWU{*FjPwJ%#~4-87&YCa&lbZi0c9zO*SDT~&KMQ_{T!xwx5$QB z^NfrrCRuYQ88PQR(UFZ@m$}GTASh~TVox1V+47y*Y3$sKVJF7N+hhU3L|#AGa=fESO`;yXpp z8y6pyToePksKvLO#Xs`eYH|8+tHtlQtB%W929R3(H9({L$M>E!$9La88+Lqm4+?fX zwhUe19j}g_73DZ*!7J#ZCqy~k>~d%%44nygc2;bOV*Ne<3bVY~hG#11z;4u)P#1Lr zm%SB=OVYO*6ui$_mqf`r2!yQi{uRO{mG@7?BcUG_C$7pn=A112z2{`%PcCVkE1eUS zYWZ`by{U2zQV2Ve8xA=_djkf%l!eP{Z0|Wyc`F34`lj$XQKl9IXVQ6hH3&Kif+8J} z)8cpdab-PuY=LHKn1PaUPLzZVkOM9IN8BwWaArtwd36n!&*#ErMD4;5k@kC|LA0I` z`SHxVtNeb)fZ3Y|Ozz!+0aFG8m%+g01G;b-%-S$8q-%ceQ!H|SHHdyRwL~sz$tt32 zl`d(n0F62yDIV|nyR0!VV?=Nn5!`;Cy?*7A)RzPR6zGGSkCL&hH;Knb-W;>`@_iMos$1i7-66KIaE=- zc|kW(@c}*S=TJ>=N1~TO^U(`oYI1DJB6GRK7pLoL>FWzgCGM2x)-Ry~>g@}nFuy3^ z_unWkO7ru?G@%~=V7Q%t+o6~jH_I*AYrOy;O9^NMT1d?fm7CZL5FC|1`gSzQf&U-aWBiv6KK=zVEjZQplVS1}cz zqzYf8*44>7h)AVjb$CBaA0DfRJP65PBRkI9-ld7YCrDY0qpo=7qLiY+ zMJ`1V5@bJfr2A~a_)>)y$x^5Xmnxw57L0G`eTLFY(HdQ3CAj|j0SqjBl;j~dvY#na zqlo;tOw$k~&1yRR<1$T;EYm|5MF)PeQ2cmzs2N^3elzY8XBl##mg17gt+Aq+DO)(c zq`p=p{&QXQLEt%4q*y@js1KX_40zd4ZHJC&fR=@ZOO?O|+dD3b{`*r2BNOPd|D%0f z6E3)n-QjW#;OWJk{8&?y8b?S}>?K+4BATz!NxVd>UAac*f3;#tLsz*9X4Sy30$yGS zH@zhK9TVNoji#Ye^}Hks9+2~=#1_;rbl$pdV~B!A;IWs4&urmCeona5B!u5iNQbZW zM@?ujhF$qK6cIgEH%!66#T#4*;kEsH1_S(jSK$pVZ5vH@75=Z%UcDsie#1-u@gH#K z3PK1KSa*K7B%4**6z{_CQqVPq6)#JfL19DZCI3>l0d6)8ez7!oniQ;1d{y<>WtkKn z4#hv<-Awe-z%}ZXUfpQ%Y?*ngG&%6(#rbNy9EM941^d$p|0TascN_km=OCad&r#SY7$@CqipqmCNF!>jgHKOSC@->i;)g7TY( z*QZEK?gyU&TT(}(Gv|ZVU-@>IDSDv8XL7I_UlaXhH~PyaI(D~tbZ*fobdBBW)=SGr zlD6$^6k4hRpZ&+|ckliW_fc5vun0RJNX=BA{)dn2@w#%|!=dVWTGP-V^$P^2{q9dG zS7g8YD2kHyyCco8jsF*7(S_~)a6YQHrCDgca%$-8VHnY??v^n>o1Ers3jC-K!RyTM z6Rje=c;GJ(uf&avPP?VIu(3w@V(~D46*DKBJ4=LFM*`~}`JsU{>mUT%!wp(tp3a>{ zrQLFP54RT+)`tyN+%w~1g&$+Zp#?D1JCmwsA~s|Fn7w?PF7F$xHr7F3EXMjfGbgMd zDn62lXMaaa+Pp80i|a>IU)#;ePe950;*E$>rquPnmRxN^)NK@;46>*2A}7q*u{xs& z{yp(QUrTPUw6{2Y2Fq&Doe#X}8%Ihnby4xY;0t zodqF;lM(I|W^i&AekTzUi+c~IX#F#Dz?&nSbt4cyRq-3y5;FW$t#98C#40ZlGEE>fcH$hv5lf%lcOGjG`aKp00!{IB5@Db^KNrT@MrX1XSyO zicM8RzLoqc`d0F50=|@Aa5Ji6!v}6gb^Et&e(f58{Q6e%%aX4)pzyBq^#HZWfU?0a zd)(Z!Wa_YacPUX6DLAcwX9tDe!Zn7J63^W>02?iuwh1q?w}2Ok35zm<7uc}J z>{w$eMEHC=)}QZ@Vz60Pn@tWnGGmpLIf|1GCm@7 zgOg8`f--lnpzKD}Z4{i0uuyox$<6(8z5cfF(EH!YcK7|q>=k%60`82W#NlLk3ng*t zjx5E4F2#n+LLHocdhkHuwyU&^teH3+;o^IBuUQIdMHfYFtBm?$cYE zh4aCJyR||4q>0+#@oq5B)34np?SO!z=TI28ZkrIgOWm_in&=(-q=~M?mzpTtoXTVS zbkU9Ir}xPm{Y6G5b95Kk)_qa}HqK5r4kO!RklEnFUNB9=PYW^}>visd>;U$`6`>&* z{GBDHW>hVenvqRjb^=f;)uXwPk(C_Cs2Fs=C1L2jmxM!l=SP77F3L_O22ObqV~PPU zHbk0`z}S)%`^dQQ&LJ=J*s@jUfSgMOiSy&!E^l~{^m@YmvJQcp>+=g9UwCl~ep`~~ zX+^19Jlm&*rlA*LhO`3v%H+aNLd{Dl_%YLy9#eR6WrQa9L4fsTLGpJ(9;2|BKK6Y) z6Q*9A1x?7yZ`bFK&d>nLEu`;KNU75CBWU znXrgSSf2$NQ%Cuj{s!Skd9WU6sVBqD6fRo$aUPTi8Ok-V{yTG4A5WbV+|6U99_;!F z$5;*dA(ve3FnMqyfh+m7$Gv9zWkiRQSLA8?{VmgQWcdN4_#`fnHBsQ?>fdg^G)#k2 zUF?N(%N(*_S|-BXzK0HRsB0u*V9I`2LhP#6T+P}qZFS0in?ItX@=u`I4)X)7W?UWB zd7AC>bv}>m$3Jpf9TokzI;x{IPnUJkj%qz1kdA5-An+BlPw!9AQ9ZGr)?P+O zwQaxXs5l8;jGo8J${gUhi8x`&luZ`}l@ERZ7$&7P`$b7L^S01fwG+E4q@?Qde>Fr& zMT-gdVp@>0n(BM7qSe-S#3ecfYYJCQrE5Nkdd-)UodsjsI;Ah|o!8V`wxSEJen8gH znFo*)33{qT*uFJ1;`2HYUs@*y&LS)L?pS#6Lh;moSt$Mic+gY9Y@+DtaMP9DYoNiQqL(p@U{{ZgHrunWYK?1H&>K6wwewoIJvq748A?u>nZS!X9Yh@XTgFu9T8TIn z-Zw_@?h{3WBd<$Ft`~_yX*5Noefz>U!H%0SsC6c_tr87RP7R0okec3JSTi5j7}|)u z=LEs*8oBoOyvgdQm2ZZ-D>S0p?hiFkrI2S$sFr@?{!sH^ZK9TzngkWRediSx7)aiz zAz-aPOC9=NR1W7kV7aSuI7}2>f^m#`|_eMpG+z@qB$Ud6^>%)W;_3VaimR%MZyk z5>ffCoJ3ySco%b$G>fnaKH?@A$UkKCF;6lTPb5IbMUs0+6f#ldl-Y@Den^TW6VUxd zl1)XznUtnJLMXMm=*Cdb%FQXZluJl2{S=CVYS*RCg!w#x<^^kep}UYpbU$s#mmHVc z&+w93dzk)lsU4P5tAK8g8|5MQxI$FV{YN-e^Oo9@Cqn(XF4GwWuC*x3xIVfuJxkyI zWN4(5jL{awSZ!NMT>YTM zz+=r*p+=R{iG}3BdCG&iPBTiD`Y8|tTz^@s=c!OfvlxHO0`@!Iz~ zFsAByhtAuLRVAEUQ|~8=d~)(+8Ru_E2wL4||4l7jCme9?Ay)lx@Pe-B8_^h%2j714 z!Z$Pw{J@h&9r+f#=?w4%@aCDMMS0dm$@RaY9=|UfTRF6T6xR^37`4d9Xr>T}N0|oX zS45(5-M^3WRsK&hLgeC0BSAM4 z4{nZEXyUeqEyJr0K@y$C9vi!#;T4wn$0DlHo<9LBO8ti)-ipz zy7ecX8ROK(9Cg!AqDorwlgxt`{lxtSSbM6ZCvmF_Js$8+KwASV+IdI9xq5q*G<-PjxQ^d@Z~Z6QOrK*hTe5xOg1)SW<>8* ze;ORWF^-zJ{*IAMe>$_3s{FGcsqiz;htZMd9St{YT;=Br1O%S*wuYOldWH|&Sfgbw z-#)jBuKZj$TeUI)E&K_z`Tt0OB?e=b7+;>nP{KHuqK=i3n2v#{tACc9zY=yFwEn=? z(^}0lh;H*Ey8S{Cff*yhml5I1N-KOB(WIZ+*iAKj`jr_2F=mFpt{6! zv~q{>k9+!Zhut{}>#IJZRi~>RqUeE~1ER0O*F+Dx(Ss(s)mL@-JanVgS8Xf(Jk+jy zpuu6Is%myv7VixXQ+sTXvK(hR>QEq#<6>y+p&RdpnyUL@R#R0*hy{WxW-4IB+r2wf zpo$KQmMSqAUjL|FW7|z%hu%r5u%f(u)wsjH&;)e_0%;mK;jqq|i>-3trTsKGmx+_D z%i*Nyky-(WiAK!J4omlkaOzUkvql8CxyyO|uyj>6{39>?+5Mqm>OV+^4r(BryP&a$ z<)Fr|5ON)s9Y8~)VL4q~Eg~oHj!H^6VO?4^lCR+8d0Q4a{pP@tBZAGwXz#}0ez~{s zq<+~_40S13F*T7WiYU}#W2Mw=U6h8DZ#klme}XqTU1ad!Ej7jk2P>pDF)qJCYNG*0 zG_t8}qcAYoxsk90%u8NZrsn+mFEXx*0r40KBp@N$x3u?IGW5XwV;k?H*K3zUOFlj1K}iN(pc1Xx*1aKGE#nGq}*%J!OaOBF^u5m8hajY zBjx(HaedTLsT2s_wJyCOOcc3(!^yB3{vxp8W^S##a97*b{TG1-8iE!8G*N0@_KQB= zAC>kO$^R+%QvMJBMR?t8c)`uuqlLe?+9S#`=Pq4RHsp^itOylX`p2G0C^N_)@;XEmg;`gqtC*D+BQn1JTmI z;?Xn2_YFiF{x2__jq1;-a4mJfKm?HsG4f?>mHNw|J9SJKqr&KtmJze<3?HgOqU^+qF!?>bA)q`kkiid9ml2TT*=g8$OJ!5`Z1R)k@2+mMe^#Yr~itXmPNePAhywP z-pfcz(HJq#dl|%*2>o^<5zTB*GZ6y@m7BXuOX4%3HQCh)!jR!r)n5g1HhD>34=)DX zoT+4@4nL{|IAlvPHQ(uJ5qJ7k^4P}1@h_rbJ1h7x9gMcZ_)YS?+o%jNYw7n$+(T1q?lm_$_o%r$~Ep@_Y6+j2BY_ zD9jjQB#1oleB>tQ3QmZZs1ttUnF15@VR(4ZTtO0ogUe@yAhQZ+Mz-uXDId^q4n6Be z;iAEXe}v73;*2CAhm+OgM+eu)aA0Buh^(50zgsGWKSpon^cdjL-=rqtI8q-|lifiF)jaN|8qEl$WFl7zce z=%M7+Cuk5cmrB~k*#dzyMeJjU;g;!z;bp@od*L#@U}olR#sp?Ey)aA{dkCm_)FZe! zhc-P45hePh7cSF_6J~mG!jrV_q4O*RNbbP9hrx%8- z#vhU+XN-{9e@KSG&1{-`;VfjQKm2nj!;57^QoDK}lT8#jS;R@WGm=Dvn^|7(g|mqB z{xH)NzlfQ-uvT=AdiW11(Uky(8Mb=d0ED}sM#N1FP8Rch#^)VgeCH2I^c#~X++3JH z88$Zjq!-R|CjaS|le+~Fv!FHhY8itoQ*H0Vb(b^&vXM4>|2AmCl&kN`4 zQ2QN@*HT{^gdnmAkF^WmtBx9kKN*B)4MMmXVa1b@6L51eL{9o=XSJY6r|O++=-}pJ z=!`E(YQy_^;am(OnNOKE1!67+oA?Ybah7!cNht;!zSIlnVpxNVo@p(IaJTo^(I7fr zUwmyujIy5tEUIk(XW+rj@IN=4;AYF}?-^bhtBul=QV=%Mc`p*d!zG*JXUpu#P{57{ zJ~6%XV2w=Yq+D6jh>3VE0xB2g_%rdPPB#k6SDjBWNIa=S{AA_?KLYBE5st_9C1*na z!z221@$!vxR~zy>IBYrT7vRO?`uz!9E!jFB85IyzoebUDU2!u3IhT(GgIicgJOZP) z%t1#F(|MBvmgIm(0=!g8xN4AyI0r!G=0Kyo=ygzC9>3GfYf?^2F4Sf($p!dvE?}ew znM|wT$Jx+M{CpFeR;T60NRJvmoC~88xWbRQUX{QVew+ zZp8}Xv{_cGGwyqc z=_12_2|OFAofnCF@QeSF3Sz^DB!rV`+l0TQh9KNR{A*(PN;T^*sUSE1B^6{LzBIhR zO*y9?G<@J@a8Ld(aQ`&mY@~O*NDS^X1I~u;O9&@$M-4cHTW~p7h5xNm&I!1{IRRG_ zUjhd=gR6Uvb1o1#XD<0|bxyL5FZs2-O5QoiIvZ=C#3C+?ZuB|HI=GKthJ7P1xaPF* zU+R`~oO4b<7i_jQuTIvr>V5-mu>rTvfP?E- zoZPm)Gi=~y8IO74+5?Wp)wFWD;N2*$T`8x>|0~j(+*>}6 zG*I{9OzrQHmVs&I0(yFGrQT|7Ii2=a>}K1Es#S*YIUyu>NqV$_p8pX*AlJq5fv|~UqjQq8qQM!6v-K&n(wB@6|Mvg3<4!+ z-(=Z{B{icj5mIO=Sa0fAxv&LI6xs^cu5l1)h1jm~Hz!bT3OTJ^BmK8_jot9y*et}c zokn(zCmp>dT7OhPsQ}wG;(nLBZ)oB%HPB3zgZ0^OS?yF6eCO27uguI@BRU9oW|BqY z(S_le#ADa6XoFyu3Rw0h@B+}r>>As)+#4R|IJj#58ybjScB*SwV~x>EKZl0*+55uD z3WUeo)Sv8hWD?IVs~z!*PU!|M&jUD|y0c>XLb@P<*zkGqK}r`#<24n&MYFT};AsO6 z%WbSO)K$2W@w({9#@B#HqCz(jzE7bGCMC7v>BP**kJX{?vfHv-@i#A)s|sO6G9lVX z^;de=xG1hGE)Luc3pWqVI)esZM)Pt48oZWOdOEAInx}MLo9w2IU%gONV8*EMB~*cR zD59dvDvWS|j!>=kp?VYh?H(W~4mf-8&AvT*fGUsbb#J|vRLVXuDS->jA~0ew_%fKo z;FR}JN*}a3LGz;zO#V|ecv(97=3ZmHS^1P;E)pXPe|v&k{4@dRl=8AyXJ6cU&* zBzzfC+dx1!dVZrwnou)sNaZMM)B?SF4lLg4lgFh z`gO4!-E~cPf;x???-6ew_yYnjt&v0;+@3mjeYldoY)w*;N=uS{KA5DB*Q!%z`Q}$s zRR#W^8$=YV+D%Q;B^&D2P{#v$*EP{@mADV#BkXl_!J2R#y=PrGB{?rCP;OBMd1Pp3 zeYj^Z6&|J!`3*Q4*Ny0EGn~4?-+Y{lZ;58=b?GWQqdVwD^WB5~vF5u65DtsAC8@GE z#JcM>M>BA}**{QWteokOh96L)(HB8ZH3D}|t*YBju9DdPB91fcdn#OBzj1G9rJ7-c zot_}<)k(T|b=Fk1$b{X4FGdyhaFUFhaMSpq9)}wPC6pU!ha-&@qOGqNpQ=hswAW3v z9VQyw9PL{Z?RAb8xH<_nW?%S5^@oY~tBIFXUXp{G<5h>7lEV$mNDe&~K5|p_2+C8@ z{7*HdG8jxyDheHK<4xh57Dcm49)hmplNqX7BSVJ79iHueqkyPV4 zxiFF$t!;*-s&?hMuT@3mbxDnQ%L)U)6MZa_9Dh^2{<^C!KTKU+URvyx<)y{qTX27! ziE19=P;0#nJg9HI9dQ%;R>CL7GG@TB2C!hj%>rL;rB|XW>iSUmCJG+hE+&0H@b=4Aup1p@!toQtbg~jZhY#(S&O7#$dXc0EGax#(ya-SR?f!8UwLl*Y5@G>@kXjIgr$~`a>~0U z+A=uQS1r(_YLUEYo$ACgRuU+-C+VGRTUGC5f2*4OV)!1nL4~%3A9cp-(i0fl*<_IW z#$s5oC|M?FnDdYqP30Hq?DJ?}h)(SbC+#eEr$nOT0v{W_#6&OkqL*;=z;pnnc7{C( zim!9`RmL4VNL{6-NJINW;;Ia|si9$K8RB@SZtIWjq+`y1)w>~(*afPoZLANt4LU!N3zL4EvJMmBYS z7wL{A;l69FDSw#SLP)?HErHle)| z3};$Ow1yscBCWnUBBer!m+nWYU7tcVD>n#HY?)jKJTxSYgcvB33ht1kvwjcPUioo2 ziSi>Yxk{>6D&dW|>ig68VRw8TF_NMg4c@_eO?AAAGlSkpOpWsFvqtbTk0w18*Y(Gn z21onS_e!oA5|NT?PXD;%nx}HfRX`C@&v{vjPFoP|s$pHu2Fe%dXMPJe1J25N#}lC- zm*n=}!?WPC(78k}OO2Yw*E2PsO+ZjCSci|zg<+|Z3tft|s1%Am3QbqEd zU}i|FZus@2s=CWsoLhKie>g>V?H;e{c0Lt%g}=mOke>W&Ab<8J4cfXxdZxt6YF)WH z87|k?19pWk)6GwyDW5-Q~@VM=D3|m0rMI{8++bTMsslx!{Ll@fRk3XszL=>BAZ~9SwR{Q+`O)>k0+6^uKl~l19D#O8l0+& zVFNd}p8gf21GC|yyl`IVUZv-zMTaj0c}1!?ZLRgmVs)WC(CSM+NP zAGqfg)a#-)1Fqd__&dx`Rgf(R%j-jr7i0d)V7B206T%DQc~Jf`W(0F<-+~;Yu>%L9 z!%;DCs8Erm*9+65wBJI{OGTr(`cQf_&T4psyW+CJayKt-XNe0{3fS?$gY)HxUc15y z#~LA)9C9+DS78D=ag8`GKORVK^7vhE_~Bj)%MX`a0S;ZJMLxs;L{^qvch}1eq88gW zyVf+&nIcM4U6m@+wyyOmR?z3$H+a%{ol((6 zS2c9i-5I$&yXQ8A)=|DZEH_`Ni04h~T!D*604=J!p3cs!umcI9M*%M~6B?{M%Y zG==jaz#l8hd=6iyS)D#uL(YR(n%B$cVe3J2x}-{I?FlCV3H<+@(}4-k>4+JvOn-OP<-IXnTId06Y<^kYTaR!66f6<4;f7o_u;GqmWXNxvXmx? zALBbVehH4D6IgG<$6l-{ z1QqvB6#MbN!Xu!#UZUG0jzQyYULohx@DCpbQI5@TGNcXA_a! z6tSO)2sig<{{%zo&mfb{`3)xL??aHu`FTzxS8u+)N^P(w*u?B-FT0^D0x8cm&r6W!kmWmzX#CxDU*wY!=f$E}O*wj{Sm4X4*yEmY2@Y z3C3wZQ`XJ2Q3#89+GWe09gAknqg^(xs;gW!tAcvV6R~!9o|n%=9!`qf>>AADf~N z?G5r&J?IP5Y3;IVY`ddkWWG`-q?pi1cjZMJ>MvR#P1;3=M_voe*3+uUWaBs<`J~x; z-74;E-Q7r!SCMJCiPFi7!X@7qR%y@_SdJqkIB*;oYgLO3S63jMst}SGzqn3g1^<$q z%&`jRMzR-0^I;0lnu5huWEwQ9ip(n>G0DKq$e#Hh$et8r3N+4sY@mBl7}>uB83prH zFC7qC|R)gVJSA;Y|3%SUx)sY+G3YU4^)r!%ssc2!y5V3|YChE*lUQt#XwIR=%9vB!(Ss16%cCit`$JicaDa|ct)-e!J+Gz_q6S7tZR zYo5;NL`PbCBAAx)7;4i>utUW3P@FkYJ-%18q0^)pc--UJzh;F^{;pc9~Xr0 z3r`R*!rlLk@LvX@i2$2M0)YsO5L?s(Faq)W87wjw4Uq6p zYMZw$DvFME^tWHduGL9{qPGQ(ph@4^EONd6U=ZXWYv@a=OTw)O^R%1XW|2`c%47n( zY$5f`ja)^_uTfEXrmwnW!cy`vCM&m9m(>@vU!Y=*FT8jKwwb)jT)py?A%DjshZilk zFroFhS~9#2Wx2wOR$Vw~!CZY;uON(=I z0}kN@GwL^V5`qca=LQ>sEw-ayRJc_gHrReJ*iIX4a5J{lnj#~GV}#ZXilaI16+2|s zLod7E5KZUq*G9_sA~CjZH6`P0c%g&`en=1KUq&SLQe!|sIR^rZuFJNx2AYq!+*DJt z@A{gOeRtNB?1P&jE;p&cO?{KvP?O5mGqGCl0R&0$Cv_X*ei$+XP;fH7PYgb|nd8@9 zIBU51kjsw-BZw?U=U}ZHltKp3hU7T|uUdw{gPWOQgy6*BUf(v_Q{`s(hDSDyYJ%4& zs3!CKqj?qGXZkI8 z5iShj@Zx?8J_XaV8u~~)D}zo<$9(|^2_t4rMdA8AouQUP;L=RY@W{?!qA;P};nGY? z%&P$Ze3kcOH({oFP1L;eQA+b^wl%mT6aUC*Z4KzZwKc#z*sckl4$214Gu~%GoMqprS3Z-GK+Yy!NC>)Fzb%H z@DMo+4s_L#k>$=y#1g~KotPah{w^RlC}F}Lq1_Wuvc>r_&w!HPCc&QnGtY@8&*<{YugFfie@Kfb*7 z$CnKa=$jYIRi&At3)=$$t)YS5xD34tW67%}SnwUcIJ+;Nr(&Jl#kFLsq?}=S?*a{-n>JZGhm*<^?MalI3NPJb0lVTm6=TvEO~H2Z}BQ@|MGX1gH@t6<^5W%lpdQbzA0pQw!9M&eXPz{;CnZ3(07C;%sKex-(F^D8xkGNB*J;O@q+h=|QbE7=FrFE` z3Jhp`oD}kkczj5Tc%BKHjW3n)l8}@!+&mzyh8ty!<6c{yh&Eh4eP$9Ay!b1s&H(^v zBpHXaNv(DX7}=6ueRHIF;Ej+e>7Q?obPkTA7*fc6f!ej~=4XGZ3!pCy9=hk(ULw2bzsU%*&M zW7N5jOu4J!?Ok}0*(bbcfW_hsRQXJSIhd2HOJ9o8wW!(D3nywc%T$#nVHtTXpFS=h z9(9LPO6}cLCcB~YO0hWG{%%TL+(^q{NX325EdzC$i!wI|fouVsG6hg71yG5Q$gNi} ziKUiCTFt_r`^hS5>2k^w9MquC;`b z>(hsk31hl8Ow)h$i0@Hd!I2trM?4!k7b}d2%yZ$~B2J#>QYbW&>Y5180{^axPC;y% z`Oc5XEE#T|`7SlwZTK25oM*mIfsWLYf71dGohQTul9GAXuz{O9oG&8M;n?u+ym0P- zjv<@|8HDp7(>5YHK4>N1G3~Z|ROYal&%7gZSorW#yFUByY!zMr zjk>;zxp+UOmX&M!s5JbMD2!VbX8?AHX%j^vy~SH%tG$7ad+U_jrg#RkO{c z4a$+4NfrvkHj`%`jx-A-#{zoa!;#^^HbgAVq)tQzW_oc0TZ(Br#O9&8Zt_UvPE|Q3 zI>UM#;HizWV_*=Sf|OWqcx+jPMYte~BeSNiLrkWe__E%RF1E9J!=ji>e}{rc;^+)? z|9f->6P{8LGqSVAx1f2Q-t^_sxou3Qo2}qKBCcUL+I0Ku0hdF$5KYV52}K(i($ zv*4?6r!OfCAH7gi;K-=(?n{4>g^ahVnlCn^>h|3hL zdEAz^rzBL}<1~qD1_fbPm_E@Awt3u(9*@`2h4TX`RD<$JKUl|CKhe+DQpj@F4_-xL z@r>YVBqUw!)p71>c`PZNSiV{CX<8V{6btJuj*o>4D{ZRN+??az;>N!v?o-#FOD_pG8kD?0y%@4hjb5QgzmD@MOJ0nW*M(0<2B>G_ zqPJO0`5{=Ii3ju#Pe+Q>>v8V#gT63bJUL!NuXrZ1M12l{(9=6R^!Wcob5to(pqcj$ zpm-Y!{#$=a52;_^Nj)Pxxoh|c%&*-X>8(<;WSB_8m*#XCxFdjK!_BcjJW@WS>cNvH zc1gN)PqcA>BCD;DF{+b^+|ESqYa+wV{qYDBuN}uz9|0(-_56Zxhq3@c?t=bJ%4=TG z-4QaVQjRTlSOO!h#sq|HV7=p!usKbNJ!nArHk&3^-*^t zlosdXp+9{^+-+q=1Y;0YPZRwe<4H7nkn!Z$Y#F`4cf0J@Tkea za=77=avyHaz$$Q4#^WX*WIVQ`@sZgyQnD3gSC(|juYd`4$|TI{S0fiCH_yg=6PrWZ zfMwsSk^JB;Png$$*quAkb!700J*Xb_VM;)eH8v8>tpnfWqnL! z4N%E*S8*>@Iomv`tH{(#$KZO;Yu+gz%Gly^*y?iFn(gZ>-g+xSuhnnEYxP-4>LZ8? z<*xcXTlxvOsh{A>(B4DlZMm^lo0T)8UG!z|M+T`MpgEfqZy!X6#c(KFpL{>kNBto= zUM7e&yK6p(90)j-b=omA0Z4^0Jz1(@O-Ej|aDf*uTrMK2d~(v}F=jd(De?K1)^%ix zVq;+NH8FUJayjvA@A8|@p@Gyo*gDx*yN2Gl6Pn-KBwaFJ0vGO#l0ZOOUf45minP93 zZeVWkV8V-GJ|~G11?_QHJ4WVN3Gc3#7?748FSrp%I2q&-0ck^VR@a6?%?q2a@u!Ub z0u%&KB_Um?dYw8H#Iq=ja^p{85}3=xq9ez+NM4_o(w9!xpNih%>Mi=! z%6(A?$G=z=rR41I00>b0B)n2cw9vASMP(l)pAG{>NoDqb65 ztgkY)V0}W8{y>OGY4QX>VY?eI?Eq`y8y?QTh4vSw)jR*FNOG}q3@2rgRl?Cw!A9vU zCS!(*rvAG3X|n7|IQp#qU6*J10LB^6lH;)I1}HcK3doB#m@Umfmj*t_ff~!J^^H2C znT#_4F>P6~4*bS?y2Ob!;HCO?^`yq%!Q?V!hacA^TsBL9*A1zk>41#t)7|IF)Tedz zq|)0sZ}{Rc;E$O#&CV?m_I(l*Hw7$roKS5t69xr4aNBstpU2t=DwQRuI6{yi5pmX1?+*$R+z6KeZ zCaR`YK?BJ(#5%qsyP+eI6r2ojS_8>6VmdIM7<~Ab$ZWL$!GsOLZdtB9mN{JggTdv4 z9b?;Uu&puJ-Z06)&HBTg1{%Gs=ynnxgU8$P9PnUye)8flw37y!;fWDwe65&hy5Ys^ zLFndc#h}G_Jhc_L*xXxE5})NX6>91n8sUP+SVO#X#l&nv&`56~uS-0Zji8vOQ>mlK z%QM9I055hll)lWwxxp8QkUF9N0;o94I!g>B&!YDumhEleNH>tz+gD0@Gz@~?iaX$Z??2B~C&Uix)+iZP22DGb%8G^ZBp5+++08fAp?JlY#^>3!!)8a8$mQar#7|E+a)OKf2b9r0Llx zgWV{cb(fQqHH?;Ex=S#RK;Fg#Tw6e4LC!k@keY%7|Adsp;j`R=+wg`_@icVLwnM0jDRu9}mg*k3#&mC*O99^7>4#|+g$(wN388&b;o4H;%Z^A7GU84FKbiCVUlYQJv zmgG|}0zNH9Z1_7~I4@2O_Xmw8eXsXB&4Rc|6y2W~F&tS0_4hd+ytXfq^wh|Y|qGQzTCQ_kq!S|1P6pin3fHUt;b}|<@*$8q|6TcDU#wOAi zAe?PsBvDu?%`1rIsLu@~gfik%g9&bIP}J0X>DVuDyb>)!!WP#rXQJ~|YE!|L)KnT; z21Y)*U;=J3x57Zkz~H1lK(%h_Z)Yu<3NVCo(uE#9H;^%4!+RxQ`yF!23+Cp3D}pJv z5Z$8sv_bT8wcMauVok zv|U_YZy6jbQV6!##+`{T!-50eavBClQhA|>d>>5R_dl{jPBTV`l_61yJu=9+;`S3i z->q1^4gI(TdiZf0zJ}TI`qPrl@{@5JUMPOPYq3Djl^98rT}(nO_;3^6D$H?_g@PC5 zs@+%?|n+X@?MX$#(EjJVPn@l(%3~99tFJ_2S>XS`31~1M77%0KZKZv9? z*F}r#V@hC&;lUZuhP+HC2EX+;z>X%7h{Ycy9DVC25VQCe$TTk+yjcF3%$vF}OSHg8 z#L{af;w}tSHV3w(WKAb!!eor#Pc@e+@CH*#&jr7t?uk(0!Ar+Il0xE2e0OunD%@jh zrH2;@IJLgHKS(qoCCfp>r8Y65J+-xB?J&$@#KC|mCU#qBBy)?E0 z{K5#i(+K&U0S7k=dCahao5w!Y(l6w>7Bco(`bbO36u22#PD?>X?jN9D_JUpeKh+B~ z1P`}q8+f#rMh1XttV9otYANP_YFbM!6s$3~EQ-bNKU0}VSzF-W?__PkTf7-;%>Pc( zW-Dt8?rVvE?D3m(Up zEdQ7}D+^9y+mFx;mfG@0To|71P?~_tsfQL zJEZ?y9qX)bj^e=9M{8ny=(VHjiB1V-ZgfBFKgwj$#jP%|{xoT&iyPFhsXtzWOJVr9 zEA#)jV=SLi8jTyY(NgNH%&4BKer?J6T?eo2!b`7fmXxaYU_+QJ;869+N^xaMolL!N zYP6QV@772~J!c9|r!3Ly*2Nm@gHxiT)jwLXwn?pNMT*q}>g86_k-R`6G*(-HhOXY( zCEn^2d}(pJ7vwZ|hnu_7BcMBj6+|l;D-ex4pEZ!$D10^}Z^-uHAq0^oiu)bDo(QJm z)3GT(a1*W%tI}GZdjM)7HdP#VZ8ST$nOI22v#M2ssbXep=@Gh~%Fg9$2hf*P*SXh5 zlPVbU^w!e&o3xh3->5Y=egI+92)-WY;?~mey0?~whcDkta~a~0!Qu$;AdBEJh@05_ ztB~7tXTIhS23(i$<+{|pwXs-)2e<#Ot)=~U!n}*mQqyBn4;UCr4Ger4#uEm{KU<3} zL~(0w{7p7pD4eB8p03AHC596?)9pC=?&nZJ`Ly^BKkvq0TsUtL6)ag)N{fv%;lZNb zmmn%xGqi6l<_L}8Pu2_#AT3o@6jUCcRQA;ts0V8)2+WoU#RQ5i3F@}NKUOc+#S#Fj zR8;4z4Y8j3+0(Tz;_-wl`rKQiy?A^eBh7uwLroEsk#PIU^qJ9_s#6=O{O#I^F{hu7 zZ(tdWL};_Au#L=iE^i~V9k_WSFujco>=X|5hnf#oW;&NeV??6Cq8U%EZR>41`xW%N zmeV61CvIX-wvi@g!(Z~kU6V!iE{JH3P^j~^#~Q<|3M|uCu1Jms+aaG!)9VXN)bv_H z7Jt*r(#12QS-Nmmg%owDjWj*BR{VWlv`Mfpv5=%*zb zYQ3!P2OFw&i`z=ATh~@<9o$^&o@pz!4sM=)ZinnR1(f|aHSV>xJS)Xrti|u3b6?n2 zI`;!6wSD+f=l&})gF1J(d7+0lwLXp&;f4Z=6<7$|Y}JQd#}BZ|t=Wz-LYDz5S(3tw zU}7`?g=|&Ai>>-DX0HURzQ2Loy`5h6W8ECOQI9x|cRAu%)3P1096WME$?DB>aG!%A zn(Y!1I9BJ}DzD5qxIJNzi@>8*ZTJ{;Xg!%AFv-Sc8U(bN=Vj-AIr)hdXb8$MW3AVdE zhK4UeQ~0v^9=?Q3*Zmw@s<~&XXTTBwHO<@#`BgiaroAVAd@JNT$X;0T>1|)eV17|r zRga6+Oicw2DSgkJ&-qbs@2pU<0ks5ySzjUVq|Ep&E0 z7Jb3Jeqrl|s1B&M9mGPXYX|AB;Ko*hSm@+;z|u9@kq3XLcg9kl-z*%`LCkazY+(%U zpbKBEm!T_eilQp*Mq{TNJA!@+w$@p-2#!Q^Sq&hbe?xZJ&SE?Y}{mj1HJnS z0R!jwy|K<}V+VJ@cK2T%?I8W6iBV$UgCX~iJ34UxXc>O%GA#HO27|q~Mhn!>Ai=my z7-;h(P)yR&O$7%x1AF2<(k~W~o_^@dRHyNNH zam2FVXB6B;ounLb!jhb=I|-_cPO_2KyVHMVmeWH>FEgY)Ktda7Qw%2)e6ttKTTOR? zEMcojAsTI@0S70%&P$l(dj|M1T-xB*ykK4$eQ3l3PTogDuCtBJek0vpk?y#`v{w>2 zZ@BF3Bvm1;vroD$RU#o6OOe65V`4Oh{+vn)F&I|6&H~E>U+e{wIgJ{EV5*@YcXPeq zbdAB_$_LRpOI?@+i!9RlOzA9jVWD9IH_tpCVO;L{WAz~1_3Pw-3s;>NJ#q&1j(~F6 zeddL;CCxrT!Ne)Wa;5#Tn)QW zelf1`{qdM%7il#JW?ThbB(val9*3bw7il&&c(fPnS<_4f5zVzv__3}12}6ICPqEW^ zM;B?^bGu01-ESbm&HJ^6DVz*(s|S&FQqLHS2qzT*FtJ2%a@OrO7>OHgB>&)rv%c&P zfu|5|>lqvSRP8FQ2zNdu#TzP|1>)Wiwr1pP+?7)aRO)I>eL8iej4Na6)2^#jHHoxh zYP^-I1h$wguJ}04m%SNw*9$ueWh+xcwfC~RKxlmYw(Qya}wfoPsss=`Qe zc!e@I>s{G!^aEEm8vOw6^{&RQDPpreW)H>o0Lp1u{z37 zRnc3jdsM85!Lg+3@iGPl;2_#46Rouu4KPF*6~vvI>)P$v8=zEN(z$vxIGd zZV_rSBeTYHS-DP&rUHZ6k-DP%w4~_NRrT=Kr-RKUkcX5dm2E;X{dnHeB9%?#X7?mTYnE;EDfE*>%lQcDb;d%==t1_lt^B%RuXXgo78 zkX|nX>1D*HnSmkyw@1#HzBiaGyWhNUMuqWPW(FRt1Bc_+sZbBeri>l}>!Kc#PjEA= z);*+C%jjWVzUbYAtwHu1;r1HgjvG*LvvB84GH}yu3|fkk*68P! z9!MWW6Ih-Z^pu)lqByX20m;f*shPmYwG?Z=)^WBFvosgGGz724%K8~$X9!bqX9F^e zl59hqYbYpRP3bAEY8F#UM*}~u`U{z(KK6C3Oz0T6Sv?|Nz9-Ng>?tz_6YE7U7A{xA z(2RS93{=Y)*9wuuhB4I?J+l@18a&U1i9>N-yfJm+WGsTG%oyg0o-$|XW#$Y$WzNt` zYA-^0glX7IhCVyO@Wi2)WF=@g_X{Kry<-V*YG5xjaWKK7J(he+&QyfUoWa5(I}vq9 zFEdlm`P4>@eU#24l*WOB7`@ga?*WLtA&dR+~fxG=<+gi z@!QHHBG24Sx}Qr7q|5S^3VPT%SYUV$+CJ%H0SM}b~ z2I`TQ41)0D4223DRAT7^KOR+kh+l%0L&)i^m(7GZn@8NWw@5tM;|VY3Im1uJvd-+HFt$egdRt>Mj}C)UBHWr9Y!f5?X(Mi#dPUi zA`xdnU*YMqRs=EUfyFY3qv@`f#xjvToCVhl@4_KfV(=ow`l}J~xTWDdSi&^i4T6)+ z12Tqi9v6;<&tH^@I>ZKFFA7I~Kj|?e)H_VZLcxox!N17MKf_R;8SA&FS=AGWh-@M_^;u{pInW2Z9WLF*gNatn4`*`6bw;GOcS|TExgrHFLc%dSHc}tYE>WUQz`yrm}Pk64C_4u%d-2@3-^p8 z_8V*5G5l zw005n-`YhCrhO{e2F~k{U>DK6uh>Pj>nnB=uRid?nH_ByRXO=__wAO=%o!>ZmcO@MIA&E)V+8&DX>V^wal+Q9=W)m3yC+p`&}p|aN-=omp8og`WdSTc<_dI zvwr?OqPLiE&cVYp+hD@i+wjJ+nn3f0_wq8>9=uR&;KT?1-{DZ($2A4$-zgGPj-%tQ(gLtYPdsxT{0&&S@RBcwXQMT;?!R{luI$g zac^h@mf&JV1J4u-A>#7304u$BMs^mst$>db}?6=Ytps= zF5ljSB>46w;(*(m`X^XJ8~`h7`}-gcJ;sJFnIY(d_n;qPEz=+1LaqM{VkfqK0w`K0 z(>YotH&}2<;mh@BUw>mH01qyzZ;?A>549U2TYCtYDi$on%#&}dXgWZ^;7edI6Xh_5 z(|v$6xhez1E~58<3xw4auauEp1l|+yxFH3yjettg^Sj!gLgV5KPeB9+Qx=?3Wa|ic zu;4iZJi)1s{u?Dhmo>bL452#uHVT2SvO-NH>xi~gV4|2op|N5HVzXkW3V~w9%y#<6 zikVdJ_^o%9QXVRyre+}4%uu2XtmuB(#nOWpH zopwI2*P}dmf9J>m8RUZlW%2nh>{X^@waPdHC zI5vEU7w%a;OcLvYGx9>KzuE91?ApZiir z8JS1Z9s_?Vpbhko3uwbYv3_VGVWHTdf~RNV`Eo24s6>uU?JDIQ0i|d zq2U9XI8O8!)}WYvZ7}N$Q1O&}G<)&+gRH-)!Xt!9vBzXYp-j~0BqU|1?(nfq zjmI7})%a>-VinllBYAs~*EQh9mkz-O#71g-T45Q(5A^}krtx>~HL-c>UEsvKE@}_H zG~|8_Rv2=TI2(7+n=a~9kqo&fie!|-m+xi5E&H3%GxI1{=~5YVt6hr5kuc>ZX#aE2 z1rr{0i5b1;a-zt*=K>ENdwxY$(V+VavXBQ|deEhpB*}wrw@U>MzC5Ai=Uhf5U>bg@ zjJ$O(73+@C7m5uW85_Qgt=px>x&t2BpVrTFF7-oW;||=#Pr1R+78_{zdUM^43D6!Z z1MP_mg$9lc4PSz$@MY@`d^y+dO@Kxt_F*&>8nM4dZqkVT6~6S8%V7rN-O2SM07$tf zn04SmbP~xt<#PH`Vf7=Du&mshnoy5;29V~fz&ry$_VWy&F3HFaqhWrF#7rX}-Y_c`}5b3N{{%9&8Caeudpym<3^0elK^k<-WXV=-K9LEhZO!JnJ{ zorCn0+hc>Bw*(>Sf!+`%y5rldxFk1r736w;XOG7M{+31Zov}-tKRp(|860>z^FzS_ zA3jZa-=y?fxbm6283+6=lZWn#jlls+1c^@ZqQN3edzT4(JSM$8Ch)gR3hs$@fDN3> zWVA5R7rigSz|Gs?cfKE&H@Dzn<8mM9F9hxbyF(gx*W(r{e%|$1GZ_EKX?H#7zuon? zlFCy0z@CGs4;-x?9h`7?)YF6I?kMM37DFzB-UJHT`FI&$x<86j;GGY!miwc=sF%`Q zFI^A&1u z*Szikafwbr{o@|^`^B-llo}#E@HtdtTJ+${8y=a^e$a+T`Vi@TYY#z&B=o*M_>?nt z$pZ%5jo{1O2)?J5B8TwhZsg2h>ETX7H0pf+y)0I$1{xH7hX@LM`P9WkgJS#;>2I41 zk^Xk_g`xo?MuRV-!MD!?v8NTjjHdSxKbo6Y#GX~F1Wl4gDti1KIAW!T=$lu@me7}@ zJy0gvJv#QKddEcD?nc`_L_hOjte?X7?1MNK^vw``$wRSr6?TIHi&A*s`%r8)1vA&z z%Wz%raBK&zO)L42*?dVVH`D?uH&j2dDz>}^`AD}i;L6y58!n&n^$Dx?@;~h<5+A|dMwr|xQ6JZfiD;;*MDtqm|U;2kBv8hKMsEx zKYpcuJc0ie{OP7MNQnjLCq~*F9r`DF{z^J~kDauq4D+n-MeJr9Vp*fuz=E^nu@mQ`Z7)El93f3l45h)2*8@M-`CHYu*G7W;i z$TXP#u}p)(+morgZuVqsr7PI6Cu38bX`Wz#tA+*S3S=&K2$iazeG)$no{Cko;^Bsu z?ERR0&q)w&mJtr|ZK2IH!cFvqoBDLDwR)6=!#!6|$1VxZBzlo>a-xKjeSAC#Um&@7 z)PIrwv4k&*gn@PF!Fkfqle&7DG@#q$NeB8Mo;5U~K8WML?Z$t5Si-EKyFUJGY>I0X zdiUnor%HVT>2PhEa{#aZLU1@SLdlHbt6_RymF#wUXvg>A5AqX6D;--ekHyb_g?>f+(DZ((Ci^2Oq*$@R>f40$XOuA@m{J?&ML&k`o$2?D5Sd=Atc zjuDXVaC@A>^3`Jo?2Ak)VByDL-(ilTOfq2qC0+>{RP~twYhxYr#bU7Mm^pz3QSl+1 zvUd(k+Pmm3w-7mH9)ob6M$`lZy2}lQP>0Ptra2b5v_%9vC{Qy}tiF#Q#}a#>@B;-K zDvakyuAu_ktc)HZ3q%tGc2I->F&H3>pum$Bwk90bPbQo!N1Y8EP8kV;UB5!_4}fG` z>A>*G0(`{){FsRa;41=fx3D7$Dss%*DNiK%9P4x`B91NGM-+3Phzw`IUa>49J}fQbk6|t^&vjp~@L0TLC7xtryI8 zp}i1HTLB=q6_MWa(%sHc-eYhWHHxdD{s%mC)}cCKU0NR3ECkMDeR1qy!%SEpurBhx zGO!kmlDr$m^lBpv73#w-Ym}gR!JsmsZ%e3lQnG63eRq|wt#%n)NZ#V2H@(zPU_dtL z2L+ZoIZF0a4hpQ^fh>M)DR6LJ3)YZyBHt68RlFjL}VL>coyQv|A|d>U%95y zya!g4GiHy=i^5Up{1e$QZoIC8)TmoTT69yCk7Q0M7K7I@3HRWjA?VzL(*sz}y%d(O z?j9|9`Vf;!4-P-ZzL7a{Hv%s{7xglGdFP_sO7Mb6K>RrF=f1cMxRjG1z?SG2KM`5G z;+-4H!*Q2|TjAzMo7?ja#zw#(ZC)+p8?BD3LmxuDIqpfU2`?CQI@NK%8LW|US3)g_ z1p>wk<2A(jFT5crRJboPu|RENG19AZ@g52;LW)i#i~DleR$q-v z!8xg}sact%t|54MInBabEu3B#POHaA2f0Jy_zcZHGSEznAKe%X?N4Dz{kRaQ@?)io z0?)KhvKpxxW4RAPFu~&juX;UD6}k@TFcj_B(6ne!s>dYK?#+B3rgU{ECifn*sNn0r!6f9NY}< zb72;EZmcnt{C=$8RI*eE^`>lUZEIAff)87prHm6f;bsf`ahzQ^j6OY%(yKepXN&^x z+$>yDf^^A##}Q(3vW$JliHsK32rr!Xbgw`-_5TRB;x#!H8>Hrf4iB5^U3Ib=s>K4x znWgjU!ug2dF$;0YfczOCvahAP&Fjf=QeRD+_q{lb>tBM)vOJIwOgq%S8dyle?F8;C z4BvqDO=%<3q*BI9oyE&Njcg|dKW@ypx{%0d+=Lg~M&YvWMp?s_?+azQ7+VRo{;{zw z0{F015V~}iC;aH%6ptf3Sl57EwnkY!^}5BXWg<&94YEL%dC}m-4FYop@TOh`K6HJG zkA#&9uQCaDgP?J9fUnT~LddC8*=ceB(*_qU{5S`Wd0gSeIiPewH)KlUH0+$A#z~-V z=!D>8@p0d30mdsEio04&D9eqb0pQ~|2m~q1ZId4K5hZ$o6x`1;$`*c zyz(@c##9)Nl^<^t4xNC14PO|OOD-&cZ@WlzT35PFl1?~VjZ3TXe=w$t{i-bs-h9KCH{bAO+b8u)NRv9?>vIdCXhkM>&+END7ix-Ls+!zzS zjA<1x@%wP_U`!7tV4{7$rzgn1-yspe7oVzbF!72_yxUDYxH;Z36Ax}1kGlcjw0l4CNwT|^3Kq0$i1v82 zLA;*YI!SNt8qc5$Tbc&rL@({V;-mztq*uY;wN=FCPNyo(65f@236hd!(oQ5njq(%X z5}kq+`CYm1!HJBLN|6b)KaVfj0jbj;waGn`q*y;e=1{SIh;*q~0W**6a4Hf!*$@Ln-Vm!g*&MK*j3jwOtSkNF z4YjV5Wy=s1f$ebmHjU46YsGI(<5Qgxx?~(C24uhx7&6(sfWft5bJKW5{rbb9E1c;% zd%T%XTs@g9hCVj2b_HiLR}4&?{~u%D9bZ+kegDo0RR}FWXvxjJH<6A+qX;TR1Qb+= z*s*|sU;qUvib}ONIt-u!@kx=6iZoFo9Yu@k!{B9Qm=z4sM;{?=Z5&OP@;f1j6s z?%bK#vu8~?duG;|GZTw`0r{bC;FC6J)#c#}rbo}Trp|i|F*4^P}4AxM;45dHKpvMq(dPp>2Q1qjB`= z9Rbxo`FKETh;?;P{;{qO7O5-jg?T06UJMek-7ct>b&UAPRQW+M40$m+K_D|6&bg zC!X}{WjC^reM*0LRkF*E`^{F#?m#|%l~nKRRY|h^W0fTL4OGdlK3XOHCMDF;JzRcm zjBA<7+Nf+k>l!L!cJHoTL2N;GTiiI;w6E?sZPZtHoT7HDn13r>2V^C*Qro`Tt?%lq zv{G9$W)N09J^O06Ml`=08VXg|c%Sw^y7VAT{VJ68jAl7VBp=BetJ}uTjm7d?gAXBv zPl>|+OEn55o0lxWoj$-Zm!&j7Rx*Bhv8Vmm+}_cq5-U#$O2en5RbMrBl}wwbum~vs zm>RlN@p7Gl5YEwY5HdncrI+emEt?O7ooUrq_d1!aL&3bs6ur%3Iz{iQ!h9WoFiyL% zUU>>DhY2~+WGEotF<68A+vxsB!JhyYxsA?K`DQ>RE%aN=Sr%BH(EC9lp+r_u$h3aI z4U~oV((RVGEcZ)W5r<>?5WkVeMzdvkP5e-LTo$Mi(;|J9fd1su~wk!;<8%hPP& za#K-`PHeA7FfO7qrADWPbT`p>ivTX?l5!25yTHPjo1-)BfzYx$qe+9}qJc7^fy=4n z_#C{Yl^f^~z&XYnJ|52dpUBU6AD=FAp7WhW1eb^=>~K=tpDm(79}&MX_*ZcuK^q~# zWd*_I-X^$2bTAH)Om3U!=q#un!ethe0ax}m;nfwXQV z%eWo-sgi5@`ATBDn$S-&Wj<9u&=bcT$f${$;HIX5QaDZ#1|ugmwuAf8*m5A@`^kNQ zw}P^W9dit3%sBFx@TyNzpH6fuh0Z%h7=&h$SX&8DuBNg)dS?r z?fpZz<+pdJKVH&NgvZcKl}ga*;QW4at=t5>d_uJHscQjOW@BICUf8r2F1&m&zZEYi z4p83+;)D5dKXY5(&>grxLK2(Sb?PNMHnC#{O;8JWp`RJ}eOgu1<*`tPdG2+nz`HLO zp`MB!r7q7bA3(%Mdjd3hdweP{l*-`Zy=i~^TL?@!p{9xRC7C|lllsL?;3fssaVV^` zw_LP(D@m-AUHPYz-Tr~v{dd36D0%zaV`mKeOs$=>- z9=aRGmeH(OM0*w6x4%~GD2Zmp%83cnaIFY-huNxmw!c;_HisdE^@1SQ%TxWeYCrOm zFW2PQ7bb8n-jhpNoBBh3*}$G{-)XB&=rY& zr8HW*UHePzUT$U#4h@!VWhjzR`}Q4`AREeA`4t9um0wZ*vGOYp zVC9$D;mXYHj{Z6gxqB!Uo@j$B)`a?))R~xdEFT&wzpDMP&=?1o%7kZn&5-}dFc z1)?7YRFnvRoX}A+!mUCeRT+pcVVehU7J7PslCn1OG(WKm^?ab-lQ3Q0Sg8+uDdd{> zHeS)CjSQW|$@P?!XAOy^LnO2Z0>0Y(hG~dU)m>JK9`Z~QN z3VVMxRY=Bn_k02JB&GGOQuoJo)-sw(U3fWTnWU*=GnN?lJ5I5RAZI&^W9bNXEmh03 z1Og5Y4)>#FLW1vBJ)DU5aLNHa&IO55yLZ;&{GHN@6JcC2m3u;GsqpiCNXiqz_aQZ( z(5VyR!_{yKgD)=l+;&gs3d>X1)sOej>gfR?nL9!#*5Xe*R=SHxpJ(TP!|;_4UM0D& zJfSN?_=#?sRR=%OEhvKSJ&Vqh|6JuA@Wk`+eq*;q=S3g()$t|LISUN&UfumXKGe(H zv(VzgQlBlHWO^({Wy+B%2x3Epjk6fN3SKraHeo>GPp{x=x>pR83T)sd!perj`T z_re3z?v*#8K^%JqRJ(TC&e}~(%1kUmf4eFzw5sOxPump(U$|U>#jyAU6w-d zL44fKSdK)9^@@IYV7%G;MGMh=Q}tw27rRr!Ani_t+GcL$LG0`ag~)+dsYM6rTd2TQ zYN0{e<&lbS$25@(FS~pvtigom^OWA_$5$8``rYk=c4<@OI1@ zq}aw;Y|r7d6`?NPwrb#KS6@nK{xK5^Eh@x2a)E#^PE`9XDo@=BKc0Iw{$WueUQnTi zXwC3y>~m`+N zVZ(J?GIn^prh#_8$a>ObuEI8_fQT5i5fq{Eg(8cVHf@>;%ZhQ5Mf)Cw6)nPu_5)uh zf;dcUlAzf2X)DrFYhl{}*Mwf8!+}J^dQNqBUr;s`(p3FxKq_Y9aOIk_!wwiw=(W2T zIR}Pf2Mk5ZU{hJnN)S1Pix8fkfDo-(1Q0B?Y9S~%rga*ua3P~sA}$fZK1Iz^u@E8F z7pX=X4ZH3t?ZgCaGG$n^5VAEZ7SCBMF5h^nPo$hV(Wo{gzW^a4Y(!{2F4~TA> zy$9tV&EA7U;?3SR+!iZD+}hQg?ybUfZ$$!ZIkK}hZtxJ!@18X?*M~YfFKG!f9bK$sc-YU5 zF-fqW9Uh|n3^HuH-$W+Mg_rGinaMqfrIQz1!?Zc5vHqcGxQOx~I?Sgsl`_{D^TS4=tR z%q=sF#31&{7aju5QwyFg5ho3=7V1=d=Kbog>J%eZ&eW2aLRAzT*tUK9a8n2jgEvE6B$ug^D{4nJz^MaV1^(wY+n5i5A zDT!DiC68MrHnuPpOH%R=NX4ITw0@YfkD8@Z(>Om`yN6s^;jl43>df5ATpf^MwYQ}V zO&F4SMQpS`G#2~js8M>?y-!K+Qhl^y*hswM9F{&$Q^vI3mXeI;QTmrTaR&5L{N5xy zj+Di$$V2$jQ`*H~CV`L|&G55n^~6xd$*`MklOVsFabQGxGOrfJF{biRu*95n)kYOk)$=h4mU^OixxeGS@>5ILO?^2y0!_+~&Bysa zgDK(tKpvJwssLVAz#3*DM?>k0BN6c(D#F3(9ZrDLgL{YF^IRO8AY5 zv=R^|$lc3^>jMZsiTOIigAZU098@TBO|2aK?Cvdx>ueH!9_i;tv%lXDvH1QDG1?X{ z+aZ3oe2~ZDQb3tUdhrwdcqy+t3-Nf8oip);<)L(|hU<%m4*^70O`9z+_z8TE)dW9} z2tGNy$S$(sYU4fmKYV#2OT++0N8vKII)G8USWUlzRPDVn@XY3}ofzJft^@j?%aLZ;3FROo&)dW8e`17Ns`pu-$ z;ReC$F(JqXK-P}Tm~8@hS<3yklopwL!jEVD|HGCL@m>je5o5V$wS=Xg)e_cxR!ay! zYrpQZT3zsSBH#SkVE4NES*?9fzN;@!Ts@xE+DE+1k3p{SR7ZGe;77ofiih8W#hVzX zSy+=StoJM|_zCL+s|S9Wy}6qR%fE?{b7Bk4OLN#yLultLG%xYAJzvP4KtP9h^I=@Gd6cF3X5me-~v8p3f93Q26;s~Pg#Yd@WVY_DV#PCIGoER-I zJ~R`pfiu@2&O&=&2KvbmB<05K!_?mNpQTb!g@pV@K#In9CZ#y+BB56SJX`QXN}JK! z$|Ymz#^pnv>f{n~nJw5Z73)6T6*2BDERdigC(nIv#ebnVSDXlvdNBWJ5XJyAHKCSk zh1|*`wdcUkHV=&qwmHICe2c+tZsp-;n|BzgZSKY2<;Szldm>(*HN;Di6Q*F+&cl+Q z8>t=o>5{AbgKw{K5PpC>`%L0=Z#cD;3eARClYk#zN^A=nzQT0AB~Hb zr|rB&hj_0+c$RtTQ3@_$l!B`^O2NTTaM4j(YZ5Q}Ev_CV-~yK(8n;=v+T`VJlO3C; zv!8}F_uwe4IjhsuZ64+~6fOdIqWN$LNY%mbfs>;e-ANYQI16r$1qVODEwvfJPh+rw z;Cve76DzmZ%E3=-aLnrQ;xGE~>>B@tT)a7e9J_|iS3ddZ5YBSpqBZM(eZim}t@k4uUeT!K{?J;Gr>i zl}Q2nTtRtg+JUMU+!(gr%|5~Za~!x~HogDWYmPbb1EpODG72nl6`06y_cFQ zS5xt%v{Xp2Mz;7`1twb8*-IJPIs|zozoA~*lg>{nE$w^Smi!W>&FBr4YC~s_87B^mg7~;eJ@ogm-wO(5z3kj1Ysa| z>O9#vZ75bpED*`!Cw!Ub$LgNn=1uU$-;_Vg$PJLsk6raclQet<`mP_JWOc}n;OBuy zUTK+$ZozbUKJC0lP?LXIEC0y9tQ{NAzdQlrMEIAVu1tHGFO+i|SUUO8 zRcWnC;3L|GKLT z%ZO|uB-S$27ZsZlgMP?UggqoP|!C{-6YttTbj;jbsoZYq{c=dN|EJ>VFS;({( zw(}jT^~|abpN9VFnD0l_Og2X@RYrzht>b0faJm0G7|`DLun{uGW? z_NTIG)6GUFKCh2t$V}`WZssJK%8%e!&&Dbsk0S)wGr`7mi+dced)|yWfH^e9@e!uz zv*PTNeMFzW)NDJWeNS+Q#ZCJCUoHHADs(=E(}3Uj*V zyE>*)1ZW_4NKnjbI9pT@`)fRaTb@^=aZWW^fnNgxw2);?AxaSZ1_6o1LOM48h=^oK z-Yj!dGqH~?vlYO77Z89r%G(rIydgeY#Jytjr2F0`yBD~I?j9yz~N!lry6*R*sfYHYIavjT$T$jEjDhC=o@Y(UV_09fHsyj z|9~nAj7<>b*o4fO1oV*2ng1knl=LDrgP!vS#9w-q_@cBuiM93onbCA>JY#4RI{42LShu zND_EiTpYj%tC#tE8YN5a+69fen|`ab(}6MaWp2uvYuC6@l6X|m4}6u?(q-RDxw-`LMZ86s9*|+FucVBW8j7H_p$k*uGd?&MK(vZI>F~0a{ywJAsRP2;*x2^# zWsV?L0Vt2>imt(iTJbl1aRjl^--^@fiM<~XV`Z#Tt?_Fxkk#3fZDj~Z0?PN3B8atd zggH!`o0RIjY@9FC>jp$v8J8%+%IF|U$$+6gND5VbMQ8n$USU1Bkymuq55HvTHho2B z{qU0%y784D>(cTSH8&zJw=wwQ0?*BPMJN1-&XwC3{AiyOdI>Tz=ZB2fKgkKrw$R?P z(3V(e@DtiPRhID9E0z)3Sp?g5D_CH2g4j6(-$J+V|W(y~UD`-uqcQwt4BcpH%)O-|@riww~oGU0^G z?k%#%2*A(v?l-7qCVZ=MrSBfA$ z%!?(c2%)mTif{165yXf2t2nKm*r9+JALcWvHSjPmFqzZ6huH&!H!*Wjsr(!lVXTWP z5{8X~pHxVZ3odb+Tu_M5Gd_`@8_otV37s@-LMS7|X9R{v=MPG*Sqq=Pv&ztGBx=JW(HaP19T;EbAS*RDAjK;9P=may46IH*M93Dp zivW>*S9w5Z7C&S}-c3PPA{Czp_H5%78dsiaCK??Vh^<=@a^r<(9b=$SG-K@dyQ zNF=ngB8aO>+;JvB@n5L6u+lg}(33_G%Z+b_q0@AErDQF~O5ygDI4PDJ+#!O3Geu}% z!96I`{A37Xt79MBM_>&+i4Ou2Y;x>>lk6wl?`9!;DSSfVSS6L5Z$upX)NJXo_suIk zf>`=re1!<&qgvYJuPyqhCcLSp+)IYnC2MV^A&5wELd#lxRuM8t_9X;Fa>)AB81;K3)V}tIFN{7 z*HX6_76>`A7eT-ptCwfG?57C9LdFBj%Rw$snsbD+7VPhoR#LIiApSKj)eSVydL|*(v zKb|AeY{bh*gm|y0LO;2y$LUD)(Kt4WyTxLIpJm)@^}x?Eo+?ttV^;3hai$<2?|HR| z*xZtzkGZ{##R(OeU!$MG%V#BByuoJ$=gRwqw3$0CH5t5Y)LTWVQXHPd{V@qXD}7Z0 z^Lq!Ig*W@top;jufohRl*{UPPt427UMg&pCJ24e5f~2naxD_0&Jb2de<9bPoc8sGziIb4bh+Rw)Sb6p%+tGr5Q|UD{Sk#<6pJ zjGBmaGpCNp`ySKw>qQ{TtusL_-R+c*w{)_%Rs`{-x(If};dQbT0^8q2i;V=$Y$MrT zFq@KV{DfT+if!}qou?^~FPrKkErOiJVS#;40r(0IV->vHFCvn7MI>Q%S~FYz5au?v zi2qh_Clz@~;~cfN=_D2|a${dIgMw?ZB)ngi>oskv%s?uF1eH6gr`us-a)oPKi*r{9d2Qm=2xH|qQ~`-HdE>u_CJ^8Y7xO5f7BD6sk) z|KIo*r)UPXa}F!SZ!JW8hy;k{==*h396pnU1eq)yV^Ry!p~**;Ka zKHGP#=qB6OT>g>mYd(o=Uy5$7S7kVDvUlH*)M)s@DfMy|?Jx^JNc$E?3VFF!EL9N{ zW4lRa^@nNiB($4^kK9+4Ze|8vUH@9M^`o=_n3{T`Nr}CXmn{TR#w?Ib=sSbJ8hDlt~W~(Wr-IRtT!%CLjHx_N;NYR)}~E$ zJ`@3^7ZVZVRm2CA%;W3QnmTzJO=>Y1&HZ7&u1kBy0pTOaXc6~JQfq>4FKYSD3}GCU z|0!Wvu87FXpOTaL^2h9MpO9u!K1;jO#V*0Z$07}|ERks|e0(_zc@9lYChO2-)w$Pe ze8L`-r}D1qNoM(mw2<2oQZhh6O1f0SF2wT2<(`u{LV>;>b1q!h9WApGHtk@oDpwf$cX+m40&^%>ZNPzI3Jc10N5b*irvK{TZE zCCDy|yc+zwf)!OvmKR7yOS+5NWxC}FeIF3w`-ig>B49{)fY$rk~vZ%CBuCknq~9MI~E@NoFgqlLf)bY-58DB z^#nM~Yi(x@!Ld2KBnSK?gm==y^Wy*M$8#?>jsxJ+fq1XtcJE8O+pRTCE3W!9g;sBx z)*SqVcFi<}20z~_-;56GOJxt*E(;AZLU1{L5<D(b^~=GgyP!&BRYtYQ`;OOK?)`?n@S$VqFyVdB1V$rcpDn>wgxfW}8Qwy$ ziKlC~KrDOgkm9rumjqZqMOO5lzoj-6}bN!46NgKq=J5z|W|BJSqbey!I zpl}-V#QKrwDpc4W%F7^@N%*7hYyRk{F23!G($6l zp9`w+3{?Yvn*kv8{AjMHZkS>6dZs=Nvn^VjO9IR8EJRK$;XO79{Onl0XK3Af@q_(% znV`92W|%>jQg9nXTmgAR(@ag6Fl`2gFS);N!3=GPX)|J7kW;1LpvHJ(4j$3;4GuDVJ+&jg zSsT+Nl4f@Q6Bh3{gyfhe=D^RgH)8rBci27rbJ`#mI(SUeF92Zk*nz6V%*NFCC9RF~ zn;G3Ol4&Zvb{P(RUz^rS-p4|Khrv{ysb7y*n2EG0IhdC4gr-I_^&{zeGxfu9xI7!F z4aD)`I97ZUTSRc9z_X>UZ`c+|<3ApcM;SN}21@vCG+cfg4VR}hiJO_)6gyp^G&=d> zPo>?+%(#P^hFdU0Ef}~2GtPo}-GbTdB)WIc)We!46c-ef5fog0Lq2q-J*)`o-?KY>f z$!s67m**wo^IZAhA1<#sxm@FTM_u$S{o3BEs(Nn~v;Clq$V91p{0|r3z%&q--?m@& zmVW(@#_Lfc95p4~a7Xh=JMblmonJ|F6_EL+17;2tn?$b17v(;rbwwa;C@v(Z6-ZWXR;vA%Q!1RSVZ8eA z-8f)xhCjeX$3Cz^TT^gZQEVywqE(Si`jZm23XY`TT$@ljt}4I!evFB z_wn$kgf1nL-oRng%$WBv-te||DY)!XcgKP1S_IU+#RUarY(7ycT?+1mN#UO2X4eU2 zI&a5%R6b5iaIo<~p2a!yO1l+i@~i`#04YJH%h-g{E{qya1iLix@`$V0s$Pnj*d>x=c0W}w)eOEP!nwYwe@~>5i!>ZWmZ3iE z3OElXmQz3$zAb}D`#KyycZf7w{_?^Ixp#A zx86H?8i<^}Cw9F>;Iyxdchtb&@Qxbz7Vpr&BYU3qb;mnm;InX;qSy(u^-eqjohL=^ zcKbkHjt1$4^m5$SV@MZo-9zHHV^F}l-;RXR?WwAwbbJ20ZAQtE{$scA^o|}?(c&F8 zpW6%oK<^DPdVlx4&@K;B>H8u4=u z@+;1*m1Ts)V?ONQ+l~8W{u;S2EJI)XnO1fN;GJnzW|q#^tR@HFQ{9ibC%oD3VY=4i zp-2la7fi~$xY&7C4lcBM$j+3JhBM{;XePOj4~6l1*giCb^sx27iyr1;u5c(6j=F>J z)k|8qP2xTg)&8^rslB7C@UlwEp)Ag4zRXidHVuc)Z3yH*7H3XXH(Y(8&K|-{4Bz?L!Og=Ecv-$$={o$B|pCiN4R^1zAXw|XM{zl`^|V6mtk2X9UpB3NIM1y!+pNe-%Q9_xMe4c@X0tD%26M%G?QHFe zHD>GjpyO<=5B^s_Y(HE3A(F8ZRh_Np9zH&s*Qz?Rb#nb2yt1Iofw)YjUxQy3G4OK{ zQ+0O2erA(NG}b;Ya-&g1dA&AE0&eNDziFG* z^NnJ88pVN6_U`pq&mmLPFdjw1H%dr^$^Pi_s-|hvaB^ajXwzo>FZRU9p2pVcmz6bt zw77hsdm0ez!HC1%Q^-uNi~BEJIXLN(q)f>H2LIrsnsapiTWyXGdT@DgQj)3P-8b0oXQi1lD))5Lg(1{`$=-~3;B)A-YtIW}nt|G#5a+3R~1@MRk02fn%D-6#~ zde)+NdXCNo+Ro8Q?}*}}fi|LnD`*lPnPU%5LIB}B?8D(~KyHU~Kd_jVT1;?>i6}XY1w#w(s)?_DhZB77Sm$_&hwM*mZbsHca5d*s_BJw=D-$e9eyB2 zLCdo5Nu@1R*g< z2&6%pi(-?Dz81TX#Uf?Bt3!DEcXbGdpF{YaR-42NrS<5$f1)bgN8VL{UYgN<8X_EL z5qj}&$HfaNz0iU~Jk8!*6cl&5xEn3D&n&iliw%BaJ7V>~&)r;w@9J(YkB$1t;-vzkeP}+1qkF5w6?hlk!xcf9`Gx&{&e#U|Ta%rV;POE&2W}!MbnPiI4 zO{#}Y5yq|$ndu=3oBWFRv{S+_8!K?qs~62PXF4HTx+9`JggfsG-{|&wPkUqc_p~=Y z`JVPh_?gXUs|S8TX68=9dyx2Q#M^peG`efupoL<_bA zc~s>5c=v(@ch-XY-GYOk;L6R_Lc%Y5a@>@;e|l8V-@-F68_BeyH6bE<_*%`?$%>7> z&5zdY6A<(1J{PID3CGKLsGl(l`21Y0d@p{YAJ5szY{X0LBi^fhelxXtE^8kf4f3V~ zv=2pmX(8_UG#mc z2mb7iV5I$McG1lci|eA0Vi)ytJ>uue;{Bw>6O=@C$&crDfwHE}1`NO5->!T$a`JkE z@X=0$QE0M+)CI~&J9u}$0VZ0Cow^_<&8c&6?B>+DCx(|8DLq5x5hSI%EWkhUdZe`c z_ekkiWRTZ6bMM?ZQu?k1N=iQrC_+l(1_lDJ)Gwh4F15*BC%i|rWNo(}1cjJpE+hqJ zU{WH)bfux`y>Tc2NSEc$hRe9nNQ!y{;Mg4RSfCVj{xjjW4nC(qS!F&}W$Ng}rm=ZT zITvEQVswVqMr>L)O*EzCVCo`-H6A`HAknydflk`tl0Mt6adO8qzA+(s64zfy-Na4a z<4X~sHlT=8Q@EU(!XRCSHx z#nVae>pcE2_MkQkH*Q$t{bB-xG6I9kdHnBau!$u~-|HfP$bKz~>@(-KI8e9XE?=RE z;R=C`%|--FP!AUY)vLImpp2m464Wj4TLK#aoXNL;U)MSdZCz!)7=8%vg8aIgYGJ`8 z)wm=M*1{sNmK7Hklo6IFl@%D=l$XP8#U-jqMNk#I9PTHVC&pUvs6_>rsQxbw)xV0M zx>Q_LP)1auR8YbF_Eqdff=g827eTf7weTRfDZZ?dqxu^y)aHZB)oHth`gZ0<6aG3< z6^v93*XvRp78bKhiO$P2syR?8c;H?1M))3a*`exFwP|{(N_7|Q*8|kG`<#XIw1op# zy0|;h!ok+WqHrb`7Y=l>e&7-hT+-I!Z;+80L=z*f-E9`qCJPC!)R4Jm4@?&g!MA?~ zb)>kUppBqJt5gzPves}}NqI$J33WYRp2P<3G@NOR)hga`(qxdfhKU1h{g{}`istn5 z>9y5xJ~1;~%Dg=#oG3Psl=Z$T=ou{*DP45Uq6D*ISPi?z8<-m|VFu2`LhtC*a4$D| zkxn^pTjUeiw=7bY=P?`C8?J0geQJ?Ttl;NF>P7fv!U8{sD5T?{gABa|ZSJ_`wl;Ar_Pj+VX-2ql;?0s;$C|5fT$AuKWU-eaH=$-OUME*l%W~B# zN;!8i(94Y#n~DV>Gwp_C|VH=Jr^uv!cO^bq?9X^f-n&g$LmFcC`w8YoMF0&42nSvSgqPP3eF|yh{02%2<$erEj!Ntl{ zcSP}R9X$X*Li^pcSgBe}9&+Y|)7}3pHWTKB+a^9BqS|LVEY?2r+*4Ja#kiV%QfCWE ziS2!v|3cmT@H7XXy?D_{Hd;3F{nuu!pCES#z(7+a8`9aAFY(%`uKZ&=)m@@=_8mIs zXpbfpI(zo};U}f-@7Jkja z>v<{hgq9g0OpV6$OYv)`ggLh~T-JP7zHFYeLP5@HlaUND?vegXQ*u}15)__ap_~Mf z1P?ieBbr9Oru|=C_&dzXgkVBa_P_U+sQF7+st?T{D43YP%1hP!!B6uSf?xVA{E{x= z{UyqBUu)B4Ej5Eqg&R0F8N6h<@3hI__p+naoaWc{0^6(;{bqe^RTz8mmYP>qg|ALr zAfnoklTqFvg*_7bdDqteh3&+;^_p-c_t~XNW>1DICUU}3=t#*yRz8`%bgA0Og+MNL z5-z6;8<9pfb8IlV7qI{vxcc%A4L2iwysaE6{=c%7P(oWN%47_LOF|ni$3TpCqLdSb z_Yfzf_9YAC-xdg5638UAD=ky2ow!UV!v~k@WVp(*Vj_YzB7#fn{qLog)J6ay{Tzhk z6Wbkd&!r3`ZI@{U!6hyd+YeY=_Z7kQP;qfV8*#y9O~ECx4VQyT>t#9}MlJCrH;7TG zx#e$`sqRi#ssqiNa6xXnxzHueJPVm?Gy9~r`@u5lB27SOFI%SL)GVl$aY~ZM2yJv3 z4px%`J(GhK>YRhsL1}dkR^Le}X$ZapYz$TjFoJqxd2d-g>R^Xe7}I06Nk;pytgM*+ z$5{FwHGPcHp0+jIKgMV`-WJYrTxYp5+GVk63kHNt1H$k;>AmH@qkv*f2L4~TgIT;I ze7BP-lAt!WyD5pkOPwg5l;x(=7vKgPX>=vWDH@Fn1d>*r{vv#*gEy^`8^6kHxm@i~ z7X?5&gfLmm<4RN?l*nO3oqAccfm!}AKKS(b&i>2Q=y-`<3nmhSgS~X3NC;1ns)mVB zK=JLn!|kw~B_^R~A(THlrJ=iAxou~sM#;CI+b!JhR0H86jBroKX%#u4;V)^}(Q@VP zk0JiIMGP6%W1NF8+%UXklCJtdODNIu(ODZmo>Wq2 z$oW(fPSwauj@r$Q$W0FZ^)!l?^YRa*>aVE~+XRa_4C1K$MXOza%B$JQkdaw$#8!)Vx1_d&_fMtW|A96HM40iWzj{*e>VG2v0e3{Vr%!IRv`S$sjF25Kl%FJ9|kGC9v><) z#Pg6iU!1_+w7@)dZ~5^t2Go7u!n?{8rbipPEtZ>$U#8xLLU3CBsYSNiB7>jE4u5D0 zvT@wE1$MCruyYoe6?ZN(nd#9i7hVB|SNHJp@%IF@ zbpt{0Nt^M>6$mf+I1@LeLz}+pxaA`~Kw7jpx0o?aqb+g7;EIOPA}?j0`bcXI@=_k` zz?T&6Egww{r!}BHF-~6W3NMzoGdrJAfNx?XKkaNKFXCE)gA${BK6onNX!kF97 z)Q3G6g3m3rGT5r_O2r0gep0Yf`xCru)g~*oyIE!K^?p2Gb96+!JO?7L(74;TrzT5y zc%^cy?x2<0#1F$&IZoDsLkQ>K|5+Btt2SAVagDs{#Fh9bUXNFm{~oWJg8z0R_bUc@ znaC}FqjYC?+DheB=KzNAs^oOdy{F7=q0xt(_`9<4#_wYv^wwAv1>qk|-qyBP2Ka{<2c1K7}iF z>I0YbBhch902-es&9gpnTxyN?wHT*A1=hjHh}Ixh_2>rRlQ4el#0oR%j0hG;cW&1qrF zk1a=vfHn_iWa4YlI5?l-T^o_SW|6=pHTriS$($lc<`x&pYl;LaiR3jP;m%$Jux4KN zp$M_&e5+9QTPSc@DHnVw=ZZinEH0G&3I!@TCxuH|4K9)F@sV&&`lIRICfdL~fTolA zTSU-Mor-4}sJv6Itf=TxFlSRb-`1>#~*0 z;^sBkR_Q)#o^1HJzUl@!xl$83c(cCyS8>^lYwlKzh_+9_ z<7xJki-g_PtIWU3MQ%vEUqp3%)oztOmb(YkdC<*+YI$BBuT=|ASeZyC*&zQZFbemy zA4=u9*&~Tla*zkPr?XHXONJi+U)EG`g?n;v`dDW?(`3+phYI1J+||JcXEjvmn#vjt zk9C0(t`y+1gZzNnBmaZ|Hp_`sIp0L47bTUoiW9jHA*#2Rx^DsT2H8^>Mx|EO3U<;M#)QwylN_@;F)WO)3AgP zY_moJHz&4%9$S#E2oetIx;3$aTuhDBb9=2ZwL+0jiCslh3(^u=G)qg>Ie=b7iI{_*bSDf zp$T$IV}_1CDQBbNTnd@1RWtd$5h7hHVJ+>D6P2KB@k-i+C2PnI;d_3jm6x^G+Qc3G z#1bS2Z``Yi;q@}64V&p#?qb_)Q~hRZ)F6`K4qt1!Hi)!KTr8s6YzC#a9MOjkj%e&D z^Sl?GGSl)BuP{d&M!LGA){-2;zAi@cGQlZpp&%s(`NRk!nfFU#Zu4KdRt*|lzUA6# z)Bfg^b2qJ3gSH(y;%5TG#cwAoftdi5(4dJjA&KCUB!WwOwg{CfQ-KAjADIelSX;86 z^G6(-OBM}WGBRX}s;*O}sPa0U5gb~pOi}f9#e@ZIgawy&_R?DH1aEj*Qx^fm^`9cR zxc#xyIyLzn)@cpFB_^^&-7TgEi(q=BxR{`gnBcOi;F2YROGr1Z^Q%g>Kh9mNL%|e4 zm7!oFTw#djLXV7B?;>MuXEHimbHU*ZZB2&ikaRf?XW>uqk9H^gi855Moyt)C z8eoK&9R3VutF@2L*`X-t_#!$W3GBPm6P^Gns>~!1?pD07s*{pa%M>HJj6do3> zTY55z*!B~_v=8J+MI9T_v>J?)L5f0qv0-7t`9J$5$Riv_!2BmJ8Fd8M69hXj$nfP2(NwkXV z6=zt26sH8?gHOsRttTM@w2g)ZD5)FPD^SP~MYmu&TIRuM}q8;OdfgF^;0bzE*|y75hMf_4kI9h?!zk92JgTscsU>? zG?s7$qLe46#VO^sC}hlJ%lu>rVhx~~P(Gm*JfSZFLNdk2PEHXbwE!uv$%M$lRrH8b zZsEMGgTEQ)Rgd{V7;~;5VK@NiF&w)CG3j7w5>%uX>U^dh%uCiHkSyE@-{OdFfeVpA z12OB2*DK5xE{hZqf`yC+mLHyvpfnq7_-7{nUpVklWR(U%NanvaB-LEpRWlik3SVvE zowERq-}mXxw?L7ImlzR+O~iWLL(KvdBCLV}X6|W@QC-djN)j(bV?B%?p_kd9^Q;mZ zbe>gxgU++yA9EwV{>IT}LUqE+Y1TCxf}G8jc!4DIDZ~o|w~H??Al-+cM!q9Ke2-(e z?ZJ;GXY&lAWo3tGuNqhNjNIu?wy4HiRJj%v{LE&V)dN3a$HXC z#sAxn=Q$WSzvvzGIk6xR@t|$)6L}P`9ePNVSmj!I`bahsX`GUqr_InpByfgqo;L2S zOb|R);O0E7HZRGeu_SC-99txLh&lEo#>OOYHe`}H`hB_TIC_aX{gZ7MHDMzX#`5bZ=Y z39=`+dv*eGv=frMj0Ukp2w;(KkRU#G2w`vT6cD17xQ{~Y$dK|1T=B`sQ~07-RGQH@ zJIT)H+AO0ft&iU0pR3YwzETA7tUY|mu{dh4JoMncjia!nTYJec^RT7F?XbB^Fk)__ za(VhZnf);t3F4gp1citfK_1>t!y@-MzpJ!#qyJO9Zn=&6=)uoUUUQ>9d+@W9H{2L_ z_MEz=&B|z1_C$!tK;UQ!94jsu-L4x=VNym5)CcwT@b#fKlO|ufsgC=^MtuOGz=KED z^c95TxlMRsqh(E}ZB#q)!bS?>6hKS@qGm&8sABoR?1n4PmKbhhJ5qN28P3uqMnA3F|l{wuEC_E-%>qb2$VWX7a9+Qv{A>mG$1D7L1FkKVw z^tzGw@B%tWn;r)Mo5yO@rqHH;jEvl6zFQk@jPn+7JKLMb5}F#$;g*ezlyMfXgZUcnoWpCmJk7_}n{+4qsNaGC(h zMPRA`)Ytj|$wl1x&AJFYFPU-?7ute)8jlxD(KuSH78KekATtx9R45u~SO;uZ&?G#{TGd5H}(A*n<& zv9=w}?sp@l%*Z*B;h13MACmQue5YS)Yl0~vvpzS{DiPsc5gUP}k|I{!TJ&+Lg=aca z%X?gI*s71q{C6WQ5*tZ+EqC%(-8a`>vaN3h_NrDUvAQ4KcB_^;Igq1Y>IV_7{qQ0A z$5KBOEOqs*TI!YW;TiNSO^>;eDWK2&q7Ft;3$rV*I@+7%%Od5?;qqla#XBj;=uGal ztva#6$r4gSvIN92)ZxSEmo(k&2z@rL9Vc9;HIl zCA(y@gW?DydY;+Jl;;o<$*S!)hH!p^AW5I_($)m|FdX#h#3L4V3!>-br?mKMf+P!)xIeZ3{oHEi9dQ`4a4Ly3Pm{i`YWO+F z%iGjG!sW*D+9y!Z38#|Xcebg4d>0Dh4dfl-|0@Ft4K$FVNjOrtLI3k7bBBgJ(_EHd9io!O=%|H^GT@?R(}G-xC=xU}7Sw^^PP0TU}mGcf@s zed|FZO`5)4N07AbT0?MsnzZ?L9Y(I%9)xt=_F~o+v=I_q))rjSq;Pvw0U~^O3_=-a z2(vd$=$TR79l4DIj59#PM%Tcn3pqe8Z0Sg-lTq+ln`7xWYx)>jS-3uOZ;Y%Q@@ZtI;~vJnG2do1bx&>AAqsvx zp1PIp+wErg#^~dw&VM6iOwGK=-R`CBrgHC4iwfULRVa>Mw_|>_zDkn$GA~lgExUu` zWMV)-ud%-I^T^AN8`_}*Wo_K+BL}B6-k~EU{2bq|+o3olUWUrscEpCt7)g1{4mCwy znm&FSj)_Be=$PomKOYz0C6r`-+7d~1CqhUDMF`OzCGWrj1}vq!&?1~?5w5lf;U~f^ zR-42N!h?T-aIZz^rTK@Sh6w-mg(CFgD}14)hF^$Dw+`Y39Q-u4$;ey23%~jct-Z`I zwD#J5p|uA;v1MC5@N>&t&o6>o<{th+YtEA&;mZ@(>lPQ{g@AJWXl|LCudrZ|$NUl1 z!vKM-a2Mvf8!WO~$Q#)V=8ToxWt%fr`&An_kzw?@QJkyeq`p$13XZ zrEcmQ{^g&#om@LEqHkK!p%9TTnBTIRZ1nqnH23taf|$Rj&qXTXH@tlF{d`%zBU(N$ z`X@h{tAa~fJ{K^(eo^DwNDsH_PVE zg2lw%Q4)FZvUt6$D)_1DNk5+D8x6U*@Wv$AYL3PsY-56d^ zEBzHkaaR4oKa$wA@xIlc=qp||&H zSp54F9NM0jk*=H&#F+GaFsU>UCT@}g2}UdCUbf2=+=laAoYlj-q(}NEEp#*a^(;Ow#qd}P_MMlJu`tG7 z^wd~%jL>%fZoxrDz$J*0C!76=MYr0b+hNhcPjm-&=~DndDYY|2;GOc}c}Ys_jwK zJQA&ib|wB-k*X(Z7qMcaj8!toM$e5!^BMjSV)_hQ9qhu$0=nu#2Mq$ea=#0_tagpP z+&%3_%grtlEyY5#S1j^`mGUK73pd}=gsJ&j%<}m$IZo$;69+EX_HB>j2+QrjG>05v z%Y6J3ug4L}e~%-?ti+q;AHZBQw!5-zzH)@O0S7t4&iUjB-A;&*y_NUD6@HM~ITbI5 z5pGm;y3B&gxkyibupctFtBBV5rta0to5H0Hn{H>oiwxHEH&>)(c#2vFs9u=(Zw=?kFxIC?g`cMAYnS%Ml`g zh_b#8R?_>Wqm!JM<6u3nuuR`}nASWzA{;id!^6S3jj{TgQ3Tzr;-Z6YL8rQTNFsCj zrfl?94dWq+ql-YCcUiQjvnLMXE?aYO*_J=XVLMp_+nM5GgR|F4g^3fYy zxU9D?i-5W-F**PvY~igKrMM)ny+@l9ZfwElWT^nxp_zN)ds&kPdy3h~ppZ=pm&o7} z8C)W(u_xG~l`2JFaQej|>tm6@#bUiv9HbEeNR1ngEiNXgA|_EOt9H1=1ech4#bJ`| zI#cs?1^EJ=2VptK;As?=6DEWVbeF@GtIMaqg>`Ex{s`QOVAG)u#5@t2VXQUfNV-PJa5i zy=qgR#>7YXX}IL4Cqi6o>Nq49n>rcE;%(|J;(iCztI9>Js!4|uY~r%d%vs2j^S{DHQR9`?gt zWvVeeug-`@+_(0bLmAOliGPTwc9Sz`XOF4ISywDN@1HsC%jE7;+V)H!2Q-l-tJm%G z+UFDb$M*STpOV$BbtpfL=BgWADy=c5Ui7rHU&^3Qq5Czev|e<`oyoH!It90 zJ}t$Us4L;yQHq@nqN(mL`^--bqRkRdh^Urg7w)Q+14#cHSAehl=u5T$y8_Dn0#w`Y z6`;EOV*#q;zBF{OvbF$U?Ni?Qv#R)B8>Zz(YgHPUHyTG@G2MHhe~@KwxIe)(T@$+2 z;6wJS&4wn?ublQ~Ods@?8&PQa)aXu=2Wjp*Ly%lgV0!e>cyi4{#H&}&ru~oZG|*)B zPH!NZ*%eyuSH2nd5lDtpPy|_^%##dTh?hk3N1DIvbU=_KOlY}ZiDoP%CE@n{oW^Q0 zct|my_LCvV%a6tlW%e5FhW*-Tm+xnzg?!^yPK;ad0Mg42n4?!mGZSx+^xBg3_WOLZ zn{>eBrKV4nTC61B5>$d;P8_WVSJ=jk14x&WgFIv8vfCDi#>z8w{I_RsA?XROxS1f~#I2>8(1$rk(7F0V4 z zT5cXb7sNo87!Xi4`Pz=rmmK#1@CeDU=b$c@Paf38GW=Wy|I>nyc;RYGe)DJE3tI|# z;gwAi`bKdh2`52~ztKsMr}DbEcp;OI-43&T3xs551R>g-T_^_0_^^!2et1bG*Zww0B`1HYs1VPRTXCSg{ z8rIN(J)4cc)5`Obbc!Vrc+P#IP+2!mq7NnT-Gcx$7u#2<;|x_P8S5Yw>v!A_JkCe? z+IKoM<7Kd*gjafzW(W_r0po4IU<@2nu=+dQ0?xv~LuT}_DuI_pJ*R5mB_aB&stIiT zMI6~AWHqKNKK?$W-3nf|MC6cm6ZqM@P5pSTIa(rKx(VXFX6W*0w5$2yEi|b#Lf1p8 zsJB%Ff9pQc>)gSIOkS5rw#my)ZeZCmuRn_hy^=l@p$nU#4!-~vPd6OT{^LOt+yg);|2aU9A zKlE&=_dbWU-iII7dWWCTUbcGRXT8q|LUX4cHiZSK2`dIKt9_kS13%Sl_v2aZ2Ot+$ z?GR(Nd$|_+xw3SB*wWc}oDh+_4oeNbyg(SIz_l61y%q@a3dsXRvlxYq83|2~C=ZKo zszrkwY=W~ydwi}vkrUtGpvyJan;1G`yEQk;tbk1HBS-L0ydD!P|2-xaBf2;L9giIe zF($Up5oKZr0f{iN&R{{3YG!AZY3x3MNMU0~z!f%@IdB5I5z~uN(Z4%=1Z+rm;fzQA zc8cBWh;G(Qy%_D|Ok>&1@)dYHJtw1NQo!uL`MaRhBVe>%`k>}pP;gmI8{(>IeGyon7Z(H1_ElqCE%_>kM*0jJU_Zk%_xp%9LyBV&Kd-oTpp@g3{ zyD$7=7~!YQKsuTMS?pH`IkJ}z3i+|i+ z6~DC*fyWIB*kW+mkyfMbxVIDmY_gRFx>9=&6(K9NT;wcG1E5@DRTqG|Isr&7u}&4} z66=&?$|X|rG5jO9l6*|bJ2V`~yC=?y*>ZDVvKv{oOIsI2Tl1D-qTH(g3MFs?I$D&D>O4-xnx2raWDPfO@os<>@XV zT$|!I`NyXCO`D=@FE#A-;jJ5e%B6wa;qQL7O8SP7Tqba%JEnU(~oNj%O8)GFm)c*gI6CnE$4y8OBYcsVMVBt59nJS zw}q?V$6a?^3s*6q*)QB(2-m{hE&o`!yN@e}XA4*1c#OlVr+x0Z1<|Xm`DkFiUl4u8 zeL_o<(C@gV@s3WxTgtZr5HRXjw+0GUau{L7UxPxMGn`p=RWD1N>rn9LO*@0B_@{+x3JHdB)6G5G_|mc4I;_ws7?d`UJzEnUiT#TFcHldRi6P{>b;;GR~ zP%m;2`47c~28Fc5aA}FZJYnfQ1c)WZzDyR_L*-L^bxvws)i|kx0$f7lSM`}Eb!2FQ z>&}IC^l)8uvY1r{ZNvqaV>(=J7lq3KqS{H$eDLur`jdVz;tW%$a{eMNj%PT>^+!%9 z%{L4>rR4_$gtmMf&G+(2(tOx6`oc*adj=y5j6FD8ovJED%9eA{i8%iB4fI=%KPVz8 zz9mxi9DkNeVQCkZ1HJ4Sg^47Kl};(M;x`yY*}ab- ze#2f>f>KPS1!b;|Ary6>_{=Alghj$3koA8cMC`1fFuw^$nB<8=;9@!v#823}G003f zQMFsFD)0G0tI|t`?T#K41PNN_d1{w^|DMpqfDpf8pG_g!bx3hQsCdc<^=E$h!@~W@ z!reky{V)?@gp1dHUcMrRmY32>Q2fnN$1GYe)!)pZG8uNEj4;BjAYsa~d17^fV*H33 zJNC+CWV;aYzzPp&nw5~WST?sZJxXTOb+W0=q>Zm!%j8MG!>Wrns{E)_;2;f}aCK?_ zY|Q~b>P)Parg}Y)ia2p$sl|!BsCs@tD7M`Vhp7>2s~=-fg;Tz`CvJXq&Hntvq|E}xO*{s&u1YYGtSX z&AX$$@IqR3GqFNOk_<^x_QXV52&pw4DoGVns zLprW%xd}Me2H=#hos5gygN3_ z8FD+1Afndhv1k^#gK?l$K0L=Y0Z`U3K}sCsIGygyl?>?vXSCRlOOj^J17=K3bb{wp zA0mb0#MeVaxx7pH=BCRVWy7&zzjj9Zr%i@Mte`|PqWqycQF==886{%j%dM4>WJd2P z5t5xk7N{ih9wE|EXEh3YVH18h1DlE~*74<~;2`cFR2)aOi{&+~zb=DVM(5n^AF4tWUt_evpNkLepaVJaD~}$CqZ1+#^aG( z*2Yt$=y6n3Jl4S47z%n!j#P8d5c2jHUNTYQVm{^$JFAq>;Ilpx=;oI8eoj7+g*ex1brgQ4j$Hv@rnaGp9NZF3o6cy6kjH zyH(ChF1k?CjG3y3;1Ps0g8`CHwno#8&CNDEecZA<*oRR5PJg1Yw z!P43d+<~Y`yzYh3hc{}DCM1-0A3zNWk$_e$!tqSLgi}osOlIf5m#}jSNBA^^3FR(} z7myWqZlPneFrQuWc5Y$hY-k^ix6b(lk3qq)oN`wA(I1{uyNM5jp;fF1LTEOyEej#E zlnCO}i1b_^AzN>zHVtK$h5IO+?StJZwfR)(F0Kx@#_!_#`P|g2)9WWrlcc)z8FS7j zesFdHa%-gD%P*S}?Q7Owik7x(q+d}4VPH|eSBW7juvc+b{E2-Y5QGoH*##1<#Aoy; zZDP2>3E@07#*z4J{*(6omPj7o_kWi5w$Evx??VYY8(em_=uegxLI68k+D|$+ulSSl zLgkS=niGc`p#wBB-D^5!62}DUjC1qspLA}XEkHQ89xMMiHy`_xazki(a6@a@1>VB@ z@as#b&&J+Sl*VownvOheL=rEY#yP@>&2pEa=rV-msW2yU2;&HWz3!~4>25MU?c>Y{ z#2YIYCn$;$h$n=sIrIpj?~$W?-f5MYYnx?+Om|hqSx8wEZjFXGx~*Iav@^qGGp4m- zim^hbN^>-(EZU)n-D?pVMlPS8F72udfrY4g>0XndM>apff{sZ{kCbhH9uO1I!_2^n zC2E;1iRr0{3niI$t*OwIn4ar&mTZA!jgyo(#gD%AypkwW0~z@w%A?S(4bn&cu|fLa zQ&rgrRa*`16ts^pL9;ad@qO^unjZvZ1z@3ubDVrl4+@)IWN4><4-^#!A9Xyr3&G_{k52E+{|rKe}G+3)=ON zj6LQw>Q?xnwik2(*b1)jL)jN}wFbY~GWTKlu`+YvmvjlI&nrFjv`sg}rhCbz6Tk37 zQ*1i;z5HkZQF^Z}f3$6x@3-Y^De1M#uDsy&&^9$|CE+~H^yI`JC7HJ69uz#r3w?^x zr=~A(*TEGsXb)T&)OSM%26bfNlR@V%=*WKNf?7DZva!oaFyTAV)oJ1Wc2O-{$%|;? zxY1oO{iTJ25?VM>Cc`^iZtj9h1NQ^!Q4Ur-fpBc@!s3vb;T==5b5U_LyXbR3*w5*M zx$UA3t2Hj_7=K4`K|v!y!KK-4cF~eR2q3Dgi!oF&0tj30J!sY4=Pfq4F%k&I)5kWW z2)0?p#RiSU2A35EmqZX;LK__iP4;*dT+k6>H!4!z9PEUPJzfr8WuVpkA?+{#Xp8$K zkn;~k3@awLOJBGssv4l)W13XiQ%(mcE{*j}bx38mGr@mo_-*u;i-inxt=Y+%|>E2HjGq zPe1&4tn`lQ8wzn&f!r~@yJ`9~_n|^^LWv0V9<&Dw4Q`dLYBpx3r@H+Ml@bcZ^Ps~U zu1sI+xMKlHD4~&sv_I~ILZyV@rvaK}AxOMXLdy&PL#=c;=~)oE8HB*UUH)eb)u z?aV<~I^m%`t*7GR7>AfR&xV5L=CLhSOm ztoeV8T?cek#n$G|4TL~$0wj=7LK4U=B$Pk`ApwEVL3-~HI-v$s5F0$PARr*%*l3Eq zVnabiP^l_lFQDMF`yQgAsI>pvd(WJ6F3+|8WUZ_@Gqd-eZ}!aDGqY#TT;D7t;kv$3 zjGS@5$}rtVc)Sjbf?s9XWf%rK3_KW5V3D*SHu+_4K3!~h1LyNNj565DEkteM6T&Zx zIQZ5IzK57tZi!ec_?{PWYtc#RN<-W&f;vU}gLWH$hU2)y!2mI+q0R)*V!J=!}A*)n1{7qUo{Wodh=D$e`BhGEr{x|7li1X2${=ZQRU-A)g@84uVu}srl zCT`%X!AuQo^KWtUH+RZvrq&s7$hYA7bu;Ew(ixK9i? z%k+oK#Nc913pkr!gK2S{X|JpeZ6%+R&%xDcd6l0V4zzK z?lsU5=Ndk0q#@3SDR=xHeVB6F@1l51|Dj9I=>Bcc+5BJJeCL)wb#%oI7F<=c7R_YckL^D`8ogkX5mC&fzGu%56Wu$XDr(~*{XQT&!$-?9V zt4+^H+h?DVwr_hzx+UV=_B}ZMxFVeK}iieBkgZ_u5x*}{g<(r)aLjpQ5<|e~RW1XLRF?G{hO*TsW7##{p;Q{yHe% zuv?bpE(-&^#{jhXkGT2#750mQ&DTMf-4#r~<7~XbILQYB4;gR=4Y*?l9O48{ciRw@ zGsQ??t93pao%%}%aXPsFX7gSliM__@lq7GTL)IjUj6KI~C@K0LUHC@<)Od~!6yIQ% z6-nHqCvXYm`LRT0QAF$vx`B!4-NQv6p8B(M_AV>IzxFTVn|(+`(5c(C_+ewTC25P- zPSH~~Ufs9Ggu^*3IE$v0?3dm17oI3;{j&6I{j#HJW+-c^qF+3I*@N1*Iap7xD)o2p ze+W2yU=ZJ)kQUiJ`#x^$qXUB{5R!YAOJTRqEKE<$kB!e&2mivHI4uar8pBTrqwF7;e10r%(>3bhVqdTsu_`i8xk2x&6XS4s7MO^4_Sv( zG0&ht$S9T@6ife>mD`}dW#x8zdC@=+qd~|kw|RdX?<^7+&YUPXJJlNo$xed=Az$(M zi9zz=B}hIiFA@l1BnTPFP9Wj4fko%G{sx!v;}r6BliinO_1AB0BUeCbrF3=HFTd)H?%76vu{0}A7uBvg z5mRl{Q1(t%opl|=%TZZ!5aYLXZT2H)#Z2J08eYaLG$%iStOerr~3^}|_x^Q~D;0?UX}-s7vzdK|*PlJH#p zbDP*)S`sq&c=a>Dk}Eh?AK42ud>A+89KT!3&Wanjo@DW1+*IsL($PSK>;`Vmd3+eR z={b4D^1$tV#eSg1Gv*-b6@v`!N(i|trJgfhU?gx?s(DUYDCV5B5Z#DEEdWVc=~AYHoR zi}b|xdNI0QvvAoo)eAq|Jj1a)d)H^(rVg1p97MtN>#Egm!pr;F!&&hRZSm z$IMsfxx4AD@4-~@<^)o>w<%rrg_#8*iKcT{22c{;CI0_)wrUrovw@X+$QS3uq_rjy z`6~Yc|J*VznUviw#Mzb&;uN-JNFq-E7w6eYOc(tT=QMOtTCQB<@KOpEv%aM+FOqDj zJlQ$uYWSFGyFJo&nLN+oowC57sgtfKx#TS2V;6MhLs=~Y$4G)S={{(~`i!y5!z$rR zDBJ&)Ihm|LVr3zG=7QWpiJKfrlg=#Utqa^IfyD7A`*6aNRLh?Wd4oh%f~4GPv#Ob*j$nOq zqM$&?UR(ZRxXVSE8FjoUV{PD~%t^XkEGHh48Vc6LXK`%38(%ceWTZ2mMi(7Cjx$+Z zi%dFVzQ902=s1$qY6I!^OCYT&FC<7~6(M95A!H{q#p$XD4MSFno>x;~ei(i_5iw!$IgGeGA=P`N>jZ=YrQGFIx zAyq-!)mPw3LTZ9neFdR?jc z74+6&p*%IOf^I$`6jC=;(5wFnwZd0NC;k%*t2G7$vUi0-m#GI4s*t-7-VC-YLyau? zPM3UhSqPqgke>+_+U(CI+dmJ`UfGp3K>dJ(q;Nkf{lvgfwtqG<*judhk)O?!?Sde~ zz2rzTt{E5}pu@2gB;_km5IB6O#Y|owM`NGhGYmZ)27*UFDMliXzwWOu0w+89zw8LN z#AmOR&vp`JxCl?AUgKLqd3cGp#HaXB2z2MWSH!V>U+UADLy`63`Z_Y19`%ir#6j4uA7Qc%DASFp9s zt^IefrRoR?V?)_$iPFDR3(t4XNg;jpIOy6GxWO%uEBAzc{S1C#!Q^h2Twn6K#i1nq z%#`%{KBQ0&0YIu(40=d~HNW(osZN-B9g}+fZ0dDP>UG`}a}4#Nu92uWUkDDlW4C*L zt18w;)N_RaI}acbFCTaqS^*`o_sh_9acF$U7~rOHv1z`6OvcIwr=$GpQ!~f=W(Ws) z2BxAs>Ld%9Ty_f)GC7>8V(vO!gSD)8PzNkjBAe^zu6-)RsVuIHn;7%_gt!XP#@ zhofoU4L8Gwm_);HQJ4dl98W%YwMYpB_csH#qHbO_WZpWs_X#e(xvLryRe_4(1}Q1} zTW(*bJ`o>cFO<(PwvS?D#Q0Tah$j!Dp&1!Xb3MAjsm`gjeAAeaVWUt7_Uvh~{qXyJ z1c^jYh8}Ps@6EG(gQYdWNVksnHW$ zBU28)-MH1)ssfB$BV5fOHBz=<9O(8EU5`!&r#pzKHooh1^^_2K*x2|jIFU6%1uBY7 zj)U^aCfBXV@2o<6>lrjaMR{itWt-dvq1PrCfDJvH$O)tx?9vlLH39T6%1(ZnNs*Rox^PjP0bX566lwEs@krfOST9$t z6Ntp%^w^L8n>9r}W$-;_@V#R2AlQ1cMoYab915$!Mo`OGR$qH~DE_y3CxDj> ztnldCjY9QhQ4OICZ>7L91ZuqqMf5}jZ#^B7RgW8hU~vFO{>YlE-ZTJTHvr!=0ACk? z#|^;O0r1F}I-S+8vATc9urqJLK^?A0rOKj_lc1wvO(j>Bikf`f@6B_tlW@V%;FgPv z!n}hU(s^(*#r8DhK*cp2R#~P$CVR4E<2SshhHI)_o~Euq614z0oC;ocE^D4zQCV7G zX=Q1Fdj*(6oO{TlBFn$DvgyG)D*rvf@_+G2C3^5;j@br=;#|cFJMEg)Ro&J5Wn;zG; zUITZA0Db~#`Njz!#Tn$RIO)bV|5}e+26-D2c#aSkrNlaV@2go!y6<20tLtmdVM(qk z!a?*oVwyh#cMV#UF1mlcwzOM=oQ)(2he(>~bH4JQ|OG|#0 zL(ZyPQblmt>^me|Rf&OTDLzSG^J8*twMnq~vi0$Srp+q`f+N(+Rq)eeTr`hLdkwM| z46+ZwM(Y*Cd06@mp?6sNw}EEpF=;Lt5XvWVf`%E|t^uJUic&p&IQ5TQ{|i7?RxOz8 z%b{$n?sN0-HHU+%LG|Ded}s?&nYDDN%3AXc5Ni68ql3;EiZK&gu~Zreisy#g35R!~ zFbkYytql2chn&IPBjCX8yCRIM+l(kI5|Z`$KEh$+Ij@Kn;g89Cx^0rNgr!GuCF?@X^bez;XF9}+dN_6Lchuim z-Njsm{$RnX7)dVZhMWNpL6KIhvTVe5d zqNv>pqi4GnhGngF5jCrzt6z`icxHKQUv&^rfgbw|bP{)@s%`nU98iTWD~ z&kpD6MYC`z`J!&Y9<&^`k~1xF`##~4dunf2f&_II-r8?-#AiNAFh&oo5~L8 z#Wh0MZlSaJAw=#D)ua&Ed#d)Fi5)S7#i4AS>x<3JDTWlU6DkThsl|GpA*K0>P%=sD zpA>39;pRZ7C54&y!l8is6HYV?H&Ph^Ty+}8eQ9O>Thx3no_PijLdLV);91Iea@3#z zd^M3KIk%S=5(F_MgapYyFM#eH6FW>HficaA#Dn_kVp_|2_Zw;2}rU@W+1&14M{J`4&Djtv~@O?LF}@tnjo!)uz#ZnI=~gGo-d0D zc(WxF`NbhuTcLz2<3EHZQ4N`pu z+0X=TKi?b|)XYmj%`Gn|$YM|k8PrgK%8bh#sF1**2Dza4&EdN}(gM2pUi7v2fV@uZ zfQ!R>kr`^_-$yUun95ysvvYoPaWDI{#`FqS(L@noyUPX9M1M11=ZrsRZFowMXdZ` z;-7j`Sty%E&^fa7#7Tx(m~pPEgPUY1jZNI2s1_U!>SzMhAUA;WtY__WB$4HMGl48u zmw2{SrR?2K)vG%PYX&AyyTbg)Tw!929@{F|Gw?a_i^qCTg4iv(&=)=w6v?OdYv^eO z!JAckeAfjlf}bF!4A-AMD3PrR3Wqfb=?=Q$Q1};^nf=*Q6Qx@s#LL@E&v`PXCC=tE z0Xwy?2Z3W%ZiFUN3`tO9a<}FoP3LcEJbT2*eE)1U7S&BZe`J+fD{czjhUDA2l1=q;V z-|5SO*W+9Gb;4*16q+vHIs8!AkybsGhBm^gzo>$vW6Gm=pMb zBuR~TR+AdPzREvAmtG%Am-@cuQv77=yECeMu5ZQaw!W3H>>pO>|^)Wtsb*&d+*>NpK4WICO|E!%S66&b(zQ`&J+0o)n&Sj zI60iuM4X4hO#c7tc;g_BCir0E8CcWmV&K%Rro1IULSCLbtIJd$ahkiSEhvvx9EdxN z#V^;nR=sK%Up7Dw8lZ?X&`$-Z|7DcK&YYis*gA9mKe*o+xFqaAI80v&(i#C#2ANbt zK-#i0C7;XUby71V5NZ(ci_)~ZSYznfcBdvtqV7}+^|-_u*JEp}PxT7MRx$RtUk%ft z5{3l}15HSb^rckPiYAjCvZ}=Ci$$Tw)bJWI%NsX5xKs_PK~@=8~5by+V(~`=ssipXE&za!ega}RW5W*(s>Tw(Wb<_r?$W!+swDvfA6GVCKF>wB~ zJ-$ijt`LcAj&DMJ$~O7CQ4uH7!p)&!p5)z7gC==eedLAno`HjqhX~$m{K>%ip5f%E z=b&;-^0NP1UPSK+A_!$f?*Y-~gGogS2|Pd?ih|TY)9u8*270lkX)sP5VH;=B-60t7 zB$`k4@)bxHpEk-*lDU)tl~b5hPBlRo4_hRZ=2G>OuvmJ?KLmwk+#71H>LxjQa%U~q zqLFDRn_j~+lubpw28Mg!!*E8t=-En@=VlVRDA?ItFO%2*hinF&pH#K;b$ubBV@<}c^8<%+?r_D!` zy;!pSwUcA?iJuZM-GrDQk;?_R%HK z-ZRh)`6-v2p+m1Z?%P$|Z*gp$h*akkZc zMUcN)P1$Z#CHO7*?}G~*U)yLf((qv!t}!Je&cK$|6oYK@wMQUrHL3>%ny;DOycNzN zQWtMCzGjeZH^|;L$Pi~_pP7OX=Z(hypdfEsesAb1)M8cmzef$&xsiZtF{p}`pq>y= zoL#cnwW7QmK3p5JHDnF~+rm2=9>lqp18PYvO}_qY8yu5~r-MO-6do;Sfdehz+s@UD zK{aL9@fLhqPa6w2){+KTXV4+e)qKE|gg86FUO?!r=2q~L{w@6>m!6RwGstZIPi{VN zCD9Gc`p4G@ZBn=+E|%H6Q}&Li9caf<|M6-_?*C0l5ri2jqCdnLVbc`pYl!o_qeDux z2eB>q2%)7P;nEXAePmaN@87WbS9$WWzo?cVPJI{oPT%EI?dwxSb$1(Jj~if!Gq9J9 zAjBEi!ApScHNY(WH!eM^?za?aRFeUYf=59toZ_~n?jMJO*{ zWu>z2@EadQD%*%iBbe|uI%1JTNcC55W2U{zb9oK?kDCw4-Y3aozBy5Rgcw_YB7Q}k z`uGlosg`@G)*Xo?=_MzMX&{ZI9%8BT z*?Ouhb#RL%X~*LN#ZEYZ){FL4O|furz!g-MkwL@JeTABo1nF82Z{-G5(_3;xhF0VmZ9~T!aCE7T-0KWx5wNc*u0`{Un<1_0EsOt0`{7 z8MX05QR_COXX`e^pk!xyA0~O+hGn&BDrDS-*8mD1p}&sN$r1XifrVU$w;+>Uhg=T3 z4p9KR4)44xI7dMekMis}yc<}|#Bx?`@f^N%SFpWr6A5l~=hxNo`$Ic|g;mzNM7-#K zf%EmE={2gxJxemuO8>+R#<~xEhb5nX0_^SDGPy*ED)jVyV|dT`s;aM$XXlnV-;rWG zUq(k&z`NFmB%U-Oq)C%P$R0$5Jd@iGRged9Pi>C}F|Ceg!dn{=n(!hdOsWNE=3%(V z{1z|7>kU%X-?hbwm|v%ys340`A>^rC?K;MZhy;R#>rP0x=KJvsGE7JizlKTx(GDy^jYYftJKA>%)w?Vl@uWtT!5; z)e~g-QFL73GMQ=~S6K+}t}Fh#tpeLQkNOnJN-G5l*MEn*v`G$kgxz)J)j^1kVElKu zP@4$If9Lx|l*9L49)mFND-FbExoC`@byPtbcLjvp6?UU)?7l++cZHoIm2PZQPqET) zLK#;vdBMU$&9b_82<WMU&a3jw1+Sk&=(f9v!!tIbooe*q1bGj7; zlQ~phnc}_xBG^K83R8-ir33%@5StHsLL%3Fk-?N>BZ1U$9Q4LG`((o_IbP1M>c0O5hga zl6ISm${X+6b82*bajaeQEPlg~Uw!B?p1vm>fsdjcFWX!IBrn@+$VE>?!LFBWMSaht zV<{pu=|Bj}X}oOrGesUgRjz&!Lke5XEs*53nuJ(3fiJNDki=FKAzRI*^^KPe32ZfQ z7O6btxUs&t+CKAQ`p95H$kv=)Z9f}K|6y*P4Q+$QX-oB&@*R`(`DjvUAoA&LbxDyyrFLag&D)uFame6oiIPDmLXn)vhc*(KmUGTcrZtj zi;zABC=hZwIGu-c&(C8YfkpD11S!QYND7AM7sDwkQ@nF@Lv}rM;N0J<^m9CPC7Gg0 zaPds$1{TeHI8x1cSFmuJd|0A;T_O_B9|b(hRD{=;r%STJe8!k`%0Gm)n>l!~{TfQ7 zlj(<pG?2c8`05GR#C5ZI{F{q7x$a)Gm5xEB#e27` zfeeASG?0#Tw?T(Ecch1nD8#uVy^PS?%U=K=jmeh&eV3k*oiNC3{?Bf{_1>xT2Hq_= z1RBoqQ-koQ0&pz02+ z-x#K$tFdYGttHMT&S25heJssFhlY|i(`N#>c$3PX^Kz}0zJ_jZ=g$N-Q(nGWZ=gOc zq}>*C#&l(-D2OH{=x{+*@z+AY}7xiJR>jf+B;{Xi8N|I>@F-r^) zqK->XB_WZfJVv-NOPV@mNa-#mUKtNxxu>|X^4-#5G+B!@*i>iy) zT?aut-$F=JL4}arbqIOB^$xTGcb)G5cEH08`Me*Dc=JACb2V^UNB|*ZK&>b*U*#d0 z=6@I9zon^Z>rgrIKu+_9VQlpD4L9_sg^ZUDsf?yh$cu&?bokiV1vAZnK}h~N`lyG% z+;9n)CFKP}a^Rc8heHf!8sM;N4(SYMaugi)%K2XQ;CaE|LCDH^SMVIX1kd5};(;8- z0}n5$=LO(lmmJa=&$EI@9WWh}kJ0T#HzRl4izbn0wa*2`9XFRcJGtZbC&!9Au3tk; z3}0^^s-n*($0q78p9m)E-1?z7Jtj32Q0TMlnA54D0V)TcIc&@N!(sSXQY+EK@-ls2 z?a&O>F)TK-U09CL6@h{mo+Bi~H$?l!hO^bwu-LsJI1fz+Os)!x5k{Qsh$;%RU5G~s zc3xVjcRd+S@|QM%BtFkXFXyZELba6+>rd*1n#C6qu`C(0bhYcl5&6~oO_)#7f!p?P zCDA*~NGsEVaebKIL-hi{&|2|X;!i6r47*M?bpUrI(}|2z7c(luA<0X{JpgT;Z0buU z$WuoVI&a|#Nb+m} z*Y#-9I8m2O3Kvk6#}{~FC*Z9`l*TOI5@8^p8(A^0&&?Qq>!(}b?y_ zwRFGi*h=b$h#rw0>JsQpoYEg#M?B89U%6u9Y%6eSeg+_RKedi3k=;*mjcf~6p(k!Z zJhA%;4ME+u0M(=8X6qZrinq;e$afou+HiY~ty-rwj#FY8xTr~JA;$HxS+=b*8sTh{ zH#?wzuI_6aK)S7d3vA$0_3Je9yn!XnLK*R$K(xFP9B;jghw05NE7j5uGz+B#S`e=& zAgz(>d&6cO%59`+_)Mth()0iXRzO-*nXG^bND}|sM0#Qc;K{21{JsM#U}N*xI#E5j zqhr0Awg@frT_?59rAvQMA~_t{EX>FY9l+5?K$Bj&s*&{4`-PsTs7T|k`izj#Z^j^r zr>MIrY5xD$RbPWp>Z;)43Da^Q;EjrJS)zVsDi%xlo|rZ&aQP&fhvu(eH4-zavc*gy zZn@b#S2tVCZc4UHD;s6AdG)7cL!@bS|lbwYqwzCM?&aQxB_~aWB*v{St z#nA5LE!pCa`@#$8GXn@A8-Di3{bm52Vn8`+2UJWmp5M!h3DOu7LdNtNFtIZZ35@CE zC``r?htlR_Ue3EdF#W73gzSiGFL``myDjo)B4%L~=af@b5XP`bC>?$aaMP&bSx2Dyj>!H*NUN9`ZT3Prbe`@y1;UiZ>3S z;Xml`y5jwXJ~|T3rFVVp?~?**U%81g!>QGE1#n5hdT~U{xY&sfu7Slw2nSu zyAj5h4!{MFV~uQu#=1`*@ZumoWz#qsoxN>uAC!Uf5y%%qmDyMf6+AV>!iEZIY^aKv zOjm1EFU8kb#?^t86zzk-_5ZtW3(KvKmUCtlCmW<|xBxOpmT0Lxf2!P2R@HciB|7BmqrK#wNk1wfoos-Yst zU(iJSa%x(W=u>l(z(^L~GTdlNMx2qYHpp!LMvp)~HTR@}1_B2fADi1_pzSu$J}}S_ zXJ}uUk`U)(bEi>~*CTbx&{b}#SC7P=C~81{H~rQcIFmR26^bZJktGy92%;~UTQrSw zyb&3F6sT;$y_$-05$7t7Xe!FL`BU9|nf)V9%11ucFa|wEd~Pe7it?8=73Hr74m!_= zIM?uTBM5Q!xxI?eTf>*ZN4mH4AG`Dn>>C5j=KtpA8=qU6E?#f?F^C-fv)8Q-=jq%} z5>jzSg=e%8N#a+q7S65Ep|4hw#&^OYjVBA;CCz*8OLc|}0&DrkNAnS2e3V6S=nb?~ z*Iz^#UXkWR=!f|1>K!RpsVNCup22ouFMVcLJER z<`0L%s+W<4Z0-YN5PJK-2(Uq|mVALr&RyVUkkdh5BWh12p=ONU#C6|(s)J^4_k>V!D;KjafYKaE%Xeex(_ z^bc!+0gS#+E^Wa*lCFT-6V9QI%9H8nQJj}bpW_#^=%8VBSTu2B-qr$76tzxFdbUo? z3V1d%>|;3|C+5l)H1RY}%)0?&^R;y{d@bbjWZgpimk%PH{Fm`u1kZx2!*TJi&=%iH z0*aqsrtgxs0e~rEc?Hh}WiD#r0@;o#5ig{3j$4}|S%=)lvdr0Ex zC_sVnhX)9g*X-p9fKIMwFvc^JMBi zpuC_Uj6osfIdVas@mC^&QRU}Fp<;*SEe( zbt6zUzqQWgPyvHl6b(w;mhXE|9Wtm8vaax>l}_t@a|x;+%Zm!a7!^WBbqJ`~d5Hvu z^|rwBeJ!1omlG$@@35S}wjy_2UQN7%K1g2xFQ!Md5 zG?Qk3aX!}e3AplZ=Rx#40KJmm}e9 z9s6#$jhch|`{AC{rSHNN(`M)#-TeJs@^71X{7*xSJQmr`?ZMS#p3aNc@YruB9=e##aB2~4!@s&fWTQEQpAg5*i;$c5IP}RLOeApg9s^!#%C|{p<~GIs`P`Ix%OT7(o85~ud;H69?WhXk z!bCNADVNaFEamWEmSXMciI;MC;-wh+0Q)e%yf3tXyT{`5ejF{^5b8ya$qapdeQ2f{ z-cp>_gCWu8AJqT;0NbMElbq2~W*67Dlqn|SH2A3HEoBrzoTnEX5Mp|fNe0X7k~C)A znyq^vj)qPv<|S7Q4@P?+hR!tD{0}7GKLhB;NfyA1X`CQs$lgrrKR+_ zzAd@W`O)We^(~=>Rs5}hFNV6E{P5ebEur+l6k?R_HlU^JkyP=mj z{K$tN3I({m%AP`db$BGyU5|Y@G+ni8B~4WX3^r>?05MzZUii3zJdydW+*&t%G?cDJ zx6*wd4HX7@5v^3Tpq1-+RFh3bTelalR;{F>Cm&BH zuVWp(>TxVktX2B;@z7GGO?B2#NtJNkgJ0%n9>?Cw=kam7)KjPhZ8SfIJv2I^@=7b2 z;6A2zeTfO~fmYH3k9{*lK&AQET#A#aqkur zu%&zz1dgTL4QXCWIhW%9WGNwzEhR#>ln+By?1MxCTgola6HR3{7qAaf&;1_F#Jj(z z4I+eWyV(I5Xif93JlsW5_8XLu@s=;3J}i)#Ok(SDf`UW_g^)p=1}JtyB7s5u5(P?} zkg78m-B{15S_xN;{SvOFm;VS$KDJS$of>Xn4fzLHBg+e`Lu-a*#3tbkCKu4>A%72f z!l2Q>cNrCtP5N>jksHwR1D7}y;MXGM0KDswltlF6L z0yllpzEC$c(4_Zu)A`Mg7R@I5_tv}us-9Sg>hKLs^XMtDP=B@`6QFoR%=>+&H5uym zfiqF~GVhM0>5R7iw3L4lA1mZWdSZp*$tr}e{m(fVTI}y~habNP6}nlsd^_}{T3^U& zQFj;WjCVpGt0#;a?xvDuvhjGK?(lACm9BdZop|T4P*A-l74vT|gf4YLf%?qU_#;!} z?S=Z?L!mb6SCf9yO()IK1u-!ZF_M*vM5$n5B}Es^N?HRcSSD6~iYmrR$}YmwQ-%8V zBcaBD#|f$!wmS=DH0yAndR3kAUT6j`E=EcG^C}e+*13dDip=C00bM)Fs>G(VJ8&4x zRw#rWJ`6oTAtvRGwk3QNI^t8e7KuB2mFR@rvPfc=_!6KT`+SW8eJVSgr@#CpbUA)V z9&(Le9ND&wwiM}kpN2Z(i$%_6zj##kwhN!4FyDSDgr;)%G8HmYi&B88ypn<<5The+WW=#2=; z!Bqu3*Mw`U8xRsu!=cuj!VxE+x^p1HAKhAsTM&07lJi@~CLpESf~qaCaCY&L_xrfP zcU17HlWk;nj5yDZ&q-PSqiu}$JE5(3zb&{bZ3UcVh_n?gBF|d(EV!A#at%n5NC8XE)zW<&Xc;V%fvxw^_Fp& z=*`l%bLkmfuggSlHh+XC|6P1ZJr!|M8}c1s#d8}DREsYYwOxk-NNp<(FvJt|I;9#4tXOXfJB3kNdHyIdj{y+UR!sqDWY^0~=`#*$l29La)|(fel)- zc;U67Aj;@99xx?r%yz=9NlrqAaj)`r7;b>~Qb zg(9rVPRt08@nM?OC4%2K>A)I;vm8|ND?Uh~CWU*)$|EYm=bOw);&8U_=y*t=E@#;m zMX@o?+Zm@rai5ohztHb@Q(~&`F#!rW7HIFd@BklfTp^%44bUSlP$V(XFI{;^q89ey zchg80^liSy`Co(6aH*=r(kT$Ee`TP1Y<1;ys%{{|z-5>`Zhzb#!a{g`dP7H9F(X8+dgAwxDUVMluS1rzR=$T+ z%2#*vc>NE15WQ^>A!J0~xQM=DL^t}{wZpBJU?IcP<$Ugt(dg~CQq^8KC z!#WmHUZ-;EiDZ$>A0b0Z?S$3m-LX9>fg#oG6s@SIit7K%Hj{I5dCqm}z4(}mgTKfa?l{WIw;AgBMu ztnfsIKFUu2mBH{(-)B-AK5_aHO3HXe))Q^@Ys=~c^pwdp2E!_{u4&i%zW_(Kd;UPA zQ)*1r=SD}K)`#mwYU|x&BG;=QI>|B(qU_q^dnA#&@d(1C@MV6y?RrzAaAsWB&Tz5@ z26gSH>xa{8>wh;2rv<(zK3S~2-$~whx~o(5?M(Y?8&t2(vZXe$vp6G4AOr6f%5ePl z>gvv(<8W6ZLhdMpXd(HwU)|0Wd1@I#=k;0zQQp^!;E5~Bm?Z0+hA3_zgxo+^b~a9X zBya=G1xRX(65Lo*h!4ZLEye&b9Xm!1KxAAX??+uPMo)a`@e8akr|7UO)zXLNqhNXM)9(%{Y%F9zOB4-6RaKi1N^heJEn01IJ{Tyx#pw z^w$hBY2>$pdOL!6)E`Mj6*;-nIM?s%BCdVkd_jWi$ccmpobzZ9>)l6nY{xqX^;5_D z8lmlY2?gQC>aH%jZ9#Zo;2hCPXZx(KXY=BmgM<8NJ>4S>KWY`=>tgMHmEb+L{0 zGCgr);fWe64lO`^^jkDMIrZCLT_cSesk-Jid$llJy9UH-4CMAP~Gt}es!F>7dw`y zUiaB|-g?i`7F!%4;_$iw7fS%nU{IvdU7M7Cap=jTg`=%Z^8-O!b zRVqj8^eHiwSgdHvn|wtD!ue$Ta8%X=$av;JE%(hi)EY+ZGWrwg_Qt&DrC@ zOp&JsAasoFP>Avx+gOU*>6v#f15q%xHGSR0*0$|t-2O;sTU*#ohUiw^*zK=Yc=0SX zco4GjXV3rr2G2&ulcP$z$xLQTc_Bd>+kb>?|Ca(2d;O8Xm~M{3WW4^LdVzgtfFY!_ z$LgfP^wTAnPL&rE1TiKONav0}1SY-#011rgJr|QZX~;u6(?Hdrn`fX(hY0fb=XIAM zHn+QJb>r{v++F9lrhr3b$<>3wwX1JS) z0>z5piL8j2NBZ`EF)awh?TqO(3wW}loHj;i_!m0-c;ev_9#tML|1~r`!njwnw^be% zZsAjFy323=-HTe$S|4%pt*VvX^`YV67t}M|*#RC{Nm`JSpYE>T84>QFUh6Jf0#RAp zhK$52S$)u57I%lc%i`{_YeDshTHN{Y3z;_?Lu6U%^$>)J^Rg@( zEaa21`K{f2_Q`ZboR($CXIu1k_ZZDSnXx?t+sGb*ZDtR_hB#xp#t1^3v8{;4rj~+_ z#&1jiuuIRtUNFFH{u`3-AKAm}lR0AGfr^dY+ug+{^P@rctwHyvL5DaS_ey&423T40 zgCmKj9;uS#U9~6o6pWS&C#yVMJkP*-d;^TPrRd|OST{P{-Zx5bz7rl05IFiH=Zx=4 zqRdxiD1xR&xC-)4Gc`gIV_faZLJ|)`4{%bn3uL1KY1s6l4aP}|1cHdI?noOdhlJ{0 z8)1iEAKx(5*OQ$e7joeI_)ai_#wwA#G^)bo(!}QkqyA|VB-0T_BybzoyIeXG;_N|c zdU>=5Df@EKpQZ2a(sLURxm-FQ@>kPM08X~!mr-+(M*R;Y78^Nc)G~wZ78F5Fx4SQw z?uR%-d)UZAoV(x42)%xf7YsB@|GrDl&`ua=CST8gGGeY6MGCuQ&KqQiJ1tA@U0i3k z`5Clqjb75SSroN50rZll#bKFeO!osBH*IH5if-Bt5JB$`fzjT|Gu6hW(v-$LRDI>eaz|fKjmr zs2Ix%`Y^pOGT8&fMeq~@vN5zJ*3r-15S~V&c(`JxPYH0CqFVJPr_WVb@3T<;6#dUd z;ZlVR_VM6TIMM-6jTRDLS}BGGJ2h&duWX+CA5%QS77B!t;oOroH0+0Etp#t*r+}>OJZVEr=`$hn>Kjnl$ zgOJhu?V>ruXmZqUu+cYJ=gJERvKSCT26O^|CUj2hq>#XXzHkBY@8E>HB;K!@!}2=U zwl_h9W{?Qs=D`edZ=k;F$`pC36GC$ISYX}zlv7hAjT}7)8Ca7(F?v+D!~vARz_R-| znqpwhx+l(1*Li_mZGa&peW^PPrj?gqT3cRB5X6`eGN!A6>2R;aLWKmzbk!x8zV4Yg zTJ85@ddpx!$e6w`m_EM*)A90Rf*{6(kTJbwF(H95?Y;!lZM_r6s+xU04Okr!YCwd* zWR?KgOp&L;2)zy1xNkWd5YiYJLIzg7Z;W2hH?buZ!@v^yMmJ#7eu>jni5J*t0}P=9 zOrJOuX`=bM`+1i@TTotTkjKyvGPKba8WI@Vh)bY-F(7fKdeRH+Q3DO315NE_iafRR z5@2tZ7Z{{5FoX>3Q2_gFP+|v#1P1odCBW_-oH$SYL{u=jC-Q5;lf2)Q*1o=Z)bufrUgXW7wpA z>}^?d>V~R%%;?0)zBfgqIFOf=Fwv#k1$^vpniN$I`&>RplAJ#|N>A)_!4vyjP-_~C zCiZjBR+2jE=nnUXTd_{~J4)zeukR00$1~gUIX8;48JFp!@o|Z|a7%ck3g9pz4p`!c z6}SF7lA|j2*JrkbC#aw#tIYl~jmzsV(>TO=8duz(XPExX{xNz^Zq@E;V1GW`kV)g2 z*E?uNdh1>7Yxt)a{=VSn3$3m+1z3U`g+L+B+ghvp^R`wwfpZctJ_8~NFpE2e>{ERzQ@B^>W}_<_v7JCftdbI zU-()2f<84op{g!?BHUeFMEP{J=1CGL9p)TVz#ZY|s6x0S)EZzrLJB=`N5GS}Bb@A~ zPkb0@9KW2VQDzBC6S35o(%rpf@r=-Prz}Sbo}w1d%byC5a?U0tJsp0>Mx%NbH@tpSq5#FI| z?fSS@o@IX(MTOHzHTB_bIQw{tN%_Dp1oEQdDky+YDa8$xwOGZ0@}i^+lothYeo=x0 zWhsU@uXhR%de%Gm{-o?r;|j1W{aqIBvtz+Rt^k`q)6M7abFV?1IxX^DY;;0tt--d+ zV7uR7L!7ZaBZB;^2AUH}y9Y*{P{LJj4mitm)D(_5gZt5dv-y8|Wbz@UO8CT%(1E}~ z$2;WdgG6(6@x=(O6q^hZ%^}X{+JKRKHi+{MdGA3{no~UtUCAJQ;#GXLGRRnx*@N`r zSHlH3slZ~clWauUjw~A#y*&;oY%px854xpt{hmXqqC@&k;F#gthOwF82NuF+^Lx4Z&MB-B zNF()w#!)|?!kRZ&)IWQ$sDJTbQ9t60Z>152IQtMb503I7_}07lEXxj;h4Jk-_-y{i zo_sop^^L)XdTl%gpJp&sw zL=*9ubj zwX((DBgHDjxss0zl@_r1FS_~sTD^%lDIfV(`D>1aOVlw_y-!W`elpcVoT^vruc3C( z=`*$dI%STX>de0?M*N?eD&rS<`}b|sNFP4v@8cW*NPyIrA3;(_x6N-|eQ*yBQnA%aFu%XTt~ zjRBuy=>!-=N4Deh>*3O;?uWwo7oh5W7fw^DNTntOk;VJ+cbH@}A1*z#$#ChR?T1Sb zMVxzRZ;_@D=a+lz@aPUY5`2Wv(Ca-z8p+{PByiulWw`V$L!j0fcuj`K=oQnF8>v74p+`Er5O}EwcZ?#CyH997Cl?1)^I#qPtyR; z*{1!&X{}|>HoXr({A_G&@6bFQgWK@6{(*sJvmfS9uO zKv(o@%Edp22dY1zSX}P5rruHB1$5_WybB0Y{(LzwLNN3vEQ$+|J_f~sI@w&I7D&Tc*K?*Ms5z-Qor1B{yguFt`93e~o`Xk&^ zOzKK6o-%_6A>+Bt;JJnIAtB^dYuN~Mh6xFbX;w5QI>V%P8A#Rk z1}bCv%NlwWg6KDuKQf5kzXZ`I#N-;|)t&gcX8KU@4&b9BOt%vqjxedGOvYmn0CTHe87bD`v5~Z`uMUh9D}`*f z1-Fls6(7p6tCtl>q7~m&2zm8iIzT6=NM`a+puxF|Nwen7o;!KQ?D+!+4P2{xsYp&> z1#!#rZox=-{ps6fb$TSdk~h(HV2jk+S6vmsk-64#3fAL@zpjXoqFJtk<3sAJOJ?ylQyMjHggx{a9 zjJ4$9U9lN@L0n|MT7xY+x>|E3#9l%)u2-!^>akJM1s+13XkzvfK4+&JaS-Q$WzQ&? zH6qRvvriCWVwOoZ%ImVYL`5G!9E~?t%&)E(?obs*ONX-g38Q5+d7&k!ZPU3d$g${ zy`%lOt?XeXZma70P;w+zUx+l!)K!uqgVlo3(qLDh{C}c6Sv{*=0GU<;H;)z#%tCmH z22%Cm8aRdcRE?}kN{`lGBu6d}+)SLJfwIx=5hu0DXkd<;zusz~EUGltz&0d_v+X5% zVh!NQtARPAqYpT-25RYLH&o>Vc@^n>4(LOvkvKgnB@%Ef*SeI*Ds@D(pxznnoO)`Z z-%X9|SKlLrY}VJKrNjO)S~@J^++kzJNQXt7XF|2c@J#6c>##M(NQVU*^*8@*fPl1yRuG17BejbT$b1jSK5MYiSR8x&_7w&{lLI$`rqAA@d1Hz+PMj3D3+ zejM#b9@KYSWq)a!cAqq@9}_42T6!d?o*1LQNsn|1d`Yy@mwJ)@8x!QI&IoCwP8=)KnI2=y2?^2|5<-U5bZm?qWI_T%${Fj0WDYW2Z*cW{ z#}}&>8ej{CBLU-)oYeLGf|KO7s)%;NbF6Z#O3VtmiWfv7&q z!&o9f@-T)6V<~Ek!xLKyJdvdkYe))pQ(n{l=B(E7F{CdS7m2r9Wq!nJaB-j)P@Llr0Q)XN6}nPiT@-1o4uFY88trmb>JXWt?ldLd zQKF9wz>h4L0uilJ94S=K8aBjjVQ&;ihN^>xZLcZqQ{nUPEiq>FJHrS9%Q&?YYFJ^s z)bN~POc>8K^q;eg^~Q^8KwufGb&2#-Ee&Jy@lwA|!l)1@|DdkcHBwLYH_S-1%ujTU zj8Ucdjm6>6jp1D|UN0Vw16AX(4DIJn)~|GfUT-$MlU?3H-6O-)MpN*;hWSZTFycLW zK(jjxAL6#mKYBz)st*j`VZ-;8;Y0jnPw<^Ge281VdoPa+QE?MQLlq}TMN=k7AD}pW zSQ(rk3PRlS74(h_Q0)v~k>Tq#L02D-4lqH7`k=TGh7H-4?fpKH*=n9)n{C(@o8o3q z;4b%TU#MoK;RTK5y{%v5O7)20-C}rOG`w4c_v!xNebexQ#`1O>5E-bB8QxC~?@xx8 z;^em6J|nS~`pYmQ(J~(&7#Xi>OcWg@OcWhuOcWha-0^ufohXVzqGi5yFgimw!`#U* z4;E&Br-|qesqsnrnje#Es|ki1RF*q;C@j;p;ED_9`wa7KrsM?^SzQ}XCa0>q4C?}y zb^kE5>{e6olZJPv;YFPNgzp$W#BGt&N1*F}Yxur0e5VZ`;%?Vhlccstw9KboLZNjh ziK+AYG8Y(TBwFT2N28JY8RlMwd5mGExTEJ8h8c;(?7s_EZtJh{gVjxj zd+{VOv1{;CMr2|UXA`>_jO6)7oTr4(O%mtW30PP9;QeXvk(Cwtu+JrD3-`GJBiSMK zgXH@cPcnx$PxVph>Wo1LDhFNrZPjO}YLi7V@skBz{mFt3aYom8vYiusv$9AyO zY&N_010?-~yH(v=2ApO1w<#TQ2KS2rXY((51oBQ-V2VHkfdh@VGeT2DZ4IV~+VZD} z+7M@G9l=PAia4un(3EJk^#dQN&C<_u=^5FzQ$%ex|29v))8+0m=s-m16vj`Uq(=?( zvi=%^p?GJcYyNVYrLeE_uy&@?os%rjeH0yVd^#{DxYeE5B_LP6hsEC zi3+BQE)iz~(`BkOD&nlR%&B_jg2-4k#_)|Wd@~Fm;>@?u@F8ybQWt`6jp18q_%<6p z#F_7D!-qI`qRgo=@+%?x4C9-I@gu{CI5U227!kJxa{DGsb>?^(Q>A??gLP-5ogXc# z1J`4~sW?rCuZPu&>anT z?sVvn{5bs#BM5AqC8>H3I{N-guaC*5^R-~ZXta^_HP)=Sv#B6uwZnIZ!-ps0 zqa`xCmw&oDGR~}*v-SLY(5R22miQ$C^&DzVqc7row&`K0gO3%WKR4E^9*iXFl=~vx z)xPPnXhyyTuy?wy_H-mwzkVMUxF12S7+M0+`7PH+R;vFP&3`{#P9A1c8Vp9-DKQIflj2Y6LNaR)l^V=ISt1dLmEe&%wVfMG2VVZNWVFZC? z7xj-Q-cUZ&Ps3q|gD&S|N(;tnb#hDI&a)$o(k;ve{F&Fi|8DhTXJR0e%&OiW} zuf1;mX<#URxM7p{sN(pANSJ9~h(vng7XnXgy--^kME63oIQ|#dLQNvC1$rgF7WEwN zG>02cQLn{;$KBUr+mI(BnLgDDpUKjD(Qc-^7l`wF(PF0iUbNB+pMoE0;7oZXkYx)W zFq2-1&Z=alybV!V+txoF@%z;LnbPg&&6L++_Dt>Hiq~PKNnhrs@1*pHP5J|F`Zdo+ zda9i!eTSPKc@FEhk4^gfZu*Jmuqgc5r2pimuYDd%w%A#M$3M%#)AI#XFWscqb<_W* z^a7Kf=cYgQBINWn>6g3d1Ck zD-C7~S`b)9UUIiFj0J|VhcGI{U9>|DGZHN`UiIejQ5}e1wI(ygBu${c%O+{TY&=oa znk0I*CTRdk5R=qwrkJGbP_Sc?ZUKBYNlRyoNxBIL$Rw>n2Ad=n&n5|S9g{RuL5ypS z9s~wc%);4XjqcbDr{5E^9cwhxzYrqX5Iy-uWFg0nJW;Pe!w|LBfj6;J^w67;o7EBM ziEPk2puQykySE|})%Ql9UmJb?VH)CV(DNyqb9*9bDrSzf2B=t}$7j2;_0^xV#CtXbL`W4*gI~vflenBvY+13PGauFx*RSr`?cg6*6m%C}ap^ScRN@ zH_}KwKSzfSMS2Hj5v_En;d5MtJah;jZN6$0GR&pfZWS^-sti`h2S}1h=!f*g3c-_C zA;ac~LK+>3T)_&V-;R_XllWfbI`y;B%1E#o$vwnQqL2s)b@K%ZI^!lbC*&k&HtTClU!z+|NE#SxwcKq zY;Bv-6W10`-r9bLwxL0*8NIYJXkpyoL94C9eVN0JC(odDzcY=S{V_V{kTM>F)PORL zx%oIf^^?fuYEl_@qQn7^VG5Xt$2E&rwhKh1Nhj!y8e;lWeF_!Hw&q59no_1;_%zZW zK&(bNeaomTv=8*9Btbs0jF6j)SnnV{zBzOaJ#ppn3ZN?(pIY{O4R_TKa&|#;a5V)<)c1JiS_`8-E$8AJ|S%q^mq= zwDDjRI#(O1#K+pGO;4;1JVj|^&T&kOL>tRgi@DO6P3Ov%)sH74d8&A>OeLB^hS7P4 zxuS!ib43RO=ZX&c&J`WZHtEydbkac}S_E6fMsvCCTX!OaT-%lOL{T%&EUz@PWX_~W zqqTOd=|Dh4137c0Kjcu7^ao&bHL!tXu?9BM6KeoZQ5x9$4QBJUKXm>UzWSF$4gTln z#^}p$sLqBUqC0;VX{GiWWgyEIxW_2tn5p!qrqUl8W&Cc^e{s`U8POtG8BdEc3ilIO zRz}Tvc%rCPM(nJ)Gv|4=v4@a|HntjVY>fivY9ot;u{MJA#M;19ls1AtIsG9=Z~h6> z({}TuQxwgkPO;|yD!UV~D$4y2;4thW3L(TU;#GJ}Tu?+sQK3xJ6iL8c7Ev6{FwQxk zcs-WuN${qiBe^6lTobRUX;h`~A+$;Xpyp|Nr>-dEPU; z@BH51%sX?=nVB;qJ)f(Mhu)ZnzRZW_YU3d@R~ru#bG7j>Hdh-D1^VYfeZg?{P+bITSQ?(I^!WkDC5AGnmTgR~w(esZ^uw0zHnvl|i2DI(D041;QkAJ7v&(4Zf-#JjMans`^1)WlJ0koe`F>#gRL zU$B~=Gia-Mph4UANB)X!f3!hc*8?#leO-?-XzThVJ+)~DZCy_>XzO~hK7GDzx|(vs zS*R%wFlg&~EW4?u{CAed8kGAFv93oksFreqL0i`e4fYSzZ>FfRuN)YeNE*G)M77%c(}p#i`JFdiskQ zlhR9+BkQGLWxb8;+#aKRAf|sbrMN_MVzq*}+b}N`3&vWvv2~PuxW7$m)@}adyZMS6t0- z7=JKkXzLT#>EkZiGP-FeUMbO<2|u7SL-2Gnv^}BVx_dzqzv&AB_3O?DZbrUiY}Oq^2Zc8xm=Hr z8P>%QsvB&qah#(E9|bU|m!PPONb?HAcQnyc`b_W4X_GS9Ta-!FCdI9lDD|t>I};)M zrC_rOAd%n?+m0J%Z-+np*|rmeyPk5}`O)-$-FCh+;lupekYMRM)94)~!!lPR0!WlQ&>x$XF_i{Y9|LWA3GYGbk1Q zBGCN7M0-2=5b@sve94R>U>a$E2ec(qYQZFO#6z-^50b-K-~jP3f@Wlb35+F+7J&KW z`**-Cvh);KLgMi#0lD7_GaS(y{TW6gaC}>CM-H=(2gonvM_?>;nnsOjS3^kWeL4^vkFB=>p>!*UvKA z6Q_eoBxw;yC7&(^=g6KVU_WVL0p8@RrQjQKK>=4u@716`*-mz?Hp3mI;2m=04RC^# zuL0YM-CE#8#;gYu$riGWxV{NI$TTvOST=xVWL`N~NQ(asN=g1!FqfPGX88h(y(&N) z8N3q=Bl~xO!{p7~U<-Lj9+ULFU@~z(2t3ImvXqn_0_#cF!ytzE9sxllhZxBK^D#J( z>>}@~FHfR0gp57~CX%?1!P8_lSx5eR8aRFe&RqnT$-v8CD0%7%=t>rn*GSF3zKgcG}27u>D87U_dfS6i8=ts&(IcP8Yk3z9E=`{w#5q0PIA$BnG*F@ib9q?jRtZ1!m!X7P} zPc{#+#~zv$_4h)LG*o|r+{gg8Nm?ezA`eI{SvU#2MrsRyGzUCGo+CwM1-U_Pli0t4 z{$xH`LOwRr&xrS2;77)iG_r|oCHKhBq^}vo6AM{JI?n^$$xgDD{6_3v0RzbpvYf0U zSIM@j*%Uqx{oIYTax==q>GnMW3q>*N-humEI|x5y6Svj_x`*Oq|SiN6K3Cb=Y^ z93)3cWDzh&(SI)ozmmQyKs>1|2Je#(R)Z77qZD|PwWN%MtpVX=9ob0i)&ghZwGQ}_ zLb9CPAh*eq^;2QddeHt&@Dw>lPLhlbU<$D-15V^Dxkv_V1Ov$`tO%o_U0OJTjSBy>AyN7j%Hr1?L97umcQY$KiC1>MPZvWo;9 z1fgUz*+#++fpGHLVemJieo~m}egws3#M(i;ux%lovYn!odAmJ3n@jZXbTd&`?{5X0 z?IZ_}fn((355ec;?g{V{`TiuhPad2CkBP%+;6@&P%4sC$3^0=1vml>z`T}(Og2Qz7 z1r*IB_#y}+OUZIlaTV+&QD1?cFQno}}*$5KoSh zxR2=EZ^3+0L++DVx4~R;lhhFPvzNGo(m-New0L1#w25Y~jPdHuhZXfjYG(BXr2JP< zLH0cW2g!(sAeHp^59mW)Co75iF;A{VX)&<|#S2?db$#{=dLl}T%-VY7&1~})Y2l2I zeBPvu3kWC9uAn(dBUvQa9keCt$I4^;lzENlk)>-MO4le6s_kpbYJ9pW_gZ;JDIK2@ zu4dNOBS*GCn<$d{Bp63zKafL)`-5ci7TG~OgMbfd7Xdnuo&v;?;0~ZI$s=>fmmR@% zViygZ%+$LF@Fx$*W0DjDQpvtv;2^m&092E^@!%(NHUV5BkxzptQZf*flGH>nj>scG z4jG;VlF3_15{B~*7Cn=J5AjX`e#Ddt<`DN$z>~a1c93sJgYU^&TyZa#k=YcH{z6Uk~0&*1(KSR22CU>ov+C~@-s1IfC9236TCy_OaiYGFMf;gCF-|` zqbyYu>x!?&#l7`ce73SPQaFubMSY#SPeyf5GI$0UM)to14wE-?z!vh5JSG=%!BwJu zVevGg6iKW>BaID%c2nkc61}^yq8{`)Rv%7ok-J3w&XaCJX)dwOY_6%^%yxayB1*Ye z?A!kZb#rBHeU59`W&_zW4{Rf0uYw5TG9P%5bTXN!->fVPP%0DkF0iTe)V zMY4!Y!ghghqJHta>&`EN?t6f>r|x^|_jKy8yQraeum|hKl8g_*6kYSrn$$hvnR*4HDRXR9kD;R`T`q?`leNbGqqfUG2M zkdv3dCq%jdT!{Hwuz);y69kh-M7jl1$kPfGPy(fwNNfM`n z6w>-d(2g9>0afHh1IQ((UIm{K^^gT0iHK((0)3=8;DznYF}=KHl#&xI`kK{eCu)br zidcOG*|rwEO%ALBN6E(ZU@LhyAKQ?E6E!q?tPFzf<6RoNay1qnzT9r0>})KOU|7Hm&q4r!6kC@3vh>2 zodah``|}PM>Q9|VvFIXLL0Vk{{v`Zs5J{R}2Tzd6WEwer1Dqk|8nA$@xC2&`yu0A9 zwE@N!eu63+TGNjRe@3kx z2gI*GF^q||`#7Ow?f%YQBGb$odZ$xZkH7AaU9$my2O#&D3V89k9LUR|d3CmIB)r5| z-iT`mWnLXBe~606U7BrT zMTUp%447P#j3=sybSWmE2cFv~uV*?riSGG0R+^D+yQZNg*}*P7yY2Xr>~{Dcj{jnO ziTrJ{65mI(7d&2E=s11qjI5F&t~{$0rMAc4v0136vN~|j+bv&N-bW0TlIn$;HvIRY zSoM#g{=%t+PSdkYS<_2~I21ba7;cF?6s-%Lb6+yPoQYTU`{7ovA8d@%0!mI_@srfU zs7#I%ArgAy^^6Eqx}}I>X>q>xYv%>|%8>-oSyB3lcAm@v2Vs1K9ToxV0mgN2(kG#@`T7k)l1t)ZJ}d{A%v-X9wWTZ5+64_Yo=(wm%Dn{<)ZYIk18rKGPPf7{}^5P`(>wbevdTh7v!OY>P=F2Bn&u&Ku7QU|?VxY|zb zZ}31{e;Zq*&*)9!8w(ZIbf`4F-FRE5X9xXxr~-fJ~s0O2@&;M(* z1nYAOnBB-|iEFwCJ@t0cYCCnb{E+zP$-baBNo*`seAA(3=vi?+GDI>`HHD-TAA;818RMh zcK1U-TLMIJ@%FXmMSVoD29i5K`*8q9vxx4#F|M3?q^G{q)_OuU>zQ|FV>#VzPl?j1T~B>?wW}^=D)X)5 zATs4$>QlwvwP%qcnPuBpnPsx-_SETJe6jlzzjF+?RG*%D@+($tUDjJXZAnL0U7eQf zjM49Y>+mWNwz%u)qsD?HP1Vrd+-{E=)l+|R*Kt!V<;Xf}QO~@XFXQmg-PgOGP}}ir z>#C!+^wfLSIyx8MiE^{j{Y8q*$~q8&aLe^ram);-IBs?_0-ueS9|rVDeNCTQUB`dINImDRkQd%|4W(3 zO=TiCm5FCw_SbFbK}CKPC^9eoiwZjN7e}V5-HR$-M^*2|b*$b?UwY5;glgGK>e!-J zSh0`w`p;EGZYmbJx!CHxmY(o7Bc4=jHSm&}a_}5=jwyD2c(IHA zOR>mJ#UeKsi)YtJR}X}_++l%obw*9^0(Hie`IeOVmMQZiQ|9&XGC%n*Wg<6~iQHT! zo&#!oA3>PQJRT^M>bf-Abza5xmKKicO)YFi=}W&j+USG#9JO@XAmve&dxte~YVZHt z#K=zNM)j6*@%+Pbt^>RLA06o`vbWvF`p!A;2G!LR+C>WOLWQR5<}-?xR>MF_!#6v; z+!6n!TyUUryO?tEtm$$-WOb2pp9_@BeOqwB`(e<)wE76bl$;*gMQJwqb-Fdr_Lg=2Ztup)M?Wxu>VM&o9kcar2Jv_5|R$u&v zI0A_^p4lY-)0yT+sYNmqGaZ>pS=IaKJ#mg$Ricm1p5thtze{!&)m@7@E4ycdXkICu zQN>wGZz$$$=&w$>M7+fVz{;vR#~b^iTGU5`+v+IiWVNu5h_lUzBym=7q>|T5`M9KH zx2n9fY|-b`5l*h74)ozke*o1x2l=?}waWF>B?M@Aya!|?-7X`0sC1j%N2D9_Qr{pi z&jUQu=lg0BOPcfh`bcMNL>r+q@{vlN0el(7R2_djVG6WBZZTC-ec2~3cWc@BFR8dq zQTUh87ymZPue_M~4XN{zr#c?dM|)OD*0)Q!qC}1-#5tcu+Wx_D&UDL4*OQAno2Z(7 zHNp$^?tPw#*5eeHl-DgTLAC6g*W$4%)-xQVqt~d?6xF?A6$`=vM0#)=CsSRT`H(e2 zq6)f{=}c?Q?P|^>HKcD|dbt!kQ%-m$j0$TFM`6XYX?BFs=<<S}pYn zzq4ZA?!#Wyysysw#+&A^iK?6CY1UT;NL3^S2FNps&NTN;5ZMFdl|*NIe>2J@10=Pt zPCo3(w?3D0?oNp=;ZF%B-|4HZBc7W6)bMgjS`FjxBTCx;clyQc|9f9*e_vf%Uz4&@ z&|W_^*XIXRNebzOD&?F{IY6QBzLnU(US!MZW@}^1>B{Au-Bo<1Ou6Ej;WS@cST>h0d3mBy_9~v{l9#tJAJjDror(Dt(nLxNQ zO)orNYMXkhpGc*g@lgSlOWH^e?Cy1|j!3Vl`l?JkNl>l30YL@c7+)ydI^u4pZ*TR@ zQ&Ty;j+)qyCDp`!qMj`4CqimTKM_(ZkTq0DJ<(5u6taHHl&tz#=XYwGANF0Xo5ihH-8&Ti@LVwuuDMJqxF+X*hDgZFM+}A)Zv|*+8MZV(vatbc>a!GipFU<$M{fJ6^Cns$>?`R@bZQjMjtBSxq6;3_*gb zl@$h}PS$^}IamOMu(&uz*}pz_x8}IKs6iD}Tvnj|8IO5WQB7Vzd!w3=***Gc>vdmi zNI@!F-+sxR;2Vn4q>E@Rd41AmWmz*N9Wti4vrN{sEMYPfFoj97*PTNB&4NEOY>=_w z-`S4^|4wR67W})ZN<1fbqa8%>uN&yCt*wWgl}Q7(I=PbKkCO(>^hX2qN10yln&Wef3*+TkA)m+Wq%R z}DyejK|Ka^&_?(8b3tOQCgt8Z5gsVWOp#nTD2{M=2sj-)-aUr&_$sVj%WqeIm|NHI$OpmjTR;))&KTYzT!u z)790+n$0AdRu>||BzHu;TtugPigmTtGj(2CnRvBE;O!P_hKDFx3*Qu?j)_b}_zEb- z;Col_8QQNyX?2Uzo>b;X01bs(-)rP7n`gL9u2e!tr@51@5)_>zC_zc0DC%XM{D3vi zswp`LWJ-T-!zMz^AQ43%TQiX^NGzLR_1C#|tQJs8!4fDtMZT<_?a!@fh=+#~lSs6t z3dh~QLV^mz+)x^Qx1*z`wN{9@CBeyHyjRyf$U4B(+>m<(=fp;bi&@X~+~DVN0tu*5cLiFTUKZs@M9QU|aAN1{PgzLC3%Za2X7ka}bQ z%l&2pc=gE`z^jjHHh{;HC2SDl)hBy^zBI&@s|F0Fz7{s;436Ioj$Z|bA&MW!?ST-rN2P(> z9wzMpJ58Tx3F*>&Ah!n+Z4Buz#ST}`59GG!G?3e(??73JJL&Wnu@Vm#7M%v_+*RsP zH4`j4J)_IFaWuiuV2YJOF?FC$pWv*bwwnAVb$=jr&nRcAI*ruB&P58;*`u8)mMP_y zT?$v?TdsticAwJ_%6Q2cn-|?CN%;nGJpkDB>)^4jv8uu#u148GT#d9r(xnJeQ#Qo| z3I#$KU8*A(*tKY@W4Z&Fq00);QEQGG#I0%4X4q+Z_Y4na=R~Ogiv?WGH3tj zzD|d=^q{l8-j?ZnPT%eYGhy9e0*<-Ng|8dT&@4>keh^rL50tVAJ_ryHI_pykmeqG7 z{ll$wI%ANtgx-ClOoHCk*Xh=S`Z<%W--)8DDw<90tgB}^tErONI=#E2uAZG`db>(C z^|p?B*;#|-^TlS7kF+}TaCS?smb(fyqbtR{L-Him4MZ0_qO*(~kU0Oaq~Ngway zYG!5A47TZJ+H^eVmSpS6XFZLD#Rg6S;iVx^A3Hu0nWXkG422TSplg)l>Z8sHj<*HJ zhl1m6Ve%z2alD-kzn?SuarJ8eNK@-4A&DHqP=Csn&MrMf=AKEd7D(l}Qy-}`cR`OzaDbY9F6#Y33A*u(>9c_(7kFcOd2D{@g?DS7lc|*8K7Y^b1lP^#d zf;47#Ng)U&w`-BzvC$+iifn0>m85Rt5>@G;I%cIS&8neKfLeE3STVsGYWD)`~r-kA~pn9l>g|oxaX|h z!eQO-Dqigv$_BuWq3naz)h45PbG}SaCx@~HQ2h)wLWmPK6fd_%RvGcdfDviuV8q%v zp7|SG^@u-d=Uc&_OoB~Ap`CBF{s=+vn;`g25Lm@^@-%1JrGGl&Rn#z6$#0-dVHZ>{ zF|3eKz>%PUBSCTeHdGwMh$bjM2cWQn82SzssJS&B9mcKk=rDE?TQ3E%bP31Ot*}_Y zk+6UxHwy*fIL3pZJUlF(qL zxpRkW4Z@6PK>!bXcC9-hSUwgk9}izM0*W|f&Po)g!o=O=ma31C)9yQH|hmD$+!wWfTz>(m9Bg4Uy9Ki@PoGQb^y6XJN zh;`Oz!P7ChLV_i5hJ%WFYC#ar+;BKKg@rR*;D95+aSR_`ME~5#@bA!ts3=A6~mx)DTkEga29g+&97)HvYCXifl4hj$_tA%fAo89-yZt6Qm^ zy>(8!E8dFHleOJz{t?`3{t?n^l{txft-^?~UaLByki7pWjoSg_1kig zeCr#AidDa8C|mUlA?V4S3t`T_^$jOnlMrAxS%;IZ7p?aQpcu)Hb70-#dX)w`?RnRO zy4y)tq|SQFm0^9sm0$zv&Is|de>_6`pU7g{-XD#SW$!eS;Qx%^Wp5hRp?QhA<4ISd zZ?PUA4z`BD*E$tt_EtzNO5+i z2Ga+P6lZ7kuoCuAU1uXo>NT( zw60)UVZjxbPxpAwwMrcV_{;EMn_9j$QXH1=OXc4i$$H!Ek!)%pM7t#4jU=5H<73Yz zXLW@fB`>)$Essv$fc1R$BMH_h%4Ee+L=yQB9HZFewJLIqD0q%htRx{fEb+3s+^c@C zKJp&M)t~Rf`|+SKBj-WGQ99!(l^S5ya1=nqii-AJ2t&j}N3&idR2B2m?icf;%63of z87U)hMX;+L_C{j&>Oj>9d7rYgZ zR+MqKcNF&s+z{Np)FcJcz@IW3YG6d5W30QvmlbG4ktu-Otc0Q%yDeTHC2g?^y<&## zyqm5{DrU5_#XC1$HT|y>y|l#|lx8-ntkU|#Zg@TlrdwY9Nz1CWWljzL(B*Ssi!5QZ z=!La~>h7eZ2w#oSV3d@FLhYR^+AJX^lMWS)P|ZiPkZwLYxO-(iZ_Sk9A<0BAWEqVoZ)qW#RJi_&*Tv*GxOkg_l8U6AH`s|pRdqCi8gs6Q#@QGGYl`9LzM%k#X0 zM>p=-zx&Xki)|CaR+|4gnr$IuBy+i>zVsS!urC!+G-0byR9W3|WcegZi0XzB$+p+S z6qkYW^`&Kw>d;Ggw`(6-#duoJpv!1GbQhAsrF}VSjPiO?qSLK)hg z=%}Ll?%!R_skbi0x`*qIpSqlS`!}vh*aPGSqDiV&j0sQm>F;B#2mLEhj;ZvHF;eNp zV}g_FJ6Cme)Kv50cdjP>9YinH)MI$hi;Q3D2CnAPVDek0nmW7$s^-Utl9Bic{o-nV z5?0NnW4M~fU+^S{RP+7|o_G>6F}mqJSG>rhR6XgQYl-zsNL7CvqX!Rk_X<$@^xV!> zPpD#Jc`+7SYCF9F8OH+BGfuSF@+OI7W70U0 zjTOdW9E6z7?}O!kl#Sp;vJt#kHsZ-UX^1A-=o}~NqBV|p(yZq~P&_Rto*qYgX`Qiu zApi+Q);LzC>wy^=&VvdI1}q5-STY!T(heJ<2~0)+OmK&7V+f#i0%#q`$m%#40_cr! zK!*zp2rLN@STZ1be(ru2VFt8X0MXXb1!p-u>37Sij~^@QQGbq=CFNTTJ#3bJjgF)p zw?73DuYvagLHanj;}!+r5Vn(E^2K1sEpj|FvF;1^v|o!w5GUSt!?5AS>2BD#<;AJq zI9{CUQ5AV{YB=5&2@S`GEl$t++zaeEA5+vl*vg>t%{tU>ygpXc{kFdyavOQpb-c`s z$Hxcc+1C;7I%@EEnF;kG-EI6`iC)I`6XQi;dLokxj%DME=z9aBjM5ra%w0mS$t@Pc`nmPGv|vt?G6@z?k&eC{XzA<)^4S&H zW-5{=6>*F0p?8;e$Lr`~?&4lCJuaJiRfuu7_HU!?Qm-YZUQ5C`QoX*Q+Hk$Tq+eXG zF9Y>r`(t5o_XN9gjbh!Mt-pemQ}@TyqEcYR>lT+W5}KE-nqW$^4F0Pm7M3vJomvpbkxd*^E1F7qTaJm)N7_J;^H6u*r zhD^{$OS^kpivme-VO;tUF8OuLiWJ%f6ZEk%?k3i&!o1`1#Cp~QlH!gb6N>2Li=&>m z&IGf+CE2e8vcENfCGmRo>MC_ygcf&=O@~I)|q~BpLL!Xs^)Z=px0G!*YIBq-PzVGFyP+g zjrSYmY2~roH^8JXGm(w=4HeyotoTVtliIe=EE_l!r?Vfy7XGY>yg4vwB5%Vx#!bXb z9U9j_4}RX=NcXJb&d@0z)2RN=UDl68yVX`rlx_Ivs_xo)9#QZnd>F<4SykONEp=id zs~krsvdVFBqNp4QlFIS16ps*XnSGDWGFxWq?-Ny^}1qujg@Ex4UJL>A1Ah|3^zA#7-BqToym&=o67u}`r{2jylc!h=< zdrM7~HCbm&!|@O%w#rdzU4^Wq_t(^uiI#RVgc-J$OuFo#w-y502?2qD#2e^6xELM% zL`;G;nHtC%OtcN)&9=V9h6|=V74*_%Hdb(%>2Gs7 z`N+R>mdKlQJ`v_HgC5O~8^wnfmSFJJ>EUU}M zd4{QkDGbUG*0Tw@l^)T1?l~J05F$W0R}-CRbtM8cIS_rthu-cqBH zgwc}zJNkh95QeyoP0Vxb`Kdg|Oj=(%O*Z+5gArUue+BVyBhjXsS|Azc00}nK)GEO@ zXR6(~EP%rVg{+7pAw6j`Z6`@G-b_0(6~8EGZ>G_2doyhn2_sqDM?)&Wv%#BbCr~VH zrk$T^E-hS`s_D{#b(ZSeSY4YcduYs?9S=Jv(jHnJ-L$oPusSi7H`2aB$%grxIAeh8 z3;O5QSU~Si6}#ZoC*0WzDSThSH7&#rP}7hzDGTzE?Eu<4Q{|bUj!K-yHbCMuxw}vg z&$ig!e_)#E{|%5eRR0f!80H%RAJTBahc#S0Y1<4Z*DQ}KU6le`+BS=yM%!j;fGND6 z6yDDiKE)J1aT=@rPfQcFe_CNNfE{4~JHp`TH;wnpaBPh+^a)^)3l#?qh98sD4o`*y{Hoo#;>2ww)e^Dyfz|4k`_65GJ>tWu1}vXlW`!LhMbC+9H(D! zC#%n<>%YC=e#k$aNM+UyMgf?0f9$HLj% zGeTy_pTr_53nkf}L>15JbyV>gJVA=jfO>78fv=7L&5~*mwKxM`z2=PYUiplA$xP(1 zSpsG>I>7ACC+>=Xzz#&jl3f}#Lwey)G|!e4Jv0ISthTlwKb4Cb}wo)*Iw3WQurOPLi#0d2q8hL4Z z4&R-@x{TrSwatYO3R*LGoR~ECOj82;3RQ`jJZz9i!)C<{wrU~)+a5N{b$SI?2{joh zX4JILa@SDxX6kWS?x+0AiBd+*v>EIdR841!t~@oE)MO_61S6;Y3*XqhoZKq$oo3q2 z{tW%%W`AZT>&s|l8c|bGA-Dy1Zzx)c#-LyS+~3`b`UH-!iE{e=;{onYYA{a8;=+mQ zKa)}p`}>2RF$N~gl;PiJW}qTDgWT2B!kPNeAXv&1h*T=lZ>F4fUuG(j8BAIt74i2A zXG~iEE=0-T*-gK=7Q4f0kvUW6matmr53_lRVIeSlhXJTcmQJjT9W4(5q zJ5n#`T=h+LdnON=k7n|a`EI5R83bv_{4O2(5s=YY_hPd!W=8z4@ltdaj~B3@ZvSwm z$d?CZaXGbSv3zMhi^mN@w58M@eBs+e$mC$(USG-4Q*sQK90-wbZ>r=#$mC#&ggV+? za?Nzf@nDzi8RM?3HqO!?j)5_DjYy?SPR^6Nde!T`j`posOz&>Bwe4yemnKUERjav&k||$6S9V`*&8YRpQI7^kTe1x zUL){ipB&%c9+4b|FE4 z9f1Hl20>5q)ghWdR0MYc5%ATi5eCQ*0Wt(6@YAWe2FR>%AoB|g1ndY1*f9`#l8+A2 z1Y}SU2(6d}vqV-O!@z-O?#L`no;g*((Bzt^?*dAeE)2Nl)EyAKV%36M?vvT#mb;)& zJnX{m1-a$GhTU=)5iIaeh7CCu_@3D;@I6#37WhTy;1|!?qH}D4Pp9Giqe&SRe*!c= z&J2x;P4p*7o8jCEf!qn4dq2*`|6n=N=E$*l)o>0A-LyGkiq}AV()ZB~bos-uu~*M` zXQ*~_bjDC`V?UDY;@Zv;L;Q&a?lP(i(jnQx)Azr+z+Kl;*>iZ>4w%E@Vd5MS4+xTY zm@h>mL@UbLIYIk(*Xr&IUZN)=r%(7Suj) zkaM0*tvx|BhWMgQ%%bsQL1WVXZl|#=u6`3JNHkE`4lk~AySl`{EH;neSlB4&>cUw- zx*dloK(cC4R9y<8v#jQvMYA#f;5_auL)SS#N5*(2Ga{#)NgiP*%clM`PM1x6P#9Ev zn7!*d_e0idN{1t8Pn85qplz2N3~jkUga4kOEuSYg`FY91Hu;%(I-|5N6?v%+U)Y4y zQn>2Dl`LPzSJs-RC+~sBVLmrI*wP_^;~U(GDr!D=9-{2Q#E09f&F9{$G@pB~{(Kos z2vYC06gHLS%d+>(d^rXEMHU*yz6A`yFi2RyO##X~@t*3c z@&axKBpL`aceuN#rVF?g8ZTf7Z5MDWSdDeYFjrO8SvVk(W_N!uu)SNE3#cJ%x*0Z| z&aR4vU=()R`al{kO_tCv3@TYs?G`BDYxf8{0L}{h(*QvZfNKKnG*j`UqkFgEB8)eh ztIiPzz>6d&*#Yp&0{o(&?Es+PwgaFo2|-!-Q|1I50J_T%Is*MX)10R*zEFGtTnsPTFU}EPz=XZ-KI(V07hYvhX;X9kc~N%L;AueD2Ei6n+sWSDgSK6m#qi%y)iDi#@Fq5S+A9&^V_=P@!*Zm zR(2}x7w51p6_q2pRO_5VLaLR+Dom{$fke+oz3B?k1gUyX01~M%A1)LX<_tz3RG3r1 zPv=$8tgL%9qNWt}0nN$kLsSmy9#I5`wTET&i*=7>IjnnNFtV{3l@agK9p7^I#fa2{ zx8kTux6|%8F*7qxxd-4V6*UDr=+&z^0g}aViE$g@E;gM69p|cQU85MjZGo7{6!V2- z=JO?|b9lx1MWW~`b}~(!P>a({P}}1CF^A=g@KQ0kEXlxzq+GdNl5(aTRntxri?c~C zOF59zct3$|qy4~F(FUfSj_1gD--0AEIWcoPopV?4y^sq)4h(sHr+s`Gz4Dwp$$y-( ziKN(`Bj#uCTroel1(SN@via%X9$pApZR5aHdSN{M;$9e^%eLolXaLNDZ8>avzWT1a z7j;AWdpLt~t3l=Rdg}%E6H4P)16iDTxse1?=yR7exKt0mG zsFI+kUv!u9ze3rh9yz&UeI7IQSQtz?V(O6-UI^9WDx#zw*XS45<62lf7NQ$qLl3^> ze#sVa|Gea$rS6&1vnV=jgcLe2f@6F1UylmN1n&v!-fMdIfc z%N6dY7t0myUC(=>^`&p!8P;&BT9RxYKMlsF=wXY+W}WbzyB=NeBpTj64x`!s`*-e0 zWx=(W&$?5BwU`8qPD4=ap(Tr1#_SV{j)_D;Ceay+kbAw>ThyXtGEyR09(O{i$@uu5 zB9ii&|Ff*2_#=cum-@-wMyI|)R%o?{6-tC~aO9#P$dc6~UU8LMI?OXy~Tq) zULh$r19r4c$Z$3Z9K&Rk#2G=i13WGqIL3FEc=nmcp#Of5L+~n%k=t4&-1utNikA!5SgrF{hlFs`vPZe zAz7aaWNoob&nf0DX zL49(Lwg+2S74hb$p z`(c0<&Kv@!w_kVBdk2XW6$Vl82X+;MNcLcBYVuF(09xT{){iV(drKs#@tP#z4AO778t zbiVjJ6TIo-GwAt_yD1~zE`!Jat`$6=P1?~w8tr|YU%~SSX{G|#lRfR!=Td>&EA*c6 zRw^*jZtU$9q^+tVD>(;3$ia&W`%g-(WTLp0;y_MZ%+1z9xHjK$DQ%lei$&HK`H&MMb)sx1J}QHp0)nxhoY zt>mK=>S+M9eJDLviVua0V$*&4V)CIZ(5wd3O!0WZh#e`zfW{QqdZiqyu&Q|$sBR}7Bz;W#!I76;f7 z4zOb!c;2e(8G|qbnH>Z|TKJlk;%b?{lGW!q7-{5c!D!;M72E53rcofhfoHL<`#WU9 zy7%4XtW`@BR1=)y#=98?H1PQK^oE`uTK@rcpzBI+6>Bv+?c6b|F;IHw>-*s>$Z+ooD$&n-(JwaKd#z^G9(7?i5H70?M#bQhtgcT#=;@-yua?sVqgR`oX_$~P z`tn1b{%Wyc&oS8Nt(KkL9TL4|HOsm~t62;oM6&9g)hw$JBI$-4EQP?^uI*e?+hMB% zwf(NSr;_^0)HbyRUUD}#SlbaO#W)?+535B2eB2V(Eeam@G%vc?w8{6Y#qsFTccR=_ zx$IXIIM=WoK%w>_5*&Xb61kIKat%*}l4}AE$oibh*K}*G5rI$#JVFJ+SJbpdgoOzN zaHH`DZan_*WbY%QX(Gg}kpbsi!voGjDh)UwXM1f#SQD|m_ShP-*Wwp-Xr)2xxU3o~mi>s*G*tN<5M@0YISDT1`*_EmMoG8mzBr|-eF z?8MYl%DBt1vIPQa)P`%tjaeC0HZr2YT9FaukOUbK!D~0W?aS%p_8xP|?($k`<1U>% zkN6u8ya0miPF0sc6ex|PSQ=IEkBJ`+<@psF=geP&A#V6&*{NsF&+8dUD0&` zg3kV;>jJe;Tqm`6t_zH*ft|6(Rdb!xx8kQIOX$;`JyrdQlu0V>Stm#C(_*dXt@=8f zO2PG;Sid_+Q)iu2+!J0FRlFUdq~h)A7gxOfI`-w7io4fw#c}U$ls)Zwz3ACs;jN!# z&9qZJ*U9xdR5?Z;ddc%8jz}Z5t{StBRr`7R5^%9c`7hu4;M@@k~_xD327A-c4+P7V$eSDS|4j`Xz@boX)9x%~esNavQr#hh+y z@rD<{tep9}`xR$hYaK5L#q)Wzo3!$QG+G{N<l<0VCsgdnfGMs)3x2@#3S4BzN-t3X71WZx)OaXU(O9( z!!w|aevl77Nm(c}=#l+_3F@ft@_7aN4pqlHyx}JAUe7IWiEyr$<;S-k!!JZ1JqT|9 zarpr&T7JNammfUYD~o7ae*TVrAU*7F`SRk-ZFMjN0&lNuvYufySuguuPX}RStY^(M zalOuX%~dP4uwcNDz_(i@f)gNG7!9{y1pIx-r<02SA<>FHmF8vzx z(*7*9F!%g^Tu+QrEr1q2?4rdW;U&LY*m&e6KXE;~XcMVgyyTbLU<;pe8^V^oFGhJ* zkVKt48tZvOeWwvb&ftQw<+CbA}fd4VdDKjK}gJ`Ac;mk;sPNq6= zZKlvK7Nt`HwPA;I1{s;+aE8ssO#xeo4@O-fdyI204CG$Oxy9%F{sfP<99vLrerf1# zs%KrbWrH}IH{$so)|}g`J+b=ThaGLPk;rYuH^)Sw3;5oStMBYXg znI?BTJ2$=Cua)Y8>~Q2F5%SD&2NmVhQNuQ}&>XyxwU{XzMTB0XouC&It^|><2xI~r~H>7xi3ikuLu$Z2}zk(xGC;$ z6rXa%&6$h#xeUcq7L-Ve~BN%Ykx-RzPwiQn0Y@>0*=1qKog z40agD={;TCN&N2em`(al3%H~aA*(zh(D58$-o}6!cHrT{5pwD1a#cF(=4~8hRI^Ro zJV+-um87yaEM^m}de+OrmF{sN235q%8JLAlWP6YCx?jX+5S2ZG$bqEeJ4@YGZIXA| zy~^1c_bMjk9;Q<`VRJwv#9EA8x`uOwCMA23-rIy<6tula^xO6#ouZj0k|KWtTXcL4 z=Q4^W-_ggLifHV<(Cu;fAvPmbmarcD{6kMT8Y)0;+EXaVMyXXNXsH1A((*<-S zWV5)7TH#3^o0gkpd2WrYq04h9!Z7Qw)@ELTz>ZfSVoNWvLo}^G)xows1i@zZ7ELr| zkKN46@>o;$VpDeRW?qwD*sRk#x@)Bt76G`?8VGKLz%h2SIExTX2u9fm#8-6QKsd8m zXFti+=Wm$rzwQ<>L@)^d+~KL9wr|4;`0VDQsp=*ti5U8Wmv1 zJ%T5DEf7sza%GEj!YQ;9I^hITsS|*hRhaq&Qr2w%<#pS=l~ow`R+Pufb_4pwi++Qx ztisR?q>n;$c-=F_QGl7xpYuR-;BF0FdKs}77FEVpaZ9z^8cbiSGPiP<_S(u4e#BN; zY7is|KMfCb6xhDuA||rR!E1GOdtA-aQPNoI{?P>i$-J?2xCEzblc- zka=P&A3D-+PjJ`NyMM5p#j;ulQ*ro&KLGJWIB!z0%51aSI+1>HTPJQ~TNTYqqo_52 z!$=?aH@pf5Qm~kQ@Tli;ZhLx3m^~cvae`wWpZNg9o1SM>{cX|-4{Q_fQ5fN)eni{V zY`IOUSz}wEnm3MlQi^s0$-H81yAK_vJLEXZ>zcdq^AjF1|P^gb<&fk7D@%x z+-*AfNxW8`=VaIO9*>SX<#|hO+9r48w()S=yG@4Mdho_@JBbH|+j_vHyD}ea!+0B! z{6EH8!8RUiU_l~g%{DQBf8EBz`loFylib^R%ppW3bBXONln^pG*Z{7%opYpY=NwHW z2SQ{3x0W0TnH(&}<_4Q_^)`K{hNA>V6f60>gtId#UUxk2iML;aleJx^p7*r!ucn;R zU9*7D{$9k;?IO_D^+^a3Xm;bd$Q&LF61qk+3(tUHo4%cgBtQhs;SEesN3Gq?l5OpF z*%3IfU4+`c?IP3;A#12m%cAgq5^CT>LJfRasNu=BFrrDQtpZ!Jg_m!aYczLF>EB4{ z-)xuDNv<7Sx}|i?3U>)yt}m%BfDvubcy<&L2v`yjuw)?gBs&<<1mvp#kboVm>n(Ao z>YV73k?{VcPsYj%6m&)@!=P#Z?`WPXESiQp7)`?+f`*=C1tS`0ta{8@r;Wt>ahGE# zVGUloUBv%%3^0iQDcj|+(o*d62KqA(r9;G^KLcj4-mna&JbhlmQ6>wP37St&n&FOD zc{^-AYzbq0@G>$hY;5u}a$!3!BNwQLc^N67O7cuE*kLatY&+(YYAI_F6gbWd&4_Ks z7f3DP+#d&Wf6TeXc5HpqGgdi%-XXT5`f~@*=%3N>^sR{>K#4<)gQxpy>hg`fMfE$M zcrtLhC3g+%o6w%bB5LPp*H|OB%8#vm~eLdhAI@}{NbYv9Zp1>M+V>@l7ouxy`b4-PM2PNk4ng#dATo4C^`4F7Y%L$1 zVC`g6r6k4haR@_FC5*(jFRi*vr_-KFs)w8;y=w1d8`Ek>DRuEeWos*})-FOv+w_R) zPEq)(3<_lfvh}NSW&>~gqNu=`jghaC?6os23C+ML;rkGjHp!k)5;@3pjA`W1M(bB? zh5A4B;R{u+z>2(rhDBT@e__Y!56xpY)yJ_*!uMZg3z-IEwD(T7GSCB<>a* zC3o{8X^86EM2w^5ZeAQs+LLygoK5Pso0|fOHimTisKn^q+!n)kb6d>ZEp34yVOSz8 zhVPb-N^AxT+cB^~C=Lt7hTZaF{Ie#%Nxc?G`;6Q4jCoDm2~0Rp_`!s(>I>;U#9^Xu1bGxSz*7 zrUrur4(<*9*puOgKy0&1>^DeE1fLWtDkt5T7s zd$iR8*OLNiRFNN~BA_%CdC%=#hL_#7IBT3Ep4V9Pm7*9CeTYGQtg1}IM}Hii*Q8Qb zBZ<8Ged#Vzsd`MTn3(wq8P5B zDLprY7*Qlu*9ynM!xEDW$DQFssIPUHqB0b+*n{uV?Ajd3_7R4^9two1e z{n9^*mQ^o+83Zl}O!G|`se5IHB1k3V?$wk3;i+rw6@j~9uN=h0 zzN-zz5FWJ&d3v1}C?@T?ohCQ@{!d^a(QX|+7FJ{*!~Y!s=vrN|eGKb&rsCz4d>Ua& ziCAvmLZ>5#Ud5fznb@IMYaf15(01t2Z`+|)9KVfG@coXUL$A(0ap*m?PaJxx**;D0 z)lp3V%RUU&dLMi9{9FL5@8GPH%arIIqHOI<_Ig#FeeB)q0wkueG#umZg3km;dm>)6 zRF8dPgGAMc$MyYyqQ-ea$p^zmf+nD>4kJ!USfAjR8E_ z1&C-e2Ihh-StYafu@CT;pi(#Yu}O5(6#kPb{N6tH0UkknlR@%xVKIOm86;qr|F*ZH z+9y6h#1e!L0}#XsSp5xZx;m=r8;qgq8**T*`5R&wJ)|@48^Z`VCJ*t|N`0e{O#zMs z101<2C6g3>7Ft-(U+-AN~b$5FZt>W`|+nHd#~q?$zO}WGvk6cJq!%lY5a-cx8A_U5{_E}$4Fm1J?I3(}iEH4?F(yDMTpk5@D&CGnZ22mj03oy6so;vMuZ-gGu#5(}5nWP%=`f+Q&?4;gAQFMUnzEpPi!MFr# zKd*Q`o$d8BR=?~g-3}ibL`V)+BZgKFy-yY7+xtX9&jW);K+FBN%zMP zO?dVT9vtZD9^nan2XHTZND!Z`hKbGz{GO1Gs0)oJv@*LiPKR|UdnHyLV3)>9LdQ;t zN(b?aT^f}RvP%Plkv-%7C#v%2l07u+o_3^RF}>G@-nMC0xCp(fgSXhyv&AatDy_Z4 z_5DcnJb4=&jSv23QXM-*bvnqZKnC7PKLA&D4~m9@VDdl;vc8mYkoBdh2T5Pzb8obo zg*wlT5@4@s6A!Y=hkT^xtPXG?O=|l=Rz*zOK~BS)i1Q;ou}j-~E2}do1&S2XX)3fk zD9&?K!JZ0j56V=iizITMV=6T6;7wJ3JE;3~@OJRGB~lsP4NwidNM7ALD30X%!KCjF zis!sRIAd}odk@)t;iF&N7rsO6IY*9eikqjbTy z5!^u$I_F8RUmyS8>nCvnNAmah_Qj=GoO|PAZRHM8+<4usp6fw>Ih122dio)$U8zHX z+Vy|hTSYy5NH2cc+sdC#q*A-YL+mEE+7MfFj;%~E`SC+i!^CjrRKp&KlF`~C;vlE7&TE|z=zNy#e~hW4hj>hZ4~>htheWu3A!Xe;lt-q-k5rbt#S}3l zTrHhj-UwI3n4IJ+$7d|ElaN9hfBa$2U5#iPQ;4qh*5{l{)>Wu$9kw&FR7SP!&YEL7 zYiO{uCU*5!jC}Smrbk4(-ou9U>#29wbe7a_clDO@&!L>scf$eL_{^nr?3;}bDL6jYEmE%+|v)~sf%sb5TdEQ}JP+u`g^zMZ9 zhebAT28&SHOnCpJYz8lqh2X`q5KnfQBbsF4?873PXB-a5X8n9J8kLTaP5QmK7cGbH zAFJz!ML7Qu0_FR|ES(R5<0en7)WQO~E`Y$10nw9$GolI5)o?)kP39CmITa(W@)3qo z`G}kzYf7;-b=n~1QB95nppe$w{74}i2P~;^z>=}hlN{%WCM*?D5-nV49MUwV9u`ew z2UeCBu~Y;HAAZM=pm_lV@51hA5yo#hxHys``r z8L^`&=ORInFK4 z@=b%hot5LWBj%vh-wCcbTtCBiY~V0=+(O!#d3Y5S)~R&;=MZm(RYYf`K@PIF9Le@< z`U@>apJ(1a)LYIfCN%6V52M*1JIwpBMdm;nG!D8ydz9tO1CoKw{qjdy*feJvcK;#< zCcj>lhU>-M(mbW*3(f71LZ+mG0g0ymVbml}#xTo8<;xlhyzL8R8h+Xu?X8Dffm{_n z{*E#rU>u1@jr)9;kduVjE*OsrHDlaM5#lmJRKSCtEb$By@gxNkkBSSuF(>iyp89WcJ3cPNj1f`PGS7tY zt^cO@(K9)2=||2+nqMy6>rIA=WWH`21Ogre7Vpk5U=34T5(t1rF1``GL*f`H$P7?+ zq~j$cAZMT_1n6ZUW}t{7pm#!eB8r;xM~R{rj);fwdsKj~+;R@(KgJpkhyhZSImWt) za8oIEnz+;(9Am`1P8C%$-< zP}z{!=Xx&)>05z>S5OlqgovGA=XW);`&)yn97jn@l{vvJWr!Pv5_4;{q8OfyhNM#{ zNr<<#CliVn6QnlAN2f*%rq8Z)MF)&J!A&+tC^5pz=7z~*(Pw5vwA7t?Ac|)n*aH}eiR&x8Bb4VP zk8;OJ9_4W-Wt1aGqr4&>IP-uI5UF}6171~?ev;eF&~*sV(Oi4+B+oUI_A;kg4xP~l zXL7H6A6Z?E1|t{(ATUVSqq<0tEFdIRu|pZt-&tQFgu!A7{{<&ywjDnyv+an001bh? zVH5Fe`cX@9f`e|jPSBXNVbC*FOrX9xxh$@Wrjac5Ph7;|MD zQ8c0&F_B((t6T!!CBY-T4MmyD|E=EQ)-lArLy37r;fuK7NRDwsGC7QdB*KPG-bB3E zic98x1Ep!LW}Cg47S4UyFgFU!H-wm_CZY)DDIua`wur&!ldY>1ld>c_B1^q5AUD1x zdlJmfP?A{xli3kQVWuKa@nE3RaO$M=Degmr466Ryy;D`4Q#_h#pW@Nf;*@kEg497B zgaJZ8qT7sxk)6}7tO##CX{;xX8{H6(4G`0inth6glu6TpG(z$UBf*QIFHQ1P%^N({ z$?G&b$KRA}hk%2elj79vL4jU(b7k3I@5iQVJhoWd^(+U{}s zZM(<+B3(!H|BsFY-Q)LAFr9b3f6BPW|2W0&aqBldnX2D)Pl+VgX;c)lt&fx@dcv_2{;z#f{k8B$0K|2$(NU%Qu|=3;}aL988h73)wJWNnpT|8-{{#gyTV2J`G@D zt1IyrN2aRxw)o`J-{#&)$0y~;^Zdly;*)QsV-|Vju#(*{Z3~M9EC~x(GM4nWm!9x8 zLy)lGb)v*robudH74-2F-W6)H!82a)j5m0e8a#NV)4$?bR#-e>NqE4L@!;7t($xcD z1~euNkn9p%FksFKn6n1Vrv}Wee+Tn;nGxa18wH4_u~YnvJ*V`Y zbKVU&K@7kpBX3`*exNa`-&wgufXhAGJpHkb22#?`vI_SI^CR^L z5#*1|kOEj&LlkL6ac5<>2j$tGkP>G_zxd-Fb^<4{e!+)veeDJf>(?jbm8?U~>Q8QY zYx+x2ZqY6NdMCI6G?vOs*YDl-_E)3M%5tAWad>Im8%4do`IIdw3kBL23h-rOPLAH< z@~Zr^Jhbx9hV1nmlJwoJk-i^5>0-eVunArAhfvsPDPc=K7*c0~A$6vO`=@*GRtv<^ zAYX%*ied{z%|FY%HwT~Hq1_YUW*^sI7%|364!rE9x_Fj+TyYnvIQCK%Ifq~D<0^s= zntB?Mj>EerYhI767U=m$ctr3gmw7N;_|m%$4&m z2Dj5WR{NVtF4m`Oo@0Hwoe-6ur-+EGG@PQ@?-`j)icsjTiO~)1U6U^7*d8!k@HJ#A z%5WiFdnOmPbY=0fU`vYol28)9ePH3jB2|LN7Z}m_N`akBFF-||?B=U>PR3U>lITWf zaD0`}-DxX>KhJyWoUZY$_mRkIlu?FOEZ*MfS#MpSQc^_QEFMffcTRR3V#7{-qf_`xi!FP`y@?mn)5G;;5VNa#^_oA5Iz3Uw*mkxU0^|r&OZn$2&b#nh4y({qb z$os)!{Ce^+PYLx8sgHtc?ES%8UX?wsQ-AQ{ONi$KHTd1olW|5eO9F)cbuH@oSL)NlR?sdKBL z%Wq4a(?3D3K6hSjR6KniVv0YYM-m6Le)&4bpz~}my?mbSrSa#*UP6%UrMY;(`hNMm zSiP&y!~7oczlPfK^E}kRf<{Q+^K#?hgp_miJln<>&$Bg!5CoU{7<^%kBV=;$jf0;h z#}DUq`c1r{>Rrz918~CPD*i6#K*;2v-IGYv(H@0;q|-W_mz^$j+P&YsNvh7fI{FW9 zJ%68Ir)2<APX7ggumZs^K6PCX1;V<(O+nL|E)|rmO<4X6!-7Q{(h=xVReOvctl4eQA@uIkt_;q+`}75r4H8G{ zR6EDz@Eip74o3m1P4j&?O<dD z^0)X!xy#=2BIK`mKWg)f+>VCuC7Y0?YyXQZE0HaKHD0x8r|~|Bngu2hw#aB;@J;r7 zfw5X(>@qMABp64914874y+|m`P4@GG!q9ycpd*jjFM`6PxeB-{t1rriM{EJ3K%zmx z8y+(b4QREy1xQ+ zG;sVn{WqKjkTiTD^wO_z%)efspQ_=jX{Asi^uQ{W>skRMIFnymm#*o1(R!Gu#YAX& ziDzO*&cKa>7@)#;OqnA>GzSNB4)Npnzr^ih=;j3I2-Pw{Wzsg;X?j)~irp)P(0&XE zO#Ads_dNp<8~}8d0qMqncp57F1{A&G4^KV%O|D;@Rs-~)%T@g%XoS>?)5#8RT_Pql z6)D6X>a&;R6$W-HouFvOsiKP_gTXVYo^KGoD-S|xpr_yG2I?ckJpZ58CtP^(@Gy$1 zt3W_4G=sB93r%^STF5eV>jHFy=~ZS#6W$~rv6E?3m(V2|`O0AHh=4ORkmb8^Y!Q=v zS0i6Hoa75YyCu->2{A*vCD8s7p10nYNgs1LIO+YD8JiI5w>(~R5dq8qPgnGMc@sv` zRjbQ9<-iCpS&h|Q^Qx6poxlw@h;IdOU3$njLJhpk^DgT$3!!m1=tesq2+|Orb6HQm zW!1$yN^>H|n z6D7HX&o_@Bw2%HhuxCohAbDWiWw2 zL`DPS;m3SgYT5_fB$GbiCRrpftVue(gtw|%Cmbf>>J{C@eeDA|U60`b2sY8XHW5R( z!4T}Uzu9ThH3hAGCDqS@10@<9nNI*m)D^}NafNXtU6JNMkeZ`99#|g`BI)zcm7w%# zbcN@+p?fw!hhd_6U*Xn>xT13>V0p09$jB?9$8>j8RFlC8O@iD4C9mBFPpTDyWT_z8 zVvrz6NZt@GORq?aymLjw@hO2}h(5K6xJB*?43qY!ohB_3{iLs?6{%yYVJ1!bCZ--x z0tzqk*pe=*v!0EvXH}+jnd!+_d8XHq9D`MI8S5$mgF}gFXj>`yDucr*N<^7`vJO|d zosgY~2ZRz6NNX%JByB`UbdO42d20-~@hunL8pd0&2`Mk|Ahe;<7LbMeSx6%mJFd!m zPjJT6#=V1ySsS2zpfJ@-?C3Y3iqbWSZ%F^+eV|XS;ui(&eIWX6?*rW=lEfW0w1y} zz=y30JZZBCFYwq?8wbEzgDr0sU4wbERjoFKFPFlXo5Ei+h3~p1&h=|%lc=y5z>YA0 z9bs@Rzs8$H&|MkB(f|gzDDjm6@r8i+;+kBP_|t&69}c3(hlOkiupmmm%l8BoL>6By;tIETS$~9jjQXd7{yxjMOt)#^t)&^!ctJG&L)m&*8bp*A zj%Zn75rHEi0!K!KXWRf^UxXRan14s~#{l0PvQ+JsieBsRS_11VV9^`rKDAR5ur`M^ z)aQkTbyi@3Bg4WoVKA&dL{mdypXy&5>es=(`Ped=+}w*dbyDZWU6(DR>(W$cTS}sH zjCgmi^=L@%rCl%NfQq}$Z3WH@3eVV~Fu)N_po;5Dk9oz3VLI>Qp}sBfZ3HoOzs>`y z`*qm?Me7DIjSR;$uCSQElKKxU855ofBYfEiGbZTH|ANUk(wB>mDh4s_6ihn}CNymT z6OLk-cDna}s#a=YA%P=70!M~~XN}RmM-gU7_zF-El589OING<;`XdC>Z-VJJ!K8}c z5K$O)BTO2VxKYS{13Ll)b_@v5^5c9@AS1sXNaqUrn~A>HbkVlnRM`d16)3qNqMLNv z43y2`P<9j+3fK`8uwy8A)|ld(i7-Q15QM@TM%T=S5ri>q7+vEn2kW+8*vR|1c1`mQ zRJX74{?OWKzAktbXUtRHCJx8V;K}zbR#`o{Gqn6}3vq=XuS2GnC&%BE#}FP2a8YU=^ICwg2&BAsL?lNUno}+_!!6n%A1sh zVgvg^n(X$@a41A;yN7ae%B-$`O0JyX-bQEktSNEY5HX2LV>JEm~X<*2m zh9_SFLNtw^wKt`g7Tn}snu}E07y@wK7%DKAi-MfpC><2k<3s?101dQ%A>{a0GL zQ1ie?Yz)-;f5xsmzN%vRbM_`7x15_m5&{XS)KC)$1VRZ_1*C*tEP#L-X;HC&3c>Ph zpwvaM0Qyk$DPY4!v)2ds^b*dGKzQ6S)rb#IIv2 ztIxJc-&#K3+sV!$4$`+0w}o9K{qJq;RECPz&q52B=b_R>FYp1s^W z-d(5=bif2iyukaB2SN9=Q(I~spPsNWHCzAnjCYW#ggw(Rih3?=`y0{qCuAA@ANYWy35lK7HKbEw^cJ?0`NzbC;;Qxw#9&3H0a$bJkJ68=c!VTCCk7iOTyQACA zf7u(WA0JxpV>NL*cekqu{Jytdx*|Rrr)>oQY~7an1nT0 zpKIdNk)Mo22@*rAGVIkhMOwG;KfUW`Rn>;zPV3!lTCdM`aT#IRvu~NVp32`r4c5)R zIn-8tQJ{0crX7`$E~g-G%&f&LB(6fQX}H22a?GYL6NXMf_TGV_(@IdR>p#N!lbP{R z$Xj=?8oYIf%%rDt5}$&cx_)QSgC~g?#Jd9G-5u;o(sxY8avO)A)wer%TA{&-j z!FaCUzMH()bgNWvh>sEd+8uJxW;g>0HSP5%UYgeRDB+YV%VF+m9=}rto$G;H7_mnQ zeT4^|z7gG$2OYhG2OUi{&4bQDl9Au_g{YPptuU{6VLV*%?~wsO1}vpq(3@r*5*qTb2P0@It-j+!@7tELc9EvRgm%MpnAhTVk)|ooRmu=Z z+r@h3;!Ymcn(hkOxEk(aWpa_}^fwQqo3K9zq%?L7+C@qPJekdCX5+aCA^6gdYu9@- z)E(f45eyl~Vsj2@eADrhj7B}Wi}l_@M$^)IRF8NJcwP}aNTgx*gD^br3LZoEgG)zX zeibk#?YNufxQNsxhJr#mJ`RKNxt-!2N-k#&oKVh4>XeHHMvydcb3CAd6UxOf+qE23 zW4uEh%Xv&k(uO2l&2n)DT8QfgSqaX#a#pa0(G-^vos?0Jfe~s2i8QVQ3VVo_3Y6ys z%1Q$TL4vYYI3ProvWbuw57D=RMCf$o*-j%pU#>f*K+_8lNyZkb4H`WTY5a{mY#7m? zAD)VfOk6O0<8fmm6w6=EuT(cy8=@^x2muf7(_%(Bzlz0g7?aCci$T9~)d-=kI^O|= z2-FNd`$%Q-!4$)5mct8!k$fEw*YhwDIYU6?^c^}YW8p-%gY0cVhOMB43?V}HgK&G> zAln;;>{mf1gnGzA2N@y=Sx}cfE3v46Jn?1Z>^sUM+KiKC?%pnde^9^Hfr2&TyMxuVm!fR8)Am{ z3^OD%ry+ScoFvRvii~P zBw^L~4HF7RkUAKPqV0j!ZplL!cL~OmLd_Tv1&pfF9#$W_1fQykEmOBg&r-oX3{Z&l z;a8n1L8M&eZ*TM3o^(Se_6* zx9yQT(VhbfM}a&e6sv^dnLToq*gBKnq<-h7@>OD6kxEyIftoMcGNqh$N?}Pndsz~b zR%I{O212wWDPu3ofRH0Y&BNa7RI9x#L;hZt;i|nN1A-(&f8mh7S0=<`_KH(zB*vTA zL_Szz2&XxO3}dFiFlo;^Y0}bkg_e4i!QigK6L0aPnFp%o$6-GBMDVN=Jev(31PRYh zVTBOsMF48*5zz96s#Q zOY(K!$8HYoTMt(W^}+7@s2X`tBPU113_zAlt1;msC&v+*m#~xLzJ2&dLC48K{~agC zHkxP1y6Alj_PCLRFLy6P!Q|w4VxKrU)Qo+6*hM`CU@sX5hu$X+4laOa%SU#KgX8M6 zu;P~OW1q%y6mLp+V4s|GxjEi`U9H^5j*U5=KOk4oVjdLmJg~3Q>Z0@BE|zB^HGJbpJ15tl$Ie_4mtSqw#*UN7$WH;nf#mZ2=>iQdixt%Xh@ovi8fl z8^qEKKMtksjA>x)#{_@5y2+G%qm+Fkm#yyEFQ&^$`*}{^VZW>~CRY>yxDkLG_w$_I zbK`zFZG&h+aGird{3t67gx3TD?&tk7Hdil>j?Pe@8XOxUaeQ7;9AHT}UIYFQV^I-& z&IXZ$;uQx4FLbWTvPY@cN8^i0(fAsLL3BnCogqX$RNMinl)!iO0jwj=M-4Ve!o`}FPDBkz7+F@|~A~<00B^5EI4bN#bT`PO=tr$L&}uY!lf z240t`LS}+mhgcm0hHD3JBaGPgQgBEw8Lz5g@f@;)_u+IldGtIain%YigezuXHC7-q zVmfx-f}9Mh|S<=e>Q_3Z&@c=&%3%>P1(GTF*8a}Yv}XoHV=8LX;hR~$JO=)^zdJ! zZ5mAZ<{zgLIn9<2HT;q78;|`IsBCkN=3i(Sx+W-s_(?Q7wFl2VJ~_m5^esB;5Mt=M zYs6rBge4AW^5Z@MXxzbA$@#)?=`B&Mt<#c!efE$n8t1}|=a*ILi9rVtrq> zZ|GqFilPpxH-CW3Mmp#CGVHaKQTpZbLvk?_`dQzCs%<3*lznD-e^(#NV;ZEb`cDPBA* zQao`uB*mG=zI5N)At|zctzJ#HXyQu^yhs^EikZ6fWNbaLhOaS_%m^iaU?iCtSrkd~ z1ENHdE%c8i*%Bei473C!shx}Q&(TV`zQ?SiEQ~sMSWm15dqU<|PY!j?XuT`X_qB>X z!gGJ?2+#c!j>y~}L7Ho4;Q><&X4Y&BZ+--`zq>O3N8f3xttfawa{J<=>PNU6T-4=f zahPh56xHttccalqxEmovE0a6G8paufXi9w%^?(bf)RU6qQOU7Tav(%!C0>yn2$>x0 z|2r6}xeKO|_JlRk)>gjM%3mGfuBNk&*R7@#TKlR8E>JFMp?$jeV(eD+{SlrJ>&$l( zWk&4O7=NB{BU0()#6CRTY3OdSMTbJMAVVlkDNUs25@}2E&@xBql~4; zQMqXfUtf{rWHsU_53Y@l$`o}>MKOURVFE|SL{BnzW0lT6`=CQNffnCMu=X{olSyI^?RjoyYqzZ`uZ zXDg6IQ1q@FVv@ZlQMk0UYY0~{$Ed?J!L?JKV>0BN1Y%*pMsV~Q9&+|Y^iUph8Xe^! zrxD4-Lr&9U&MV&Zm^0+?k&5?eg(y~VEO$6F77}a)??4lH&fV6{-IjBU75v;azJr!$ zz%g^A;`(F!Y7aOjR`6oP^Es-OJ$#R=+mFeS3dB0al^zqr_xx*pP1Q7{!+RKvNUyXy zuBY!hOU*w<8pWEeH&ln8=_TyQ!>(HdJ61#RO(}NvFbM@(oZqGXE^ zqG-r$M^R!eLkz46_{by0$j0d&$9X6;w6{jk0-J^HI$%f>HAC`n1c_q_#}$8EFhc|- zDXp2uJ}eg=~x>g zE$)_9a05EBvX#&C%6K;>asfC0)-GE>nBVQqIw(6 z)KYIFPH?>$x~VQ5ftkTz*cxrp7dh!-B3~|GkZ8cLdHiE$&-0(P0%ntdL5RTY5GHF+ zh-vaTlZ$!$u%I!7K3&!boq$~jh$2YUDGHZ=X2z#k!mVy3k!vN-r}$!pd`>rG3wci_ zrwKgF^e6Igi~lfYNs}|g6gNZ6tzj&?ofMQ)BrbGC{oN<|MKD?BMPy;9FEZcx)oP^) z*HsZDVliJwamA|JNf%`7&Ay(v>xl$skUt2>z08b3{vhm5g|Yj=fQ->u1zuw@SHCkp zL!C(}xJi>f#&MG2HPKcJZ~FW#wGF(s;S^&3+hk`{v$_*qvHBqdG5$8+AnPV3=SIHq zckXee%#bI!h@pm_Dm1kF`NrSn6VJ0K${?KayWUVAUq2vZY*R->-UCr}t+zs)W(cPZ z5kzEVwKh^zSG{Sprn}pW^wHNqgE! z)5D*SP1KLw>B~{i3l>l~SlGO|S~9)`5OkN%X9DdlreYOE#?1&#FO%PEG2)SNb2<$- zY~0*)3jZkR7&qy^W85sIu|(!ry^e*9n+H)W88=UzGRDn6PKj~zBw#tl%}S@mxXA^u zadY}HF>bc+7Bft*jPb|nTkrMR>LBWDOkKO`X}7F>r^L*;_FmtMdTS?iReVk;Tr z6vPccco3EY5myJBVh(KehkPUqIH+=p4W3?q$J4K(cv}6zc)*z}r_~?0 z!}A}$aSHK-s0Fi@yKcC>vUSm;zVYf&gXp0@czXU2Hl@M@j@SN z6Bry*O@cF?_WAWKgJW!vvi0uqr+h=yRcB;NT&FXYba|WF1@q_mI_a(LDvwgvpWzwp z5WS&4>Sx+_@yTky8QI`9iIY_685#}LgJ)O=BSgA?)*06Q2+<@4Ie3K%_RgHT{~6Jw z?aqi90qRn(nB&Xzya@>3&+)aj`xCJ!%_0b1iwO?pP)EmRD6TfzVe}m;2rc$CM=@A#F^Irxqap$=%NqdarzwGBa8y-xO2JZSy{!eHc|b{#=*ZvQQ6S=z{^aM?Fkg z7WwX0L(fWk4?KH0&8BJz(^TnM9-_yco$!-$KOFo%)>(+k$GJlM%0PDBX8XjB5QN`I9NC z_Bp35>d-%Ki#q4nsD}EcUe_1kVTxM$qVFDh8z+v(m*aV`J+u(!(Zw(M?pH zb5}_Aip8xB*qiRq^PI@m;#^3!`nN-A|=4nIhDYSA5+ZO)_%1Z=qTsvU%nL+lWS0 zrT1knhdp@x9Wn7bb8q$c)rxc6y0Ymac~6|V2xEWNCJu z;dMDL@DQZl-xm+`euQxRS&ae*Y|wi8!Km!4{{eCMdG7wr&g=5KA*IU(-Ct)-^3o|^ z;!0&KbQ9UwCn%9-)XB<&sXOw=^=0X zy4cGor*xKCs1@kd>+a2bN_~G`^yy<{?4|QEfG7VcuFk|i+0xgb#-BhKZs`LnvGiT0GcM^9_jr>O_^@`xQ!IU` z3s|uJJa4RO=jFDP-lp^(e{$(P{*>ENMw!w_{3)irKY6CtU`$0p^w1~D00Qh71U=cb z_a}q62Hfee%2~88j;irZDT@pcEkHC#=%$pF2FUA?K;En<5G_E!j)BmV?Rf%ZZU_iD z@J^o>Q`~NJc{0VFmwQr9Gc8&7cGcnu)`99Gh+hIw!AW$fQv29&E1xBi!HCu zrS?uT73s#TV$lCsw*i`ra;4*Q(nu7?U0tI;CC^liuVn zeJ#{9q_ascJiXHDb6>(8qUK*<1v2{rYlD|Ah&Diw-qbg_bcGO&g`ZwvrhIQ~O0_p<+g%E+lg?t3+m5YuMkI6$uJV9oN zPdUV_w$&xBEJ;)GmskaZ5$|nHzrK; zAzap8lF{xsu7jl=dxr&v5LrIm@fET&WyU94m)P`DonqMVYDnrvkc8Rmh>kyo8v;h% z$e8VzZ-?68`xkd3eD;#)*+SgyFK#w`_Y#G(DXH6Ej8eb%DpvM=Ucvd74xY-ls=NQ< zIy3b1!s!|8i_Db9H$$>2oW!x&alvdM1{ICRGpV=Z)2lGtG0eq3)OKL*WsU;#2Z0GA z1=kVT;{M_-huC_&>H`Q9y8TC0(yPAl*2UF*oIoZ}kE&$p%{x7HtojnkqC12wLxc)( zBMx}!L>^_vmkjEQnGEq+2faDU;J6_y3!><~8p}~6{||rhfviZ96FOHSSa{@dgy(DM zv7Hpf@!p8%ur_Pv*A_>0;Eo! z0}*-3zwnYtkMa;yL!_edNt~nJ=AP$JPt(e()z|gbper&|kd*z50RjquKK`j1S=yQf zheUl{wgK*rLQAiz6KIKGIR&o~MykH0OQ+bd?OD1kEht;caYI!6C#YLPdS{4~P^syb z?)XlywUhj`fm9!#>v6yKse5d2aG?ak#T|$~_Ni7IU~dVq&kV4)1lWH}X>S=|d%}U0 z3ot|aSBR9W%hnsd;_8BRm4w8-KZuZ*1?=(;SCP+s;sPKdlxjnQQ*CrbJ#PO&TE1$p zq;;_$gh+?qnx3jxegmF2gm{96n|2~ciFJQ0J}r+{wb~2y<1RH~c71_LUBC>{rVhz6 zmxKx}o#St)*8{bnLyUuN;*{tqbjF>~ePz&XWoF#>tgoa*Y;kgA1{Jj}T(A@+zK}Bp zpP^3DOaAT6M_$HOOIzQ8aN;l+%vsnxPWF7I&_<8ohMV}Q(arU5M8jPU1-MPy`;u=I zZUzE78Fc!4qyoq2j{n9`h#<%%qUBbcqu8v%GSmI zB@J?$r-@3B(j7DKO)~6jP4P4W#fj&ln+LcUu{K{IYx7K6?p0UdWaY%ywc7)QDJUUI z=e-+mKBkIq(69P0s)M#o=@(-CcPJ#!THzmK4dsN8jb;#WfC2eJ$bd{+>?t$0N+nxS zx^yKb-K9~wI1v+~$2p02N&SNX4{i7))kN4LA{=sr1sOcb0=`7zH6qcU?J0$jn-=4G zE=1&gG=q;I=4TuDl2fh{IfT^a|8Z>w^njb@Get>+B_!_DgqV$Oj zf8&NfR}>X^F)BP6)!Ha){_9DDsVoNdVI-(I(}8YFmf$EmE#e)F0`?@=+4t>lfV zU@L(cqrsEW90i)?EpSm5A{fn~5E?5Xu9hB`>c7g_jI77(#^xB_jaV2XeF#sgCaZ54 zxZan6>t9iD#Ehy6PXb5J-rxAU(37zhAU^zEOHcQ2!H0LHT0X$ulZOo|JUeFiueF{J zL$&BKREsN$3d|T4o+HYt*22{A!A$?NR2GAp9s*^}gd(^F?_MUJgP`taLLuz(z_i{U z+QCl9@gzWf%xWEbm9F0w*G=v!@~7wzzN;6fSLFGt>y6p|s-*MsmIoSWyO#etjD?U5 zbT}xf&cx{Ww*y$3w)I!h8|%Y!_f2ZFt#fPF8KkOK=Gl`9R@R#r1sf<|W!xQ?aGPo% z@hNpHTiDfD(#@(=DTlu%Juk}H;8@nNMk?-_;5kxVz3O*w!kqXXY3i!VdRB?AkE)Aa zNAomr+rx+g>0s%Kuc1F1|0W9^Vw9CRWzPBdavk+q=}u)!0juuh-`Jy(Fh!jRO`81M1<* zq%e&6VLCBND*=dA@A`V`b@S5)sl`mtTs>P^Iwzi@;NGm$LcIe?NWr}cVKaO~8?FX} z@FC!43Y$?YVh8{iZht(vSK_&9RiH7I!X4ll#8a=F55~XvXQ(3v#Q}o?PeIWICplFt zqtK&IdXw09_;qE`{ZX+MgadXA2Ty*34^+k?WJ7wcLImU48^XgKat^}OA*Z7=xE*pT zt`|Xvq`KYQE}^-7DxzJhv`?t+`5KJ#TBx*Y_+zXp{Rkx6WctPGthWNKsJoWF5a_JG z&hAjhN3TTut*4VVJh^ak7nxRGx_2EC?9+HU6e$&D7t=*#pH zT-VCq*`7iyWU4hLRu_LCtgF`-C05qQddJ?0Pv=-M=;SL;T2aB0(ILt-uP)ymXl##( zEPtu5RkZ@I(?G50A2(1dFE@}E8i(GK(Xo2-M}ZD{UZMX1){L`Ss zQM9NVPcJW8|8F#2`G_nMojMo}SX2ksc)1Qd&;oj5JAVUJY9#KO9hIm*Z|ARP52sur zb`P(Jo!Q<$2%rB5lel|`=x!r%kI2$U;#r6iL*H!r#}dzul(@TBBwl}AWqixH$Un$c ztv7Y>&!aN{Bx~lUIT;F~mX43PNym5ar_BE&b_3>bNR*YqTCXlkkFO`xylh5Hxrs4$ z6|bzUjuR0E==q*rS^uMV9`;J_B<`eMKk$mePV~tO5%1I7OS56V!Rl2Zy!qKcQx|)20Og@BZouNjXduJX0| zqU~!UpCVo2;|_}Ap~!z$>wGdR{Lm*l98aEy{eUObx3yX4CHOMtzZl)N!GDo6T!TMC z;VWtI5A`gsFG+zFD{wqFw8PmIJV{~Vj5b&{Q1775pucg=q*dLQ7TW)T59HEx8Ftk^ zi9Q?#gBrK6H&SSlvHx##qOXxU;1fMw%U?lIV9R+7Wm z-cr26AIXoIvjZG`iifY4BKk28Uk7|<_`)BfD-M(RtSb)t-QjD=(yEDbj!#dud(i^e z_!TaQUjYlV#h>`ns=Yu9GxjT-b6K1d7UEdgHQ28_o~i*TlH$~+DkUJ}R@H#+SYS6$ z!GNB&Q3l2)^S}28bnn;w(fa6h{%cj!fFAK@0C)ccP$g1&6C8ax9ha!}_5NJdF2Eyb zWcup(8?Zc9{m@m(Xx3YAuI;O*Mu3!zX1#S@9Rw#B5WNF3c$Ni1Ml*FkE>k7TkD*-@ zqGi3a9KgwHW|CJ+vZpr$WYfwkH(@6A8DeRKL;dbRGh6yv;1X~LXz^FLwi?^} z9H7Sqs8T_h9U;uKqxhioGK6_{l#MGP9IGg9R*@0LA#NKY<`(V_;wABgD3*B*4kd5? z*4tE#L73VW*$I}X2Ub<9XLH7I>jXT3&nt~_I*cKT+2$Qu@z0R2KlJDUz zH<*xE<)88OaD@fW?hs^1TabqaJA|3nZ=rNxlDjt42?Gp7E--RPDC|_?xnxY7E}v)D zv*M((5bQXggIpE`30JE)sw=@|1}}oyC1XqSdu+MerD&UpRYcoNC+Y%R!au7&SUoMQkjS?0rA$wlCRqlOA%xwSAQ2bxwR{}{ zWe9#^0`Ofmz?Y!wKjCj~!P7;h)3r3n=K$OKg#Uhcxm;j>8ep~_F$C1K>;6vxm#VEH zC={ccRbaO-zYRjD;Yezi-^5C;&yLWkE)oQM#^+jT=)2Cl%O0`>aeQu86K+qb4p zi0WiLE@e$Dib=*D1njw5;Nnw{ROPO0Et3)vWY5NXl8HYy{kC9pNxyeV8Qd-g=cXQY zQ^}(N=PM&S-T^II)vdUibN$2dQG((TrbXeOVPLiNDvF}Bq==$-4Bzeo6-m`$l&?K* z+Mzt+aVbg=wd_z{&ygBjJZ2cej6YCV2(EHozRx{Vpj3`$K>^sjzWPK-WO<-9`Svt zZd+Q7y)|@?Nl{a9VK6A z#BfdNGO++gSImtuuw$H}M3L~gkx=Ok6QpNY#|1eQ^8|3<12mvwDYGT+__35>qOsGH zq_tW~!s5F4P(zaOGVX z{Yw-ly${fx-dCoe0@rY6&-*~heyVRcJ3F4=PjX3l#ThxzWz&Hd6U06K4*L4R-q`#i z%!9>lcqj?~DCl^r=)dEwYC_XxS$|?W&2~h-^W}JwxU0?s3c0KF6L(|t>ZS?4pm?m# zCWU#dVycP9%I2bY<%lw1LajVQuix(v(lk9*fhGH`s#kN1Jdz}Ss~2AP_q41Gy?Lrw zY@&7g3XDTYX1`TFB{Y_0ZXV@ME5Y2J?UnJlNrN%FMtZ*LQB9V*c*0QF-5Mp?_@eC* zx@@K_cN>lYhw$ZY1ZciYCKdKw9J&A>URmPFE6W}blYLf*pyivMHq%#|J{1O!TlwR@ zTH>>MR=_MUVDMxxs|3vA0U5A^0g8Nb^xkT++I_2{n81!P;mMd5R1=RC!n~rKN6h)^ zZv$!$d{(%ggez#b!GtF;iNgvP`EliPEn#cn-=O_fQE1@G(C}nvyHQ>2xIzSDE596@ zj(y+1L**xnr6M<3nh#H^G1V~-)c<^LAUjh%i)eymWJ`2aAzxmj|SXHksEtXiFTC5t* zE^>o4#u-NP3^b@NPBo`qE!{7!AsyY z*e{>?cdJnb&v3?*r0^sIj=I+Xy6ZAPQz{Awj2IA}3<%F&U;5`*xS7-ibbTbC@J}ME zl?K?q3@|*ol2G%E3qf-5S^o;dwLB76&o$9Msy_{$GlECo zG9OC)skXkhD!zuiY_?wVJeF|lv#Tqo`Ks2aVDo`1)s}Fbkmxu6{_$`BERLK142EoO z#8VEo`7`nEbrQV*i+lLZeLR{h-VblU3!D4}G(fPE zPi^)ORpV-~g~xMi4d|Wam2V>AINf23KT3a*8eK&^d=J%-#nv>IQ_j-dS3``(&q|tF zP(xO9uhx(i9m2eVd#{G9;1K3f8~JD`4xm8C7yV!TYF00oW=RTR+mx1b~cTti>G z#b0DkAxh)0s1fG1`xOE5+QrYR!d^QvZY9yDV0NNNa@n1!5$3WxMO@NKrl1hlWmh#t zUddpJC{a8`#gogfUW&Y!wNu1pmy;6NqCZm$JHvMP2na6R|MBF0h9|r1@Fd-!;C5w~ zT`U-r%kD;lVwgdJr=TF0-JJ$SX^NWesHt&q-7hx%zMgIFr!23QYJNIf|YEZ(m?5 z>dlyCabw8Gz64Ln79b{XAHfiRcbYCcC>2&kJ(j9#?e!0^k5EQ=Wqv|$iuCc}3Wj%l zxxtbjLqt!dvU@M^(`5x#*NYQXR<-4r+ldAGRr<#*`D&`T_@HX&z4{TAPcFXk`~8zy z{cPx#%`QHCXW)SUDeF^`(s=jQr(*kKcyfw3_7Lxg`#k`WWAB4hS0}VTmz&+k>q;xi2qJk zbJjoVpQF-hisr0Q6Vk+3g*x-Bzl(gwIKQUu_;J;Ie1nwM=&BPa$+4V^Cz&bx)D$Ba z!fc%yS(B|(|EsIrP*b`ZvT-kIR8utYBQ>ROPp_#@d>LqfQrTFDAS>XdD2+^L2vass zqnhHi`_N=t4U}Yx`^w})n7wvCntTX5#qk;n@;a^55Lu~}5+Rt;+++Um*Hve0>Y0D| zueKW!sk9RA+j9JL*!+6pTbLwxtKHEv{(IFW6y-SQEKKf^8rpA{kOn4cB`Awrbg*u4 zX5I(XI8F36o-{+SFzH2B-fP!6O|hKvgyEQMaNy}`Zd@JWf_XYkl=rYSQQq?^3JMGv6rQZSC#Mm3$&do+IAVL@`|DYFGhtYR~4S@pu>|veG&r2BMP?2@`#d<78+4h zJb=M7r)sB%4boZZVQp<(bE-wUUiG#&S2Y7A4NO_-k!*OBB8MD4xjf>1OnHabuww0M z5#5wWreUZ(9+~jR=(8J8puG1tq`M=N>y-1;I^T7R5fAHL{lX`{^lJCg`i^~ax49f{ z6At2&TN)Fn9p!l_-T365OqW;wAzau}0H55nbp70u@vZdnt${rKsXtJxmOwgk#Z99s zkTMsi>l*@rW@-g000UfP((0cBftNk%GgJm`V%d-`y5>KiC0&Cs>zZ;?Fv9Gn`8_?% zO>-<=G>SuPX9!A!StX=qh$?Z?b3*B}5&|t$0m7tOkZz^=8d?yJTyT9d1k<${g6W0~ z!Gthl8f(}f%$Od?2*WfvLohkS3qr(*~q`w_XC;yxJ*kD4s!9=b%wbfwy(O^1Y zFd@vC&KNcblfzAUGYONq!9F@uFge7vGNqmnW=wgRQcq5LQ7FBm@wTa+h@-j!jlo5p zHZ=x2Zm9i6W=dV%nJJEpk$P1*92wIMCnR%K&1G1|Mf0@4vJCATAzDWDk)U#tzm{YK zH~$JF{mR(HH1(4K1@;6=p}Vr5?Sw&f#Gv}ipgJO`>@1NV$vl8%Wbptd2E^1Xt}I+X z#}c#-(K4#5v$(FD8 zb&oDRf_htnS04^HY-KDzj6o@_1)Ux!6pzQ>bovEL1sN>DDb zgy$KWZbFj>8b0JRD2xwivVQW_V+w@;TV3xECdUKzB#L9Nn^WKnAw`gyz{0gnz(i+d z5L0?vz;HrNBV^@?R52!dI7~7@tFw?-F^wMUA)zEU*eDQo#yh2Wul$rwpz!=1fPc z2cgR8021zTA@V+F>{PS@L%o}+<}a$5tZJb>o{H*%O}(I+tsXWM&j}wO^gIj_ZjRT4 z5ex0mz3{Ur>yP3oqv^R5*1ClKmJnrnUj*y!-8X;S}6F zeqH4+njhhWC(Lz$|=Gp!g!DKU3{w{AGFZEw;a~%*n*J2B=v&5JA2tv$hem zFJ}MreA0h9$jISUAbkIawjd0zNGqxYr?$d!19-t3rxkl?QF?N+8s9<&u;B zxtq>%{ou+)6x5O!PySsL7y{iua_N=zYq)~pBs2+jz<|aEHrp?q2vNLa0tcFGzu7U7 zTu1txLyixHhLLl{k-kzO}~NE81+T^YR$Je5*cv^&DQfT)i!sbhqVum`#YhO3Ts zMH{!P%aW?z*uYIQ4}?idb-iJOFst7Qb;AaU+pxQaPV_m%kA;XClQx)~^nZrZc{j$m zo`IU`EdvZh&Wm68bo6NTtwHvsLH3J5hA<=BZNh6Vh!!jftC?~e#m(;?k7U8gaD z8`W_m*I^^qB_kKY1PNQ`tO95(cK0HVH*;XQfH-)F?@}oZblDg#e8dh+X(DK;%CV+L zoD3We%l?sMWUa79Qe3eDi2*mJBycCZ^Td!{!FM+hh5VTCoA_P|F0N;UI*c8tPTcD6 z#4*6vTJx8D{)y3xv=vgVF%c*cQ+%5r(GEsLlzE{$s9X`6SdN4L9#_&5LgFD~+v4$o zJ8+(7*3|}~YA6U3DN43H^k7CN{{I3PY*jFo(n=kh~%sZ{>w6OJzghV zX#fTh3tke*7xkE+3vLgjV;n<)#YAVIZn-^hk2QfBK%lD7@0lkjD0bjijM&5o#XW z5yx2X5;7WJ5yidzQHsi$7w<1o4>giza;TR^P&3Mv%#ELKI}y28BV`t}Jjjc8O70w1&V111Cm7%RWG~1qc<7M(9aqZa<7oWqIS!ZS1D<2Ecey z3XdX!+^Ntww@WH_sv;r|?^JD?>a3Yi_J(|jOU`}jW?eeb^eKnoB$tA_{ewhNOvM>Y zy#MD}&Znm>v(r>lvj^x^!MVVtWYcw|ZH-OWQ(z}^xBsjnTOJ=)|GFvuQPA1`L;s!a zKa0skCuZ&Y)5Rg#U@m4c8=LCldhs>&^K%1NMg0s8y5Z31TG+USYQXD9XV!mgN@i(u zW_=IP(wX%nE{%=SjNpR+uA{4?Hynztqt*Ptoy3?o0i6L)Q}DM#(*aw7l@PvH9hLY~ecq(=Ein=!V<2~R%!0t}7H)uGvZud^ zi46vFxgc_;f>h7y4b6D&nZOj{$-d*o3o*L3ryRzoQ(Svyt`rKyUk65x{}~1>ia*SY#JOawGrGONbIH?my`t`+xqKD|TQ=3J>KPSK^_I z110$EZ%E<~ATfKfSmLou0;BY%$^Hzz{8g_B$g9XdOwuHIlp|lBiYb`pcz( zoZxAYJQ>}8AikwB_sIl3VsRirSA8+i#Qv7@N^e_jL|Glljzp=P=ZF$Z|5%jRJXe&g zmjWwXQ7*g`7=S}Wv+j2qFD*};|MS-cV)VIx2ClbSQL40EexAsZn#ydD1G? z^ThuHS$e%3$X0{%^zAPPitMIDD$rB%q!m&ka})Fu0xY(4`p3|33qfZ;an4ry%1TTi zT0iwtz^4anjjhID)0PLS8o8!e4~0Zh)ADrDzpAoFGA9lvL#$tQ9Bj_ZO-aprdKQMhePUhA8f%$SNu&B+qP98&g8HG2!(< z4Rt(EKmIz-PR=G$qc*Td*ExM`;r2iRHhfRjPV)9_eIwvkf8@y~hG4TW|A@aCSfrJp zB>2Ko_3-KO0lj{H`ao5SshX>dX5taUGqjVTRWsSi(4v|6#0tSB+$VONs@+vT&~lD* z8(i4YgC{$B@Z_Bgc(S9XCgRB><8Kz`k%@)Ti4ONd0Nx^Se?$$jBc^9F#1wTU?npium&V*R;poI$yo|Z|ap}>c}5yQ49 z&ufsAef(KWCG$1VaSwVKtwBe6=Te)BE?x%wq~&G;H?&-QNXsR%V!&m5xQ?|`bN$l? zfzI|a$|(J57MeTK$=`!f%)hBtVjx6zO>;TLJ1eqCdI?81cUs~m`o}GCQ*&+!FOL>! zB~LdaSNJRRx^1XZ#k^X>*8~E({R;_jMXU|_Yn@s9td=pK+=_Vh-JbiuI7mftFoCiL;A!`~hk za=EzXU50C6MR9>E;S#RA-;w#h(An2b;)*` zMd^U=c7_((HS!DaxE;VbGgfeLK`lUrAKX*TYLjU3+Y-2<(<{>N*)yaDa z@W*J7amd*EI*1c8wlfpS9W1Hqo|d1w$>BB{!Wh!RyG1X-;RamTEw=>Wf!+T5K1>u>CieQB~aY#&Sy{H_sy!kEl zit<3FdRgkq28mP1GE*r}aiy5E9P_CNUd(+!|0w7z=IFn(m|KSb&M0asXXCGdL24ZW zw3zGiTcC5)S0K_E^Nout1nuHt>(56WUS`Y2Q78U?m$=KuxfXpiTcRY z=`1SA4D^ViTB+IBO0V_@;-zBG&_Ax&Gg2$Gmn3HOt9t_Vl&Vr7Rbv;Rk5r@mX7o+C zJN5^9sLTS{Ac7>Pgp2}gLBmyMDF*@@Rm%d_`c^Z&WTT%iB5zWluRVxmelL^K-ARdU z0v?k_-tw!?>gq|0n0YABT|FQvYBD}MM3#joQ8b-aMVQBw zg#|LEAk1R}^3^^9)Nh%5D++kZ4YkPG5TtW(YNN@9Fb_olrpxe+8r}Nz$&Y+$oD#KSGDx=NWKtJ_YD^VHVQ2GTRB9-BzDCyql ze6#k%6;`X(+UeQJ^pAUXa%fz3W_Hs-<#Ub2nFwK=-t7 zl&*6gnlkZ1;A-vp6oV$sEbT_%W{PUxTKf6w3xO}yfY#DF#jSaL=jqwn(rrIW7@@|Q zgj*#+^=z$Qz68U{!zRA0wRD3y;6_~+VeYz1T1)Rim}|9X>v=cZ1Jws6+q)*)mnIv+ zbW~Cg`5H*sq=6WdQ3sUWMjbOb51E`7C8y^QkjCF%r@rzRN{JwFGS2YWH>%o&B3fpl zAZ=DCND;cvOYqX=a`d_k8V0bnCF=P zKz`?Zx_YosRzME%k`OV!Ix7qkCw)yQohn0pV?ZI@0oB`UPgJ`Ns9grsNdpRD234tz zm|S-i;=QNi=~dhCs!eD1@U&6EHkc9MWW6B@wlNN|{5B#Q(wR#qAs~A8i1ld`@`&LI zfa2|r$ImIY#AF~?q|NR@LDVHoy1r|xKZAFxAcFhITx1{(gRmnXzj=|Jl;6C1t;62D zj`T|K`1DR2{Oj0S2jcB|c6;jE^5*5V7ApaN?ES+wG7rYrL$2eOB36jrYa^!tH&(%( zmc*~YO5TjHFSuW-YEMz$v*2N0fv@rdXlb!;z5@Ss8@)Ece(1_9_#^Op{>Eb8-&h2b za6>LwVTws#f&Yr|$XDPUpwA`Qe_84hi<4^`f>;>pK)?qVaiIFJ9|xD-^~HMQ+9H2i z3Epx(wZR7$;fkR2_*bH1RZd%(KI4h$b9d|q;)mi@! z3gl%JcruE++RE8Pgc-ygks$bF;^$!)J~kNelm!Gn7Y~zjs2YB{49NEX2M8E25Ih;k z$EXfIiHHbBvMv&dj`&i1Rk$SSKFwe|X%IYlg;f_%I^I^RU1W9CZ+GQJp?tKc!jn+Y z^INZP1U(sqAMxRB!k>q~-V{E>6pp7`7wUF{V1gh>9R&HG^xr;u%;p8Tc^ z41>@w0>a?`2Lf_31Uwl6o-LZ%eH5Mq!72n7b6*wSS6VcxOmtXU;Kgy+T!tCI%S`4; zXd7PJG65?Pu9C6Pov7W z#6gd})m~3-WN5Vsg)Hau;@PeXmYx@(cD;1Wn zIu`L5iSLPmnmp^Cjzzpb)*8VvG6w<`4UC?4fb(>3m855HNlVfn^u})E$-?I@!{zgnfh;uT(*4`d( z?Uu~DOy-kLX3s7oL?vC895A~9K;>kn(LE4eXIL@>64jsW^{NhbkNiB;ri|-Z9q4UB z&{=oVe`np9NtG@`_(i-F;ueumxvZ zqQHXF=5pA6j{c9ppX7)78M%LMC8ymSzElHhh+= z#;#Q9(USMz?JS89foCPDa-9Ge@oSGKzxH@Gyv8n5c(Ues0P!>)Oz9wFbmMOJ&D7>MMKTp4v5-=YLbZV+g zZ~LSwF?hxpJb1dbq^25B_gx06tfHX6jX~kbpz!>%*j}vg+}zKfhY`YQJJ#3tpvFjF z-;Cbs8u&(`Vd?VXTIlV3r1^t>_S4iq*$;hJf4jdvoq@hP@t2GYFkJL(T#3G6xQ%TG z1ML3l_l~k`I))PAko6qGRcgkzJs3)Iq^nrFrZAf8!W9_%RA zw*R0O=Lfr}ydph$ke#O*cG4?G*&rWe7upAjUf$#_5SV<;TOwJI`K(@0$*&b;zg*_}l&gjujl5S*NBheCiZ8o~C4 z1e-9*Zm&9brZ&CXzDT4Z&VD1#{>a=U&VbI2I0NY)i!-pZ+nml3vcN?e<;5z3BRq4k zQa}ExCx)~Q-|e`9v<=tFO)i_83>ysb+$-#x?cp@uqr>N{UU0MBDB5#hXBqX?Ly(tN z?)RY{=v>)7o%Q;LzE(QEcCdrqJkIW`p6M*-%I*Pw17tyGJ$AfZs9x?YX2Xc2)yKx$ zlcLocsb}?mXE7Ok16p#aBFyXRpH0CC(>+4!5Gvg4hsx5)ci|n`CzMtty*XDVCZ2tO z&4&tt6lWY=4jqoG8am2Ki*@~O9;S51uTewQCB(d7*Ps;M=4W8wn>J1+>wWGKxJH;* z(-sqlX1Gg3QM6{a#xs%3DG%lITE>@Wddg=XkL+lbDQh^L& z2XfB`?76rBE2}N4m>>sns}8vm@wv>lriNkW*w8*u5BtFomG235wdB}Q2g$WQdx!(s zYAcleg|aOuxw%G$F*76+nMAeiD%&w1U|tbz1!hZ%FzC>JY6rps$weSZ{AJ7+ZRMoD z?WS`xeaz`BGbq5Vp+YM?_>g@MR=BRnKN^t_2sO2m^`i)a@2HZT5DBs=(ic@*}#G1#|E>kPkHlIu;x!UT#(GWz2_QW*zN5C!~J|r`-;#aSV~#nHJnW9r-swhSBZh^ z`>WW%CPMJ1Q)Iu?syF*_JG9=P)#qn1|5qwaU#m;b310*3$Q`} zrS!RmS4*F3C)BhX7*YI|^bmds@@-?+b0*#ACoA+y4>6>rOzIhOwdr(IL);va8Nv-g z-UGZyxJ4)kq_Ki<0K6kv2qN{kPl#!u3vaWVy6SLTZb(>=JHn>Uv!Alga!LGxoif74 z=<up_neW0O!@P^BzMMB;UnDm&^ReX2RR0#9CoZej~Lr!|5P&zfO zDnyu6)g#0vQExhGC6hjV^=12h)vvqgtKQv3UybN4<2}MW-cK;R5a#i|tos!->HUUy z9+;_MzUnTrsuvA2r1Lo?Nyb;fd6a)<)Maui&~bNm3jbLO$CY&_Zh`#!jGRvL=@2&V z!XBM99w+LN>~vq=yNruH#s}muNcA4lrVS`cj#?m!PoNNuyvB&3ZOr<^TY&HBp6PD) zRaf5)j{FWCE`FbY5dcBfu?ZAR zj~Lh~jhhEBSp3G4g@Dpq*G88j3m^4#D7v{6+(3hvLT?%p$hSg*w|UQAh{FL?9&6gM z*Xj*Zah3(#3KRla(-1&vzGv*UMz=gK)Zy|jyjDQHDWnTQ%A&3pK2Gw#IawjdVs2wb zkzyi^#YE98<{y#;L4Mn!ddk~ol2z57@-`yOZ(An9ZZNEzQtq(qpdOz$PNg)qHjDz}$N zNgt$kh6&ZEm%L|ArtYCk3~q2QX#yvGOemdRE_Elu1P1`h38P+XPck$o z57(oJxClk)ddAt7;Mz z(N-YmwsNrGGy}46?IDV*p}n@ALljkmLj}DTM#XJ5l&Fe{!l{84JMAUb9YmS0CKQYG zWx|U_HbilIJr&}GD4tv`;i$;9!*hllD{oV@=ec4dKECKd2#Kphw%H}4C>DRGaE%Zj zX)L}221{>8FoH~D96oXOs#qBuq9lspI@27?KtEhoi zeYpnoz-4F^HZLHCD`2q8&eN)|tX}aw6)GaK2FCQ29_!?L$j!&h3F~Z%VvC4Fv^au@ zJ8Z@QySnuTQwn0xI*3;vuxDFeP+GqFL=anBgp@HOjxqn{vh{r8U_Q-pk(f^y%qE|T zga3$(Si~EERa!rtl^0hCQx36J4MWM-AF-cMtq~@z4st^1c?VV{KKI|ZpNu)Z`f;tQ z;r(RHL6{khH;fSG^YPRA$(VyPzO`HxaGxQbE5x4r`bmFMOAR-NV5Q-PFe~=8{UQ}R z;<*<&rT-Kvou%9h6l9Zi(ocobd1O`nMNFhS4RO~g`xcejU!+X#FH+|87by{DDGQK~ zY7=1|zPj~~oIi9Nnvh}%t^Vpmqtv_hH&WhaxOFw$?ls&HW-0&C-<6UW=@FkB6AzWg z!XGT}>E3O^}cE zC24PU{{U%$+wi0g`-I_wFyAHhoPie6&z>>RoJ^}jnHbt<2AY%ppHMoWCFpJ{n67{O z7W!aU*PIsQ!Na>i%ej3jSfA=V#wg;$~WK&d?^ zQ>RcShS+DI)Si=mLnxggesnxJU5!N~y{%M|LCBYcJv>mlaT)9!REcv8LWHFo8DQY3|gr1qRlgF~4Z+?YX9drtbDp>%gQ=yb$U20c zb#&a~#CB?tfvFA5#93gDlvPoRAT;MsYHYsT_f_w=I#l_>8(Cqs15;x2CzR zlkcI(d<=TFu%}s_L$)|XW?>KV?|}rpCM~@N<_e4%WDaINjQxen!Sl%wa~OLIvtT(s z36ZnIF~ap^4uipOMEfX~lS7R6N1h&ne-w1~QP6*9AH@RlYl*vV625gp`zZKZ4CjZ) zw-};^S{MhDGE~e^@^+b>`)X*|Mv8cl@J0$Qh&NK81fBPMbTi#}Nj7ent{v>Gz>xP) zWDj)D>Ty+5+5=x^j&2>+2f?_oy2px%faeY^W}4 z7|c=KhU%>TRdbvIh{09h>+@yL*;roLK7(2{4#9$hL~^qQ)8l!;Yh%=t zk!eYsCTCO^3taiu#B(H1S_zztd`6X_?raq-RPQiVbG2%y?$bJ0ou0f=;tj-;+y6PN z7F@Ug!lB~!2TF1K4_O*)t`{7Ojnh+~4<_l{mx57xU188xRIBvO;g^~5&84%rb=+>{xUMvlHEgDw%wx_)lSp`p6;fnc2gcZSAjKy*F* z*c-t#b$WtO4dde*!7UMput0+F)vt5fwFdp;cCB$8_h2uJ znpT3hYDBl-M{dh@>mJNdx!38E?!jzqU8@qX<${QWCg2d+Rhx>$S4fDEIOn=6bk)+w zuv2Y#P8@bL_6Ww2?6Z0VyE(Eqgv`$g;51jX zS9{|1xaT_kUC&@`>|6|qcGusEXfC2%At6Gv(kqGfT`%Zv2z0hru%{zXa|m>Y2xQ+8 zUYdTscd%8pS6oq+yP_<=Oq7KU;tKWFuC?QIpC|Bn&*43T(Rya1xXN)cz3!Ylf=1Ip zC zQmiw?>+XGnogH}#0Odo|fFFhzD`jYIz~ipeCtRsdTqbqHFN5v%v3|i0+=~5!-J@c! zhZ4=(<qUviASSYBwvpz$LPCUe*7aBDnfDC{)~DwCKg!-a&Wd7rA7=WH*%Rgv zmb}19&X*-9Sy4bFEM_Dvaan={$xB#3kj#=A$qP!9999L%S)v$7D(E#K3YfFMr>c6+ zoY~9w{qUZDdOB3~Q`Obo)jd6Z&Yljma>S_*aeSS`9)0(yjm4>l3>icpq$lod4|eiS z7n_F$o9eY^iv=}L7k`aGFPQOc)Fe1{STI)aZyktH?KJWI9yWsplW&P9( zfu3q{Cz&c1MzhtbBfN@rB3~I#7Mn>kj~MCq664*DfjT6{`L2Nnboow!{6+Sn2FJBD zqhvG4HBaR7&+`CS(J4^B&>510C%?1w#O-!Ai$wi92j)e_kt$sR-PKn{qR%}HFLl9N z)1Qq*o-CHAg-4=K?j_NZu7O%cqJ$!OI{%L_Eg;Nw(@58&>y`>|`Bk8Hp`xG@k&4k1 zi&U($*A(k^3yd?JsPHbvo+-W8j>PH$tX*7=PF+P*2S?LVB`T$aWqfhl`M22Xk5Pzys87 zhkFO&i)4U#79(s2p+>S$#dOi+Kzp?rKonhepEGB!JR1oOPsZ@M3+nyJf!f*kAx&@l zAbT;LzYjd(!<}j4Erg4Ng3|w00P64(nOkZ1F z=uGFNt6*Urc;Nq&1$_Hz0m8&8cnbLU>a>b}`IGLAoyFI0*RWD9XZ)Zd>pGJ+Qcm;# zYrk$pY?9rV%Rkbi@Q?cj3TMAS5~e?A#TB9_X;U2FGi~bc5;52dy~EA*mVSZ$kv477 zKTyPJQww*sR)(9>@-t9DTo*CjxM(E0`in5#XGu6V-RJ0uP4_uhOt>tK^G40& zyez6Z5F>TJF1o|O0G)eeN%Lx&n1J^NRC_&zfvPzR@5BH+q+vbh;Ld-~Awdug}WOM!UOZj+Y+ zWs00Y1zEJ)8FH-@x$>`!u3svUvF{Se#5%rAPpsq1S)^MqG%zt@O3j9$O&t+`5E%w; zkBy6ou0bCk7I+MQeCta1eRMVh=;o2|n|n#Pbhu2r=f(z#RO&LKOVZ%MNh9aKG(Tku zeMFJJ>;H({4I+PQME>@FYZQ^=K_?eP%SQbO4FM?f4=+u~09%La}?lBsHoXA0Okkqk5&Qwl;<9$9VaUfoHtH$TTTB zi)Bjj$TaR=GNJv7>37BkLL?X(u~L!sV3Wm6Qy^HH5iBjb7TtLq1bYifBG}vX#Dcx; z3dXHfb$noSq_y53ALykn3T$-_r=ceYU(&bI0)y2}NJ)oOzeFNkSN9qIx^)6NtV)vf ze{^4HY^X9O1MjjjA49Zb(#*1G24wl49LzJ6JS{V45V|HxoJ zAlUQqzACT43hK7A0tKC`6SH;Gm1YGV^?yX9BFiBo%ONi}k|o^DktIJpu`Ky zggC3`d9wraBf>m6Cooo3>BfzvDs%(*z-fO4(3&yhp>Cq$_-+vuKQb4-Y^!d1#N0rV z{~;uSK?qV5{d-wEj4-+*Hl zv(M9ArOpb_keR-gddb+#VNn&?>X8=a4KUZLxnFt2PSh{x?V|k)G z8%vZ;<3G?=1WK4)g_pYP&sGMW^mivpf!e0K*iIWSGlDvq0CEdVp(lnqB@0ySLO(`O zGgbwzsg;7#x3s&Z_b(}euDLzXSbuRk6xPjN3+z;xM#nou$7&1E(j{!?Bpn~8rgg+O zJ0IgzGQGum7scq9?zi3Ltrg<@Y6WC>n+Aug>^-E(vf&gs9g_(65IV$}u2c`EgHL>S zq#qwNcGn-Q3nZ%t4OwkN*4&UG&SXy;GF&ib$fj;U2N__pf)ieKQr6wtUsJ z<*Qz5YReybIBoeOJ#kz9h-12Dc;azDZH>$&6*HG_4Ro~d5%r*9X2a5#yQho@nP}D5 zEWD#bmK;ot>&bm4XR)5tt@Oe9zGCdT%<-Cx}m1NDW*Qe znQnohL)@Wz=RhDsZ8mfp4BcKshd9%nGIWSLbQ=y~c>3JXeQN0L8al-J*vP+z4snN$ zItTuExaM?YLj`(^eUzglZeXNPr50`vM2a4N%2!)&n}v=HQLbbShx$JI|Mj(`8NuQmhGrx7~o8ajJKga$~JmDVMrUtYsu#%jM@a`J*Hi z=a=C9-^Et*F5yG{!df7br}vi0b}ZnTk$(=jkmMtJMuyi|WO-U`t**=`}e6cy=?gmK9tVXowegjX+M1Exl@w%)@c zJ&uZsgn5%m!g1&@|Q+E(P*OVD`QgIG}b3Otmdpr>Db#!0QfMFHaAI z^dFb;w(2x=NeiD7z)4f-m1G&95a*8nHOT1P4dT>+a~?tc80q7x23sntkI?>YXoG!( z7ICI6(MMF43>TG7{5a%1bmVW{TwKv2_bcmaLib=e$A?|I6 zM;c&_KM`kRjV4yIU*xy!yb9T`**y zo9Yl}y1RxBafj{#ZpH9#a~tunF@ZN+6W}*n;S_nZb(o5Z32cV>(z%TxUj+JC#dOov z{)+ep4BsLKz6?xIg;V4z3S6a58F$8)$d{*T3W!Ujpbox!*Ig!r^Xh+Y!Zr$j6G*ULiefP^MQ&(7h)vMP z@uzUY{x2(^nw-KnOI4l@7}2*ggemTvABo;k1rxpq0U=+6fbh!AKx2iFarJj`@%256 zzYRQt&+S}+-Z5wp^8F0`Z(+pzFbdK|Xo;?|SPp+IE??Ekm+luDI5ISZ3=QFg@8ISm zWN2@Dp=DP7J`l8&zpvb5k*BX{2_gNxthUzpKcd=$i%2!23l5MvMj_qd|E4N1A92 zn)X@H%>60wmU`Ww$uMXTGMcvyn#?R{_TDcVFk&Jgshw8E*id2qY>JU zPS#X~xkpacRD$B@0wnY+z5r>nr_b``w#!q@<+gY*BXGWcc;XQ_U%!ZlzZfD>4zyEGN;W?QBpq{Slgl)4OTDqlYtd+8gz2j0wiZpe#MYZ64Hf+bdn)`&5$C_;}vS;aqb;M z_Lh*nYslU*WS0#Y;tts#RS(B+Gt?=D`ZCa<6 z0PvV!Cnh+M4p|<=f{U*n@(qxo2q6!V@&4c=_%C!Sz#~$T0WxTp9N-;^&Vuhf2W>Da z69`tu-?K(|APJ}7W9Jvg>=cGYBV#pJlF0Q4|p*igp3Cv=FOtIR>5Fdg$RS%=YrxH z;c~&?7-hdG6O{i&u?mDd2A6x$+(-DLr?sk7c=0~1!v7*}G5e@^HPy&)0_TWL)Giz> zuiBc7C%jcuPQ3prL~7zp27$1BkzjoaS>U`#H->>$h}XfQ!J#_o1eRHIz6@!;Z*PJT z8zGCm#9&&K1=F(o#RNv&5(pU+!gD2qMRk?p!IBCQ1~x7Wu+znZL)Cjoq?;kn8b}Bk z(pLu3f3raP=6)f85ko@AkPre=J*tS&yz8Q2yLcroI7^irC}@getA+jv03o5#8_%%% zVpWZS9>b_yd*FQ<1~@SsgbW8^!%5+ydSB__15^!N!-dbAotA4_COAi>7&N^M8icHy zao|OMOKKJ{Y4-~Tj2H|;27|E61HlIsLcV#+#leok9~fxKQTPV4M8r|}vcEVA7>(Ic zDB+m}$Wdrq6CHU*&i*}LN`A4&{GQ2WJI!~`JeTh@Ke-~#)4m?Wt4S&-OS$tT0y`4t zafeLw>w?YYg6_MI_T__5sc#0#s`-n7=G_Ocnt8hDR3Z4NAL-7#^y@&Gm##z6W=AA% zMGO+T2kDv>QS?_TDznjN&<*W~eCDO56=%^w4$NZo#4w8u^1{SHy4DeYCx7MO5$xF9 zz3l87))*AMz-Op9Wp@Rulf)}#>!{0-zOY)>qk<@n!$0_1(yMm z90s(G)TgibYbo3>GdP>Uq+6|V^2vj#D{E|1pa?7!E0*yOH@G!v9=1}E9Yy?rS1w4lhCk&Ru zh7S{^*hE!;CYz}0WkxnJf3RZ{3+Rb$VgYV&k zEHp&?PQ(ovziy~LL>i#-5NUvhh7578t(74|+>r6>h8~8jt05a~$Pj0;@rDd>L&mQg zUNvM34B1*khB%Y$GGvGonSy%UjpMV1_>>{OW{44I;+uvTaZ_iJ=ID*SmqfyU4VjIF zJiSptoXO%|62%~H$auTCo*_$kNfh&#Aw!(Wo-$;J8#3N)?r+HY7_!lZ3~?r#YRC{b zWW3qD>Ls06)}~Dc-g4S%sFoY5eTE8gL)E?w)(jt+$}SqRFAN#t+~z+TGQ^3D)R{i4 zR1>_(NdM7{H@Sy$jaE@g;;m++5K;^OZj2Op6@fHUFK<=j%14L3p`mXZp+^eScZ#A% znxW@j3A1;4O?=f?P`4rBr-% zSuCIj#nAr}P8urrp7(t^m}FTCr7RzAUoe#U(FZjs#MhYOlY5fpz>T1sms?9kN~8c8 zuOELX>CiGxGgJJ1jPj@Rt78{};OZM(iRWWETP9<&MFI3L(2s`H&usM|TRopgJRwoVgByM(_O_ z3hF|K1YhhNOjJV*sDW8P4ZUAb;LECFzN{*KVg)_x0?H_if7hOlw( zs=CgXgmGbyf%9e-IPcsq9B^YDA!HpPWZkTAp>SKB=@y))zBf>A8Yl=E3a`$5Iz3lF z>?hlBZ;Ry^exEG{hKvRwqq#Y3VNYyGBg&w@$^zV!I zp;J4!p2&hL@qTfEA>%^GxDbBaJJ?hqWMH+BZY+tt%{O7`CT9Ce7KBQTZczRtONamRn?{8`gXtI)BfXBR7R}rkewWd?Otkf z9BvXeetq#RJu%8}U6lO#B6&cNjy`1KltWp|%AxJBfvKz!bo61WUXdOM>Td@I$6_x7 zx$*|O@CX^w@xSCCpjV_w;rpcO2@8I^j5PMB3XG7~Xx4~`g!#dM#^gU;30n^dR#DH7 z(4&V0pY-Raq9WlxFc#GU!pQX z+Y_-h;;3ScQN=N#V^tuHRk3P>9zHVI2d@K(oITpBMwj137$Ak_R{R|wv6Sf%X$}LP z-)6hI%rLr~HX>pz{CPz2k@9&&hO5gNBQmiO7O?PN zUQLX{5j%P{vFm>EfEVLI$aoMk9_`}c@uUUfG@jHQ88x0H04$9sP%MupGdvB(jn(ohd6Zr}HQ3T$o{CD343CmA zC+wxBjy8($^O!T5p17lpb|v94C)f1gu!tn-O2jZIl;HpZ-QL?G%6E`0ZRo(a|>Ac^o_~^I`iqvHQLhqistO0%1f4t zA1xku?a{nS@WrFRfnqryQjd(5WdaItU(YpK@1Gy+pgJ1D=L}(r5Gusk2OnYR5O?T$ zFATO(>4t8mp<7|-5NEngh7NIuj;-P+S35aDO5^nRu5Ons!Z!ce(fZh;U~7NQ(GlI= z9VO#*O8F8mtB*#@iGVxAN_77|Skdr&*UO!B|2?>f?r+l*>;Cp=&+vQ)?N3J?@-M-* zmD3H*Ey0dj?o@f(lRcF#U%#v3Ql$?ROO-wlo2qXw3-(oYO?oXiou$p58nL88sVptd z$zP}+D65-%7$_CBhA*wpFTo!sj$0ATrJhaIudE1m@)sgvk7dL=nt4E;ag8OG-vCq+gotYv@P1(*@E6xEhrj>Ab^N z2P>#msXAkIu$4cZiVDnB12ff2O)z&7IPL%jr$GVw}!z?xvHx|Yi4_tm9T-L(q-F}v$pxFp|-?EXt&WCp04 zsq#;253hsUjX(P30~CLo#{4~1|Gh5QP8Bif1;#eO8H1n}NbUlfL z_1cS`Sg*atNb@_FtS@>4Th(&OdL{kfCLFgMH-`1%8$HIHbb(@O>9#w9e%)(xu&tUk zhV9;ud`CqyA?+b7+FvtTSUHBffNv>SBn>H4SM4GKXYgmHb3cbH?b++kzEhW)d7x$q1d;HqgXB!UK>s;v4H|Bs)E^ zMzZ4$Z`#vxH1gN>;Gl>`UfqFR#1cB=sQ~|FjIYR89No%^zif1rV(Sw-gO6HOs7QT3 zvK^gN9?LqxKM){CE;DH~R@Cwkn2=hm4sPBvlBXUT%bKwUyIBL=EY^*;64p(Dv7(!5 zBo*ssE9Kn5zF>9#Nx~%B z*=e-1(*u*W)0jwDJ5A_`wbNwW|JYAR|GGbz6j2e3D5U2f2=-LZkCVRj^tdc$6wq4_ z23x4)aniSt@7PiAaniTO8c|1ysJ>xf!F_9?$(U<&Fl-!KklJk0H@NAn8!vCt4Xzxr zddR#Jr@zY#=C)HvI#$wIdP*5bc2v&an_!8O+K&?xYVSeHO8S^cSV^DI6D#SHEJ|v4 z4DTwPVdu+Z!3pYDqnaNfSJTVo+#crFB~QR1%Q;?DgM3FdIgqs4E}%a=5$vdnj~7!Y zJYG6kf$>H^3FD!_Z~|T>@S%$W<3&ABnDQ;$^mk8T8>oj#?>b&a^1&ddJypb=>#6kA zf$)HNeT7sW%E6VD>qW=P{XVO5bB}kFn?X;x$1gk+tm4msXQSIYMz?o7qOxwc5(Vpa z8$GdZw~hB2VEeOCw)g4TV0U$Dyi9e+#_RFtg6q{~qswDdr`!^AiL`{T>R&z|Y^-h@ z9eita^A$45`Sq6PZgmi>Fe=x-N^sa>f@yf7sJXRhM&9m&dnUcqv&%~rD$aL4`MN|k zizOY_r3YcOKJ3B5!j>dXENmP-v9NJzUSW$|j2f+XUkr{?_0pt|C8U`?hJOM3kM4Uh z7}hu6$2hMM$2Zu$owVzX_gNuQb~ z2D1dr$Y2oXZSnPKGV3GGrUHI!D&G28nbiS}rnr_QE-UjCJ+(~J#V-fT#XLrcMQJs) zJq}8%>5+kzc9|$xX;Fb{fPXlG14`nRnA=q+CcbLxFpf_Zg(r5yOf zmaD-f>L*d8x|4R#f*97DD&GWA<{cM^njp$d`Z)NaDl$QoS#W|V)1Dy8tZCA#y6I;> z!A5FJlm6%gQRcH?M#@ASONadW+^2Z$-gAOz6p5@+FztUm*iDT!#G?%H3`2}K&iWM4 z<8K6usl|pEi4JkG&(MrJ4Dpr;@~_N>7Ex}+bA}9Yhm2d%D>%2}P1A}wCOEBlhn{jw z(B1wUd>}?4VpcwzxCf>7xl{oS-spMZAwG`2w78E$|65{_>9i83U_gJ2H+ILEO9zpn8$j$G84 zDD4^#&Sr$DJyF{A_}5q?JTXz)wZ%kf*Jcx?U3-}Hu5Nmno55x()ufM@DD658%&1)v z=ReC`gu8^vHAbA(3x02W8%$Q)4BaM_Ulyul88SqQW7SB?|pbWZc32p(j@R zKcaS0F;**u)cHob((T|`<)5SzzYo<=c_-;AcY-r1+;azAs}j<2a6M3QQl!?rlkf(s zt<^+-csJOY3i96`b@>6ixW3lNqdz-TPfwD&16xm$zddR>Nq7Azn5j}GaclZp5JVgog1Ad|B{0*<&SJH{FEW$(GH|QC!V1;84N=SMFbcd)oD2k%eK{c!_6r$%Wy-S z@6BC0S?BFd zp$z_>=X#4!oa&2If{0R1J7|BXt(r7N+F|?@X@|K6A>xd1rKt^ZM!5YR2sayq4$Wzo zh7n#d2%Y?|-F%)t^V*@3>K6kLg&crg-V3+4g8JYQT*H&^6~>2EZ|S30ozs<@NFs<< zWhx=}p(BZJ+-%56ny=1x^!VT_qDP19Sq~XEGd}V=ie`374DpoUi@DFY%v0Ec-$EGZ zWDtrvXs@jab;h4-GTMa(?K&4Nk{Io7mno7M?FmluqCH~JqKy5mUEV{)Snmi{9cc{XG#AtD#+Qz@@WlxJXF%`1 z62Siw(_bn$*smDu4$*HOBKvx%l0NtegrT!xPMHFfWd4{2Y2+;6Zb76aQjrK?z8tu9 z{~QhREh-W4rc&K$qV1N#mMj@bj29*uVT&|2jy{scm&ZDgdrlK|J9HDhbgb`mVNa-? zVk^AG_@w#ffjNp>nCFm#8lEWX+!9OA&N{0PIRxU?Jf@pw1d8h#@i}7TA9pWKlYiX(cpBb*&_C{e zDyX}*$XT8K2r4dbobI}pc-cfUn5(_1B9{^{^`3Sp1! zK=n{<{cEMrQ&u&~mM&Cjx_F%BrnAS1ljxDGhb0U58ri?W_V_{wFmpVjveV_ALSQMI@uvEw zXL1)MQJ;!P`B$}28~h_dL`pSlx;|*z^+?F6)_PZn*NuD`(`C&)%SEu#2rxBDfJQY# z<wCmbN@;zD*{Y60!;UklK@u(=x;{o zZyNf%aBORZ78w7vQf4>-L$%L0!}zcHX2>k;o5B8T%)ekDRm|u(Z`-75q>XZVeD{!F z53Cb@sy0LXT5lHlwVCtk!emsl88Y8CnIZFSdl1l7@QBk8 zpt>3?i1U0qc*g&F1OsMB_eUA}7beRkp`Nc6Lk#k29hU1P-`524l0&fYW^A0=jYRSX zP>3h61~c@=2BC@SoWb|5!S}JjhdAT=)>MW#bE1Q;!1y&xN z%Ic(lG1H<%(^`4UyZH(jtHo7lW;LY(GRLBj12KEk&;;yHgI$7pW~Pjz$x@QWQ6%v= zI*b|e|KmI})6(P0mT!XTk3ithxa#Rb<;urLhW|-3MVSumst7ID0EJ?XeVx8h+5%vNRXPxGs^}lT%oFyA04mL^TkftI!v?{buo>d;t&}C8BI#rY=Mo z-|~ClTWs*549oPUOT+k%8GKIu`%(E%glenL3^L?9$l(5!)VEfJ64ajt-mkNy)8v^g z_z>sHVrPp25vMs*Rh&%<9Okq!e4Wx|am(t~w+hCRXw=UhaY-0o;%w2M!?KH;Uvo{U zvg(gGX%6`gK63cfvN5J{#aIe!|ewJIFWm^h58mXN8 z4Q@W8d()spegqwSs&49n0d~d!`_uqKoPm937$MHU{>=jHPXo*;UnE@wL7ah=PZwZL zer-3Oy{7A(v9x_8UDsS=Ct3ndVFYFO$UF42d-MlSjgKbOn1Pv%cX@iG>XR<6(U5d;jnvR|nr+M_`h$Qu;v9{mBIF!#MeH1*262wQ zNecBOUVMLkI)IqEdO@DuH~}?kZH4Y?5$ft@SJ#!ghk7aG-1s8g8-JnYUUIpC2usk! z$H$@iuCFjeod8h-Y;lnH65y;ekV}(`<>3s6&V7e~-O}G;B`Pk=!Z&XNE1?S3%_AzlN)T=I+gKwMujE6AIYy;U|QA_zB^_KA~m`Awvnw^*|}HrNSzeWT14K ztL<(13h6#ogF!i+OW%vDVFu9<7ZIJu8gajnz?LBCT8xQBs zs0d#;#p_1>;TLZ*xYipLA!HRDGJy7b0UfztK;XkVLdfm4ey*iU?X2*iLPFF1d26~@ zxVf(Etk6mQZm|4pupneCfqBwg`Q}BMi5 z(RpGzP3MW}AWUn3&(=E_EYEtebi7|I#0L$f5Hgmg^DI5!tqQd%fsLopJg1RZF%5>I zk1D^`>Z*55#&O9|8xhiV z9*ZD}S@~?3FN?;x^Lf!&nx_)E$UUZ2&%sGU+P7&_tydphMar|yxAS$5387m44a7lK zVhiTW`Lw^SnihJ&@~vKAmZTdOh(od(TBwWL7gj9L%VvajssjsT z>AAwiy?=pTJTuftofZB1Jz1HhXW{>J)PF^}_~*2{ZGx5558w*F3(*TL@pgUmA9w?q z4Ik~0gL@sK(nkHY1^Vcm(37gjLTQ(R3yo{EP-qM4^!A|bGOA*%s%>ad#-Z&zH}tq_ zV`v{Yv>grY<59FJh8ATU+VAIuMyZL0cATM2H?-rTXjd3olyPV`F9Q zyHjX)F2siT`-T=}9NH&!=mqtiq5a0t{%L5x5!z0RLdC2+`e5gvIf{;Q4*hS7LhWc9 zuye4aKCgYT*vKSr(yGD5Y3sA3)_42I6x4sb8Y*fvisFI{;^Mmo1K?F7wgSP1kHkL- zHt@c2haK0-JDf-(M;HIy$;D`+6-l%@(+4`^%K*>rY?>A~+#$j~An`Ut3=unkkcc2U zh4w@W`JU8KYe?%P7nR*v6n2ECbtGL)>!AL`puQu;88y;mv)ZX1353}S>7?#K@18RD zt`n1k1y}G!_L8W+XA@ z70jCL6G@DDo7CpPyvbm8$li^RSva*d0@qz$7RXM4uObDgcHXrAIf526*63hm?t#3< z3@ny`FYjVm{1#sUHw}A9QOAp3+Ymhe}(^eE0*$KQ{U%OAANud)_jvqF7(^TzcplE zf+|X+U>fCxY{UMceyR)?sHI9S5g!vFFH7n!VILEB4A`#(;})*Y(V+5!Adg_j#E7QP2$d34V1MAE^V7+(0u!tFX;|Lj6 zCSdWR2?-2q=RIKY$|=`USs(b8O4}i1Sj7?2`k=^C`2fn%RLQ0H*?`1|AR%N(zNH2d z5_pA>4H@)hmeY8=c6!plX=~shWH`wNPR}fGQtlTHF(Nn!?dtw`1vI>NLY&b&;i7RD zPb&`GkMpWMiMx4EF!^6OjF(U+yg~)iFZRqy|+v!y&q~Cvw_N* zm87GHyqZ>9*3~FQ%y)}jGKyH>t%Vfv1Cm4$KhhH`;zy4n<}Z^K*HW6a$LPMMtmp<`P=#o`LZ`%YrDu{w~-jHAPHMkt=hszj{ zfx)<@ueiS;7@AtkFUL(Qq3iJ7kuA3N&~jO@)>*C-u7;ks@Q=w(R(m(=&Q+`p2Dn)% zZr1Uyk%a?64%GxVYt%QP=J>WVlC?OJweXYBaNTX)IeYR(GYlZZi<)53VYvIp;q>U|X&sn&=htW`Q~ZxFY6uF%wsYM)7dJCaOIs6I5w z??sZS`PBC&`DP@UTPUZ#aTso}S}CmqKm9PTV|;2QYgwng1HYY*^P>#w8TGTCqtT*? z=!?V=D`>=e)SgRvVf8+;5>Ini=q|TH75%eGK2h%|G#aUQRFueQ&o6=x6>3i;tllT- ziPih$%7}XT3~BjEdg6DX)A;Hfc=@aIV9p?1t1c_`#P35|by=BN{B|gh1$WvhkUuaM z>`e7tR+o&-tz-aDPRRaxpWpIW;yYb zVPLCnatO`U^T*IN>o^rjP={Aahupss=ZEcfSVVF1RW~`Upxw>-Rg!;nlN00ZZYr1| z#-A@E!sW&Vg*#6CGg zPLsYS{HYKV9de1dAD_p;Oj>au|3=ABd7RVaw|9s--;k(VNW*%=!etpz5ZUUYl@6mN zt9x~&w$|E@+dIfy*y{YN@U&y49`sKr-oMpt_9ZKI#y_D&R(@UceVHZm>+|#T*3eB% z1BdArnGj6i-_TaBRkZeg!)AZ4k0=gRpFN zdlsd$Z}T|P$?t2vN}TqD9QFo`+J?XRBHv(G9F1XzQwE>qLpJ&>fAlK$-^0894=kW( zEC?A3!jxS0aD|Yu=qy+sdOd$$-7mL2!@B8IW-cZC(jY?UYUN+2P^|hZ3nFXvy|n{+ zMud>gWp}W8~nQeg3mrS_UCjG}ZOW9691}IU5zA%YCdC zI^z?Xg=uBuXr}f5fdf1k2SUbyu!rBSsSpwltGeNZ<(1W3H@yVDjV4q=2Fc7 z61(~MPdU!0@mnCDs)6RD&3u?0-&wFEYSclurR`o|s?j)Hs?ca^Egm_S5;`6^m#&tP z6Jwm5z6#pCX~4tzs^NNO$o|FJO@f*MZ~JP>*rAg@gKlV$^KS@L=il6pIm%0nN%yT4`Jlw7aLcm@I<{^H%NI5&%iKpa+# zP}Oy_#yo2$TTi-KZQZOJ57+~&zMQ4oJr^!)xmi4Pctzo%DV;bp?w0^6V)Pe#qLWA%X|b{o9AC4Ay)Z*~jLdW~J}m@QF?({sKE)-SY< zSab8NrzdWn^{;XB-64Rl}rLanq?CRST2e%uVNctgA`y=%!N(su3prB{!X#Pt7suGbG&y ztUCRiYOmJ4uD9*XQ#8+l?Ah@5>-g!KBXBJ9b@2^%zb!$w%6MVVW$XS1@DwQmud8-yBh#M@J$|ywXxWCm>nB8fiJk0pWKLL8!Fs0gguX7Od zr0sB|SS#{LofIJ*Lz z)$DTq3uHxN?|Y#!viI>H$K=*&)$Bp|D@N7@U#GUmEx2usEG_p^l6XU~K=$O`CEjfC zr|F3e{`4A;!S8|H(L1^ZHS9Dp__Y7nlXR~Ah2nI#n)VGWAXuwx_Mfex+$+}4lE!BL z8Tgt?e_A7-U}e^_KUDeFidpAcE9UE4tCRZJ{Z+h4k6SD4UvsUrKjPf}jn_*1BhI_2 ziECvy)oJ_IYh^bT`H6F4%3D(0iqlr^P$e}IROHz>+@`qPurpmifAVQKRxLmx?WLj+ zw-}%mdC=~x|C=);w`p!L*!CK1h#zbPKglpdl#jn%V`%b`h6C@Cfrm0I&MyYv2F8b3 zre@xd93eL)u!E7FH-{nb`o5A z!X!6Wed3nh41Ba@@~Owf*sf1d1#H(R>51+7BtEjhO$p9G{>d7#>z$9-yuOGmBQmEn zvvXP2=Om(;bUy`YWR-#Jkbd`vP)I-Zm|e~KLCUeQe~QYCvENCcTH7&V%@Plb-6P^B}&+q|bNL zx%IpPaO+)O$E{c5CsHK0-ka<3L{aAx>0k@prHCEtzf0mvOI}+iE%|0^dy3k(Uf!!; zb@TVEm$th`NirruW88Kh5PNRB59x{9?!)z-wz~>DrZH)1TYHF)R*HP71uqe8mW^4(gWwSYcF%{RQgjmt*Y^UB_jLJp9B*30x9^Q0ZLumPD^BqTdH z_6BJ^{|51;s=8Sf-7I#f9(A*tx>@W{b#k+wceB``8tP^ZaR~>`uMz z(qu@M&%Z&YWa}L_@2w3o8oWzMGQuEv~Y>CJLBy{$a@ z1W%zz<0&*CX#-njk5x$HNx77y-ML-#g~+5_d?T0FlS-p2Q)yrEjb>(kIEt+)hD#l| zDrSo`o}N2%+QMtuE9jN8RIO;%JViT@aPu0$bRh9ejeRquEu2)iBrc(2;5cRzU5Zt) zO44}31~*3^+&8=y!hPdQbR$~VS{t0cad;!1P{WiYyMq58vMK2g-=GW7Wc^u^-5+np zxn|x1{@N{bY@_svZ#<^Red0Q?TV~=>WMdG>h28gtor|z+Dc&2U(w~SQ|$%}l4 zWRXk4I}>X_O7pjqzthck=kG&Er1=|#xB&rsT7P)JR}H?848Cs+KExT{uZ9`oJb&le zMEJb(caBZsUN|)In?xqW8DPy#0?^5CEcw2V-mr9{DwSW`gY3$xHBt#7N;wGk4zhcw zUYle(=(b5T_|hiUAZ?;G4wY9EOl8PUoE_6x&1Zm5>p2s%mx*+SIfBrk+3eCVz`X*{ z$v)*~^FLBuGRRPcgY5I6X!5%T*>{_ClAXU2z69fTK$N|C|7H;gaffXBa4Z(eZ59J6 zqwhWn0TMQgJY{s^V~9QsD)QyaY!-Q*+AKR^(ehv*NPGmJ&Kr^eE(wd1x|xAE+0)!? zzN>AK!G#(eT-=wv2G4!@?ndd$F>g41`K`@(ig`o#O|@(K^B~#u<)1c6Up|*=FHrk| zoz9H?NL|P{=9{G-|K#aa+>bvbmfVj&q9^XhA8q#Z;~zIlKi)jn?o0ic_B}Hn9fzq% z-Pvp=w9PpEwLVu}+7x?4`_t@3>R)JP96 zadJgB*-T%Y+|*4rQx_*c?Ojw+pA;~`fmdIqq>2Gau zCMrbvzz$N(JVhz8)r~Z6Q2!QZvSQ-zK}@U0Y+GgML7cmGV5?Xf;xs|2Qd`B+u;=Rb zoZ=v&0~-la*jIe3%uniJ!_6ts&TvDVzY_1fRlX88PCkaq^rx{4({+U^q#OhzTm)>m zlebC_a`NZ9`P`#cAx=XC@*P2C7VN=Ee4^zib9sPIDClD!e;^8XTV9NuBgcA?N^wwS~pKd?benb7p zrE00$TV-1gp}RGhTVHrCgtJccmuoq;$&P8>Z2%OtV|o~M(~c>3(yGk03)4bhwX{&6v0Wxp5edEyxZ?~1$CfjW#s9NrBZRm-+Tbpg%-KcBH zcH2UGs?*Oj?#MlZKXiZq#`EvKP2=WTTrfi0&v~^Sr`Ml^`=9+)yDj#R!wqi)9R7;WTNRKEK%RNPAz%;?ra+-K^P5>?ife4iNVI z;X)2g?nz+Je+4~gs*2U!mfBUV_g(VyLhhC-wG8Lm;+EO1ty^xXuiZ+{Ewfvx?Av9s z$+lgluJCrTNW^*UEVW%M5OKCZ;ARW-ipmz)d7D_^2+}gI5t?qt(}-=l;7Yree<&$O zEU@b~d8^dbqc0vC+Yt#jRw6xdVhORR=y zBe%YI}&9EmB+fz_b(k==d|CST$w4p7NSqPpvh1*!hgkEAu)=+26XG z#s40ot}{kmi1QsF1=rX`)m5W2B(l!HnRVs`!a7SrWz=g&ld!C_zvyZ7cHMC;Ha15P zbkSLNFrznd-96H<&hqVWbQVKTth1OM5uM=*+`SRoZn@q*q{{A)DWvoctchBdsk`t4 zyN>>Moo(x>wZkEOX@lKZCF~IGp^T%wT06w1hitUhsK-#IXmt#3eVUf9u}xrh2Z}0X1kx-X}E7S+z%P< zh%@)|!d)TWWhO(_AI&6yP4-H9$ktM++(JtFhBeAI}(OPJteV8{#~D4BqLPJ`~b2&ojqv#A)V0z9S>sptm{M28%f4xq{5b7Oe@c*NmrNoE`P~j(ysygal0#T=yJP}+U>9&jO&}iu0!<(w;t2#HPap`d z?X{~?I!_=ukxsANe7oe8+q8G=X{v*%`599)!pQWcUNklL+a)jB>h6*kZG-*~1R!Pv z2pIvwmHROUA!GzkWIZ}1dxHRB1Ofh_FL5%q_wZ&-W#8>pL!RCDZV1pb2!sp*VY{PvyN8fL zeCvYX&tkG6PM^ixM$e0U7IO>TjozfehInc(=^24|YDaVMo3y&544y5XBSbv%J-0hD z^6}KZ`?x(WGW;c-uwStTkzg{l`}*&;_^L(>fe-4<=k1_gd(wWE{pyuMm9Q_mKtlgR}VYA>}A({3UW@E*&ml@H!fek1}uLDjAYu;Tz z8uw1na_{t3#l16mxAe{lBp~=<4*@C^snWoIO?*$ds8il*ulTqo$!MK2zq0P-a9sWimxO<1W}; z^oVq`RaHAv^ivbLbOEE6fMv{=$ubr%3tl4Q^YlbfXLm79&pv4vF43i5pCQqAFqWa( zMSOpzOpty`lFdW_V$qX{8;jnDo>=rgnO-w#{=PkqcM<90&fOo_g_W8pvirtmMr@>& zzWkB>l$vXVM~+ihdS>RZOLnHE)AmZaxgiMsGQFu2(6jK5djw#0ai+20iPqMoTA+kNp;fUeH+pe@HURI;wx^CnMry6$r1^Tr-hc(3t0snGKR@Ea+OGoqze113IT@qP0q*31)f zl%o{0gXxsQRZ*stLK5#ZR^}uf{UXr%hL9FmI4K7SMl-MVsFa%X1U}(03VV|IQ>QnG ztt3w&Zh{xN5HDou?qSmg2fxOm;1$YBP?O#g=@&}LIsM{`(Z8WkrFb3fphYR#2g3OP zO44&$mvmoSZhuSMD3oEc^B%GbE5enSH6eA1-0~FR_dI`aAz5;xSkq7QR)%$dcFUfv z^1m%s9ei6{rqXYV%Y-<)CDq>+p9yi^tZIr=aCFQmdUHoLd|OaDL@&5R?CbOavulBe zEW>lSo6Spm#LwehgA#TW)E(>>47Y*4t zLw3WEA*KcdG?BVf|4ie{d*R)40lj9_loIP-7BWwc(0f~;%xe@_loHw&Kt>H zn74N$`31w;p&9AYu+2`{D>m!oFL3kU@rCQF)rgbnBi}&N|5ghRPf)@)Y4@5R%OJ^Is};mZE4L?LFiWRI*48s!Ra zQUAj6p?xK+4#udzP~Db%#dN7Nxt>r3-icZg*zbTG2lCJ;yYsfzv-5=KsOnsxma6=Y z=D&GGD963Fm#wXuy(3G4rtip-;4v_WUK0F{dTB`jBKAZPvL}l0aK7+Ul+K=L1*FrG zpzJ%cBv=#^UZhe@%_B_B2qW&WN;fsndPjWW=iiYf!My(i0f-p^LPmgaZy-EKA!GzY zT?Fh4mqDC-Vf&pZUpN3HDyF6Skdal*E0dIvV0r-u5k;dC(z zCw8&hP4MNS29ZN*p7v(f8e*|){XB`qy*#uJPu$Bx`yxJ5>DOYK>80UtGIekFwfKPi z;Z>^AKJgjLp?KtlIdVe!Sb=aO_25479Ls^P>DKl3iRak0V7QBFiz}1JQ);!3J9h5o zD977g)<1SZz4f_pMb+CB=`KZ7bAb%=o!h6AOF#>!sRq$P=00(wGd-2Elwl%aDf814OPPOv#3XpNwXI}0 zDKg?WiVOFrzm>QYs_(0?-<+rCP1HY1hV$u;rNVV__zKzP(+QMuH2ctgu?P|r-euEk z@P}IOmyy0D@<>i^ah5ZFzqEEk0?2X>qNj%YbxN6Voc|%JK;$gDU*s(7sgva#Pb4g7 z8a=U`X<6jl5+COCnY;)2@B`uTxXhE}R15dZ7UZAt;eZ}iHrx;wnz>qY$FNFIxBDhPaF5^h84qQ{Obs^=xmC4tQWyTnpFMtl2Rr0+{)oO_&Vms7f{?o2Por^)taJl3(u7= z5d%)9qdjpz%wcTR@NlcU&bV%Ttu6<2dg*ZGTqx-sBCOGFq2W@3{oHP6kNeLyss zK}jWb=#Nq*P>OxEEtHg~P=fXM0+MNjdB}r_^_Or!Y_2T{&iXq~Pi+t2Lc?%*{}V(Z z`m1|DMwkON!>?N(G7LGFTE{JO5s=97s!K^S%0PJ5@pr_Qb^JX&v5vnN9XpO!9l)gb z|66K>hex_$`-JdlmFuAF`T7oG2{a&QU0tJcxUL>mJKRwfI>-ZZ46>Xmao*)eY>dbD z4Hwca>V%(BRSwFaT;ZU2I}d?|wsjF_Z>PmU+19N9_UuY^IOuhy?7xFWt%Kr8fryp* zz(MKA(G`O~eJt>gQEFje5~WV2r@{wy-v`5$`~?ZBC^g$baXU^v7*1C+5FxkYPPg(k zA`PhsciPa$-{=r67ceyxTgE8ctQaxl}E+{h;_D2whL$UBIVrLr+j5 zz63Z!$fC9-Cj$ieARuB703mw-2(LB_KSt^70c=4!&G^fq+sN+M66lC_zkrvg=xhX0 z>;N!%ioSkOrs(TbFWZBC2v2Me_MzxL*GzA%70#u`e94ajzV3(kODKHC&(-qihazlfz$pHKMel%HM~?<_aE;vbpeKwmGPjUEVv7 zhu5kaT%eY!a#+j_p=)lB9%ggXLjraw`iMN-92}zU?GFGUdjl2Q8&S9M$K!9}<6C1z zizu60MN|Tpm#&u0VaI3YY!fbKsWGPJk)~#Z{E6>esZ`BAEZ%Mh{O3IG)C$l4Kk6nr z`l1&h+d9IH?ZO{XoGTwDm8)`x$<`~Xc*M!}!yGT8ulwMZ1`mtvLvJ(NhhJ7V7+jTk zD?iB<2$0%Jw#o~&etg){;}=}->j|Tc<()92eQHF#YDE3$h#t{7Tu=RK(tmW*^LGh%Rl%d8y?jSy9bDq5tfvv@ zt)t3EW&Mmej}zd>s`J**s@rB%_b$oIs(a!np58s82PB0b@Sh;WqPiVMbvrylu{PDdScaeJQ^_{{K1XTPLJxR;uARLloij>0BFMml-W zq-S`DS}Y2{yNZkgc4ccW1@ZcNT+U#Ohk`}yhr(nXlL;G(_%=OFKB^D*!cu=CQHY2G zpf7qEJ;1|+MLbC)EaEA8Vi8ZdBI1t>w?_|M9Ou&~7rK^8mw4h$pKio=nFm*g*>PR+qAkK9RGj%)zsN4q@V9~0}A ze5XEqVxCdX#{ah*7h6Xz+j_QR`sE?v9xDF0s4)&7#A35dAFXJ^6JD;0Dx?rDU8WLJ zc%v-txDhk)IH}SrX6xg+^d-C|M?E;t=WC6!EanifAy*OkEM}S%pg4;;`?yz3;&T(? zp!z|5@$rT!PWVX5%;O@ZL8p$o`MkGv5pmiRL%t&?_i3*gvB6(42LBUTDjWPy$MN*j zQC)9TxSank8J-yYwWCo^<{!spuK&0hoJ?NMIz}6$S^rl6i0pO+Pee`qF(<&VL<+2! zr+)S{D{+BZs@w^g`VqQQf8!J4X*Qrlc$!VYAbRHi2}o$>2NBP{2zmBJ$et!bo_*ty zPP<*DPG~DXZuXor4#V?sQ}Ym0GeW*7W`?PB>Is?ppE@B^|E&L`a?o+*2)S~EFQsZQ!hfU_mZjigDmx4`9JCf9oLJH>qXdb684u6a=m-qdfDYD zfjGGwF;D`#+s~HEZ2<%Aua!6%)l5ZCMm3Y!V9Px@TtZdDnQhu&tBlgbspv@$C+5og zYcK(J-miIvF7_m#P4*<7BB^+sd=}NoIQi_!$W*|aDPK*A+GH5@3fgQSYR18)+}`7c@V{yv`Cc|tfsWGv`Wdg2M; zs4FPXd7sU2=e*3xGsBNs>JyRFcjaXCq*rHVI99(hJKR=%XXHh`BkwJdH?!89a6L=; zPKm7lvaFSH-k#sX7Bk7Qr$_~rbAa5uRaLc2R&~h&McaAd=T$3{-29Zj(a^4h7x?@h z2~i$zdY_W<25}y5{yeGa9jF>_$Wl+~ni~TVGDMkdsUbt$A*1)VYL_9~hT3SjJ8Y^$ zoartYI>a5i=NDmP`=+7$($M{8=n&_Zcscd9_GqQ+cXQQ-1PocSfVryU&G144jdfSHo zSz+Rr4KZ%+14tr93KQdlPlC-gBh4Y^cW&5xCERZt;?oggq%iT7C}N~J#5^5%?S@VM z12OsHx5-Y~~O)@sDFXHMfN8h;iIUI@DU|TH-uSoN635H=?MAg zi915R(~%y}7iOfc)Nic{zi$=QgF4z3=Y>=*UrOw0eQV|1 z{>N?P`tWm#NY=+x%=~M8c(dgj1{Cx^Zq`_$mFpFUoz{Hs=-|_I!O{Wjupvu!7yN?> zn+}*}Tc%$<92!302_TGIOT83U{2Ay@aDe!fpxD$d9ltN-?^a5=neB zgvX6@$C$S%63Lx$q`rTTY)pul}*0B+skouc0kG-3-P7KrtRUf zsuJkPr9e5hp)HWNecrC>kux&HG(IC9XyO_6bgafYt)E?9burZ;o8JHqI^#M`zu`|H z=s(^1UOHpoRq;V?`jd1lneOA0rYl@^DDD%8>&`vbPm$=0z zqBuFA*nnpQ%+@J~(?5(;2Fvf5H;q^h;6FWu zc+AdoPV9%c81WNN=6O+-IVbj0@|@UDjdS8DBhH?3qjUPMKagOZ6Z>g*?tkpZdO{x@ zX;)GXMM{K%&1b|pF>oh)awHpasGzuDgztlGzQ*NFes<^&u($nnNQ!HB%{13p6<^+IfqFrT)~H#b7+|qk z5l+6r6lHiIyUR7;|7Ri=4oiywMJX0ApT02FC1l+ep(LI`QRqTZKy`}v_Mb=d(#PX_ zFNEW*+FVcoqo@Oz|3$A2SD=(zxoB2wy73o4Ki+B%8TT{~2*XAN{oQQ%Sy1ks*pjLh z5^2JqicE*kxDxKJdb}qczANqoAzp(GFT^2dWi{T=A@0!eN0qM{x&@%4FPqjPe;;0+ zzQ>}eT?PZPxj!Cfxgz~h9X28%pH!i4xaAqfZ36@OHOKfPA|dL2Pnqwch=fE38Xa8H zqn6wCeWfnSnI--8a@b?ng0ZU9#Yi!Bw>khA~c-o%5lqBR5l5BY5$*a~bV( zuDCPdM_HGz9}wMB_1~;F9Y`4L838mSmia5In>N#$$h>$mY%{H)&2w<$k%TX!<%0M! zT9l@=CJkT^F$+MEW{sP_E*UA4^SU-0&Flridh-$Czlt&KY(w%x5Q`%W&A{p2-{nV zz#D#HEC}#w7%r`bJ?~SKEH0ZvlzBP)9wJBw@b+f0czI}&=W*rvjc_(p*9;7}3?uP3 zf#Ls6bO8G|vkoAm;%_B{140Z3F2lLD*;?=p>J2}mxg3dR?n4t^QaufruD=OS-~x=? z^Q1-@L?enJ8dFk4pvH*cGNP`(L6H5dQWu2)hSUiW;S3sZGGVe>WH4!i2`)2erGfKK z1f2SHN{R+_7!6!jUcenx1PwUc^z?GsRxvE)PA3$qBL>Ssg9R>Qxoogph`>@W<7!F4 zfDnU$%V6N%cP3$rg3FxQUkuI0e_-X)aEo-E%q`MdaCzsb6I|-S?YBgBoi1BS*mZ~y zZ6(2FG?`l#oKLuyybPu;f=x3`T3fCvF3UsYg9gm~1`J%c>&!EV<`hG;prnXEjS<0R zL~zSoN@%X&GNgN4Nc<*C!6j@(|6m|}V<5rh*4l5->?wxkKuOVn5Tk+1XyER@f^`~P zMzf(9noqALe1cc?@;}3rZg1trf)FrbU3}JpU&(B_r3cEKjMv$8AdG?z8X=q-t=cxD8>Nli^lj2;z|VTo1raPFy{Ko*HcY>bR7wCJMqjAui`680o2W_9 z*sK`sSl%8RYWY3o?U8CFU_kxpc^hPSd(mz6<8k&K>Kniz&F7auz}CW8qoB3bJ`=uc zn@D7TfgfZg4nHs5E`j4D$-&Q!{5isDa~0({jl2$7sgYLzLbyC5jT~#+X{yq8UEj7_ zc-K)bY2-IRkhaj?h$KXB%GBTPa3GVum;;&HBRLTFOZn3Jy-mJK`jy`k;`IM~b_Y)% zO!;iuVEvx}L4{!c>Q5mNx`U5vLMK170G({}KkvES53o6+G zJ@NZ8W!2x?_0D9wqqjeikalUa-Pma5`tDbk;UO!~d^i3AiXi)}Hj$-LyV*OOcJt8} zx0`PVw_7yYhGf9}?P8yGs&Vy{P|L;W?x}WDZoXB^Y}_lIYOlm|!3BGrp{&jhOFJ=b z^vQUur58a?rCaWhN>|%atkOKl{E%i>QQddwlWBIYwJia~O zQuP1*9mqm@CK!=2wQ73PAj-+o)IM7*`a#n63n2zSWLUGn^7+!G(7 z^1Pw)rWE?na&L;x`ZK-(4nKvmBMpz13(yZ}w0zj@Me|K>omRZJW`_NuaUI7^nQ(ib z8|qKIWAvz7Z*pEH+p!ZvOj#4Bm$Xc@^{Pxe**l-eOSgUq-5Qr$EXcAy&`th;EVD8O zwh*mrRnH9TO`Wst3Tod@cbgX1JEN)aq|iet<)Y7^6#S|HiurVhO4ucGZuwmz=fY(< zwC4~fP3<)kl@(kVu*{Pqexk3PA8c+<= z%C#}CtG5iM6$TSrY+ZL#>kXX$6@&9dN#TGH!-2~jf;*>eOn(KJ(JXV(u%K8Pev&!P z>$tz9 zcbx|M!F;=sbx$azUH)!ji2OYRcAJf#oHq6l%ElW%pS7{?u{?_q#~VLOg`wDY!HZU4 zPSpkLf>9n#(RlHGL3{fd3OtpHq-rC-73PTu<<_(~T=+*r@peSoM zm5`&h@0LLxcTt~_(UyW(nRh;ffr40N8lx>MAw_Q-oIH>&P_Lk8y=zD7*`4j6RYn(G z!@9!BTwPM~0a7Z1hS-J_CTC=wWciWF&UCR`!1k4s(UI5fTz8#yEf5XBv>#;M!Z~||RRnT-+SM2CaeN%mu8GTI`t z&}AtZ4eCh7qw;UN`5JlaZ%)o|Pa3%Bw_Y%j6{iSe%yATk6UB?tgBB=!9i4BbQxJyB zzOlU=$SP&82zXAm77^JPa%ZMa>nJBt|A<7PJ)_Z_P^3L1<*Dd5bTBKBIshAwgokIe z`}PW#XG(g8jWC9d*PsDAzND`gMca$%U>NmWxqC2?CxFY9xyP z1DEQAC*jTYQ=EkH;sU$ExCCBNg3k>H*n{x^V7xCuT5g0I@Umo3zWuy3@mw~{P*wKJ+QmtbB?%P##0LFV zWpM9bOh7C%!QfB>OfJGo8v8N(Wtrl{Pj=&Zy*LAYS}!8rsWxx*E!rmJXux?KM%bPh#+o}Hk?Wt8ezQU(?`NcoDMZeuR=lT zXeZl+h-}Q=vInH)O%mllARX?VLf!#XRpFFaJP2c5!bWHfU z=?54>O%KQ-MU6c`-TbZ)N5`0i(@erKNXV9zGYust!3&Z=!OxbJuj7SHG9Yzkl`(ow zQygUAE9solzc6_S9d+=HrkdoZXFuF%?%#jHk6L2;6{IqtriK8JU2Kl$CHQlg#8<@U z&@5cO-^}19-4P?Msj>ZHT0mY4dAkl_wIwdHn1i$B%PK~u4Bf%RO7Jq zK?JIB4I7BC^b41T@u8>(@8lqW#9xScR8d^<;R&b#2W63v_G#1;xUHHubKWv&;4+#G z22Fv(phPwEpsWzSE-5I`Vo-1y)LRE-KL>us^!mRs@t)2lgXx^X1XtEA^mYf{d+MA} zSFh|`Itqi+i0dI|v+CJFm+*TDSq7?%4lbiR2bS^P4gwh7nSaC612!bygtt8yLWS2$ zN2#{IODn>qb&NG64Bo*1fH$n`)~48p&d_hw1afgq!U%jjkSomEgNUm<|e&5S@tD=yp; z!(H&9$I1j$JN!S+@ii;o^f9cq$P(5QhnASrEUJV4%`InZQfH`Mhh#uTAWy|U5FurRbttqTu@C8@gK<9V_t01sm(F9_{mW71vYaZ#s=I-O6!)_Z zxdTe{Od^po79ff#?w4_@hH5dYLz}~J<)iM)su%raS!~w*u9EQWvuxCn-{x3gCo4y z#fMp`UZXG83tl@Ui(NE46!-1))qb_oblg*RyuSZsJT-J`p527#G}}V$x(F=i+Ivn60*dIFrMkVQJBd42;!C1Pziz+O*)OX z;o9k9ycu*@gcgU`JrTrMW_gUuB+=JNG%u9MQx|ASOHKEiP!(A8MLO_*(b|-I5${_P#!eLh}4J{^BRh~kKchh_aqNKA; zh%AS6wg(X;T7=)}i`(Y+!=jo7|EU|s9~RYg*1p7)P!qM|A9#~Lnb!49b%ptMY2El0 ztkJJZJ-Mka0&irJ!|_&oFM^%w#vYOCo+(yc?-ILe`IIBnG|s=K(+?yDbe|=5Wp6AZ zO!d!k^&f<&y5x4J=4Xk%aHlHhQ_ass7D+X41tL=O*7U_SZ+#@9=4VaK-`-NCVyNaZ zdg@ZUNod5{x740%_1F2gJN@&9Bi3r@uO9Uu7l0;j4+#bk;uaQgqiS3WA>k(Vu{Tv9w} zcRebDwo}wVH=YmY-3&ho)QIQbXbh~nX#57}oqjdi^s636B7dXB@7ihQpEw%PuUK7N z_^w^aJKF76y-+QqE>?4}sY_?a=~xf<_O#b*FA0dx0!ZjU&+?=02p+W*Mc~&NtqUJb zz|DIPlv$?=IKH9!-%%O6;j+4TD_k13H>1`xY;Q-_@L`+Kin_Si&_o1CT@07UZMdv1 zhRfsj8ibR&cs02FXiOE&>f-XpSQNBkboN6D0Tpx1OdzB!u6j&_(=^`d6aTd(Hh;a(8dYq3EtseV@UDZ;}kBeB= z__&B=4M3vkOS^-*-bC~Wi&(V5Zl%VWh%sRiEx)oy=tED?pap}$X<;$e*LI$I!DLw= z5vsv){n6jCcdGYI_`AnN_FE5VB>Tbd=nvJ;$7Se17>{@akPmg<{jJ?!9WfLR8Vdgi z1GboJQiW(_d~bJCmHse7=^p~1&L09G@eeT>XlgRTAIeyBTh4&je6B&M0_Y? zgJ0|c>NAsZwJGsCQzHDln%`zJ!XL`GZ6oS<%4Gc0WV~vM{PPc1c382vkP%85M2GT? z{S~Ut>bm!fnCa60WY$2dzUoETNx?h(5VVK+k_%qSMJ>vA-wonao_>Fti|=j`BK_QC zJnlz!M;4#Tp(Pz9Lq$i)Py^jolnhV&i7$Bd&s*$j-m27{MP4X>T%@V$TkZR;XQ?`Oi(opGG5x5b7~yR=wl+N63mrgp4-RqZlW1cE0ep_=CS)K{3w{DB!pLc&)609(`yZ2By#|#Kkn~=ojnFj&Hk)GyqIaqW)Q--zi}eMivY&E zo)Q(qyVl^POmre{rwfK?(}oSCO>l$oI*HCkBx1yA=k1Dkb+C5h$XHV(HP0q}zTl~VwY@amCY zL)U1~@|G2jv{CIr!m0g{tM+4f*ph0m*MD1`>cwljGcL{praDUZ{t2@lyj*i1d1>^8 zDc6|NRYN!{6bZ9xadJ!u#O;j-%)!q`)6(Im5ea^$L9kaHaXbk@bErKtAE^u7~ZnJ56O8KdT|&@N=DNs z!Bp^YZ^q@LM33*)4x`7t*}(u?YRW<|sph{6&Gp@VsW4k$l&3=}xHsdW;eGVeW#u4& z>Ch})CQ(FlkN=F3F0p;T&+K;k&p0Vrz>E+$L}8VTS(pq-vzGd6=JbX@B7$YdGx#E} zvwKC~&h8b26-Qi4!B0h+VLG0KqnaBJBnjU}VD1XGA89uH@^CYY&+y%sFixS2r-q+pc@Nd2T{d zLR+&X&HkZfg3-?qos_Y8s3%>(OS@XuTf(8)ht1pXE6#{211|48tasvr>VJ%TP{tR; zkg(0I2;||LTcE)UcDSrOSV7G~$CMDj>WpQGAa%x)GosF*V@lR}r$mG3j6npK5Gn6J zqFjmjM-1S$pkZ-aSw`GHC4>b+3=1y9I&((0x8P?~MUkj@YpdNqvfY;VkFW=>Xz8)F zr3M;A{UQ<78C+6CdAj$B1iu1N29)=Y+0jA(BWi_+n3x*n=d0`Fp=}7_4$r!ORCBhP zZQ#u`@Zd79UNgvEErx7GNs-MIWT3~$W)iZxRc}xTU}R4+GPebX*7nU*yA7J{1`S+R zixn9(CyJr@yQFAfp-p@OJw~(rA8YPIcaJ1LgW2MOVGYpBXh_lkJ%j&TjA9`y}F*SCoF8^FXCTib$6Gu80cCBZqqC4`zBhWDMrTB z5ocK)qHa7ZCrKV~qwYN`5DD(ONVLWmniWHqF$XNglL4MjVXn!^| z9#u}^5lC#>%i=c=+of6qh<|1KYI%nc30d=YJZr|Hwf_Yt>hNUo-!7tNA6J30)Z0s`pGJ*j-BQHkEam|E+m-aCF-2~kk=q>lD4zd zxyT<80FAcOjGWFU6^PM~2x5g76RHwz+N6Rv|58G>I($}IZ_C-RJ*r>Na`WNhR-}Rc zF3F1Wc8p*h>)nFqjNT0&X7%2QzIgTC>73}@(CDl*o82)`S7$Z#b>dD@)YZ?eT}lsb z>Z_nDbgh}DD>n0uS0m5Kd5WQ+T`bYYfc=oV_nZhSQ_hK?@;K7dc?$Sx4pZ~biPQr> zFYZ==ZRT37bQ(g#cdUvrYUw$VuN+bZE-98`emN%smJ`26;yqIUm3FGs9|#}`3kg^o zGYJ{!E+Ev!>2(tUn|j>(miv1t-TW|i}bR=kn`w?+x2vO z!hc?lPYiP76V8iPWpHFEv{O^}ywfiA=!@H>-g()n!LLajanL#0ql)Vts71}=)fa~c zE9m`&*h@q|E~U5T`;xfH_$_GGD{%O)O{&+^&$jV(Q60}qleGo-Vu>DW>+2kgaHslx zb%AZ$p0TZvC9?X>+WAtV#~|fQ4}LtIeW*rI-__2S35E%|Zqzto zLTp~KvYG`RLx^aW9;Ywn!Q+uU$UQGSIN3JuoiYCk>8Y>6&wX|CdFiY0v*>#0 zJWJL8Uq3B8FZ~qRxSPFqUIxc#-8*RKz&d+L5?+!Gl27akFUYtEO(H^!4dDe*Gro5o z+DDv5Xf1i0OWtmh@}X#ds&zr`D;gA*xw&LkD40goSk&KX;CD>}>wh(Hou0mm(f40) z8kqNvhWGRZz3)+`T|f# zmwp#z7kE~271eu?Yr3o@YofZX8%7h#p{qhjL((V*=k zxHLhM%iBkAd4hZg;UsUp36nQx`v^L|NtNxCxgiPgiU9;yL>%lR!Dikh3M%`e$X$Cc zh}@NUv4rSAkkP^A>HEqBvzLSbhIg?TJlagc72%QaI$soi!DYjpkxqP24J(FhR7sJ6 z79)epe1pq7OK=%j2ZS5Gv0$+RKuNGzaKTJXYpO({JMs~P6^uu-z`YCrLe1_RKfuu$ z@LNM_Pbif<_9KucQp+wzkaBmI(64BBDRyD8uAEqE>|QXCtugRnMv_9RGLIyMc**C3 z*rqft(C(66Svs~-EUi{#cL|FC-d%$9%)3ilNT_Eu_lXdR6NUt|ygX5M8|E7jQu+Qe z%m=+#*-N7GRdJVO#3*}7^t~R6z!3o&d0OeSBYoIvy2P7M>net@e)cRZ^J-NromT&uljj zPoXaZH|;Dr@o!7KryUR$d{*1mJ#O_?R%;MS^C(jB0GEecbUD;!gYXxFu+SicpAnuk zrNPe#t;@v`R>X7dtk-q2BwrSW!p{I}UlxE)d=odG)w=EBCuoRwps`+e=w)Hvpv%I% zahHX8@H4dg3?2AcuRD{WMe22-OKbQ>?^`PCr5Tzj-0qU))nEN z6W!g7rrjzv7=Gd&72qJd_b%TsHTjCLZ{ihU-;685KKL2gY(ofso+)3w!ZT&4-@R;b zIqBEB>6vZc8(>cSc8T{)ykhB7@s(?-!v+}=gpkd>&o@L}GsrFpGU$)2&KOrF_O6tS z+7dYEkPsyMFi1s@q~gLq1ohMWj;X`D+E;~lNW=V@cqY$LHxI)* zdrfb;5Z9auV&7oNVChgeB^ttKCFoT*+PxJO4VU_F9q(p_!`&;3vI0Utyo0Z!j^dI%T4yQKl+D@iBBQh2If|%(-nGVhx z%CjO8jd<3Vfio?P6a}S6`(yy}&hibygL({tkiKt_;(Bri>HC88SC<|V75ruA>*Ygj z>{S(4{_i(nO}?v<`2beMTJwwi%`B6kqFy}G&Y_a0J?CqvYFT>Klt6DQ3}l13zDX({ z^3r{XZ)GtrRZrYoILK~H{t-jK+Z&mTrxngI4qu7qU?;$~_x|L5I%{NXdWey?!R`T! z3}t#!$_5SMqS6eEVtY4Asu_w~y}&m?eSp>EIe#yT3~?_pHqck$HYEo3tpT>v0E3@_ z9Tht8QuC^dP`y0j?>F~U{j?A)C@~n8$)bEpFBxg$-3^1QiXw)QmnbS+p5sLK9$LxP zX^VUnRcj^qkcjXp%+7osr@vx&xB;`mt@vq2D`p$KOD4d3ry+HN($mXe!{Jdy=Uk#lD{gXT*gFi&iT%utE!ti&Q+;P3fp~~z?%u`$18lDVJ7s|F6<}9|mW6X~ zts-AcP1CA>1`X~%L5Wb|K1*or8 zY!Ay)1l86LE%5XRHFK3xlDs)5=N)qdZ5odMs#6$MgsqCLR5Kz`fzMaR8YMK>Zz|Q( zp=njo*-zT$3=ZII(#ew10mDp~DbzQX^P~bFLwcUH&O;YV|}KGc~~x*)?pSY0iphcEM|sq0GX>4`zPm<@7o`cykj z&g{gLM)!ZIbVDx}!&@JqA3C!$0jgR+ucB9;wn~*BTdA~iiYqFm)0g}0)yv=arCGkJ z6j9tVX6FZx-7-qkpInC$@B=l(%;W+Qv}@;`!I;rlI97Cd1SrP(v=szi9nGf9mJ zR<^nWNERm50p<0z}#z{PpF_Ff+)_elDpe&T>zGE-432IEakeWlG2o zkg=Yyarr_S-Ft3QRnXZ~Hn}T#i>mmtR5^?mVN9Wo6lc&*EP@^|h}B{{>3}b#(u4e7*4S^oSQQFw>rjN-V4QKOGoH zNlWW~-}=VEbP%yJl4q9H)=ayO%7FV)(l|GwV_BKh1~MgDi6DfB#+!vU4UG^c(-+wp z5Io_?>$!<#o#A0@owASz{I;^o>Y}#3_LX>` z&=2dQV?J!}(w52`#wFUn2Y>Y4sh%y%zq}s)0?C8U^%F}edkU4iDK+r{y!=en)U5Vf z4RWt01z^*J4u)$FaoPtL#8Nz~{(eFh{QDWdfXnMN7nH-&m<8UU#N4JZ+;O5z*esr%@tRBA#d6Tol^c zm*uSs9vDWoMgi2ZY5+evmWQUXt=oN7)Xpes&-my33>|GCGPs&b-r>|S3pZ&gYw*vm%~_6PBRHRw84 zv~G0sXaQe7f;xlmgCGIlm%bQ$Um!x)alm^4V5cun5BsGW)CE|$l;$P1S`$7t)Auc3D;5s>!28C5#w+etS$uEij=yIsv}m&fal`^u=E zF?!W5|IN600x9b1#UIB+MURRBft0Z*eMw&O4r_))(WzTl7sY>K2h=pw12dVWC5p}j zt9dap;w?n(@DZ;w`TuLg0}&qa;PQw!Ee2ESVoyh+&hyy)!1e?h=pG!5`6p3BCT5Hb z;WML0+-nnET?q-a!)@hfstUccG$!7 z{1hOhd43cc0`t5Yff`&&?5w7g6Djr%l+4Y#disw^H7)fR3V7A7k3EcsL6LIafji1g z&iHe_+SECCO1U|rOY)QgzVejvHu06Gl=rA&JTAOfj>iT1-zQDxsV(K8Cr!>$dyteS6!@(|yN+iQ zn8a4<>o56ctJ7$U#9(tTLLC4_<@CbKzWVCASa&ij7H^eFvR7BV0)3|n#L9e@5G(Up zwOE zr>ZAnW%fcM9wy2I(pSOZYKejNl7aS~fd)TA`=22OKSTSa7_=V@G?QNU+lUEaWtEzV z0_~hYquhfMYw9IiWt{cA6pLB4C-#DE-TOC$(ZU{y9B94&w5QS|(v+Om^|ib*b~l&Q zWHpN*0%&y#5v3qf##w{3wcD;UcVh!yf%7A@USXh<33oIYB%F!Vh8UiHvzwE5(;b)* zoOq0}BR1Rig6m5q<1WGwRwQ$$5xOZ7>A^bpgM$?%fcaPDhpmlheOi;LifC&Ly}E>>31;c8QTWIW~k|mvxapD zV6EYP#l^rSTIBw1N2i^j)IpJhBe6>+3%q7iNAzD zr-h`f8ZWxS&MvX2s`1b^jhv5{oUDY}I8e?ck&yL;qlIL+VKhh*9^B z5YMHca@1VbIs%ZPFiEg189DLMG6B~SOxj}C5F2R~i^-R7_&J4|jwP?7D5P&kQCLLN zrwEikm(vB8f_JHZzy#6}UW;cPA=#iHVx=U6iZ~t5%0Ydqp8pxE8qvkPME8PLs2jM6b1Ebu{T%k9DArxB zHzq20vJt|->;BiE9p}uvTzFLJBZCG@ zW^h?Vgj+b(ZlvI{VAdVmX(YFHNpQ7w^o|zQgu%RIz`$iNAG=^aNDy&x8uCJ6m+?tS zL4g*7g3F-blFm-SWl%3ff?};5PN{`39W$8VPMU7_z!uc1XrJgZt`);n$}SU4%|#822JdfMZ)^n(-r`(;v>y0o?9HmYPv*)P zpQ!K3_;@j_YMAgUKAu%nj*mrFcxk9oZG1BI!p}1Zvhl$4H|lLf{?a&M^_|~mp(0SN zC=3Bt+u{iMO+FoL=dbN8?F;?+r)*b4r^W%ut5~z{n@}rDLz-`*_vZPd$@ckHpJ?Z& zV`GT4^V5hz%2<>`N;psJbtESB+&jn{{?Fe;elt`> z{PUo~?E{y4&2!k_Wc3^ZxPfNDr3RS>%G4nD`=}S01_5MVNS%sc3ooSBgOjA2TTdnP zLaKksv-B$PyYFMy{@;YYuhS~kD0{{g+PN%b`SX&>lUP6;B`y8j7fU|;{I-alO!R}Bje3kzah7L@O< zt@<&(vT*^fzRo;UBS|mm=TGuprR-AqV_f+Mtwg;f-3Pr1Z_^!hkScyGqC~EE zCg@7Vv*?Q}o)w6w_)$}FHht!buOHyg35`i<1N~1}ovCCqCbbXfb&Ha43X}fzJp=qP zde|U;fi;|xr0R{oCIn%`%8EdUr<9B3y&(bVwNp76FAWgHLg}*CAiWk@ zxw{Prh$`@Xp-O`Ay8#iaahDGYC;1H_EUx{`A)?Gf7>jEI0-_B(;u1J$2;d$cLjWP9 z4b(I0pn@#zA;c-4htc+6t{F!A10r?zya0Fi%5GbiL+>tj_ja#1b+Iw3tb7nMtR?B-RZgfB~I!0kOEy3*j_7<)S%gc4~=? z&<#R~Kw#WP?hXVPwE71`M`(@Uc)n^KdcvWJLZy3Rhzjco(PemgYZK93d3pnVUYO|S)QWhPVv(S)kJ7+VTneCnwr(Sg9v z;GQ>y!O!5{ECz150q3OO;HGDAzX~`fdcOg8PZER6Q6~&8Bye!Cj!cqYmY!@5?@Z<%>O@a> zqnV*`Z&glIvkW#Qa3YHrU{2Y#R(Q_-R>a)SUiL^cZ)!=jToO1JU zC%r28Of>F8%D)AJ0lbb1k**`Y1+(J*-Z42ax^@7P77?}$NG-~+%u3Qzac?RGQIjLc z^f#snFSqsx$rP@Cy|I!o(aCYYpn#X#`AMSLJVZ~2Vo8^1y(T4+wjCJ=pXV6;|BgCQ zdvLme6?SV3#vfgb2x5%5afIp(FUv=NGR8<<>`?>KWKm^Oq-Vg-ob;t|OFPk3!lI#5 zR9Pv~0TJ);kQ9o#=6HjyeF}3>&!qtH&uXtHP4U5`(-1;DxANU7|8C_wQ<#BHmN{+~ zhV}|Wb7J3dV@ac^J~PNrK!|&!PgK9*1tKz8*l3V#o@9{WabH4q$`C?4G>IK7JilD5 z`@zPYQwCCnS65S5lc=ht@?YjeH*lj#f2i`9QagTeDDKhh*Ba^xF{qAJ{&DyqVrsbWsJJJmHORNGTUS9loE z*p!f|vs?(WVoKP$bD2#2(Et3+Vw}4XKr+5>u!i?MpqSErLRFUgpI6sXMQ!kImoizA znUI2&hR{$q#RyW%UexP$qg6^5A{<({O=s4Q|VTvk8f@F=n(K8U-oHa!GQFJBhk z0aU_e+lV@Z+xUPEi*0aO$pe=ahj2-1!5lEMKYh69%w z1ebM)a2d@&7Y!{6pbz5i#`l8b1tnS-SmjLvnJd8+{u(wAto&sy$3SqkzqEe$3#`w( zJW?S}@B0xNsKcxM36!*uw2jq1@%L80;=)qLSj_V?_)^%SS`+#q+vs|q`f*?km}uBN z1k7YESePa&Zk!@`+Lwd#PtzZTO?Djlc(Hv2^vH}Fa{xm0#@N(Gy5KP!2q`2-ECo@F zBf;+nFKM;>9g2Z+D20bFRt`m9e|^!n0vra)PNUlKSXei z7j28uWzn{XO6En|kMzZhwjY6>7Hw$lN%QQsxI3Uqy0P{$9iyY?CyeI#J8E!yH`k|r zgo0uGm;Oc8VXCaCdprjK_TOp5ju6d{ggNR$y2xAD&za|ILSB|*uymOxu`Fw4kQYsW zi^FN;4OdQ@smW1J)~q5Tm_w+2h|rvjN_F(Ixzg91=n)+4xd5bmUHAloA$mz9;hFOv zu%2uQQ5&c0ok^Fjw;RkSh4-FB{mys(YEiSR09)znuh)Cm#HQ+V-}x(h&rmMua{JQ5 z6p;(LMsj8NUN_BxDx#0u7f~4N<5q&WwA3p4;+9%fMf7oK4O-Lh1s+mF_UH_$P0aH` zfAX52YVx0)!iq?4KYp7OU7g$SUh4;{yJ@;_s$iJAy^PzuUNK5UxWj}U;57Yz1yw>! z_~B=qB{*J1|Mj!Kg?9%fm6~s;A~uP*ZwlO%N`L7_pE8x+5J8+P9aGh*bUFIsO5=@b zwn;RV{u1R=rCasDZQ;c#owdo|I5cQIx5@t$b{q3wb}E@xRp}9R6HFx+@AAj$_r8o> zhwWmdN!1l@PYluyG8ra9i-{m!4m82#h4Wx9gETn`9uj7C?H94lNymQD{-6FiS{E#Y zIEH-Oxf+5P86-Z#MY44NWK~%$ETSTtD|mTSd_xe>@&G|B{57nq*dFl`y78QMwj_=1Z{bAFb}MphH4?8TCT15E}8muGdjtb2sZ*kF=LHFmJE{&7Q_QF? z+j+IBn|3#5iY==$lmlW#b^Y#N{`%@;j)L(D?C!mh@ocKt z^o0LGOZ^DukU;fqbsm(|P83OJOW|id%2A*tEhPM`=(|`wQVV$&ces!O%}MXW>kTG7 zFFmW&;FZ4mOl`vjLk*{FtJn#=~KHW}V4{Q=CX6X6clTRF6$5hy_`M%;_Gi z8Ii6dmLiTsa*4q=H^PN;N0gNyQ@XBevez*vb`9Ofr z7{EB8^qrY15yW`0p^hLqD_K*R3>HzUe;v!N0=s$YqfXYm$gITZ9#lZ{P>LZDDH!os zfk1O5=s18cdIDYWrZURSQ4iJKZBAhJcN*mG)^&b~1r6E-fekrJQ({#0{KqeMzlYRrkxM^+SF4D;fS(6d(QWR{J1F|4bJD(2mJ0gfnFMhs4qVPw57ssD8{S5)EyT&5!q{CW-5mwIz%z&=)`uiiuLhnj6 zhJZlhS|`cEcoD|kF+>*u%-vfkQL#~N6t24_79$N;a)t{BK{TrAxBtSefN3Xv<*6q- z>0XXZNA|IA3kL4QNanDZ4P?KP<@Qxg1SB&(+3+W%s@ZFQeX``L**XJ45^23ZAz_cT-W}`Vi@c83o4y^b_X-l)WWn=D zb<%p@4KoY2kL`!MIdO&_XKs66#*fo$ag}O0%QzBF##;D*jD!8oAhRdjm zB2lp}yPYX`O-wnJS6?^;m-W~K!$9?OL1m8%)~{1iOrXV>;4&t-ti*=Pm|E43LM7ED&Q@aG6YE7oTCqGczJA{(T*wPVYIcjP3C4hwNV|g8k>d4)|nPMNiJyRCcTZjVg1c!N+>efB8jUmp zxWx{`r54%(%G5%?W`=2`*CUWluy>5$4zJ^bS+b4~5)xj=ccL#=`E|;Ybvzo8tz^-_ zov1}&B|BYgW0!Xd;QC*XaCRir(5w}Rw$!~@(yUXmWQu$|OQuNpd5WA5+B6x%&nwdv zS-dh$ry)CB(QIY|N71|#3?wncAyXh^aJ5H4lE04nC5wBB6T3%ZJyUQglHB&2CEW%I zxZ6xZsib8diaHw&#YB`q3f2Lrfax|L_Xt!`vDtcOk3g<>A|;h>GdRmtEh~REb(<{j zAU8fCThz*fBdD{6wQjbwB8rIG-wG09PW8XTCxL%a+8>h?P5QrBu){55$ zaE)(v80*_+hthQSwgp*JqrTZvqgIGVjcW7U%Ud?(`*iP6|K`z?hfN%D$B6NF&XXB= z46@GjAWClZReb`u(U-_ct@E;3t*j=P3g@~}<4lF~A`0gUKZYRbUysulSNQSB3g-eJ zRTy@yV?qPR^nL+c+8bWY7qi8jm4D3#hX*R?X9v|>r&c33)HFEuS6JC!Q+<`q{SDsy zGAef9@4rPZVvj4Bk6@q=#<&c&8%zN3QJdV}{Rbh5px`8MnV8>Y1&x<&O zuv`U!1tGGOKp18Ayq7J?W7vXI=H@1IH%ZEu_cjpa@u0BWNahsHquh%wf8RBYtEF*k zxQ$zm8aMJF`~3}^mgTE_{~Q{?RlY<^T6Q67Mmpt3sAwYuu_Y_GY^&)FM4h~lV_kLf z0uaS02q3IZ{!lWr@UarOX$*wRa~BRWf-p-$UpJ5u@CW1$mpKUHe~y5l!6P7C9syT2 zFsft(@Cf)0@R9lIn+-&bj4R%@mIsUq8Zvzp65*wBf z5NI(VxIBl#W%V&!#&gld!>VH#j)(AcZYYd_OR8g?(ZG)j)wBK8tznU9MwJu|C=nWL znQY4TSM_vmXq3hXCp1fRyHp1!xPJGv=ZuWV^aTkZxRCEh-A- zbK@Gb)lVo2w;5QT(s;j(NzQHuDP>v15DC^CqqFdgvoNBk@{9vUv*vg&wKUH-g;Yr% z5egfIW*jzLeT3wH(Huk4X3g;y2={EbiVu_jL@56WlOM|B^ksNxdB^R6TO7kxJ$^#q zX;n6d)xpY>6E=#}oB+w?y@`PqD!|c3CG5!wmF~~c4JQSjRdsV@TC0`A(n^_XNHS%l zPJJcNT(vWCc@n3p<>*<yiq32UA;_XJ*1F^!~o$}|dV9?yM{JCZoYv`m>sq4E+N>3R1BUR9Zm zWc<(2)ARiqWojaY(=Z)PR9lWxH5*C03^T!lL&4lEcbnilL%|atKx@r1!B2;Rhrf=- zT492hhJvj(kot2I{8=b?)7O}UE^ zg7GwVo19L@B3Nb_L~ygChScn_;cU`N+WLLU0vFNh@yTG1w0gV7_)2c1x6KHodlQMT zG8uSa27;!I^@OpSXxIzNdusV_pj_O#edvo@w~t=c85dDHyEdth1P0Pmj$w}*9(pA3 z6wW|1;Jg!MQaxiEhws-UJr>Ba9*}4@4M()ot)@2C&pj3xio0rvCu$b1ZzJoLryJ|V z&)|}!w8+-7Z} z0?a1*7&pz&;5eP+xtW6G2LMv~0sKdaEVJkseKCvhb}m>H4X)6rI;OD*JTE^LxG6MB z)q6THMSJ@C)8- zHW7wYZXyiHmEaa`aEoUHy>Qf;Q{UhQ6QA@&l&3Bj&fqk<;mqCiWjE0;&4LN$ntsq5 zRG5qo_kMqW9i7(FlM;B05^xRN#N6x_cyeha1e*{YQd}B-rym z6gRu43hMVy;p#tcQyI&nn;Ly!Qyx&^Wrcg(89Pzc#{Lpr?25pmq{Ix|+CD@FCaX3k zYipCWmt=*PSEoZwF8EEZN(%#btGi9EJ58=fB^SJ$Yp%%!zsbdYIFbq6hjkO_!>fqt z+=oAGimz2o^s|csRlM&K+l)xpLZGM~ma!`F$XxM41k z?EQm43ZJ&3NoXS58iAYnbT4ILKHW!O%%}UBMe=FJ(l9=iTNaq1<~CzKS+n%XJN@Hz zlh*=`)vFw4I5Z2y42PC9(;vSUxJ!LvYWAV2*~(_Zp^YZ|M>m`~bkv0Z?uOG;h1-z} z?#Cat|5$|}PV)0O2~sp&;Y1=uv9{LNJQPJ!mW30mlxz5+(m~6OqG=1e2BBQ-+$d@d zoFe30e2UPG;s%MVAvefV-~ctqGU6mR$V1KXwXB(5_!b&u3GqZ4WM(sIkeLx|;s%*T zS-3%F(-$|$Y`lU(#&gc(v-9n+L1)rC7{K4qBksot%EQiU&BKSCI`0I^>v``6TH!Dg zr|ETHuyQO&o90>FTvvQAaJ}`j%Z2YvRlkNyygMvh;0H3@DCPpn3M0f^SlnE=u!i6> z7s|B2*P7-!X%&9o)s#cH@M?46!mE))NWSt@7UlxPR>Orri%2evcwe|s;ltRbGQ_U` zFc7CZe-QXdWwqcA>Z#izoEM1is&YBX^i#w;_*=KoeLf0&s`|E&Ke;z<_@GI+dkb8r z8|bCRx6rG+NjY@!2ZE!zBPX6#KA>0jRDRuhb)dF-)a0D*=KOwjAYZ*?!WX*XEH8az z!dJQB)4mC`Q$LyT@7(ZTzJ+{s$b=WV;S<&%{E7*`;D&SKL{^R)rv@rdT{NG#%8irK z5?}c(^ben*aat2Qq;YDu5cwc&ZQwo3ic20t_u?bYwcIpmEk!=4O+g|bfQ#IXn-f`X zz!vny-MB?dZa_yss0G+Np%F=17nmTTR2g|UBuAs6O6!U10_9eh`8?pUaOn(}Pu*Mf zZYheOP#V2pOne2sd3_)omoalXo?d&STm$N+mb!aE;2`!%DVnzo?`kQndq+z>_lv+t zoX`qIJ?lmd_%bjMCq+Y1%iSp7hQKh~suGG?=SER?fysI(YO6#=-2p_AUB)`?raIvg z;IRi+)IDPcvofthV0pxXg(jl(M(qjWPDbvfs0Z~OjBTM@jU~!0cKCzk0y^6Z8?)=( zR6Se*)XA)|LVJI0?A5wa)X#9SQHb_5H;TJjB(u4zb!{nKZ49+PcePhr;cHAwz5V+@ zHSbN-Jkr&Az_frw(aawL`MB_!>-NylXxrP}P4ikS>1sVFNV*zYmAl&KM3%eSdivt7 zw!T$FSL=>GLtSmnkAZ=q89((<@nS^!;iDAG>c|9Z9SjFz|@*ST#m&pgs7<-12aoDz zT-9l<`P!^5eOhC^*1k*8>0Jl?Q z9k`t~wvu)_PR!$WTHG36$6M(MzhTL6glaAA^lK{_uYZkT1h>I^l!e=1C4F%ltZW@Q zUcb8~Fe1eK7Fz=oarGBiAb z-NUW*E88(+S1-4(czN5!H$ z@i1ZK-4H}y-yL|xx`k?ibN}C|6g4W>h^Z8Neh*B0?v~gJmX+ci1=@yjcjfAddjogD zBsj!^Ck+c8&DEXvVUmB%jauSHQD@fuUiCLppSpqE6}PzQH|2_w_#g+7eFQ?>?pVaZ zvW7U{?wMcqZU5)O~Zm2soq!N4$;m?t|F z!`*m)o{SkIA{fCfkVz!D1+wUiTOcbhV$2wxD`Upi-^04?O@{)LROdWdCA80zE<5dT zprsnXfg)CvZx5n|_5JfOsPxC9(!nFxB)mOOgp092OTxvNJpJ7fC|Vvf;WOND76o25 z;V-!1%(sXFWCJ7*0BC9-L=|Gbt)s6&d3yb^K#CVQ9KN;5lb+co9HoqvSa6=OGYi_~{Re#^#sQ#NKYI#Hy>)^gHQR^b2Sgzb@ zqP9jv@$&Mti8>JxHSTPnhl*(P9V8jF&M36BzdX2K@^YOCKa z8%*-fpt6MtrvH6qQ*c7tDKOAZzfvwZMAd^G zQXNQr?WC_&Z>L$i-@cvv+WBrck0Cdj@PQH@RUH&%f#MDN^?TkROc6|yNsT{B!wLX>cIK7A#%)5psPQ@vQ*I$Q-rmX54QBDD5jMp>9^uhAEC?X`BH zzJ*sU1D;=?c`sEVxJP{mT(8=7%f#V^w^i-5KR&of!5z25Zl=>F1smv;gy1-}iBn~H zH@X0jhz#TA4tXbA?Td`|2(49LRLs{iZFEbd-L%)Pv$~QmcugtQUQTDkw3l6X`1y92 ztL^m4VDJ}Jxji?W_o`d9)b{$@#9&KRkE5`1yFNa=`4G)VGKMDw|5B=LdugrQ_Igu; ziZyXH0iVc#H@hJ&75;V)#J>u+)(RqmjY}pW;>+M&`tl*Wf<84N7_H+{gNbTRl_(OX! zfZ1a}!q0{MVG4tvF8Hloi5u+>Vg61qz`rwUc%4ds&`;;PINP7km&iAV;Y*>qLOk@KGH#0 z=;VGiEH`X|)k;C>M6YwBS;tN{!l)k&QY3Pa@-4%M4AMe_^lyU{{#84IHFeQH*!O@Z z|2AK1@?b$&Wnc(d9F7;0*#;6&y5GWG&=hlc)fn7CkfWHF7_Fn-0qM))SjZ^ zJJa8k1G5W)t15SvpUK-wtp9(t5fPr|YeVXS&4%x|7Y^b(& zmVxJ}kb#%8oi*9uH`!Jf*xj-GORT`#%wy72Dz+*xS>>^_7DAlM;Lu48Zt-81DB zKgAGuTnNA$-!l=nm2?W$w&uGO5bjXe*(vy_h0CTK3U3+;YlQ;57{2OR-@BO+jL!TdJ}M`(y(0x} z>WVM&I>!L$+p#!F#kY|)FF`7zd$PB7m2&|5yUOJ^2fzyFEj_ijs~iOQ6F~X$8>Y_o z^&l&k-`w6f4Hn2_f~}*S%Wtq4^aaed*;fI_l(-qppz{I!`vxDtGjWB9=$3rRbwibv58#AZek+W4Y|Wj zdf!M!R6gMfuePl*0eOvMRH^etdK= zRlVI^uNWO{;_X41WJTAkyWTXj;v?!Kz#&`s#bbi^srS2!`TO_X#r*vnN}nT)|Ulhx%n-~w4) zZeZ-D|A5DAH`$DM8)`tdn~durc9U@gj2C~;(-$xP{*SRMkN2_o{ylT;Tv_jDyO(>F zolv$mOGT+HmqcW_WJz{~P?i$1WS=5iMV7+NmKI!DLRl(BzZUwo@vYFeef_=9`^@us zJ|B9$^4B~wbLPx@X3i|nIkP;8GKuyLa>l!3T5l+rrQ+9Q5C)%jZ`(3sP$=ekFR{4# z*x=e$7J-xbzMR+@q^{(s;O2CYMu+LMC$$mU)uW@(ODinG!ee zyD{9~y#K#eIxQjT$&;bVUTdAj;FVd))~J(KPE_MAH&avNQ+A_5IW1k=TBRKX%WlUF zMW}GuyuTLJ;Oc4za*)mYD^d3s2z$HX_*=ibwS9PasAcL7Nun2;jTL9TGA^7=^o65*c42 z8Kzmu%f%Ow6&K$?Np84WMhfSEbN#xInTmw_M5~gBWJJfaNl52!=WL^+`robf#KB=D zm!p<%;pTYxjr}Cf6Cq@P%O~Ru5GKaKZ#@i$3qp&4cT_)e@P-0$5X(6s!VPB#E!^nb6d7f zDe0p!Ys>npu?Pc?SKX4$0|ushw$3kIvcVyvAF`B#1!go*$<#6eu1qa(dAr+8{DjJ^ zGCf;omDxy^IIG+s{(qWPz<>icTn^kLvfYUS1aRcOAAn@!9+Dl*D&|cGW0!*gH-4nR zeC)7%n60a&Y<4FZTHwQan1IIj%^LYddPpdDmh>x3f6^)mz8 zYIEL)oY|c2`kArFKwrrl1CBdj<;M@6OUN?>kO$6%r;@~vb0O-LX9$){y>c#GDdpm5 zwGvx5{JBtWpZPsW$;dMV-EKE}h5#Qf{ib;OO)foDnw(4joKw7zU9uq5N0gjA%y{KO zs8tW5qM@G0Kj5;qY1hcGc9q@wbST?=%m}BU-!FyMdHkccw%wx82j+h$tt|D~zjk-&9_BI^UOou_V@c>CbFB++&`vvZi+1eH@N#L`p`CVS z_}Q6}&F*EP$IM`ttiMb4uqK0-$)>qv@cYT^v!T9bxl6XpCEK9M;AOHrmkfSC8HbMK z@^fz9jq)eX&H5`?@>6L5ni)Q8hp$iD+TWIkE>HbPDo}@!y=_$?zBj2(X+}6FNhk;3 z%NOO~`*tb^Xf^NoP?|XicT1?Wt?_*5Z9J=VvQJu#f_+6P{#QF&b0w7GaH$l3Wet?# z^;U)YV?TsYx%V3~?ua7+B~{;9t6_zJhf=X^HFO3|C579sas3^3{F=}Xxe8vwxK-nN zVWRTT`VRZ}3(yqwmT1+J^teNtzUv*f*NdT+P%XxzMrl-`u3$g|MAMg2B6efRlsa-{ zh0kDiz<|}CoE@vb;T>B2>sN+~*t^z+QcJc4ORf3M^40bZJ7Qg^VrpxFsx^Pj9a{6( zNKhO-Yks#RVa@N6FV_5?JGACeGw4A#**DhXhaDcy|ES%o>>n@T&*-(>(0uQNRu1>A zeRM}MNf+;o#Ufum3&Lbdmiqk*N_|e?Qr;@I z$Je<#Y^6=1DyiQ|E?Vm2c;-qrU5(!q$}!d3>yq$T5MQOeE(wn(0b{M)AS_ucH_8`l z7zySs&#d6UrsBd^^k!k#DsJ=0?+p9%p0YHdC5`JEoH3Lk~ zJd)DD7Oxw=-Okts6WhA>9N3B@%5Utopvw6XFNL+*j&s7VlfVsdNmOd1`EYyaa%0|g zZF8u->ab3>R~;7o)M1@*NZ_Xq%ezx-G%uJx+v`t)qqBEC2z?9xI1qB~r?hI`ogC*} zylHqROO$d57;_&hSlTw)jcKp>ojUq~isR7%q!p`7w>wp0I^U_N2HdHr;3ull%FVz} zRMYQN&03i|)haXPPDO|K+$!P90L|)zmx{GbiVa?Jd&6Ptd?)^3a9Ni9{9zP^T5yo~ zz-X2^?SOshfc@ft!O!(1?st03ttS!0>xRM_6u)lBVT9H$Z&I3G>gA`tGC8%Z9IseQZNtvG$rH_H_&)@E9r@I1?z#-hs`T-9+0TIW=IEJz(1mtT)-oYTxSJb z5yXGSXEjL7H9qJi0ce-dPMwsdS7IT6i`@g{E(>U%_wgj&G~RqgBCTYQ3EGqckPTjn z(`{)1?9A(^GVq6jHpM%t48YG;OYf+S3O~;ZU(r!yKrhDk;a0PGGt$cF7JHZMmLM5r z;m(efQ*b%g5|WY-TdYi)E%AORVup59DFuyRt75}3Qys!d9aT!7atPt4)Hz=865!Tk zfa42i;!Ov@<2HW~$xEw#{_qmrNks>*l-X{W>*^W-y!+-)2MvB78mu*y?I$0Gn&Y{k zBNnY*>Mm_{+}rphWK(YKM-Uqw$3HDZy?c4=?z~IQV6YHNkX+a4x4LO^mv$#VS=Xdw zY;>5to`lW7rx=w)!M!uZs-%a#$%;Wt2_TKPx)^EjLLlKTa&XrLa1lhfuahhP)(|A7 z8t;$>CCI2b;Hdwj7?w7zB!%M-;}0m{$^S-& z#8mF2!UsRwsa_{aksp0y5Y2U0b|;k}#QV+kL`F2*^y{QD-n)}Z(8x|I#Wzsk0_;sL3mJ zrk<#@UHIS7Wv02NHz4wBrqMT{-lm&N+}R}_z{CdLrr(BIn9(j7{C=_`-$7|R*Cm_j zl0Boz;EiwNH0xbj1o~-LoxzN{&!ye%(te<6;pGjFubqVw_6wI5fqvRf=R%K~zg*hi zG%cRk$lIL8YX%TP@h{P~a2U^QNU)B2i11ld`d_Fs-q}E0T~q6B))tnijzdbVyS2XU zl|Nub(K>+zXnht(eh78PmRhp7$FUe5XK@c$KsQ&${^!R~1-UptPz<(N^)PAp947u0 z>fkL>4o}@}mko(w^c1?xSmAP@V=2m?N)3BkHJlS9D18Q({{n;HJIdgogK&bRG8Z63 zx&pR5lPMDWnd`VOZ@U(>b#}7WQc}9Od#lPyP+gPKC7ume%*pE+t{taf?Qmn6inhsh z;mfbeFrhJ7m3)O2<{DrU!K6@`LIGMY>RC5FjL`ze&>qR01 zLn4DqWN>NIf=guICL^OwtBGb_VrBk9=DMz0M{sG=YM%fMdYcP?b+}kyU`Swa2@Ea` zTW|#!P6H})xdpk>JzF5&*Sc=#^Kk#)KDA1Y(_rQu~bv(ofkXLsV|BbB;oYs1B5A9y_F zev|Gs_K8B~IviAyxAS~4Y})N2#SjeH+Hi>w?oTDd0}Nb>;bq<89fTUX1rSfs&`m*4 z6h+%(6jNt;LPw|Na(^U$n!WTd*e3^H87^Y4e!J?W_KC9L%k79zkyInYf!ycStxR~D z_cY5u#YW1L-Hbi^Mmm2aTjH9La3Op8trDqr>Bs3)UGzZLmjx?Bh_3g_;fMlQo+xu2dOwGpltr1@M>&u5(Cp5RI!^ADw^%> z?ZfHe3T9|``%HScaq4QJR~^E8_*cYe<_onhq7eKVc+}rr-i$DT^&LA}cA&x;qmp z!YM3^;fiof2V)VA$Fa92{>&~AQx!WesV1n3J%q}WXLb)s##DJ+l7la*JTA#mMG&Nh zs?`5f2+xHGZF%sra7_U=c_TY4kIWoHFNYAqp<|Vf=!5a$bY0j z;G?B!EMF{5V_WiU+SPtxes+avcxCvp_~3Q=%J5qJ4;=v(NdRahbH3U z7GWI7`t&e-OX9f1)ip<5j$g$SBZN;$;35k_yCb7OVvaJVdByFrKRCFCarjYW)xPqR z8q$mOBwQQ)S=Mg&Ge&?9RtC0WD7P<_yO#n9kg3E zpvv_y+2^rf!=!cT={HPQ`C`L#?HLRPVwagJOJh|gV;xDm%n>YmdAAcjT*KZMPk*0F z-x`Zf(dYMXZ)Z0Oe-4 z*!_l3}2n~G?^;Gg%j1#byogGCEsuo{(z2$G|@>wVEJ;WjB= z;dv!PxNq(r9T7wDIa4`;nieWk83Af=hMz-V1BUFV&~aXuXi0mxL$!kT#g^fax#}Jr z??6|_q$Q=}Sl3-xi@bw?FO|CRatC~?UixUKLx%0Bb&7@LU64o! zDXC8B+e@`Jl0+05!+UW#A`I_K7ydrOxKh>3cGy6}p}+%ZFRffhv&MmYzL%FO1!_4D-RCFKfqmuR{xuiVS z2SW~2XZCC>Q{Jp_i9zHizPm3HZ+D4bb&22B#IGhL{y&!(M1JD({lbII4=(Xpm)P{B z((Y_h;u3uoHi-PhpWYYlXsY%lY#fftsTrzl8uVpN!kZ`FW_`7TRK(G3smTs~lWVeF zU)H2gJ|rM#O^ziJKX$strc~^UQJ@&Ecf5O0_%gH50Yer(u)ha|`dW+oTXSegY1|kSRR03=I&1JM|rB zUmEYdSEUg&>?@OkBw`Mlr##1f94iNv5hi*rrG}+5srAdO2$PDIQdBbdsk#6 zc0$CF?r}(uDLKb}gpuu+$`)QuQojg^K8@f*{lP(XDNHHcxFJSM_}Si>{n&HhJvks& zS?=RNY|5T{jV(7F_x4=ZPh}ACKE9X7gom5{gA%UaF=|uoROB&FvHBE;;uKyVo6{T>`puGXhKF}G1T3h0u*0W>mwP`6bzSql zf;IX2YeU1&>MYe?<>~wT=H--WVJ`2V+|HT(NoG5=MD1{4hY*>c>=p^3Fe7Bhy`?MT zP!=Tf zzwS#+n(;9dALwJ?(3C!qCG}&g#ba5}h67np*h#>s{OsS087zNqd^$YNWP?z~rj`S> zsNDu?E5Og94j8Dd1V6{7u>+H3cJx5){XYFu3G}iceO__-(VK#304r_3T@p?=Z#Z-~ zYH$w@wgTFerQy5ngg#iA%UbW4!*<$XgP+)bam?T+wjzU)u@xAk*nIlS2WeS^Ua(y` zh;`6`O|!>kA8mwc@5aU=I$~T%K}#;Ai(*lMF0pQaCDEEx?gXNBR6}E?q)()BJdSJlns(MC z%mIk=>zzv5jLfN${jsO*zA3y+lGA248reF|ZHA~i zqQ&O$wK$IocFty3qDC6d-#A4=N#p3YT)icXU5v9xIKSs*Wr`^)(OUSdI&KXQEVD$y zsby)^w;Xnx^?UQHOYDbR!%x6yCz;^4teEYdTPB~a^-<~kC0BtQj6{XoIIcOIDI7Yhb_2nH^} zz`boxxW0i)Ft45m=Iplg38wfkZKWb`rIp}HE1AoNsmUXASaLH}9Cne-1V%&ym$r{0 z!=P%(OK&PU5Kh5i@phu2>@b8$Y$4kroni}ljY8!NW$0cslpUHwXFVuaCsS6a0oI7_SMyFbCg1<15;J(yHwv~ab!UoBiM1PLu% zqvVT9?NNX(hYiruuyEaTzC5h{x~P+fUtfq^YS$O=iVG<=LN|<$>4ohtFGNb%+Pey5 z*_YmjmS!&Ui@&Ec6V>q#)NMY`Ki;fCfkarIzh7tYt@rEF0)A==flYp!;iXpPI4b7R zvct1vY)!O=xw+1_h8;y}xi|yKs5n$Em@dXY6RKvs2Pk-m6rCa7-H|L(o=08th+f76 zDv1&=W|3!+r<~E7DH5Q{{%62nB=K>eh9ss2k{E7&gFW{`B*Qd%z@GUid|T=>l1im- zIz&k}W8;wCXmj%ex*2;~5PuUg7Ms`fq>O0u>iU4+Zr$XI?bZ#z<$PWnowcT+tYY)3 z{b_ipG!Wj}No=4-C!xaUnY|__!dPlNkkCL6U<>R8)VHQSfUI1BCq1AA9`pbUY_JOW z?qvA#LQjHZT49vA+e?uQ+u*ZsX6htKr3D`PfE0MFS?0<*B#2t<$~rVD50>?11gVT} zl`occYjRnK0I-zxg`;@6{k-w3`{&^X@lorI&%^W0JBejI_<+31&|3$*ai3$rEAeG` zpE(7NB8Oj~fN~4Q&kv{^!au$fw!RKmIfPeMxVFs3kiOdfZ<1JgxJn`tQkYIYpo8JH z!!^GK*oP)R5G{sNCgJ5@R)^s#gYf&wa!-dJGJ{>R{=*gK!^0IO{9IN~8*YaT!Cf9; zBZ~FK!vn?ozad@Vkov4%jmSrf7TA01?%kc*O6zZ6b{yrg)Lj})4WIlQ+R~F>yt&| zV2@Y15n!6p4|(%lpX-zt7jz9r=)et^@A}}h8}i{UuT~>;*lvf^iNkh^`2T6x1`iI~ za5-!@9N|vkA%MenJ>Zj5cvp_Fb$$$6Z%P7?i4F){ok8SXpT%)Bw(OgsvRL7UP45x9 zv|Dz3hAqp3H;DaI!p*B%+)wQ8aD`=`BU$WO*;L(1GaQk-=ms7T`Sj zvC>HazYVki7aZy=!1!?KhsVkQ(ypQjq*_LNDeGGlnagx%v&Qlu6W-l4tS~X{!0@in!|pB9ZaTNKLw=xD3HU; zzu!tW=P3Su{n)zk*vE@Snt8ZE@~AW^EOnsZ5b`G44W?MHvrwv`t^@AFkqecegh!BF zx*$D@D{^Gq!;QG0s%t<&d{Z=0BEE?aDn5`f#k27g#Fwl15G&dM#-((4P;Ic@+W|Zf z`0&IGi(B&rp5?9i4&Dz+Ek_AHbD81j(I;phDq;~v#c~;j&HpIh)o~-oxg{vkD8&gf zu?(D-P!tK*Nf@4solrHyFaE8`WN`~Ec8GvBTW|>Kls6$iVxaYgFab^614e1BjwM^3 zfItxIXnF!$gvpeGdvc^GfZdsD`xfQni2YPsgH%v!4*57#&D*QI#Zv229Sx`?j0W5P zNLaRb<7jED{e!eb`-?+c#O8ekv5-ne5YdKh&R38Dcxkf5i_=1pC*vEudvf&nSRQLGVPhb*UwZ#(86rR__u`O19f=%{$zo0pa zyd%gLDB5gyGb<`9^G0jSyc^&{5KC}U`N2zh|DPsGEbE!kDn~AbNgbmr82CA#$Hs8M z;YU{uqG`KrFh&<3h>y30TpnlIjM0V5?PCbebRDBB5cma|>F*f9PhH@{V=mMMjv7O3 zk=w`M@25xK#Z|}8mE(i?=Uw9N=d&l*7KnHOCn8>8~AX;p&8 z8wcg&L##>L^ei%|^AM{MQ7nC9jWh65aoG|ZukcrEYn%(!VDF>WviCz;hdmzBI=ufO ztwZ?9WrE`ZKh>6V{{hrYN4wI|!cVKfX2;8q-xb7DbNLQ=1)58m7(h%}_5pko0ASVs zrls_w3q7o|1V2}+X%DNg!0*fQEmua`n_3TRIjcXc<-8t;fjgD1Z{TM+Z*zR$=ignI zhxvEs?153amQbb?pL|3>PE->gX5Aw?`!ZOLf>;bDrEOllNIA1ik>M7kyi#FWDPPySR~)v@4%?d!8~l8J+;M}KV*E9sC9B*&clbaFG zjn(S&$)_if%P+@51?NYv3ZmolhuNaw42b-e-PtH|w>j*fz2%^N;-JA#Xx}(y@Dti! z0W=ESZw{NI$BqK8WLS58NfMdnDoGG`NBKlpG$as7|H8sSh;-Kh$b5{S+z@$4Rt`cg ztC|kuSc6zOki5;$sWERHk;=*eRPz_6hY-RU4vUA9;i~gW6m1k%=ocrbr6_zAH71V7R8HG2~2t-qQOSFMiz@C}1W_;ovq^t?r zHP=Y_{n2A+c4U;fW`cIj`nYye)CITT3OX6t;HUjc*@>3}Ti*$Z16#!0GePkop50|a zKu>Tp6`UWv*rBUGArajRicT`|g=u~J$OyCBVas#a-gVgEXJ#i|X7Cf-|IPz<#({J6 zUaCD;+esaQ*wQh(tX}vU<5N_PQ>5f2Lc~Kqpwo3dXnmC2Y176wt%rv?Z+}GFx~o!( zXd;Mhjg0|*z6fGlW6Z97ep`=vMC;N|_GD5r!d;oig;eoQG}GbrldVlkM#Qg?yNr515%w!4@FwD8BvQm6^AY#$9T|#~u_PD7-#Wy9 zD>)G(j3S#lQ72CLIUARsc;PB7hLc^gTJY0c9i$Pg=H`j)@P2grAet++o)dKqgLog| z+h~`plbuzN7Y3aB~QwX;?!W9#Bo%WXF zvqGak45GPA`xRqS!y&g0=tRhz%~8S*xq|}a$Cr!8bLg$Xc(w#6 zz>SM!I~WboOrq+VrjM!E;MNmxQn5i8#Rg|SB(tWEapr*$=dN(DKaUFzM>t6d2R){< z4z}gRc_ECvo{f`m%E=XG&Fs<{<|+|C$Bau-m%BaP5mO6)pb;XawYT0C=3RU6XD!5^ zvO}kTSU(0ul|uPVnmatw-4vgsO;K5ILn;bm&DRO%WFL`PD2B6FKDMtz~e-2JLR`8S6&p|xfA-_F$52`t7gR-zH zTc)Z(cHFqopeIVphCm1#Vt!8yWKDi6huqk>*9w=ql7Ldz!e;k!lK_JJqW))Gq#F*N zFuxMFmJH$c11fh0E454nT_@v`0yHeS!NVzFCX*!n)=!(P?EwYC+W=85b_xGWQqGQUK0%;_hI}v8DHY{ z_hHDlzYk-LDCbnmJsFxY*@yAlWZj36Z;IXmTwsb=W-@G>r4?!#GetLIl$c`lFg3YT z2MxA*n7Zb&3e<{IAy`QGm24lXlv-g*Jgc8k9yv@sZgQlTsfzV&qV3Zq^Jx}OiF|7s zlBRZQ1LYw*G7v9&Cd}0xq@1-KVHZy~~t@O%fX&iuDc!T%y?LQ0#%?U6j|e zkVsBTAGlaFU_>-p;Pkmh)Z=K&?Ix)VhlW1zrRNS3srAeH=eh zvUdUjL^UfwMax4cw5nJhTA)V7^3a@B>Gn>bBLvqY!}f@$tUeEi?7^jx()POrkyIl+ zMa~yjUKqK{6q%Y}XDu*QY>y{Q)>KYFUWUybg&Cc%{6wazVeo1fSI>?g8?I(YFz0bo~k31H&sowuZ^^=mSDOWKGhCc61hG#ETlRF zrA*cB5M!t6kT7^Dejmn6)s8+F^x0*uDm+W*Gx~uoH$JRF&T_JMIb7-JaMf%jCwsRc zZ`|1Ey{ZMvtX}ly>N}7=vBwV=zdwQ{_IPk&Gr?suEuSj?yG3e97Sc@KGp@QGE0AVp z0S=nRo53&|gW60;DJbY^)=3f6YL@|Wnsweq9m*-+cLe~=I{BvIi}vMw)6}ekwxd~Q z$@0jAl%Fv_cp=lkHpz`Nv8`T=6q&!Tcm=z6MPvl7)ytiTc~DF$DbZ;c(Am-xa78*u z>Y6&!bYiK=94sH_hH#l^grc<8J2ueN2 zhzr4~%uCkgj=&ChEL<<84uHxQ2iZ3#=y?PJ6cnYJ({!5yO5@jD4df!*9Lk^w*yd1F zK7B|(*l}<$XvEO zgpxAlHh`}Yq|J0nzSvBsw3!N{Wke>^rpcAWU1SG9dF$^}DP#xcMxwS+3EYZ-=H$*3 zG++ze{P4hf=p|F|LSlS(%HJrY>`npA#MHk793`h~;eXY_8}y^Cxn(wkN;i$n;b4eCCO44Nhw74;m%;$>$O`mG{-oc;yWC2IR_J4tq3e+$%+jnw>Lrl!nV)4*%!k{_u*LV>9f@9%-GcA$8*T zJYD?%G(Lj|$7i^l+u<(lnbrbBFelONKqh+}UYntN97@~qi~Qx!rB5gfxH?(L9tSiW z2)N#;_=K#1YJe4&W!0XzNJ!vENN@=WE_OIvhZpM!sn`>7NV37f!_69TNSz%dxLo~U zgPD(JNHUt?7mEh0hz2gvz#V*VT1OvE#{dmi8CxNZ{csoL3|(X_N43iKhOGn=Y;V|% z>@n8$o9?zZ?AJoL?G1ZTR9UKQej?6=+Z!M!oCn({NhRmOvomxaJSz>&dGLQyLJmFu zLj%cPK$!<+d&6Y;Us0jPN}t;sX5m+a2i)=D(qA&uPk+fwP491SsD3yyK(;q_{!E+s zUZjV)(}lOy@Iv*Gl$XkSt`}xsGYx9^RnGkTF|9)hs zS?t0W%(S`XV8EWq;R`<6ZC?H$5;m{Q)G-W!90vf5<3Ms5IDeLy$)ClDfALl|sW1L4 z{-1nRn`!?z7O9k4SxT=nMyZ)HB2?Pa{&-|sia7~%^2=6YR>|7B=W_7JK=8>-`}oI^ z#^(E(_Q1!Hn&t#i zeHwY*RGGz=_4%JQ&sU*w!P{IEu3_-Q43_}z|qFksJu%bo?d*MB0n3S%O{ zi!D%vMQ)i`vSv zga2DFpB-~1Qo<}s=23lG{(J6!aB#1=|0+{p1wF~-z&{T7Z^Pl&06vFM^broBrKCIQ z7>Eks7&sbTqE6#d<enR7Clu zZ868b{#)dB(~(hbh)#~@)gHZmkF-fK1Lx>K-EWR+RmaRxtt$M~H9qbzz)!8}({uQs z<-D%ZE6kH~bQ$T>ZV70)eB3>U<1eCl4{Q*7+>5q0C+Fx$jA)L;y@5n7O8(6u`pF?G zG*=P9Pef^RwN~IKqAGJ$&$|xU$n%w#&s9{2uakp=vH>|kwV6v$KDVwKo$?dvmakX# zpR2Gy;KSn09TQ<}kr{3LT&<`%$aYJl0oVgoJQu{$a=u}%8ufip>l`S=vk-4PR6>8K zbTv;w`LU;h*ubd&vjYYq0hZDmh`GUAFN@gjbu@Q%8?epF8I zQYZ?}PZo-l`6?8S+&2Bca6JPLMWWVxiiC?Z*Uwi0gP)tKZbLcbw+H@s#q$*CrAu*R z#69y>F1pWGxfnWM#T92e*UJ-CNkCg`xQ6Cq4U$c5Tqf%R}`Qh{boXRu`;#H z`wk%D{W{|T&@&F&e;u?x9W?j}ttc)il0QiJ2`$6M{~(PIErPwQ@~h~lX%M6#v}Trd z=SQ~-qG_MYv08VC_o4BY;89jUkbxP4}tg1&U|lQK8VGyX2UtV*S?G>9bn7nELp%@HK% zy=@ZYtjfL^yyEct$#A^}@bixzLB#*11QEYa^g|L6MzYd2b77gNF;A&bfX>H$qH468 zi9Mx45qe66qUuvB6!23h8a$=)3O|LS#Zwo`YqO`cqWv^IgESP1Ax}|W5q+dHHU$Q; zgx9lXG-{?hc%Tt@9B6Z%%vai$ydv7etN@trLUoanTSzuKjL$fXI~_;(iSfOEz0u-)|Juwup0s7Y$PivhC zx#;_m5=R< z=Ft)6YlrP~hwUea4Sr(Fw@7ONeo;-Dv_--3tGKw8TBHE|M74uNMA&E%#m$etJ%|?V zqv^Cr>kaWfwyfKtEzPh+T5p3EX}yhKq>?tsj;{tud&03n^o~)n#%39zjfkUKq^NK` z1Ib?v$O&p6LHV&CXe_+Ts-r#2ol1?EFB~pp;Nz;<8qaV3<#7Gxa1~puxPH@&qKmc4 z5Y6VSu{gOot1MROcjV0ja^kvUG3Cs~_Rv`GH^uc{+vv4s@M5hmWZ>g^qFuDFnX*{x zYvN+9FRQo={FED)5xm5;5l~T1okO`Npw~OvqKPDs6(`i`5mbiq-7)6 z$Mi*q=yX$NiDD|TL@`xZqOuP^GpW6Vm6cLriLu?+muzHiSfT<}yGOCCcvCi7q5|fp zx?58j_zA7w5(=0fJu--XtTRA7wnQro@jkdYcSn1fB@Wy|2ku1&4t|1r)$xI!681K+ z1roN;!9u)j*TF#&E*aq^svi{qMbQ-SMt_yQnHcr9tU)dzQ`u?|`=5ALJ^Rnxg)X6o`l2>-o$2~jqZNDXk! zlO^vLJRDD(GHRK7zyRhvz~RB3QOn{jN;PV-o`GuA%kdvSEgIZ?(g~^xRinPJ3}52) z_uR<0zvrffXf#xlQfZFvxyfCodv0D`rgxvbP8@po$<}4M@h8gBJ@1j0grU z!NBDv8@L3sJ{gRyK03Mea{Xur0i z&t7EPfhPgNB|y0MJ`^2l;1b{;=K;L?;pjtnCnXu+ZO^JC!3_Z7W?d~s$jiA9VDF0s z2%ZE8R{*Bm_N=jM#*~QJiQ}T>4MGK`cMEe+TY@iU6~{+=dkcLOt}d;E3YSn1JsM57 zd+vzvfevgJx}YXsx>%s#NT6_8lW=2?M6WV%332W}Ks@wFbb|NQc@X~tM!$yB@b3~w z=>6f-guGub#Q4|6VieYsOP4Wli4pF}iBN&UCB_rU7-?rL2}uwW;Uy4V+0FFlGPMbD zzYK;N?q>SGwXrn&>EdYAzBDP?Tt+FH>@J@i?TW{s@;YIZ;wAU(pR+qAN58;zSy`Rk zgxmi)waoQ>j<$bn3Qe8-h0h(C6q;$#j69QxZoCu)Yi zDH!tlJg1v5+B_#i{|!YsrQT&WQHK2~Tq4 zzP=v-U4~$|wBjt4T~MjZbsR3TT*u){mnZk--C(K~b~jD=W-f4H>%wL0!u@1sw2^RU zUp@y{TJi+SB`x{!a|tbpBG6pXHmUY#@vX32Exr{52ra(t1rcG{-hv5UpcED@4A+ z_K^kAW~rlvUWKgp@?e{j$y}l4nO;GB#tPm1(>o~(ZvJVo!f%g;^2PROh{Gy!s|#vh zB(E1LQEocf_B8&b&_?4IM<3IjOs5t_JDIjCf_5;i;8`5qnc51>T>t65LJM=tig;mG zEs54NLtJ6bE{R^B+Fj_iFt@GH8(T)Xa@-n3jd10-Er~nJF$+N|SF`1d<(QpZj$2pQ zyk*gCEW$I)gQf>8|V-s zYgF5O07AGK9U20nB$layc`tolzhtB6PYD4JQNfUEXL!xjvmT*j*v(~aeZZl4zW`Sg1XsB z&y$-?0WYY0p-%ILV~Npy7`DXKZiK5~o@dgOS5_E4(*Vl|D4Fy%O^V@BfXJ#IIyIy& zZBKN~DDQm~-Fkiy9IthD5B`jftj&g*yCDug?7ItIwpU-O_`tRCkgVe3U zM8)nol*``$WeTj6K2*!5ejVeQxrr5tC^Fa4rmWPh3$c~DI1aA_n~Z*2S8U12jTZGx z{gt{pz7nns&2VY)zip+C%D1f4QMo13C9aPDd>(#(nV+~i1_O@Da5*Z&{cS^ZlrZL~ zTnm6?bzEbmu8uQ1Ty~#%#Gx4LP{7p*0z03~lMc$fmAXXkj+C-QUU0FHz>SdL3Z#^= zE8P?82q300NtpJVLk`XX2L~?JCbyf<9g>shA^GxRk$@4Az$KCcK*C#H5I`hv21vLX zsfuu!!@_6=nZwE=p=>p%x=Nd~(kj0>$G-*jow;U}NP}!MXs}9CR$3KLNjp6Rf)n3! zNkYkq4;9NTzul!cocMZzy$(=4SH&kjZgr|8zlpl)z>gNq{I@*gwmRX%r5_wmKiH** z#hqsUUuWBj+oSK8u>`DU{xPd;^&Qc91}@C}4ehw?v6{AWUi41$G^uK*E|lVGCjb$D z9uMVV@xMAbUj7OZ4?F*h!i*;V$KQyq_RQO>)Wm-jaAZ1#UrhXF-zwQ_&MfhMM>JN_ zHrW$xXHKtDGyguxS4(?pmHlW>^j7l=qnw#PIi6Sz}`b7`!Q{cwLYr{UK}4gi9V8U^xq3G1{= zCns8ieBQVjP#`#xMsG!1dgB#>7_z(~_S{nup4Kg}TJMlqpa~?C`K#@a_BgW@AV$a$ z7ot27K)i1Xkvmx28bsI<;Oz?Ff{Z2oOqmNB1aV|POZH-b^NIe76Q#^wjkO3KQZ~ib za4mwxaROfM5U99D=e?{ox^lW|jp_m6mn==wHQLtjQ#s#mjVk9IO4E9cDzbd~0SWY? zogcl18bCjKN)R1v60nNSfQUms>Qc<-X1&Aqg2T4WVS}I8-g3;~=d$jTHLB3{v3=;U z`Sia8^sKuAcKpH!o7+*~jJt&BERQh0kX%8-Xt+d}AWSJB6^koMylWXrtx|&*R76`S zeUovOW4L^UViqt35p6^FDp85@l{y(8Zm$=#DnY~6#zEvb7=#h>EQU#Q`&3KLqw?=3 zk>f0qoVY>k*Q^-Xy*-R0?41twdrHnF55kH3%Z` zbO~Zz`$W}}h*-!RVJek+h9$5|j>+{O|#4l;(P>tlhDNZC1sE3s+HK1B04%RXve8@1! z55TI1kdHaYr_ujjt->qETS2LUzf_C-Y;Q zXsi*xD2zY;v{cx%TC2Y!2=qZlPeQ-Izj z_Q*C_%QnFUR*Df51%h0+1sS#OnHqNX3|ROrpT15n2G?ZvmDjLvZPFCiajaD#y@jl) za|Rn8xJ_alsNe4q%4`EFA8^<2qy2DQkI=JUJ-AK<6^DcXmj??Tv`x2RodFAZ94)9g z0bo>>FnNAY(DIJ&b!>CoyTw$ylT)!%y{o)sHSMTQCR4GBzxgp*4(eZIkPWgr2RUKM z5H_dPd)cPYdTsxF>$UyU*4wNW=?(Dy3Y-7(^*a6|n$lT+{e{wb<$9G)&@fG#APq&J z>w1c(AKgEQW`)X&%w`m_mHkQ}k{ZQ>vocfJ6UR-d)Z_&M|Co2JvQ2Bmn%YAzrWdOF zn=F*L$9ds;e2Ldr&day2oIfS&5MBT5S*6PPrFe#>dfCoq^?E%J`@(uzvbY1WE7z-b ze)D>x+Ie#4vK?$yJKyoo=x_rr)Xu+&++7BXPz=$|r~L&J+@baQmoa#$C}g+Cf<;pP z{8(&(mMZwq*Xy$Mq_D~8hqV$_@PC7qoPzruuKZ-c73DYPsv{pz^BXcHbM-$XEf>X4 zcq=#waN>UkcyK8Vm;V`XsfCBjmGm#`^*`fBl+3>t90xjGhE6?tORfTfOF%h(e8_ao z)xV9Zx%#)!^J0O47lFYgFt}96!zHk0F!jg}kOL+Pd3)9S5EQD&<~l@hdGz(g0MY96 z5UsmdMBqh4aES;mweoO@XjU>JyQom?PVaL+;}Uk}x(bD0pkmXVa5eR-A00A3orml9 zi^T*MoqU0F0X$*XNoei5l@yH6`u$d>#pl4feWl%R!gCb4zR z4KF1%UbUNFx=5+2VVj(S_`Jq{gX2yAF=3FeAk%|WFhz4%BMC?}NLNpHqX!1(LR(o$I0NJHLb^(ZVw2u|Y zhvxzL^kRYRQXpVQAaH*z1t7Z=NL~PhKds-R3(8OH$@Ti{`3bwCI}nVaf-3a1D=rJ! z^_j7-{kwduh&@;)cCC?NM9u=&D;w)#uGx^FtgF9459#?sPt>+ai``?gH|WUUa)T<> zTj1ScIZ$`63-5(wGJ}uUz~LKS9;lnRK}PCqyi&}m52>i9slOrqmv_qs)dbc7!y2(0 zigJ9WCcUiu9;Ox2!Ft68+p2ObWS@z|u1LK_lI!4n)ds54?X)wvPQgE$R@)x_GQFlG z&oD1+&;fJT1|2Z-ByC1NWXog2$AL@+%%gB+z=W&%5K)+a2W&VtZ2k-4?PWVvKZ~@9 zL*@$c`(u3KkO?mAZ*Zj~QbEm4?d$XVErn+aU7p8V-=DIJion>c24H zQgM*7Q56R%8<8^=2X*C(n$5Z!RdIl}BY@Zq7#jLuJX-k*FGX6RB@L zcmjFI4qKniivb(T%&QwIGcJ1Gr_p*TIUAi~{DX};)gw|QsB9M$_kkWceaquw#(4$Z zhR-=(MtDx`-;1Z-ida`;cOz4%%e|XycK>KSd-y=CxcP0BO|Oh$@0X1tOr2Bj7IKxN zn>Pm9a?i6R3q{?7xy=Kbzkopw1>c;M3pLH*O@4bsV zgcO9?rY9>lR6)(mgpq4WH4JfA+1!FrcYM3nrhlR-Y|oVRu1iIvU(%+VvQb`;pUo82s zz`tORKVob1~yeZr4y zrjhVw6^QD)W$iX=#{fNt)`e(&8Ib#L);`=9_cqFaJc^7Ayd01xYckv%Tc>QaxZ{<9&S$|C&t5X3h;`><(>SFV6 z(F#RI+*Me53rp!Oio@mnF*%UK1y1@OQR$aHercmvRa1A1O8VtvE0wf88pSH6E|5ej z?h`?L3dct7elYV1bNv=wagS~s8*8rFqFVg6TXec;y#Vzc<{6h}LTOhs@_sQ5Tx}-jGv2ehRaNu(N0hd>^!zG#x0UDlME?`e)V5H=N z+PtiF0#|hSa)1wUJVzaVIT=sJ%NJQa;6*%eSv}@ur^ZJB0sS2S;)+L9roL=ruFv02NETXT)Mm*=R%b}q=Pf_#3cFS%#5n0O5aLV zb7o#3h2(g+;N@Uumeb37gsWw7Jg0$z>_9ky~&;B)I0M7O;w*4hl)YD;EBvpvY1?6>?C4JJqHra4fP5iR#$ zE^wgWC#aQ<4g3W4%6XtRJ5Y${a}ohLL4Bs6d~RnoI%V=!r#k;@s}9N_@L};b_K+P? z9o^)_Ww0!~qSI7Gd*q5}15^4H0>i{#rxxZZczI7FuDz=sb>|g)g;dj5w8B7B=PI0< zh$p}>j|XhV?;q8<-4kRPoN0hl} z%N!McF?}io9l1J+Jv*K9WnfMwVkGpdlv?wbNj|4L9&6v|0Pm3?1-wxKzegek3@QTt zQp1t}f93#dGIPmm+EyR5uh35~7 zwKF&3woF;|H-60?xe~Sbn)YLOMa;=l3eH~j!S4lWCP(9EhEPlD%_ zv#yU;GfxqoMCMk(%_RXpK0vuip@BH3QM5W6oOh8Qbg1^frak#12Md1o2|f)HaLD>rVfoR&2hk_S#NIZAx2a?x-WT7R562!b z6}Bm^a@!PF?QOasEN63CVnNtwo7O0zWjwI&w*V|(A)WU}Mic`Ew?jGlegQpEjoe0& zb+M0WtXIyCZ-s8Pdpy=}bGO;t5*Xlt&mRbuZO$5PUUa}#Ibg3kV5=0^K9>=qMJ(*s zEdeaCFL@s*;TcEx!8VnNKOG+zU39w^5Yb%ON45tm`}h=wNG{=B-dDLa$eV?1x}Ak| zv8^@MgEbq4urL)iW zLQQfqM~D>Dru3H1x7b9DqcP_kFZfx|zyGPAh-5(>054+e+~=83%dX4c( z>Lrs%fpORnB)XFqWbrcRtf<_KiBmda_&xk&#aej7T{7TY-En7J3izj)y!@p(Y0JwA z=A>_Bkxp~c<2&&sUf-M~-@ZBNBUxnYzvosgaOHm0Cw8hi>8YK1)&m>LrIhl{t%oz? z1EbfZEC)ay^&oHlK7wids7EbPi8P6CKm$WsmbL(h%WE1+BbKEp&&ImR5>7Jk&wbQU z-P4I(u~Kmspyva$?<(nut_4Dc4-31De)u;K3zPSq)>Zrr!D(bstxTF+R4)4O6q_>~ zlj$XI=znnjH&7`FMy8~KBx+2-hCh06`Qr(fMkcuOpNGBds1ZDES1z@v`5Xm}8=9__ z3~TCnh6ZowA1GXcX`^6TzM+4g;WzYexb4M)0v`c|>*DK-h+byk75fsrdG}-EZQVEY z&)mV`-Kw~0IF9BKhXyVUOiwGCr_MvO_+rt3579iLXy6swl7~y$1NEjFuM3A^;;^eLvqE{+~}4{!V{gWrB#SDGbFat7#l>vVHq5WXk=i#yqzv6{?5q<-8_0e_!xtyS3qeU6fJEUj0U_a_XbPNeA*lz_2E*aq6HX z=2VLRAoai+`BA=DBR>W;f&&eQQl?>W=P?EpxvAZ8B$jXfTd|`0R_&|1V`I#v*mxDM zprU*Jk(zJSR@$Qzc!fPWf!Ez*k933ze2?YzKznrUfmo_M?${%1i{Y6v6ek*O&J&$B zcG*+-;mK@PGz3Om2n-B3u|tp9!^#I^MnA66DHQ;fhZ>&Tqpbk~X$>sz!Lm*&isCm$ z#vW~q{CnaZ?!(4N3bV|MP5UROJ{U=Y6@If;d)P*N6b zlH&-{Cizgl*d!kUv7Bi@Q?NUt9^ILS44Zj2y^xj3(Qe-btLgIxV>gQY;vfSp5p1y{ zcF-X-)DH;_WzNErOtXG$`NqZ028b|$FN>B=>32FPboP;0O;dWW6uNz?*&8qKw=C~i zFWqK8t5bKG)Nh27R!3wni(Bm5^O#?qb`^MNY3s@tOIvquQfa^0BPSm^onO$a->!P8 ztvw}^g)eO%{u-v1HhnWwy*~6;7si|6MDyW~bUV!liiDRQ7*>%I4Q1x!IAN6Idn(4Mr$DVCp z#u}t{4*Ftq(48vtp}e`c36tXb?{R%n@vmVr>a~w1Bkbox1oq1mC{VEQsC^t!I-|?M zY$VqmZNjQ}F3^b82(DO-WV@)Os6EIOG^_XNig_JUCa##fiQixPC$5;mgmXJw&h2ye zspZIvtwLwdv;;DEOVKQ$lRZlMfHmN zFS7jLDCJl9OD6bV#WRbP*RYwdLyA}npCr}7e$xpmJF(*330K+!E>E2da+vy`hiS;g zVge(!30$_xo%@}+3IQ}%wc8(W51Ol{?o&h4D73zqt45$P<{kl-hMb20#cHXOI zDzh6I=&6&P;3y`l-2L&CVxsbTN$b}w);v+r^Infe4BC(es-4n?T$_9+#p2ZP-Tq*; zCI+gl^1G@AD*X4+Ko!QH0I%1@hfDu^JpJ!3y>Fmu`Ackg+(32am)O<$O_>8UP?_`t zIvT-G>r{yY!5_wrcF_9t{B~U1SSwTKfUJJ5Ep{M|r1k-O^zYamrZHpOc@QM`ks@Bq zQ=2BH@5*P_*U2a`r^SZic5wdmW~TiCT~KD*Wp6`)*7Ja>tg@|l5Z)mUQuYDcG$Yi= zJHQ1}T<^LW@twH3TLg^jM-UB+$gLTgBq3U2wGt~)) z=Oe}Qox}5yGWo+X`3MD-11iPs$)lpksBl*tQ<1k6lcvCx)k0xwzfvlMET|x12Pbf9$tU>V4L{)du?0wWfzmr^vM7FtxSl!#YF z{v>gA&G!y=KAZC)tXS|8aVeYkp~mu}$jil>T(OyND`i8agqKT+=E?_N(fr5bxP0hA zE_zX@nf{{ zxILx9_>s@TD@uy#Rb(X|mP|Y%GT#zYlE|ETTc>i6a4Ii&P&*?0Tx*m)$h8K%d`vco z{gEHEIywLvUzUwqBM0<|v&VlK2pzHqpXI9&g6xUd08aGi6wjwr5_ zLl@%u+u?F4G7f2Vfgy2KKg53TVy{k!^$*pUn-6K7AqgAt>=)50_LC1o&Fz9y4&L2| zwAuzj)@8{CKO1L^;|D*jZZiUa6m+(y6RkuJAkm-7F(fDepNtDXiX1O4E^ZV8lCdhA!9%Mv-~*I{1lUH6W5 zI7#g$g~9!^Mws^RsBC1vqs8p`j#fYXEani$2Yy!nBkx>T{bOy(f-yZ1>L*(iB;!gz zvH7uEgIEkzrS0L=@@ZzTBE)iGS?QQ)OWCh*_vQ$5!h!tAf&9*agr6Y)aQxsW$l~u_ z2okT)7j_{1WL4hP8ib!USpQwtpdWox5FMaw`>yseEKd}rX?ehwyD5F7x$j-A$v*FD zO+NUp)+GD{ImxkupCF(52avdv*azt++Ylrp$UFt}# zA^ctu;u3{A=`nZq4`G7RDcvd;W4DV2UuV z3F0gf;MN7?$@hvKPcPFh3&-3x0w2wofIoty{2qpHfR?q8PxNFGky|1V1eZZV<|KYu z!K{#t{2r@lPu!6nwM`z%Y68}O=9e6qteHy& zNVBS^SM!ciR^el8P7urPKIo{5>8rv=XDAeYzL|Vfh4j&*Dx~ujocE|5QZZK9JcsD1 zvAQS%$F$9arq@;b&GeE|?spl!bW}@u%rSD&Uk1@EjIE7?ersoM$kzptjg-#n;uztM$?E>m2P8;t*m0TGEP$;^qx02#>uw{_oTY_+zzR6X#t?BbcEv z9A6KT-{kU87{4fgbxog&Bd-!o*vA~~)0%>?5hk$ZUZZ%GA&jC~#O7WNX_bB4@%~x> zTQ`KhoW>1ag{#y*(EeIOg4`hBlUK{#mlqvvR!UlD@84_5qvDu9uRr1`xs$VT+H1 zHJMjgN+in{?_CX=*|J=4Cj8I`+H6QBmwP59BGBI@h{KBGYziOKehj~?VC<~xkPl@{ zDBOth+rq4wruH%IR5gxir)qRedp!Jt(cJDh!Ow2h6&D2*~@?Q{Cs>JMQPVyz|eU>aMPS zszY_E(=GQTpk!&0K#H#By{~CIKoZ_(VKi;WrmuCXAn{Jk){o>}Y7RR!52%`v^6+Z$ zEeBz&j@lAdXh5G?^RuMmcd+rEoUm&g+4iE}tvDQJaC; zY@jQ`sOtum2$C!2y_zb0D`K~DnlkIP0zk7;YpmA>;^R|cJS(-$`o9hd2F%pfWp7S% zi9oYfhp%U?f|PrSB4I2m_0siPsgl}{hT=1J`+9A=x2)H;d!ItXokRsAF(5qQ#2}hY z_jMu*Mub@vQ@P5x#xcISURC_o$$3?ycZSi_@K7lYMGzp1f-dVwww*N|4Fox}gC=cJ zN&T)qvNaAP|1tE|!zBnbj-Q!AT+VRG%9Wf=U3u zZ*PiC#!ar^R)F6+fIllhkOYXsXpsk!7B0)Kn+RPqEL_F!6rfMiRCt(#06W;Z7XqM< zJtc@0+lEmRv5HMN6kFxnVi&;whgofEUM2^FlB|UA<)<*)y*agW<-#c$SMY4OWOg2I zY7h&2uO`aCcaOsd9wvDyNJ4z@5EFbp_LCr%_`VDA35VkAd}r*d$N^@>zPiuhi`r$E zpmITO-i$khv!?(V2;OGUP)K)&uph>f-)qT%hse4INr-Hqh{Jar19ReD-BAHY!+Eh| zk@Ly1@V%;q!l2+5&yP*P;hp40aMQon!n;$!fn;8|m0aL~qz%E<43Z$-hCJ;!;gceq zAjO1WtAI-S*bPA}jpc62$=r7XEA5BN+LVL+63<`IqNk~~!4^ewyW#@~L1xdoqJ9VB zk}>-AD|C#O08voJ=i_Vgrkeg6)O_>>09hrE*dUgzQ)B~$n29bAM03q^)rP;0e3xy| z;s=jpZ03e(i0k1Ev}->4xiFee(r<21!zS@s^cx;z}7loKM+_)1Dd()bz(qs z&%Co<80dWmagYB-0`sw*!&vTkoVrngNxUnvqx;KTV8(CM zA{(<&i|p?kbua);WYe6SF&kz1W$xIRc~Q`8vNeU#VC{kAkn)0)qR~yvTN;nA8rI!Z zAN95IuOkZL=H84`J)iN9LB`r3epUStEz26a@kTU15S+A~e3P5Bjj=`7>jHzfU^LsL z$~D@g%5~hN%7LbGeKsj<&}<$v$lm@fw~>W+|wqX+S9+_p(Q8~1L~i!%0alA|1VQO2H4dQrwvz@u*?rSpIj zV%4|t=nJuFB8BdZRW}D2Y=OpbXI#GW#n^}lZYR#W3pOjfJr#~LZR{oA$Lh#2QUwEU zIx}K51-|gpucjg}K1q&?#G$dTis2`0MVombXeZuTpGTtIBBL40kJv`wz7+Wi{4AtT zKcUS~ApL|E(s)8iX*{9if4@w}2?GB+-k??k(_^z937!m(y}+vxFRO`e1a+r^GWZp* zMtjp-Xmj_r9P{XAJvzMvDdn2Jr%n_YB=MLMzjU_5FE7r(FHb3N&xAzJMp&Q#(Rzmn zzw~VUH7umPr7#^hQB06UO!y@x{POAy{1VewnV4+1e_`NmVYBb|#nj{nJG7Z(G4i$dsl8VRA zftaXnErsfi6Ga7CM1^0Xx>QifyYUEMSzV&2FkM_SuYS_bJc?bgw^vpwZ#tteacB(h zX-4G#UbV7m#DaBK51`M`EA*asVt29w$t4kIz8gCyvcoRBPuBbLu=rMFxcA-I*OBAY zhGYK`fSQB*{SE{6v0lsA8Qv)ZZURNg?N3N{qNW*SqCM7 z8j{UFsAt{g3>kFeD%gUmxf%ZGaEWH!7Sw37y72E z1zI)uAa;)#xFyZUt{?DtZ>ByrIWbvVU0l!JqV|5=7FBWd7IoJ7hYP=Qi;g9?ZsAx7 zlBy_`>n=!U**n+9nq-ZV zR9YQ>PBiVIN3iJi^0d)C3uHr=Yutv$D@&qBAYNEx4mykK9?uqziPMwroC zoyP@!>2a|&&BgVSt?J@>kzMt4{p7->WxKVU3K{7(766?Wj2nBrhwE@)l8eXj%f2ui znuv$11V~?q3>Bd*%;2q|1B`jXp;_wC;1`_}FIvl`AOCV_UMCuxdLQq#--y)W|FYsl zVJ!s=`oH`~r5R*_No$(_%a1M_G<7JQkxk3(C!URJ59!oivZeM2p!SOc?dcSLhLGy- z+YQ$aiN9|b2GQSFYLcHf_sM86^z}sv(0k-YfyVyV@kihPI{uj1|1SSFc5Behntc~r zD);)o1miLIsq#tlBWBfCR->mcN9#8t=Sgg#Ir~TLUgLgb_rk**4F1QDy84`B=e~r+ z6G&5lsu{2n9FizTi@5FL!ukT{GHCU%sjkmdu zw|Hx;d)8QyqJ8c(KoIBR(=r6p1a{iytDv*|M-$k2TV@q(X;3#$P2hlSv4PPom~1`x zpfB|Cdt>!OU*kU8V>96h5?SS~`Uzo+!IC7!z6`G0LbfI^ZmWaG&gP@{2aHRs` z^<)JBbVaZXvZ;a9N2f56Om{gh)tBdQ(>XCx%B&X`VWkV>I(4OF*i|wk2YeM=cF~DI zEndeFEbVS;DD5$2vrh`U-*Tab5e}&#{8636e@{ zW#G0n|KqYaf)@Yd0b#t^uKvdZGcsbW#kTuei_3qkwfJ_{T18ZkSj++2)c^SVR(OFC zu{C+ekgnO0yZda9CZ>P%T zv|-xkx5i@j(-}#)o!KHt^ zD}=UT%vr7w@-wn#AzX9YKm7Cq$uzKGAXuRv3h@DOZXs%fgxhz1>8jUT>9hw73 z?h)495w2PDWF_(c=pP~idxwIKXj?m3pt)u|c?ahoAn73x#)|baBX;P#0@3Ug4{ulR z;VC<`OfK4?WpeEfEfdhpWzG&ebt>*_-=TX5i*|&22>%Q4{X4WnJ5lz>ud&?%LeSdY z-^j3cedRbL%Uuh0={K+}h~+^AjIS4XGKRG-b45;Q@cfECzS?8Epy;8EVC!j zk}CQznh2ea^LMJ6t#)c*^s z{BmCP@R~?#(;a^Da+zA!pL8)+_9tDn_WbDtF+mzJ;g^^i{p2o}M*uP9{gjUBBXhZf zGsVHdFWr1+J0v%kLUQ|wB7qrGDHf$=R-5$+--J7>*L%F zCC#~8S<#Pkw+g%PAFXeNUBScwUnTXyh!Vd&u(+M;#V44&U1`Hid{_D~gEc^o9b7M7 z$&Ss97n{zzw2Kw)(urLDE**A}$ajdgyL1eyyX&uGkO=bgqLIjlqtL+qI#3%KdLu5RF6x;G4c39j;bX~;uB>JlVhhO;@_B?(v_Tr%roL^ z*qnLQZZ!`&{q9x$qW6GrMQ*us%_}bAMSzoC=67~+2ku2Ftor4;nzg&sC?TFkNfN$& zPqk5Ir%U*wOL&M04M^^;mffxCKnLkASXk{0lh~~#ox58zY_*$45G2!eb?HFUbl$T| zxBQ@(uZa1sBBp6Yh-JFBNj$&Cf{61b)cNU{-RNUY;^$?}m!w(+*Y46u(4?mEo6Nbp zbrLiqj4wg1@)6dx8M(2FrtS7sG+q8<6-@_de1uiWO@biEE@@D%WmeY50a$F+(FgsK z&CUlM|G2829mtuja>VVNRsBcv_|<_A`l1$bT$1$2ZabwI*8XX*$}kU_KIn^}<*NP- zIxlP!w`S#TY42UDBG4Ds3dC=26CY;QFiu_1tE4k5m>R3Kd|ul)?nT<->SiO(CuEMX zZ?}%8pl6+rb845jknq$s*+0t!ApDv>>t`J^5zpbb<00aZ;{#(G2n~^U5S)0tHpB2{hpA{Bp=5w3N2Q+a#SPIv@4j1Bi+#a$M z)_V%eOZ&{hn)EYffg!BaEiU^+5*<@d7LQEovCP&5iB&#pSx2YQGR%q_W+Y ziZwOyUs!A)i<2N*{=!lNIX52bVY>gqX)Irt_6LGpeqqV^6eBc+sr-wTw=E*SNV)mQ z%fiT2;@w>R%ba><)-PIYNa2f3T*A%$4jG=05M)m}WD6D9YYy2$MfSmeLH3?Q=2HCN zGGF+Mc7VMK&Bgv1#^MyZd8CRhY95Q*nY*();2QIw;Ia-TCqx=cT%pO^%lgEXTV$PL z^6E$SvPvUG5~RylaPgdcD1$Q3$p`J#RtFww3AlVKJ(*N)WEzEwZ-!@@ox#Lo96kzQ z$*Eg+;0+*)vo$VOC*)@xtHn4Sht`*Y|pd*(duw zBN-cHxqa*`j>FX2$3_%=cCT~2Zm>^l91H=<`9tHEnUnWvPwBKztEfK($vp}AF}>+# zgi8vJAnDLy@e9oqm-M22+R3inrw#ccyQD2z&zya__&_K;63wE0e`(0r2qNc8iq_n} zPuE>+q-Wl z(;)D7J7>SPLhvxztc+xYd>4gFEA&hcWiZKXA@U5F6fxKW#52do&&6#Gf|xt}Z#%?r zVHOS92oWZE+bW%79SjJ1MnJ}2!0vHiT>?|(SGDV)+4gdOW!v-7&BAETXgcDENk%oq z2lytGPhDmP{i;oG;IG<##{R0~2WSCiCObi(c?3S=*Kqk7l;kzPYDxM;Rue_w712A^ z!aSzfeC*4iNMc*1*ucH-lvqpJ>8aDo{==+y(7trgb~tFD3GJYh1DYFU73|c0DC%^- zh%&z^FqZ`1zk;PO@+EQMg7$TiK)xdK3_ZvY{qk31m)%^xrmcQm+4gc5e?PbgeMx*q zCImlXxh)@};A=tVDUQJkcmiblJ-Vo+)2lLMmCW2U?RSsyI0?mtx5(hE|* z{eZUTR}W}={y&EeG_^QccP-e>kZ8hMbul7ML7LY_%?I4kXq{Mg_ z9r_luJgD%%9xjXMpy7VCa6ViJa$p7BM0JCqu^mqW1VDT`x>Y#cU%sQwZ1~(j(IlJ>P zxbC2O7~BDj^e~`wdKf^gdKiqlHav^~38eA2^!;1)QSLwUJ1DSlmizIpth z?!_c3)X?`h7Ty=nv1_i4S1{n?tuAjK)P?&$MMQkk3al#NSYW<{7}*W^48O7)f?qiT zHoFe$M#zqXx+(LsD4%vmQU=^~e*y^LwgY};+d%~KjwJkY*WuHHy8p5IVCYF;8Xi&< zN&E^5{1QdyLyDrqA>EES>5y*6bUk!}XdsAa@JlrKr4s>ui6(X^0}Y?UzQloR2ur4|U2$7H z$Eu7Fn$wXTlTZ>zEHwk+M7V zPYqiHy>X2CON zgo#}+5WudEEd65nWZZrsCo7F08z(DK>2s~;#al%01FS{Q#$$4gQkK18Uc716$&yTW z6`K66Zz4Y;xir_O92Qk8!#mDY2_7~-{JT2!ELXO@Gvk#jz9LfMlaR68ri2ougeiUM zSCMZAq|txydw9T$o3R)VuZYTK1Ja03&lZSC?}NbVHb$K#^5@Nv#A?MatMvmY#S>Qq z^`&f0G->C73$OyY+ zlB?mNhqdwt9oEXfgi&^IR*t*@&f$87$kUm{CT_R*vWw8RHur~ zz7m?tH|+?TCErpfGzjyuJTcAb2Q;M`NA4dw@OojLGla2Z@g4J(sHwr{S5Ba?r^?6V zKEvp4lo5|G&sHY(G{|CM?>MZRsZhoj_I6j;pQaV|y2s-kqBs2E3Y&+R-JgiJ%i1o< zw8TF{zWH^V*tdJunudoKBzuc{&ueC_3wdV$p?i3rW#qmann%)n9jO0{tKz&JX_skpL??PJj_5?M z+Yz0Fg66brz!A>c;Nq4yBX+7e>qxNj{a>wcq?0g3B^c10=3eV^@bPoPcusTgXBIlm zJ%Kzp`}JsFak4;jj`_|J&M|%T+Ax~4-wj7Bmve|`<8E?9J*p15Litt2;D(*zSro%9PdGAqg#?c9~=P@0C`yh4t01TA>eE^0G4#4>30NnhTUVCH^z^Pu7 zV><6_c#IEbME;Qm8UKg=pp=jl7#N;+Rf`=bk7k2qY@}a{h^5zMFwx zg1RgO#dkAsWgZGoOXnR23cqw*g#!!XSUO*q!t?!!;(;vU!7oec9h4GJC=ozFD?>oM zh$w|{Ia;iS`jB}`6(p2*Gg3DDp7dId|LJPky_-?Mco{#k@f3EOKUGQ`t8*uX?`ELQ zaN<)vqkVGXgQDidXN0K6!G1KdP^&xo&v4=+*AhJ-D?yz%VUfinp_4GJ=Cwrl$E80% zNPoUdk0YT~ooe;5<@tNII$<3Az&s$Ty0t9lfew?5Y(xmceUzlnD= ze?Klu`m2IEJe7L?x1~&WK_&wN> z2j--``{QyIvK9b_vvZS<%Twh=w*GhV=>`NF!n@zai|qpsN-dz$%yTFKd2Y(rd#>HS zx_WiH<@!=3J z{Jvr#OBI)?18Bqf@_5;Ef>T@5%HvwFPeN5O-lEqto8rw({3Lt#k66&{-Gn*a%22VV zQED=aemX-2r!#F&in@-GFaL2mlYf%kcWJV-6aiNhr~ZI>j4zKre!xz3e;aw&HREXC zlcMUf>5HVct+q8@zs%CxBPZGH{OX zekfkk^g`6kq-r(c$9Nla9km*jH9~lGMCyH#E%|q>XIAfwmNw2OnZi(OiOaJ+VV{G#CC_<|krgVE^gD1oWP z_1oGH9)+6xc>nd2?A$G}CN}?$a%G~gB7Wrq^*TwT>8Vfbe5nP+Okm!pomQA!lXs6i;qYbNRD-;#;G*kB?=0_YW~C+kL;snnWttb&sRh%ghE_LXTl) zQ%6GFwE_oG%on0THq$WwDg)n%Z)EeIMu&H)dS|98*%fOZ87yI4J;%6AjwJ`;XW;Zh za<^{}z&({LgcfH1Np{Jeh7%$;kzKy%$IJIio&>P@WG2*EHu4lgmZXWC6;Y^o@KE4q zKz%`>x>UG_D^L)r@-9iWkdUs(hf?AF;^U*Ua0@xFH^U~7l#^INq(ODHi0(&CEk0Cx zTBN#-yr5RlRDm6lV#P&i2-1TMgcTn~SSt-nYure3l=n@duf#3}k;GXycjO6VJ)+z9m^7CW{ zVN_swC_8FR6t>OuiF~Mm>E&(ScL}}^6G&LzEAb|H5GpJg&xc(EDJ_-^!sd=jv@qqP zHga)_cRg_@T6jk%ni~hkWRs zwCFC)Z0bvSQ^1z}5u{9rvfj+4QM>NSWJjSzWiu1WZfsBpHt7du9?0M0p@+qtQCsjd zG6(y*SMnrN$4y9YI7ocSu@Wr$969F?shNZS*1;Y4qra9-Zu&EpQ%BM#Op4i;#_ddG1ulY|YSZf{M z4#x*tjG8%E&Mw=Z?1b0jSx{y0@-pg5ssS8g&M=EcP+zc}PJ)(zS6+Sail3z0fBO)js1u_Nn+ zB8VpCAqg6h;pcN-c~(k=$>pPXICnwB_KMVKE*lLlZDg{YunSXy_nCvV954U#fJcI0 zQ{+(z!r0Wec?aB#64(^EzYOyf5otM3QPidaCMsf>4=Q3)2S?mu{z0<=HLH->fErcM z2ITpBD?cV90?`ZxDecEcj|;^KI&)D4ZP$nope6gnt}-`OV8g~-Vejv7Dw(gaKn^|( za)}c&3&GN?UoM5}1&0dpo4;<*6tgc;0;%^M1*mToloz%$6h=&k93~|8eeFnoVhW}o z>yDtbI9I5sb)1kOKmDkvb=-<Dg+qbEdaoXW*wf2b%4|Q;N_Jm$*wZVc zaW^qRh!lj~9E~Ss5^4}YqtU67Hbu~!x%91+Idc&{DFc_g8SnT()0X`mw6sMZKP`;s z)MYm0$xH$9zTTm`HIGzM8@mWl#m2r^NxKMW;#%S4fToITOR2cp@ojZ{plQtZJ2@^M z6Z2Jd;@TJx#9FQ@LCx{fM44bzF~Tlty6mxL2$CU4G_@aBk5{*A>%^-{eS1EfB|7nu zMRr*I(U73E$Nq-1=B;pf_%Rs zH)X15m4RlJ)u^IP2{i3TqbixLGF3&bn&9L$c{HmaE>HXXWagNo8AIO_)s$|*h=83{cmO{$KB|b6$RLD|D&9bzpK(lps z&B`pQj*jn4#|N6N`z$BN$4?65*?X_f%ILk3j&@xKY}ieB*whK~o~LPGzDo+RKd~63 z=m#hT-LML95{1O@Y|m{S*UzcJ4_VZ()gyVAnJ=KBl=?cS;uZ%DG)sM-69igRv{Tzb zP{xG$xZ}*Js)YfXN;a;lh2`Vhhw)UhsA{H?$J3PbxsTB_`0#{EUIKNYWVqo(NI{$0{fidelIG5q>4uZ6$1_oetngL zI_3!J3@=i7C8u4Gm?R#8eNm(n9w?iG83*kyrVqkSyW6U|%|3+jQshNjRd<^M*z-Z6 z3_rxt)m5KM$!b7S+nH&yJjfc_OQfPF!GM(2VLzY#rV$k^+ECfvzr4FCm&+YuIIPU?+dVvRb*(g*C9fB0K)fhCBX{uO59PkL8ZFFDyu8 z(>D*dk`;`Jy90nH0m|h&qlT?9Bk^S91@2-kBcno*vGBq#o*@>glcN4V@ewRJjaDXv2 zZ9%&R?aguMy)ZetWto~Nv@{364DHe#03l#W&3G*l6lvd}f&A`!s$mEDEv_0bz?h%>d1+9;ub)W(VYY2L!*fo^N=jdB6d=w-k_vP80|P z0Z8qL;xHhmycruPzr=A}h=Zjf7YCWo9GFiW82qjq-SBj?-GSL!3e3(E1p`4W75uV_ zKB>8IeDY)il3+eA1%~$pC2a9T%yDPFfu|brjc{k zgb@^e2`abN!d0=}k{3bc)M8EH;u-dt@VcN)XzMqpsrWCMnR`{FI^Z+9ieVmA!BI3LA1wXh3XyZ%H;kZY^W zO`IEfLZWrEY-ue$M0yyn9(Hdu8TVHQQE#GvU@P$ih6oeeg%A!4xV%!tbIFM?4hs-K z3x@3c3CyBedJ1(*EuKPErt!M5%1I~9sV!jYR8UKHw3Z!kPoi(uB1x%6Yc_bZ62vKZz&mj2DzVeaxJH-xoIB{Eah7490 z)@%ep57wI4a5zlJ2PJhGFl;dQlxNNwJqiIkyFJmK}Fl-=wUB(@!hNoK*>ZQ4^cCdz0Ecp5k8*C&-wx^bFznAa?wQ>UVOeyuCCw6 znkN#ivbso8?PrbZ*je|coP#1R(?mJYL9uGXkmp;J+U9tfR#}ZQvg85r0R(9k9hCoA zMF+KtDxp?nn1&=~$s0n%UEzPK?5Ydf9cp6077yZOAkJ85j-(`LamlXjzoY3Cg0iKnHBi7VNQo|X_&b0 zRZ4)_>3ahItARd^E{b!o$aGsg2VHn@?c6N%T8;&nc=`N4 z$q!bGGjr@YTU<94&%9}a!p;`=s~>nD%?R#YEab)Gg$>*~-oy=VQg z_R}}<4&UOscGar*`R1PhABJG2}#pOt^0-kZ=)83(Td|&ta$X(x;S}V9PKB$(2TD}wa9e#!@4?brA9QI zEdFQmYINImLGMboe@kTx9s_RPO{~K_X${mxBv__f^NC z8GebXUcGcwAHf@ffG%)=@GBEZ90!D0t}TV-h7-jCVZ?%87SRRuU}YYU4mSuOn28~n zC9BZF{*9J{0nWTy*KS@DZ*E>f3x7Y+AJ=jd4QC|pB6nCo)a|;l4Vx^Va!a{L1Rvgk z!Mz#zpL#0f-Fkr#2zMhSnhQtBvoqVHjF2d5j*!Qs#yLWsl#BmphEB>2M##w4hHbN6 zlBJ;f=U~NDjO5XrnmBQPw^FPQ{&DHEg7jG~z4y^+@KNH@z(?opj}kT-ZIX-j10NmJ zCRe*}lU(UW&O@gGVpo;JC&|1dcI}0@+bVo(@RVFz^dfB9lx49jFnVOYbJbU;_F9|@ z6_clHsd)P7Jij(^Q`DTFt5)S4K$V^SD{|GUfTmTsL19JCu_a66JFjQlmJQF@fK*Y9YW7&=%b_OK&^`BG#_HVfjBvDKs-m}@wxQKG5Z~=Jr31L z^%WIpqN-Y-g%!b_27)S8KND4~zM}H%U6tK{Calvy3oIW$T;rpAfQ$D&oC|@13k-rQ zIvx??e`99g+E3X>y{5hv*X<4%Xac*>yC`6Ta$NeWKI z@vXz=qc^8TI}aQ4OMP2(bHie=2I$1O##D$Yx-v0ES0|>$2Ab#^#q8$O60k#V2ee}> zv)tM_z5y{U-gY+i3U*FMIx#-_JdHM>WxL2+4l!x|Gm&<7$*b6__PO4vxkh4I_zxnr z6uyssI*67r(EJm^WOEljqOW2zoS$Z*S-^wl60^?fx5nwW(E$TZ{eE`9gccu~twj84@L?LH z6q=E7R)bvB51~5IK$t+qC>i99AWk%HV^HP?$~VUqvQPGCMlwQviPB{n;hAuX>GeVo zPGi)q<`XjNN)zEh)1hw-&MpP=76(eAXoW@8X2E z@R>M%mZKWb#CRvAGM*q8mjd~q1L^tS2>FTf1BcSbe;LN}RBNk4hxp-dX_=Hmt>NjeJ*H_=%g-n28zdpJp-3X-=c7x4Xz}MU zmn6055bc49FORu3sRec;uJIK6zR&>!O<<2A{9*tDo1C`2MquG-+e;3VXI~qz6VwI= z%17@GqB%AELqXwzsAcQoP3KRURz?bpUOP20C6bD)mQq}KDJ?M2#ML&X!y#x^WD#zt zNcY<5p3>6t{9{6XBD)Z@6qk>`O5-Cqp!hOg)4ml?)H64ww9LTc%Z#o&iyXH59kyp3 zHqgZOhRX{y&jVMN!uCPRZtj4?ImZT4&K=AiCkAxU{f*M2dFFuA=iOK`W*#IVN7;9G zIpZV=JUB^8skLe+BzKcMLoYJmTuHR#H#cXJM|(ZEyrOj3IbY&*QFKn8+Nvv*ogE)x zqHp8|3N;{Urxq|(rk$Fbr_})-nFj<3q%Lr6oQH{MnFj>X(x>pzqeLr0FbG1LQu^oY zmq>-U$3cYm?tX7h5k`nOCfkp~>s17IV+RwuN>Ik>7v_T;dtEZS>Q^k&Tp~g}jj|Ws zST_MNlsr5`G6A1UCIt*h0bqFTTrE+B=9>nzt*blqOsUW*x>1=|0NipaU)z=raro zkaCisKz*Y3GZM)(fr4eb!-?IT!9kd~q)5t1wmiU9bTHnM#afK_25t5cpe)l+QDU#- zh%ZotQSC-{-!Ww=shQUwN7G=D)3s7BB)4$D8pqq|D15zgdNutVK4nv6~t+ zR%mxp45kJM7l+HmjWdhvLC5!s;{#2z{f?945u4EOnoF2Rg2fk7BM@$I2p&vsuX8^^6D7>4f(ngvJ3{AgpM-B%A?klrjF z*Q&Ji2%GgK3|UYbo=F}<@}+?=mIf}mL}_3l44K&7&$aZ1C}U?OQIv9Qeo|8{j2bpC zndl@W3nC>Pg+lVQyd4t+mX^*MZ5->V$_kR&|4jw?*t3IJDvf8!kaLFlGQuhq@AJM* zlYr#@G;k&Ci{rE7_%w~!9uMNF;wzG&e)fSRzS8Lsv4*)(&kvoR-zq$il(mzxq8~PO zb&b!CDXc;G(BvUyHPxD_EdtH<9dD-n#K*S`F*3#$w1wx|G;(pC zFs8XJIh5=n0pZMic5_-$&;CRvy9}7GQmD)koXB?r9)uLEM^n75F8dSj)`P;j2uSq=B03 zK;f7B;x~q%W|abU^NE6jEP}!>K}~K+9}AGgbU`Uh^s#s|4byUm3BOWn_WmA;B#UWH zDMX*0C?ZHABK#83@|JY407*ozgowCJKLZV2w&^cwp*!psvR2&=J9+_qDkhwh{0DlA z`cITQH#xzy#SUcRyj?;m{^l7DrzgH{up6J$!CuZg>7e2C;jw_Q| z>9_)#G1fapTc$~Y;U%<(hk29Y12ErAk%XvXA}L|Hw3V*@XNZwFTDpuu=p)~ zjBhUF*y)2-Y2Fga){3G&uC)*p_$7+M)&jr1DQK-7>?njwhws?>1kpecy(La}fmo*%%3=Kfj~u8kBvW7fQeXU1-@2^>ec3qQN6kp%e5I8(&SfkQ*EmsaJpO4S zHKpe_(lq4w2deY<=cp7skAI#Qh&=vzzO^3zNOKkkiHk2w-i@~X+U3}^FdwvLvo`Ow zUU+$Oj(zdf^4FP-t+gqCi-fXj`xzjyJBi0#3eHS4HAjG5R)L77=L0;dhslf&o)2Q^ z(>)(b)qce`I@qfqnLrN1tQK-OBf(+uFwRI^M%bX1cu>WIFvy=-p)p>O6&9V3AQ?N% zS3oP@y1xg7U8#HtWa9p?0#WENl?8^r0@TpXy)Ib~4k6iPE^Xs`Pm9&{>)Dg1CEI3w zDKfP8til7pfgi*)$=CToydCmf-NyL?tjfrn{s8kJUTb2${KuM@--b0&F;|Dxw_DrP zjN}JVkT!gkY4Eklha%6ZqP&~wDddt7-M~)RAM2KdaIf&2ZB*f_%&GBi1gXY9%YW4PXVtip z(-@M}1LEcDlh+6Kwd9863#MFKwXgD7GMzaVUywY zOplC~>9g#ADT6g*5FnplBjD~)iI#Tam;@e!IL(Ys{f|!2&ki1q^D&2VX^4``j%A>+ z?C{Ym!)T5cYuf5)0j1dZYr{KPyehW2qWD3J;x|_mKd3e)UyI@gaLIl~Ezp1FU7h-W z7e)1a?X6Bon@|Xmb^|R)UG#u3n)@3g^A#!b^hm{n#7xas9S^TlF$Od>yu+mf z?bC5QM7!{?LaPr;})crVF|x*hZtavGGTjjI9~_H zKanzwb#R0L4i@<3V1eHW7T$vR((Sk(7m^4(3>9N%H6`7!T--fqz{3ydZs^ORvrtee9-3upac+D&4d+`D(Ol zJLikhyPbCXt~g)`d@(vAmh;ys%aQ|alRxUk?BcWX+L;mULN^TXcud3FsT;=8$C7=` zMDlda%8XyPGF8()^my_PGp(H( z)WTfW&R+dw@^9uvm-Japy22%W7QfMCO)Ho6o7L^qq#%%{0cmSJo$POZbZPMtuVnkH zOS>6+^zxZu>i3$tk%(P(m7h5v!l!@YndCTldmv8t0_wEaxkxjz%Pu`aLMa{7q#(je z8T4H8kf|JYSjsHy-A+$A3cl zjR*PPZ#)c_x>GyXzMXD7@M@>I?PcS^UG4Nhdo%*M+UX(1BVT*qNN4k%7{kUdt5rYx zgfL(Sq6+ik4#fHGZ1rz(`_YXTVi~dNB`hN#Qg$J#ybe4r%R6oM4D6Pcdnq|kZdXFF z+9@w#x_Kvbl@B+*U|9I!#%Gc=J_)UicJ&y zrhB1U*Di&`fy=s<%}(Uo#bwJT%@BuW5N?x#vo@Mh$!&=?E&q0+kRX#L4Zp;M-;u8; zpFC8ie#5c9{@VGf`sqPHZ7({o>!sIloD!JCOlZXI^pkqz?=2*j35ara}ihXH~LGMVAZsKUtMb!1;;D zca_TI@9!k z1z2Srj~=z=gJdhSrh{GfSu$bkeVFW!HAnch|6bKWui?5XLj>pA8xf=<%O?4cBg>`^ zI@ELM!QLG+73}tDa$%s+pPwctVLuo!^&=NEqNAO#Bz~S&9h9nS+pSC1NV_*} zYN*rSolcXSP9p@P4$2ogorWOFRoXS5!BuB2bvi%m!cd*Rb=3O$TSjWCvs9GeOyE)Z zkLo-cs>7K;d$HV_DeR%l1jG;V!$hJ^u9y_2UKXTY=2Cm7%;Wz_P70hd7krWY#6&;p zs1pI3{h&M8{ivf1InFEd-xB>)`A#kH8mi zRwj?SVy;jA%i!6fsY_w@_clo7$Uzr25U`j*kng+*UFSQ0P!{^s%p&FaO~?*B}5H7*(-d@Nax%_5L= zUW5bNKhet8uFWkZCYBgq=&H6D*M_5pmpgmazKb@(zD&V;ND$;26=i~?1It8P^kzao zkqGW-DCwew=aXEgFhCOI9SYLNJ`luWEsIYfm)43!a4#H?@*X^}1+_~L%XdPUD;&(V zAxs3h7DbpK33Km%fw|kk1kcoBR7F>Ky0>R=t zNtJ`i5_3jZZGio|Vzz?T(^cCaNH!)X2_zjjrr{dCH2*ex%KM4hwpSxuE`tl9rIr_j z35aZ|Lk0niUlzuP6aSSC8<;${&1c3Rv|ay=`Rd~TG!p6Dsodt!{l`iB%}E0-4vV;L zYTtj*Y6gED86DKHIazDirGdK}cnS?j)^Hm;7fBX=(J1azh;$1W<_^JS_XEgar)$^f`;ky=GzTCTmP_?F6Ch5`JwW?99bZ0mxw)pB zwzn%#%(D4>OE+zBptS)xIiR_h^#thji&d67Se}1X$S-~x0z**w=hgun_NI z-CH>|3Vz(nHoM|Fsk>GtzWd%RJ{sM%GE>39c;xB_Nr20O zigyCnXp!bTE1bj&0*L|*7xf7T4G9DYIvPFaSv(Y1X-keA&Te-QA5w@Q*?J^DBZS<5 z_?809a4dY?0R&H^cG3a7T><{6*~^1hh|c@b;TK}oy1eEFUo5ghK?m64ODmjha(ifv z*6E=&+6=c~h_f?jZ8$x&Wq_s)Iju*A4KaOsXsLPrvqOG1v?-vaN`3sbVLYwy(#I>r z%p8XfOuk-^=cFDqk2!El9JrSqIM4*Q$_WE49)#v|$Vney>3j33W8UtVLDO;LfD`89 zqdiqq(DX^k?wRS6B7EYu;WKaP_$71shOG-|(bUKH3*)(WIt=opPa)nbc}gNR)Lh(C zYhY4Ot%2!1Sp)FsFFt^s^4ogaf}hb6!6m!H4?=2skGdDp@;RX6el6f8ruP(+kNr$z z?bL%t5>m}usYZheLDUsSK z17y_k4rGCH_iPVnjvz%#aZff+L9UcMQUpr!Tb6eyvb|Z+ON)N3LkF7eYlG8rMK9IT z-uEZ0K!$VMZe@*>Sx}PH&pZ$!?JH6PA#PgjnNsOYbPsAHA(<{-!Yu8~fry+&mYFFG z)4g(d+m z3F-IcW12%y|K92lG!)s3L(ni}4~HNebxy64tcA%y6}^6Cd~e;6 z%VI9vk%M^k3A(sr>Iwrv^a+{@6fUDvd)rFa#UD3U{~f*4&Npt8 zMDa;j?a|TaNtBHoZ9IyEvi*i%Zoj?7H0|X+RDiRomX-UpTq#S4@%AcYK9G@W%aRI1u z$_avkEP}$XfQs(xtv)}X32IL!DEj>rF<3)iq5Ps?RGd#pJv=pY1CyEKOhzY;I z)DY+3bo&9xla8+Va7&JXd>P4eYLPqAFwJ(D@XMnhc~cG7oCbyUa4BGqo+vN~BryE4 z2J!px?YI~pzeIL(h>Ux34`|`dyt!N*b6aoSl)Hst+yNeZeYCtZNAAv@-Zyor5ZsCT zsc-5s+}aPs?#7ZMr?@Xj7mrHywB_ewRnfFx>S9x;kL$F3bW^HoAN9Ivqv3eKXKMW< zUP|kueZ2+P#CdZ-AG>6B<6^wZ#;%T3FZ54MHs`oh<2BV(mukFAbzL7d@}PY(S_pvi z+a+0jbO-FWodpPXFTl?xLi%;&(%FU288dhMs68^5e?{L*_x1dF%MY9Ny{wm19e`Pe^!W_Z$hs{l67$9~T& z9XTI6hIDeB$1%y6`&w=K;y><+wdt#ye9{zT7jx8*)byZTM24m&+Xg8N74(car7sMi zT$RAWS}`P5DSULzjO(jSV{~6_8pHc))40-wUy7@|Wm0uxUu_$p**4~3qd(denhH@c^Mfdzy#Jl&ti4QT#QCGS)nqa~$` z>zFP%K~l1jGb9uJM8I>52{@L>btV@ohrAI04i@(>Kq}kHP{J4Y9#`C7YH=HMs{9G5 zw&u1|rGQ6e?GaWj)^GZzdF{-nB6@qt*CEf{r#i2lZ!)rA**|@%FZ*ZYKbHM7r?N#> zL~%=(`?{~4a(3!%mOdYPMCrSmNxnEIH4=9@Lu+TYRw1j9hc}ZT$m{j_soIR*JT)*D zb0?-+nyu8Uj(y`)4z$?|@d$@8M_1flxhQq}Do>0rqVQaytHIQxRsD<;uTPfT+AVTK}} zk?f6Yu1>j&ODa!FZ7?1Bu{TBvY*Bu)sX3*e&h>GsFJy5)T^JQ0SbTNP>Bl8t>VLGq z@tXQ7mwG%>$rp+@IpHpPei+R)z>c@O-=t0B)Ihky+v3 zzHyqWxtemi;t@D%x!xs1v`ymsQRjfqb#C z4_1h0+cMXr8fCQ-5!zL9`sqCTtZPztnKJzYFW4CdFYNH%m3sYkNPY43>J=*VN5c3d z%6W7auWBR{0=p*u={!?vBh~5SLx1hK=8|1o!q)&7CJQZaV4f)7&Z=> z$o%)-6Ga7S>u$yUeGb$NfZ8{_R#(Z5p#G5o>Latp70ZVX4Swn1^MeDju@sQ4Ckh0D z=H4Cx`4B*O+X})7`u8*izsx=A^w+sZ&Hj4ZN>dvdD5IBu8L!a*U#+2w4^AqC z$v>Rd0b95ts?mTzROse|lHoKaC$nkFGzNvuY0Nm$kpp%KGEjk4t}Xkp5zq-XHI6x-~T`aPzricIs{{gQ0`Ig%-VG07~ndCY>!0 ztIwL7s%SsDEp<_3q4LONDGNLv!GZyJ_YY1x&F)Ffh&-zWCSRXDIY3wcZ!npxtq~#} z7MBV$Gk#rzFm~EU0dYZU2;L=NiHm^moq%5g0SMW&5M~lj;t5&`K$sW6UZ07Kz5dz( z((84FoqeyA3Rl>Pf%xy<0rrKvQu$d6L?P|zGm)>%reH6YSNdDzgwI zC$6X#_QEOOCFSgQo&<4&%FADz!4zAXItC9LVbX2^Ht818Lg>iT!T(c!$>m)IjRPI> z6E?yKdrK%5LEKKm&Lm*lnG2(5`g5+xz7VrZX{w!}lLpWn?c<k4C8}y!Y-KA z%ftpe?8Jqq+b5n(U0{Zsp$+xSGjxJ7;S8OifEJW?)OqLwQa%Xa3}q&Sr)@Liwz*Xk zU73OM&jo zZfx@_&=IECJUH$A0}lbALYIA+I@kQ_K>gxCMQrgkXsT>_2xHU3_377OH)J=Hv`u^0(8an(=P71hRXQxD_%YpNg@PgkuL^2{FO zEM4_<;}TlB+Dk<^E#0H?A1&RZw%~er)j2~4X=>d0VInZPdm=+OGC#5>_F? zScQ1(QtAUF4PLh0cXM*MopLa%fwvqcYp_KZi1t`9(` zk6rJDxO|cy!XyN?*8%hKe}?g)ovUJ(JccGWb9Z(J6oE%bJD1VLY3FbmaCNMV?WfPh zDrA2uR);gW);ntro+eW^VbQG&2XMS;=Vc_0?-teJ$k4AL`89@^pie zX66QnaGJS+@*m9{W~PsXW)9NS%zf~E>G_=fX(Zh7%a6)yu>9){sX9@Zb)YyoT7q1I zNuM%3_Cx9nT&{!Yq)in>V_D$w7Vfg4mhOgUZb|Jnun3|Fy=-nCsyn^c59Q@tIPwUh z77bOC@*;zD5JMO(;0g`nTbc-yhG$znC6mKslW-hc4dF5a@Tq>vOqKUrBYZs$Br=qF z9=ulfJWAP1mUs4WNeaS>g@x4%ta4dbq%~QoM)SYfb-C~o1Yd&gY6vK(uK`Y&uwb7| z?mv(WGJuZw8`ZKuJqHzDJd{;8f;&Lu8@9pE%T~huv0MaDaX5BJYRALF;`^)j#TCAe6)d>QZ_uY=@f8SMX? z+J`d3v?GG1eW)=^J0fTrh(^OQ41`Gy(^~TUJwkr=!qY*^Jk7_C*7(SNf?L=ukz+0x zrX~U`9^H~DdDoj+7{0{ud&V$@c9(+&n$R9{S%Kyr<_o2uJp=kMhA_t_q-<8Mb7DYK z%*HUDyOlo!j`LWcuZi$UP55lf57!a_O$}><77cxT!!RCprmZO$uIeG)tJn2N>UuK( zCzqn$sl!#hk;Ap*K@-<`P7Y|QclGehlE2*X&2fC7so(uhj*ovbjHiCD0Z+Pq!YBIq zeAkBgQojwLML!?EJB*+EB_4@&>LJ>z_urnq!}AyGFzcx{g38)?tEIbRo*^NkE?y`F z13VJmu9y=Up`ESB1=TJe-bT~iu@7S$*Ea|f#Utm~SszQ^6sZU+vW@Xv5oCHM_P6U) zX2xxKB2!AhL&0rDX;9eJa9I&#i>dKUuVyewO-J5U0Nio`TUv2gJd#fRzgGQmK}v`f zVJv~)DUoOq#5%7uGPBOhjnuZ0z{**MN6@VERwK3T`1r12JnQ_lk(qTae4??-+MMn9 zL9@=MfR;M<@z;j&Y}0cfPu8S}7cHaLV?dFo@62Pk!A%JL1r}cs!#xYb)9o$l#JR>|r3x%_R{LqC71&6%R!rQXh)4 z#XrGB^iXb2d~v724g_J1B0^h@q8l0>ACM$}xyTM)gygfJI|d zel%MQNXg689<2@Pz$i8IO-Ba}kF)2|e)df6qL7;vG6*!9ix)OFjOL|qlSgZ7fpCwC zm%`mRS{uvE(b`z%IZQL{zP-S-*oi?j=YTJPPMZUo=N%}=zB*(lsP&))l#AXGMsx4t zpn^j5x_wxLV_Lx5;Hr&LOqItdruZ1`S)kc~TY{GPGJfRTtUEq{Nprt8UB+NlhaCj` zNdE-M{yE-B0bOk1=K1kKv`voX2$A++TO7h%A;T&Ouk=x$^MW8}s<#wbNEh|d%Ytb3 z(3NAf%n|L&91r>pskq>zlOiX{pS|{xygc)@Q};hk-E9siXsY|0Qv|f=Yp*{d^TTw5 zY|bKQBzM8ol$u(E&>lBKh%?8Ysbe}5`#~RsgjZ>Cz!hdu++m1}lSFoAZo?cDE4#u) zB3X>FXZc4u3wy(@!lIo4Ouh)@y}!s3VdhHmp|e=Ykr&9!fdfIJxE&rzb%;K6R#ab* z{}c@2iuYru@)i+f7Z)|j!OhK7d0!~VGaXN7qRLrzZUv;vsBGaDosm61)&WPM5L6c* zxFG@E&K*2>D0vQQixs4B$gw^+ytZpN#Cv)Cdt+|_37D(nN{6dGBgCM-OnYr!NqD&k)Na;mB2}IJ7`nwPw5_x#?MGH)Zz+-Lf zQ+OsiPP-gvw!!Ri+L?rw+qoN#3*1uKUXtS!9OC(fPRPD4mTCdZ&3@vgjS8dXyB2dk zq{&c*cn?hO2sAUtsUes?P7T4G4i#vkdeF%MO-u0nxJ*m%wBvin@qwl(SnK5Y_zhva zv<|Zyc+#h5!Y3`m<%=&Wrq)J*VM7KRxJ6Z=U@Zw@cL2}aD>3Ww9FmCb1NRw#MZ1GA zVayhb$2SCV+$RFD=^cS{O5IdbOuxv@(GWg5^$;{Ml-YMY6~;^O;0iiL53CG5;GojiQc|WV5LT&h*uCv=}>+)(v8m^mcx3UhghUbHthjGtO!3x{God3|P-Ja0I)Wch)idH*uz z?##HdjI(=(=e5onm$4BN9<@CoaJVz`r2NO7nI|CzcTM;mXn@eInIj|eZsAeqqTJ5< zCI@zAdRjc?QD%ATQF-{H`^r0O)UeNOP8FGVN`muGv!cXSADg$;tYcW$tQE+~9s8{< z;igQa&hp}Md3Y)1){?yLW_yVmtu3gi2k?}_#uB|X{kRK10(|m~PuAILVui*N;*qnp z9zn9+Tc4d-@6FHFdPh9#yfOhm6UNIHjG212+E~Q1)&Ywbrr(AhBCCa) z&sJFXI#{5Y&*M%GXxi9+mcsRl<6G_cK-0#qcXE9Ejxe4!_8{=2+gRa~F6Z)tc9WNn4G_szlRR$CLUsp1ztpS_Ym3u8im3{9T`23%vrlv&MIqw*Bjv9zd z$i_t=f}}Pgvm_`yTP$8sD;E;DH|A44kdcajpQ3P?BzdOg8BDw#<9#v_Fb)=GwTCYp z>PB{7A{&%j&O+Bayt|c~co8;NzN}?I4IWxWl#)7%RI#&qrlI8sUEy3+4!7#|)UnGT zh&B>eVD@X>l9FZV^h46(0g;mBvSmz31XUL8q z7Q&%4nU2kr#gHqu6*Svy&54<9R`^7FWXZnL+VO*CpFA0~^hwaNmnkE-h!awFrA9!U zOnX54X8K>YZOoL3+CwkGt;}LLuAQic12l7;fl(NDn%KB^%hS{>7%h*-JFf6)g4C^JsWTcr@IR|>Pl2gK=Gh}e3scdn^ z0q#Q6;XJKi_^?Uh{3f+?Bj;($!cLzgmKp{ZYxsQ4B4a6Zj$@w|vLlE!JX?iUKc`9{ z)Mjw8l|QCJGgby7R8&XCY~?G%WC)`6YgBvB@$LV|*j2}AReW#nyhtzI?85FFOCzyJ zE1)3KU|<3(BDhGbqBJZRbjJ`X9X5@E($Xm?U800E2B;{%=bSTh?|t{@=kwiv-g(c= znKRGCop@&M+$assJq{~Vp5nKcNkX0|_kq*NhO$werHcQR{Hr{jrHUbQ-IVAoEeA4F zHkCR@Q#Q%H@Wy**>5pujCSDwFjL$%(#%RM|@xoooM)iVWYLZa$5Q45zV+_I(ouv`Z zGzcNnH_4GWH*JXg#^Bm?0Qu=#-C1(8&nQFYmUzJ>Z4&Q&+c(WD()E3G%i5Pj`_zXwyY<_;MGi1ITRWbz=uI z576&)iGIw|x=8sWdZ|eqf6X>&SzxtxMr-i{e1!e}|85SfP_qGcPT-a=D)4X}-G`G;XgWqk z<$_54HG;Y2#HL8gfo!V?e9jxHT8gxs$|=%v9!Zgw1DS~^V+JDk&mB{u8%}$?V@gL@ zdK*2+{8+qe%$RU}evqjTc<_TU2YCDs1}V~mfrQxLS}$SF-VVt0WFVYgbOtTK*@MX0 z``Kg(F^A6rNE3odt`>PhjjUbkWq)oEqJ2tIU3`SMK#+C=G=V_Yt*wL+~$ryvb3$M zRNm&UQhDDSP>?xy=Zqc5%z*w5+0TI9>?#kJ(bsQ}MJLa+B7C^m<6e_uHyWxOWNKC< z)J@On0Uj5jv?*Ajo8%9nY^Amv%+2BPZqdzw)TlYwL_2nqVuj54ONC6W z-G&dAaD1`|`KzSHz#O#)1lzpvw+t3`lTx4CO-g-*K?RvnZ8FI~=DZzBm$&^!@1oIz z%(?rcn_haWWOZbg&1C8>Xc5f0%hx?RcVvcgXOk^&^dWQZYC)#l+3?0*I5+pFVUMzh zaGO1T6{AOY$zIp)VrQVS1DWHEGVvhWcxU#+_Ez&vyxAt+G7}Fn$J=1yLALSu?ZTrb z-uEWn1rrZ4$NSyHgG}*wN<_4f%GE=FX73^O5Zgmq2V^e5vbgsMPf;Ly57X<^=@H%h zYrsHPjKiX*AaXslGj<@eo!7i@stDb9DGhSC($*b5Nt3F=raalifXr1f7cy0a4PWAg za~9VD7*z$rZP5@Nqz;=L9_*nv{saQR0E0;POjz6yX}Y0bSqWTGQ(dR0Jm1iur%4Z4 zjTtlq0)?X$XIG;)gh;uhPtTZ8B7txK5uq{@hlWK}_Pd0qvDStr_Jy0|EsO-%R!_0j z4(ZVr>mV;Oylmv%2NPa!v_$S1U)qhlKq5~vk(Yas;bkK;|CEkcq4!|E1ZU!&+dfDX z53^8*dg9-~WPRmuLe-f4#K#B=wKiE!`?NWd&=SkY18d?d=UU?hAMR-m`mBwja6CHc zCfQ{==@$KCI_XwVrjtsT1C3%1H~e+#QgYzr(p?f>oLo9(`bT=h(S&2lNhRW|eCFJs zuKw+*_a005An-2|t@kMockk~Ks-}+}$ADUb)hflrrMk%f?YVlyiG+2IDlcKVOc)Vl zWMM)}+&8f8RKjx#c9VY&m0jKZbi!yS&@vS#3F#BGZBwN`X^Go*+{@0IB6P?;d=MUK zKd5Iv9?YcAoW=KAUQ2c9tr+N7I;(4{TzjT}Oo&tcSf^IHa6W^S=UhTRM~zRF2Xr(L z)3Wr#RCz!lA6S9*YXCvy(P>>OJ)UpsD(4gERr=)Z@nsc-(ah(lr^`>&1<3S7+3?>b zJTMyh*|@e$e!cZVLP-bz4_HDSn%tI#r^+p7u@okxL6O%PpHo)UnNcsIm+r=#v<7)4 zDQNIJpiLwaamoi$^~PHXMOCBM^_({NKs~F!?5gu)@j4qM-rJZ<<8Vj^_Qc~j<)thk ze5c&Qh-3(3U^sF?*PMaba6!&9AXkb$gPbR+Zf2_r8vI$a?nu{eGT4*Y88H|64*U^^L*x zmBF>k;DRiz%Ge>9=0}%dhvr8X*9C*i=;QU^%9qd@AaarACy{w8tB~L-V8L7gr)5Y% zm`12rY^Uxdw4hi1E}8cCXfJ7hPm4M;ckttG8AK2z36V+;mmN_o>E$iT*Lz9n*(l@P zD2x)Xz!;Qd1kartY+qi$!$vBC6G|56`Mc=t4^kLX+^q`Z6 zViN+dFdaPs_IQP9LH=VvLWQ_&R**?Bd>CgL@~fpFa>jAvA7SEoGWpR}Pk0xa%8YhS z;ALStPOumD4@sRDn9t$$K!S;B8)?%X5xm%FKc7+ZqwB>+iyz-DW6=(OQ;O8aTj<5Z zS(4Q2*w0%*UbS4yn>-Ej!%Ij7^o&fwh_jyp1T*|CX5Ll3#Bmt&&j#~t(I(9B;zoM^ zThecnOpUbgTTzYF$*&WBMNf&~#ooeu?+RsY&k=LdSHfn~#wc;T2p znD;`?8*ET=vC)}${qY?vbBXQ!ThKW%dg(vZR$9jvC&1Lc;E_b({M6txCI6&jmO+5+!~)^lf+3|g^sR*``o0mk~}w1vz6OwV&r-K`(4b&dOnQ3iQdv2r-?E> zHM-%y@ui)GO>;(Dt?VSo$NHT2*lHf!P?=z!uJ?M&16YFmnBXx=_*9QyiKlkB$S_MnYyHx_ z_=58FZj7h=F|jAy*s5h8`Is2?B@v(6x1N80f~U`Ox#(F1zk}BZrfLQoPMsCZnlu2D z4w=dg>4SeH+UtYpzr8-FE6q)0YS$P8^8VOTdc!l>TB`T@$n`6>Dl48NcZ`})AlEXmPxqWfvL5oY-^q0fQIB>Q$B9gYn?iSMy- zVd3aFZiW3KN2ULW4OPDFd#9+LX_vWhwryl7E(H@Sx?u>9Ef?AN^LccuJx&&NwvW7K z4VUls`OAhER=1Hwy0+vlm5=YDp{R`buPuQMe$yH*Ut0o~FB*c&uM(f?BQIJX@8exE zmm1}=kn%!J)_a;Qi9>bx6El*gxN`9jsjIM+m!6~ z^jJ)p;4`XFKY3+8Uq7inxO{6>xqfnKd}%PTQgzAkk&0#eWw7R8hEc&~RB(SS8;mHp zj4F3Ox8}I0rk4vgRWBJV?F5T1n?E6s9=9x5NA)&ndbw!0A@$8D99SecVlj8sp!t_p zAy`=a=x%iNd^%9gSC$&D-z}I>R$BPSrikEj5p6c0HbjH^Hlv_mhsy{qml52adiFlyc+xr3AUxD`$UOWn4&k`)9DuV2bg;B|L#Y`UNJX z^?pe~W<0-oc=$GfBj~Z{3V>~W?k^`I`uFE+L7bT!r1w8n ztS~;A$piC8`T$CSkJ)Kx6Wy?yyjm-WJOU#!k1$Bou3P){mscP=;=7wQgNv=VU<0Xg63&?&mu=thTX zh({MwRU;tGe!N2enEiNVfZP{Abx#*lZFo4?C-62#RleZI)_1n44T3TH#_EWG#PWePS&HeJj|EG{j3pz|;`$B{mTJSp1^TP1 z1Np2}u0CFPrGbW~>Km0XXsQ~8n!vVs6^;IJ9W{jsI`D*Qp+*Qxa^R`O9$!984PkaT0!^blC(ZVX=BjXfe>w7P{C z83^nd7??C?S}z=2CJb!g8Dk*DGXO7M9%J4{T4VrT76JE#C=gqZyG=c=^y)EZ+hDAk zK1i2s8>||$n^dJ9R}bW#Z)&Cd*>t`3g+9isgIpHe`|)*rQRSOk%^JiP2%$%2yl(He zVi0V`r66g#L`cuC2AJ*~cQ0~8R|&!8aqa>~=8vELG)Q{DONj5E<4z~}zj{E};2sbz z4{&=2Vc?}^7-Pk_K~ctb;WZ3gXQYd{h!? z@b@$aXAl(3F(|kUs`y}Yn-Dx0RFT1cP&;*vS_$TMqt1i%+3Mj!4iugXHB)JVMGYJ* z_ZnF!Lo*5m_81CWhSC{O_&yf4L!&q4?TCO#(C(u zM|tIb;T}?;Z-$`<d792}II_J;!dzgoX)8Dw0OemHARg0s=Rd%Wis^w2hbpR7nXwufMK`{(`?4 z0u76(ewt9{mr{Zy9lWF8z|4(eqI6b+KJV_}^bf-2d4CBYiOm9U)(~EFv;pTQ9|bco zR3Jftd92A4r|qOO#o}H5ay;HM$9QKWeC|fznbg;0v6cyITr=>XVvFu_pI`%(WvHMF z43z<>;81}FnP)elp@I)GjX?TPOFT8av1hSW9x4NkjnUGJ!QftmOcNO!-qj1Y zR0SXC z$SxXWHvA7SoTz+!P~dDQ%;gbmi|kxluz?dt-a_vdeOu2t3C0;7Lhi!DIVB#3(Si>T z-Ay@`ya#RpKK8a09dwxY!_h}rW}cb8nEG-;S-d1cwx^yc8HcsW(jB-6)KyW4W=jxX z7Jz?i@^TB1E;n};i+-yH_*Bu`^7O7^lgvfW2VAr#&t_o$+p!X$TV$R0}&SmPWjrn&U`5f9P&*? zG1JTIRttxGtrq$5)a4mg(`Q;|PXZ8Ib4+rlvO1I8-QJPH!04KqP+dXfWXJdnk{^-s zv&1i|Bxb%NHD}{}6&;V7m$Qxh1h1%J)7wQ0A0oY-bD~7O8ob=PBi`G&%lZuWj)9w9 zpCuE#-2p$wjLQ~NF&seThE`S&>66gg?ROL36{J@CQCFKmwqb+BEn9^St^$fv=x?Vx zYYDjwJr^cl3p0!YWq^45T`AQmqE9eU2M7A%QJp7dp}{C|DB6#5si3sV_$(Y{3Caxe zB%7oCKx6E(8}2>;f3l81L_AyX#DC*-?~s8om+L)27q92^H_t1)OmnN>Uo`lrUp>qX z%{<#J$U5)I3p=a`fm{7co+)^-sh$)Uuk_$0IpV+vi77t^PGQ{GkvhMyW7Fo$E+mt9 zVaJ$TA?6@*>)s>@QhR}y%_Xzm$0g$7_k{7rsd36QM61QK@2DYOR#CBO9@pK5W+Z%U zA=@zgBhhl*^xtyb^=UF86Y~<-NOrmIT*HLxE;3B6$}cvIugX`2hWU8z@G!%3a}qpt zhHbegzrvj0>k3ww+I|oaOe#5s=|gjZPpi7a=#g9a`w#MCPWO~-U-x?~g$3^5wGj0SGi&x4OBxQwRh@aRgq z{dusf`oN%>ZqUGGG|LQ{FVdk|kx?`-#Ax6$8n`!>1Y0Y(jAm*&G@F(NQ`IGd=4XQj zE~EL^p!qurO~tY!GFVZt!(iYt7`Pjk2iq#R4CcplV2G$z)ka9OsXRiTeXe97XM{B0 zCL^TPJO-I=yS1&RSw_LY9)p3)VBj)M4VS@G91&elOj8drU?;DYy zS?XN+%zjXjqu1g)9thjGHrQV$O~b%LH^v37j|k}XGmCmlx?IdrtL!6X%AR?o5Y%d< z+*=(q{v}4r^tRGSnRr8{p+h}1k|)_t30-+Mc3}5ka|%03{?{v>JuU|6*##o5Y+~l{ zml49RwMo;tHUx{R_9Jzf4Z#XA&PcaozJeE3EF-PDAZh-J$%t%T@0?e48Y!Pg7ziZp z=Mnmmjkpvf<+0Ec0hvCJFcx;GYlh1#^dgRkkDcHuDe9U(LR^2>+@54Rkodc17~s|f zms=BDW}(S2vCyM{4AtdeZ-vTa_7nFPQoVu5WugI{>3}QIg+p|}*N96@^w*R)(*alM zAJYL>aSI+T=TWP?od4(P(h0OLVQT#2i#c-RI|z}SdiK^}D3AjKV*Rs`ZX^}bd774r z*RO61_HeT3oAWW-H` zu6OPMD_xKx%B17IQPS$-_6Gao$PkwUT?iR-4^?1vR*%w$_XelpV&wl9Oa~Pa%x~-7 z7X^oT>(lU(8a+e*xJJ*Qgo(FCT~V_|I{N0RA}_d=`WV+DU#>4i+tSH8T1w}}D7SR_AH?^EijLMF91PZu$vWE2>#w7H zEO&6Uu=Kacl$2M=(T1h}HOf5awkFI-Zfns$&TTE2@Z}bkgy#PA``~NbsHex3)sOxV z9I2idExRWzk-~w3#cRkW6eeYvb=u+JPL(oRdaGApkr?hiqlI9AOw(oc-e@5hAk)G? zO&iUN`2W>HCy$n84We=5dI{0!^8T+)a$k;?PH-p86Z-&}JHaEPg=v6H@d7W6W>#C> zH1V#Qc=t>^$joQQ=!8{RUqiIX@oXBowzZXPYO4tfg!UxRXAV9Uj8hfI=nqc?tHmUH zwbg8NIxZWZv0a8InYrxt@u5!ImS0Xf>5()>nCxb(<=vb9_!uM}mx6?e$;OLlY=m#3 z?>I&}P`ES@;^GGiV;;Nj80kX?A-2B{tw{2J^`WrAeJEV&LjxVh7#}T|MLjo0Mj~8TPXSC!HyR@s=0C^CyozrNI8yN*$Bp-qIBVzy^JXfZ z(q*j7L)wnzd5F_U%-(2}HHSib;xVmRbmOHl4K=`H+61Zr9@8dM*11oZJk}l4nBp!$ zYe1p6v9w}}TVo*O`||O}#Gm8FpJU=%iu==R=u7MY@kg%*Uv&a&#u|zn_fmX?k!uZd z;ZoeI5NLat2Kt+u!RMXBq$U^a#~|3k`C%;a+YNAniG%t6-RNMtTYvSvTR1D_{4M3S z(aR8e6?QGiFW(b1YV`WueSkKuCFM6SuyoeXVZHeUNKY$$>C%ux5^+;4K9z1dD z>NYIztp+}T;W962!gD}O%FIZ z+m-a$@338B6mS{tb+iJIw+KP0q<0%cdB`7r<4i4>Dm@&w(QnPiGZ$9v(y)Us=a zG^mMB63hOkGj4)3aZ;gobw2YFhZmz;%jn4J*?YL*#&4B5&%+Fk!reB*eCG{;cV&XK znSaTQ0EAclwUJUdI>~%LM4l^@z)?!NOU;tV#U=_ig!9~@hNn-!R3peV89+GQz2h^7 zLNh0QUz#Wr1n9Wvh~`xNC(1;o_e6%LMog5g`rdlNd2H2d#H&&=2{swpN9mv~5NJ4n z%i5b=Z2&7vKxl8t1fG^az4QX^;-!18)m2!n9BPe4LPDuYJ^N>(8qJeG^qk5(NkFMd z0;<3ynO#Aqd!6VUBAp+A$f%MgMHg75Nm5`4=K^ct>2ra-0GSHRhNpPpv_qo$Op?N) zg(pAOhs1I+3l_4FCo1p~~6|L%pm zjBr4={tZ($s90=7lj=Ix5=s!?U1YNGq-FKZU(w76ExfEM&+ekf3|^@$9ZR!2ITw6^ zhBoF(n@q+(5-nFs|1DSg0}V_v4PTBoY+SCiS)iSZOSE(L=q9|Qhe;_;N}- z5p@K~(3~>glnmm6ImQK-r*O9?3x5ikasB4u;#0u*Y8aB0Ddi(mqOD3==vr%;#P?i9zK8$Ve{voT!6 zhBQMnWzwur#ZWJ5vwW&^RmIS=>i(&+^mL};VW4kJV&VOW9+VWyCPZ26ROuXxOckQ6 zz*JcyCK>-qQ)P|VV5;;RYO3^VkhwcRJnjyVj-6rVpDIi9yHjMbcVVo)R3((4 zQm5*iRYP@S@{_7O^Z!nvXZ{`452+D1mNO|dNcDzk`e5idB6C(zf8L_W8VpX+jsyudU5!e6NrIKvB3jbpV1Kfh(atngXj2IavM(hJ1qq-P9 zRqA2{(70?EVDrl1U$h7_^{0}cmBU`dBQ|U=B`k+y=pU~f?oE}I1Jxd#%WN{ML{Kkz zAXG%RcqEivXNxbMhs2`#i<+T0s^bT0hsMYW&3?5)y;V^y#{moK)dZrRp^+M&Iy}gSA9rh^Rq}e_JG7xy@g~fxi$rol^UTXnOFsb(3?N zBQ1)0mvo+??JvIjxl6c^02)+L$lM-(Jg~>kl#~r4gEDa(g=} z3C?X@n3CK+ME^Lq4`F`l%PlNPZd*1E4RD|2+l@mLaeriTzMv4D>WOJ|gIO+qma zHl7Iy56&sDMoS4CP|g>uj_W|?Y#~z<_KC&S}$R z;sc}nh`%yTPDgI=())Uv%x3peda{iVFP>eW5HDJx!HWz8UYW)`lJmP~;HDT*0bFNE zlPJi1gGS!z(!D^oX><4T1l5MDr#qR7Ycb7jq77PyBC5)C{c7t_!@lKCnF^yjpEyex~eY?iWSHR z^>%Pw!bt5gSawbqa%KvWppkuFMlrz}V}i?FAKaUHaHR=chO{&a(oU6WhLp*DGXxD> zKKWR52Jdk>g>>GeAWlPl>%=Gvrud8u77&av7`R+O_suX&5j+^pKOPz$B->4wj=4E% zh<28m0R6Wm9#`!cjXC}JJd)>HU5z26fl~b>aMJ8kS#mv2HD01=4ls&uA+fY+$iR|U zR1V#{Lui5;HG_M%oIWjFf|L{tP3nF&i+T%aH^v6_-g3FJ=J4#`oo3S52aO&xRv%0b z<#N;~VkpKKia~NcX6X2ip|TDxVoAcgLeI}|bHGOVBjaeKJhZfmehO%4LD}-qGKDId zhn8bh%G}2sLu%+_s5@a&YB^1|R|VkcHLj z(%6{0R4IZfcBY)X-2G~(sw&4iwbF(2r3KHYgw{B!{!E#`)SW4-yOuL$bqASNQMyx^ zpxk*y9`x=(kD1YD8oSPvZq7tdBTNn;^D;_9rmo2vY*rzdM-ToxHbOp$JwlJG<*-P{ z8XQxI63K+@uXM=%FvyI)Q$W{$0KF{nYw#j)PLRC# zm3FIC$yEw$N2TCwXp-{~YstAE=y7LU6M@V^wUr38wtM1z89q9RKA)h1AA!XoJ2!E7 zF&*_Td6m&Op32$Er5A?0FQsXt&5DY~m_K9dw7j%RYonB0Qfdb)3T&vlu!)t@^Qs4H z>)-F-c?;A)4HHFk%0T_sH5WMben9RT&!bao6V|4gTDVwqejr&3Q<#)1y!gyg74kA? z$gEnuC^cfIbniN73u(23#WdfcX*m{(K?n6Lpe|lacyS@T#R;Gg^g}hU4b-qeLMTd! z$52ongo5tS)EjFA%PX`jCaFFVU8=K1A4r{jCAwT^@Z+}Mw0^L})Za1}aUc^_b(D0{ z6~gx)NQEH|T~Z^4sfodZ+dtk7=k{-ms@#z235U$Dq{n?Itsk;mL;OnmgCEM1S>;1{ zG9Ud=o=nKClW{=T*n!CO#>;pI-A`0?z(ol3@(-!gCfFcPpK*;gxDd{lVR^wGQMK4$ zgN}=hiK>kT+cyT=K7$Q1Cw9_UgUsNrrvrD{fV2A9W=WwyW^jceQ>S6WBVM@WUR2dt zQgF~Aa8$W_M&f0|X0xQ+8qbn)dv2DL8)U}T#n^((*!sreHsH7zCcOPj*kt!q7EBq2WQCzM+O;0zTn6hg2=$`pB)X%nJvH& z&XATq8Bkg3cdb3SW(;Z$am#>E#>kI&{Z!z~wnY=2J-4cEh7#Ism(C;H`f zv!&pA&X$6MEG@_wgv=LxjrZ`)=@Tvnc&s+xsEtN2-D0-Pn1RgU8@zDp1k_$&>W(|x z@$_3W^zhqMFM6qRHvfQ3*)-wU+q&7!^gi(7=RO~KnfpE9XIn>PdZ@R9uNIOzJ^H2Q z$fI9V)cMheAAxip^Q^*)Z}|Yb(k=M39{+ZxpxXsLHAkw%M#IG`77V-yFV4{u80xOA z5_VR6O1$-pzQ9EcHH$d;gHT&%m8cWqWd`vUQD?;PW5nNiR^der$oYx9+D^Jr(R)SW zi~($8{TmgF3pnRoDPW_bib1A!2AO+?6SG6Hs`OlW_~2>567#9*o5*$NGV`fg&Nb7E zxvm~BM55;_Oncs*;nAKIW?~w}v}cdG_(!6pJ?X!tJ!A3TEFAxw;iEl!VT&p*^t>8` z)Mp3d_1)KL%|@i>fVn=>bL3nsZ|O1wPK1{jur8$MvxDOJW!DBY;mWRHkx9?@0mr16 zI#;WOp)P9PTv-v7%$n~3owgv3{CCSJRu5?%`P!uVw5xcSnUC&PljF*hOE zK6n1c3=>>waJkapGJ{B_i9vh|2&s}f&6i4gX}*s^1bklR9gZ#{TIMZ6JYonRjHqEc2*Zi9!7E>(E%L;|_D;YSM`#^aSfe1%xs@@lB{Nz7~kQ8%F8c{Aj&N zD%%3-`R)hXO^1>SFObm`G7p211=6jOOskjb3*?<{dcggRqv`J~t5kJ?j5vtKSLu3I zxbtognMOylif=kOUNFDW-5-h2QVYS{nh?%!bYDX$nC0Vrh)L(=F3#uHl!MYw;kyG$ zXlH#0=SgBSWmfMmkhaxqOQ=E2eGA;Sb$Pyz&0K)2mx`;D>ld;vZEx-Z!|z>=O7U!R ze9eNeB6ac&{o^|M1{R3kOO?(OhJ@aGXKUy^s+;SZV@=&$+ZxI(4CbnBp|}7EO0^cdPdnSYXyzsj= zgZrb>U;?wyLYu?F^pA5`cp>L7o5|t61-j=;@%8oYU7^8l2h)3ZXfi$zSAVQ&ZGrL& z1Nz=uAaC*5w&AzDF=0Wl%xfNjNn$ba$;gTDqNN?Yc#_bOw30~V3BsEkN#6DTAMGx6 zp|m?P-aEb=ZgZluaL#m_Y+?9N3)CGc&3b>8fJ|MO-Z3%QMop1eYN0Tgdu^;jYNv_z z*Cce3c<)NLoQn0_Q<1m|`nk#IS$OeQMq}~z@IvYNka=5q4xMfjA;i<<{G#&uR@7Wqc(#6^f5mx4r? zzI=3%jFt5e8{M2fJQWjWy30i`)4`IwLHYC|>F1tDOn*O@gXI6}=U|KaIkCmNS!{LC z>_9E?<6B(nE~4J8jHr}6 z`XU(`5*NwP5CU@IFsm>2Rc+E@TeaTlHr04BbypQ}vaR7_v5|yV8)*&z8y<^@w!*_p zndo*%!wZU;hnMb@J04zAk&ry-sjyBgB6=-m5&w*0?3hLT2lG*85%I^wALPa#Wa3*E zG0V@PXTTz^#@(lzar5WmfLwbzYq1O~8dEI(+6*XqcmpES3@O5RlObcYd*qaFBU~`^`Wh znMSzGA4M~V>Lck=tbY7Q0v$4sWfdXQSZ2fPc;Q$y<=260p%SVIjM9h(B_7fCFBbB! z<3|Fn{YL^W6&LByx4a=UxWUF4$pmgfI&fnQID{X#A4kbNb;kCU!Dh{Elkh7J`rA1Rrw^kO;$9DjYLsF zW)kB`W5|ZT&(PW)6Va6aU? zgzEahu3#y(%osr+6Hr?|jUvdL4Wf1gSo`3c90(=;>AYmkhW_S;a>mqW(HYzDDQAq% z*in+PpGi3(NzPYU$jFxsuHgl9wi>}2)f?1py%FK8+J7e5dj2!XR=3ZjxFK`B^*44% zrru}_?D%iy9r2lTl~#X|r_Zof3M_?i{<^pq%pCIp0}H`!aWlvKi@|l?;JRaQL1tW; zKi6mP;>01m>BWg6pGOtAD)70$qUf)qlXSHiRK3ro4On9>++dWIISTp0=TczMagi~@ z{3gD4LRVs?;%pcVE^mJ>B?g(1O@MJ?r64o3dFi0dGSIC4H=aI&+hxGn@S|S1%P?QS z4I(POHL_(ZlV0^!_kAJI?iy&hz7S}T8CvWY0u3@Z(~4h2ms;5`M6ZF-gUk)Jm9b;P z+j-&KRA2idx~Y;LJ%cvg_q=pDi<2SKGibx-dg0tym%tu1R)pL9F^9Lq#QXLO;qVTd z{6e;ROhKfZ7|=v~EanXM=;9Wdx-f@#`wRRd(Q^V6mCBg0uwy{h07ChxJ>K8<>~K}OJr@( zdWlQxwaqfc;ZuKzQLqXQ-f^xN*n9&FE}v)ohQoO6vWCmEoO%}t(o$i4MiIgmBZSK{ z^!ZDK>4VG&=XePDFyn7NJU0v;xO|u~n|A)iT!%@c%u8kMVgcn?n!zH2F$M&eiwrI^ zesCGkRSys!3t3+=JQ1fFC1tw!wa!whKDhkW4i?fbsy69Rwaq9h7-Lj$85P{KmBP`f-yz~cfyHK$T6TGGN=RTKqXcWzvF~; z>#QMjb8q}IsX(~=YFbSbMsI09xGcI^)n1mtW(8vm3N9BFTrMiOj4E!KTY; zd8y%&&N5wjb+|ie_QZ&c>6-(lFyEm(4(I$>qx^5jrzq%sAO}<$R$e5@|x=6xI{+g>Z8~-IzF31|{S~ zTn*xvovNhKnj&zs`U)`V!cb(xHmffYk!A|BkwfBJw=C9sn}vf}pIiZCfrd}&jY*MM zU7&e5F6K*$B@Jrca*tMa@Y#2QLGNPcn(OI2x57}%^P*B?=Cv2BOVzwd|F~-2Tp`RW zil4^uxy$vE2P6DMHl#lx#+p++^JXlp2@E#cYDL!!27w$_!GMF&xwU~LYr{Wm=DOD&WA_A;GFM;m*jjO{o|bPlbmNaIfo@-)!Xk2CrZ1_S|?Imzwl(Z znA;i6eKI`Ux#;CT@DpMsm(N#yHKtaX9OoWGV@Bd{n5RY=vr-x*$@D#Ed`z9%Bt)LE zSHKnWII!}++GLrP(k2m&+tlq9+{>xfE9DVrzEW0Z?O~o~yO4Qy+ij)HZXr{=!0i>x zJ*)RjyrCxEWD^fE(Fi3i!H$6X`xYpeJVQ^lvHim44BeIZ;t+vb(hhM&-L>J-V3 zBgWyvF@I1rsmik}JPLX@Qa>7=LS-D2Rf2b{6b||zxXdO~SDthrW6x0rtws@u15OyK^rTZAp{7U5F27`U?%R3hCW z3J>lVe@8vi%;Xj>)NRrFmkEUe4Od};|8#*`3jPeL!74wfoz4^=o(TpI-smGd<99l74u~Quoki*J ze40@_u*rBP2%ZVR!!KRKpYe?K@bKt=9nFUZlT#~YFgd=GX=vTAT&SYvE2FL;X{lNt z2Yuga%R&FMN(@}VU3xSc!GOm>qpk30bT+zC(rAQ|=FupTa>k=knbr2eF9YkuL8E(P z4thMTy<{H@%NXXM-^EIbIcWSb@gH>KKWO4x4*K8M!o)$#_qT?23s1xMw^kb>y6tLt z+*_`u=g3?k+7zKoM91&KdMv(Y7@yu+O+%fWVnwjU({;5_(T976i>rRDgHLZog)B^k-K6Ujas0s|#tY_7^H8|}l`6kp{I#g> z-(1K=yi?Q}@t4Nx5mw`}fERDY{z6{ntlu+;Nf8`Cs+e8a-z&?$cQ#56n|*=C?jW1>Jz z=z)(2PcCs)Y8{e=qaL1V(TRi3rdJLFs|1y^FN*n|A^ zScI2fD`k{ZrzUfJg=aVKxbO?Ap@~_4trXJ}Yo(YVb1@~u63uBK)1HTV12TOJ*VbT< zwbJIS{uoa`c~Qx-jsZf^>6_tRC{IOJ8(j7MxXP)>P_^IS+HG*1GPoc!t}Dh8WTqhh zT^mh7{v~=&KArk1o<9ES82qRPop|x%I<$HfqxGmBojUCI|E^he{vx!dJ`En{X2Ns=jnbOXB%vI6G}N=lDtrXMeC3f$HpSJzCeFuR9N^$0_>wJ8j4xqz zwnpi2?Hytr*{MT3TL65M=v5OxPF?y&UXuTt4d^AMi&B|bWuAMd8~17b*a%Ys%QO$5 z2?{gK#n<5wFXcWQvIo zWdSHYl%)o*lZk(S#HKTLaESy|lQ~XRH34~`fBygESu3*AI_BmzsoV1Xv3cyO7v?dya0*8hjsKcnzqkKw^(cpcVH-5A?I zL1c6duH04R*QxNL!(EP}D~}E3pOmL*oRc8F z^nxoC`EiF0Jnofqq6o~Y)thtYbY_LI}SOXIBCyFc2_&!(z z3F$NyM7*m5BC@lt@HI%*#z>RSxOU)BZ&&BV4gB08VV8(>-V_ViLE${n^Ow4T$w<0c z5_#hdlwlj>5gZK*{ztF@$+pArKZ3BqH3*k$5H9nPWSb7Tb_YbNt`|2*bv=juZI_P( zeqI6Yi!Ll$0nS1^;v;8K!n^|9Pyd+u*}p+nfKiwmU#ZW6PNh!c7iXtxIkX2eVDyNW2ajoIcy4P;uR9JIKj96ipi1 zxeY#Y@&nG5kdr@pIx{vJa`IeMa!k>!fO)B>mGqD6Y2`*CCs7wP4E(r($jPo!NuTcw z*PzD~3}sI}cy~BAF_b|)Vpq7agImof*#~ylMpvb2%r2NV57o(ylFe^73Pb5VRJrJ( z`hN`NH8=arP`BEdH_7}E(YPH|M>M(>a)L>1%qH!W!kPuvY0UzW*C?OC zn>O1aQ?x+!O+rU*HPJS0lC{Yp6Av=40e&>`Alu}4N`(B{`g{#WdGSE!U%VXaCsh3W3%BR z;ekG}GHwH6DzXX^bE!yN#O$JZ*Pwyxo`%JnlB~dxW^NWj@)e{+Qo$r0H4j5Q)X_r)|EJX1wdHnvY>Owj^S2BtRrWg-g#&ZC8>MsmD zt>D3U_Ih}D^nYNp3@0Tv%WzVBvoMl>FSd+i`7O4VeT-y1yljS3v4P?#b#>*BaQ=V% zqu7itzr{7;v65&sJSHVXw@n(8P~1Ewy+YaJG3iw#CJ+0oNP$>MbZN{=Hl}&Hu#%Ym zGAsGfx`42f_+#R~<;H)@#J8+u%ZtKF(lloE!HeN`PGH;?w4>I=A5eOWJoMwX(BouS z$x#TktYi)S;AJfQKi%T7k_fhVKG`Cyw5Qsi5~519r(l?a)-85^GDg)=ib{%Wxj zs=>F?_dtpJknLN9nSB0R!PoX%!T0L7f)6s|>urpYO!!8?j*kO!-qkn1GWcwid0rI8 zx76UX;p-(l(DqwHQ0_6RPPHmNvfXozSfvp5C9YvXE zt8~^jQbjKk!>a?CiqD2O@xm=bsh)vh>bap~OOMa=rEZnd>$X)&Z!qpvB+eN!0~}*) zkxZpGivfB!3C=Xwto~P?K4aTvut|6+T-(T06GWmR)j0zTvRiO`rthx7b;sb!zD;mJ zW?V(UdJty?na91d+oHLl#BEY$R{v2?pK-N;Ol4-nJ9yz3>CCyl?%Sl$pkxb;iK}7T zq|n~pCWSV|fP>87<{4v`lXEuJnC)T?GH0i=Xlj>yJWA~cFA75?NauT zIeV{d*F!dil5k%*=WfvU=%Vju)FztrAanL+8#9pkn^ayfXYXsk@n?_B(7`~P>JM(J zoV%Y)?riWaH<&Yb-ww$ff^F3?7g}_OY3=Q5X{1GK|GF%y-EVpp@W#fIOJa!ozaQS89pA3$(>2RFSC=M869B{c@;4)_f zm&;|l2ZZNjWp>J(tjJE8P8H;E!^og!!N_#g|J07;(CdSd%2e0P&BTTxEuH#$&aZZ< zS9ce2Gd*?DaHPBQjCOuA3-Kr6Pe;RA?GkpTrx*0vE@5Zz3De(0wG>2p`f=hAR%N9O zFMfy+nIEFMyWDwD%U!bMsIiNe9L4zovb>D{aM)+N^pm9`Wnx-VTzPbA!5r~2s~C%% zwgoTKOD#uwM9J(T2*q`Gr(jO~WVURDvTdixaVbdD<7CcAY;H~`kQFp*UH(o8R|_qR zJdG>Ts0f&rxdn5?jNXP3f7||yWcwKU+cvCG9f~!%VUp}Vd=z)3N(%I4^`ihw6WDZ{J9P*E4V_NU_LJIQXFkFF!U?F0?@d_3$F2lIviUM_c> za5?qzZlPh24_j0nfr-|$O?S(B_UkQLCq;tl-fq1%De`bkM^crx)MB?wy=2kXTW0O$ zWYzUEh0Wox=APpHdkp{5A}SpwAWH7BRS{4BxGLiJ2>*hDr>56@H}Nl@(*p?B9&gFg4zIk7T3L9yc4G){K-;&+gH?YeuTaG$vKaM%6u%jrfOh zw8aNXZ4L^=cq;8}2C7D-z!~TZFKJ8t=pSdGpJX7r$v_oEuY4f$!y0G2N>h(g&+SZJ ztrHoJyIb811;#;_PIhT*Y1GiO>PB|s^bBK)zaA>=z%VtbFDXWKdh7RoG^eekkfavw zk&U$@MxQ<+{Xg2%p*=D$KveE+=I)WM>MomLI`PgPnU-bWYi6E^LT^bG*=r`55;ZV) zk8moL_wq~yyYqSTgv+XjO|%Mog;Hs5qCvJPa{q>W+q#=$>TaZ0ce5Xj6j$B%>Te#6 zRF0WLs#15O_qa5Q>WzyWkA^jsSuVOrq1RqH(lvUoZ)_g17jffKkOUv;S_E`-q-!4H z(%1}_cog+D$Em8m!o~U2f2~6_fB)5;@2^5uWAK|a6GVhb|`2doj@j1u73}S*c#srr!-2f&&&IJ#~bTtao zPE~K8luDg_QYvuyed4DKk~Zm(w9P0I7-A%F8A+XehBko*BdLj$XzGH};URhkS_yUZ zBlb#1|K47CpLhl%F?S+rBrkR9V@^KVXU}pi-X}IR=vg|;1sfh~f=0rF#pvkfM}q~* znOTzqRM$LM9HM;k1AYkBi8Vo&#H`71nw-j5gJ~bLCLMMf)&ze{{IhQSvnIY}O}>3H z;(ZOe`BQl41An1xh&90{yz&+c%h{d3kQJ9W`2z~x7ol%_9JybQe;+@I&tMELOp(lo zGoWa}71}Qp%8_RxC2@S1b@=NU(K>v%>xpM0YaFLGDJ7}u`=#S~+}KSkRovOnOAp-b z>f(bI4`{E7m;bW@o%TylLn?H(=k2IiJbq1J+w}UWRl<#3ChLLf`0a>U* z=A~RLWLh@a@Ujvf*d$PsRE-1DMM8lP2C5=}>6O+8WHs0PfUM@)ACT1?WWG4WBm|M! zmBFy{|JarO2c$qL4jmer?nPpBiwrs&zS0YK*_F)(AaraI*6bWfQ6~((BL?3u1|MWj z>yEJnnU|Z{zl&OKI+=B9#jtQ^HcA*OM0`MIcvT=%;o0zdUO0xA{5oww&REsrJ1IaY zS$wZ_#Y=#lzmxLohMHrHIjhY?Omhj4<25GtwdaQ?>tfXD#9 zflL5N9*7MzFWAF()Zl}T#rIB+$V=*$!FSEzyYHajgUscZ>!1_{WJVVc*?)2=_Mp_Q z)vx90Gq%Q%37ZXn+6(6u`^yKV+z@VYeewp%ZQwyEx4s9Z+(sE(kfjY7JCKH6=5TH_);${jye*Wbg5q-}k%OlyP(o;IEu9Fjafc}U70GUxFnV+=AsT)htc$HUe0 zkW_$;G}ep60N*zNZTQDtxO?5-moQA!C3I{hd^s@ktU6!-?lAyQ8-S1*;8kM_GB=KU zkWJ%gJ-<{j$3Qdc_>TCHR_N*Z6dC*oo`Y|)z>j)Tt5q#pi&}~Ei1=|Q3Ox(*hanh0 zUf?i3*Y(WzT#&een-k)W6n=!&>Ekm?e$00&;hl;#R@;hTa^4{vH~y0 zTaLV<57(lB)_=(i5H@DRsF)1-2~L2Tu~kZrQnK%gJ3UxY+5=Q=d*H)(&JXkj5?Sis}3*f1NG$27<0~a2F5WGi(q;eg>?f+n_4@;LAdqlcK8(h{6<}R_u5$-Me4-Tjz{Xm(vCjjV`*m`F)S@7!OJVy7M2#@4aY0t zW|Es#!5*`;p8||YZ^#k7=lw_r-M=S2qeJuL*Qa}wt|Z?O_aZ`z8Qbkge5=B5$x2)b zX2;Cfo4Y%w0VTu5-4zJ<$p-t_SB z%DKs+NKe|!aSLgS0R@*=&(#-4T018_WXIAWJDpKvFv!T@GBUV~XrqUSSF1muZP9A= z+ao&Rc%-buwQBfev^&1M(ta8`CpG2<3f}lCbUEGrlSnJ|;4wK)Q{|Zd!_bvBL^A96 zPq4DPohg53)%=(|zmFdicDdm(IRewk_$MEe4&#ku(qTa69%9Hb=^>JJ!mw~Tv>-U4 zNtOQ26@%pL`tZ?XLYq|p5<1ON3LN4Wk)mquG5!7*kqR-7lB!TI4;+)%j6Xqo(Vv8N z0cRD>#mD%O(?f@ZOL}Mhz9Ca_DM-=fmDTsaOb^}x*d#gzF1>ZEKN*TKWjt;~y>LvP zyeo+8fAZ#%YOlLrf2b#S@r;PNp)vP{SP_5vHK%)ycEVPW%C&NYDKvdI9?1i=FY zS628`NJJ3aLtHxQcaIWhf}qlI{9}Tk(s3aOP`}J3+wVhjwddB}_n}c(+4VoGBRO@4 zAMcL|3_%yjUy8Q=F>>eSkyVi%s>yL_AB~QuQyQ(3k4vj~5$V#3sK;@h^*S%=2_wR# z)WG91!A3Amb=0`ye3&4CdMrQPY`StwH;+2b(;sW)BhLzr&uTSfOw(=fw_Y&ccX<$r z&;%HX@`(H_Fw&tvz_&&D4DirMQx7>a?d|&4k#LURpfdXYC%bg&l}z70^9*Ihf8QTIUY<(4^e_US$PjG!@NBL8$ zgeCXu&!)<1F3FW!x7-*hp&!cQNJV*{cSdaub{^0}Mq@t2U-K?^0tTAm(l`EAG=lRB zMGb$O_qrz}?~xO3-V1Ds#OG)M6`S{jABz;yPi>0C#?+;VlK0XlB=42*DIfjS7&Kdc z8@rUJ@g!2`+?S3@j&t7~Uea27&_B+7kLcXPl4iadUxQAhek!-_wl|E|J{pfNO~7U%9ip%CO-YK&Ge`LG3~Vj= zC6Nlx8u#cqqkEh%%_!kR-6Fmu zmpTnlcqsutp781uOl9LUNeIJCyJ3#P7)RJZ604Je;7Pd=t%1(~{49bwi8xE`mHt#y z*@L~xF0v;Qm!soJud?}|;1hcyMPsH?M5*i{CtQXbdrOSR`--$J>D=nolX7Hm2&;I# z>>$`jdq(nnb`YOKr5y2`V%kZa_bJ@$aFQu+T=PLeJf-;jr1Y}O5!v6%64?LjWnqeY zS-3ovn0C^z-tgdVb_#~!r*Y5#X<5?Sx#Yw0Gm4iwe7G+0?fmN@`un7=->zhN#0T|V zvFxb~;(|HG1($LC3|!27!-H}C=*P9wsRpjz7Ek3wie9Exj@L)6*k(QJaPbbEqHPLip&`BY#`=4a;8y6uEO0SMb1Ax@A$A9B{ z0Gt)`wdfB{iK)@Z6mj4%<#FI>J3Pb7kCD2n80*xEi4JFqJKs5ME2>JTW$Y|}TE@-rBBNV!LIJE{UU`3V)mxl=5S04A>+osr^da7K#j$uovvJ0l6bWD-I+5o~(d zl5pAR@9gwEBP9k6hBnrV!O-3}&}{g}UbstLe`(-B$A!o5)*dkM_854l4Lr!4*i|tW z*mEYpU)NFhV96Y;WPT0$`BB<<^^h;jI3pBi!dc1X-^R=XUN}>nb;#!g--f^8h0AOm=BV@$ZrcQ(dz^7rC)~w3ud`D2iw&x&XC-s1j2V(?p0^!l ze1}HW7F<0COWiusK@0iJJJzEs^yOY6gspc5*3M%I{n!+4aB5ET;zx- zC6uC^hIBM*$_Ni#7c^5^OC%CaPChlD@p2C3ktZkcW7{}(fxPKfX$gfLgZdPCMbld9 zm_co$-HD3EC7k)3RJ>791t3#9gKX(66+9=E4?h>}__$)NRPA%}=v6-_)&KZ8X_Sz; zZMQYXAXCYzSIjv%K&j^f~Cy3^0Vdz;sr;zq{1{+hl+p zGQc1+upf;flBr$(21EXKdBXrR`c5vL_b}>!Np1LXjmMIoT%={y%6e*nP3HnSkTbD? zQ-eHPE9kfwx8_W2aNbpF@v}5b zgu5vJD3I7$b^ckJWyhbTS-$zRG)u@_`)?aVkQv()$iD3^2b*yg8&r5R&Wphf^Bc$n z4Z*w_=LIveqXrp*U1Xu6iS5)agY23hbMDiXZ-uKXh+J^F^n_cOTRc*z@wp*eJE!C|tjd$)Ge!tMRm}!BzXRXwchl&~V{B7MJ+CGmsPHrBUDW(j-SQ zLZ`2ua~&sp@L@y(h(M;KabYh3jK|3yw;|$obkbZenv2f!aD{V1z*QaZ;&UJt;A94Y zOhI1~GdCJ5FP{jb0m~$;0vDuhAZ4zAypT}=Hn^k&L)>^H%&(N{f`0%RFQX90&F0>6 ziN*A&(~~Q;68Kl=cJ`iJ>`C=isu3btBqUqqLeLU###z8VYT7ayl}?a^8h)&As247B zG2+zeoPR;{q+H}uq(i9pAoekao`Dt>;z-E;LVOQbieWZj)#rQajB6QWs&iv)gBQ#X z-QJ7R9l*K^sz}a4PpJzA)Hwn5y8(qRpFjn$?)y773D=qN5LNI}^bnQzl3+6054hS4 zsV+oLhkk!!hd6rusX-NZCy_=pZw?`S8bPmHH*1^Zt~#kxtGFcsH&WbH_`y z%xLZe4jObI^U;AL#u8-OFQb>8O)yWZe*+@_$pJD$CkJf8xh~5t*)Q@a#a@hU&Nx>Y2Rm*>F;*q0e%Ph+7g z+hmvVk3_poM*r!kLG5cayG6)MsnWlluG)?&{W?u}6($y1X$aq=7vq23oQ2H1s zaQSV92?om8|9~L}XUMl5`PKvU-}y34Xf z$BoNw(Lq=leoS}EmZ^}wkrc$1%o~X%^vq|lsKAFLgOPGN+p~Cp-n%N>Fhj3`P3(>j zK{3Y<-2!^ai;0HkjsJ9&%B&i$x$<|Nu^G`7SQmS zBv<_|y~eeO4U0JsMM|mlz=5|+AvzC3+yl5YSbcU)W(=p19n2UKsAu-?s+peO?y4O} zZfV+Oto-R&;TDkv7hKUC#{?IIXcFOFwa|5GAV`!O$VY%kyJ`S#8^~hdp@C^U@?;xG zy{?H>0*_v|4Ww)0V=;>S)&9BRL+C(qB2_o`_(xj+Vcth#s>$b2v(LXNi zPB1}NNT7Ua5P>DxP}e_?eh7q%3*ubKToMQ;SSqdwb#YZC?9CCBS)I z2QO(@>**iob$xVRVM+4(d^l4vw;Orc_8>RjNSvdNnEV~O9$3AV_+Kz*8<^J2I?oJ0 z61xpN8-C0S=cUL+0~g^IE_a$JU)w~^nc7Lru3W7BAUP71f>7&H(`MLO}IStJ_PLib_qPVcq7ptnmFW)u^wF($Z-X%sN=9veIu)9@%vJJoRm=dghTm)|bA zVUS!+hvZg9k-!imfy+n^0|{Ts0S`uUNRWUb9MTp8AwG1GNpD!6J&US#lgAsn7?1)g z-N}_hCES$Vwrcuj`-pG1t;#K1$G+XRMyy2p@OkkCyGL%x@Kxm&4_~-#OVVqTFQ;=; z2CoCrEt3W>lspe!uTg$^@alo2q>t%w%N@LUukB*gUYG2(VH(DF2glGvj^ht-;}0y79$;g!z5aVFY0JKDY2%5YtFcUiGu$QFzI{%2*&m} zZvc^c6@2Rz8c8f-VU9{m?m{&ZbV)FE->=fo*%&2Ag=0|v;gr`7#po~~4z}22Emwip z<_mOU34Al2wTP*M9qvf}kFoavuc}zThdFaX5(0sQBm@Y7B#_fW2_*Dh0@4$z4I~1J zN2DVPNGLWG5Tp#KG&@#Mk!uILVgan6AlR@VM5Whnt#@Xh!tegSOY%HxpK0%`DSOI0 zvu8g0$9z*#YN8~^VgDMA;2roQuRQ$V!>Ev;kOyEdl zL$FRr;Ctf1J?vkz9*52DA$E{JcJ9wmDqNCtVXV*Kr1zVpciPZ{QRu~M*Cb>Jj9im* z)uxeI*ed!|;TlIxK03h)B^Y!y!m^7los`>#LXvMp0vw6Xnw)Dm-Jw72lwRnHpvYx8 z*EAC&DNa6Wa_|oEE?1<&N@y+>q3+2?&DxynF%v2>8`oQ}ubB8@q#gl>PB3l}W_(zF zFo@0*8Y6Ox(s|M&l?hJl=Zr`grPrx^%yf#@S=EA>BQcnzll0<4XAae2b}Eak(RDgz zI@fl`Oefjzm>D&;)0<{u)OhtVz3BzqDSgZg8plCOq?##s%#04L@4G|3h0_Yd3Fp6x ztVctxT%J=eSVo9BR6*oelI@n#2bR)qOX&k6=HM}X;1;1IgNswgqIGh|EG6qZ<+$Tp zC}kfv<5lb0B;<-rvImm1KW=gg(T8}+MPoybo2(je++@|L<7PYoGwXwz1li1Tn1$Kx z$D^3JX6wJ_yDFVG>NC|1z#g>vNP#Hq=_oHb)$dCz7nTX>l z8`JTW5!2k0W;|JTGGb%;*AZlPSu%K%j2^Qz*WAYZn`B|0dJ!>jJo(q9Qi3F*gr|(+ zcAYfpH<*Re=V3~6oJh_oGsv!c%47?kqJV38%BYqKPnm(OL!|YoOUxSx5+Zm?-ry<9 zH#~(%#;NGM5k=QH%O+^q;3H%|ykb zqU*+!Mujp)vdyYcQ0t)SxXe^q85aO^*q)^pJTNg|LT&S>9{}lsEf(q}pz#K77hd z-M>M^n7Y@Ix7r+LGNki>h(l)koObI?yF9+c!whU*=-rUFqt5MWFyiMPbY69p>;$uZ z1|V)Kxq{#ny4mIW)AD*D^01bx4CJZdo&jN;t>GzJu4NLi0ISrlM^U*Ssn{-W1%gMu zU*KjZY_{cbR6UR(rG}@J8lIx)qHOAtZ=uZkOV>Rfr>;M3CJUp)N*B*{$0=|ZRoCw5 z{Nik31Cm8m*9Jx{qy0VnB^rr6r_F4EB^!B^iH`-IsB!OAhF<%lCtkPc7gx)T7HSKQ zH>v7UM^78IOF6O{HgiP>re|(|roZ0Db#hhQ8PiMGI%9fim=8?DR;e?3{dnw2I%5Vj zt^4NfdIe{xSMD=L z2L|F!y;2ZM9oQd86Y5pfaJ{OI3ZhFtj;&E?%^5Is(5lXQq zkaq4dKg1|Z?R)f$Rf_!;6|GSeL5x)t@t08)K?Iaym5||V+Yg;KcV0=Ew7tDjHNEar zZ=zoJqo)qvNx1?GrIe)iwam@d!+!GgQoGNXxAUtr5zdE`UF{RUB5m_|!a78&J_){gzj#_C9t@{(7Y=@3nT4Ymv6o!o+D}R2&anG=Cyl$JB9JuJJnN*f z7Jo?^Ye57Re>RPfWRziYyOpGL%t24{P@D77LC@W)8BQD7nAyhN_^fmE2|Cmjzk9Z; zo@Y(NQv|8hiVZz$Djv*IXGWhj!$X*5csT8>3=gyZN7b8*(PFOoJRKpW26aYA9whsq zjZvR9E!qaeK*bo$(xPp_&8Vz-Ff*LH^I7-O^(&{S9X8x2HrzfN4rb9%9kStIcH(18 zSOsZz%B_=L@_KHn@*_8#Vsn*yYP%E9xpm!gPkv%2`ZZNA@2sPndeK!wcm4na7y06C z@$LrK>2tq%l6U}0$~m(qJkNO8KRh0Qq0l9^dG@SP{s zRIaNW=X7=XIWw>rhTxG6AGrPZh7Y2o;lopU@h(V&XsTc#{Z+?vruS@z$Q(@-4#J5h zbl*AC6yq7vSh;Y^tzn(69y@3H_6dlMgN&yxl^z5NJv@cpeV`{wD_Crsoz)asfCUG? zGVDIaUfXD5-&taK%8|02KEN23A1M8O5u@Xm$_SE#5uU>6J1`RE6{DCJ#Yp=1*5^$B z?mK7t_uO+vUDaBzCzsGbvc-9)z$4UEy~LBFuIh1~q5`_)6G!(2Vd3rJs7CCBs^nc% zRq-wMQ|?%WyqAt>0#hm-(PTtvT7${wLmiQ*trl@CZdxgfY(;JLBF4v}w!#k^es(DQ zY#ZLHt(NC{hx5iO4p%lm?;YZDuR3p)R_mFfLhP49BD^|(VQh?hIo$p(kH<+$Bfaf( zRk!yloO%XdR%Zoghs);kMrZY&+nepe@vQVCI;&_uqOD-eCE15qX7eZp>W|H^|(X;#*T-nEsxbVK@W^8-7U>Y(QIn~m=zsQyAS*$eG zA?%J0Fjc=4@2#);KqlHEDA17TJhkh**)~4kwZDY{DoxeKKr+s4Z+twR?~ zTYld1g1Pf+D6?(9AP2cE7#5FjX&A725}+6qOqDm$3iu&g5K7^%k9M?liPx!%-VPmg{F>ahxXeU>NSIw)4r ziYvI4W_$dWhr;RqB`rM#FqRy`;Here18_sLYFMgFv8li;tlM~>9(yg0YE zPA*5>j^_n7QkdtYps*e=oI>tThTS_q1yV0tQVb7LZdM!7Tzzg?ZMUrU3age#vXJ@{ z^4og~VVvXlwO8j{`oLZO&@sO*OkBtcf$1BkBF*^+)9-biJ?RVqVmJf|R&rE^C(n%fFDFU>iPs@?QhZgT|(Qsj4YZxSBVN3F*!$0fsYYS% zQp#=7XR+p4=bpwHMj`m3*PE?|VnE2+hZvmNx8rDbv6_G{2wD5aB1XJ!Y8J{LwXfD# zcT9z;*N$1^pR???Wxg>LmsgP6)hkq3T5?rQwE&&RN8Uo^HdS&B0^2IdP0#89LzhCO zw*1F<$3{d{iuVoKkmHxe5m~S~&)Z1-Xo)hceNAMe7)G>Aqx*zAM(xOGjAx#aTgUkv#%2+mOmz@LXbvBiN)WJ5^FO% zD>L-F|9pfJt1+6LKAsG{IOy)=ZWV)-kw??&;ef=Z6+K3k1+~`tSPw7Z!EP389&>kt zC(&j}e4@=lMAT-LN=KQn%*F%J*$X|{yp|xQYH$eHIb+Wl^maIj<#@igE7mVe;uET+ z=(X{cn?%dVi_x35daiR#5?|p#$#_c345Hr^?bbpgM6_G;V|3HEJ!uM0q^uX-1x7&a zmTRpfMQ7zz?veK>b1Oo_6_uJu4Hx9B|JsvEc}s?Pa`@cY+1H%UZCkwgIGKj|V=fY! z7o$5r@7;jjT@odHzP5bu6h2r;clcnhlF8bdY73;j=V_Gp_odQ;IH857(86oYH)rYW@vD`mqMkDsuSrftlTCP*cK7wuISHNs7c?uYR?w*4;>!zBYG3gZ za|)t_5}rZ{&p9u7dowChQuQk8zu!Sqj$9%gE&8rWmd`lL2Tx{`x(k5@gXirRv6+9V zY#>P3;7K;_aTR0q#D?_;Dp&}e8zbl}^yJ7wF4hC2G-ux#TSJYH(XR8z6;nu1tWu@o z&O`lQ(mMWXnQX5Zx-V4bL_4{Y}Z)W1l1XYY-!6x}o#9a1$tI|VI4HcisKREw4F7hj3f z#3yBB)UVZL)+;@i~h-!HJddD3&pmkq2?=&?8@$$VKXB^6BXI4(QF;?D5 z$iS#FcBX5dahv@rE}STfHMI@TIbV53xmH>?*0<%cI=R$yW!?h_ANfWW)9kb_k#8h~ zNXgnTYLLRJ0po*#ZUd=?aWia|!0~lcz`2a>ZBO8<|}wySHQ0 z)w8jB=R!~28qYF%nU3t^FHuhHi`9Sc^tNI-yQ&Ae>cn2&nKT?YaHATI;QsUhmI+m%~YgL z%(n54y0CSe8QMBxh8i)r%y4H0Mrxzur0Y?R^JL>p^Ui1dE%k#L=!ax5OCRjC;vjIl zFGr5~IEs9*ldsq~Q@IYKPNH(T*#q<{@itHo$LR?r-lD|VxKK^{JC-#mL+>w1yHmek z2Qfg?keXOdX{N3{8K;|0@-(XYcVq;3TWiF&tnoGknPPZ{zoZ!6iIZYTz^lk!0FsQ3 zXmO7k74@+exefG=%e_hZqaHP?>9w7_DJyz=V|2nGZyL)gdyw~t+KYta-Bi1g?Ss5? z^^U>bc8R;m*-S3~wCVdIE}Xt;L%dn)Y@A*-#M?gc&v5#_hAgCS#g{pwRKqzM~adqOI#AWiABrY>PDshmcH?_#^q@NoSU+bbaXaD7ux}B%me5yqv09x zG8+D0wQd@`aY98gtTaUk&X#PgiS0ocIfQ=}r#oZdqhRJdLaSV-w!wx0-9_;+REFV% zI-$A42K>0K3JT3fc&9p@QawTfeHd^_wth^r#y~ zPFZFKPsx?^`ciMp#BLN}YGo5-23o)s`6+h$R_#i9+qK@OReB}un&Y`%HGz4s$DARX z(6Ex!MTFO`W+~sQUX@Hg+r5&se7db4irD-5pc&$I@9G)}TcED4WE#Ix1dnX|l4<^L zjUVK(@iX$)4sm|XTIX(K>^|S(%~4$|nXa}|C3dx1Y0GA*VWaRwFWW>edsoj`E*mPD zj(-Zw9E&`6shl898e}}BL0(!3LquNp4hw0J7e~>_(Hmb+cvAgjIsITc;VGPW;k!C% zIUT!*)9Fj)1ZlzvPvP_fIEgw87Q*TK2u@D-uiAqPdya<4w}p86!RaP%Pt`slqNv*> zI7Pi>Vr;C(rTQi4rsFZ@>aDYzp+IEt&?X@yVdC#zKPyeR-)RzAQEk72T$g@l3R5Wk z&NReh+JtEd(k95*WBs`J#)y`r>-d z3lqIphHiduHOV{2sEJ(ghFfYk|nx$GTFtKd54bL>=yDy*em`;<3cP6<}8 z!t)*v6jz(-B*Krw>6HXMYAQy2ABuCEXs0cEr+VkQ)V>7M1MWfAa=vy58AfdZ%+eN} zHay&W78lrMM*;HW;O;DXeUo8ppXy$a%fjo1*7UM^j#0 z*|Z|`!^Y=pMAS5{>NV;H^p>1Sj;<`spa#im?`i46y@YK&Ue_HW3Z^-&JsqIIiK4aC z&~p54GSNbiuzJg|a$G+ZSNG`3=#+S1!grPsyoU%u^EH#bH~EwsK1x-QoN|>5A(d3c z3>C^DC+SpLXIuw|DfbZF=|AoqXWs3qtCtjE7KdFDPOx?+7^MoiUR5N^9Oug;r2bv( zZm6!SVzLYVL+q&L(g!=E0*pvYS2GYXOLC#%N3)dVgI3gxDk#Yns+)Qi9wTSj8?47| z*5d|vqAarFW}>IGrJlwyDlD;ZK- zh8Sc=dSd5NR5?(?HeZaL|eXzIui<6XY_haJ=H8YSLz(hCXc zDp7`UuA6BUeX~90wywUWXhd2IpP?+_aJrCCUL)dpSb-z_nXqtpq6!T6tcNMno26WG zHg_a9|ADg3`b4F}JBtZQ74a^VKev?eX#l-#d?=CLWDI~$>7z7aSY7~KN0Jn9Mpe^f zK#Ei)e^vALS*faJ*gd2TQ$gL=eq~itoyJx*4Fk*)+jJ`pW+AvB znxMKHW{yT2|Bpxb=P=|Y%g%9s+qk>0tctRHpPQD69}p!*j{f`Sv;La~eb$}$DFs*)W-NhN7&{KzMUu#?j6NISEu%kkDX+S~M1 z-bPqngSQfqWO;fY@LuVfB3|Wl@gAx6K>sc*gD?64SRD>sD_T|mr6btzJn)S`muD|u7OSw%LNcAbk7*NDly5F zILxMgC7JpKvy^zFq^K&X{4g_59sfNd{IkRdCz<-_xQ{gM?laX)iBC*2RgvzNTF-~Q z!_+-VrY7E*WNP9{%L``V^|*}(X5sapi+H_cc{%=fMffML{g#(?*Z)lP;DW|Zn1m*o zJX2>aGx`8C>7%mmuhI=i4JY3U-9mD*)gji`n{I*9AX#^w<-s?OKUS^eLjOsXKy_p$si5qkTmxkQ3Wu;}a)T z;n4^l<(3DYSk=d6EZk9uU!2S$v}{h!BfcKDSARasg(OGOvcd>x;p9E zb5WUaPwX9@8me7&(GaS^mdb#Os0_VSDi9=8@DwU|ihdAJq0+i~C|^SQLELC1T<$hp z?nV%1%X-UY%|%=uxl}F?BwX;6>A~IAt#%L=Lgo%b#)TW9Sr@~fdOUyVCE=B^@K8! zGi8{iWkWb=6cCRyR5)oS?V9;jO8HDSFQv-n_&rDWMne1X%LTUmTw@ zOifPVY&c(+x6I1dNk#RWhY}diy(1G4BQ%8SZg>k#lJB6b%pgRHicqZvZ7QQzfhKkK zcv3y6UXVZq>iHBiJAMh_B452A%}(nP`RYM{6f2%mtg9FkRfDjQVqJllSbBHpENBMR zTrpbJASlC+RSlkq%pp5P`vAF3)!+w=UZz+l`AgI`CsT}S5XCC0!L1#08Zk#=^u|x2 z9?pN)+uqcS{grL$?t9n!unU>K3N0m7h3=}Us5p_%_C_$jE?s4Zo4Ki`LvP7oEwT1E zaRsI%Mf6bU&P_GLj-kdsmXNdAMn$R%ZIkY(3kRl3$LYwKC~_1ckzq&~BavZ<<6)tA zfN6>Ln5)?z6hFHB!%Bs^0qdMq))++6*c; z86--_dboFhO2;FN&*WbnSW)R%9!bGwP76penbVTLBy(D(MP&{onapY559harYw?V# z7{1Q#howN+Rn?#G@`l^7_%FQkRdJeW$NHopUt;ljg6Io6eChp6U7u!}u#stIFf}#J z%wk9CzaRB@)jWix>JiQ|mRg=>RFD6o1}}j(4*d{J8n|l^9I8k4ij8eE%p7WckY;AL zI6LccPrmvJ`NMV*&N8mLCQTHN>aY#=hYfbt2E*wkkIOQCW<89nCO(C6EW9`|N|TBt zJEc9`mUfS{P(|PREY1fPBuf-BrdPs(7BT<>cU0u(}nrpi{WWIED zi9j-MMfjX?)6-~UI~|U#t6og!3fh;bB4Q`|>Rx1;O^oj$X)yr|6b^f5@whwY z4K*|0A{dudzf9Nv9QJm`C_Cg-Zk*g-rlW$qlhPd;vyzu>u=tvxVDef=$0XCI=h8#d zr{oWrD49MrtchPArt9)@44U2}KhqR%OgCNGgc|M!RX0ZR#=2pyyLFAW3@AC&j=v;} z+trjT4&_kif4pnN{uqHDfOJ@%mA32^5Y< zpWTuOKTg(-s%f(BhGX8_a2{bO52l$sa8HJ~(#bViVq0yr`dk z{FL`5o@<3NG^2!mVUNGoG(BN|TA3OHF(&6L)N*p(#b1*1xDJU+ymgV;e5;J4ep9a< zJ*FPF4`mNq<_l&_)Z0#bcd4XW90E6tt%mV#VlDl_8Sg@OVl6xRUwzhlwSp}M`Ti{p z&Utsb+@0YjI`*EmOlQ}*7W)vZV{Z@Fn|7zP)U(_BTItyXG7|N^qt&YE33E`3ha-fe zXop89DZ^?lpYQ9U#)@m3#3+|7sV?76mzrD4^t-b_mfG3HwTyBFW>I3SFiL5{?EsrdeAwitJ*Ous-$(o$Hj*4;3~z+;rou|Yr{Yv3qRCUQ?k&-i4(|-rJYXK zg^gqd_SaiKkgP>7Upd3%F2zuJH67&#CAGpQIA|eQNlGx(&y;1R7A5i+k#;gOtDx`*n z>YqN1o}Yf5!iFlkt_}`OYL3lt5|VvNi#n#rFEfFp$YCc%Gb9`VtVkS}BqOBxq}M6* zQFTlubwbUJ4n^*ZMK~*|<7rLEleP*K=kR`}UD904m_n4dS;}7+|3Vpd zLis>g?zTGS#rl_4)0|46j##=jgi6db4HwK(1u`;C6>!}BVRyX$srtyBzNV^Wrm3Oy zWb47YyL{KE;!LTbu0GoJ2W9}nGtGpck1nNgtP$nzlWFSbtjwtTsitR2P9n5;Uuk3R zlWCYeZkRdFFNK|D1@MQmKee~#L^o0hN$l>v2P5q-z_m*q(x#UEU|Aau}auy z9`WL+iggV!>%D$mlV#snVomFsnTU1nXq?@UhVz57QuJak+TFf&O_m{0sANa%s-CG2 zJ)BgiuB&Ta?Q0P;oAfDl&8rPF%Qbm!UDH7IsRKm_$RR*^-Se++y@(X_g{4}6>5&71Fm^0DP4`MXR?yMZ0$>4=^LPC z)-#!SOFff`_tZ0)2(z$TX{Fs#&(y!C;4iY6AGhor|L6(_F zTm>8Kwo27|3Vij|;d;8X%wOU{tWM_1#{<~!73;0LbYs_aoGL8+4Cc+TUfVUgvxKCp zzVXGb(Vb;hS6$6%7k-7CTCY9BUYo+Jd_FKVLZstwbjY8Am3%=knN~$+mDQ;=aFbP5 zhsnZlFjz4MTn~zLHe`;c4N;zCopp*&>orV$^WPC{S9}(#a!z?c0rs74=DQ z90zVPQv5axzi4!pFZkP8z8J=C8*6i+J0T_xfs)BAqeW_mvm z!6T>lQT!tnsE{F3RXjOWrA%47z*An@cKWCA3_oN+oVGhFiK;69vuCp={x15e@fSu`hI{$`!IDm%xhx-)Z3Vd2S4QY~`K0#89sbPl!3xx^BKAYp^2 zu%X~ym=oYBY-;C(N(>d!Y;#skkS)|L)Xg?}febO*1&lqY<+6YwSIzy`XEXJpcvQk)8WdY-{KE9!9X^trV)O|U6Q?CCS^CHA9sar$8*4H;!J(Z(7H}e;| za?IrV;T-*07yk|F?Hn@#cvCN_?G30M@Wl;+Z|3N7uRl-iLtar!2eY&b2qx{qeaIU- zms_7>+J$>^*e-NX<7(-bi+$PZLXO^D>}#L6o?gw1zW|~6;&Vr{ibu=I)r;bQ^Va^c zvrZLN5$mX2waA2XXw{;2eR=mFN>(j&gG_Hdqc3V)-xMaEvTo4>!TKVZ_03z?69FUN zx(h5*r`3pj>kwYb5YHw3{Pk6RyJ`Wmlwls?VR6;2Z;C5j%y!uVoZ-nXTP%po8mo%A zy1vonTunNnXjsT!GTmKR-zXYTn6hkvYv!iASph_QizMIt( z^^J!25paz5ql_$JqQaOulv>drb|5p=IBzh z*&0QzQrMQ;S*7@`z8O$iDX|UAu;Eo?I)?$N4a|VbI_HF)xu;p>H!zh5-lY<~3~A2d z1QOv?q|NnBMOuxrLq)1e4n{*?XHfTI{rC2atV$&fz%!A?dY@!8(6^>A$RLZZ5jMXaTCqlF-n@Rj7WizRPluZJPgKa+~nJeYOZ=_r) zC&nwEuA8WfS5-=s!jmOLDZJ^WzPV}vvV>nE+}!}NadlCg5TsWktehNppn=JOxeY?E zQprf4Pd(j0&lu_Jo%jH~nv~uFfzFoamuy0B4?AzN3B4myxJ~GG*qMZW!e5fmPofhF zNoMr{x5w2s4UV)wpO5ynw5?7if zxn@vzvVj@Y)yy?@2WA;^26D|R!~dv(9(dzOlwvqQIoiOqU;T2;7_wKcsft(Ung$GJ zX~2TG(uNHf%nau~+Q2L`%(LOjY`7&h9L%!8d94ixvlE{*dOFqM zR3ByzIB=};rLlofVS}fz>Egj#$Gyz35H=k>k!{{yR9B0=8S3 z&mjTW%B)V~$z@#~RpDx6Ief*CWp{a8k_0Y*pwhL?%nIEt&QlSU?H zIzDEGe1z03u6xAWQXY@Vm@P+YTwITsD9LfH<+#akgb^IQBF??m2NmtS-1f$IB*9O8 zCI^joj|-=@BS{n{3~@FT^ML2%IX>cWc_pUPvSE{QL&_KKt)q+Rf9abo_Z_G>Aq9-9 zvG|ZZivhpM(sm}0=+|H;`PwTSg@T>v1h2OKxXaSX-OK%kyc6!`i^6d-eY@CkGVS=f zKiU^{F}SobOr8E5>eR=$UNMgA?#Zo*qXb2#@PV-^FT`1^mh@K7&%v?m29+jJY|MFxi|YGv^1_f@oMs%o^9ozrpDDx0_pur zE2X;vhBwY%f@HHy&?#UDj0nr_6fiY;60I&;CKwkmne7By5DKPXCA=RH>C9`#)00u2 zLfRXg2O>PAs?e{K-(l_X=O!d;_I67iXE%n(!%lJ!mtr9I%)tU+LG3Y4h#~peE8P7; zHRY5gZ-c4yJT0de7~%>S3`jfSI2Raa6@X#`TX0q9Jkvzb-R7`p+hOMT$npPhgntgvH(Fkf`twL=p5?9)8j2D1!LgQ3Q=)3vPx&MG$__ zKTQ3DL{SGc)|=#2XY+LVNB#_T9*moKd#TfT5$d1#h8PR*AV-NpCUTIilfTQXtv`C) zcLUA_26ek}wRXc$Oh@vJ%4hl$zL8jPSaJ)BRlcRI_N4Cy1y@n|v@i~xZfH=Y62oQ& zL6+K{KKjNDzR6JQNI?0Xwr@i-@x)V9E!SDM32{|$R%HV_qwo|qO&Ud)-=3Fz!_-{MW|n1xr?AnM&9aNwth!V-5F~8y z6gGGY8$5;0jEmUJ-h!2&&n%mdEgL++Cf|H2`IDuz{~}7iTq-3<6H0grB|L9>#n(dN zDU?3Ah*G<$NjGxA^-ea(XH^YVqp>M6JVUhbfe<~2Cb41T=%Q=d_!27;1PU`eg&Cg0 z3{PQ}(m1;44oyqC$#q=>vuiCgJj2XpgqhuP5wqJal^FyIGdzVEo}a(z>#Xn;X4hQA zY{T@V$vDwHoM+EjW_X5~eGq2$?nTT#x>RNmD9rFAGxu{iXXNRbNo^D?gxb>))IzhN zZfFcRpD92i#@SH5n61L|2tEsUc5Gkkrm5_9XO3|8U0)@=dwWtno${`)E4IFtEX2S= z_UmRhxya*CY?=RiksWKdY9hK$cOiVO{-9n<*PyUlv2jy{O^iYllAL)(0qWHY{!~;i zs-YT4w$RELOVoj>yC4LNxIKRzD|;P z@}VeHO!@lwM?UR(J|fGWMzFAR!FJy?Z0ibT+1oZ--fW^1KS5WyFYL6Zi5d7E(n}U$ z<^rP(n{ZC)BFtR&K9L*xWCx6K6#R3~b6}sc| z(cKnT@#q7Tfsdtd+J(5|LkPI5_5@p!ub-zbHIk25k(O4(Wx+RG%;$s$4re;w|eypyL=7Q^ZEMQUB0e~Z_ul$ z7f;%HA)BW9ec|ir`j1HpuAN9pd?M^|bH1q@Pew*#E63;gPUYCaUs5@CG^Ol%Bh!dNb;cn*71x-yYEHXi4vIjeLi}f9g7G{rl~eN}H8|D1EY zX&LV@{)I8@gz-M{re|kimE1Ber&ToLLzb}L5JTpL%jemB@7XwDO;)f(jRs%Hb_c$H8UA|l}M9w5PLQ=EN?KJ4g*lEp7#yY{4OE3ka(0oJ$uc%Q!6H!U(H-+TNJ}TUQD=Zm4l$pGD;#-MOuluq= zh~=+gmS0+FM~$>Eo1uNSr0-_4c3cSMlihT7Bcd}9~j0Xj? zeBsO;Aa=Wo&(c znFg*#q}*5Xyd?*-kbA?jUtJ*eTl-(emWIz;d&W4W!1D-S^qPZloj||a$YB<8CoDOb z<+It+t+r~zLOx^0_efivs!bu5p?t=S)`Q+zvwejmiCa+US?V=xvU81%d0Ai~GwCbo z>7tqR5Y$ReS?R}vK;OM)Xh4CL^tyMni05~*PrMHC@^vnJh9;|+|Aa}xAyj4f1v7Rp zhgiNSEIrtf73K*$sexY@Z+xv`B}{*z)kRDXSf=o^bBSLPY?8-7RI?=NIqw-Yiz68u z=U`)WTQ3%3&EYB^)H`A)Ee8GBY@Kr2H^|jR+(e(%0ozCTb$GGyKH`SD8Q4)Ge1}I! z?a)~Y#YYN9UH~9)V66l_AAO$-iyi)Ag!a2Sk5BqXMG~107{nt5PHm;Ef z)244rd(nB{t+=C_ZbJJbOZz+HUFrkugu?F;!asuWIrqhMbDgmsBlU16Yyf=p{F#$| zClEmP%3!-0Ek&~95o!;|qk^4mmT4_^xa!>(yO`t#P~~HE5uE*Bp)^2g*faaOI`?zb>H8@X34wOV`P?WwE@13 z2(T3aBumf^hO)%*cr@%$!A`P7>4^tWtGDiq>F=}@bd&6`jP$5)(G|#h1{=wY07HrP z&|%$*HqbM#teuWy2_-MOizm|$(wohT%?ZehYmE2(KP05H6KAcy$#|E%xT>Y(g}(KB zRAF}8SG6?V_Ck8PNNYI1rK#3Vpep;(^vyotttP!PY=!b>5zq3o{#@?}2gef@_fmA5 zs{XpJorZ{%A^lq3-&XZs%^Qr7OljnPHN5o%NjEn|!-gfOVp|!N9L%DUtJx}AC6@{_ z+c(F5vk3oaH1zksAOZc|p1hEce#VFUS7gKXP7T%7txPXL36`FWJ)_1*X6*S_ezY>K zep8I@L>YHmEBvC-QO5DNql~ML-*#wvB%f0j`%(GaR-7~1kIEOcg7OlFQmRF*j7sjF zRuL+>m2ef6oJ1rlIm8g!krh;s6|oQNDbTSombEfUxe+z|1Jx#+0nF_n*n>4hCwct% zz^#TqUcrxS2YDaPp+(VmC?hin^0F069ROP{ita^zaT^w%VBbp}mp}#TU*UUY-brRf z#DZuP<4A=Z1jq~*Pnmn;DSNQ+lnL&hRz@rE4Kf7ZkE_P54S_&wLjX@9(6zPEEOlya z)Dx9qrVg&C^(7L4AR&UM5W!P6U-8M!SGcuCHiLnPv-wI*w`6X%Wbow1D|MeGv*02! zOD>fR1PK{Dg$$mu>k3aHGdY@!IbHI7%jRvvM*n&YwH~K%wNu|&KHpx%XYZx*fk^O4 z(+7`vampMI;u7Jr8rJV_e#wV$Z$+>QDI>l_O`$U49jTjswN=bk8BvBB9o~I)A(}<(+-Fqq?cPjw)=!ZC78r`oqd}h`rmGtyVqS$W{f{ z^^S{cr0!hN7jR9b1)HjoZDg~8YaT63OA0G_gQ`4$6t^#*UvhaL~YI%iVVSvA)*t&r9r1A!Z`l6mt2t^Fwmivl6e| zKF~klAFrN5 z!}Na#OCBwG7~vydJ+d`>5o~khC64B^80aENG;oexL9;=wK006*Trmi zVu3k4nVncwnv%1b`%0eK)9zhu&HA{jEhxwYxEX)RG`d+^nMSjeoy}PI`j)Mc)PSdc zt6WV>g?O$hYQ=~jD<-;GTVxv+=De-+w6v6ldQrZA8n(SJi9=~_Ov|XJ+Fs-(QI4QQ zJ@`8g*~qcZGWsZVU(?p~i%U!Zepk-6D^jm=Q8q4YYdRkYD%pWS z^wX8VMLKubNKg3+V=@b}Ha2~0g3pcsV8g9juCK(CUi?e#LS&oN$g3b3ySH?C&5UYQ zka0GLuWV~NqAqPi)pB(Ue?xV=t=`_kKQQr1dbP_w;NzVx+DYv&YOI)6#Ar9iYtb!mUbY0_;p(oXB62sEN^uf~1H&Sx(A2+Xm@Xb&pAoy0hJi z>wVX-(kAN0J^XR{P)GkZwZ5H9EOD5IE7j*!&$p9FFN~!$zJaj(^m{e*Y*_fzbE~si zON;xT)ogn^-8sh_;9Z6spsZ?Vc4hr*VpB&TkMkp!POfE|I@oYu78a&yW7;~{F|>PC zJIs@C_N0$)=Cx?h-Uw(B5&#=+(87|m2-xwmr@5oeW`MTsjJ)Rg8tDNWg@g+q1`nO!l&UM(4*nA{DWwS8lI^Ktk* z<5kY%o!wrlBZQg{!`B!$SwDQBy=gM>3~T3Kv>s&LuDxkFH$zBd%Q>26XP6Z^Xn`bY zIq{U1^MUrLT-?P43u!rZdox&A)?RjTVTXpKO6VN4bnpZndn{#z4rcgr4tdV4TpvOZ zhcBwbB~pSkp@gSUItWU#l?xU^>E|d)b}LuQ4rVk}(7|L8p2A7?a`iEs@DcujOdk(L zuNk7%?^0<&pwPloXccs@+qqytTCRK%ZcY?uZiU7TOOQ?Md}fQKU)_f6;+C!@!pd&x zS_B?wg;4BvOV`6l2v4V6YsAXwl#4o;?h6uRTNmn2sOPFWFR}(>Zpc%Sk@>Q%>qC~m zbX(h*UTG?}caZi^8aUb3btF>BY6W2MDT?399AAlmZ$kpUwF3CRfn7>r1 zD>|A+Z7`+*XvMDYXd1P_+La6AR1?2@a7XDp)mZiVj-tPFoZk#P@BA&dhORr(-(G!!L*lsG3t^=3E9t1e8|lAN{bE?D16J0*Mi$Mx zMqy7q4tJ7pFgxLH8|@#gYIicazZ#tk2VW(iix;pE2Q;`VhacLzg z4tR4U{65t`9(z>aW^&U9!$gqx=O=xhFLk|LvmpA!Y%0SZ;KEyEKuNBmy>lr~Ca_*$%U~ zKT^c;>Hce>^$v;nz>3)Ih;V<<#pquTMu_+zQpB2>s9qIxaz9_8I%|VhrIE8U_t`Eu z;qS}LhB~D?2CB?VT(TFD4c%wqKCc%b$)-#|9z_H3b3(r$Bxv zL!}5B3D;Q(w}d3XMigy#Mg)eP6L`)Xe=&L%A^)Ha{A?&NY{DgF z5_VV#KZYd0CM=;mLINBd32)u*AE>|Y=X+jmu+fk9_swDjx%^K55Y?fZ{`)m-%}Glim_>^=wwuwSJCn9v&8m`l?JmA zJaG|0+>%a$>n^WBf}QiQ#8hOG#1Q0HugLIoBsL1WqiW=-wnc^--5qLj-`1caL#-IA zom>sNw#eii%tCE~5#%l|l9f3%7yd%$4%-Y=vx>}2&j3yU95EXT~+} zZZgghSUAQAbbnVQZ?s-Q3-%TC0dA~xG6jelEtm;hwT`+pBhbCD2xAPR8J*M}zi4zc zqx|h?MhiI?=Gs+rESJU$f)dG`ZEQwF6oa! z#zPPK2Pp(>?GD)S){uw%>(zE-GA~~EAkt;kYX2JbBeWzq<=VARZyJjOPs(lX@9Qq@ zk2>GoR8yFx9_(S_i_%lHUhD6TLNb%{{CivtAyp$fM0V|*v+xo#y z3T#hz-FUtK8fZ%xTsrs5OmNqg;+@?QY@`JoV+3Tm;+i84C%jyAFh|1c{m0{-=w0`P z!rx}YuQuVOKZKnlKx)hf%xp9C+}+*Om~BY-5r4-zQe$KXQ2d}9x)nw2{CTs7ZvPk* zYrDfG^)9lP%8kX3`McoI5u~c2y?^PQ2v0qXD&XD7NUbVhUk_(^{sVu>`2L3;M!$iw z<;((-L=~{K?d{pR|7Lv3-0um03yfJVT<2@EVuQcEF25qHp3ZpEKMvQYNv6vuTE}`o zHP9L!UU%U%+vzB-9ZzPngO`;Ve4RfX#Um>-RW6fP7^4JwleL*Dml+*Y2U?l6nQT_< zNF|hgfgD|4o6F4m?MTDW%SuzQk}(Ii(jih7GHtjF9O*@LP;*m8OYvdlEu>Nk|cq+zwEng0^J2Y(QX{YO$MR%Pfyexzs`gI+yN zJ-M0!jJ6V1(yhkf3c3-e^C`e<3EOLsxsHdsYjX~NL`A2X1>m&qvg^GNAyP7Flz2&c&Sj2Fq z$n$%e`Ynf^ZqBh^Z3p>AJxB0KKx`BXRxXr)PJ*pSt#tj#)vAXFZjI~GgVzTYtu@P{TO`lRN z_8)?N;D=99EjE4vS&iQDU*?*_P-YidRrq#@%|^h|W4OF-*E{}vwEE&n_L4<;G6$^< zf7d?~*LlK^sbA}RnMIn_y>$Ec{8#7!_e1m9X-~~`7xoxp45DAS-`7^X(u*}FMRSU( z)0Wz40Ij9i5V+S*m<0S2mV3CDUQ&pA$c8NQWv;lrW?hKm5X4BIwKbTc1A472dD6d^(YlY&zb!x_A2`NXecsLb)#>Qk?61B zg+n*Yf1><+^{xL3*9aqF$FAxZNm#Pm-^+DNIPjF{z#aBrR=POsydc{7#2!q0pA0)c z8twelcTg;B4LiRc?L6Xp;iV1CuIsr#{y=}BA5FxYi!C~noR>a7V z2-t*LBiFw zI(?khv1vd2qS0v``P*q7QS+VF>NjZ%hN%|)B3j2z{mf@)T|f*oITw}&Hu|#6g{yt~ z*@jVKkcJVWLk;6qdhtngRCw^gUD?7TM+3(W(6Msbb zScES?Y|>u7^M`-BLZI1){Im2MfBNrG_w+M!w>!o1fLhs}OO_v|?SBW=W z(7t|p{1Jai;>vKk=7ANbJkqxQdj!4yK}5-;H|B;t{R}Ive$I=G(YCASVQ1Ra3;ZSR z>VYW+Uh#Wg|%n@DgO+ef66~eJ!x`BJ=&j^TM{1)$MCXE$C_|D zPM^jq_XquTgELs=ewkiPI@U*~P-$>Wr#WRA6W*RV!3rv>F{wl`1W! zrf031Vv|xDj%BhWur4vT`{L7q9=M;&Uy!bgXFMf_BX!Bwyg-Kpq z&R>!jm*XJ0$Qtl#l|V@-FGeN?u0{8c6qq@Y`=*i@-KkSe+bWK%8fbxobj4X_LvVKL zc3BDQ_KjG1k@Vkh(!a>&%5%o{sgSMYN_23Upo}SzF1Ynv5|$kKjK64fawKltq?;y3 zW=R=Ym@EmFM7$J1+MAvTUd&6em(nCl_VJfw$-by8xj&Q}Z&eSJVp%Md8|vQ@){Ldp zckH&C^b-FKM^bTs$pReC`W*(`*7?R7*J=D+-QV=0@RA3IO&%o2 z4{-8e5P!uF&{x$6)K07jgH3LEWOB*Z=5fId!0uEhG3Vb)ZhlMqNmT!REl($Q(EuNy+BGcm|Xln806> z0}}>HU69=uc9RAcx^r^^FSyEtCnvMjTh~LOASv}93^Q{=M4z|5YT%Z64FczsIxuj{TyNlztJ3nC!z;+&mT~^TpDy=@ z2P^2|+v?TUSG-ZLy2=@(@5u`^tsNKyEmhp4(btVDy=nBaU>1yM8-pLf^H+I+)|Crj zG5OkH4jy{Rz>1h?#>U3!4h;jTs$h^F)G)9`bswY?8wCc`><&L;;&}M``-N^?lSbGJ zSh_y7w$5xGsMqAP0vs4$w|6|o(9gkP>a`~2{l?VA>G44jtl*!sj7P{<41NN4Jw7i` z%XNi5aM+i*JV_<$ne75ewVNTD1+imGZ@P9=Dcf;!tpJJr2kE|z1GgzWu}`OQwaj2d zblnD-Z9$y}ap>=jp`*U0Ng$~17^F+u1pI35Abq?^V5C|;NMDs7xVG|go0=fMX=)y5 zn`ouE5!E4lI@vVPEYfPJjR0a8K{$5$FB_ycHVq6?Z`inAh394gPsXP`6UkXp>%yo+((06r9WtY1r=t^lN{c|gsz2D|YSv&qp+&$KQ!qFN z^AU~+%m9Sl@8XWtpdv`mm(Tg z!QkrX^u$5H9ntBb)ipLkh+%|vLRE&2Wy~QuCu9KrPyMe1>4*PE{ZBwZQ~#gQosXdL+lm{7SpPHr zU-kdt!7=*tZS^wM!-Fq+0T`dQNd@WXyrrX4bc@;ta@1EgdAkO0+1oyFtE=)aPNsHk z9`z<9AY?;aX%_J&(CQ}}(=HQJQYcgDh)l))!t7jKJl7rPUBvdl^eoQXW!i+P*YZDj z1@b-k%wWB`Qy?>L3!B-O2I_5{0vTl+JGd$YpC!cI4u~OKy$)~%A@vhLGGXxdfB}T( z4*{MbJl9QC2tG|XGZ1i+&}T59Ct=D+z(m6C`vG4QZruR5nQ#VIUIb50C<7+c0-rd- z0q)Y+zmgvj*Fm$b~6 zbj+7D%oqOih5LNrJzqG_?=~c%nLl+*HW?rjYjp_> zRyBv{30(q@yK4=>bgPEDrf%9bP~X}XF5R)wyJb_?z(iMd$>-<6Gx!N1D)Nn*kpaeA57p2@ep~5+1q*u%7Vzt$@vh zWzzu<5DpXmC0uqJpzm#Ez@_}Tl5m`GhH%9!z%_(v^fHq$?he3Y!kjw+cM-0;3ow?j zmGB%?q2+ymc7!Jv1D+!+Tmo21I0z^U9^%jb%K(E2ryc^FCrnulxRr3%8o&ZV zy|sW`Ld-fq0%15|B%#S8fI`Ar!lPn*62Dp#dTapnB{X~r(2Q_r8S!4iU(W#kA-uB% z@FAh_6+jz8tycl{2$Ko75ca$d_xF}FB zrY2loNwjo!J=%uFw(iMQ6abgnnHB0|~zp{v=H93b=*v=aqnRLcvvl zR)iUZ*@Q0$-xBa$CSGI0M8eI4R|s#G5naOov4oz4euO226@-0+p9p!w0r`Y!gqeiQ zYXCWfHH1e9zY`7<3P%816Uqp;6Fw$+5QQ@UkG^<0r`Z-CIOxz zY@7zzOgKYu-2%9Wa33LQIv|a3FJUp^FyScS!VEynOu%$P8Q}}Uw}hK-1I)OMtW#$J zY7t%_Y#|hv0R|He6aFP^n+cA$k(3-U~<}%qJ`&oF-f#+`kO4l2B(kAcyb(VJ#tkHJ~cte!@yZ z(i%V-;g+?4+X%@r6u4#`e$FI>slq5!+3Dr?3*1;nPnP2NcV>p!9k;VZ%(f{drqKf$j;LO45N3}t6xao~n4=*ed1P4qg6ubr9Fh8OAQNUor$j1OT5H5Qh(2wvi;R(V?P8nxzz^_$=aFnYy zL`OOMt&B$c>=l9dGWxdhy~{8k5t_aTXhG=q5}+5szZuYkFpqFIVatC2uM^7O0URUT z^d4Xmq2l|1%7i}%<%Dh@0D2NCZwDlm5r6m*@H3&yPkLS}714xvFqfS>SYBfz_avPT*N zHxSMdR1-kcW`GuisZ{JtCzKP85eBpX3?*zMyiYjZ6>x^op$O2G@HOFk!fV|D+X!hr z0JRCTdI9G3;?EAf0o@3ReE=zhm-+)2JwE)ncuxSzCWy0Cz09V-xU^NX$BOE21CiGhg7)Utr0N^a)t49EP z2){iFI86BTF~AoD@8f`mghfvRmJ$}e0Jxv9?nS`kggagW+)Mc3B{!Z7JekHuO4X~Y1?`=Q>!kzB|?j^L^4rov4{RyCikpC&51>qjTeT2V12OK9f z+5>1tDC_hcusb35dq5tcjBq>Q*L{FL3Ag5ga!WqmJq%< z1^Axu$7w)0;qxO;9mq@>>liq2H>UN!RL4fFz*Qt_NfWr-L|4JtBOlu@iRaO*H{=M zYAj|D&3GM4Zm9oY7~4L!Vn|+s7QBZy2l3jY;A&hR6Xd-$!MVIYh4;4vzbEi+5S)q) z;Az>xj3xk{D;j)^zyl+Lf8_&sd{3|m55VB59>Fd+;vjfg+ZZ1z89)B#;RC@r1b)bF z^nLi?7S$P>aU+reV`y{=MOz{FQ+q>+U2T*zuv&irHrt@-C169zm1q&M zxEwrj+XS-pI+wd*%3laE_1e1sXR0y zhWMcu#Za@k#L%re!j&$lICk{SqsK1m?OqT=jqS2vMfhJ3J9+%nNh4v3jJ{Gt^b8Dz zzy8mtz)^K%pnh(2psq3`GW3kwu*ltMd1pVq$w;dhui6jQnk`a(QV#I(uYKnpL zVL)H^=i~J?lL=IdAy^AaTw@QdWla81Ej|cab{68dB@3!09n%&GQ3Ko_YK7`+f>?!; z985_GRi*_{ljdS`fjMp$?1t*wf$%JE8Gg@RgKD{q%_=+GR(*u(dxx;fyaKOPpj#?= zHNlJ31zDuCI3q#PjuM9w(;X^ti zpc_DyAaDUGs3ZX{4sb;{Y5VCqEq+GEDJX852yqiPBdmljj-2k$pe3sSElJPlLk3@f zCh`Es<3Y;}z$OCMjw-WCPoL4C6$(6V8#%bwL~d7X)OyUsv_BG5QOHde2w~^R+8YTj znAZTQ>5d!4ji!IN4Qx2?nav|QeM5_u9;g(4(4r-(4zdI(B_UaV7Gwf&Jq^M`kaGPt zitRU`VGJtT?NDo*_rQKDtjL8|cECdR9#9+_Xdop(JJ{iNEMxqJV*F=FbQmK?2PYyr cK>Cqfk7Dxl$aXD7c2Jd^#SuQev0cj?03P%-jQ{`u diff --git a/docs/build/doctrees/source/tutorial.doctree b/docs/build/doctrees/source/tutorial.doctree index 760d632ad8c466dde52311b389fc05dc21179f3f..fdc4cf59f1119f7f6553283b89dc73f4c519ee0e 100644 GIT binary patch delta 26127 zcmdsgcYIVu_cv!Y*-b)#gj7gj69^;(Qb|IK5Q+kkj-ZqWLI@;FAV2~tiV0OBNbv%r z(nUZYP)dMBdJq%^L7GUDA|gn)JPJ~N=gjQgy&HA|`S||c_xZg3aY<&r=X=ii&Y8J$ z?{3DQZ+mWeCkI4m!}z?hjgY*^lKV`j$a z{H%QH8Jv-mJ9-rUJUDNZF*h$`P|oln#tdUY*02$|83kxO9Df_0^|EnLMnOh?R)H}m zADISa<)Q_e5*i`-S)+20qaZt@z?d;A%UFek9#Rb-oi(TdHeu9R z#u20PGPANM@|ZczdqT21WQV2?C>fdk11Kl+yp;Z?y83}=8?IOGbn+=#WGc}? znsT@(M9CYT!rJSVrD=)SaAx>RvYGc;3e8v_(H@wFw4(>2>|mT@3nNXhK%Zdc&%8u7 zjBpK%U| z`btkYP6|+}KFXd~BH1+&tH*IQ-9MDGWB%i5%lNq9H>3}@g*0|-1BMP(zMcdIW%js+ z?v|`{2E}Jw4Cs{G#UV=naq&{+$^dM8ESL8@oy8q(0hc?+iSuNOyc2$ zCNK^`4b`D}RT(z%1bfv2EwBuYucA!)6XDY)$HRLB_qOCbS4}QOSu`m{8{AwWL!T+B zu!@3!xyr#QbMZ>zVEw^%OY6-yYqGh*ogsaUP2^rvI{=&{3_EU6ZeIw%fxBJ&3|zA` z@q>{NDB41l`ENzR13`COx%XCvrS;Wm5v-b|@T!OE$bty!9cHYw>o%Nt}zEoJiTP}bejp`4tZNA1XANFQrUfWLEq zv7tni%JL<4sPg^XZqz2Qg#ydts)4`q`n(P>Kq>4Mu3Vj$q`bGlOKFiE?xna{CcT{6 zlS&5g2Rinl4DPl0&Dd(eOD!mn+7Z4Wg6)tFKUBso2$t=&lr0NF*|(|zFWLvb)FVQf zf}tpGO6e#cWz@p{?27boYhgonTN+$(lLpu$42p#TKfDk8OFmmPRS#~;$d9_~r`dQu zUA~b8x{K9f{E8?rDkIl6PmaaSmjRngl*(!uN|4}oT z#K%{IP^Ia|(a;@f;=Q`K+v&2cWaY=xfn~UhLF>9|F60PrYvbIoQ3Q??f&A@2<}U6c z&!W{sl*((ol%lnvN?dg}{VrQq@+WVznUd_nCyBtVWHa4G)v28*G<>Xf!c67Nr?Ge? zKf48)9NKEfm&uOA8* zl@Hc$tbPxTMrTK77iP~$2P8-Q_=_w|SyIhi|0Vu@7{kRSes#$t9aL4~&Cf7@532l{ zRXwbW58iY&YX_l1l+)(gEK(q$YDuHb%Yaq&kR$w+V3i{rwWYcXv{cegbTgzMly8GL{Cm$1R}>Xp>(hU-kW7KaBKWNRDQu;%_gJi^ znWo(Mx|I@gz=JI&u15MwBv%(@-BEw#l>?=)6RDzj|9((S?;?9jzxGw8f3u8zsl(Q2PhiTByN z013*-D~%vVX?ZRRuW9E)_!&Jkfi_C%IcomTxelUv3iPzJJUIWF1S<0`)P`(J>#Ylc zmez=iu`rfeSxjZ+jRirL<~+$v zrSg%=mP+nfNonzOPt7eFjfp?O#$WZ9N6g=oCV)qEPm9?UCG?jmRWvi8x~Et#{=U|X zMG7obS8}gM;5F{IrtqT}q4U=d0&63BSxZlO&uOWQ`1KjqQ#1y(ROwyCCRsz@Qn_$9 zMEUquYnDw=xl?MXgx`)pCgC~jc3U=9dTyzlzr9&)pLw$uo36H3{&f&eJ@U9nZMyVp zIyS}qmZVR%rd(3^TPUzC0>U5Y zPzfs0e{vTaNiZ2l^%9qdApq5Rh5?fFEo^)v9`%Kd$6*ZcS9H)!jDs(q&)_T%as|9E z9;~ZxZAF{E)IkqmeXEe5yooDpWrJiWeR+L7%u#!2im)-F2b<(Ap|5n^R+8ajV=gg3 zxPi^6A}6X?Xn&-YAl2J`73f$QXc^#(t3fYb*$*cSt$-`4Xjj0F1?I+HaMXpb2!v$A z7;>@#qwM5k?&AmPI=&!OCS!O_)AgS~Ff(?PvZIcvd)tj{B4Ns&*Mq=Ese&9a{0O31H+UVGzkWNH?vxcR2K5t?;IU6ZK7U z6K`G`4#RY8utW^xZR)~q7)Z7uyiPrcVy}oEkAdh!WU^fu(8!O^s0|cI<0QD?gL~^JQZQzuE|@ah?cu*%`I_w?ueG?e5$N8nT;ekBCsP3Bx3) z#K$*>MhNba1T!o)^O7MQ=Z2+Yd@|Hi$-YR22&kj>gr#8lTga3YXb;J1PxZ!-Eqjc7 zeq)G)c52Vv#wuGo=&d#`ZUT8KQG=%N9OSA!A2)?~wMX1(-Vi;38`N=OF&>)wvIIjp z!z`8KVKZo=AL;e*sN#p>9=4>gD8Xkt+yEfu0v0zv(S+H)-x;@Ac` zh%+>UIP@8q$l#)c{lM#_K?3~1GumQx34-6%o)c-%jr~xKmMs2UD+mESzt9F6iU->t z`1`FOL$#~X8u~#X^)|w$)ve*G+9Me2t3Cd0p@Zyc1@lOEjA4o*=Iniv)dld57rW^U9TX6aagmsqC^ODtWqU*<_2A+qe; zoy>=Igg0TY*hX`oPM8rV9}V~}Be;6a@v@u6>-eTl&=^+oTb;0KJ{G~SyZI>V6>G?f7S|q9wzgH10fmSl*vp)PRn5E&q>tKOnAQRKyH^y_T@}Sf#sSkKd{g8 zqPhPdaA&MU8|h`D#Yu`;nzs&ye1KAGWQMz<)0@*X0H2u+9pQ+E{*XQWeRF6I7BxHX zEsNw|Cg=%Q2rr&-_+=BM!Fe7z6bilnLQ`#_oadW|;*CHxy+0IIfCtAStFIWV8u+nX zn1`lAhryxhHLI5~^_DmJ^J2ga4=LnBVr2ZyCBxyK9uoMjSD>4r64UgAjDZgr-oQjp zbz6_0Ip$SdfS{Y`(Fchhsm`9U5DR$6!KkA6w}Iek2(#Jwo1c9hvRz?>w5x5i<3SVP zU3{`7Gi5;g%B-lme6}pAE{fMU5o*IcYc~|}S0_R$qD1epiO>~qgIZ(pI7rV6ani~3 zNnr9SGt~EGMMO-7PvA=#vC#|My!N1Ywr97FiQIPzjD-_?<`ftSCkdEX<%C7xT$JlL zPkR%h4N2r_Pj$H_6~75%UEqdHG)46AzSH5$vN0s`#J8by*;>6QBU|@2Br-1_B|baO ztBQ|ZQ0>iiXFwHTp+0ieOD7jqeE5u+(4{O}dwz2!-r(0sQe_tI{n7-f_cQjS-I-hy z8_tF%e2`+<)^xT9^)!Dp8@2%(;3Kr3pgvV_xGSz*?@am0v`K5 zF6TWKK+L=;;9AW--hq7leB9BsUx;hVCW^+Ff4Bgav*VI|FtKmqlNZ7TuQGBB^bJZ#kk>O_hoAI${1Yu>`(BXc%L6w3M15>-XB0B-jJv#=st2- zcB46i)!RJ1*4DB_3M`t-nR{OfG?c=<#(^pg?3WPal#h|sZ@e8sI}6mhrnr8}AVw^i^j!1Z_hUfdz%eF9-HPS|*iMn(~P zV_vixnrNOoM@yEm78csu5BwAYTwpH6(ong5#?3I!=7N8<9+!&c{4V{olE}p-gDvy5 zE$0&ioPWCy0?aE)z|)Ow@s;&HN#n)14capJ+UiBWTAD500prV#=?I>%6SpnhX=n%V zsh@+_yj>9Pb;Vw%HRgm}&{GF@DgT}f@O4~TqVcYpx(9yxBR?Y24xRvq@UD9xjQI!) zwEt)i)Ri=b4pP*{DqrC8Z}Hk*Z9M%2{Dh6AU&2(@M{O*`n<~32 zB-gK_e6N^MrdW5#pLYbh8#ak1U-5)B>Y@(l-ua}R(I5thNV3VjV>Y{zvIbp+5 zHedemIJ9AFn0T%m{2dJAznri<*RAriE2&G|?*!hu^G@PtC9C{I?KJ%!GvlUH_@H-% zC}lI>c@kE!@6i>`>1(2$uQ&xmJ+2X<_)Lp`a|)7pm(#eLxgl_dn}oaSCo5vtAXm7| z)6PN=KY1Do8T048&)~M!#h*A0w+LIwUxPIxcDIg2`s465@UH8Re#Gmzj<*RKZfqCleMS{`6ikyt=WBX@~_DBw+z|PLqEG7hqYE^;cre(Dw61mvD(L zqvB2T!%N`j$qM~tdH+sk7CFb?fk4Jj|7m$Z4$;XjnqOCcgPJ4Cv4@E z`Gom>2TL$jdBQK-mzg=hXB6# z5^f*LBshql@nvhu)>uE@wJoc~xA?In*h-}FUYqTOF`482SwkIsWp$~~C6}A|`!!hi zvV11V7hIEdx_PdU=OrY1WL>~?_M?=BB!U%_9*AI0mx2_9AMA)Yq5 zw2`{a*MzWch!x9GKDj=}Q$tx^S=S@^woo>kU9#NqhSg&I_?9pxU&Dk2+Ku+hW=|vg z6j(wa&XQW7#&uUY`x29x@pxP2?7FTr`VuVRHiI zjGt)f5>FBJ<5+t>A<iqNzspCWQt~7?r z@faDw#a65>dqese!~3;nyQqi!EE8z{QX4kdt4syWU?@$fR$drS5);(2U2Wv!<+ZdBBto ztOe^PX+I&_&Q8!5jY-9j}UsVM6W0GZYOAw-&>t9zcUhDLg)cH;&?mT_C!g~h0Y z`CrtirjBXR4z8Ld^@ppz2)m(F)BG=*;CCkg$P z6SQ`4tQ7yS@y;gJlpoGyN%|kiwF@sD#A>U{%9EX_s;qemRdV{{g55+qyFkv8?VKfs zXm3a)3Ura+iv;fI7_3d-%HXgOwN8asCF4)TIOd-+I&?#m5>`n!SINys!i_3aV#t%r zXL2S>hy9Y`7oyl_7wO)|g}Nxg*9d&hF<2X{mBC>n3B@Xhie=>{F}j7?&D8R(9a1`N zRAt#)zAPg@#pfr}5WLlQmT~y%J__!pcR zWIfS|wGeBebn_t7pTEh^0qI8-uzl#0>#ABVtHo|fj{C%M-9FZ< zj|qsMK_1S-jmQH+>uTARffcPy!rCaNL0xJ6h^%Wnu@=)ZRRSxyAh4+uphGuL-zWmg zlYU&tPp4($y+ENIo5V>2{JyWRbvUR zM&KmJU~OJjhCBE09wz*Flj#c;Fm=c$q#rLCeTngn3NQ-erPA1+j28)GRkl zP-pyzQzR2W);sK6Z+%>}?**85ehpta9Cr-XCTV35asDMe)g(`URKVCNBMS=?_l*!@ z3=OkeFs!Z}T2rGc($?}t${2_H-tN+oksNigchoVgY-ur*M28W2h!eCnEGxx7Y$TQ0 za_PJ-Isc#{&V}_}X&p({yQQ_NQ^&A!iwT$3V9v+mUi2r)5k(vq?ISq%xLEfkx;~-r zIzel7u~LYd3g%rW<1M2BS=R`+s{kv|p|!(CLD`llo3d6FVH1W~GM0FXWuUZHwLA9| z+SQoCYT+KBxM3cZz+?h` z>jdb~O~o2ju?oY>Ei{Zhgg1SQ1+#$KH2w9>C@x=qc&2T=_pbezRx$kcG}aWN9pki- zT8&91)=4^fhMc53HWu5mEQxDDxPgvw4xK!GeehN+7QJCyFl03sWuArWcZbDl$fuXg$q7DBxoeIg0%@)8-;W?rKjh}(>2G&LORzv zVi|8oI9A7Q5?cu!dU^Ur5l@Qn!~4%+uB?&tqpG*=Db!0>P>^0S){Ycw5BpfV*3lN- zUkbi^A1=|I2tCvZTAPHGg5rf4{PtX2iKbP=P>l1os=6Tdsr22Ae6MmsA!OMrWm(Hn zmfcQ(PJ?7WNjEQ$n~T!g&GJIBE5E>TPL}sluJyYtg}FwEdEApI7{9Z~Hjf|KNt(9` z2OwC2dl9&XV=z9zh47Y(S#y>s!7max&M{b)f>ICR8GLjs>NF&?~A?x1KT3tA{Mm%}h%~*yU<0MBmag4Q(;N`kyRfjne zokQr^PS94_@ePoO&qU~toS?PYIdHgNQsffFJ|`45-7iY?FhZYmf_CW8VWZHvGQY4I zAKpd~r5g{!sjf==a@{9OT>KGB!+X1+7)cb7fQj-{J1oJm5h%FV^#i$dgaQGBE1BENb9j={i~hpTaPR6$?vSkN&6as-6QR$ zxD{=azP3caPH3YOv^Fg(g-z(zlHv`bXz7H)CUCuoNb9X1MaCkje_ZUf$7 zizKD0?yd6G6-j(n!dk;J8P-G!Yl(eW3nL$^?ky5MiO^;zXl=aq6eBj`qsS>qF@-2j zRD{AI@6$I5#r$~MW~`BE!TRS{sEXjmR*`@NaSxUlD8P zl>H>-Cq&u1qLivmf0nNk#va0#f5n3FGXRmmTJkpC-dl0BgE}d{QE0MRQkD?qMkka) z`rQ5a$><@8-azOBPS9GhtN{pLx1{wZvc6ssYi&^#N0(bv;u}3XzrkUV8-GJX%lIQY9sh_+ z01pr_%n49i)K+UTFMd0YUoU7w6ir#06Ker{_dDF__mRF1k*^oaL(_{J7$wo)5<1Tb z+F@i48)*z+zN9=#lsquS4>v_gm+k=#qRe*)CMhQMi;1I`P5kiW@ zog!Q#$2f=aQ==;D#`0xFKOsEl2VC8Aq_eZ+Y_OfP%ot0(3b5BX1Q!vwDZWe4W@^Q0 zgR(Y?jFw0z=gG-J$HpjADwrki0^v3|#yNEI^o=5%tJ2L+JHU@6$1UPmVIRRVRX}b0jP)J6SZ6xQzWhd!J-$aKMi*k-`hSG+ zXUS+F#!D4sRLf!JQwZ`Fo__>2_=R6_+u%XY{NwG`6Q6ho^-zAJPy}Bv5@i*lZ1ImN zwFU7M&c{jT)yer->0H&sC%)Vw!PrCjvwvWbER-BR#PPm;0$kNZtg+YrV02D}NY|Ip z>ztsqNmwbKzR`9kzbu^vlCvM3I1_{LKmuzJ@SYQ((*RV(c=?KnuzKIcXVh4}^brnu zFnMc`U{^&^3EI1oKtC(ce8AuMR?J!`dqu{ za}u?6EIuKeBEhi)p6D2?)yc{rQe7d9lLV`CioRJL8>5(u}&G0wS@v(mT`8K0`C z@dIg`Ovd+wu{szziRD(Tcqx&`bO|h^ktnYeqNvH&x!KAqppjP2Xq_&UW&88`I$aRY z)9E}|BVoyBx??58JGRuOZKV_1_K|8<<%x+bc8nt@s>ruwkG38j*Ug7){wY1g!AVaUbexu@;P+kuu*t!B^dcEZ`7`Zb4FFWz2$2s z-jy`))Wxu&GSc=GX|^42R+6?Xg?1ApxC4O;9fP$QSQ+H#OXKIscyR@c#W;&^v+R}( zorqzlV+P^rq{MY5+;`>RZYS|ObMfFy!rgF;qjXeFvy#fKN2#f|E`}fQ*Cp$_5i9TL7cmTT%pg3yDRD0n z4iD~el##$K!ZXrH&?1x}UN2N}wF#VJCc>#s{;$0bD{qBvsb>d<2% zv+EMvm%vvYgS9eS8UA6T(4<}pjgldQeAh{_+YVa&2;egkIFNwNoB&1soong>*b5S! zN$748t!j8kYN-AR=);;qQuq5cEq|X(zlQovcgf7l&7YI*PJf)dP5$ljXY{Al;qE50 z{B;GN5Tt9*CZ+Iif^emnl0s)|(CKh&g77F0MH@^Ztf;|vCbB^DYr(o0Jk3W2mqR@Z zEKoergT0r+tA^@^8$<`1h;!TC3)RKL3iJL@T|fLIa&weX_dLKI^O!K*6`j|T~9q2L}&q*`QpoM>M+oy6wi7x?Vt;z%OmQoLqCOyHiA5=UWnI3`Z10!KjBd^ zri*kbplrOCdERJVxdK`&|#|3pjhNzEOMVJ@-7xR z7mIw0MXpmto>NT>qb?Td6^qo0MOwuorDBmzu}Gy@q){wVC^nsm#n6jI?8PGPViEIH z5pVJ6>@Ye7H8$H*jAeEb4rFAcZc(8a!vU_C*V}mDHy+oI7crW2{hLFqf3rDog^hkoleg({X~~dbP=OYXGqCWr}LRi z%kcml6P-XL#=jk&`+`4;0-$p}WC74g9kKxEfDKsybWDLPfPVDTyHpf(R)lGL3SL%l z&-%JQ;1Orhy8WzIW2LJp#s$Bc+L*p6(8Hx$<4Tp3rS<%DrtXdT$OgL2EMJ9;5Rh8z zZ8yF)M(4+dHRjdgbbet2XjLFPoWW)PHw*YT{K#`*EDPe78|p^087kQ{Nd}+uH8DDW zE7vv+SK0H+HC%zQx@qiVm1~71u(KZaft}To;gH)7Z%aR`AsY~<8^-piWTlqCmhiB6 z8CYzR&aZZ5(2$iq%o-%y$aq~QJ12;AL8dd@kf2LtHyT@yMRXUfV-s|3W7@%VeSY5P zQJGnDvO73uZf{{00=gyYMl$y%mI2c@5nt_KQ@pH6i$Eu911)>>td_2EBh;{tN*89K zTkdC1w}xq=D|;Lk)2KKhNjH?WQ0baWI@r$Bk~J#gaTvB*ad1=y70c{o-F?JG#Dn(l)C*Oja}9Wz}Wi--5NfX2Em{{uBqk-`7~ delta 25501 zcmdsAX?PUH*5=eClT09FvWJB11PCDs*$G>ShzMa-Ko&s)0%4FX7)4Pb>``RvkOGla z1QCH?;EoqALIgxq1Y8hV1r$YbK>-0#zB*OaGu?4|B#+gCZi?^S3C-LO3@gRzzjEee?nG37JMOUs`vZ_1b$4hA+UFgp@o8%Nek_vdYimS>y=Z zUXlPXLpl9K4s6l#Y^>_?WIQONO00_C#RPMK&0(=~(h#(0_;fOSptU%lOnJI5Ip9dv zs+cD?h0_d@>2p9$_?i;^)b)DKoEe-4`k0gcnPkG~FFlt9H<8{V6T4>t#4 z^^`O=SQF-EMqE>=Jz_=;*UBl8?WSfyBqGuD^{LHOhPPfwf>gD=Z|QEeJ!4t~vTUs_oBD7wxF=Sck?VW_-aSZ$C2^#xbB{NJcALW`0gadx=bo5nfe2 zt1gOoXm%RBfLMQ-#^sM-Io!4-qm*!r!G)Fr32&Dd9^VVC@L^ zDtH#*W_olX3u)()ZZMec@rO7iX=xVBQ3{u)S!a6dX7seGHB0|6L4~qvc|Tae2`iM8 z6=9@8#QW%q1gMnFyH_-1%_7{}E27{X+1_(yFv5AbGnoIG%BqzU$q7M_wkjFUbKnUD zfvlMaIvauBw6Fj|s(xQJ$4qW{)7YWVl&)F`iROYb$rGgfynZ|JvGAo~?`w%9z@nu6 zk^w$S+=lVI9kYJZK^ClB*l?IMvpBiD3bu(}u1WO9b})@DjDslUnT<)Lqeba;w1xE^ zi%ygsRhKr-1!et4t1^F1eMQ-{m<+TitMfC+gABhii1)B%!K>gujQSqdwK7n7XY)uh z(V`TN$~3?2Y@M{_MI~{ImCj!a{z~J@7NkrNm0EbYVITLwbSBGq7nCYdTT^)lcd>_) zi4lEyYcA|ij%__f-W7rG)d#*;x%%ct_*7X{wT_&!D5Y^Nlu6r0vxcv>Z4bE2uq8!F zMN^9A6#ygs)IzU}A+fk1n)kEMdo9Y9?txW5Zl7Tyb$rAyEB}rHZzX?6W_TSRIWs+C z#uaPVnL3Mhw1;rSK%J^5cDw@2SPbz2PAZ0Y^nU_8NV<=9SUwcpn{CiY`F&45tN#2Q z^0spibEdiNoUD4TdKM^cs>N;RG&8(M$v+!Z_2Awepm^-H(w}0Oyea#mU=$Ceuxi@= zFy4c!w^zYgwD1v;Tz>a$Pg1Ih#9VMe5(X+EhbEGRK76LGKa>MYk3!>jmD2XU~n^P_6AmGkD92?~rc1}YyNUJJWEqLa2R(tajWtb1&diClH2*v#z5ySZjpzQ{5WkGeFi zJIORBsO^DOC8rmF()e_?Igz(j<)5ubNTa%Zw#6vZ&m}6JXL+sCXba?$?7BE1AV$eO z-$m_FR-Ye5?pHh7Uzp50{C4;&r!K^h0lb66)W!AJVN&!}DtXM&vu8yF_K5NH`8tX` zr?L(HdbMD?*w~!ph+64>@dkNGU@DaM-?4S8E?+9%{AM_LLj+%;bo+KCR4lrfWlnJ# zw!UElsPPL)|o;pJJ{o0x|Z`(r;gSr`gDlr29d5RZDSkTT8bDo;>Vqn{1|WFv&6*Aw@o zbS3{vJGdX)8m6n{o-u{Rx*L8vqhkA~%U3$U00tHNr*vibFA0#&{6;FT{n8O0Aqr$9puctIUxe;I|^inv_EtMP+Y3--Oqu@Pf^I5fdO*FizHrH2JZILUytNwl#4d3(g z`v*M}4iQW&|B6_M0ux=B2$`^-_Kt-Cz3J?x z@D77kw}nVLG7%EN#(R8vGj}|zUCNNmVER=eR54g-JGcj)QEjbB&_HK9Pxjc?CBZTv zz3XE^dd=2&UziNTJmGbLTW4>U0iyuc3HMvs))D?A+^l8D zg2wQXWTV;H&`ywbfiKlY9;DMI3w}|1Xb#L%eRpUH1;oRTul(!izLwC0^{{MXsc$aC zk`T4$(Ol@Q+8oP;&ZMc@(}&GnwdZ6jNFuG&o;IyH8^Q~c=YBR14bRvV* zp37|@P3_?`Ydr4>bLc`+d^FDxJijhvnrfck4)T~e4i_m`8<`Tp-mDOiV;UQHh#&4P=$W>VOfITD;rGG= z*uz#W`ux2RNpAS@1?vbseJ>QMHV=1%LEuBL^kp;U2>q!eTvB_G4H~LF{X0PywdbeK zkN_!aPs97!=%F80Z51+5wsW=H?}u<8_gQ&p+@!lOxsP_~0w=HsSIn2WiG4@`tT&Mn zR_DTGUcq~4VGqcwIYp<_${sKq_VO(^?b{Oyp$y68be(0@P1h~-W>5B(U@1-S1x;a@ zh=S4uy&%cF6`jnY)xF>%*=$u-S2dvTJiw^`g{VZOy@xlQ{2&a4&GgKJQ0f0JW7h6= zH`A59As#I;mnsKYkUgLej0AE_Enls`UN&<`Gg&!H_^CG(a0W6_8E*0%7&J#;SNIdOUN^;VGU=MI~6kpDyeL&Ad)ahy2d-&TwdHtub&raV3tXi6bBf zs7S9|pWc`DH6y@6;8hXmSIAh-)3g6s1QP+O9FdxTWG} zUjahQ56j?b4>&85%#uAkl&X19RWp<{`ow(bQL`Yw6aikH4;h36@&NDX1MFlUwE%p9 zSOc9anOA4@b|(P096f7NcA{yEU?yx4%*Ph7hoB6>+#*nydN0~bfqvv((V4IB>}~&E zf&T#Aps+2;f>+p(!zXmwa=C>Zij1$ZD445nR?dy<`*N zuXpH%<1mJ-Vqo^1wmeu@Q|D>FFW@s8@`apZUm?kIM$hgH&z^uRpvfoLeOt6patb!m zH%~&g`4Y#`OQ&G8&uOIe8dP2sLanDEOY?=p*Tenf*H`^*bq21v&KR?v+0 z`WoVVY)uiydPDHVW1N3L4J$tmv)FtE%z_`Az;XLiUxNq0L&%k7{u%inlwI`PMYc}Y z5b&}+{~HLdM<#@5M(-CiTW+uX6`B($a?VgT`*pf8uwm;Z&TKFF_w4y&5>Kmu)v#RSpbju&mms4U9g9(xM^!Ad5<04Hb|g8FihM;qo;*%}*0zw##o*s7WrKpue! z4lHe9C7v)whYhti3?z9bnBzd1ha=+*)$Q&O(z9kZLuqs<+2UWL*aot97wpRf`bQ|q zf=$SmW_?{RLy`UQFp_Md>0wd^8~S=ZRJ_-?5<&86R&Wt*-;j)lPX*mkJ>59_FAd2_ zAm>B**7w^eauB{lWFj3?20kH|865Y!xV<`$KjRmz?dau5l1E#`5Fa#Ti<5Z*Msbu* zjUnS|`X5K{#E^w>o-T|f&p-%0+MLMyUtpMSgiGu_;>czojl!JwwdM%VWP9P_M&uFJ z!=t?1h-`&+*dsRRhZBgxAj2Ay6aL*9r*?zhh<0y69z#o9L!ZPj1HPWFdpJKWF zMmjk}=)cm%=$R|fx`IMBSp_@jnrt!^Z=h(-x6aG3`>inN!n&O`8&zy|!b^>SMhLBbpGJ8mHTp)F~r>uIj`ywr}YVDB3X z?;}}WE0Ef+L5<`h?Djme#zeX|5cigqi0UFxX1up-52JfRNHe-4!4&Mp1*%|W!B)J` zdkI_5MLY=|Nk=kXcrBur_wMH41(|}H-l$6N1Sk;Nd zl4T9VOV9?of?Z2P?k7|Hs<1V}R>}S;8EV@`$9E=44c=y-3hJ^-wEh3;4)|+gbXONX zv9A=6Eb|5&u0U$-LE`=V!?`f^**{E}09rbNG^BeANHV*XbMWg3ZsrF3bXSsx54DV$ zjw@hGZ@wFFhi)Vl1|ql>Tjh--xZRCpuqPi*`cqd%I?grN|7Q|OcXTJ=_>u{8+l=AP zat-FW4er5mTP46-5WL(CIJhSR+Xc81!Q0$`KkUhJ`$&MdBKQLiwm2l_n;`FcLU9Z4 z^!5^;D(PFjNG$l$qlZZ#$YJn#fDzslgl{6@b)ENL)iH~Gkff*s`CrtiCjM(UPux!? z{<8?%ndFOu^Ba{ly>Iki%|_l`(afxUO3K-55zO7a?t;XZ`X zwrQvv?%akhhWo#$QB5|Ny@h8_Hb%A0m!~^}NH|$9lRbvXuGJ^IT1}QMP@Txz4e5l_ zY$ZeBP6MEJWE|H2u#s2LO&R7X^nSgz-c?mr--Rlh3YjWNk)j07qPwP%x)Ml;bl#FW zk$WWaOGM@wAhilO%w0BCpC@g}Xvuj2Ig9==r%Oj%)#cLBH|Xdk;YiggA<}IH@q5;L z!$|?zB}u+Tk{$YJ?OLti(~9Aw6*+1E(T3@;bJ@s6`a`?OAM@0 zDE7vHySawIxduR&ZtlL32UIQm+(bWb3qRg+i_x0?JcjM*jBd1e?|EP>iH386;ucbz z(T93cC*2JWq`Swk{rEKlpf-GmH81xfH|CruIRlV$d~G;+NQyKMLh}W}Touqa=I;euFqveK zDoGNIB$fIYHt7U>Um`;gdB6avP1a$~qy0{rhoSj5wJ|s542%^sKLRM5il=_tKLp|^W<-tuC#rS`A{MkBDlYoInPhxI>fU8>10-GZ6d)Gj%Bo1o~ zm3_gPR>s~1d^v;NH0s9bX1)XH(%NMsr_AA$Udb3wW^E|B^+Uos6|H*H0A2dI`$is7nT#kOBbp@~srs4X-Rj3n%wr*GLN-W} zdyr(EKH66_`Zc867m|3gN5VTGe3t=Sn}>sghy0~9?}+B74a~WSze(hMh`efmbm{2s z8!;qEq`fG6@a=+r8nfShAn~e(uiS-(^B5jF3yK1yxQ|n)FOWJkQY#SOH?^rCEr9)Q z0{ZKU;6bjz+6){FJlLtixH}p@TMJ{p99u(7;p`n7;tzXQ&n->xkqZAgNI_eFS|0bHA%gM-J%U3Qcl{gC4x0}iHSBptGutxyk3cz=ZV zH-_hui3v0|QZ5|h4S+6V!(k(e@IzOwV7I^p!d%tp+4T}3iUl?-+e23x6* zVN-%y%ntS6m+-*|KVSfNs(((xA3^vT1GqNBzq$mVyrvZgSdoPdLe>fAv+;l6~306B~gX zkLe>A)wrheFiW6EB6_+3+95of?wq>_(JvXGwb{9FxJyvjkYa}cg;V!W1$s21j~bv| zI&|H5i?kAiW0CNdAXF6|)!41VeByriI>{%IO~eDjI3x+D{+pc-2%$}CDoipZdOV`j zT%#QdlLCpJfav>Oqp?)TPywVrZ)7XvBd&qYwdN^FI}vH0aE*4TP8LY?fb zOJE5C*SZF3N5UZwPvL;HeiE(sacgxfLYuf93$EAEO12PxBRM7^$5*-t&i!>P{*>sa z5dFJrv~w(in~HnF(})ges+;u=a&3B!MyK#ulH(cVNH^ecD&JMYpGA0Q1Gr0?~8-cCA@#ge2HNfzk?o8R;=MgN9`Peb?y1GqM1Jx7(DM3WCC z#|-2+SQ`$P#CPAwRr5*|gI|W;JreogtE$a!>b5$$YS}wTH_}9sJdY%e1c|z*i%pcO zv4ZPQ+DYUKh-__u)TZDt=g|%p=5*>#cHbFjV9qzhCDPG6bX07Bbm?fuF7g0boQS_p z5k>!R{Xj;npttw*-uCN6JTH;uh&*e6 zbk5D2s%X2JXx9zkTwZH4vEo-Cu`gX+?OgF45ok4Y-^eL*CFN42%&r9`x9%^km!UQL z)iM^4D(imtvf`dAV;|{3o{|(VBgGTC046q*rK!!yeIt)*jig+Olq>%!<=s0+q&hbz zHgi8W50GKxCmH9f80TeOoR`$pOR@gOy~pa$oFoQ+9imON@Q`!x9cXQ=jz*?QE4u1E z_Lvl33o9e4T+%}ZvJnI6T1!e*pG)rbVKGP2Z$Dtq8>Q0QX7u))&fDZ97xm%3k=MuT zl5#6ju6Iqzre`FrJVct2YKeXm(Qms(YsGQ|zZAfal__A-b+&pdba_RXAE0;3q zZV$SfrFS>ol>+~#ja-34GNgAgr1xtZlB&RT_X_aa$?Rk7TcbPD-9dDBTkr0sssM+# z|D3@?l10h9kMO``UCB7$+WK}h^0zQK$Jy_VWz+GWvp2382G-o!$>Z$xMmOo~5IXB( z0C&9IA&*MAMko4^C5yOZdypWa=c6sa$t?+>11@L~x+ zh466(aBXy2j$Bwo$Dd=BJKw;NZ&f!)7iZDMIs>Fj7kA&t2m7RSbO9Y57mif@`mjGp zcB3CJfrPKw8}Q#H$yZ2nLm%xmRX+|t_BDID2}l*YimwswN7F7kcNGq_HVsE3k2qag ze}mTS=exExrW`0KzeCD?wV>nyO%~R)#kcHsJBeGX3SM)sAb)B2+9meVaG8wY2aI5e zE`r6WF7Bc38+lm!B<0UYS^ZBbwc@#Vjz~5C#i?#9h_4DaF0-#V{ac6$e;tFZ-$J)E z)NSEH0QZetfL4<8CUWNdV@|CC?!9XjsN3T26v!d7WuSL3&>8wbOI;=JzL6(iDLIKJ z2YLr_&KbFUhEi0wvV(?uPH zqo=5JT^&WF%R1u7mJ%6($Seb-HYSHTPpO|Ur@L>n_bGj9W9}4ik_;glLntxe;NIp- zWDFwb8X%2>-6GB7(EJTyuBsZ5?zR@OxE8-*iYA98M?7+Ts1M~ltBt5NpmC_tdC(}hFXRA zKt0>X6lGZ)oQ0=b)u}^Y^)WRelcaSrT9+7DYn66Ta#5FL(5c=r@Nt41+=hJP5y2p|6HIcl^vPEC25DmZ|I3P{8hkr1v(GWdkxUqBpehx ziHpKIAFVIc#@e}JnzO{@?tmPoEZuoZ++!2V3oQ7zwwuMD;%;of zHT2#fJ}#l3#hE&j_p)hByeWmepN$8ik$1E4tFmV1f#`CHeS5sA6OgZD9D}j(OOA-+ ze|3C1n-(UR#(MFNB@M)%4_`_!Wx`r}RAbX1_6O1SXPTJ00%X|_HZ^@~vewI~Q^#h( z%N}-Cu5A~sZf;sM#h;z9ZL5!$JZx=)m+4k^nTnU|`0-b~#IOV7Y>{|LW~b5En&IUL zLJr|&Av=c3HV-ei**QeEn|P_hOC?^eV#gJ{gy6?O-iDVe0aMsD0lDJv@;N(T#r7#) zUd4}V@N$B8;3Wq;GVyX4FCXH?%Ko(6=8Kp0>@)z|TD*LOmk;pbjUAqNSQUEhbvLWRVd>Ml=1B6@XY7fuClDlc*12o*)pDJ8Bel|Cs@XlE8~fk@ubRZ zAEmNn%6K+qJd-k>#T=eNSxHeWo&=g&RF98tQ5GB8$*HClQ~0P3@no4!VaH;#gR|L% zk1w8*ZQG8cibq3>k;a31#Yq2vKOJUA^0GsP*<}$s+LE2U%PxHM@!U<@Bph=*j8fDA z9+xKS-~j%_>mbS>hn5!to~|Vd0na%Th44N8#0$Y!6axE*XKaZ&z{9LW9pE8Oq7Lw+ zDck3G!DE|59pLFoq7LxrA{%7~!>~hc*aa)%es=l^`;nIfp4}lz0*|i{C4nbTh?2lR zxECeS1AoGbu;D=oHppR@CG?Rr(=~RAN1t@l2V_|eI|Mt$gU!$!@y&K|hAG>lf&rD) zO@d7}nnTZZBN6m$hG{vmtKe+{Ol(u=kxWxa%dHGQ*F14tN%64ZOJ$13+>!EItAN{?omf{n;`Xvk|G39ca@oo#x7{GgJ5 zr;;CLhdR3C1Fyeh{uhMj5^n_)@=PkJuP6hjuVKaOU^tz1je%>o+c zng>OLpx)QgG>m;`%2{LRfLv2slGYNB#7Hwm*kb6RTvNxC`#__&F=Z!7$;WVDE7Jt% zCV0DuXeU|SMmt>_ZOzkKwbU=PHod@3fZ!ny7t}P^E%hd%iMr-VR79ikXKhTQVY;B6 zDySjHE%jQHhI$FBe&^_QV|~uTyVKTm4ps>2Wk?-Of6g^oXzM(ar7<5sQOMo;dAe4c L-AQeErk?);cg>Ri diff --git a/docs/build/html/.buildinfo b/docs/build/html/.buildinfo index 63233590..f2d3960d 100644 --- a/docs/build/html/.buildinfo +++ b/docs/build/html/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: c0235afd30c9c9583639f9b41c307b3d +config: 344d20e947fc722055a81658eb431371 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/build/html/_static/documentation_options.js b/docs/build/html/_static/documentation_options.js index 9c357c8a..1d51443c 100644 --- a/docs/build/html/_static/documentation_options.js +++ b/docs/build/html/_static/documentation_options.js @@ -1,5 +1,5 @@ const DOCUMENTATION_OPTIONS = { - VERSION: '0.6.16', + VERSION: '0.6.17', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html index 28cd5e77..44ff187b 100644 --- a/docs/build/html/genindex.html +++ b/docs/build/html/genindex.html @@ -13,10 +13,10 @@ gtag('config', 'G-P2KLF8302E'); - Index — AutoTS 0.6.16 documentation + Index — AutoTS 0.6.17 documentation - + @@ -544,6 +544,8 @@

    B

  • BallTreeMultivariateMotif (class in autots.models.basics) +
  • +
  • BallTreeRegressionMotif (class in autots.models.basics)
  • base_scaler() (autots.Cassandra method) @@ -1089,6 +1091,8 @@

    F

  • (autots.models.basics.AverageValueNaive method)
  • (autots.models.basics.BallTreeMultivariateMotif method) +
  • +
  • (autots.models.basics.BallTreeRegressionMotif method)
  • (autots.models.basics.BasicLinearModel method)
  • @@ -1579,6 +1583,8 @@

    G

  • (autots.models.basics.AverageValueNaive method)
  • (autots.models.basics.BallTreeMultivariateMotif method) +
  • +
  • (autots.models.basics.BallTreeRegressionMotif method)
  • (autots.models.basics.BasicLinearModel method)
  • @@ -1775,6 +1781,8 @@

    G

  • (autots.models.basics.AverageValueNaive method)
  • (autots.models.basics.BallTreeMultivariateMotif method) +
  • +
  • (autots.models.basics.BallTreeRegressionMotif method)
  • (autots.models.basics.BasicLinearModel method)
  • @@ -2784,6 +2792,8 @@

    P

  • (autots.models.basics.AverageValueNaive method)
  • (autots.models.basics.BallTreeMultivariateMotif method) +
  • +
  • (autots.models.basics.BallTreeRegressionMotif method)
  • (autots.models.basics.BasicLinearModel method)
  • diff --git a/docs/build/html/index.html b/docs/build/html/index.html index b0a35f72..1829f237 100644 --- a/docs/build/html/index.html +++ b/docs/build/html/index.html @@ -14,10 +14,10 @@ gtag('config', 'G-P2KLF8302E'); - AutoTS — AutoTS 0.6.16 documentation + AutoTS — AutoTS 0.6.17 documentation - + diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv index 5d58eb436cf01ec29b0e0c98bf92fbd57d17b43f..b8eeae657147c343163aef6da7205ed3c180a873 100644 GIT binary patch delta 8717 zcmV+oBJ$npME*pOcYl}UCX&bB{VDpK-B;&Mw>`Tv^VaT*?K55Nnywnp?!Is+iOj?$ zAvK_^s{Zr~LU$=MCHS)sc2!pUnJzys4nuqRSdNplqdDzhS_U@9pjBf4lyw*_T>+}~|bY5o1(15F;u z-bhWT(woKY9+=X^7#hoLTB^0=50z%ylM^Ns%O8v_2XX|>gBiUU1W}kIib>8C$!W<# zDtE}LZ6pY$C4Uvl=sc&I7b2vziDXnWQi)QslqZ@#@Qmvh-#n&!^2Ad{M3tMeCSF-e zIX#F%F^{(F0PMM>A|=N{@^6LEH1k3fQj>Ax@Iq*omzk;J?SMVyS!FsC>6e;ouS6uJ znr=^N`(Km7=$shKk$wQb4!lqA(vrO_a>7$ThAv7XOn(_Fp*?cZ+g#n?4@@vwx6vS! z8BWsub^_0XjkrNbrmD=RKAQCYjerZTxv7FC2RqmQ4f3eX)T_*HKuNQ$Pm?9M~4JD4;>>AksM8bFZyAPNl#E%pIIaNHcPTXDNjns z;4=Xl%fJK4I)4{ z0|Oxs&1?^V0w{ax^m<}WG~;RAntaOTakG2g;&=8BWZP7;Py9fQ3#$^EZF2Ye^huE$n_z?{x}w%WGLsF#w$0lHG`AAc_F{yK zlz%;kkhEuF<8-#&D)U0@jd(jWy2%$6i6`c|T6y}XGby(&BlL;4Ed=oN^*PAqm4rTd z+v9aTsMUqCbG2bFwizqfv-WN+Zlbi>#(DbYEM@I%ji*1HW#}Up2jyRqRecUme_RBt zbDDVi=L@Nwk;x*h5>JK5A~7CVXuo4zseej}O`84BMNW}rMkN8AdEFKJH(b*?%(U>p z1yLpS>~pm3I&)JCB%zfuox176sHcA109%i7if_@)hm*;`7p@*Z4%*2&$8MH%T`&6A zON3^&&d8A~(-)bUvNRv}Bmb4|@lUJRZYDsU%&1p9t?6}NufuN1>6=T)HT!ag@qfcL z24Sa7YcdOzwY|^lA6H;Ht*+qx`4Uf=Aur?k8gqL+=sn7oT>!u4tpN#$DJfiJK5+(_Qe5@I3>+yyu zV4Dd}Q+pfD6twX)!cuaNlL$99Q zL5lo-*qrv2aJ6|YZI{X&23bF`Z|0pDJsem{ngv4FB3BD<7=DSZvdl1a>0DF$m2(H2 zy3hBf&QYAYJ=$M7b2?k3F?R`AZ~IZH`JN}-xe}qYlycWTLqSKA2tzVc34cZp*l>o_OWtaa9YNpZ)?)-lX;0fG z2oMo*Eqmis111Ay)pqBpKY#iZJ_vL?=l&~9T!3+2o|3+nsG}?a({=Fjw*6! zb=3O^CdWnoz(sei6GiVfbGn$2IONFzE|ierS=Gj1Nc$nNhryA;nuDkj%tzKEK=1Lu zxGXPDjAV?acK6s$_Mz2ZZz+(0g(BgVC~b3XBhTDlq1hjw3Y6>sY+e@^O1HYMD*^~N zWNd42p$~dx;9(GYWq(j&n2hTIi(&jV2Ok3^tUhuMlXES=Fiem~fTV{&-{46PQJVrQ zefX<`E@Qup0umeMPJb>h_`IHXeP0!My}T@PU1U$UQ`@4KVjX zZwfy55U@HheOn8=?vLvphh@E)Bi6Kcd-}Nc0Pz~^0~5(Hr}7cASl;1wKMleDE9MKp zovcEg8fN2ry4JwO0aN-Jc1y6ESH3rg#7(4(LX5Y`@eG`sW#GSpGq5_kZYKLL;gdxO zEq@$)Htu1f7aBs)*l=Eulh9w{02b3#7H+S9jgXN^1W9w#R?r4?1KZWT49RRpPc%d2 zahDu9QC}-+19)r&kktII_OFI(E*MdE&43FVfevMw#4ujU_S80_{^k@6_K7kW%${ll- zbBUhU&E*uMst{(}Ke??#UZe_`?|!Ldu+nNKjyz#dG3}jx_6*;2f5Afr7kj(YBH7o< zc$hDnE^63vhrwdn>+$@H$yVG?uz#3t#cc#<(yh9CU@`5Qn+6sWUcFafG1aPD1kR@P z$>)k20_N%L1#?Ax6m?U=4RH~RNiQu_xG$XRS(;C&OpXY~?(LU%znotpA95}Lt}KDC zrK~>QxCIDlXcjlm0)c!l0Um{kW8~{QPn;Y zuIw9*tNe!z(95TKeX|KNj*E7(Y2o9zu5g$6&WH&?+wPxUThR?Gn!06O;77emCPe`+rQiySBm86@jn(qTOc$SOMs>*XJ zU+^-V8}SSWLri?aM1R}%0zMKtk~MF8&%{r}mbXs)B&>SF#1FmxeUnxEcXp~lg+_R9 zBNn2$jDgs;GH1u&f?CPPkN1JPF$9E0EC#EGmWZQ)>iq9C%c;22W-z&HTUvkurZ_Ve z+JN$<9CeNGk6f`=S~NZRMLLx0aLbfDc&^o1!-MZN#}TcyiN z_ZxP;y~Rp=P#an+Bh+-)%26~gGe*k7K2*dD2@v>hsO~U5^bfJm--U92xO!OK)Iwmx!kQ1}|zG8T-kc)JAN_d2+4s2c!#m)F)DjkTI%<(^2SnKn=PvyEXr{FK zN`G=Lc+S5uAW{`skkV5jLKmM5V)wz`OURSYOg|Nu?)<%)nF%RqNofHWx_V@he`k`a zFP}e$l(J<6m#+gMN_IaE?(!|%025rkAq!E&(S7|D&(h#VKBY2|m=8jRq~WuQAq}(T z?0#ZOfBrC_24-yco-2*ywXBb8?l9TNY=0jz{@GnbR3J37`vqMCzjSY^#Gyv1g`4_q z6J&<3KKd9cV9$*sT2if<6bPQX-YPSL`s5)Y4A|5~z0P!`T;eL>9Q*o<&07Vu&wmXb zhX`d4ULUFlD8A>A-gXFnen9}a0^5WE_Rk50!t%`gN{%cmG1b?o8mp5AT1aqB_J7aP zMd4!XN4N{hSsEJ1-x1xLdEH98v4Dd<;=tItbWEJVx2sl-j_Qr0kShlcSyc!feCI%e z+5K#PUV34CRc=~LkmJ3;3R}~f0zqeFmat%C=$zvq*~=r>!M=RU+5J2KdfCYo6lN(i z8cMZ`U^o<|-koCXk?12cLlsSee1GAbYRR9;$z91AVlzEy_x|R+ufdEdLDn)sflOtA ziY0~`$pH81?fpA|A}j`_iJFC1MTZ3=fy%h?KR-LBpj2^#J3hKV#S(#f`10j*GA7pGl3epzxfEzhoPXfVNrNpv{Wn+sE4Ewe~^Q;_fSJTiUIH$1Ak2O6bAY+ zaOrnUTX!M$Y9h-rloBioRQ=sT+pXdlVn%ghj{sCUXa#3VY#K!YV&)VE(r+{q7?_kN zRKCgbG6j5N{t1HRdkm;5>jxW>0|p1Hdh=g!Pn4nd@Oskj=F@Pe#cOO{f`tvy zi$v5&eHI=C96WAk(`~Hg9Di?!A=Otyx7#v7hSZVV8T2tZID3O%?W%fPk)B+^DoMvr zT7;B+g4=zr|9$;U=1rNLP=lJ)6*Q=Qt&kE|LTHOCWl<$sHrEQCKR)L?eE z?&rt;1!!+eI!g>Qr}J2pOM>(f2A@-HFuQkcT*2GHd2}C3I13Cig!5F8 z9b6U=4Gyw`-FxF%n@j@2+Rqaq3S7p9ZKPjdgRSF?gm`q6eGG4&$Jxj-6%u)SMFheW z&!aKsc!m!)$qQ2AN`HuJnuwsWD-uxgW38B5$(qwtW_-srvNKpn6S%;}RQ)*t;6`vs zOk@$LX7GiIw8%f2l$^;AHe4dW9lr>LSk5xJ3;77=yJ%EgGnxT0)i9%iEqhr&G&std z|0(d^#u5{v#6>Vzk7s4XF6U z;X~-Zxan!1aLs7SgH-ks6yrh6$l!*#$dAQFnO+~O)CHCd^6a^|ID>aL3EJT9nBPm>IRm$Xl8J;9|3>8 zd5ckr0ReSlX*5xk(t_boq*~s;2%7WcBW;g!g{o%+gsEvvji9c%fN1b&>bv;|T!Al!e9uM8B)&P z70n3+6>;!$E^eyVpP$W9{bBn?T%~_G6xBaIx1TT`a``8j(Y4x?Mb^W4i z!oEdH)FUY>ZKx836@{oPz#a}tNInPx013cn*?0&Qi&Dqm++EhHk|%EckPhjKx8WHg zy?7tvir#;$rPwmIOn{(!7c)XsJ=*|5GkSlxc9+v-m{9eUM~CX9hk?TvrJIuVes5RY6(xuPO&9zr~D!VOiQK zyEtUp;DdjS?d_ueBh7Le*yRjByPq5P_53Qy$}DxHotc5@mkSFHn}L-$wJ{pR?sl+P zaN~bhDggWM^^cD{)0f_w@}cd%Fl8KIFw~AV6{J>2SeE07#GNasM++hft|H``w2vu7 z;a^{e4Z#xoYHlp{pzhHkR9+PBwGKR$B$bp*z^ldG@d%*W57hD6>fKsenid)cBAQ5k zIO2h%$WjcHixUP^T)h@{Ez0yETyQf-&H8`wDjX`5eK*}*=7}V#_9Ze1^jKt?JXxn+ zDw5K?WU0$@!XU2C&ibD2*H9O9NF8*`DAu&U1aSF@^gShp*W6V5#7##jOr0i2mOMi6 zvc6jYX|N5kZd3hj9}%$4jUqII@PR6`Z8c-0M0I-o7zRSY3~3)YjWdAV$B*}(uCjki zeC1%k8bTL^d!#Zi1W#1G(Yv<`+JWdmPts7@H5}tJN?I0KU{}Q@*>{tk0L^urZi%G* z1JOKZ#57jQ5&2x;7qy7MMXiAZQ_WHNeU!KB#Oz0b!{X7H1eM8=U*5#MuE+ss3fi; zjGdXHWuM;$=45xrs49#XV0`17Li7Ev{nHWK4fry1SorOx(X!3Yj77=yB{C%M51cA9 zRoI(;EeqA#o<6!`2?S3Inz*(^%P~E{6O~XFp_zv8az+IV1go*!_&czCSrmUPXN6!8 z&Nn6t1V~UK%1}^y$4QVebi2U*U3!h!rAeW}aesKsy=^|y}3`zZ)c*)Ech2~kHQ_^#Gc4j=r2Ij0Leyu2s zXH=KxcF``R+1Gcb*;PfQ-5GzCfXW-9cDMCe1~ZMiZT}pwZaGH(Zcmlj)s=`cj^;;U z&#{GTY{cba&!jY36J~x9uxvG^_Eu5s-N7?EVXiAFM8ZD2K{<#$D@w_L7?Pv*r(0tP zoT0Z&RpmK#8`ojL(dAf{JzBXcTEKB;|Wg*?#{ z%NUaVRNv_tS^-B|Hrjs<=${;9_qocAF(&uzDxvR+&3RtHTIppd30>N}fal`Gq?uAg z6oEn~nO*I8V)lH43N@--x+gWTDuYpb$-cH*4=KxBOk@zT_BV;;R!k%>!Mv<6t=#1B zsR;}Yf~k73lDOcQA4xUXsh!F z|GBR|8o%XOWNB~*Hze&o52JbR+fV#@x)tF1Y$KI*Ww285%=_rt8ew}gsQf>ODP<*C z9a^L!N@*s1!vLmGN%oL8ODfGz%pOj!N(C{`afp~dax@J1n|q7dz0LSRd@}Qk_k6$i zH1TCvz({_97(9Q*o@1}R8NmmRauCk(BXEDW@qsXdsA;b6v8y#q)^ksAZm|~EAxW&- zjb?L>9?|HW03g@}kbYr#aq>NUagK(uiW!o$L9gTI1<+Dr)iK=m#`FlbHx}SV{w{j? z1faNt|-StzyWIU=Kq)5IemyCdd@Vcd;OBVM-*CiVnAi5j=u9jQB|I@Wzuc zV;Ekg0?ZiP3_38}20C&K1L)vDXqDepdGKcc1t7*2mZ&6RHN?>0Oa_kqzB!*WzTKW` zE%}2Di9u0;hH?=OF`BCqNK6F`Wr4ey%ff=9pjLkifj5uK@_=$MlO^N~DbBPg(p)Is z1PDLtu^Xp%^{oeh{%XL&Xng`Camo$X|B#K%GBfH=Sc)8E7O61xEu%^7T8W|31t}3) z__83R0F_9l`8O7BIV}lfEkhiMQDVGRbmSP8(7|!g5C6J(i`jtfNnmviz+iO^$iVE{ zJ2ZcR{qd9sX@fD4U4V!}nag6+}Cs(zAigU%!C#-hxoapoTz=rI85r2REb+9Knz}Hjqh` z{`KA4U^8+UjLv%&ffp36?*uz zfVaK{A<~B4u+u;aV7OS2gDb=@x0pe)<$z74!-5T@;{vnV+-XuDwhKPwGNwV=^&ClJ zl^(9HF&*EQCjx+AcN-*dK$#Pl-wFh08)JftSQ4|k;ifp35WyVhLU8b3?QzhYYt4Uz z{w;B@LL|Wp*2`3g)tpC@*tLSTo-XZW`RkfRRG#j zrg*%GOeNsRpNtEf-5vQ}-_U~#MGvu!2@YZ#3rrHN0?@WG#p7*bDj^1W;uD3Q7W-5r zH2cH_qw*ec!e+|DnB4*tskSK|ZFqlEegw;#iol_77!~~yfKdAw(;(I{N0L~jkD$4U z04(^{-N9K$F#(n<7LYIvE^tZI%0RdBB@uDVWhwAeXTT(GeZ)}Wk{BSq-ts@O+9wQF=MaX`-~@ycGcLfKXs4Uj+pWwrmzGBYHNlEckwem-r!~;kmxd_347PP>K<+&BOJ&+ zW=s;T0`S%`#>X&@u>>I5J<(!4N}y}7OvPBrSu}}VD{#A6mJ-2ymIWaNRN<>eH3VcM z6?}cjG2s?aMOg`QTpaK2{u6)3x#&P(?etu*hI%kCvk5O>K=s+9AT4LYBT)(s*UE(8d-v(S%Rf^L+X;4pSFXOd_Y0Jo3{ zK7x5nBml`=KsN1K4#pY=Fw#7lhy&s)4{lH`H-aU#Xdp7LGaXGjvO^fA;m761inl@}??K(|xRfV+oBP-NB|o$TYG z3vnv4%C4G|XhPstIN{^i_eZ8FaQSY^gS7D_D2Z1G=)Qi&$M+*M5jb?)%!$%~EvF>o zB`F4Xk_PhFvwMk>(~N(lETJy|rd9tSlxScEf#Bv{#rkD6O!1|C)qo)@w0XbGbd#Dr z8wcF_6B583R;Yd9*9K0cJn^@w!LyA1?JXepbCFQHvi8eWg3Mm_IriM zoqO)IO{)T%?1Z*Uj+J;M_C+>YGFT>e_1nzuuQ;eE$(xjz@kAVeS?vN~ldMqo$w~7C z(`_rD1h);?zFd3a3|J{8kHs}TCKXZPL=>i%!^??TeWhiE(Phs7#LI zgzj%H&7J%FmLAx5qk0$?WL!aYy5>tIO&(`SZ7eZW>=JFG{l*a1CtIen6U{2B3wa*f zePzV$6E1_@V#Il>`+S6Kk}UHyGm{P*PJJHPePu-L6P^KE)4TxfEcewY!34&Imc;_4 r{(EcC=GXT7&UIOm+k7$<*(TDJjfJP#LaO#7m+Zdz*LVL1)pA#It8t*j delta 8697 zcmVHj>BR^C^7J?rVC-PG)yz-W*?&oUt5@rOE8>3l2o0yAknb z5Nt{Q^a~KYlif|C{@8~^vbymr0961AmjZaDb6vhFUjCNmag~Tye|lBsm5RiF@cNV8 zQK!kjxzE1;_gCM4*ZlcymZv;nyMK%nW+)JSdz=O~%6Hlz*il-$3R3tg2U}cmm!F1l1ZVSr%xWC(=()#FPZ#W#=fo;}G}u&hc=StGA3 z#gZSgyc8a7*#X3J!Lyhhb0xp!ndXTXB3GJ?8;2J{i?m2g6>kUZxlAh4nJB;1QhOz0 zG1q*1O56XM6h`OFSdQ`o_;uiYdY6{%Rh}{#`!RH0uz$>yp~|#JE_$1*8~j0JLe*`Q zgfhcPyx&fcDcOh{gc4Z0=qXX{y7vEfKf9=}RFz z%9i9jCX_7AOKw_=r*4g@n;w#)TI=XAqVv!(h=}ND`unUO)`ao|(fZ69(YINa4mwdL|yYctWXM(J_8r=afF*X1xwpaMMn`mdX0tN(fVhYHUI<9_fl(2gyt}GO=ymHlVqckhT|N zGJlK3Glir*6C0#(L>oP*0c-umNj9;IFY+gy| zleaxy*MnMJlyQ9Uy@aQj*Nd? z1gvwKWc=p~shyFjJgy>7g{V9-9vHRXF@LU9rLs+${m(^Co+L&kgwDL~iv1g|X&q)- zc#s(@3+~zHXxnwBrWRPltI~AprVrzu`f&qnJ;s%Ci*7!gOa{Kl^6}%Kovd^0W=Yre zqJO?G{6EhuZN8&4xFCHFXqaDQW$Q*T}W)GQLOQ|Tn(##&rRz1168LTq1Rn^LwD zz8DuIPw$7#XnHZjyffj4gNRwPK>2(B=s zlfacQ%`<((ph{Cj1m{VJ$9A|vurQ^2G3vvRz6q5J&(c|EyW)*oaHc7D-#OQo`!7sa zw!=`@pR$|?@uFY%RUlF>55*`E+YWU?q^|b0AkwZlWDpq}&X9V^TkWwU=$qVnjKCo6 zY1;$=A|kA1Z=7ntWT33t?teV>N1y0}K*w|L|4p8iT3q&kw&ipEw2H<>nC3`2rqj$P1CU$h2lL@?4}Ua0C&Vu2=v|a&5eL@#f{1;U zBrN5^ox!?tUH~Xg#=&J-cRXm_*>gB}0soTUxQdZR`_D{%twhT&k$>pfiC7f4Sy^#M z6(zJf>U{*0<2-$kS$D1zMejCqx|onKk5*yh?sp1Hq5vp+r+sKf!-ye=-3ZgpK( z1Q2e>*w)}eAN0z=Lw^!_Wl$nb#`Sc8 zTLO3~{DAmPfxo^&!i}*T1BQJigmRqx0*wKJLJm2e0m{CTg844n1DpMYTnT#i1#bw5 z28h7VT(<^N`-)f>WbI4e7=Vos6WCxk1aA9^SQpgoL&t4A`UZo02?*c=`v#GFh*}$9 z?t|VGeC{D&bzNZk7Ixhq*FBC%dNW6?Y47&@aqR)(HP{D{MaPt@N6cb*hui%$1pBX; zF93I{qB=Fg#`kosL1qU`>1Wt2!ERpp-W(D)kunM~-X_O0aBh}?{~~8#b#&cK_Fw3e zLkKN@oOm|wVWbxt0%>eGFUU#gFL3~i=_(7i*S|){$RtS8+_V+60o}lMbuYsbo6!?b zPpWtzk=UM%+9HlqIK6b$x>3mD9u zigQaN&8LWC6D|HR7DyI*Olq5IuS&siE%PLQlo^PDR2P@k%y}Wi6sYzz<~Ww%X2SDO z=82g{nX26Hg)+_3?rU_5NdW|**)g(ujb9KjugU2F2m6XFcbVW|S(O$qY;P|rfH8BR z-4`-@;HLM4j%!7I_O4)0W?m;$sfEOK#z;-8v;@NPdVSus80S5J+lwl2`l-kAm<7>) zeYa{2qM2GfW&)YP0@o7Dm$Y#^#@%`$4AA&?2ecLFqnXnj^CZS9t;)(=*-HjPv{)pw zU!BCvC3;>rmn#J?^URFXa=~mr6u$XquO#_Pwuih)Lm}=E6 z0%ueD=bA zSC+unQdS>t+yaEbuCJM1CfVy@sVcJ!7yEfFw()vih8+6`<6{&mH}eQVD&h!#yY&*< zjrbKucsCM3Cb-B&Gqp^Ks_FxX0p>J??RZhxn=@?SxxE!yuPyp$i|nF=#+wkU!LQeX z8&|E1#8OpetGmS3_ii|XoZn>kA=g8jJ-)KyyzjV<-mI4JWF59(C0HAbe3Iw{&;3R9%cJ@Zp+o*puNd)2l1|$F=l@xT`=0QxyfW zIW2a+XPwj)z=$VNRYw~afa4gvsb=GhOqvRX@ownA)JOO*10%I_xf zGCL%qJ?>cJkGc8=#!n8DQ^>CW80W^I>spW2F5$dA3B?cMcQc-Ui_cuTYa2XW zkwqS9igFf;a~IF^L$Lw#84Lc2C&|4M;>I``^2C)iP46bxa!=IYSuR48=iyk5UX~MD z228`|$ESM9>ZT3*At`o@TlsE^A3Ms$-YyE-vnXYird++?Ww_zy84iXR`htF)cBjo?a@V#rf&!*EGZxyw=GNHO9AD#;=cnyEQhb#zD|4pi}X&Cxc*U_W9ZR51o(buwp%;DWUz^$TKLnc|ST>X>2F zHNpo%!;}^|zZ|1~vLOtkun`fht{FTC7^JHE-|6E|&1iOUAB5(tJD3g0UAt&)er3)3 z+9d`o(xSdH6tSG|hyd$!AgodLOe7C!f&rGc|F?cTs~g@4M-=MlzdSGMTlShBjkFWp z#hDvZ7V4Bs%656wKD$ia-|j%WpZJR?CC}=8y5A~YRQgMQch8M)Z?O_jYC~&fP)&EO zoRX(SB3O~z2W@1o00Q3))lJhw|6uq0{UG;;tC#8^MAg^$;N>)rUiFvig`nfJz2?Gf zA8ga(Jogupgy5SlvVQy>&Ua7B*9XMl>_BzGjkEUhP4pFlYWeQICrm%tLlI{imbi9A zw;`ZB(iKmC5Ci<86zK8&3lcOKnj5F5jZcH38(*2Z`;OZS7I1jE{?PEB*Ai)4XiHEp zM_R`Jxf)LNsF$$q$QAoMDLu|I z>f)1sLF_)*`|D)%S?H(y(%rCEGczHPmXsE7)YT)4{JT)R{POuTrIam$T)qy3DB1lu z2*|f^0}Q!*Ll&ZlqkG*enZ)EqKBbB*G9OTeq~Y^>l!n=Ic0Y+yfBrC_5;L}YFH4Q& zwXBb8?z-5>Y#+S+*8egrNqhg`4^f3}l9{J`P9~u$RUWEx6V~ zWeA?T1}QOv`sBeG4A|5~z0P#xQsFA$9Q*pqzFP&f&qS?xgMB4?@JdZRK*_y?^tMCr z^9uqfOR!BCVE^n46_zIES9TOhfvLVm)mWW0&|HCQvVXoT2p3~NnY+kZ#MFTAj_BTh zR_j*UjRhR^5eLTBrDNg@zFoCybX0E~Q9{!XNtI`s9Gl)?c0b#nmtLY?m75kra=aH< zv^A|M5OhXn2@6J2=NtzmULK_;`|>Sk_wxYgWhYY*%~EDGlxi2ja41T>yHbcprjNo5 zRXig3!YS8EKC_d%x{+ctJ!$v;=Dn|f!Hg*+Ynh-xrm{fA5~)Tqz(R0yEphoU*J_7V% zC@5`M6kZoC6-xx_Azl%V$TdeZLZ({QK7YiwSE(T3>0T zOEIMS3gLEJhGa+`$(=zTlgZhC8~kcl)!T~nj?sNU`>u>jN%H)Jf zYF1a!p!T&wN>~Zh7FVdeI0~|PG??ATpKg1gk44NtBqNy9Kzd&W!=WJUHbw(d%?Jij z&zJ~S(HtHGj8c`&V07f!K@>UhI`HDfOcvt*d-Y1Xtv9stsoMu8k{rJ2;Q-V+m)0Bttk)1=+!60m0xPE7-j^p0&v&Aguj7 z5u(6lENvtG0vl`{XC#E9qwHgNLpjbymZ^})+bbdvrg$EWF~>7}ut{E!5>`T3(?kS~ zU6Fu_A8W>^OOJV|xKsAFeJd5-6qe&@+`e4H) z2=4erD8zD>$z8|?o$sPiam{E3#8ktK3byQJ0m0xXYyM}3_coT85G5{x!FoI^BP1WC z&EM;58{{_;53Ys!`SuG{qvyB~t)7L4u9fbl0W)4a(1*}}Nz>DRKH-|tln1HoB`C&& zn32H^bCDm4jWWGHR;ddt8RXe>ad8IkZW6$;mA#)`oCGE!W=2Kaeb7Oh`!JqEQ!#wa zb%}Z4e1O`${qp{kcZW0K&^nqa4Al)RanVe2vmXI}y?KjKi2(t1VrfB?(t_boq*~s; zWIUD8N8TRiqN-;f1ca$+Obwu}xqx8sVCuX12V8+S{|KW(!ws#(Mnpi9juRk%0Lo~w zU?f%XxuzBv=_YZ~q&l4?{w##Nxter6uF3P~CiZ z2XWpk2d5Vc3!#;ki)JDNv!xG%0*XyjL5WH-U%f| z*=}8va@nJHCTrS0i^2{rtQwU^)5Pj+_EKmp);>%`&#YC>FTZ{I_5IubxuZA}mX&hB zlDsVGoI+3;nMzAC1i>f~rFrsXv=^9O+Hvl_bFNeFztG$o3x%~mN0+VEjr;Xw_7Ixq z7dO@G&(G$l{;+)`uF?{Jis~Pq+fSdKtbpm-0WF1{*+;MUI; zvC#{H0PKNRrG06UrSkb|K>T`a``8j(Y4x?Mb^W4i!oEey%14%0+E5h=o8?(u0rqfE z#L__!07w8n%f>^fM36fE=I*jCD|M3A59yG;cpILP#TV~mT+y35fEeiRQ%JfWd7iz_fwmWkbcr&CRd4U8p%7j#&y61G=) ziqg)MXiPpy=vY&Of5iS68v!m3innc#&~%2V-Gh!|7K{3MFiOiALF<39Kk_5bN|Aw} zdlxgp%6hf|f+qZbaP2Oq%do7hr#zafla|xGAK(9h*|?!Z0J7Mi?Fs8~zNy^$S8lR; zQ2CQSGDR6Gr(9PF0Iy^KMpZ#k^{*-ul;2{;Kw6e|rCl5{ZScXr#`bnm|B)vtCw4gl z(C+8PeLcTQvNB5@X=i3&`sKoc!)9QWo!S@;W_LS8D7f)|D@y?T@AZ$5GSQdbn)0FT zzKGH|z+k8yZ7N8uj<6!d6PY_#P>&WY%VilL*Q|X^AqfBaIxGdt?5nw<*n_%9izw4P zcdvEesVu6L5*fT&+#Qbqs{NomUR%9eON--N!$3?kB@ahDkmX5?fy(TJ0p(Y(g zeTdAYnWH9u{dh%(W~F^M-CgF1B$n+Gfk62n92wJ#iXm0K1PL?>$|AWtaHM!GJY{E(-U^RhnlqD(j8j zy6TF7WeO1aVPo zAi-2~P<|if?K(005ph^N8k68EI?BtNxYrdq08OFWo8%c7p^2U&DiP&b)V$vg>o#16|ya3}H z-{e~Ef9;=+*lxg=nZv?wH;tBUekLMFt}l@xd4G_+G*gAW>DLmf-uC>_9ZO(%8foI% z5-rE{1W#N+S&Szd!b=6uU?5nHrN-ZZ<;$XfU^&Y(0pWZTDo21a&a#3EYVSB98AG=V z?BAu=h+Q1zB`p`bxRk_#n96O0%!;OtY(srFLh3 zR0x$fMD1?tvkYb$b=&@#ux>d<|87r}+0~VRGLGg)ZqKpNH8$ePY%i2DTFcD*g0O5g zruJ5m@7=*OJ7KOXi6UW7Z%__m&x&$3AX0MF{&Z^$#2I?aEUPr-ZsVE;99=HvUvV9# zJ-lnCe+OeW>+UXFmBE%wN0!ZWgI45!ma-c>-of@!shdM(b_rAEPvl&-8N(KlHjAvSj1M@@s2#%vlmtG9#A}=4%jT` zwfd$5+h3T>Vo?b5KVzRM*U=HmM&?wRd~*BB3VY%wkq9LFslL;bS^-C1G}#+%u909%1sWRn!sQZtgII+nG1fbLpDp}wQ4%o zQdlexHh{+T&&Ju#nt#&S)q_2MB1#>P8k(&}Tb)1n&wcgL_$|jgiOC(@khJ?ejOMv- zKk@77R)FiXja=20A&OEa-bdHg2-}-M<^MrUp{h*Op+#jtDb0j$7{El8WDj|ZsM7Kz z?BVpPC?V!K4iWQ5j)nn$b8j)bw~0JtpUnK?z1;6TO?(+f7|AaX$z$w)Iri$C5q#h% z2jLt)0QYwr9|$vun&$c*yILbuJ@*9X7He@Gl7*_>U^eII0gcWH0D@fr=@*gaC*Q*t z=V%zKm?2pk^g4cC04*g{9m8#JOb=jtV*zgD@1mDq(0p9RfBO4R#t$!ykx-&-&hvJI z^K8g`LfXv|l!dEXv{lc4_;|aXi2$PS-@PYWn_*xqp#d>$`QRG2%m7-pSRC$M?L)!b zv5$%d?a^x;|a|ehF7ToGX^(<4h*+}jvT@OIyewo zrFT_I-t4~s#Mr_Tl?AMZ5c-?Rz_H&q=X1ul+jFgze6S%gC@RoUF2W&3b5#Nhseqv@ za5r;V7%2*BwGeoJ^SCSzC44q*u$90&dIuba1+4cMLpR@VRwR@ZHw~|DIee3 zW+HItk00;fH}^zK#ERmS2eFVPC<|8yXbYL~@fI=@0YzgvL+Zc*45?!SnY`4$zI#hHBZtB0yk{|ZLE-vtumQB) zka5JH-2+>HK$mk)ba&ijJV0h4#Q7YlN5h4|$b zGf1`^u&H!duz_@3U{;$uP3psT`PqIdS=| zKybD(Cb)=YA*&m1igO78%yBLR2mjR`2Ti5cBGbQrMebFIh`eCEOodp@c{B@MD`@LE zBL#0kX9VE{xHmxDPFxckPcfef4q`V8OctyH(3UdA<4t5L0Z0C1T;SyHDEIn?A6zIp z#Wp55h;1w|S+EK~+r|`+w~eWU5afwZL_IC`DUW#aNoInpd&CKwDGy_I3s9umrg*gB zP5A+TEN?0ThrSU!>yH3X?PE-XSjQa6LX|#%<|YEL;9GYGXC1`^Sgu$=!Zf(RWkD+g z-O86lgfW+?6de7QzF>a~TCBf?FVx@S7wK<r>neJktzkVm^}Y}cQ<$81MTc@R@r zf&#TQ!-Ko{86R(OGZ9F1k?=^oYhHDy8^{O;vX2>)1*-tOb&T;LjAJYTNOn)OSdS9u z8Z1*WmU0%&Le~o1ZkDA4FrQ^XNC6dn)u@JmY@~v(4>=~>0;(V@L5_>#-Q9n}I2Rp% z2&|o+3)WB%24*&r#S5rDdlaPQOn59vq2W3jpz&>KNC#4zX9RGIs&gX7A{MbMWKF>B zV=f_pnaqU%;dU1KQ7X`lauXcJPUcJ&tODQ`GQkHhkBI~zS!R$;yOx8oh5?K$v?K<9E+SmZH8g;VYc7zdc@}dO-$gtD_?#meM&mOi z3sw3M>KY4xf_0hZu}DC-Q_q0AheuFk)*Kz}!=dx+lqZ#4HD|$uz^!n?$Fc8^LUZ8q z-INDu<4aH$t`5+B{fv+AM`j{$=(d@&QUkV}qC^%fAKXbwH4r;0Xqi=cRkHZu4f)B(4%>Susi+yc86xZ~aJPQhES#Ekcyo@l_T~pbcK-?eT+_Fl4!>F(YTir3u zWfDY!g>TLNL1gxs@8?&gj{lbM2a&w`{`IT&ul4s{{c3;xuK!w`NA^pDZ@e|^`@8SV zD6jx4UcPTXaNoXh!->NVKE0Cc_Qgz$vT^ECa1|ZL3EkgZnmhOTEkB6wM)fc($hd;) zbj_Cv9zD*I+E`* - Python Module Index — AutoTS 0.6.16 documentation + Python Module Index — AutoTS 0.6.17 documentation - + diff --git a/docs/build/html/search.html b/docs/build/html/search.html index bdf970bf..52bbd84a 100644 --- a/docs/build/html/search.html +++ b/docs/build/html/search.html @@ -13,11 +13,11 @@ gtag('config', 'G-P2KLF8302E'); - Search — AutoTS 0.6.16 documentation + Search — AutoTS 0.6.17 documentation - + diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js index de0c0c79..1cbfc142 100644 --- a/docs/build/html/searchindex.js +++ b/docs/build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["index", "source/autots", "source/autots.datasets", "source/autots.evaluator", "source/autots.models", "source/autots.templates", "source/autots.tools", "source/intro", "source/modules", "source/tutorial"], "filenames": ["index.rst", "source/autots.rst", "source/autots.datasets.rst", "source/autots.evaluator.rst", "source/autots.models.rst", "source/autots.templates.rst", "source/autots.tools.rst", "source/intro.rst", "source/modules.rst", "source/tutorial.rst"], "titles": ["AutoTS", "autots package", "autots.datasets package", "autots.evaluator package", "autots.models package", "autots.templates package", "autots.tools package", "Intro", "autots", "Tutorial"], "terms": {"i": [0, 1, 2, 3, 4, 6, 7, 9], "an": [0, 1, 2, 3, 4, 6, 7, 9], "autom": [0, 1, 3, 7, 9], "time": [0, 1, 3, 4, 6, 7, 9], "seri": [0, 1, 2, 3, 4, 6, 7], "forecast": [0, 1, 2, 3, 4, 6, 7], "packag": [0, 7, 8], "python": [0, 1, 3, 4, 6, 7, 9], "pip": [0, 2, 7, 9], "requir": [0, 1, 2, 3, 4, 6, 7], "3": [0, 1, 3, 4, 5, 6, 9], "6": [0, 1, 3, 5, 6, 9], "numpi": [0, 1, 3, 4, 6, 9], "panda": [0, 1, 3, 4, 6, 7, 9], "statsmodel": [0, 1, 6, 8, 9], "scikit": [0, 4, 6, 7, 9], "learn": [0, 1, 4, 6, 7, 9], "intro": 0, "content": [0, 8], "basic": [0, 1, 3, 5, 6, 8, 9], "us": [0, 1, 2, 3, 4, 6], "tip": [0, 9], "speed": [0, 1, 3, 4], "larg": [0, 1, 4, 6, 9], "data": [0, 1, 2, 3, 4, 6], "how": [0, 1, 3, 4, 6, 9], "contribut": [0, 1, 3, 9], "process": [0, 1, 3, 4, 6], "tutori": [0, 7], "extend": [0, 6, 7], "deploy": 0, "templat": [0, 1, 3, 4, 7, 8], "import": [0, 1, 2, 3, 5, 6, 7], "export": [0, 1, 2, 3, 4, 5, 7], "depend": [0, 1, 3, 4, 6, 7], "version": [0, 1, 3, 4, 6], "caveat": 0, "advic": 0, "simul": [0, 4, 7], "event": [0, 1, 2, 3, 7], "risk": [0, 1, 3, 7], "anomali": [0, 1, 3, 4, 6, 8], "detect": [0, 1, 3, 6, 8], "transform": [0, 1, 3, 4, 7, 8], "independ": [0, 4, 6, 7], "model": [0, 1, 3, 5, 6, 7, 8], "index": [0, 1, 2, 3, 4, 5, 6, 9], "search": [0, 1, 2, 3, 4, 7, 9], "page": [0, 1, 2], "dataset": [1, 3, 4, 6, 7, 8, 9], "submodul": [1, 8], "fred": [1, 8], "get_fred_data": [1, 2], "load_artifici": [1, 2, 8], "load_daili": [1, 2, 7, 8, 9], "load_hourli": [1, 2, 8, 9], "load_linear": [1, 2, 8], "load_live_daili": [1, 2, 8, 9], "load_monthli": [1, 2, 8, 9], "load_sin": [1, 2, 8], "load_weekdai": [1, 2, 8], "load_weekli": [1, 2, 8], "load_yearli": [1, 2, 8], "load_zero": [1, 2], "evalu": [1, 4, 5, 7, 8, 9], "anomaly_detector": [1, 4, 8, 9], "anomalydetector": [1, 3, 8, 9], "fit": [1, 3, 4, 6, 7, 8, 9], "fit_anomaly_classifi": [1, 3, 6, 8], "get_new_param": [1, 3, 4, 6, 8, 9], "plot": [1, 3, 4, 7, 8, 9], "score_to_anomali": [1, 3, 6, 8], "holidaydetector": [1, 3, 6, 8, 9], "dates_to_holidai": [1, 3, 4, 6, 8, 9], "plot_anomali": [1, 3, 8], "auto_model": [1, 5, 8], "modelmonst": [1, 3], "modelpredict": [1, 3, 8], "fit_data": [1, 3, 4, 8], "fit_predict": [1, 3, 8], "predict": [1, 3, 4, 6, 7, 8, 9], "newgenetictempl": [1, 3], "randomtempl": [1, 3], "templateevalobject": [1, 3], "full_mae_id": [1, 3, 4], "full_mae_error": [1, 3, 4], "concat": [1, 3, 5, 6], "load": [1, 2, 3, 4, 5, 7, 9], "save": [1, 3, 4, 6, 7], "templatewizard": [1, 3], "uniquetempl": [1, 3], "back_forecast": [1, 3, 8], "create_model_id": [1, 3], "dict_recombin": [1, 3], "generate_scor": [1, 3], "generate_score_per_seri": [1, 3], "horizontal_template_to_model_list": [1, 3], "model_forecast": [1, 3, 8, 9], "random_model": [1, 3], "remove_leading_zero": [1, 3, 9], "trans_dict_recomb": [1, 3], "unpack_ensemble_model": [1, 3, 5], "validation_aggreg": [1, 3], "auto_t": [1, 8, 9], "best_model": [1, 3, 5, 8, 9], "best_model_nam": [1, 3, 8, 9], "best_model_param": [1, 3, 8, 9], "best_model_transformation_param": [1, 3, 8, 9], "best_model_ensembl": [1, 3, 8, 9], "regression_check": [1, 3, 8], "df_wide_numer": [1, 3, 7, 8, 9], "score_per_seri": [1, 3, 4, 8], "best_model_per_series_map": [1, 3, 8], "best_model_per_series_scor": [1, 3, 8], "create_unpredictability_scor": [1, 3, 4, 8], "diagnose_param": [1, 3, 8], "expand_horizont": [1, 3, 8], "export_best_model": [1, 3, 8], "export_templ": [1, 3, 5, 8, 9], "failure_r": [1, 3, 8], "get_metric_corr": [1, 3, 8], "get_params_from_id": [1, 3, 8], "get_top_n_count": [1, 3, 8], "horizontal_per_gener": [1, 3, 8], "horizontal_to_df": [1, 3, 8], "import_best_model": [1, 3, 8], "import_result": [1, 3, 7, 8], "import_templ": [1, 3, 8, 9], "list_failed_model_typ": [1, 3, 8], "load_templ": [1, 3, 8], "mosaic_to_df": [1, 3, 8, 9], "parse_best_model": [1, 3, 8], "plot_back_forecast": [1, 3, 8], "plot_backforecast": [1, 3, 8, 9], "plot_chosen_transform": [1, 3, 8], "plot_failure_r": [1, 3, 8], "plot_generation_loss": [1, 3, 8, 9], "plot_horizont": [1, 3, 8, 9], "plot_horizontal_model_count": [1, 3, 8], "plot_horizontal_per_gener": [1, 3, 8, 9], "plot_horizontal_transform": [1, 3, 8, 9], "plot_metric_corr": [1, 3, 8], "plot_model_failure_r": [1, 3, 8], "plot_mosa": [1, 3, 8], "plot_per_series_error": [1, 3, 8, 9], "plot_per_series_map": [1, 3, 8, 9], "plot_per_series_smap": [1, 3, 8], "plot_series_corr": [1, 3, 8], "plot_transformer_by_class": [1, 3, 8], "plot_transformer_failure_r": [1, 3, 8], "plot_unpredict": [1, 3, 8], "plot_valid": [1, 3, 8], "result": [1, 2, 3, 4, 6, 7, 8, 9], "retrieve_validation_forecast": [1, 3, 8], "save_templ": [1, 3, 8], "validation_agg": [1, 3, 8], "initial_result": [1, 3, 4, 8], "model_result": [1, 3, 4, 5, 7, 8], "error_correl": [1, 3], "fake_regressor": [1, 3, 9], "benchmark": [1, 8], "run": [1, 2, 3, 4, 5, 6, 7], "event_forecast": [1, 8], "eventriskforecast": [1, 3, 8, 9], "predict_histor": [1, 3, 8, 9], "generate_result_window": [1, 3, 8], "generate_risk_arrai": [1, 3, 8], "generate_historic_risk_arrai": [1, 3, 8, 9], "set_limit": [1, 3, 8], "plot_ev": [1, 3, 8, 9], "extract_result_window": [1, 3], "extract_window_index": [1, 3], "set_limit_forecast": [1, 3], "set_limit_forecast_histor": [1, 3], "metric": [1, 2, 4, 7, 8], "array_last_v": [1, 3], "chi_squared_hist_distribution_loss": [1, 3], "contain": [1, 3, 4, 6, 9], "contour": [1, 3, 4, 9], "default_scal": [1, 3], "dwae": [1, 3], "full_metric_evalu": [1, 3], "kde": [1, 3], "kde_kl_dist": [1, 3], "kl_diverg": [1, 3], "linear": [1, 3, 4, 6, 9], "mae": [1, 3, 4, 9], "mda": [1, 3, 9], "mean_absolute_differential_error": [1, 3], "mean_absolute_error": [1, 3], "meda": [1, 3], "median_absolute_error": [1, 3], "mlvb": [1, 3], "mqae": [1, 3, 4], "msle": [1, 3], "numpy_ffil": [1, 3], "oda": [1, 3], "pinball_loss": [1, 3], "precomp_wasserstein": [1, 3], "qae": [1, 3], "rmse": [1, 3, 4, 9], "root_mean_square_error": [1, 3], "rp": [1, 3], "scaled_pinball_loss": [1, 3], "smape": [1, 3, 4, 9], "smooth": [1, 3, 4, 6, 9], "spl": [1, 3, 4, 9], "symmetric_mean_absolute_percentage_error": [1, 3], "threshold_loss": [1, 3], "unsorted_wasserstein": [1, 3], "wasserstein": [1, 3], "valid": [1, 4, 7, 8], "extract_seasonal_val_period": [1, 3], "generate_validation_indic": [1, 3], "validate_num_valid": [1, 3], "arch": [1, 3, 8, 9], "get_param": [1, 4, 8], "base": [1, 3, 6, 8, 9], "modelobject": [1, 3, 4], "basic_profil": [1, 4], "create_forecast_index": [1, 4, 8], "predictionobject": [1, 3, 4], "model_nam": [1, 3, 4, 9], "model_paramet": [1, 4], "transformation_paramet": [1, 4], "upper_forecast": [1, 3, 4, 6, 7, 9], "lower_forecast": [1, 3, 4, 6, 7, 9], "long_form_result": [1, 4, 9], "total_runtim": [1, 4], "apply_constraint": [1, 4], "extract_ensemble_runtim": [1, 4], "plot_df": [1, 4], "plot_ensemble_runtim": [1, 4], "plot_grid": [1, 4], "calculate_peak_dens": [1, 4], "create_seaborn_palette_from_cmap": [1, 4], "extract_single_series_from_horz": [1, 4], "extract_single_transform": [1, 4], "plot_distribut": [1, 4], "averagevaluena": [1, 3, 4, 5, 9], "balltreemultivariatemotif": [1, 4, 9], "basiclinearmodel": [1, 4, 9], "base_scal": [1, 4, 8], "coefficient_summari": [1, 4], "create_x": [1, 4], "process_compon": [1, 4, 6, 8], "return_compon": [1, 3, 4, 8], "scale_data": [1, 4, 8], "to_origin_spac": [1, 4, 8], "constantna": [1, 4, 9], "fft": [1, 4, 8, 9], "kalmanstatespac": [1, 4, 9], "cost_funct": [1, 4], "tune_observational_nois": [1, 4], "lastvaluena": [1, 3, 4, 9], "metricmotif": [1, 3, 4, 9], "motif": [1, 3, 4, 9], "motifsimul": [1, 4, 9], "nvar": [1, 4, 9], "seasonalna": [1, 3, 4, 9], "seasonalitymotif": [1, 3, 4, 5, 9], "sectionalmotif": [1, 3, 4, 9], "tvvar": [1, 4, 5, 9], "apply_beta_threshold": [1, 4], "create_var_featur": [1, 4], "empty_scal": [1, 4], "zeroesna": [1, 3, 4], "looped_motif": [1, 4], "predict_reservoir": [1, 4], "cassandra": [1, 6, 8, 9], "bayesianmultioutputregress": [1, 4], "sample_posterior": [1, 4], "plot_forecast": [1, 4, 8], "plot_compon": [1, 4, 8], "plot_trend": [1, 4, 8], "analyze_trend": [1, 4, 8], "auto_fit": [1, 4, 8], "compare_actual_compon": [1, 4, 8], "create_t": [1, 4, 8], "cross_valid": [1, 4, 8, 9], "feature_import": [1, 4, 8], "next_fit": [1, 4, 8], "plot_th": [1, 4, 8], "predict_new_product": [1, 4, 8], "rolling_trend": [1, 4, 8], "treatment_causal_impact": [1, 4, 8], "trend_analysi": [1, 4, 8], "holiday_detector": [1, 4, 8], "score": [1, 3, 4, 5, 6, 7, 8, 9], "holiday_count": [1, 4, 8], "holidai": [1, 2, 3, 4, 8, 9], "param": [1, 2, 3, 4, 6, 7, 8, 9], "x_arrai": [1, 4, 8], "predict_x_arrai": [1, 4, 8], "trend_train": [1, 4, 8], "predicted_trend": [1, 4, 8], "clean_regressor": [1, 4], "cost_function_dwa": [1, 4], "cost_function_l1": [1, 4], "cost_function_l1_posit": [1, 4], "cost_function_l2": [1, 4], "cost_function_quantil": [1, 4], "fit_linear_model": [1, 4], "lstsq_minim": [1, 4], "lstsq_solv": [1, 4], "dnn": [1, 8], "elasticnetwork": [1, 4], "kerasrnn": [1, 4], "transformer_build_model": [1, 4], "transformer_encod": [1, 4], "ensembl": [1, 3, 5, 7, 8], "bestnensembl": [1, 4], "distensembl": [1, 4], "ensembleforecast": [1, 4], "ensembletemplategener": [1, 4], "hdistensembl": [1, 4], "horizontalensembl": [1, 4], "horizontaltemplategener": [1, 4], "mosaicensembl": [1, 4], "find_pattern": [1, 4], "generalize_horizont": [1, 4], "generate_crosshair_scor": [1, 4], "generate_crosshair_score_list": [1, 4], "generate_mosaic_templ": [1, 4], "horizontal_classifi": [1, 4], "horizontal_xi": [1, 4], "is_horizont": [1, 4], "is_mosa": [1, 4], "mlens_help": [1, 4], "mosaic_classifi": [1, 4], "mosaic_or_horizont": [1, 4], "mosaic_to_horizont": [1, 4, 9], "mosaic_xi": [1, 4], "n_limited_horz": [1, 4], "parse_forecast_length": [1, 4], "parse_horizont": [1, 4], "parse_mosa": [1, 4], "process_mosaic_arrai": [1, 4], "gluont": [1, 3, 8, 9], "greykit": [1, 8, 9], "seek_the_oracl": [1, 4], "matrix_var": [1, 8], "dmd": [1, 4, 9], "latc": [1, 4, 9], "mar": [1, 4, 9], "rrvar": [1, 4, 9], "tmf": [1, 4, 9], "conj_grad_w": [1, 4], "conj_grad_x": [1, 4], "dmd4cast": [1, 4], "dmd_forecast": [1, 4], "ell_w": [1, 4], "ell_x": [1, 4], "generate_psi": [1, 4], "latc_imput": [1, 4], "latc_predictor": [1, 4], "mat2ten": [1, 4], "svt_tnn": [1, 4], "ten2mat": [1, 4], "update_cg": [1, 4], "var": [1, 4, 9], "var4cast": [1, 4], "mlensembl": [1, 8], "create_featur": [1, 4], "model_list": [1, 3, 7, 8, 9], "auto_model_list": [1, 4], "model_list_to_dict": [1, 4], "neural_forecast": [1, 8], "neuralforecast": [1, 4, 9], "prophet": [1, 3, 6, 8, 9], "fbprophet": [1, 4, 9], "neuralprophet": [1, 4, 9], "get_changepoint": [1, 4], "pytorch": [1, 8, 9], "pytorchforecast": [1, 4, 9], "sklearn": [1, 6, 7, 8, 9], "componentanalysi": [1, 4, 9], "datepartregress": [1, 3, 4, 5, 6, 9], "multivariateregress": [1, 4, 5, 9], "preprocessingregress": [1, 4, 9], "randomfourierencod": [1, 4], "rollingregress": [1, 4, 9], "univariateregress": [1, 4, 9], "vectorizedmultioutputgpr": [1, 4], "predict_proba": [1, 4], "windowregress": [1, 4, 9], "generate_classifier_param": [1, 4], "generate_regressor_param": [1, 4], "retrieve_classifi": [1, 4], "retrieve_regressor": [1, 4], "rolling_x_regressor": [1, 4], "rolling_x_regressor_regressor": [1, 4], "ardl": [1, 4, 9], "arima": [1, 4, 5, 6, 9], "dynamicfactor": [1, 4, 9], "dynamicfactormq": [1, 4, 9], "et": [1, 3, 4, 6, 9], "glm": [1, 3, 4, 6, 9], "gl": [1, 3, 4, 6, 9], "theta": [1, 4, 5, 6, 9], "unobservedcompon": [1, 4, 9], "varmax": [1, 4, 9], "vecm": [1, 4, 6, 9], "arima_seek_the_oracl": [1, 4], "glm_forecast_by_column": [1, 4], "tfp": [1, 8], "tfpregress": [1, 4, 9], "tfpregressor": [1, 4], "tensorflowst": [1, 4, 9], "tide": [1, 8, 9], "timecovari": [1, 4], "get_covari": [1, 4], "timeseriesdata": [1, 4], "test_val_gen": [1, 4], "tf_dataset": [1, 4], "train_gen": [1, 4], "get_holidai": [1, 4], "mae_loss": [1, 4], "mape": [1, 3, 4], "nrmse": [1, 4], "wape": [1, 4], "gener": [1, 2, 3, 4, 6, 7, 8, 9], "general_templ": [1, 5], "tool": [1, 2, 3, 4, 7, 8, 9], "anomaly_util": [1, 8], "anomaly_df_to_holidai": [1, 6], "anomaly_new_param": [1, 6], "create_dates_df": [1, 6], "detect_anomali": [1, 6], "gaussian_mixtur": [1, 6], "holiday_new_param": [1, 6], "limits_to_anomali": [1, 6], "loop_sk_outli": [1, 6], "nonparametric_multivari": [1, 6], "sk_outlier": [1, 6], "values_to_anomali": [1, 6], "zscore_survival_funct": [1, 6], "calendar": [1, 3, 8], "gregorian_to_chines": [1, 6], "gregorian_to_christian_lunar": [1, 6], "gregorian_to_hebrew": [1, 6], "gregorian_to_hindu": [1, 6], "gregorian_to_islam": [1, 6], "heb_is_leap": [1, 6], "lunar_from_lunar": [1, 6], "lunar_from_lunar_ful": [1, 6], "to_jd": [1, 6], "cointegr": [1, 4, 8], "btcd_decompos": [1, 6], "coint_johansen": [1, 6], "fourier_seri": [1, 6], "lagmat": [1, 6], "constraint": [1, 3, 4, 8, 9], "apply_constraint_singl": [1, 6], "apply_fit_constraint": [1, 6], "constant_growth_r": [1, 6], "constraint_new_param": [1, 6], "fit_constraint": [1, 6], "cpu_count": [1, 8], "set_n_job": [1, 6], "fast_kalman": [1, 8], "usag": [1, 3], "exampl": [1, 2, 3, 4, 7], "gaussian": [1, 4, 6], "empti": [1, 2, 3, 4, 6], "unvectorize_st": [1, 6], "unvectorize_var": [1, 6], "kalmanfilt": [1, 6], "comput": [1, 3, 4, 6], "em": [1, 6], "em_observation_nois": [1, 6], "em_process_nois": [1, 6], "predict_next": [1, 6], "predict_observ": [1, 6], "smooth_curr": [1, 6], "updat": [1, 4, 6, 9], "autoshap": [1, 6], "ddot": [1, 6], "ddot_t_right": [1, 6], "ddot_t_right_old": [1, 6], "dinv": [1, 6], "douter": [1, 6], "em_initial_st": [1, 6], "ensure_matrix": [1, 6], "ensure_st": [1, 6], "holt_winters_damped_matric": [1, 6], "new_kalman_param": [1, 6], "priv_smooth": [1, 6], "priv_update_with_nan_check": [1, 6], "random_matrix": [1, 6], "random_state_spac": [1, 6], "random_state_space_origin": [1, 6], "stable_pinv": [1, 6], "update_with_nan_check": [1, 6], "generate_harmonics_datafram": [1, 6], "fourier_extrapol": [1, 6], "fir_filt": [1, 8], "apply_fir_filter_time_domain": [1, 6], "apply_fir_filter_to_timeseri": [1, 6], "fft_fir_filter_to_timeseri": [1, 6], "generate_random_fir_param": [1, 6], "hierarchi": [1, 3, 8], "reconcil": [1, 6], "holiday_flag": [1, 6], "query_holidai": [1, 6], "imput": [1, 4, 8], "fillna": [1, 3, 4, 6, 9], "seasonalitymotifimput": [1, 6], "simpleseasonalitymotifimput": [1, 4, 6], "biased_ffil": [1, 6], "fake_date_fil": [1, 6], "fake_date_fill_old": [1, 6], "fill_forward": [1, 6], "fill_forward_alt": [1, 6], "fill_mean": [1, 6], "fill_mean_old": [1, 6], "fill_median": [1, 6], "fill_median_old": [1, 6], "fill_on": [1, 6], "fill_zero": [1, 6], "fillna_np": [1, 6], "rolling_mean": [1, 4, 6], "lunar": [1, 8], "dco": [1, 6], "dsin": [1, 6], "fixangl": [1, 6], "kepler": [1, 6], "moon_phas": [1, 6], "moon_phase_df": [1, 6], "phase_str": [1, 6], "todeg": [1, 6], "torad": [1, 6], "percentil": [1, 8], "nan_percentil": [1, 6], "nan_quantil": [1, 6], "trimmed_mean": [1, 6], "probabilist": [1, 3, 4, 7, 8, 9], "point_to_prob": [1, 6], "variable_point_to_prob": [1, 6], "historic_quantil": [1, 6], "inferred_norm": [1, 6], "percentileofscore_appli": [1, 6], "profil": [1, 4, 8], "data_profil": [1, 6], "profile_time_seri": [1, 6], "summarize_seri": [1, 6], "regressor": [1, 3, 4, 7, 8], "create_lagged_regressor": [1, 6, 8], "create_regressor": [1, 6, 8], "season": [1, 3, 4, 8, 9], "changepoint_fcst_from_last_row": [1, 6], "create_changepoint_featur": [1, 6], "create_datepart_compon": [1, 6], "create_seasonality_featur": [1, 6], "date_part": [1, 6], "fourier_df": [1, 6], "half_yr_spac": [1, 6], "random_datepart": [1, 6], "seasonal_independent_match": [1, 6], "seasonal_int": [1, 6], "seasonal_repeating_wavelet": [1, 6], "seasonal_window_match": [1, 6], "shape": [1, 2, 3, 4, 7, 8, 9], "numerictransform": [1, 6], "fit_transform": [1, 3, 6, 8, 9], "inverse_transform": [1, 6, 7, 8, 9], "clean_weight": [1, 6], "df_cleanup": [1, 6], "freq_to_timedelta": [1, 6], "infer_frequ": [1, 6, 8], "long_to_wid": [1, 6, 8, 9], "simple_train_test_split": [1, 6], "split_digits_and_non_digit": [1, 6], "subset_seri": [1, 6], "wide_to_3d": [1, 6], "threshold": [1, 3, 4, 8, 9], "nonparametricthreshold": [1, 6], "compare_to_epsilon": [1, 6], "find_epsilon": [1, 6], "prune_anom": [1, 6], "score_anomali": [1, 6], "consecutive_group": [1, 6], "nonparametr": [1, 3, 6], "alignlastdiff": [1, 6], "alignlastvalu": [1, 4, 6], "find_centerpoint": [1, 6], "anomalyremov": [1, 6], "bkbandpassfilt": [1, 6], "filter": [1, 3, 4, 6, 9], "btcd": [1, 6], "centerlastvalu": [1, 6], "centersplit": [1, 6], "changepointdetrend": [1, 6], "clipoutli": [1, 6], "cumsumtransform": [1, 6], "datepartregressiontransform": [1, 6], "detrend": [1, 4, 6, 9], "diffsmooth": [1, 6], "differencedtransform": [1, 3, 6, 9], "discret": [1, 6], "ewmafilt": [1, 6], "emptytransform": [1, 6], "fftdecomposit": [1, 6], "fftfilter": [1, 6], "firfilt": [1, 6], "fastica": [1, 6], "generaltransform": [1, 6, 8, 9], "fill_na": [1, 6, 8], "retrieve_transform": [1, 6, 8], "hpfilter": [1, 6], "historicvalu": [1, 6], "holidaytransform": [1, 6], "intermittentoccurr": [1, 6], "kalmansmooth": [1, 6], "levelshiftmag": [1, 6], "levelshifttransform": [1, 6], "locallineartrend": [1, 6], "meandiffer": [1, 6], "meanpercentsplitt": [1, 6], "pca": [1, 4, 6], "pctchangetransform": [1, 6], "positiveshift": [1, 6], "randomtransform": [1, 6, 8], "regressionfilt": [1, 6], "replaceconst": [1, 6], "rollingmeantransform": [1, 3, 6], "round": [1, 3, 4, 6, 7], "stlfilter": [1, 6], "scipyfilt": [1, 6, 9], "seasonaldiffer": [1, 6], "shiftfirstvalu": [1, 6], "sintrend": [1, 6], "fit_sin": [1, 6], "slice": [1, 3, 4, 6, 9], "standardscal": [1, 6], "statsmodelsfilt": [1, 6], "bkfilter": [1, 6, 9], "cffilter": [1, 6], "convolution_filt": [1, 6], "thetatransform": [1, 6], "bkfilter_st": [1, 6], "clip_outli": [1, 6], "exponential_decai": [1, 6], "get_transformer_param": [1, 6], "random_clean": [1, 6], "remove_outli": [1, 6], "simple_context_slic": [1, 6], "transformer_list_to_dict": [1, 6], "wavelet": [1, 8], "continuous_db2_wavelet": [1, 6], "create_daubechies_db2_wavelet": [1, 6], "create_gaussian_wavelet": [1, 6], "create_haar_wavelet": [1, 6], "create_mexican_hat_wavelet": [1, 6], "create_morlet_wavelet": [1, 6], "create_narrowing_wavelet": [1, 6], "create_real_morlet_wavelet": [1, 6], "create_wavelet": [1, 6], "offset_wavelet": [1, 6], "window_funct": [1, 8], "chunk_reshap": [1, 6], "last_window": [1, 4, 6], "np_2d_arang": [1, 6], "retrieve_closest_indic": [1, 6], "rolling_window_view": [1, 6], "sliding_window_view": [1, 6], "window_id_mak": [1, 6], "window_lin_reg": [1, 6], "window_lin_reg_mean": [1, 6], "window_lin_reg_mean_no_nan": [1, 6], "window_mak": [1, 6], "window_maker_2": [1, 6], "window_maker_3": [1, 6], "window_sum_mean": [1, 6], "window_sum_mean_nan_tail": [1, 6], "window_sum_nan_mean": [1, 6], "select": [1, 3, 4, 6, 7, 9], "http": [1, 2, 3, 4, 6, 9], "github": [1, 4, 6, 7, 9], "com": [1, 2, 4, 6, 9], "winedarksea": 1, "class": [1, 3, 4, 6, 7, 9], "output": [1, 2, 3, 4, 6, 7, 9], "multivari": [1, 3, 4, 6, 7, 9], "method": [1, 2, 3, 4, 6, 7, 9], "zscore": [1, 3, 6], "transform_dict": [1, 3, 6], "transformation_param": [1, 3, 4, 6, 9], "0": [1, 2, 3, 4, 5, 6, 7, 9], "datepart_method": [1, 3, 4, 6], "simple_3": [1, 3, 6], "regression_model": [1, 3, 4, 6], "elasticnet": [1, 3, 6], "model_param": [1, 3, 4, 6, 9], "forecast_param": [1, 3, 6, 9], "none": [1, 2, 3, 4, 6, 7, 9], "method_param": [1, 3, 6], "eval_period": [1, 3, 6, 9], "isolated_onli": [1, 3, 6], "fals": [1, 2, 3, 4, 5, 6, 7, 9], "n_job": [1, 3, 4, 6, 7, 9], "1": [1, 2, 3, 4, 5, 6, 7, 9], "object": [1, 2, 3, 4, 6, 7, 9], "df": [1, 2, 3, 4, 6, 7, 9], "all": [1, 2, 3, 4, 6, 7], "return": [1, 2, 3, 4, 6], "paramet": [1, 2, 3, 4, 6, 7], "pd": [1, 3, 4, 5, 6, 9], "datafram": [1, 2, 3, 4, 6, 7, 9], "wide": [1, 2, 3, 4, 6, 7], "style": [1, 2, 3, 4, 6, 7, 9], "classif": [1, 3, 6], "outlier": [1, 3, 6, 9], "": [1, 3, 4, 6, 7, 9], "static": [1, 3, 4, 6], "random": [1, 2, 3, 4, 6, 7, 9], "new": [1, 3, 4, 6, 7, 9], "combin": [1, 3, 4, 6, 7, 9], "str": [1, 2, 3, 4, 6, 9], "fast": [1, 3, 4, 5, 6, 7, 9], "deep": [1, 3, 7, 9], "default": [1, 2, 3, 4, 6, 7, 9], "ani": [1, 3, 4, 6, 7, 9], "name": [1, 2, 3, 4, 6, 7], "ie": [1, 2, 3, 4, 6, 7, 9], "iqr": [1, 3], "specifi": [1, 3, 4, 6, 9], "onli": [1, 3, 4, 6, 7, 9], "series_nam": [1, 3], "titl": [1, 3, 4], "marker_s": [1, 3], "plot_kwarg": [1, 3], "A": [1, 3, 4, 6, 7], "decisiontre": [1, 3, 4, 6], "ar": [1, 2, 3, 4, 6, 7, 9], "nonstandard": [1, 3, 6], "forecast_length": [1, 3, 4, 6, 7, 9], "int": [1, 2, 3, 4, 6], "14": [1, 3, 4, 9], "frequenc": [1, 2, 3, 4, 6, 7], "infer": [1, 3, 4, 6, 7, 9], "prediction_interv": [1, 3, 4, 6, 7, 9], "float": [1, 2, 3, 4, 6, 9], "9": [1, 2, 3, 4, 6, 7, 9], "max_gener": [1, 3, 7, 9], "25": [1, 3, 4, 6], "no_neg": [1, 3, 9], "bool": [1, 2, 3, 4, 6], "initial_templ": [1, 3, 9], "random_se": [1, 2, 3, 4, 6, 9], "2022": [1, 3, 4, 6], "holiday_countri": [1, 3, 4, 6], "u": [1, 2, 3, 4, 6, 7, 9], "subset": [1, 3, 4, 7, 9], "aggfunc": [1, 3, 6, 7, 9], "first": [1, 2, 3, 4, 6, 7, 9], "na_toler": [1, 3, 6], "metric_weight": [1, 3, 7, 9], "dict": [1, 2, 3, 4, 6, 7], "containment_weight": [1, 3, 9], "contour_weight": [1, 3, 9], "01": [1, 2, 3, 4, 6, 7, 9], "imle_weight": [1, 3, 9], "made_weight": [1, 3, 9], "05": [1, 2, 3, 4, 6, 9], "mae_weight": [1, 3, 9], "2": [1, 2, 3, 4, 6, 7, 9], "mage_weight": [1, 3, 9], "mle_weight": [1, 3, 9], "oda_weight": [1, 3], "001": [1, 3, 4, 6], "rmse_weight": [1, 3, 9], "runtime_weight": [1, 3, 7, 9], "smape_weight": [1, 3, 9], "5": [1, 2, 3, 4, 5, 6, 9], "spl_weight": [1, 3, 9], "wasserstein_weight": [1, 3], "drop_most_rec": [1, 3, 6, 7, 9], "drop_data_older_than_period": [1, 3, 6, 9], "scalabl": [1, 3, 7], "transformer_list": [1, 3, 5, 6, 7, 9], "auto": [1, 3, 4, 6, 7, 9], "transformer_max_depth": [1, 3, 5, 6, 7], "models_mod": [1, 3, 9], "num_valid": [1, 3, 4, 5, 7, 9], "models_to_valid": [1, 3, 7, 9], "15": [1, 3, 4, 6, 9], "max_per_model_class": [1, 3, 5, 9], "validation_method": [1, 3, 4, 7, 9], "backward": [1, 3, 4, 6, 7, 9], "min_allowed_train_perc": [1, 3, 4, 6], "prefill_na": [1, 3, 6, 9], "introduce_na": [1, 3], "preclean": [1, 3], "model_interrupt": [1, 3, 7], "true": [1, 2, 3, 4, 5, 6, 7, 9], "generation_timeout": [1, 3], "current_model_fil": [1, 3], "force_gc": [1, 3], "horizontal_ensemble_valid": [1, 3], "custom_metr": [1, 3, 4], "callabl": [1, 3], "ndarrai": [1, 3, 6], "verbos": [1, 3, 4, 6, 9], "genet": [1, 3, 7, 9], "algorithm": [1, 3, 4, 6, 7, 9], "number": [1, 2, 3, 4, 6, 7, 9], "period": [1, 2, 3, 4, 6, 9], "over": [1, 3, 4, 6, 7, 9], "which": [1, 2, 3, 4, 6, 7, 9], "can": [1, 2, 3, 4, 6, 7], "overriden": [1, 3], "later": [1, 3, 6], "when": [1, 3, 4, 6, 7, 9], "you": [1, 3, 4, 6, 7], "don": [1, 3, 4, 6, 9], "t": [1, 2, 3, 4, 6, 7], "have": [1, 2, 3, 4, 6, 7, 9], "much": [1, 2, 3, 6, 9], "histor": [1, 3, 4, 6, 9], "small": [1, 3, 4, 6, 9], "length": [1, 2, 3, 4, 6, 9], "full": [1, 3, 6, 9], "desir": [1, 3, 4, 6, 9], "lenght": [1, 3], "usual": [1, 2, 3, 4, 6, 7, 9], "best": [1, 3, 4, 6, 7, 9], "possibl": [1, 3, 4, 6, 7, 9], "approach": [1, 3, 4, 6, 9], "given": [1, 3, 4, 6, 7, 9], "limit": [1, 3, 4, 6, 7, 9], "specif": [1, 2, 3, 4, 6, 7, 9], "datetim": [1, 2, 3, 4, 6, 7, 9], "offset": [1, 3, 6, 9], "forc": [1, 3, 4, 9], "rollup": [1, 3, 9], "daili": [1, 2, 3, 4, 6, 7, 9], "input": [1, 3, 4, 6, 7, 9], "m": [1, 2, 3, 4, 6, 7, 9], "monthli": [1, 2, 3, 6, 7, 9], "uncertainti": [1, 3, 4, 6], "rang": [1, 3, 4, 6, 9], "upper": [1, 3, 4, 6, 7, 9], "lower": [1, 3, 4, 6, 7, 9], "adjust": [1, 3, 4, 6, 7, 9], "rare": [1, 3, 4, 9], "match": [1, 2, 3, 4, 6, 9], "actual": [1, 3, 4, 6, 9], "more": [1, 2, 3, 4, 6, 7], "longer": [1, 3, 9], "runtim": [1, 3, 4, 7, 9], "better": [1, 2, 3, 4, 9], "accuraci": [1, 3, 4, 7, 9], "It": [1, 3, 4, 6, 7, 9], "call": [1, 2, 3, 4, 6, 9], "max": [1, 2, 3, 4, 6, 7, 9], "becaus": [1, 3, 4, 6, 7, 9], "somedai": [1, 3], "earli": [1, 3], "stop": [1, 3, 6, 7], "option": [1, 3, 4, 6, 7], "now": [1, 3, 4, 6, 9], "thi": [1, 2, 3, 4, 6, 7, 9], "just": [1, 2, 3, 4, 6], "exact": [1, 3, 4, 6], "neg": [1, 3, 4], "up": [1, 2, 3, 6, 9], "valu": [1, 2, 3, 4, 6, 7, 9], "st": [1, 2, 3, 4, 6, 9], "dev": [1, 3, 4, 6, 9], "abov": [1, 3, 4, 6, 9], "below": [1, 2, 3, 4, 6, 9], "min": [1, 3, 4, 9], "constrain": [1, 3, 6, 9], "also": [1, 3, 4, 6, 7], "instead": [1, 2, 3, 4, 6], "accept": [1, 3, 6, 9], "dictionari": [1, 3, 4, 6, 9], "follow": [1, 3, 4, 6, 9], "kei": [1, 2, 3, 4, 9], "constraint_method": [1, 3, 4, 6], "one": [1, 3, 4, 6, 9], "stdev_min": [1, 3, 4], "stdev": [1, 3, 4], "mean": [1, 3, 4, 6, 9], "absolut": [1, 3, 4, 9], "arrai": [1, 3, 4, 6, 9], "final": [1, 3, 4, 6, 9], "each": [1, 2, 3, 4, 6, 7, 9], "quantil": [1, 3, 4, 6, 9], "constraint_regular": [1, 3, 4, 6], "where": [1, 3, 4, 6, 7, 9], "hard": [1, 3, 4, 9], "cutoff": [1, 3, 4, 6], "between": [1, 2, 3, 4, 6, 7, 9], "penalti": [1, 3, 4], "term": [1, 3, 4], "upper_constraint": [1, 3, 4, 6], "unus": [1, 3, 4, 6], "lower_constraint": [1, 3, 4, 6], "bound": [1, 3, 4, 6, 7, 9], "appli": [1, 3, 4, 6, 7, 9], "otherwis": [1, 2, 3, 4, 6], "list": [1, 2, 3, 4, 6, 7], "comma": [1, 3, 4, 9], "separ": [1, 3, 4, 6, 9], "string": [1, 3, 4, 6, 9], "simpl": [1, 3, 4, 6, 7], "distanc": [1, 3, 4, 6, 7, 9], "horizont": [1, 3, 4, 7, 9], "mosaic": [1, 3, 4, 7, 9], "subsampl": [1, 3], "randomli": [1, 3, 6], "start": [1, 2, 3, 4, 5, 6, 7, 9], "includ": [1, 3, 4, 6, 7, 9], "both": [1, 3, 6, 9], "previou": [1, 3, 6, 7], "self": [1, 3, 4, 6], "seed": [1, 2, 3, 6], "allow": [1, 3, 4, 6, 7, 9], "slightli": [1, 3, 6], "consist": [1, 3, 6, 9], "pass": [1, 2, 3, 4, 6, 7], "through": [1, 3, 4, 6, 7, 9], "some": [1, 2, 3, 4, 6, 7, 9], "maximum": [1, 2, 3, 6, 9], "onc": [1, 3, 4], "mani": [1, 3, 4, 6, 7, 9], "take": [1, 3, 4, 6, 7, 9], "column": [1, 2, 3, 4, 5, 6, 7], "unless": [1, 3, 4, 9], "case": [1, 2, 3, 4, 6, 9], "same": [1, 2, 3, 4, 6, 9], "roll": [1, 3, 4, 6, 9], "higher": [1, 3, 4, 6, 7, 9], "duplic": [1, 3, 6], "timestamp": [1, 3, 4, 6], "remov": [1, 3, 4, 6, 9], "try": [1, 2, 3, 6, 7, 9], "np": [1, 3, 4, 6, 9], "sum": [1, 3, 6, 9], "bewar": [1, 3, 6, 9], "numer": [1, 3, 4, 6, 9], "aggreg": [1, 3, 6, 7, 9], "like": [1, 2, 3, 4, 6, 9], "work": [1, 2, 3, 4, 6, 9], "non": [1, 3, 4, 6, 9], "chang": [1, 3, 6, 9], "nan": [1, 3, 4, 6, 7, 9], "drop": [1, 3, 5, 6, 9], "thei": [1, 3, 4, 6, 7, 9], "than": [1, 3, 4, 6, 9], "percent": [1, 2, 3, 6, 9], "95": [1, 3, 4, 6, 9], "here": [1, 3, 4, 6, 9], "would": [1, 3, 4, 9], "weight": [1, 3, 4, 6, 7, 9], "assign": [1, 3], "effect": [1, 3, 4, 6, 9], "rank": [1, 3, 4, 6], "n": [1, 3, 4, 6, 7, 9], "most": [1, 2, 3, 4, 6, 7, 9], "recent": [1, 2, 3, 4, 6, 9], "point": [1, 3, 4, 6, 7, 9], "sai": [1, 3, 7, 9], "sale": [1, 3, 6, 9], "current": [1, 2, 3, 4, 6, 7, 9], "unfinish": [1, 3], "month": [1, 3, 6, 7, 9], "occur": [1, 3, 6, 7, 9], "after": [1, 3, 4, 6, 7, 9], "aggregr": [1, 3], "so": [1, 2, 3, 4, 6, 7, 9], "whatev": [1, 3, 4], "alia": [1, 3, 4, 6], "prob": [1, 3], "affect": [1, 3, 4, 6], "algorithim": [1, 3], "from": [1, 2, 3, 4, 5, 6, 7, 9], "probabl": [1, 2, 3, 4, 6, 7, 9], "note": [1, 2, 3, 4, 6], "doe": [1, 3, 4, 6, 9], "initi": [1, 3, 4, 6, 7, 9], "alias": [1, 3, 4, 6], "superfast": [1, 3, 7, 9], "should": [1, 3, 4, 6, 9], "fewer": [1, 2, 3, 9], "memori": [1, 3, 4, 6, 7, 9], "issu": [1, 3, 4, 6, 7, 9], "scale": [1, 3, 4, 6, 7, 9], "sequenti": [1, 3], "faster": [1, 2, 3, 4, 6, 7], "newli": [1, 3], "sporad": [1, 3], "util": [1, 3, 4, 6, 7, 9], "slower": [1, 3, 7, 9], "user": [1, 3, 4, 6, 7, 9], "mode": [1, 3, 4, 7], "capabl": [1, 3, 9], "gradient_boost": [1, 3], "neuralnet": [1, 3, 4], "regress": [1, 3, 4, 6], "cross": [1, 3, 4, 7], "perform": [1, 3, 6, 7, 9], "train": [1, 3, 4, 6, 7], "test": [1, 2, 3, 4, 6, 7, 9], "split": [1, 3, 4, 6, 7, 9], "confus": [1, 3, 4, 6, 7, 9], "eval": [1, 3], "segment": [1, 3, 6, 9], "total": [1, 3, 4, 6], "avail": [1, 3, 4, 6, 7], "out": [1, 3, 4, 7, 9], "50": [1, 3, 4], "top": [1, 3, 6, 7, 9], "Or": [1, 3], "tri": [1, 3, 6, 7, 9], "99": [1, 3, 4], "100": [1, 3, 4, 6, 7, 9], "If": [1, 3, 4, 6, 7, 9], "addit": [1, 3, 4, 6, 7, 9], "per_seri": [1, 3, 4], "ad": [1, 3, 4, 6, 7], "what": [1, 2, 3, 4], "famili": [1, 3, 4], "even": [1, 3, 4, 7, 9], "integ": [1, 3, 6], "recenc": [1, 3], "shorter": [1, 3, 4, 6], "set": [1, 2, 3, 4, 6, 7, 9], "equal": [1, 3, 4, 6, 9], "size": [1, 3, 4, 6, 9], "poetic": [1, 3], "less": [1, 3, 4, 6, 9], "strategi": [1, 3], "other": [1, 2, 3, 4, 6, 7], "similar": [1, 3, 4, 6, 7, 9], "364": [1, 3, 6, 9], "year": [1, 3, 6], "immedi": [1, 3, 4, 6, 9], "automat": [1, 3, 6, 7, 9], "find": [1, 3, 4, 6, 7, 9], "section": [1, 3, 7, 9], "custom": [1, 3, 4, 6], "need": [1, 2, 3, 4, 6, 7], "validation_index": [1, 3, 9], "datetimeindex": [1, 3, 4, 6, 7, 9], "tail": [1, 3, 6, 9], "els": [1, 2, 3, 4, 6, 7, 9], "rais": [1, 3, 6], "error": [1, 3, 4, 6, 7, 9], "10": [1, 2, 3, 4, 6, 9], "mandat": [1, 3], "unrecommend": [1, 3], "replac": [1, 3, 4, 6], "lead": [1, 3, 7, 9], "zero": [1, 2, 3, 4, 6, 9], "collect": [1, 3, 4, 6, 7], "hasn": [1, 3], "yet": [1, 3, 4, 6, 9], "fill": [1, 3, 4, 6, 7], "leav": [1, 3, 9], "interpol": [1, 3, 4, 6], "recommend": [1, 3, 6, 7, 9], "median": [1, 3, 4, 6], "mai": [1, 2, 3, 4, 6, 7, 9], "assum": [1, 3, 6, 9], "whether": [1, 2, 3, 4, 6], "last": [1, 3, 4, 6, 9], "help": [1, 3, 4, 6, 7, 9], "make": [1, 2, 3, 4, 6, 7, 9], "robust": [1, 3, 4, 6], "introduc": [1, 3], "row": [1, 2, 3, 5, 6], "Will": [1, 3, 4, 6], "20": [1, 2, 3, 4, 6, 9], "keyboardinterrupt": [1, 3, 7], "quit": [1, 3, 6, 9], "entir": [1, 3, 6, 7, 9], "program": [1, 3], "attempt": [1, 3, 6, 9], "conjunct": [1, 3], "result_fil": [1, 3, 7], "accident": [1, 3], "complet": [1, 3, 4, 6], "termin": [1, 3], "end_gener": [1, 3], "end": [1, 2, 3, 4, 6], "skip": [1, 2, 3, 4, 6], "again": [1, 3, 9], "minut": [1, 3], "proceed": [1, 3], "check": [1, 3, 6, 7, 9], "offer": [1, 3, 9], "approxim": [1, 3, 6], "timeout": [1, 2, 3, 7], "overal": [1, 3, 6, 9], "cap": [1, 3, 6], "per": [1, 3, 4, 6, 9], "file": [1, 3, 9], "path": [1, 3], "write": [1, 3, 4, 5], "disk": [1, 3], "debug": [1, 3], "crash": [1, 3, 4, 7], "json": [1, 3, 4, 5, 9], "append": [1, 3], "gc": [1, 3], "won": [1, 2, 3, 4, 6, 7, 9], "differ": [1, 3, 4, 6, 7, 9], "reliabl": [1, 3], "unstabl": [1, 3, 9], "horz": [1, 3], "function": [1, 3, 4, 6, 7, 9], "expect": [1, 3, 4, 6, 7, 9], "func": [1, 3, 4, 6], "f": [1, 3, 4, 7, 9], "df_train": [1, 3, 4, 6, 9], "three": [1, 3, 4, 7, 9], "2d": [1, 3, 4, 6], "reduc": [1, 2, 3, 4, 7, 9], "give": [1, 3, 6, 7], "core": [1, 3, 4, 6, 7], "parallel": [1, 3, 4, 7, 9], "joblib": [1, 3, 4, 9], "context": [1, 3, 4], "manag": [1, 3, 4, 6, 9], "type": [1, 2, 3, 4, 6, 7, 9], "id": [1, 2, 3, 4, 6, 7], "future_regressor": [1, 3, 4, 6, 9], "n_split": [1, 3, 9], "creat": [1, 2, 3, 4, 6, 7, 9], "backcast": [1, 3, 6], "back": [1, 3, 4, 6, 9], "OF": [1, 3], "sampl": [1, 2, 3, 4, 6, 7, 9], "often": [1, 3, 4, 6, 7, 9], "As": [1, 3, 6, 9], "repres": [1, 3, 4, 6, 9], "real": [1, 3, 4, 6, 9], "world": [1, 3, 4, 6, 9], "There": [1, 3, 7, 9], "jump": [1, 3, 9], "chunk": [1, 3, 4, 9], "arg": [1, 3, 4, 6], "except": [1, 3, 4], "piec": [1, 3, 9], "fastest": [1, 3], "observ": [1, 3, 4, 6], "level": [1, 2, 3, 4, 6, 7, 9], "standard": [1, 3, 4, 6], "access": [1, 3, 9], "isn": [1, 3, 4, 6, 9], "classic": [1, 3], "percentag": [1, 3, 4, 6, 9], "intend": [1, 3, 9], "quick": [1, 3, 9], "visual": [1, 3, 7, 9], "statist": [1, 3, 4, 6, 7], "see": [1, 3, 4, 6, 7, 9], "df_wide": [1, 3, 4, 6, 9], "rel": [1, 3, 4, 6, 7, 9], "unpredict": [1, 3], "target": [1, 3, 4, 6, 9], "waterfall_plot": [1, 3], "explain": [1, 3, 4], "caus": [1, 3, 4, 7, 9], "measur": [1, 2, 3, 6, 9], "outcom": [1, 3, 4, 9], "shap": [1, 3], "coeffici": [1, 3], "correl": [1, 3, 6], "show": [1, 2, 3, 4, 9], "waterfal": [1, 3], "enabl": [1, 3], "expand": [1, 3, 4, 6], "rerun": [1, 3, 9], "best_model_origin": [1, 3], "best_model_original_id": [1, 3], "refer": [1, 3, 9], "origin": [1, 3, 4, 6, 9], "expans": [1, 3], "necessari": [1, 3, 4, 6, 7, 9], "without": [1, 3, 6, 7, 9], "flag": [1, 3, 4, 6, 9], "filenam": [1, 3], "kwarg": [1, 2, 3, 4, 6], "ever": [1, 3, 6], "40": [1, 3, 6], "include_result": [1, 3], "unpack_ensembl": [1, 3], "min_metr": [1, 3], "mle": [1, 3, 9], "iml": [1, 3, 9], "ewma": [1, 3], "max_metr": [1, 3], "focus_model": [1, 3], "reusabl": [1, 3], "csv": [1, 2, 3, 5, 9], "slowest": [1, 3, 6, 9], "diagnost": [1, 3, 4], "compon": [1, 3, 4, 6], "larger": [1, 3, 4, 6, 9], "count": [1, 3, 4, 6], "lowest": [1, 3, 4, 6], "wai": [1, 3, 4, 6], "major": [1, 3, 9], "part": [1, 3, 4, 6, 9], "addon": [1, 3], "pull": [1, 2, 3, 4, 6], "result_set": [1, 3], "fraction": [1, 3, 9], "date_col": [1, 3, 6, 7, 9], "value_col": [1, 3, 6, 7, 9], "id_col": [1, 3, 6, 7, 9], "grouping_id": [1, 3, 6], "suppli": [1, 3, 4, 6, 9], "long": [1, 2, 3, 4, 6, 7, 9], "NOT": [1, 3, 4, 6, 9], "sever": [1, 2, 3, 7, 9], "identifi": [1, 3, 4, 6, 9], "singl": [1, 3, 4, 6, 7, 9], "extern": [1, 3, 9], "colname1": [1, 3], "colname2": [1, 3], "increas": [1, 2, 3, 4, 7, 9], "left": [1, 3, 6, 9], "blank": [1, 3], "its": [1, 3, 4, 9], "tabl": [1, 3, 4], "pickl": [1, 3], "inform": [1, 3, 4, 6], "series_id": [1, 3, 4, 6, 7, 9], "group_id": [1, 3, 6], "map": [1, 3, 4], "x": [1, 3, 4, 5, 6, 9], "retain": [1, 3], "potenti": [1, 3, 4, 6, 9], "futur": [1, 3, 4, 6, 7, 9], "holdout": [1, 3, 7, 9], "setup": [1, 3, 7], "involv": [1, 3], "percent_best": [1, 3], "among": [1, 3, 9], "across": [1, 3, 4, 7, 9], "model_id": [1, 3, 4], "must": [1, 2, 3, 4, 6, 9], "wa": [1, 2, 3, 4, 6, 9], "input_dict": [1, 3], "get": [1, 2, 3, 4, 6, 7, 9], "common": [1, 3, 6, 7, 9], "helper": [1, 3], "import_target": [1, 3], "enforce_model_list": [1, 3], "include_ensembl": [1, 3], "overrid": [1, 3, 6], "exist": [1, 3, 4, 6, 9], "add": [1, 3, 4, 6, 9], "anoth": [1, 3, 6], "add_on": [1, 3], "include_horizont": [1, 3], "force_valid": [1, 3], "previous": [1, 3, 6], "done": [1, 3, 7, 9], "befor": [1, 3, 4, 6, 7, 9], "locat": [1, 3], "alreadi": [1, 3, 4, 6, 7, 9], "keep": [1, 3, 4, 6], "init": [1, 3, 4], "anywai": [1, 3], "unpack": [1, 3], "kept": [1, 3], "overridden": [1, 3], "keep_ensembl": [1, 3, 5], "sent": [1, 3], "regardless": [1, 3, 4], "weird": [1, 3], "behavior": [1, 3, 6], "wtih": [1, 3], "In": [1, 3, 4, 6, 7, 9], "validate_import": [1, 3], "eras": [1, 3], "fail": [1, 3, 4, 9], "had": [1, 3, 4], "least": [1, 3, 6, 9], "success": [1, 3, 6], "funciton": [1, 3], "readabl": [1, 3, 9], "start_dat": [1, 2, 3, 4, 7, 9], "alpha": [1, 3, 4, 6], "facecolor": [1, 3, 4], "black": [1, 3, 4], "loc": [1, 3, 4], "accur": [1, 3, 7, 9], "chosen_param": [1, 3], "color1": [1, 3], "grei": [1, 3], "color2": [1, 3], "darkorang": [1, 3], "invers": [1, 3, 4, 6, 9], "present": [1, 2, 3, 4, 6, 7, 9], "color": [1, 3, 4], "gain": [1, 3, 6, 9], "improv": [1, 3, 6, 7, 9], "doesn": [1, 3, 6, 9], "account": [1, 3, 4, 6], "benefit": [1, 3, 9], "seen": [1, 3, 9], "max_seri": [1, 3], "chosen": [1, 2, 3, 7, 9], "color_list": [1, 3], "top_n": [1, 3], "frequent": [1, 3], "factor": [1, 3, 4], "nest": [1, 3, 9], "well": [1, 3, 4, 6, 7, 9], "do": [1, 3, 4, 6, 9], "slow": [1, 2, 3, 4, 6, 9], "captur": [1, 3, 4, 9], "roman": [1, 3], "bar": [1, 3, 6], "hex": [1, 3], "col": [1, 3, 4, 6], "The": [1, 3, 4, 6, 7, 9], "highli": [1, 3, 4, 9], "those": [1, 3, 4, 6, 9], "mostli": [1, 3, 4, 6, 9], "unscal": [1, 3, 9], "ones": [1, 3, 9], "failur": [1, 2, 3], "rate": [1, 3, 4, 6], "ignor": [1, 2, 3, 4, 6], "due": [1, 2, 3, 4, 6, 9], "60": [1, 3, 4, 6], "max_row": [1, 3], "max_name_char": [1, 3], "ff9912": [1, 3], "figsiz": [1, 3, 4], "12": [1, 3, 4, 6, 7, 9], "4": [1, 3, 4, 5, 6, 7, 9], "kind": [1, 3, 6, 9], "upper_clip": [1, 3], "1000": [1, 3, 4, 6, 9], "avg": [1, 3, 4, 6], "sort": [1, 3, 6], "chop": [1, 3], "tupl": [1, 2, 3, 4, 6], "axi": [1, 3, 4, 6, 9], "pie": [1, 3, 9], "prevent": [1, 3, 4, 9], "unnecessari": [1, 3], "distort": [1, 3], "To": [1, 3, 9], "compat": [1, 3], "necessarili": [1, 3, 9], "maintain": [1, 3, 6, 7, 9], "prefer": [1, 3], "plot_group": [1, 3], "modelclass": [1, 3], "asses": [1, 3], "end_dat": [1, 3], "compare_horizont": [1, 3], "include_bound": [1, 3, 4], "35": [1, 3, 6, 9], "start_color": [1, 3], "darkr": [1, 3], "end_color": [1, 3], "a2ad9c": [1, 3], "reforecast": [1, 3], "validation_forecast": [1, 3], "cach": [1, 3], "validation_forecasts_templ": [1, 3], "store": [1, 3, 4, 6, 9], "best_model_id": [1, 3, 9], "overlap": [1, 3, 9], "graph": [1, 3, 4], "reader": [1, 3], "compar": [1, 3, 4, 6, 9], "place": [1, 3, 4, 6, 9], "begin": [1, 3, 4, 6, 9], "either": [1, 3, 4, 6, 7, 9], "worst": [1, 3], "versu": [1, 3], "vline": [1, 3, 4], "val": [1, 3, 4], "marker": [1, 3], "just_point_forecast": [1, 3, 4], "fail_on_forecast_nan": [1, 3], "date": [1, 2, 3, 4, 6, 7, 9], "update_fit": [1, 3], "underli": [1, 3, 4, 7, 9], "retrain": [1, 3], "interv": [1, 3, 4, 6], "design": [1, 3, 4, 6, 7, 9], "high": [1, 3, 4, 6, 7, 9], "suffici": [1, 3, 9], "ahead": [1, 3, 4, 6, 9], "__init__": [1, 3, 4], "prediction_object": [1, 3], "Not": [1, 2, 3, 4, 6], "implement": [1, 3, 4, 6, 9], "strongli": [1, 3], "ha": [1, 3, 4, 6, 7, 9], "metadata": [1, 3, 4], "conveni": [1, 3, 6, 9], "id_nam": [1, 3, 4], "seriesid": [1, 2, 3, 4], "value_nam": [1, 3, 4], "interval_nam": [1, 3, 4], "predictioninterv": [1, 3, 4], "preprocessing_transform": [1, 4], "basescal": [1, 4], "past_impacts_intervent": [1, 4], "common_fouri": [1, 4, 6], "ar_lag": [1, 4], "ar_interaction_season": [1, 4], "anomaly_detector_param": [1, 3, 4, 6], "anomaly_intervent": [1, 4], "holiday_detector_param": [1, 4, 6], "holiday_countries_us": [1, 4, 6], "multivariate_featur": [1, 4], "multivariate_transform": [1, 4], "regressor_transform": [1, 4], "regressors_us": [1, 4], "linear_model": [1, 4], "randomwalk_n": [1, 4], "trend_window": [1, 4], "30": [1, 3, 4, 6, 7], "trend_standin": [1, 4], "trend_anomaly_detector_param": [1, 4], "trend_transform": [1, 4], "trend_model": [1, 4], "modelparamet": [1, 3, 4, 5, 9], "trend_phi": [1, 4], "x_scaler": [1, 4], "max_colinear": [1, 4], "998": [1, 4], "max_multicolinear": [1, 4], "decomposit": [1, 4, 6], "advanc": [1, 3, 4], "trend": [1, 4, 6], "preprocess": [1, 4, 6, 7, 9], "tunc": [1, 4], "etiam": [1, 4], "fati": [1, 4], "aperit": [1, 4], "futuri": [1, 4], "ora": [1, 4], "dei": [1, 4], "iussu": [1, 4], "umquam": [1, 4], "credita": [1, 4], "teucri": [1, 4], "Nos": [1, 4], "delubra": [1, 4], "deum": [1, 4], "miseri": [1, 4], "quibu": [1, 4], "ultimu": [1, 4], "esset": [1, 4], "ill": [1, 4], "di": [1, 4], "festa": [1, 4], "velamu": [1, 4], "frond": [1, 4], "urbem": [1, 4], "aeneid": [1, 4], "246": [1, 4], "249": [1, 4], "impact": [1, 3, 4, 6, 9], "uniqu": [1, 3, 4, 6], "past": [1, 4, 6, 9], "outsid": [1, 4, 9], "unforecast": [1, 4, 6], "accordingli": [1, 4, 9], "product": [1, 4, 6, 7, 9], "goal": [1, 4], "temporari": [1, 4], "whose": [1, 4, 6], "known": [1, 3, 4, 7, 9], "essenti": [1, 3, 4, 9], "estim": [1, 4, 6, 9], "raw": [1, 4, 6], "presenc": [1, 4], "warn": [1, 3, 4, 6], "about": [1, 3, 4, 6], "remove_excess_anomali": [1, 4, 6], "detector": [1, 3, 4, 6], "reli": [1, 4, 9], "alwai": [1, 3, 4, 6, 9], "element": [1, 2, 4, 6], "histori": [1, 2, 3, 4, 6], "intern": [1, 3, 4, 6, 7, 9], "attribut": [1, 3, 4, 9], "figur": [1, 3, 4], "latest": [1, 4], "code": [1, 3, 4, 5, 6, 7], "dai": [1, 2, 3, 4, 6, 9], "7": [1, 2, 3, 4, 6, 9], "weekli": [1, 2, 4], "For": [1, 2, 3, 4, 7, 9], "slope": [1, 4], "analysi": [1, 4, 6], "posit": [1, 3, 4, 6, 9], "sign": [1, 4], "exactli": [1, 4, 6], "regression_typ": [1, 4, 6, 9], "pattern": [1, 2, 3, 4, 6, 9], "inaccur": [1, 4], "keep_col": [1, 4], "keep_cols_idx": [1, 4], "dtindex": [1, 4, 6], "regressor_per_seri": [1, 4], "flag_regressor": [1, 4], "categorical_group": [1, 4], "past_impact": [1, 4], "future_impact": [1, 4], "regressor_forecast_model": [1, 4], "regressor_forecast_model_param": [1, 4], "regressor_forecast_transform": [1, 4], "include_histori": [1, 4], "tune": [1, 4], "16": [1, 3, 4], "breakdown": [1, 4], "look": [1, 2, 4, 7, 9], "right": [1, 4, 6, 7], "wrong": [1, 4, 6, 9], "especi": [1, 4, 7, 9], "easier": [1, 4], "window": [1, 3, 4, 6, 9], "anomaly_color": [1, 4], "darkslateblu": [1, 4], "holiday_color": [1, 4], "darkgreen": [1, 4], "trend_anomaly_color": [1, 4], "slategrai": [1, 4], "point_siz": [1, 4], "know": [1, 4, 9], "d4f74f": [1, 4], "82ab5a": [1, 4], "ff6c05": [1, 4], "c12600": [1, 4], "new_df": [1, 4], "include_organ": [1, 4], "step": [1, 3, 4, 6, 9], "equival": [1, 4, 6, 9], "include_impact": [1, 4], "multipl": [1, 3, 4, 6, 7, 9], "trend_residu": [1, 4], "trans_method": [1, 4, 6, 9], "featur": [1, 4, 6, 7, 9], "space": [1, 2, 4, 6, 9], "intervention_d": [1, 4], "lower_limit": [1, 3, 6, 9], "upper_limit": [1, 3, 6, 9], "univariatemotif": [1, 3], "model_param_dict": [1, 3, 9], "distance_metr": [1, 3, 4, 6], "euclidean": [1, 3], "k": [1, 3, 4, 6, 7], "pointed_method": [1, 3], "return_result_window": [1, 3, 4], "model_transform_dict": [1, 3, 9], "pchip": [1, 3], "fix": [1, 3, 6, 9], "maxabsscal": [1, 3, 6], "model_forecast_kwarg": [1, 3], "321": [1, 3, 9], "future_regressor_train": [1, 3, 4, 9], "future_regressor_forecast": [1, 3, 4, 9], "close": [1, 3, 4, 6, 7, 9], "exceed": [1, 3, 6, 9], "four": [1, 3, 9], "calcul": [1, 3, 4, 6, 9], "direct": [1, 3, 4, 6, 9], "edg": [1, 2, 3, 6, 9], "y": [1, 2, 3, 4, 6, 9], "z": [1, 3, 4, 9], "primarili": [1, 3, 9], "num_seri": [1, 3, 4, 6, 9], "middl": [1, 3, 6], "too": [1, 2, 3, 6, 9], "flip": [1, 3], "ab": [1, 3, 4, 6], "l": [1, 3, 7], "timestep": [1, 3, 6, 9], "two": [1, 3, 6, 9], "neighbor": [1, 3, 4], "resolut": [1, 3], "greater": [1, 3, 6, 9], "class_method": [1, 3], "standalon": [1, 3], "item": [1, 3, 6], "generaet_result_window": [1, 3], "fit_forecast": [1, 3], "result_window": [1, 3, 4], "forecast_df": [1, 3], "up_forecast_df": [1, 3], "low_forecast_df": [1, 3], "lower_limit_2d": [1, 3, 9], "upper_limit_2d": [1, 3, 9], "upper_risk_arrai": [1, 3, 9], "lower_risk_arrai": [1, 3, 9], "event_risk": [1, 3], "multivariatemotif": [1, 3, 9], "autots_kwarg": [1, 3], "shortcut": [1, 3], "suggest": [1, 3, 6, 9], "normal": [1, 3, 4, 6], "model_method": [1, 3], "num_sampl": [1, 3], "column_idx": [1, 3], "grai": [1, 3], "838996": [1, 3], "c0c0c0": [1, 3], "dcdcdc": [1, 3], "a9a9a9": [1, 3], "808080": [1, 3], "989898": [1, 3], "757575": [1, 3], "696969": [1, 3], "c9c0bb": [1, 3], "c8c8c8": [1, 3], "323232": [1, 3], "e5e4e2": [1, 3], "778899": [1, 3], "4f666a": [1, 3], "848482": [1, 3], "414a4c": [1, 3], "8a7f80": [1, 3], "c4c3d0": [1, 3], "bebeb": [1, 3], "dbd7d2": [1, 3], "up_low_color": [1, 3], "ff4500": [1, 3], "ff5349": [1, 3], "bar_color": [1, 3], "6495ed": [1, 3], "bar_ylim": [1, 3], "8": [1, 3, 4, 6, 9], "ylim": [1, 3], "barplot": [1, 3], "df_test": [1, 3, 9], "actuals_color": [1, 3], "00bfff": [1, 3], "v": [1, 3, 6], "dt": [1, 2, 3, 6], "line": [1, 3, 4, 6, 9], "manual": [1, 3, 9], "appropri": [1, 3, 4, 6, 7, 9], "assess": [1, 3, 9], "target_shap": [1, 3], "handl": [1, 3, 4, 9], "overview": [1, 3], "defin": [1, 3, 4, 6, 7, 9], "group": [1, 3, 4, 6], "reconcili": [1, 6, 9], "2020": [1, 3, 4, 6, 9], "mathemat": [1, 6], "chronolog": [1, 6], "fulli": [1, 4, 6], "under": [1, 6, 9], "condit": [1, 6], "primari": [1, 6], "intent": [1, 6], "na": [1, 4, 6], "cannot": [1, 4, 6, 9], "rollingmean": [1, 6], "pctchang": [1, 6], "cumsum": [1, 6], "ffill": [1, 6], "forward": [1, 3, 6, 9], "until": [1, 6, 9], "reach": [1, 6, 7], "miss": [1, 6, 9], "averag": [1, 3, 4, 6, 9], "rolling_mean_24": [1, 6], "24": [1, 4, 6, 9], "ffill_mean_bias": [1, 6], "fake_d": [1, 6], "shift": [1, 4, 6], "thu": [1, 3, 6, 9], "incorrect": [1, 6], "iterativeimput": [1, 6, 9], "iter": [1, 6], "minmaxscal": [1, 6], "powertransform": [1, 6], "quantiletransform": [1, 6], "robustscal": [1, 6], "worth": [1, 6, 9], "n_compon": [1, 4, 6], "receiv": [1, 6, 7], "second_transform": [1, 6], "fixedrollingmean": [1, 6], "disabl": [1, 6], "rollingmean10": [1, 6], "rollingmean100thn": [1, 6], "len": [1, 3, 4, 6], "minimum": [1, 4, 6, 9], "convert": [1, 4, 6, 9], "pct_chang": [1, 6], "lot": [1, 4, 6, 9], "sin": [1, 6], "log": [1, 3, 6, 9], "lag": [1, 4, 6], "seasonaldifferencemean": [1, 6], "seasonaldifference7": [1, 6], "28": [1, 3, 4, 6], "parameter": [1, 6], "center": [1, 6], "around": [1, 4, 6], "record": [1, 2, 3, 5, 6, 7], "bin": [1, 3, 6], "move": [1, 3, 4, 6], "lose": [1, 6], "smoother": [1, 6], "scipi": [1, 4, 6, 9], "hp_filter": [1, 6], "decompos": [1, 6], "exponenti": [1, 4, 6, 9], "joint": [1, 6], "differenc": [1, 4, 6], "vector": [1, 3, 4, 6], "box": [1, 6], "tiao": [1, 6], "align": [1, 6], "tailor": [1, 6], "wish": [1, 6], "good": [1, 6, 9], "cheer": [1, 6], "local": [1, 4, 6], "state": [1, 4, 6], "clip": [1, 6], "std": [1, 4, 6], "awai": [1, 6], "compens": [1, 6], "croston": [1, 6], "inspir": [1, 6, 9], "magnitud": [1, 2, 4, 6, 9], "occurr": [1, 6, 9], "intermitt": [1, 2, 6], "fourier": [1, 6], "harmon": [1, 6], "reintroduc": [1, 6], "within": [1, 6], "diff": [1, 3, 6], "overwrit": [1, 6, 9], "baxter": [1, 6], "king": [1, 4, 6], "bandpass": [1, 6], "fir": [1, 6], "firwin": [1, 6], "basi": [1, 4, 6], "recombin": [1, 3, 6], "changepoint": [1, 4, 6], "thrown": [1, 4, 6], "fun": [1, 6], "poisson": [1, 6], "applic": [1, 6], "argument": [1, 6], "techniqu": [1, 6], "directli": [1, 6, 7, 9], "fillzero": [1, 6], "undo": [1, 6], "mad": [1, 6], "classmethod": [1, 6], "retriev": [1, 2, 6], "legaci": [1, 6], "min_occurr": [1, 3, 6], "splash_threshold": [1, 3, 6], "65": [1, 3, 6], "use_dayofmonth_holidai": [1, 3, 6], "use_wkdom_holidai": [1, 3, 6], "use_wkdeom_holidai": [1, 3, 6], "use_lunar_holidai": [1, 3, 6], "use_lunar_weekdai": [1, 3, 6], "use_islamic_holidai": [1, 3, 6], "use_hebrew_holidai": [1, 3, 6], "use_hindu_holidai": [1, 3, 6], "holiday_impact": [1, 3, 6], "popul": [1, 3, 6], "day_holidai": [1, 3, 6], "join": [1, 2, 3, 6], "rather": [1, 3, 6, 9], "format": [1, 2, 3, 4, 6, 7, 9], "series_flag": [1, 3, 6], "contan": [1, 3, 6], "holiday_nam": [1, 3, 6], "anomaly_scor": [1, 3, 6], "include_anomali": [1, 3], "transformation_dict": [1, 3, 4], "model_str": [1, 3], "parameter_dict": [1, 3], "starttimestamp": [1, 3], "return_model": [1, 3], "model_count": [1, 3], "feed": [1, 3], "pipelin": [1, 3], "width": [1, 3, 6], "ask": [1, 3], "few": [1, 3], "tranform": [1, 3], "03": [1, 4, 6], "02": [1, 4, 6], "005": [1, 6], "002": [1, 6], "06": [1, 4, 6], "04": [1, 6], "na_prob_dict": [1, 6], "datepartregressionimput": [1, 6], "025": [1, 6], "iterativeimputerextratre": [1, 6], "0001": [1, 4, 6], "knnimput": [1, 6], "seasonalitymotifimputer1k": [1, 6], "seasonalitymotifimputerlinmix": [1, 6], "fast_param": [1, 6], "superfast_param": [1, 6], "traditional_ord": [1, 6], "transformer_min_depth": [1, 6], "allow_non": [1, 6], "no_nan_fil": [1, 6], "choosen": [1, 6, 9], "signal": [1, 6, 9], "transformt": [1, 8], "summar": [1, 4, 6, 9], "backfil": [1, 6], "bfill": [1, 6], "head": [1, 3, 5, 6, 9], "regressor_train": [1, 6], "iloc": [1, 6, 9], "thing": [1, 4, 6, 9], "feature_agglomer": [1, 6], "gaussian_random_project": [1, 6], "deal": [1, 6, 9], "prefil": [1, 6], "elsewher": [1, 6], "regressor_forecast": [1, 6], "simple_binar": [1, 6], "encode_holiday_typ": [1, 6], "distribut": [1, 2, 3, 6, 7], "gamma": [1, 2, 4, 6], "univari": [1, 4, 6, 9], "holiday_regr_styl": [1, 6], "preprocessing_param": [1, 6], "datepart": [1, 4, 6], "been": [1, 3, 6, 9], "peopl": [1, 6], "machin": [1, 6, 7], "elabor": [1, 6], "build": [1, 6, 9], "And": [1, 4, 6, 7], "post": [1, 6, 7, 9], "hoc": [1, 6], "want": [1, 6, 9], "easili": [1, 6, 9], "categor": [1, 2, 6], "discard": [1, 6], "annoi": [1, 6], "countri": [1, 6], "req": [1, 3, 6], "pkg": [1, 6], "subdiv": [1, 6], "subdivis": [1, 6], "resampl": [1, 6], "creation": [1, 4, 6], "swappabl": [1, 6], "infer_freq": [1, 6], "date_start": [1, 2], "date_end": [1, 2], "artif": [1, 2, 9], "wiki": [1, 2, 3], "united_st": [1, 2], "germani": [1, 2], "list_of_highest": [1, 2], "grossing_film": [1, 2], "jesu": [1, 2], "michael_jackson": [1, 2], "list_of_united_states_cities_by_popul": [1, 2], "microsoft_offic": [1, 2], "google_chrom": [1, 2], "periodic_t": [1, 2], "standard_devi": [1, 2, 9], "easter": [1, 2], "christma": [1, 2, 9], "chinese_new_year": [1, 2], "thanksgiv": [1, 2, 9], "list_of_countries_that_have_gained_independence_from_the_united_kingdom": [1, 2], "history_of_the_hamburg": [1, 2], "elizabeth_ii": [1, 2], "william_shakespear": [1, 2], "george_washington": [1, 2], "cleopatra": [1, 2], "df2": [1, 2], "observation_start": [1, 2], "2017": [1, 2, 6], "weather_year": [1, 2], "trends_list": [1, 2, 9], "gov_domain_list": [1, 2, 9], "wikipedia_pag": [1, 2, 9], "fred_seri": [1, 2, 9], "dgs10": [1, 2], "t5yie": [1, 2], "sp500": [1, 2], "dexuseu": [1, 2], "sleep_second": [1, 2, 9], "fred_kei": [1, 2], "93873d40f10c20fe6f6e75b1ad0aed4d": [1, 2], "weather_data_typ": [1, 2], "wsf2": [1, 2], "prcp": [1, 2], "weather_st": [1, 2, 9], "usw00014771": [1, 2], "ticker": [1, 2, 9], "london_air_st": [1, 2, 9], "weather_event_typ": [1, 2, 9], "earthquake_min_magnitud": [1, 2, 9], "data_file_nam": [1, 2], "zip": [1, 2], "to_csv": [1, 2], "compress": [1, 2], "archive_nam": [1, 2], "compresslevel": [1, 2], "sourc": [1, 2, 4, 6, 9], "wikimedia": [1, 2], "foundat": [1, 2], "traffic": [1, 2, 9], "mn": [1, 2], "dot": [1, 2], "via": [1, 2], "uci": [1, 2], "repositori": [1, 2], "2021": [1, 2, 3, 4, 9], "introduce_nan": [1, 2], "introduce_random": [1, 2], "123": [1, 2, 3, 6], "null": [1, 2, 6], "observation_end": [1, 2], "dcoilwtico": [1, 2], "wpu0911": [1, 2], "msft": [1, 2], "cycl": [1, 2, 4], "microsoft": [1, 2], "trends_geo": [1, 2], "awnd": [1, 2], "tavg": [1, 2], "usw00094846": [1, 2], "usw00014925": [1, 2], "ct3": [1, 2], "sk8": [1, 2], "london_air_speci": [1, 2], "pm25": [1, 2], "london_air_dai": [1, 2], "180": [1, 2], "earthquake_dai": [1, 2], "gsa_kei": [1, 2], "nasa": [1, 2], "gov": [1, 2], "gov_domain_limit": [1, 2], "600": [1, 2], "wiki_languag": [1, 2], "en": [1, 2, 3, 6, 9], "28z": [1, 2], "29": [1, 2], "winter": [1, 2, 9], "weather": [1, 2, 9], "storm": [1, 2], "caiso_queri": [1, 2], "eia_kei": [1, 2], "eia_respond": [1, 2], "miso": [1, 2], "pjm": [1, 2], "tva": [1, 2], "us48": [1, 2], "300": [1, 2, 4], "activ": [1, 2, 4, 9], "internet": [1, 2, 9], "connect": [1, 2, 9], "respect": [1, 2, 6, 9], "free": [1, 2, 7], "heavili": [1, 2, 4, 6, 9], "exclud": [1, 2, 6], "d": [1, 2, 3, 4, 6, 7, 9], "earliest": [1, 2, 4], "get_seri": [1, 2], "yfinanc": [1, 2, 9], "api": [1, 2, 7, 9], "restrict": [1, 2, 4], "stlouisf": [1, 2], "org": [1, 2, 3, 4, 6, 9], "doc": [1, 2, 4, 6, 7, 9], "api_kei": [1, 2], "html": [1, 2, 4, 6, 9], "fredapi": [1, 2, 9], "stock": [1, 2, 7, 9], "pypi": [1, 2], "keyword": [1, 2], "pytrend": [1, 2, 9], "ncei": [1, 2], "noaa": [1, 2], "ghcn": [1, 2], "snow": [1, 2], "tmax": [1, 2], "tmin": [1, 2], "wsf1": [1, 2], "wsf5": [1, 2], "wsfg": [1, 2], "station": [1, 2], "londonair": [1, 2], "uk": [1, 2], "london_speci": [1, 2], "london": [1, 2], "air": [1, 2], "smallest": [1, 2, 3], "earthquak": [1, 2], "usg": [1, 2], "open": [1, 2, 5, 9], "gsa": [1, 2], "dap": [1, 2], "dist": [1, 2, 4, 9], "govern": [1, 2], "domain": [1, 2, 6], "veri": [1, 2, 4, 6, 9], "usp": [1, 2], "ncbi": [1, 2], "nlm": [1, 2], "nih": [1, 2], "cdc": [1, 2], "ir": [1, 2], "usajob": [1, 2], "studentaid": [1, 2], "usembassi": [1, 2], "tsunami": [1, 2], "smaller": [1, 2, 3, 4, 6, 9], "10000": [1, 2], "wikipedia": [1, 2, 3], "encod": [1, 2, 3, 9], "underscor": [1, 2], "www1": [1, 2], "ncdc": [1, 2], "pub": [1, 2, 6], "swdi": [1, 2], "stormev": [1, 2], "csvfile": [1, 2], "pdf": [1, 2, 6], "ene_slr": [1, 2], "hardcod": [1, 2], "queri": [1, 2, 6], "server": [1, 2], "download": [1, 2, 9], "feder": [1, 2], "reserv": [1, 2], "loui": [1, 2], "econom": [1, 2], "indic": [1, 2, 3, 6], "week": [1, 2], "petroleum": [1, 2], "industri": [1, 2], "eia": [1, 2], "annual": [1, 2], "cleaner": [1, 6], "pivot_t": [1, 6], "determin": [1, 4, 6], "provid": [1, 3, 4, 6, 9], "template_col": [1, 3], "transformationparamet": [1, 3, 4, 5], "horizontal_subset": [1, 3], "internal_valid": [1, 3], "albeit": [1, 3, 9], "she": [1, 3], "turn": [1, 3], "me": [1, 3], "newt": [1, 3], "got": [1, 3, 4], "cpu": [1, 3, 4, 6, 7, 9], "meant": [1, 3], "nich": [1, 3], "tell": [1, 3, 4, 9], "insid": [1, 3, 9], "instal": [2, 4, 6], "fredkei": 2, "seriesnamedict": 2, "simplest": [2, 9], "sure": [2, 6, 7, 9], "request": [2, 6, 7, 9], "pair": 2, "seriesnam": 2, "anyth": [2, 4, 6], "second": [2, 4, 6, 9], "sleep": 2, "chanc": 2, "mon": [3, 6], "jul": [3, 6], "18": [3, 4], "19": [3, 4], "55": 3, "author": [3, 4, 6], "colin": [3, 4, 6, 9], "mid": [3, 6], "submitted_paramet": 3, "sort_column": 3, "sort_ascend": 3, "max_result": 3, "recursive_count": 3, "old": [3, 4, 9], "No": [3, 4, 6, 7], "mate": 3, "sanderson": 3, "submitted_paramt": 3, "hyperparamet": 3, "per_timestamp_smap": 3, "per_series_metr": [3, 4], "per_series_ma": 3, "per_series_rms": 3, "per_series_mad": 3, "per_series_contour": 3, "per_series_spl": 3, "per_series_ml": 3, "per_series_iml": 3, "per_series_max": 3, "per_series_oda": 3, "per_series_mqa": 3, "per_series_dwa": 3, "per_series_ewma": 3, "per_series_uwms": 3, "per_series_smooth": 3, "per_series_m": 3, "per_series_mats": 3, "per_series_wasserstein": 3, "per_series_dwd": 3, "correspond": [3, 4, 6], "order": [3, 4, 6, 9], "another_ev": 3, "merg": 3, "onto": 3, "validation_round": 3, "current_gener": 3, "traceback": 3, "mosaic_us": 3, "additional_msg": 3, "who": [3, 4], "tim": 3, "hyperparamt": 3, "prepar": 3, "info": [3, 6], "print": [3, 5, 6, 7, 9], "statement": 3, "keyboard": 3, "interrupt": [3, 7], "caught": [3, 4], "break": 3, "tracebook": 3, "represent": 3, "everi": [3, 4, 6, 9], "existing_templ": 3, "new_poss": 3, "selection_col": 3, "new_possibl": 3, "namess": 3, "judg": [3, 9], "hash": 3, "b": [3, 6, 7], "ident": [3, 4], "return_score_dict": 3, "made": [3, 4, 6, 9], "mage": [3, 9], "bigger": 3, "results_object": 3, "total_valid": 3, "models_to_us": [3, 4], "model_prob": 3, "counter": [3, 6], "n_model": 3, "keyword_format": 3, "preceed": [3, 9], "dict_arrai": 3, "recurs": [3, 5, 9], "unnest": 3, "validation_result": [3, 5, 7], "groupby_col": 3, "all_result": 3, "corr": 3, "onehot": 3, "poli": 3, "100000": [3, 6], "dimens": [3, 4, 6, 9], "fake": [3, 6], "purpos": [3, 6, 9], "fri": [3, 6], "nov": 3, "13": [3, 4, 9], "45": [3, 4], "base_models_onli": 3, "tensorflow": [3, 4, 9], "jan": [3, 4], "27": [3, 6], "36": [3, 4], "lag_1": [3, 4, 6], "lag_2": [3, 4], "nearest": [3, 4, 6], "ndim": 3, "ae": 3, "precalcul": 3, "arr": [3, 6], "loss": [3, 4, 9], "chi": 3, "squar": [3, 6, 9], "histogram": 3, "unchang": 3, "flat": [3, 6, 9], "concern": [3, 9], "bluff": 3, "river": 3, "elev": 3, "equiavel": 3, "last_of_arrai": [3, 4], "direciton": 3, "growth": [3, 4, 6], "declin": [3, 4], "scaler": [3, 4, 6], "cumsum_a": [3, 4], "diff_a": [3, 4], "extra": [3, 9], "precomput": [3, 4], "effici": [3, 4, 6, 9], "loop": [3, 4], "worri": 3, "them": [3, 9], "detail": [3, 4, 6, 7, 9], "bandwidth": 3, "kl": 3, "diverg": 3, "p": [3, 4, 6, 7, 9], "q": [3, 4, 6, 7, 9], "epsilon": [3, 4, 6], "1e": [3, 6], "perecentag": 3, "progress": [3, 7, 9], "along": [3, 6, 9], "differenti": [3, 9], "sole": 3, "optim": [3, 4, 7, 9], "unanchor": 3, "1d": [3, 6], "nan_flag": [3, 6], "baselin": 3, "naiv": [3, 4, 7, 9], "poorli": [3, 6, 9], "85": [3, 5], "largest": [3, 9], "full_error": 3, "le": 3, "y_pred": [3, 4], "y_true": [3, 4], "penal": [3, 9], "underestim": [3, 9], "overestim": [3, 9], "avoid": [3, 6, 7, 9], "divid": 3, "aren": [3, 4], "down": [3, 6, 9], "bad": [3, 9], "er": 3, "push": 3, "exclus": 3, "sqe": 3, "catlin": [3, 6, 7], "syllepsi": 3, "live": [3, 7], "22": [3, 4, 6], "categori": [3, 6], "OR": 3, "being": [3, 4, 6, 7, 9], "pinbal": [3, 9], "gradient": 3, "volatil": [3, 6, 9], "precomputed_spl": 3, "unmatch": 3, "poor": [3, 9], "penalty_threshold": 3, "view": [3, 6, 9], "strength": [3, 6], "earth": 3, "perhap": [3, 6], "relev": [3, 6], "unsort": 3, "extract": [3, 4], "py": [3, 6, 7, 9], "amfm": 3, "possibli": [3, 4, 6], "modif": 3, "structur": [3, 4, 6], "11": [3, 4, 9], "2023": [3, 4, 6, 7], "validation_param": 3, "etc": [3, 6, 9], "clean": [3, 6, 9], "beyond": [3, 4, 6], "constant": [4, 6], "vol": 4, "garch": 4, "o": [4, 6, 7], "power": [4, 9], "rescal": 4, "maxit": 4, "200": [4, 6], "linux": [4, 6, 9], "distro": 4, "confid": [4, 6], "multiprocess": [4, 6, 9], "uniniti": 4, "fit_runtim": 4, "timedelta": 4, "hold": 4, "timeseri": [4, 6, 9], "last_dat": 4, "forecast_index": 4, "forecast_column": 4, "predict_runtim": 4, "transformation_runtim": 4, "per_timestamp": 4, "avg_metr": 4, "avg_metrics_weight": 4, "form": [4, 6, 9], "exce": 4, "constraint_valu": [4, 6], "constraint_direct": [4, 6], "horizon": [4, 6, 9], "window_agg": 4, "go": [4, 9], "soft": 4, "decim": [4, 6], "dampen": 4, "gradual": 4, "flatten": 4, "98": 4, "series_weight": 4, "per_timestamp_error": 4, "column_nam": 4, "evalut": 4, "against": 4, "suboptim": 4, "update_datetime_nam": 4, "datetime_column": 4, "remove_zero": [4, 9], "title_substr": 4, "ax": [4, 6], "matplotlib": [4, 9], "dash": 4, "vertic": 4, "intens": 4, "shade": 4, "region": [4, 6], "xlim_right": 4, "grid": [4, 7], "certain": 4, "group_col": 4, "y_col": 4, "totalruntimesecond": 4, "train_last_d": 4, "cmap_nam": 4, "gist_rainbow": 4, "runtimes_data": 4, "xlim": 4, "title_suffix": 4, "point_method": 4, "canberra": [4, 6], "sample_fract": [4, 6], "adapt": 4, "struggl": 4, "short": 4, "max_window": [4, 6], "weighted_mean": 4, "midhing": [4, 6], "cdist": [4, 9], "closest": [4, 6, 9], "consid": [4, 9], "2024": [4, 6, 9], "changepoint_spac": [4, 6], "changepoint_distance_end": [4, 6], "lambda_": 4, "ridg": 4, "minim": [4, 9], "covari": [4, 6], "ratio": 4, "num_regressor_seri": 4, "nan_euclidean": [4, 6, 9], "include_differenc": [4, 6], "stride_s": [4, 6], "ob": [4, 6], "n_harmon": [4, 6], "state_transit": [4, 6], "process_nois": [4, 6], "observation_model": [4, 6], "observation_nois": [4, 6], "em_it": [4, 6], "undefin": 4, "solv": [4, 6, 9], "kalman": [4, 6, 9], "expens": [4, 7], "comparison_transform": 4, "combination_transform": 4, "comparison": [4, 6], "mse": [4, 9], "minkowski": 4, "5000": [4, 6], "tradeoff": [4, 6], "own": [4, 9], "gather": 4, "phrase_len": 4, "magnitude_pct_change_sign": 4, "share": 4, "l2": 4, "max_motif": 4, "recency_weight": 4, "cutoff_threshold": 4, "cutoff_minimum": 4, "dark": [4, 6], "magic": [4, 6], "evil": 4, "mastermind": 4, "project": [4, 7], "knn": 4, "interest": [4, 9], "togeth": [4, 6, 9], "pairwise_dist": 4, "amount": [4, 6, 9], "choos": [4, 9], "sign_biased_mean": 4, "ridge_param": 4, "5e": 4, "warmup_pt": [4, 6], "seed_pt": 4, "seed_weight": 4, "batch_siz": 4, "batch_method": 4, "input_ord": 4, "nonlinear": 4, "variabl": [4, 6, 9], "autoregress": 4, "next": [4, 6, 9], "reservoir": 4, "quantinfo": 4, "ng": 4, "rc": 4, "paper": [4, 7], "gauthier": 4, "j": [4, 6, 7], "bollt": 4, "e": [4, 6, 7], "griffith": 4, "al": 4, "nat": 4, "commun": [4, 9], "5564": 4, "doi": 4, "1038": 4, "s41467": 4, "021": 4, "25801": 4, "pointless": 4, "lambda": [4, 6], "realiti": 4, "warmup": 4, "fine": [4, 9], "linearli": 4, "batch": [4, 7], "lastvalu": [4, 6], "concerto": 4, "g": [4, 6, 7], "minor": 4, "op": 4, "rv": 4, "315": 4, "produc": [4, 9], "phi": [4, 6], "max_cycl": 4, "2000": 4, "var_dampen": 4, "apply_pca": 4, "pca_n_compon": 4, "threshold_method": [4, 6], "threshold_valu": 4, "base_sc": 4, "x_scale": 4, "var_preprocess": 4, "var_postprocess": 4, "vari": [4, 6, 7, 9], "seem": [4, 9], "beta": [4, 6], "xa": 4, "xb": 4, "r_arr": 4, "inner": 4, "hungri": 4, "big": 4, "linpack": [4, 7, 9], "sensit": [4, 6, 9], "address": 4, "tue": 4, "sep": [4, 6], "57": 4, "assist": 4, "crgillespie22": 4, "gaussian_prior_mean": 4, "wishart_prior_scal": 4, "wishart_dof_excess": 4, "bayesian": [4, 6], "conjug": 4, "prior": [4, 6], "encourag": [4, 9], "coef": 4, "regular": [4, 6, 9], "peak": [4, 6], "matrix": [4, 6], "varianc": 4, "nois": [4, 6], "while": [4, 7, 9], "return_std": 4, "n_sampl": 4, "in_d": 4, "prefix": 4, "regr_": 4, "15000": 4, "l1": 4, "cost": 4, "lin": 4, "reg": 4, "lamb": [4, 6], "identity_matrix": 4, "neural": 4, "net": 4, "256": 4, "feature_subsample_r": 4, "adam": 4, "epoch": [4, 6], "32": [4, 6], "relu": 4, "rnn_type": 4, "lstm": 4, "kernel_initi": 4, "lecun_uniform": 4, "hidden_layer_s": 4, "huber": 4, "wrapper": [4, 6], "kera": 4, "rnn": 4, "cell": 4, "gru": 4, "layer": 4, "compil": [4, 9], "tf": 4, "set_se": 4, "head_siz": 4, "num_head": 4, "ff_dim": 4, "num_transformer_block": 4, "mlp_unit": 4, "128": 4, "mlp_dropout": 4, "dropout": 4, "io": [4, 6], "timeseries_transformer_classif": 4, "input_shap": 4, "output_shap": [4, 6], "ensemble_param": 4, "forecasts_runtim": 4, "model_weight": 4, "incompat": [4, 9], "bestn": [4, 9], "forecast_id": 4, "forecast_runtim": 4, "forecasts_list": 4, "ensemble_str": 4, "prematched_seri": 4, "use_valid": 4, "subset_flag": 4, "per_series2": 4, "only_specifi": 4, "outer": [4, 6], "full_mae_v": 4, "total_v": 4, "validation_test_index": 4, "known_match": 4, "available_model": 4, "full_model": 4, "error_matrix": 4, "error_list": 4, "col_nam": 4, "smoothing_window": 4, "metric_nam": 4, "id_to_group_map": 4, "unpredictability_adjust": 4, "classifier_param": 4, "classifi": 4, "unknown": 4, "construct": [4, 5, 6, 9], "x_predict": 4, "ensemble_list": 4, "models_sourc": 4, "all_seri": 4, "forecast_period": [4, 9], "datestamp": 4, "retur": 4, "safety_model": 4, "local_result": 4, "releas": 4, "amazon": 4, "realli": [4, 6], "mxnet": [4, 9], "gui": 4, "sorta": 4, "mayb": 4, "deprec": [4, 6, 9], "sad": 4, "excel": [4, 9], "routin": 4, "stabil": 4, "strong": 4, "suit": 4, "gluon_model": 4, "deepar": 4, "learning_r": 4, "context_length": 4, "npt": 4, "deepstat": 4, "wavenet": 4, "deepfactor": 4, "sff": 4, "mqcnn": 4, "deepvar": 4, "gpvar": 4, "nbeat": 4, "network": 4, "2forecastlength": [4, 6], "nforecastlength": 4, "unlik": [4, 6, 9], "df_index": 4, "freq": [4, 6, 9], "model_templ": 4, "silverkit": 4, "unitedst": 4, "inner_n_job": 4, "relat": [4, 9], "borrow": 4, "xinyu": 4, "chen": 4, "xinychen": 4, "transdim": 4, "medium": [4, 9], "articl": 4, "nan_to_num": 4, "pinv": 4, "On": [4, 9], "entri": 4, "dlascl": 4, "illeg": 4, "amplitude_threshold": 4, "eigenvalue_threshold": 4, "dynam": [4, 6, 9], "time_horizon": 4, "time_lag": 4, "lambda0": 4, "33333333": 4, "low": [4, 6, 9], "tensor": 4, "arxiv": [4, 6], "2104": 4, "14936": 4, "blob": 4, "master": 4, "mat": 4, "predictor": 4, "ipynb": 4, "rho": 4, "inner_maxit": 4, "tempor": 4, "sparse_mat": 4, "ind": 4, "w": [4, 5, 6], "psi": 4, "r": [4, 5, 6, 7], "pred_step": 4, "sparse_tensor": 4, "rho0": 4, "recogn": [4, 6, 7], "pred_time_step": 4, "time_interv": 4, "kernel": [4, 7], "dim": [4, 6], "tau": 4, "aq": 4, "rold": 4, "delta": 4, "sun": 4, "expanded_binar": [4, 6], "ml": [4, 9], "aspect": 4, "n_seri": [4, 6], "variou": [4, 6], "nixtla": 4, "Be": [4, 7], "commerci": 4, "mqloss": 4, "input_s": 4, "max_step": [4, 6], "early_stop_patience_step": 4, "scaler_typ": 4, "model_arg": 4, "point_quantil": 4, "document": [4, 6, 7, 9], "temp": 4, "za": 4, "static_regressor": 4, "facebook": 4, "sinc": [4, 9], "finicki": [4, 9], "yearly_season": 4, "weekly_season": 4, "daily_season": 4, "n_changepoint": 4, "changepoint_prior_scal": 4, "seasonality_mod": 4, "changepoint_rang": 4, "seasonality_prior_scal": 4, "weekly_seasonality_prior_scal": 4, "yearly_seasonality_prior_scal": 4, "yearly_seasonality_ord": 4, "holidays_prior_scal": 4, "thou": 4, "shall": 4, "neither": 4, "prece": 4, "off": [4, 6, 9], "changepoints_rang": 4, "trend_reg": 4, "trend_reg_threshold": 4, "ar_spars": 4, "seasonality_reg": 4, "n_lag": 4, "num_hidden_lay": 4, "d_hidden": 4, "loss_func": 4, "train_spe": 4, "training_start_d": 4, "training_end_d": 4, "custom_changepoint": 4, "distinct": [4, 7, 9], "uniform": [4, 6], "ecosystem": 4, "analyt": [4, 9], "control": [4, 9], "could": [4, 9], "93": 4, "mark": 4, "cours": [4, 7], "benn": 4, "yyyi": 4, "mm": 4, "dd": 4, "quotat": 4, "datetime64": 4, "dtype": [4, 6], "90": [4, 6], "max_epoch": 4, "max_encoder_length": 4, "hidden_s": 4, "n_layer": 4, "add_target_scal": 4, "target_norm": 4, "encodernorm": 4, "temporalfusiontransform": 4, "64": [4, 6], "78": 4, "model_kwarg": 4, "trainer_kwarg": 4, "callback": 4, "obsess": 4, "pt": 4, "lightn": [4, 9], "trainer": 4, "quantileloss": 4, "lesser": 4, "decis": [4, 7, 9], "tree": 4, "elast": 4, "forest": 4, "mlpregressor": 4, "adaboost": 4, "principl": 4, "nthn": 4, "max_depth": [4, 6], "min_samples_split": [4, 6], "polynomial_degre": [4, 6], "forward_lag": [4, 6], "randomforest": 4, "mean_rolling_period": 4, "macd_period": 4, "std_rolling_period": 4, "max_rolling_period": 4, "min_rolling_period": 4, "ewm_var_alpha": 4, "quantile90_rolling_period": 4, "quantile10_rolling_period": 4, "ewm_alpha": 4, "additional_lag_period": 4, "abs_energi": 4, "rolling_autocorr_period": 4, "nonzero_last_n": 4, "scale_full_x": 4, "quantile_param": 4, "min_samples_leaf": 4, "n_estim": 4, "250": 4, "cointegration_lag": 4, "series_hash": 4, "frac_slic": 4, "frame": [4, 6], "multiari": 4, "window_s": [4, 6], "max_histori": 4, "one_step": 4, "processed_i": 4, "normalize_window": [4, 6], "sigma": [4, 6], "random_st": [4, 6], "extratre": 4, "add_date_part": 4, "x_transform": 4, "wise": [4, 9], "scienc": 4, "am": 4, "arthur": 4, "briton": 4, "ve": 4, "think": 4, "your": [4, 7, 9], "selv": 4, "re": 4, "individu": [4, 9], "ye": [4, 7, 9], "we": [4, 9], "rbf": 4, "noise_var": 4, "lambda_prim": 4, "polynomi": [4, 6], "locally_period": 4, "littl": [4, 9], "flexibl": [4, 6, 9], "toler": [4, 9], "\u03b3": 4, "reason": [4, 6, 9], "might": [4, 9], "365": [4, 6], "input_dim": [4, 6], "output_dim": [4, 6], "shuffl": [4, 6], "fourier_encoding_compon": 4, "model_dict": 4, "bootstrap": 4, "verbose_bool": 4, "multioutput": 4, "framework": [4, 6, 7], "mean_rol": 4, "slice_index": 4, "bit": 4, "exog": 4, "exog_oo": 4, "exog_fc": 4, "sometim": 4, "c": [4, 6, 7, 9], "causal": 4, "ct": 4, "stationar": 4, "hour": [4, 6, 9], "k_factor": 4, "factor_ord": 4, "mamodel": 4, "mapr": 4, "factor_multipl": 4, "idiosyncratic_ar1": 4, "damped_trend": 4, "seasonal_period": 4, "formerli": 4, "damp": 4, "deseason": 4, "use_test": 4, "use_ml": 4, "damped_cycl": 4, "irregular": 4, "stochastic_cycl": 4, "stochastic_trend": 4, "stochastic_level": 4, "cov_typ": 4, "opg": 4, "lbfg": 4, "maxlag": [4, 6], "ic": 4, "fpe": 4, "determinist": 4, "k_ar_diff": [4, 6], "coint_rank": 4, "current_seri": 4, "xf": 4, "negloglik": 4, "conf_int": 4, "ar_ord": 4, "fit_method": 4, "hmc": 4, "num_step": 4, "tensorflowprob": 4, "42": 4, "0009999": 4, "layer_norm": 4, "dropout_r": 4, "512": [4, 6], "num_lay": 4, "hist_len": 4, "720": 4, "decoder_output_dim": 4, "final_decoder_hidden": 4, "num_split": 4, "min_num_epoch": 4, "train_epoch": 4, "patienc": 4, "epoch_len": 4, "permut": 4, "gpu_index": 4, "googl": 4, "research": 4, "mlp": 4, "num_cov_col": 4, "cat_cov_col": 4, "ts_col": 4, "train_rang": 4, "val_rang": 4, "test_rang": 4, "pred_len": 4, "loader": 4, "84": 5, "86": 5, "87": 5, "88": 5, "sort_valu": 5, "ascend": [5, 9], "groupbi": [5, 6], "reset_index": 5, "export2": 5, "export_fin": 5, "to_json": 5, "orient": [5, 6], "pprint": 5, "read_csv": 5, "autots_forecast_template_gen": 5, "jsn": 5, "json_temp": 5, "read": 5, "txt": 5, "dump": 5, "indent": 5, "sort_kei": 5, "41": 6, "21": [6, 7], "contextu": 6, "fall": [6, 7, 9], "densiti": 6, "sequenc": [6, 9], "anomal": 6, "itself": 6, "regard": 6, "1802": 6, "04431": 6, "anomaly_df": 6, "df_col": 6, "wkdom_holidai": 6, "wkdeom_holidai": 6, "lunar_holidai": 6, "lunar_weekdai": 6, "islamic_holidai": 6, "hebrew_holidai": 6, "hindu_holidai": 6, "max_featur": 6, "predict_interv": 6, "job": 6, "tol": 6, "max_it": 6, "responsibility_threshold": 6, "norm": 6, "rolling_period": 6, "surviv": 6, "outlieri": 6, "dataframm": 6, "rolling_zscor": 6, "sf": 6, "rolliing_zscor": 6, "convers": [6, 7], "chines": 6, "arab": 6, "datetime_index": 6, "christian": 6, "aspir": 6, "hebrew": 6, "pyluach": 6, "simlist": 6, "hindu": 6, "variat": [6, 9], "llm": 6, "put": 6, "appear": [6, 9], "still": [6, 7, 9], "welcom": 6, "epoch_adjust": 6, "islam": 6, "convertd": 6, "fitnr": 6, "timezon": 6, "new_moon": 6, "continu": 6, "pre": 6, "full_moon": 6, "julian": 6, "johansen": 6, "barba": 6, "towardsdatasci": 6, "canon": 6, "forgotten": 6, "4d1213396da1": 6, "p_mat": 6, "max_lag": 6, "return_eigenvalu": 6, "endog": 6, "det_ord": 6, "abbrevi": 6, "series_ord": 6, "trim": 6, "ex": 6, "modifi": 6, "train_min": 6, "train_max": 6, "final_growth": 6, "multiproces": 6, "conserv": 6, "intel": 6, "hyperthread": 6, "logic": 6, "psutil": [6, 9], "fallsback": 6, "mkl": [6, 9], "simd": 6, "otto": 6, "seiskari": 6, "mit": 6, "licens": 6, "resourc": [6, 9], "found": [6, 7, 9], "kevinkotz": 6, "www": [6, 9], "notebook": 6, "statespace_dfm_coincid": 6, "introduct": 6, "commandeur": 6, "koopman": 6, "chp": 6, "andrew": 6, "harvei": 6, "notat": 6, "transit": 6, "x_k": 6, "x_": 6, "q_": 6, "qquad": 6, "sim": 6, "y_k": 6, "h": [6, 7], "r_k": 6, "hidden": 6, "system": [6, 9], "matric": 6, "suitabl": 6, "definit": 6, "simo": 6, "sarkk\u00e4": 6, "2013": 6, "cambridg": 6, "univers": 6, "press": [6, 7], "aalto": 6, "fi": 6, "ssarkka": 6, "cup_book_online_20131111": 6, "simdkalman": 6, "kf": 6, "diag": 6, "denot": 6, "initial_valu": 6, "initial_covari": 6, "ey": 6, "third": [6, 9], "cov": 6, "29311384": 6, "06948961": 6, "19959416": 6, "00777587": 6, "02528967": 6, "pred_mean": 6, "pred_stdev": 6, "sqrt": 6, "71543": 6, "65322": 6, "multi": 6, "dimension": 6, "howev": [6, 9], "flexibli": 6, "broadcast": 6, "rule": 6, "oper": 6, "n_state": 6, "n_var": 6, "n_measur": 6, "main": 6, "interfac": 6, "accord": 6, "natur": [6, 9], "scalar": 6, "3d": 6, "lock": 6, "n_test": 6, "likelihood": 6, "log_likelihood": 6, "explan": 6, "With": [6, 9], "boolean": 6, "pairwis": [6, 9], "member": 6, "subresult": 6, "field": 6, "pairwise_covari": 6, "n_iter": 6, "interpret": 6, "mathbb": 6, "x_0": 6, "rm": 6, "prior_mean": 6, "prior_cov": 6, "x_j": 6, "simgl": 6, "y_1": 6, "ldot": 6, "y_j": 6, "y_t": 6, "smooth_mean": 6, "smooth_covari": 6, "smoothing_gain": 6, "y_": 6, "posterior_mean": 6, "posterior_covari": 6, "posterior": 6, "operand": 6, "transpos": 6, "initial_mean": 6, "correct": 6, "allow_auto": 6, "next_smooth_mean": 6, "next_smooth_covari": 6, "prior_covari": 6, "statespac": 6, "oct": 6, "07": 6, "37": 6, "colincatlin": 6, "n_harm": 6, "freq_rang": 6, "23": [6, 9], "59": 6, "sampling_frequ": 6, "numtap": 6, "cutoff_hz": 6, "ham": 6, "convolut": 6, "lfilter": 6, "pad": 6, "tap": 6, "hz": 6, "hann": 6, "filtered_data": 6, "chunk_siz": 6, "data_typ": 6, "time_seri": 6, "grouping_method": 6, "tile": 6, "n_group": 6, "hier_id": 6, "bottom": 6, "holidays_subdiv": 6, "fallback": 6, "unavail": 6, "bias": 6, "simple_2": 6, "linear_mix": 6, "mean_weight": 6, "back_method": 6, "half": [6, 9], "remaind": 6, "slice_al": 6, "keepna": 6, "phase": 6, "moon": 6, "stackoverflow": 6, "2531541": 6, "9492254": 6, "keturn": 6, "earlier": 6, "john": 6, "walker": 6, "ecc": 6, "016718": 6, "equat": 6, "2444237": 6, "905": 6, "ecliptic_longitude_epoch": 6, "278": 6, "83354": 6, "ecliptic_longitude_perige": 6, "282": 6, "596403": 6, "eccentr": 6, "moon_mean_longitude_epoch": 6, "975464": 6, "moon_mean_perigee_epoch": 6, "349": 6, "383063": 6, "illumin": 6, "zone": 6, "2444238": 6, "asia": 6, "matter": 6, "central": 6, "precis": 6, "75": 6, "nextnew": 6, "krstn": 6, "eu": 6, "nanpercentil": 6, "in_arr": 6, "rollov": 6, "support": [6, 7, 9], "driven": 6, "placehold": 6, "mixtur": 6, "gum": 6, "diseas": 6, "credibl": 6, "spell": 6, "cast": 6, "variable_pct_chang": 6, "upon": 6, "upper_error": 6, "lower_error": 6, "errorrang": 6, "cum": 6, "qtp": 6, "xn": 6, "broaden": 6, "although": [6, 7, 9], "corrupt": 6, "bay": 6, "theorem": 6, "adi_threshold": 6, "cvar_threshold": 6, "flat_threshold": 6, "92": 6, "new_product_threshold": 6, "seasonal_threshold": 6, "errat": 6, "lumpi": 6, "new_product": 6, "finiki": 6, "declar": 6, "new_product_correct": 6, "demand_profil": 6, "x_t_last_row": 6, "n_forecast": 6, "120": 6, "ensur": 6, "consecut": 6, "belong": 6, "hot": 6, "history_dai": 6, "set_index": 6, "weekdai": 6, "recur": 6, "commonli": [6, 9], "repeat": [6, 9], "ag": 6, "degre": 6, "holdiay_countri": 6, "dtindex_futur": 6, "full_sort": 6, "nan_arrai": 6, "include_on": 6, "very_smal": 6, "typic": [6, 9], "wavelet_typ": 6, "morlet": 6, "reshap": [6, 9], "na_str": 6, "categorical_fillna": 6, "handle_unknown": [6, 9], "use_encoded_valu": 6, "downcast": 6, "unalt": 6, "missing_valu": 6, "ordinalencod": [6, 9], "to_numer": 6, "messag": [6, 9], "convert_dtyp": 6, "polish": 6, "999": 6, "dateoffset": [6, 9], "somewher": 6, "pydata": [6, 9], "stabl": [6, 9], "user_guid": [6, 9], "cut": 6, "older": [6, 9], "eventu": 6, "incomplet": [6, 9], "upsampl": [6, 7], "silenc": 6, "rest": 6, "configur": 6, "wide_arr": 6, "gst": 6, "sgt": 6, "46": 6, "error_buff": 6, "z_init": 6, "z_limit": 6, "z_step": 6, "max_contamin": 6, "sd_weight": 6, "anomaly_count_weight": 6, "errors_al": 6, "obj": 6, "maxim": 6, "reduct": 6, "invert": 6, "meet": [6, 9], "yield": 6, "itertool": 6, "more_itertool": 6, "descript": [6, 9], "circa": 6, "decay_span": 6, "displacement_row": 6, "span": 6, "decai": 6, "soften": 6, "first_value_onli": 6, "on_invers": 6, "lanczos_factor": 6, "return_diff": 6, "on_transform": 6, "implent": 6, "somewhat": 6, "statmodelsfilt": 6, "linearregress": 6, "suffix": 6, "_lltmicro": 6, "vagu": 6, "gap": 6, "link": [6, 7], "std_threshold": 6, "purg": 6, "THE": 6, "historic_growth": 6, "bounds_onli": 6, "cumul": 6, "imprecis": 6, "missing": 6, "scatter": 6, "dure": 6, "reverse_align": 6, "n_bin": 6, "kmean": 6, "kbin": 6, "irrevers": 6, "exponeti": 6, "extrapol": 6, "n_harmnon": 6, "quadrat": 6, "revers": [6, 9], "highest": [6, 7, 9], "But": 6, "1600": 6, "upstream": 6, "regression_param": 6, "grouping_forward_limit": 6, "max_level_shift": 6, "old_wai": 6, "serious": 6, "alter": 6, "rolling_window": 6, "n_futur": 6, "macro_micro": 6, "simpli": [6, 9], "residu": 6, "demand": [6, 9], "plai": 6, "center_on": 6, "assur": [6, 9], "run_ord": 6, "season_first": 6, "holiday_param": [6, 9], "trend_method": 6, "local_linear": 6, "dv": 6, "reintroduction_model": 6, "reintroducion": 6, "built": 6, "force_int": 6, "ceil": 6, "floor": 6, "decomp_typ": 6, "stl": 6, "seaonal": 6, "seaonsal": 6, "hilbert": 6, "method_arg": 6, "wiener": 6, "savgol_filt": 6, "butter": 6, "cheby1": 6, "cheby2": 6, "ellip": 6, "bessel": 6, "oh": 6, "nice": 6, "ash": 6, "my": 6, "tomato": 6, "pippin": 6, "lm": 6, "tt": 6, "yy": 6, "amp": 6, "omega": 6, "fitfunc": 6, "unsym": 6, "question": 6, "16716302": 6, "sine": 6, "curv": 6, "pylab": 6, "deviat": [6, 9], "revert": 6, "theta_valu": 6, "reconstruct": 6, "halflif": 6, "23199796": 6, "condens": 6, "context_slic": 6, "halfmax": 6, "forecastlength": 6, "twice": 6, "daubechi": 6, "db2": 6, "cosin": 6, "wave": 6, "envelop": 6, "haar": 6, "mexican": 6, "hat": 6, "ricker": 6, "complex": [6, 7], "max_ord": 6, "phase_shift": 6, "anchor": 6, "choic": [6, 9], "unit": [6, 9], "apart": 6, "7734": 6, "float32": 6, "n_record": 6, "num_column": 6, "num_indic": 6, "braycurti": 6, "start_index": 6, "include_last": 6, "indici": 6, "include_differ": 6, "window_shap": 6, "writeabl": 6, "neighbourhood": 6, "gist": 6, "seberg": 6, "3866040": 6, "newer": 6, "toggl": 6, "__version__": 6, "skip_siz": 6, "downsampl": 6, "num": 6, "window_length": 6, "70296498": 6, "numba": 6, "70304475": 6, "1234": 6, "1step": 6, "num_ob": 6, "stride": 6, "trick": 6, "lib": [6, 9], "stride_trick": 6, "rapidli": 7, "deploi": 7, "m6": 7, "competit": 7, "deliv": 7, "invest": 7, "market": 7, "dozen": 7, "usabl": [7, 9], "These": [7, 9], "addition": [7, 9], "proprietari": 7, "readili": 7, "ten": 7, "hundr": 7, "thousand": [7, 9], "exogen": 7, "integr": 7, "automl": 7, "flagship": 7, "abil": [7, 9], "flowchart": 7, "additon": 7, "advis": 7, "come": [7, 9], "ideal": [7, 9], "_hourli": [7, 9], "_monthli": 7, "_weekli": [7, 9], "_yearli": [7, 9], "_live_daili": 7, "fast_parallel": 7, "2019": [7, 9], "forecasts_df": [7, 9], "forecasts_up": 7, "forecasts_low": 7, "particular": [7, 9], "extended_tutori": 7, "md": 7, "guid": 7, "production_exampl": [7, 9], "predefin": 7, "pretti": [7, 9], "environ": [7, 9], "toward": [7, 9], "prioriti": 7, "ram": 7, "instanc": 7, "pretrain": 7, "crtl": 7, "recov": 7, "udf": 7, "obvious": [7, 9], "2x": 7, "3x": 7, "5x": 7, "no_shared_fast": 7, "decreas": 7, "poorer": 7, "satisfactori": [7, 9], "shortag": 7, "pleas": 7, "report": 7, "significantli": 7, "bla": [7, 9], "feedback": 7, "feel": 7, "favorit": 7, "codebas": 7, "td": 7, "Into": 7, "cat": 7, "henc": 7, "logo": 7, "subpackag": 8, "modul": 8, "_daili": 9, "autot": 9, "df_long": 9, "transact": 9, "altern": 9, "coerc": 9, "handi": 9, "side": 9, "oldest": 9, "advantag": 9, "interg": 9, "troubl": 9, "sudden": 9, "overs": 9, "misrepres": 9, "promot": 9, "critic": 9, "tricki": 9, "necess": 9, "leakag": 9, "firstli": 9, "resembl": 9, "enough": 9, "taken": 9, "valdat": 9, "june": 9, "messi": 9, "act": 9, "treat": 9, "suspect": 9, "fairli": 9, "whole": 9, "idea": 9, "suffer": 9, "interst": 9, "94": 9, "minneapoli": 9, "paul": 9, "minnesota": 9, "great": 9, "demonstr": 9, "road": 9, "influenc": 9, "alongsid": 9, "volum": 9, "carri": 9, "care": 9, "weights_hourli": 9, "traffic_volum": 9, "49": 9, "168": 9, "lieu": 9, "upper_forecasts_df": 9, "lower_forecasts_df": 9, "By": 9, "impract": 9, "engin": 9, "simplic": 9, "fault": 9, "switch": 9, "evolv": 9, "develop": 9, "example_filenam": 9, "example_export": 9, "deeper": 9, "subsidiari": 9, "df_forecast": 9, "future_regressor_train2d": 9, "future_regressor_forecast2d": 9, "consider": 9, "overfit": 9, "secondli": 9, "composit": 9, "balanc": 9, "qualiti": 9, "favor": 9, "translat": 9, "symmetr": 9, "versatil": 9, "human": 9, "coverage_fract": 9, "logarithm": 9, "hiearchial": 9, "went": 9, "wavi": 9, "seriou": 9, "someth": 9, "score_breakdown": 9, "skew": 9, "pyplot": 9, "plt": 9, "2018": 9, "09": 9, "26": 9, "mosaic_df": 9, "situat": 9, "tradition": 9, "problem": 9, "exagger": 9, "unfortun": 9, "inher": 9, "sub": 9, "reassign": 9, "drive": 9, "label": 9, "recogniz": 9, "usal": 9, "splice": 9, "latter": 9, "depth": 9, "happen": 9, "no_shar": 9, "possbl": 9, "horizontal_gener": 9, "enembl": 9, "extens": 9, "theoret": 9, "studio": 9, "apt": 9, "yum": 9, "sudo": 9, "openbla": 9, "show_config": 9, "doubl": 9, "haven": 9, "broken": 9, "slide": 9, "poissonreg": 9, "squared_error": 9, "histgradientboostingregressor": 9, "uecm": 9, "uniform_filter1d": 9, "stat": 9, "spatial": 9, "Of": 9, "tend": 9, "cu91": 9, "cu101mkl": 9, "lightgbm": 9, "xgboost": 9, "bring": 9, "venv": 9, "anaconda": 9, "miniforg": 9, "numexpr": 9, "bottleneck": 9, "action": 9, "pystan": 9, "forg": 9, "dep": 9, "ext": 9, "pmdarima": 9, "dill": 9, "upgrad": 9, "pointlessli": 9, "mamba": 9, "tqdm": 9, "intelex": 9, "spyder": 9, "torchvis": 9, "torchaudio": 9, "cpuonli": 9, "gpu": 9, "cuda": 9, "mix": 9, "session": 9, "nvidia": 9, "smi": 9, "cudatoolkit": 9, "cudnn": 9, "nccl": 9, "ld_library_path": 9, "conda_prefix": 9, "perman": 9, "bashrc": 9, "env": 9, "mine": 9, "home": 9, "mambaforg": 9, "torch": 9, "url": 9, "whl": 9, "cu113": 9, "cu112": 9, "command": 9, "interchang": 9, "env_nam": 9, "softwar": 9, "oneapi": 9, "ai": 9, "toolkit": 9, "aikit37": 9, "aikit": 9, "modin": 9, "dpctl": 9, "config": 9, "omp_num_thread": 9, "use_daal4py_sklearn": 9, "bench": 9, "hang": 9, "clear": 9, "overload": 9, "consumpt": 9, "acceler": 9, "persist": 9, "discuss": 9, "reboot": 9, "heavi": 9, "odd": 9, "shouldn": 9, "greatli": 9, "proper": 9, "future_": 9, "certaini": 9, "Such": 9, "plan": 9, "organ": 9, "inorgan": 9, "busi": 9, "anticp": 9, "describ": 9, "hand": 9, "confusingli": 9, "why": 9, "harm": 9, "experi": 9, "scenario": 9, "examin": 9, "enforc": 9, "future_regressor_forecast_2": 9, "prediction_2": 9, "forecasts_df_2": 9, "respons": 9, "multilabel_confusion_matrix": 9, "classification_report": 9, "df_full": 9, "historic_lower_limit": 9, "risk_df_upp": 9, "risk_df_low": 9, "historic_upper_risk_df": 9, "historic_lower_risk_df": 9, "eval_low": 9, "eval_upp": 9, "pred_low": 9, "pred_upp": 9, "zero_divis": 9, "target_nam": 9, "effectiv": 9, "far": 9, "tighter": 9, "extrem": 9, "portion": 9, "analyz": 9, "pick": 9, "anti": 9, "signific": 9, "wiki_pag": 9, "mod": 9, "ll": 9, "full_dat": 9, "date_rang": 9, "2014": 9, "prophet_holidai": 9, "familiar": 9, "manuali": 9, "clarifi": 9, "text": 9, "editor": 9, "guarante": 9, "incorpor": 9, "crude": 9, "meaning": 9, "properli": 9, "coercibl": 9, "unconnect": 9, "transformer_dict": 9, "tran": 9, "df_tran": 9, "df_inv_return": 9, "tradit": 9, "draw": 9, "pool": 9, "massiv": 9, "global": 9, "pars": 9, "gradientboostingregressor": 9, "experiment": 9, "lapack": 9, "nyi": 9, "_": 9}, "objects": {"": [[1, 0, 0, "-", "autots"]], "autots": [[1, 1, 1, "", "AnomalyDetector"], [1, 1, 1, "", "AutoTS"], [1, 1, 1, "", "Cassandra"], [1, 1, 1, "", "EventRiskForecast"], [1, 1, 1, "", "GeneralTransformer"], [1, 1, 1, "", "HolidayDetector"], [1, 1, 1, "", "ModelPrediction"], [1, 4, 1, "", "RandomTransform"], [1, 3, 1, "", "TransformTS"], [1, 4, 1, "", "create_lagged_regressor"], [1, 4, 1, "", "create_regressor"], [2, 0, 0, "-", "datasets"], [3, 0, 0, "-", "evaluator"], [1, 4, 1, "", "infer_frequency"], [1, 4, 1, "", "load_artificial"], [1, 4, 1, "", "load_daily"], [1, 4, 1, "", "load_hourly"], [1, 4, 1, "", "load_linear"], [1, 4, 1, "", "load_live_daily"], [1, 4, 1, "", "load_monthly"], [1, 4, 1, "", "load_sine"], [1, 4, 1, "", "load_weekdays"], [1, 4, 1, "", "load_weekly"], [1, 4, 1, "", "load_yearly"], [1, 4, 1, "", "long_to_wide"], [1, 4, 1, "", "model_forecast"], [4, 0, 0, "-", "models"], [5, 0, 0, "-", "templates"], [6, 0, 0, "-", "tools"]], "autots.AnomalyDetector": [[1, 2, 1, "", "detect"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_anomaly_classifier"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "plot"], [1, 2, 1, "", "score_to_anomaly"]], "autots.AutoTS": [[1, 2, 1, "", "back_forecast"], [1, 3, 1, "", "best_model"], [1, 3, 1, "", "best_model_ensemble"], [1, 3, 1, "", "best_model_name"], [1, 3, 1, "", "best_model_params"], [1, 2, 1, "", "best_model_per_series_mape"], [1, 2, 1, "", "best_model_per_series_score"], [1, 3, 1, "", "best_model_transformation_params"], [1, 2, 1, "", "create_unpredictability_score"], [1, 3, 1, "", "df_wide_numeric"], [1, 2, 1, "", "diagnose_params"], [1, 2, 1, "", "expand_horizontal"], [1, 2, 1, "", "export_best_model"], [1, 2, 1, "", "export_template"], [1, 2, 1, "", "failure_rate"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_data"], [1, 2, 1, "", "get_metric_corr"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "get_params_from_id"], [1, 2, 1, "", "get_top_n_counts"], [1, 2, 1, "", "horizontal_per_generation"], [1, 2, 1, "", "horizontal_to_df"], [1, 2, 1, "", "import_best_model"], [1, 2, 1, "", "import_results"], [1, 2, 1, "", "import_template"], [1, 2, 1, "", "list_failed_model_types"], [1, 2, 1, "", "load_template"], [1, 2, 1, "", "mosaic_to_df"], [1, 2, 1, "", "parse_best_model"], [1, 2, 1, "", "plot_back_forecast"], [1, 2, 1, "", "plot_backforecast"], [1, 2, 1, "", "plot_chosen_transformer"], [1, 2, 1, "", "plot_failure_rate"], [1, 2, 1, "", "plot_generation_loss"], [1, 2, 1, "", "plot_horizontal"], [1, 2, 1, "", "plot_horizontal_model_count"], [1, 2, 1, "", "plot_horizontal_per_generation"], [1, 2, 1, "", "plot_horizontal_transformers"], [1, 2, 1, "", "plot_metric_corr"], [1, 2, 1, "", "plot_model_failure_rate"], [1, 2, 1, "", "plot_mosaic"], [1, 2, 1, "", "plot_per_series_error"], [1, 2, 1, "", "plot_per_series_mape"], [1, 2, 1, "", "plot_per_series_smape"], [1, 2, 1, "", "plot_series_corr"], [1, 2, 1, "", "plot_transformer_by_class"], [1, 2, 1, "", "plot_transformer_failure_rate"], [1, 2, 1, "", "plot_unpredictability"], [1, 2, 1, "", "plot_validations"], [1, 2, 1, "", "predict"], [1, 3, 1, "", "regression_check"], [1, 2, 1, "", "results"], [1, 2, 1, "", "retrieve_validation_forecasts"], [1, 2, 1, "", "save_template"], [1, 3, 1, "", "score_per_series"], [1, 2, 1, "", "validation_agg"]], "autots.AutoTS.initial_results": [[1, 3, 1, "", "model_results"]], "autots.Cassandra..anomaly_detector": [[1, 3, 1, "", "anomalies"], [1, 3, 1, "", "scores"]], "autots.Cassandra.": [[1, 3, 1, "", "holiday_count"], [1, 3, 1, "", "holidays"], [1, 3, 1, "", "params"], [1, 3, 1, "", "predict_x_array"], [1, 3, 1, "", "predicted_trend"], [1, 3, 1, "", "trend_train"], [1, 3, 1, "", "x_array"]], "autots.Cassandra": [[1, 2, 1, "", "analyze_trend"], [1, 2, 1, "", "auto_fit"], [1, 2, 1, "", "base_scaler"], [1, 2, 1, "", "compare_actual_components"], [1, 2, 1, "", "create_forecast_index"], [1, 2, 1, "", "create_t"], [1, 2, 1, "", "cross_validate"], [1, 2, 1, "", "feature_importance"], [1, 2, 1, "id0", "fit"], [1, 2, 1, "", "fit_data"], [1, 2, 1, "id1", "get_new_params"], [1, 2, 1, "", "get_params"], [1, 2, 1, "", "next_fit"], [1, 2, 1, "id2", "plot_components"], [1, 2, 1, "id3", "plot_forecast"], [1, 2, 1, "", "plot_things"], [1, 2, 1, "id4", "plot_trend"], [1, 2, 1, "id5", "predict"], [1, 2, 1, "", "predict_new_product"], [1, 2, 1, "", "process_components"], [1, 2, 1, "id6", "return_components"], [1, 2, 1, "", "rolling_trend"], [1, 2, 1, "", "scale_data"], [1, 2, 1, "", "to_origin_space"], [1, 2, 1, "", "treatment_causal_impact"], [1, 2, 1, "", "trend_analysis"]], "autots.Cassandra.holiday_detector": [[1, 2, 1, "", "dates_to_holidays"]], "autots.EventRiskForecast": [[1, 2, 1, "id9", "fit"], [1, 2, 1, "id10", "generate_historic_risk_array"], [1, 2, 1, "id11", "generate_result_windows"], [1, 2, 1, "id12", "generate_risk_array"], [1, 2, 1, "id13", "plot"], [1, 2, 1, "", "plot_eval"], [1, 2, 1, "id14", "predict"], [1, 2, 1, "id15", "predict_historic"], [1, 2, 1, "id16", "set_limit"]], "autots.GeneralTransformer": [[1, 2, 1, "", "fill_na"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_transform"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "inverse_transform"], [1, 2, 1, "", "retrieve_transformer"], [1, 2, 1, "", "transform"]], "autots.HolidayDetector": [[1, 2, 1, "", "dates_to_holidays"], [1, 2, 1, "", "detect"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "plot"], [1, 2, 1, "", "plot_anomaly"]], "autots.ModelPrediction": [[1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_data"], [1, 2, 1, "", "fit_predict"], [1, 2, 1, "", "predict"]], "autots.datasets": [[2, 0, 0, "-", "fred"], [2, 4, 1, "", "load_artificial"], [2, 4, 1, "", "load_daily"], [2, 4, 1, "", "load_hourly"], [2, 4, 1, "", "load_linear"], [2, 4, 1, "", "load_live_daily"], [2, 4, 1, "", "load_monthly"], [2, 4, 1, "", "load_sine"], [2, 4, 1, "", "load_weekdays"], [2, 4, 1, "", "load_weekly"], [2, 4, 1, "", "load_yearly"], [2, 4, 1, "", "load_zeroes"]], "autots.datasets.fred": [[2, 4, 1, "", "get_fred_data"]], "autots.evaluator": [[3, 0, 0, "-", "anomaly_detector"], [3, 0, 0, "-", "auto_model"], [3, 0, 0, "-", "auto_ts"], [3, 0, 0, "-", "benchmark"], [3, 0, 0, "-", "event_forecasting"], [3, 0, 0, "-", "metrics"], [3, 0, 0, "-", "validation"]], "autots.evaluator.anomaly_detector": [[3, 1, 1, "", "AnomalyDetector"], [3, 1, 1, "", "HolidayDetector"]], "autots.evaluator.anomaly_detector.AnomalyDetector": [[3, 2, 1, "", "detect"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "fit_anomaly_classifier"], [3, 2, 1, "", "get_new_params"], [3, 2, 1, "", "plot"], [3, 2, 1, "", "score_to_anomaly"]], "autots.evaluator.anomaly_detector.HolidayDetector": [[3, 2, 1, "", "dates_to_holidays"], [3, 2, 1, "", "detect"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "get_new_params"], [3, 2, 1, "", "plot"], [3, 2, 1, "", "plot_anomaly"]], "autots.evaluator.auto_model": [[3, 4, 1, "", "ModelMonster"], [3, 1, 1, "", "ModelPrediction"], [3, 4, 1, "", "NewGeneticTemplate"], [3, 4, 1, "", "RandomTemplate"], [3, 1, 1, "", "TemplateEvalObject"], [3, 4, 1, "", "TemplateWizard"], [3, 4, 1, "", "UniqueTemplates"], [3, 4, 1, "", "back_forecast"], [3, 4, 1, "", "create_model_id"], [3, 4, 1, "", "dict_recombination"], [3, 4, 1, "", "generate_score"], [3, 4, 1, "", "generate_score_per_series"], [3, 4, 1, "", "horizontal_template_to_model_list"], [3, 4, 1, "", "model_forecast"], [3, 4, 1, "", "random_model"], [3, 4, 1, "", "remove_leading_zeros"], [3, 4, 1, "", "trans_dict_recomb"], [3, 4, 1, "", "unpack_ensemble_models"], [3, 4, 1, "", "validation_aggregation"]], "autots.evaluator.auto_model.ModelPrediction": [[3, 2, 1, "", "fit"], [3, 2, 1, "", "fit_data"], [3, 2, 1, "", "fit_predict"], [3, 2, 1, "", "predict"]], "autots.evaluator.auto_model.TemplateEvalObject": [[3, 2, 1, "", "concat"], [3, 3, 1, "", "full_mae_errors"], [3, 3, 1, "", "full_mae_ids"], [3, 2, 1, "", "load"], [3, 2, 1, "", "save"]], "autots.evaluator.auto_ts": [[3, 1, 1, "", "AutoTS"], [3, 4, 1, "", "error_correlations"], [3, 4, 1, "", "fake_regressor"]], "autots.evaluator.auto_ts.AutoTS": [[3, 2, 1, "", "back_forecast"], [3, 3, 1, "", "best_model"], [3, 3, 1, "", "best_model_ensemble"], [3, 3, 1, "", "best_model_name"], [3, 3, 1, "", "best_model_params"], [3, 2, 1, "", "best_model_per_series_mape"], [3, 2, 1, "", "best_model_per_series_score"], [3, 3, 1, "", "best_model_transformation_params"], [3, 2, 1, "", "create_unpredictability_score"], [3, 3, 1, "", "df_wide_numeric"], [3, 2, 1, "", "diagnose_params"], [3, 2, 1, "", "expand_horizontal"], [3, 2, 1, "", "export_best_model"], [3, 2, 1, "", "export_template"], [3, 2, 1, "", "failure_rate"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "fit_data"], [3, 2, 1, "", "get_metric_corr"], [3, 2, 1, "", "get_new_params"], [3, 2, 1, "", "get_params_from_id"], [3, 2, 1, "", "get_top_n_counts"], [3, 2, 1, "", "horizontal_per_generation"], [3, 2, 1, "", "horizontal_to_df"], [3, 2, 1, "", "import_best_model"], [3, 2, 1, "", "import_results"], [3, 2, 1, "", "import_template"], [3, 2, 1, "", "list_failed_model_types"], [3, 2, 1, "", "load_template"], [3, 2, 1, "", "mosaic_to_df"], [3, 2, 1, "", "parse_best_model"], [3, 2, 1, "", "plot_back_forecast"], [3, 2, 1, "", "plot_backforecast"], [3, 2, 1, "", "plot_chosen_transformer"], [3, 2, 1, "", "plot_failure_rate"], [3, 2, 1, "", "plot_generation_loss"], [3, 2, 1, "", "plot_horizontal"], [3, 2, 1, "", "plot_horizontal_model_count"], [3, 2, 1, "", "plot_horizontal_per_generation"], [3, 2, 1, "", "plot_horizontal_transformers"], [3, 2, 1, "", "plot_metric_corr"], [3, 2, 1, "", "plot_model_failure_rate"], [3, 2, 1, "", "plot_mosaic"], [3, 2, 1, "", "plot_per_series_error"], [3, 2, 1, "", "plot_per_series_mape"], [3, 2, 1, "", "plot_per_series_smape"], [3, 2, 1, "", "plot_series_corr"], [3, 2, 1, "", "plot_transformer_by_class"], [3, 2, 1, "", "plot_transformer_failure_rate"], [3, 2, 1, "", "plot_unpredictability"], [3, 2, 1, "", "plot_validations"], [3, 2, 1, "", "predict"], [3, 3, 1, "", "regression_check"], [3, 2, 1, "", "results"], [3, 2, 1, "", "retrieve_validation_forecasts"], [3, 2, 1, "", "save_template"], [3, 3, 1, "", "score_per_series"], [3, 2, 1, "", "validation_agg"]], "autots.evaluator.auto_ts.AutoTS.initial_results": [[3, 3, 1, "", "model_results"]], "autots.evaluator.benchmark": [[3, 1, 1, "", "Benchmark"]], "autots.evaluator.benchmark.Benchmark": [[3, 2, 1, "", "run"]], "autots.evaluator.event_forecasting": [[3, 1, 1, "", "EventRiskForecast"], [3, 4, 1, "", "extract_result_windows"], [3, 4, 1, "", "extract_window_index"], [3, 4, 1, "", "set_limit_forecast"], [3, 4, 1, "", "set_limit_forecast_historic"]], "autots.evaluator.event_forecasting.EventRiskForecast": [[3, 2, 1, "id0", "fit"], [3, 2, 1, "id7", "generate_historic_risk_array"], [3, 2, 1, "id8", "generate_result_windows"], [3, 2, 1, "id9", "generate_risk_array"], [3, 2, 1, "id10", "plot"], [3, 2, 1, "", "plot_eval"], [3, 2, 1, "id11", "predict"], [3, 2, 1, "id12", "predict_historic"], [3, 2, 1, "id13", "set_limit"]], "autots.evaluator.metrics": [[3, 4, 1, "", "array_last_val"], [3, 4, 1, "", "chi_squared_hist_distribution_loss"], [3, 4, 1, "", "containment"], [3, 4, 1, "", "contour"], [3, 4, 1, "", "default_scaler"], [3, 4, 1, "", "dwae"], [3, 4, 1, "", "full_metric_evaluation"], [3, 4, 1, "", "kde"], [3, 4, 1, "", "kde_kl_distance"], [3, 4, 1, "", "kl_divergence"], [3, 4, 1, "", "linearity"], [3, 4, 1, "", "mae"], [3, 4, 1, "", "mda"], [3, 4, 1, "", "mean_absolute_differential_error"], [3, 4, 1, "", "mean_absolute_error"], [3, 4, 1, "", "medae"], [3, 4, 1, "", "median_absolute_error"], [3, 4, 1, "", "mlvb"], [3, 4, 1, "", "mqae"], [3, 4, 1, "", "msle"], [3, 4, 1, "", "numpy_ffill"], [3, 4, 1, "", "oda"], [3, 4, 1, "", "pinball_loss"], [3, 4, 1, "", "precomp_wasserstein"], [3, 4, 1, "", "qae"], [3, 4, 1, "", "rmse"], [3, 4, 1, "", "root_mean_square_error"], [3, 4, 1, "", "rps"], [3, 4, 1, "", "scaled_pinball_loss"], [3, 4, 1, "", "smape"], [3, 4, 1, "", "smoothness"], [3, 4, 1, "", "spl"], [3, 4, 1, "", "symmetric_mean_absolute_percentage_error"], [3, 4, 1, "", "threshold_loss"], [3, 4, 1, "", "unsorted_wasserstein"], [3, 4, 1, "", "wasserstein"]], "autots.evaluator.validation": [[3, 4, 1, "", "extract_seasonal_val_periods"], [3, 4, 1, "", "generate_validation_indices"], [3, 4, 1, "", "validate_num_validations"]], "autots.models": [[4, 0, 0, "-", "arch"], [4, 0, 0, "-", "base"], [4, 0, 0, "-", "basics"], [4, 0, 0, "-", "cassandra"], [4, 0, 0, "-", "dnn"], [4, 0, 0, "-", "ensemble"], [4, 0, 0, "-", "gluonts"], [4, 0, 0, "-", "greykite"], [4, 0, 0, "-", "matrix_var"], [4, 0, 0, "-", "mlensemble"], [4, 0, 0, "-", "model_list"], [4, 0, 0, "-", "neural_forecast"], [4, 0, 0, "-", "prophet"], [4, 0, 0, "-", "pytorch"], [4, 0, 0, "-", "sklearn"], [4, 0, 0, "-", "statsmodels"], [4, 0, 0, "-", "tfp"], [4, 0, 0, "-", "tide"]], "autots.models.arch": [[4, 1, 1, "", "ARCH"]], "autots.models.arch.ARCH": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.base": [[4, 1, 1, "", "ModelObject"], [4, 1, 1, "", "PredictionObject"], [4, 4, 1, "", "apply_constraints"], [4, 4, 1, "", "calculate_peak_density"], [4, 4, 1, "", "create_forecast_index"], [4, 4, 1, "", "create_seaborn_palette_from_cmap"], [4, 4, 1, "", "extract_single_series_from_horz"], [4, 4, 1, "", "extract_single_transformer"], [4, 4, 1, "", "plot_distributions"]], "autots.models.base.ModelObject": [[4, 2, 1, "", "basic_profile"], [4, 2, 1, "", "create_forecast_index"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "time"]], "autots.models.base.PredictionObject": [[4, 2, 1, "id0", "apply_constraints"], [4, 2, 1, "id1", "evaluate"], [4, 2, 1, "", "extract_ensemble_runtimes"], [4, 3, 1, "", "forecast"], [4, 2, 1, "id2", "long_form_results"], [4, 3, 1, "", "lower_forecast"], [4, 3, 1, "", "model_name"], [4, 3, 1, "", "model_parameters"], [4, 2, 1, "id3", "plot"], [4, 2, 1, "", "plot_df"], [4, 2, 1, "", "plot_ensemble_runtimes"], [4, 2, 1, "", "plot_grid"], [4, 2, 1, "id4", "total_runtime"], [4, 3, 1, "", "transformation_parameters"], [4, 3, 1, "", "upper_forecast"]], "autots.models.basics": [[4, 1, 1, "", "AverageValueNaive"], [4, 1, 1, "", "BallTreeMultivariateMotif"], [4, 1, 1, "", "BasicLinearModel"], [4, 1, 1, "", "ConstantNaive"], [4, 1, 1, "", "FFT"], [4, 1, 1, "", "KalmanStateSpace"], [4, 1, 1, "", "LastValueNaive"], [4, 1, 1, "", "MetricMotif"], [4, 1, 1, "", "Motif"], [4, 1, 1, "", "MotifSimulation"], [4, 1, 1, "", "NVAR"], [4, 1, 1, "", "SeasonalNaive"], [4, 1, 1, "", "SeasonalityMotif"], [4, 1, 1, "", "SectionalMotif"], [4, 1, 1, "", "TVVAR"], [4, 3, 1, "", "ZeroesNaive"], [4, 4, 1, "", "looped_motif"], [4, 4, 1, "", "predict_reservoir"]], "autots.models.basics.AverageValueNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.BallTreeMultivariateMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.BasicLinearModel": [[4, 2, 1, "", "base_scaler"], [4, 2, 1, "", "coefficient_summary"], [4, 2, 1, "", "create_x"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "process_components"], [4, 2, 1, "", "return_components"], [4, 2, 1, "", "scale_data"], [4, 2, 1, "", "to_origin_space"]], "autots.models.basics.ConstantNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.FFT": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.KalmanStateSpace": [[4, 2, 1, "", "cost_function"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "tune_observational_noise"]], "autots.models.basics.LastValueNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.MetricMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.Motif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.MotifSimulation": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.NVAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.SeasonalNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.SeasonalityMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.SectionalMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.TVVAR": [[4, 2, 1, "", "apply_beta_threshold"], [4, 2, 1, "", "create_VAR_features"], [4, 2, 1, "", "empty_scaler"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "process_components"]], "autots.models.cassandra": [[4, 1, 1, "", "BayesianMultiOutputRegression"], [4, 1, 1, "", "Cassandra"], [4, 4, 1, "", "clean_regressor"], [4, 4, 1, "", "cost_function_dwae"], [4, 4, 1, "", "cost_function_l1"], [4, 4, 1, "", "cost_function_l1_positive"], [4, 4, 1, "", "cost_function_l2"], [4, 4, 1, "", "cost_function_quantile"], [4, 4, 1, "", "create_t"], [4, 4, 1, "", "fit_linear_model"], [4, 4, 1, "", "lstsq_minimize"], [4, 4, 1, "", "lstsq_solve"]], "autots.models.cassandra.BayesianMultiOutputRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "sample_posterior"]], "autots.models.cassandra.Cassandra..anomaly_detector": [[4, 3, 1, "", "anomalies"], [4, 3, 1, "", "scores"]], "autots.models.cassandra.Cassandra.": [[4, 3, 1, "", "holiday_count"], [4, 3, 1, "", "holidays"], [4, 3, 1, "", "params"], [4, 3, 1, "", "predict_x_array"], [4, 3, 1, "", "predicted_trend"], [4, 3, 1, "", "trend_train"], [4, 3, 1, "", "x_array"]], "autots.models.cassandra.Cassandra": [[4, 2, 1, "", "analyze_trend"], [4, 2, 1, "", "auto_fit"], [4, 2, 1, "", "base_scaler"], [4, 2, 1, "", "compare_actual_components"], [4, 2, 1, "", "create_forecast_index"], [4, 2, 1, "", "create_t"], [4, 2, 1, "", "cross_validate"], [4, 2, 1, "", "feature_importance"], [4, 2, 1, "id5", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "id6", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "next_fit"], [4, 2, 1, "id7", "plot_components"], [4, 2, 1, "id8", "plot_forecast"], [4, 2, 1, "", "plot_things"], [4, 2, 1, "id9", "plot_trend"], [4, 2, 1, "id10", "predict"], [4, 2, 1, "", "predict_new_product"], [4, 2, 1, "", "process_components"], [4, 2, 1, "id11", "return_components"], [4, 2, 1, "", "rolling_trend"], [4, 2, 1, "", "scale_data"], [4, 2, 1, "", "to_origin_space"], [4, 2, 1, "", "treatment_causal_impact"], [4, 2, 1, "", "trend_analysis"]], "autots.models.cassandra.Cassandra.holiday_detector": [[4, 2, 1, "", "dates_to_holidays"]], "autots.models.dnn": [[4, 1, 1, "", "ElasticNetwork"], [4, 1, 1, "", "KerasRNN"], [4, 1, 1, "", "Transformer"], [4, 4, 1, "", "transformer_build_model"], [4, 4, 1, "", "transformer_encoder"]], "autots.models.dnn.ElasticNetwork": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.dnn.KerasRNN": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.dnn.Transformer": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.ensemble": [[4, 4, 1, "", "BestNEnsemble"], [4, 4, 1, "", "DistEnsemble"], [4, 4, 1, "", "EnsembleForecast"], [4, 4, 1, "", "EnsembleTemplateGenerator"], [4, 4, 1, "", "HDistEnsemble"], [4, 4, 1, "", "HorizontalEnsemble"], [4, 4, 1, "", "HorizontalTemplateGenerator"], [4, 4, 1, "", "MosaicEnsemble"], [4, 4, 1, "", "create_unpredictability_score"], [4, 4, 1, "", "find_pattern"], [4, 4, 1, "", "generalize_horizontal"], [4, 4, 1, "", "generate_crosshair_score"], [4, 4, 1, "", "generate_crosshair_score_list"], [4, 4, 1, "", "generate_mosaic_template"], [4, 4, 1, "", "horizontal_classifier"], [4, 4, 1, "", "horizontal_xy"], [4, 4, 1, "", "is_horizontal"], [4, 4, 1, "", "is_mosaic"], [4, 4, 1, "", "mlens_helper"], [4, 4, 1, "", "mosaic_classifier"], [4, 4, 1, "", "mosaic_or_horizontal"], [4, 4, 1, "", "mosaic_to_horizontal"], [4, 4, 1, "", "mosaic_xy"], [4, 4, 1, "", "n_limited_horz"], [4, 4, 1, "", "parse_forecast_length"], [4, 4, 1, "", "parse_horizontal"], [4, 4, 1, "", "parse_mosaic"], [4, 4, 1, "", "process_mosaic_arrays"]], "autots.models.gluonts": [[4, 1, 1, "", "GluonTS"]], "autots.models.gluonts.GluonTS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.greykite": [[4, 1, 1, "", "Greykite"], [4, 4, 1, "", "seek_the_oracle"]], "autots.models.greykite.Greykite": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var": [[4, 1, 1, "", "DMD"], [4, 1, 1, "", "LATC"], [4, 1, 1, "", "MAR"], [4, 1, 1, "", "RRVAR"], [4, 1, 1, "", "TMF"], [4, 4, 1, "", "conj_grad_w"], [4, 4, 1, "", "conj_grad_x"], [4, 4, 1, "", "dmd"], [4, 4, 1, "", "dmd4cast"], [4, 4, 1, "", "dmd_forecast"], [4, 4, 1, "", "ell_w"], [4, 4, 1, "", "ell_x"], [4, 4, 1, "", "generate_Psi"], [4, 4, 1, "", "latc_imputer"], [4, 4, 1, "", "latc_predictor"], [4, 4, 1, "", "mar"], [4, 4, 1, "", "mat2ten"], [4, 4, 1, "", "rrvar"], [4, 4, 1, "", "svt_tnn"], [4, 4, 1, "", "ten2mat"], [4, 4, 1, "", "tmf"], [4, 4, 1, "", "update_cg"], [4, 4, 1, "", "var"], [4, 4, 1, "", "var4cast"]], "autots.models.matrix_var.DMD": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.LATC": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.MAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.RRVAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.TMF": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.mlensemble": [[4, 1, 1, "", "MLEnsemble"], [4, 4, 1, "", "create_feature"]], "autots.models.mlensemble.MLEnsemble": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.model_list": [[4, 4, 1, "", "auto_model_list"], [4, 4, 1, "", "model_list_to_dict"]], "autots.models.neural_forecast": [[4, 1, 1, "", "NeuralForecast"]], "autots.models.neural_forecast.NeuralForecast": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.prophet": [[4, 1, 1, "", "FBProphet"], [4, 1, 1, "", "NeuralProphet"], [4, 4, 1, "", "get_changepoints"]], "autots.models.prophet.FBProphet": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.prophet.NeuralProphet": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.pytorch": [[4, 1, 1, "", "PytorchForecasting"]], "autots.models.pytorch.PytorchForecasting": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn": [[4, 1, 1, "", "ComponentAnalysis"], [4, 1, 1, "", "DatepartRegression"], [4, 1, 1, "", "MultivariateRegression"], [4, 1, 1, "", "PreprocessingRegression"], [4, 1, 1, "", "RandomFourierEncoding"], [4, 1, 1, "", "RollingRegression"], [4, 1, 1, "", "UnivariateRegression"], [4, 1, 1, "", "VectorizedMultiOutputGPR"], [4, 1, 1, "", "WindowRegression"], [4, 4, 1, "", "generate_classifier_params"], [4, 4, 1, "", "generate_regressor_params"], [4, 4, 1, "", "retrieve_classifier"], [4, 4, 1, "", "retrieve_regressor"], [4, 4, 1, "", "rolling_x_regressor"], [4, 4, 1, "", "rolling_x_regressor_regressor"]], "autots.models.sklearn.ComponentAnalysis": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.DatepartRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.MultivariateRegression": [[4, 2, 1, "", "base_scaler"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "scale_data"], [4, 2, 1, "", "to_origin_space"]], "autots.models.sklearn.PreprocessingRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.RandomFourierEncoding": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "transform"]], "autots.models.sklearn.RollingRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.UnivariateRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.VectorizedMultiOutputGPR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"]], "autots.models.sklearn.WindowRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels": [[4, 1, 1, "", "ARDL"], [4, 1, 1, "", "ARIMA"], [4, 1, 1, "", "DynamicFactor"], [4, 1, 1, "", "DynamicFactorMQ"], [4, 1, 1, "", "ETS"], [4, 1, 1, "", "GLM"], [4, 1, 1, "", "GLS"], [4, 1, 1, "", "Theta"], [4, 1, 1, "", "UnobservedComponents"], [4, 1, 1, "", "VAR"], [4, 1, 1, "", "VARMAX"], [4, 1, 1, "", "VECM"], [4, 4, 1, "", "arima_seek_the_oracle"], [4, 4, 1, "", "glm_forecast_by_column"]], "autots.models.statsmodels.ARDL": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.ARIMA": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.DynamicFactor": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.DynamicFactorMQ": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.ETS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.GLM": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.GLS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.Theta": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.UnobservedComponents": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.VAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.VARMAX": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.VECM": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tfp": [[4, 1, 1, "", "TFPRegression"], [4, 1, 1, "", "TFPRegressor"], [4, 1, 1, "", "TensorflowSTS"]], "autots.models.tfp.TFPRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tfp.TFPRegressor": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.tfp.TensorflowSTS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tide": [[4, 1, 1, "", "TiDE"], [4, 1, 1, "", "TimeCovariates"], [4, 1, 1, "", "TimeSeriesdata"], [4, 4, 1, "", "get_HOLIDAYS"], [4, 4, 1, "", "mae_loss"], [4, 4, 1, "", "mape"], [4, 4, 1, "", "nrmse"], [4, 4, 1, "", "rmse"], [4, 4, 1, "", "smape"], [4, 4, 1, "", "wape"]], "autots.models.tide.TiDE": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tide.TimeCovariates": [[4, 2, 1, "", "get_covariates"]], "autots.models.tide.TimeSeriesdata": [[4, 2, 1, "", "test_val_gen"], [4, 2, 1, "", "tf_dataset"], [4, 2, 1, "", "train_gen"]], "autots.templates": [[5, 0, 0, "-", "general"]], "autots.templates.general": [[5, 5, 1, "", "general_template"]], "autots.tools": [[6, 0, 0, "-", "anomaly_utils"], [6, 0, 0, "-", "calendar"], [6, 0, 0, "-", "cointegration"], [6, 0, 0, "-", "constraint"], [6, 0, 0, "-", "cpu_count"], [6, 0, 0, "-", "fast_kalman"], [6, 0, 0, "-", "fft"], [6, 0, 0, "-", "fir_filter"], [6, 0, 0, "-", "hierarchial"], [6, 0, 0, "-", "holiday"], [6, 0, 0, "-", "impute"], [6, 0, 0, "-", "lunar"], [6, 0, 0, "-", "percentile"], [6, 0, 0, "-", "probabilistic"], [6, 0, 0, "-", "profile"], [6, 0, 0, "-", "regressor"], [6, 0, 0, "-", "seasonal"], [6, 0, 0, "-", "shaping"], [6, 0, 0, "-", "thresholding"], [6, 0, 0, "-", "transform"], [6, 0, 0, "-", "wavelet"], [6, 0, 0, "-", "window_functions"]], "autots.tools.anomaly_utils": [[6, 4, 1, "", "anomaly_df_to_holidays"], [6, 4, 1, "", "anomaly_new_params"], [6, 4, 1, "", "create_dates_df"], [6, 4, 1, "", "dates_to_holidays"], [6, 4, 1, "", "detect_anomalies"], [6, 4, 1, "", "gaussian_mixture"], [6, 4, 1, "", "holiday_new_params"], [6, 4, 1, "", "limits_to_anomalies"], [6, 4, 1, "", "loop_sk_outliers"], [6, 4, 1, "", "nonparametric_multivariate"], [6, 4, 1, "", "sk_outliers"], [6, 4, 1, "", "values_to_anomalies"], [6, 4, 1, "", "zscore_survival_function"]], "autots.tools.calendar": [[6, 4, 1, "", "gregorian_to_chinese"], [6, 4, 1, "", "gregorian_to_christian_lunar"], [6, 4, 1, "", "gregorian_to_hebrew"], [6, 4, 1, "", "gregorian_to_hindu"], [6, 4, 1, "", "gregorian_to_islamic"], [6, 4, 1, "", "heb_is_leap"], [6, 4, 1, "", "lunar_from_lunar"], [6, 4, 1, "", "lunar_from_lunar_full"], [6, 4, 1, "", "to_jd"]], "autots.tools.cointegration": [[6, 4, 1, "", "btcd_decompose"], [6, 4, 1, "", "coint_johansen"], [6, 4, 1, "", "fourier_series"], [6, 4, 1, "", "lagmat"]], "autots.tools.constraint": [[6, 4, 1, "", "apply_constraint_single"], [6, 4, 1, "", "apply_fit_constraint"], [6, 4, 1, "", "constant_growth_rate"], [6, 4, 1, "", "constraint_new_params"], [6, 4, 1, "", "fit_constraint"]], "autots.tools.cpu_count": [[6, 4, 1, "", "cpu_count"], [6, 4, 1, "", "set_n_jobs"]], "autots.tools.fast_kalman": [[6, 1, 1, "", "Gaussian"], [6, 1, 1, "", "KalmanFilter"], [6, 4, 1, "", "autoshape"], [6, 4, 1, "", "ddot"], [6, 4, 1, "", "ddot_t_right"], [6, 4, 1, "", "ddot_t_right_old"], [6, 4, 1, "", "dinv"], [6, 4, 1, "", "douter"], [6, 4, 1, "", "em_initial_state"], [6, 4, 1, "", "ensure_matrix"], [6, 4, 1, "", "ensure_stability"], [6, 4, 1, "", "holt_winters_damped_matrices"], [6, 4, 1, "", "new_kalman_params"], [6, 4, 1, "", "predict"], [6, 4, 1, "", "predict_observation"], [6, 4, 1, "", "priv_smooth"], [6, 4, 1, "", "priv_update_with_nan_check"], [6, 4, 1, "", "random_matrix"], [6, 4, 1, "", "random_state_space"], [6, 4, 1, "", "random_state_space_original"], [6, 4, 1, "", "smooth"], [6, 4, 1, "", "stable_pinv"], [6, 4, 1, "", "update"], [6, 4, 1, "", "update_with_nan_check"]], "autots.tools.fast_kalman.Gaussian": [[6, 2, 1, "", "empty"], [6, 2, 1, "", "unvectorize_state"], [6, 2, 1, "", "unvectorize_vars"]], "autots.tools.fast_kalman.KalmanFilter": [[6, 1, 1, "", "Result"], [6, 2, 1, "", "compute"], [6, 2, 1, "", "em"], [6, 2, 1, "", "em_observation_noise"], [6, 2, 1, "", "em_process_noise"], [6, 2, 1, "", "predict"], [6, 2, 1, "", "predict_next"], [6, 2, 1, "", "predict_observation"], [6, 2, 1, "", "smooth"], [6, 2, 1, "", "smooth_current"], [6, 2, 1, "", "update"]], "autots.tools.fft": [[6, 1, 1, "", "FFT"], [6, 4, 1, "", "fourier_extrapolation"]], "autots.tools.fft.FFT": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "generate_harmonics_dataframe"], [6, 2, 1, "", "predict"]], "autots.tools.fir_filter": [[6, 4, 1, "", "apply_fir_filter_time_domain"], [6, 4, 1, "", "apply_fir_filter_to_timeseries"], [6, 4, 1, "", "fft_fir_filter_to_timeseries"], [6, 4, 1, "", "generate_random_fir_params"]], "autots.tools.hierarchial": [[6, 1, 1, "", "hierarchial"]], "autots.tools.hierarchial.hierarchial": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "reconcile"], [6, 2, 1, "", "transform"]], "autots.tools.holiday": [[6, 4, 1, "", "holiday_flag"], [6, 4, 1, "", "query_holidays"]], "autots.tools.impute": [[6, 4, 1, "", "FillNA"], [6, 1, 1, "", "SeasonalityMotifImputer"], [6, 1, 1, "", "SimpleSeasonalityMotifImputer"], [6, 4, 1, "", "biased_ffill"], [6, 4, 1, "", "fake_date_fill"], [6, 4, 1, "", "fake_date_fill_old"], [6, 4, 1, "", "fill_forward"], [6, 4, 1, "", "fill_forward_alt"], [6, 4, 1, "", "fill_mean"], [6, 4, 1, "", "fill_mean_old"], [6, 4, 1, "", "fill_median"], [6, 4, 1, "", "fill_median_old"], [6, 4, 1, "", "fill_one"], [6, 4, 1, "", "fill_zero"], [6, 4, 1, "", "fillna_np"], [6, 4, 1, "", "rolling_mean"]], "autots.tools.impute.SeasonalityMotifImputer": [[6, 2, 1, "", "impute"]], "autots.tools.impute.SimpleSeasonalityMotifImputer": [[6, 2, 1, "", "impute"]], "autots.tools.lunar": [[6, 4, 1, "", "dcos"], [6, 4, 1, "", "dsin"], [6, 4, 1, "", "fixangle"], [6, 4, 1, "", "kepler"], [6, 4, 1, "", "moon_phase"], [6, 4, 1, "", "moon_phase_df"], [6, 4, 1, "", "phase_string"], [6, 4, 1, "", "todeg"], [6, 4, 1, "", "torad"]], "autots.tools.percentile": [[6, 4, 1, "", "nan_percentile"], [6, 4, 1, "", "nan_quantile"], [6, 4, 1, "", "trimmed_mean"]], "autots.tools.probabilistic": [[6, 4, 1, "", "Point_to_Probability"], [6, 4, 1, "", "Variable_Point_to_Probability"], [6, 4, 1, "", "historic_quantile"], [6, 4, 1, "", "inferred_normal"], [6, 4, 1, "", "percentileofscore_appliable"]], "autots.tools.profile": [[6, 4, 1, "", "data_profile"], [6, 4, 1, "", "profile_time_series"], [6, 4, 1, "", "summarize_series"]], "autots.tools.regressor": [[6, 4, 1, "", "create_lagged_regressor"], [6, 4, 1, "", "create_regressor"]], "autots.tools.seasonal": [[6, 4, 1, "", "changepoint_fcst_from_last_row"], [6, 4, 1, "", "create_changepoint_features"], [6, 4, 1, "", "create_datepart_components"], [6, 4, 1, "", "create_seasonality_feature"], [6, 4, 1, "", "date_part"], [6, 4, 1, "", "fourier_df"], [6, 4, 1, "", "fourier_series"], [6, 4, 1, "", "half_yr_spacing"], [6, 4, 1, "", "random_datepart"], [6, 4, 1, "", "seasonal_independent_match"], [6, 4, 1, "", "seasonal_int"], [6, 4, 1, "", "seasonal_repeating_wavelet"], [6, 4, 1, "", "seasonal_window_match"]], "autots.tools.shaping": [[6, 1, 1, "", "NumericTransformer"], [6, 4, 1, "", "clean_weights"], [6, 4, 1, "", "df_cleanup"], [6, 4, 1, "", "freq_to_timedelta"], [6, 4, 1, "", "infer_frequency"], [6, 4, 1, "", "long_to_wide"], [6, 4, 1, "", "simple_train_test_split"], [6, 4, 1, "", "split_digits_and_non_digits"], [6, 4, 1, "", "subset_series"], [6, 4, 1, "", "wide_to_3d"]], "autots.tools.shaping.NumericTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.thresholding": [[6, 1, 1, "", "NonparametricThreshold"], [6, 4, 1, "", "consecutive_groups"], [6, 4, 1, "", "nonparametric"]], "autots.tools.thresholding.NonparametricThreshold": [[6, 2, 1, "", "compare_to_epsilon"], [6, 2, 1, "", "find_epsilon"], [6, 2, 1, "", "prune_anoms"], [6, 2, 1, "", "score_anomalies"]], "autots.tools.transform": [[6, 1, 1, "", "AlignLastDiff"], [6, 1, 1, "", "AlignLastValue"], [6, 1, 1, "", "AnomalyRemoval"], [6, 1, 1, "", "BKBandpassFilter"], [6, 1, 1, "", "BTCD"], [6, 1, 1, "", "CenterLastValue"], [6, 1, 1, "", "CenterSplit"], [6, 1, 1, "", "ChangepointDetrend"], [6, 1, 1, "", "ClipOutliers"], [6, 1, 1, "", "Cointegration"], [6, 1, 1, "", "Constraint"], [6, 1, 1, "", "CumSumTransformer"], [6, 3, 1, "", "DatepartRegression"], [6, 1, 1, "", "DatepartRegressionTransformer"], [6, 1, 1, "", "Detrend"], [6, 1, 1, "", "DiffSmoother"], [6, 1, 1, "", "DifferencedTransformer"], [6, 1, 1, "", "Discretize"], [6, 1, 1, "", "EWMAFilter"], [6, 1, 1, "", "EmptyTransformer"], [6, 1, 1, "", "FFTDecomposition"], [6, 1, 1, "", "FFTFilter"], [6, 1, 1, "", "FIRFilter"], [6, 1, 1, "", "FastICA"], [6, 1, 1, "", "GeneralTransformer"], [6, 1, 1, "", "HPFilter"], [6, 1, 1, "", "HistoricValues"], [6, 1, 1, "", "HolidayTransformer"], [6, 1, 1, "", "IntermittentOccurrence"], [6, 1, 1, "", "KalmanSmoothing"], [6, 1, 1, "", "LevelShiftMagic"], [6, 3, 1, "", "LevelShiftTransformer"], [6, 1, 1, "", "LocalLinearTrend"], [6, 1, 1, "", "MeanDifference"], [6, 1, 1, "", "MeanPercentSplitter"], [6, 1, 1, "", "PCA"], [6, 1, 1, "", "PctChangeTransformer"], [6, 1, 1, "", "PositiveShift"], [6, 4, 1, "", "RandomTransform"], [6, 1, 1, "", "RegressionFilter"], [6, 1, 1, "", "ReplaceConstant"], [6, 1, 1, "", "RollingMeanTransformer"], [6, 1, 1, "", "Round"], [6, 1, 1, "", "STLFilter"], [6, 1, 1, "", "ScipyFilter"], [6, 1, 1, "", "SeasonalDifference"], [6, 1, 1, "", "ShiftFirstValue"], [6, 1, 1, "", "SinTrend"], [6, 1, 1, "", "Slice"], [6, 1, 1, "", "StandardScaler"], [6, 1, 1, "", "StatsmodelsFilter"], [6, 1, 1, "", "ThetaTransformer"], [6, 4, 1, "", "bkfilter_st"], [6, 4, 1, "", "clip_outliers"], [6, 4, 1, "", "exponential_decay"], [6, 4, 1, "", "get_transformer_params"], [6, 4, 1, "", "random_cleaners"], [6, 4, 1, "", "remove_outliers"], [6, 4, 1, "", "simple_context_slicer"], [6, 4, 1, "", "transformer_list_to_dict"]], "autots.tools.transform.AlignLastDiff": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.AlignLastValue": [[6, 2, 1, "", "find_centerpoint"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.AnomalyRemoval": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_anomaly_classifier"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "score_to_anomaly"], [6, 2, 1, "", "transform"]], "autots.tools.transform.BKBandpassFilter": [[6, 2, 1, "", "filter"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.BTCD": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.CenterLastValue": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.CenterSplit": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ChangepointDetrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ClipOutliers": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Cointegration": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Constraint": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.CumSumTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.DatepartRegressionTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "impute"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Detrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.DiffSmoother": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.DifferencedTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Discretize": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.EWMAFilter": [[6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.EmptyTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FFTDecomposition": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FFTFilter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FIRFilter": [[6, 2, 1, "", "filter"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FastICA": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.GeneralTransformer": [[6, 2, 1, "", "fill_na"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "retrieve_transformer"], [6, 2, 1, "", "transform"]], "autots.tools.transform.HPFilter": [[6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.HistoricValues": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.HolidayTransformer": [[6, 2, 1, "", "dates_to_holidays"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.IntermittentOccurrence": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.KalmanSmoothing": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.LevelShiftMagic": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.LocalLinearTrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.MeanDifference": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.MeanPercentSplitter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.PCA": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.PctChangeTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.PositiveShift": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.RegressionFilter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ReplaceConstant": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.RollingMeanTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Round": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.STLFilter": [[6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ScipyFilter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.SeasonalDifference": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ShiftFirstValue": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.SinTrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_sin"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Slice": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.StandardScaler": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.StatsmodelsFilter": [[6, 2, 1, "", "bkfilter"], [6, 2, 1, "", "cffilter"], [6, 2, 1, "", "convolution_filter"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ThetaTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.wavelet": [[6, 4, 1, "", "continuous_db2_wavelet"], [6, 4, 1, "", "create_daubechies_db2_wavelet"], [6, 4, 1, "", "create_gaussian_wavelet"], [6, 4, 1, "", "create_haar_wavelet"], [6, 4, 1, "", "create_mexican_hat_wavelet"], [6, 4, 1, "", "create_morlet_wavelet"], [6, 4, 1, "", "create_narrowing_wavelets"], [6, 4, 1, "", "create_real_morlet_wavelet"], [6, 4, 1, "", "create_wavelet"], [6, 4, 1, "", "offset_wavelet"]], "autots.tools.window_functions": [[6, 4, 1, "", "chunk_reshape"], [6, 4, 1, "", "last_window"], [6, 4, 1, "", "np_2d_arange"], [6, 4, 1, "", "retrieve_closest_indices"], [6, 4, 1, "", "rolling_window_view"], [6, 4, 1, "", "sliding_window_view"], [6, 4, 1, "", "window_id_maker"], [6, 4, 1, "", "window_lin_reg"], [6, 4, 1, "", "window_lin_reg_mean"], [6, 4, 1, "", "window_lin_reg_mean_no_nan"], [6, 4, 1, "", "window_maker"], [6, 4, 1, "", "window_maker_2"], [6, 4, 1, "", "window_maker_3"], [6, 4, 1, "", "window_sum_mean"], [6, 4, 1, "", "window_sum_mean_nan_tail"], [6, 4, 1, "", "window_sum_nan_mean"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "data", "Python data"]}, "titleterms": {"autot": [0, 1, 2, 3, 4, 5, 6, 7, 8], "instal": [0, 7, 9], "get": 0, "start": 0, "modul": [0, 1, 2, 3, 4, 5, 6], "api": 0, "indic": 0, "tabl": [0, 7, 9], "packag": [1, 2, 3, 4, 5, 6, 9], "subpackag": 1, "content": [1, 2, 3, 4, 5, 6, 7, 9], "dataset": 2, "submodul": [2, 3, 4, 5, 6], "fred": 2, "evalu": 3, "anomaly_detector": 3, "auto_model": 3, "auto_t": 3, "benchmark": [3, 9], "event_forecast": 3, "metric": [3, 9], "valid": [3, 9], "model": [4, 9], "arch": 4, "base": 4, "basic": [4, 7], "cassandra": 4, "dnn": 4, "ensembl": [4, 9], "gluont": 4, "greykit": 4, "matrix_var": 4, "mlensembl": 4, "model_list": 4, "neural_forecast": 4, "prophet": 4, "pytorch": 4, "sklearn": 4, "statsmodel": 4, "tfp": 4, "tide": 4, "templat": [5, 9], "gener": 5, "tool": 6, "anomaly_util": 6, "calendar": 6, "cointegr": 6, "constraint": 6, "cpu_count": 6, "fast_kalman": 6, "usag": 6, "exampl": [6, 9], "fft": 6, "fir_filt": 6, "hierarchi": [6, 9], "holidai": 6, "imput": 6, "lunar": 6, "percentil": 6, "probabilist": 6, "profil": 6, "regressor": [6, 9], "season": 6, "shape": 6, "threshold": 6, "transform": [6, 9], "wavelet": 6, "window_funct": 6, "intro": 7, "us": [7, 9], "tip": 7, "speed": [7, 9], "larg": 7, "data": [7, 9], "how": 7, "contribut": 7, "process": [7, 9], "tutori": 9, "extend": 9, "A": 9, "simpl": 9, "import": 9, "you": 9, "can": 9, "tailor": 9, "few": 9, "wai": 9, "what": 9, "worri": 9, "about": 9, "cross": 9, "anoth": 9, "list": 9, "deploy": 9, "export": 9, "run": 9, "just": 9, "One": 9, "group": 9, "forecast": 9, "depend": 9, "version": 9, "requir": 9, "option": 9, "safest": 9, "bet": 9, "intel": 9, "conda": 9, "channel": 9, "sometim": 9, "faster": 9, "also": 9, "more": 9, "prone": 9, "bug": 9, "caveat": 9, "advic": 9, "mysteri": 9, "crash": 9, "seri": 9, "id": 9, "realli": 9, "need": 9, "uniqu": 9, "column": 9, "name": 9, "all": 9, "wide": 9, "short": 9, "train": 9, "histori": 9, "ad": 9, "other": 9, "inform": 9, "simul": 9, "event": 9, "risk": 9, "anomali": 9, "detect": 9, "hack": 9, "pass": 9, "paramet": 9, "aren": 9, "t": 9, "otherwis": 9, "avail": 9, "categor": 9, "custom": 9, "unusu": 9, "frequenc": 9, "independ": 9, "note": 9, "regress": 9}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 60}, "alltitles": {"AutoTS": [[0, "autots"], [7, "autots"]], "Installation": [[0, "installation"], [7, "id1"]], "Getting Started": [[0, "getting-started"]], "Modules API": [[0, "modules-api"]], "Indices and tables": [[0, "indices-and-tables"]], "autots package": [[1, "autots-package"]], "Subpackages": [[1, "subpackages"]], "Module contents": [[1, "module-autots"], [2, "module-autots.datasets"], [3, "module-autots.evaluator"], [4, "module-autots.models"], [5, "module-autots.templates"], [6, "module-autots.tools"]], ")": [[1, "id19"], [2, "id3"]], "autots.datasets package": [[2, "autots-datasets-package"]], "Submodules": [[2, "submodules"], [3, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"]], "autots.datasets.fred module": [[2, "module-autots.datasets.fred"]], "autots.evaluator package": [[3, "autots-evaluator-package"]], "autots.evaluator.anomaly_detector module": [[3, "module-autots.evaluator.anomaly_detector"]], "autots.evaluator.auto_model module": [[3, "module-autots.evaluator.auto_model"]], "autots.evaluator.auto_ts module": [[3, "module-autots.evaluator.auto_ts"]], "autots.evaluator.benchmark module": [[3, "module-autots.evaluator.benchmark"]], "autots.evaluator.event_forecasting module": [[3, "module-autots.evaluator.event_forecasting"]], "autots.evaluator.metrics module": [[3, "module-autots.evaluator.metrics"]], "autots.evaluator.validation module": [[3, "module-autots.evaluator.validation"]], "autots.models package": [[4, "autots-models-package"]], "autots.models.arch module": [[4, "module-autots.models.arch"]], "autots.models.base module": [[4, "module-autots.models.base"]], "autots.models.basics module": [[4, "module-autots.models.basics"]], "autots.models.cassandra module": [[4, "module-autots.models.cassandra"]], "autots.models.dnn module": [[4, "module-autots.models.dnn"]], "autots.models.ensemble module": [[4, "module-autots.models.ensemble"]], "autots.models.gluonts module": [[4, "module-autots.models.gluonts"]], "autots.models.greykite module": [[4, "module-autots.models.greykite"]], "autots.models.matrix_var module": [[4, "module-autots.models.matrix_var"]], "autots.models.mlensemble module": [[4, "module-autots.models.mlensemble"]], "autots.models.model_list module": [[4, "module-autots.models.model_list"]], "autots.models.neural_forecast module": [[4, "module-autots.models.neural_forecast"]], "autots.models.prophet module": [[4, "module-autots.models.prophet"]], "autots.models.pytorch module": [[4, "module-autots.models.pytorch"]], "autots.models.sklearn module": [[4, "module-autots.models.sklearn"]], "autots.models.statsmodels module": [[4, "module-autots.models.statsmodels"]], "autots.models.tfp module": [[4, "module-autots.models.tfp"]], "autots.models.tide module": [[4, "module-autots.models.tide"]], "autots.templates package": [[5, "autots-templates-package"]], "autots.templates.general module": [[5, "module-autots.templates.general"]], "autots.tools package": [[6, "autots-tools-package"]], "autots.tools.anomaly_utils module": [[6, "module-autots.tools.anomaly_utils"]], "autots.tools.calendar module": [[6, "module-autots.tools.calendar"]], "autots.tools.cointegration module": [[6, "module-autots.tools.cointegration"]], "autots.tools.constraint module": [[6, "module-autots.tools.constraint"]], "autots.tools.cpu_count module": [[6, "module-autots.tools.cpu_count"]], "autots.tools.fast_kalman module": [[6, "module-autots.tools.fast_kalman"]], "Usage example": [[6, "usage-example"]], "autots.tools.fft module": [[6, "module-autots.tools.fft"]], "autots.tools.fir_filter module": [[6, "module-autots.tools.fir_filter"]], "autots.tools.hierarchial module": [[6, "module-autots.tools.hierarchial"]], "autots.tools.holiday module": [[6, "module-autots.tools.holiday"]], "autots.tools.impute module": [[6, "module-autots.tools.impute"]], "autots.tools.lunar module": [[6, "module-autots.tools.lunar"]], "autots.tools.percentile module": [[6, "module-autots.tools.percentile"]], "autots.tools.probabilistic module": [[6, "module-autots.tools.probabilistic"]], "autots.tools.profile module": [[6, "module-autots.tools.profile"]], "autots.tools.regressor module": [[6, "module-autots.tools.regressor"]], "autots.tools.seasonal module": [[6, "module-autots.tools.seasonal"]], "autots.tools.shaping module": [[6, "module-autots.tools.shaping"]], "autots.tools.thresholding module": [[6, "module-autots.tools.thresholding"]], "autots.tools.transform module": [[6, "module-autots.tools.transform"]], "autots.tools.wavelet module": [[6, "module-autots.tools.wavelet"]], "autots.tools.window_functions module": [[6, "module-autots.tools.window_functions"]], "Intro": [[7, "intro"]], "Table of Contents": [[7, "table-of-contents"], [9, "table-of-contents"]], "Basic Use": [[7, "id2"]], "Tips for Speed and Large Data:": [[7, "id3"]], "How to Contribute:": [[7, "how-to-contribute"]], "AutoTS Process": [[7, "autots-process"]], "autots": [[8, "autots"]], "Tutorial": [[9, "tutorial"]], "Extended Tutorial": [[9, "extended-tutorial"]], "A simple example": [[9, "id1"]], "Import of data": [[9, "import-of-data"]], "You can tailor the process in a few ways\u2026": [[9, "you-can-tailor-the-process-in-a-few-ways"]], "What to Worry About": [[9, "what-to-worry-about"]], "Validation and Cross Validation": [[9, "id2"]], "Another Example:": [[9, "id3"]], "Model Lists": [[9, "id4"]], "Deployment and Template Import/Export": [[9, "deployment-and-template-import-export"]], "Running Just One Model": [[9, "id5"]], "Metrics": [[9, "id6"]], "Hierarchial and Grouped Forecasts": [[9, "hierarchial-and-grouped-forecasts"]], "Ensembles": [[9, "id7"]], "Installation and Dependency Versioning": [[9, "installation-and-dependency-versioning"]], "Requirements:": [[9, "requirements"]], "Optional Packages": [[9, "optional-packages"]], "Safest bet for installation:": [[9, "safest-bet-for-installation"]], "Intel conda channel installation (sometime faster, also, more prone to bugs)": [[9, "intel-conda-channel-installation-sometime-faster-also-more-prone-to-bugs"]], "Speed Benchmark": [[9, "speed-benchmark"]], "Caveats and Advice": [[9, "caveats-and-advice"]], "Mysterious crashes": [[9, "mysterious-crashes"]], "Series IDs really need to be unique (or column names need to be all unique in wide data)": [[9, "series-ids-really-need-to-be-unique-or-column-names-need-to-be-all-unique-in-wide-data"]], "Short Training History": [[9, "short-training-history"]], "Adding regressors and other information": [[9, "adding-regressors-and-other-information"]], "Simulation Forecasting": [[9, "id8"]], "Event Risk Forecasting and Anomaly Detection": [[9, "event-risk-forecasting-and-anomaly-detection"]], "A Hack for Passing in Parameters (that aren\u2019t otherwise available)": [[9, "a-hack-for-passing-in-parameters-that-aren-t-otherwise-available"]], "Categorical Data": [[9, "categorical-data"]], "Custom and Unusual Frequencies": [[9, "custom-and-unusual-frequencies"]], "Using the Transformers independently": [[9, "using-the-transformers-independently"]], "Note on ~Regression Models": [[9, "note-on-regression-models"]], "Models": [[9, "id9"]]}, "indexentries": {"anomalydetector (class in autots)": [[1, "autots.AnomalyDetector"]], "autots (class in autots)": [[1, "autots.AutoTS"]], "cassandra (class in autots)": [[1, "autots.Cassandra"]], "eventriskforecast (class in autots)": [[1, "autots.EventRiskForecast"]], "generaltransformer (class in autots)": [[1, "autots.GeneralTransformer"]], "holidaydetector (class in autots)": [[1, "autots.HolidayDetector"]], "modelprediction (class in autots)": [[1, "autots.ModelPrediction"]], "randomtransform() (in module autots)": [[1, "autots.RandomTransform"]], "transformts (in module autots)": [[1, "autots.TransformTS"]], "analyze_trend() (autots.cassandra method)": [[1, "autots.Cassandra.analyze_trend"]], "anomalies (autots.cassandra..anomaly_detector attribute)": [[1, "autots.Cassandra..anomaly_detector.anomalies"]], "auto_fit() (autots.cassandra method)": [[1, "autots.Cassandra.auto_fit"]], "autots": [[1, "module-autots"]], "back_forecast() (autots.autots method)": [[1, "autots.AutoTS.back_forecast"]], "base_scaler() (autots.cassandra method)": [[1, "autots.Cassandra.base_scaler"]], "best_model (autots.autots attribute)": [[1, "autots.AutoTS.best_model"]], "best_model_ensemble (autots.autots attribute)": [[1, "autots.AutoTS.best_model_ensemble"]], "best_model_name (autots.autots attribute)": [[1, "autots.AutoTS.best_model_name"]], "best_model_params (autots.autots attribute)": [[1, "autots.AutoTS.best_model_params"]], "best_model_per_series_mape() (autots.autots method)": [[1, "autots.AutoTS.best_model_per_series_mape"]], "best_model_per_series_score() (autots.autots method)": [[1, "autots.AutoTS.best_model_per_series_score"]], "best_model_transformation_params (autots.autots attribute)": [[1, "autots.AutoTS.best_model_transformation_params"]], "compare_actual_components() (autots.cassandra method)": [[1, "autots.Cassandra.compare_actual_components"]], "create_forecast_index() (autots.cassandra method)": [[1, "autots.Cassandra.create_forecast_index"]], "create_lagged_regressor() (in module autots)": [[1, "autots.create_lagged_regressor"]], "create_regressor() (in module autots)": [[1, "autots.create_regressor"]], "create_t() (autots.cassandra method)": [[1, "autots.Cassandra.create_t"]], "create_unpredictability_score() (autots.autots method)": [[1, "autots.AutoTS.create_unpredictability_score"]], "cross_validate() (autots.cassandra method)": [[1, "autots.Cassandra.cross_validate"]], "dates_to_holidays() (autots.cassandra.holiday_detector method)": [[1, "autots.Cassandra.holiday_detector.dates_to_holidays"]], "dates_to_holidays() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.dates_to_holidays"]], "detect() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.detect"]], "detect() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.detect"]], "df_wide_numeric (autots.autots attribute)": [[1, "autots.AutoTS.df_wide_numeric"]], "diagnose_params() (autots.autots method)": [[1, "autots.AutoTS.diagnose_params"]], "expand_horizontal() (autots.autots method)": [[1, "autots.AutoTS.expand_horizontal"]], "export_best_model() (autots.autots method)": [[1, "autots.AutoTS.export_best_model"]], "export_template() (autots.autots method)": [[1, "autots.AutoTS.export_template"]], "failure_rate() (autots.autots method)": [[1, "autots.AutoTS.failure_rate"]], "feature_importance() (autots.cassandra method)": [[1, "autots.Cassandra.feature_importance"]], "fill_na() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.fill_na"]], "fit() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.fit"]], "fit() (autots.autots method)": [[1, "autots.AutoTS.fit"]], "fit() (autots.cassandra method)": [[1, "autots.Cassandra.fit"], [1, "id0"]], "fit() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.fit"], [1, "id9"]], "fit() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.fit"]], "fit() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.fit"]], "fit() (autots.modelprediction method)": [[1, "autots.ModelPrediction.fit"]], "fit_anomaly_classifier() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.fit_anomaly_classifier"]], "fit_data() (autots.autots method)": [[1, "autots.AutoTS.fit_data"]], "fit_data() (autots.cassandra method)": [[1, "autots.Cassandra.fit_data"]], "fit_data() (autots.modelprediction method)": [[1, "autots.ModelPrediction.fit_data"]], "fit_predict() (autots.modelprediction method)": [[1, "autots.ModelPrediction.fit_predict"]], "fit_transform() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.fit_transform"]], "generate_historic_risk_array() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.generate_historic_risk_array"]], "generate_historic_risk_array() (autots.eventriskforecast static method)": [[1, "id10"]], "generate_result_windows() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.generate_result_windows"], [1, "id11"]], "generate_risk_array() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.generate_risk_array"]], "generate_risk_array() (autots.eventriskforecast static method)": [[1, "id12"]], "get_metric_corr() (autots.autots method)": [[1, "autots.AutoTS.get_metric_corr"]], "get_new_params() (autots.anomalydetector static method)": [[1, "autots.AnomalyDetector.get_new_params"]], "get_new_params() (autots.autots static method)": [[1, "autots.AutoTS.get_new_params"]], "get_new_params() (autots.cassandra method)": [[1, "autots.Cassandra.get_new_params"], [1, "id1"]], "get_new_params() (autots.generaltransformer static method)": [[1, "autots.GeneralTransformer.get_new_params"]], "get_new_params() (autots.holidaydetector static method)": [[1, "autots.HolidayDetector.get_new_params"]], "get_params() (autots.cassandra method)": [[1, "autots.Cassandra.get_params"]], "get_params_from_id() (autots.autots method)": [[1, "autots.AutoTS.get_params_from_id"]], "get_top_n_counts() (autots.autots method)": [[1, "autots.AutoTS.get_top_n_counts"]], "holiday_count (autots.cassandra. attribute)": [[1, "autots.Cassandra..holiday_count"]], "holidays (autots.cassandra. attribute)": [[1, "autots.Cassandra..holidays"]], "horizontal_per_generation() (autots.autots method)": [[1, "autots.AutoTS.horizontal_per_generation"]], "horizontal_to_df() (autots.autots method)": [[1, "autots.AutoTS.horizontal_to_df"]], "import_best_model() (autots.autots method)": [[1, "autots.AutoTS.import_best_model"]], "import_results() (autots.autots method)": [[1, "autots.AutoTS.import_results"]], "import_template() (autots.autots method)": [[1, "autots.AutoTS.import_template"]], "infer_frequency() (in module autots)": [[1, "autots.infer_frequency"]], "inverse_transform() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.inverse_transform"]], "list_failed_model_types() (autots.autots method)": [[1, "autots.AutoTS.list_failed_model_types"]], "load_artificial() (in module autots)": [[1, "autots.load_artificial"]], "load_daily() (in module autots)": [[1, "autots.load_daily"]], "load_hourly() (in module autots)": [[1, "autots.load_hourly"]], "load_linear() (in module autots)": [[1, "autots.load_linear"]], "load_live_daily() (in module autots)": [[1, "autots.load_live_daily"]], "load_monthly() (in module autots)": [[1, "autots.load_monthly"]], "load_sine() (in module autots)": [[1, "autots.load_sine"]], "load_template() (autots.autots method)": [[1, "autots.AutoTS.load_template"]], "load_weekdays() (in module autots)": [[1, "autots.load_weekdays"]], "load_weekly() (in module autots)": [[1, "autots.load_weekly"]], "load_yearly() (in module autots)": [[1, "autots.load_yearly"]], "long_to_wide() (in module autots)": [[1, "autots.long_to_wide"]], "model_forecast() (in module autots)": [[1, "autots.model_forecast"]], "model_results (autots.autots.initial_results attribute)": [[1, "autots.AutoTS.initial_results.model_results"]], "module": [[1, "module-autots"], [2, "module-autots.datasets"], [2, "module-autots.datasets.fred"], [3, "module-autots.evaluator"], [3, "module-autots.evaluator.anomaly_detector"], [3, "module-autots.evaluator.auto_model"], [3, "module-autots.evaluator.auto_ts"], [3, "module-autots.evaluator.benchmark"], [3, "module-autots.evaluator.event_forecasting"], [3, "module-autots.evaluator.metrics"], [3, "module-autots.evaluator.validation"], [4, "module-autots.models"], [4, "module-autots.models.arch"], [4, "module-autots.models.base"], [4, "module-autots.models.basics"], [4, "module-autots.models.cassandra"], [4, "module-autots.models.dnn"], [4, "module-autots.models.ensemble"], [4, "module-autots.models.gluonts"], [4, "module-autots.models.greykite"], [4, "module-autots.models.matrix_var"], [4, "module-autots.models.mlensemble"], [4, "module-autots.models.model_list"], [4, "module-autots.models.neural_forecast"], [4, "module-autots.models.prophet"], [4, "module-autots.models.pytorch"], [4, "module-autots.models.sklearn"], [4, "module-autots.models.statsmodels"], [4, "module-autots.models.tfp"], [4, "module-autots.models.tide"], [5, "module-autots.templates"], [5, "module-autots.templates.general"], [6, "module-autots.tools"], [6, "module-autots.tools.anomaly_utils"], [6, "module-autots.tools.calendar"], [6, "module-autots.tools.cointegration"], [6, "module-autots.tools.constraint"], [6, "module-autots.tools.cpu_count"], [6, "module-autots.tools.fast_kalman"], [6, "module-autots.tools.fft"], [6, "module-autots.tools.fir_filter"], [6, "module-autots.tools.hierarchial"], [6, "module-autots.tools.holiday"], [6, "module-autots.tools.impute"], [6, "module-autots.tools.lunar"], [6, "module-autots.tools.percentile"], [6, "module-autots.tools.probabilistic"], [6, "module-autots.tools.profile"], [6, "module-autots.tools.regressor"], [6, "module-autots.tools.seasonal"], [6, "module-autots.tools.shaping"], [6, "module-autots.tools.thresholding"], [6, "module-autots.tools.transform"], [6, "module-autots.tools.wavelet"], [6, "module-autots.tools.window_functions"]], "mosaic_to_df() (autots.autots method)": [[1, "autots.AutoTS.mosaic_to_df"]], "next_fit() (autots.cassandra method)": [[1, "autots.Cassandra.next_fit"]], "params (autots.cassandra. attribute)": [[1, "autots.Cassandra..params"]], "parse_best_model() (autots.autots method)": [[1, "autots.AutoTS.parse_best_model"]], "plot() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.plot"]], "plot() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.plot"], [1, "id13"]], "plot() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.plot"]], "plot_anomaly() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.plot_anomaly"]], "plot_back_forecast() (autots.autots method)": [[1, "autots.AutoTS.plot_back_forecast"]], "plot_backforecast() (autots.autots method)": [[1, "autots.AutoTS.plot_backforecast"]], "plot_chosen_transformer() (autots.autots method)": [[1, "autots.AutoTS.plot_chosen_transformer"]], "plot_components() (autots.cassandra method)": [[1, "autots.Cassandra.plot_components"], [1, "id2"]], "plot_eval() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.plot_eval"]], "plot_failure_rate() (autots.autots method)": [[1, "autots.AutoTS.plot_failure_rate"]], "plot_forecast() (autots.cassandra method)": [[1, "autots.Cassandra.plot_forecast"], [1, "id3"]], "plot_generation_loss() (autots.autots method)": [[1, "autots.AutoTS.plot_generation_loss"]], "plot_horizontal() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal"]], "plot_horizontal_model_count() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal_model_count"]], "plot_horizontal_per_generation() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal_per_generation"]], "plot_horizontal_transformers() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal_transformers"]], "plot_metric_corr() (autots.autots method)": [[1, "autots.AutoTS.plot_metric_corr"]], "plot_model_failure_rate() (autots.autots method)": [[1, "autots.AutoTS.plot_model_failure_rate"]], "plot_mosaic() (autots.autots method)": [[1, "autots.AutoTS.plot_mosaic"]], "plot_per_series_error() (autots.autots method)": [[1, "autots.AutoTS.plot_per_series_error"]], "plot_per_series_mape() (autots.autots method)": [[1, "autots.AutoTS.plot_per_series_mape"]], "plot_per_series_smape() (autots.autots method)": [[1, "autots.AutoTS.plot_per_series_smape"]], "plot_series_corr() (autots.autots method)": [[1, "autots.AutoTS.plot_series_corr"]], "plot_things() (autots.cassandra method)": [[1, "autots.Cassandra.plot_things"]], "plot_transformer_by_class() (autots.autots method)": [[1, "autots.AutoTS.plot_transformer_by_class"]], "plot_transformer_failure_rate() (autots.autots method)": [[1, "autots.AutoTS.plot_transformer_failure_rate"]], "plot_trend() (autots.cassandra method)": [[1, "autots.Cassandra.plot_trend"], [1, "id4"]], "plot_unpredictability() (autots.autots method)": [[1, "autots.AutoTS.plot_unpredictability"]], "plot_validations() (autots.autots method)": [[1, "autots.AutoTS.plot_validations"]], "predict() (autots.autots method)": [[1, "autots.AutoTS.predict"]], "predict() (autots.cassandra method)": [[1, "autots.Cassandra.predict"], [1, "id5"]], "predict() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.predict"], [1, "id14"]], "predict() (autots.modelprediction method)": [[1, "autots.ModelPrediction.predict"]], "predict_historic() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.predict_historic"], [1, "id15"]], "predict_new_product() (autots.cassandra method)": [[1, "autots.Cassandra.predict_new_product"]], "predict_x_array (autots.cassandra. attribute)": [[1, "autots.Cassandra..predict_x_array"]], "predicted_trend (autots.cassandra. attribute)": [[1, "autots.Cassandra..predicted_trend"]], "process_components() (autots.cassandra method)": [[1, "autots.Cassandra.process_components"]], "regression_check (autots.autots attribute)": [[1, "autots.AutoTS.regression_check"]], "results() (autots.autots method)": [[1, "autots.AutoTS.results"]], "retrieve_transformer() (autots.generaltransformer class method)": [[1, "autots.GeneralTransformer.retrieve_transformer"]], "retrieve_validation_forecasts() (autots.autots method)": [[1, "autots.AutoTS.retrieve_validation_forecasts"]], "return_components() (autots.cassandra method)": [[1, "autots.Cassandra.return_components"], [1, "id6"]], "rolling_trend() (autots.cassandra method)": [[1, "autots.Cassandra.rolling_trend"]], "save_template() (autots.autots method)": [[1, "autots.AutoTS.save_template"]], "scale_data() (autots.cassandra method)": [[1, "autots.Cassandra.scale_data"]], "score_per_series (autots.autots attribute)": [[1, "autots.AutoTS.score_per_series"]], "score_to_anomaly() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.score_to_anomaly"]], "scores (autots.cassandra..anomaly_detector attribute)": [[1, "autots.Cassandra..anomaly_detector.scores"]], "set_limit() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.set_limit"]], "set_limit() (autots.eventriskforecast static method)": [[1, "id16"]], "to_origin_space() (autots.cassandra method)": [[1, "autots.Cassandra.to_origin_space"]], "transform() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.transform"]], "treatment_causal_impact() (autots.cassandra method)": [[1, "autots.Cassandra.treatment_causal_impact"]], "trend_analysis() (autots.cassandra method)": [[1, "autots.Cassandra.trend_analysis"]], "trend_train (autots.cassandra. attribute)": [[1, "autots.Cassandra..trend_train"]], "validation_agg() (autots.autots method)": [[1, "autots.AutoTS.validation_agg"]], "x_array (autots.cassandra. attribute)": [[1, "autots.Cassandra..x_array"]], "autots.datasets": [[2, "module-autots.datasets"]], "autots.datasets.fred": [[2, "module-autots.datasets.fred"]], "get_fred_data() (in module autots.datasets.fred)": [[2, "autots.datasets.fred.get_fred_data"]], "load_artificial() (in module autots.datasets)": [[2, "autots.datasets.load_artificial"]], "load_daily() (in module autots.datasets)": [[2, "autots.datasets.load_daily"]], "load_hourly() (in module autots.datasets)": [[2, "autots.datasets.load_hourly"]], "load_linear() (in module autots.datasets)": [[2, "autots.datasets.load_linear"]], "load_live_daily() (in module autots.datasets)": [[2, "autots.datasets.load_live_daily"]], "load_monthly() (in module autots.datasets)": [[2, "autots.datasets.load_monthly"]], "load_sine() (in module autots.datasets)": [[2, "autots.datasets.load_sine"]], "load_weekdays() (in module autots.datasets)": [[2, "autots.datasets.load_weekdays"]], "load_weekly() (in module autots.datasets)": [[2, "autots.datasets.load_weekly"]], "load_yearly() (in module autots.datasets)": [[2, "autots.datasets.load_yearly"]], "load_zeroes() (in module autots.datasets)": [[2, "autots.datasets.load_zeroes"]], "anomalydetector (class in autots.evaluator.anomaly_detector)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector"]], "autots (class in autots.evaluator.auto_ts)": [[3, "autots.evaluator.auto_ts.AutoTS"]], "benchmark (class in autots.evaluator.benchmark)": [[3, "autots.evaluator.benchmark.Benchmark"]], "eventriskforecast (class in autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast"]], "holidaydetector (class in autots.evaluator.anomaly_detector)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector"]], "modelmonster() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.ModelMonster"]], "modelprediction (class in autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.ModelPrediction"]], "newgenetictemplate() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.NewGeneticTemplate"]], "randomtemplate() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.RandomTemplate"]], "templateevalobject (class in autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.TemplateEvalObject"]], "templatewizard() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.TemplateWizard"]], "uniquetemplates() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.UniqueTemplates"]], "array_last_val() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.array_last_val"]], "autots.evaluator": [[3, "module-autots.evaluator"]], "autots.evaluator.anomaly_detector": [[3, "module-autots.evaluator.anomaly_detector"]], "autots.evaluator.auto_model": [[3, "module-autots.evaluator.auto_model"]], "autots.evaluator.auto_ts": [[3, "module-autots.evaluator.auto_ts"]], "autots.evaluator.benchmark": [[3, "module-autots.evaluator.benchmark"]], "autots.evaluator.event_forecasting": [[3, "module-autots.evaluator.event_forecasting"]], "autots.evaluator.metrics": [[3, "module-autots.evaluator.metrics"]], "autots.evaluator.validation": [[3, "module-autots.evaluator.validation"]], "back_forecast() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.back_forecast"]], "back_forecast() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.back_forecast"]], "best_model (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model"]], "best_model_ensemble (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_ensemble"]], "best_model_name (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_name"]], "best_model_params (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_params"]], "best_model_per_series_mape() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_per_series_mape"]], "best_model_per_series_score() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_per_series_score"]], "best_model_transformation_params (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_transformation_params"]], "chi_squared_hist_distribution_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.chi_squared_hist_distribution_loss"]], "concat() (autots.evaluator.auto_model.templateevalobject method)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.concat"]], "containment() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.containment"]], "contour() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.contour"]], "create_model_id() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.create_model_id"]], "create_unpredictability_score() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.create_unpredictability_score"]], "dates_to_holidays() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.dates_to_holidays"]], "default_scaler() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.default_scaler"]], "detect() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.detect"]], "detect() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.detect"]], "df_wide_numeric (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.df_wide_numeric"]], "diagnose_params() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.diagnose_params"]], "dict_recombination() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.dict_recombination"]], "dwae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.dwae"]], "error_correlations() (in module autots.evaluator.auto_ts)": [[3, "autots.evaluator.auto_ts.error_correlations"]], "expand_horizontal() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.expand_horizontal"]], "export_best_model() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.export_best_model"]], "export_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.export_template"]], "extract_result_windows() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.extract_result_windows"]], "extract_seasonal_val_periods() (in module autots.evaluator.validation)": [[3, "autots.evaluator.validation.extract_seasonal_val_periods"]], "extract_window_index() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.extract_window_index"]], "failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.failure_rate"]], "fake_regressor() (in module autots.evaluator.auto_ts)": [[3, "autots.evaluator.auto_ts.fake_regressor"]], "fit() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.fit"]], "fit() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.fit"]], "fit() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.fit"]], "fit() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.fit"]], "fit() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.fit"], [3, "id0"]], "fit_anomaly_classifier() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.fit_anomaly_classifier"]], "fit_data() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.fit_data"]], "fit_data() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.fit_data"]], "fit_predict() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.fit_predict"]], "full_mae_errors (autots.evaluator.auto_model.templateevalobject attribute)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.full_mae_errors"]], "full_mae_ids (autots.evaluator.auto_model.templateevalobject attribute)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.full_mae_ids"]], "full_metric_evaluation() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.full_metric_evaluation"]], "generate_historic_risk_array() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.generate_historic_risk_array"]], "generate_historic_risk_array() (autots.evaluator.event_forecasting.eventriskforecast static method)": [[3, "id7"]], "generate_result_windows() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.generate_result_windows"], [3, "id8"]], "generate_risk_array() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.generate_risk_array"]], "generate_risk_array() (autots.evaluator.event_forecasting.eventriskforecast static method)": [[3, "id9"]], "generate_score() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.generate_score"]], "generate_score_per_series() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.generate_score_per_series"]], "generate_validation_indices() (in module autots.evaluator.validation)": [[3, "autots.evaluator.validation.generate_validation_indices"]], "get_metric_corr() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_metric_corr"]], "get_new_params() (autots.evaluator.anomaly_detector.anomalydetector static method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.get_new_params"]], "get_new_params() (autots.evaluator.anomaly_detector.holidaydetector static method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.get_new_params"]], "get_new_params() (autots.evaluator.auto_ts.autots static method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_new_params"]], "get_params_from_id() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_params_from_id"]], "get_top_n_counts() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_top_n_counts"]], "horizontal_per_generation() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.horizontal_per_generation"]], "horizontal_template_to_model_list() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.horizontal_template_to_model_list"]], "horizontal_to_df() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.horizontal_to_df"]], "import_best_model() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.import_best_model"]], "import_results() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.import_results"]], "import_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.import_template"]], "kde() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.kde"]], "kde_kl_distance() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.kde_kl_distance"]], "kl_divergence() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.kl_divergence"]], "linearity() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.linearity"]], "list_failed_model_types() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.list_failed_model_types"]], "load() (autots.evaluator.auto_model.templateevalobject method)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.load"]], "load_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.load_template"]], "mae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mae"]], "mda() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mda"]], "mean_absolute_differential_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mean_absolute_differential_error"]], "mean_absolute_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mean_absolute_error"]], "medae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.medae"]], "median_absolute_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.median_absolute_error"]], "mlvb() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mlvb"]], "model_forecast() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.model_forecast"]], "model_results (autots.evaluator.auto_ts.autots.initial_results attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.initial_results.model_results"]], "mosaic_to_df() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.mosaic_to_df"]], "mqae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mqae"]], "msle() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.msle"]], "numpy_ffill() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.numpy_ffill"]], "oda() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.oda"]], "parse_best_model() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.parse_best_model"]], "pinball_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.pinball_loss"]], "plot() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.plot"]], "plot() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.plot"]], "plot() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.plot"], [3, "id10"]], "plot_anomaly() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.plot_anomaly"]], "plot_back_forecast() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_back_forecast"]], "plot_backforecast() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_backforecast"]], "plot_chosen_transformer() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_chosen_transformer"]], "plot_eval() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.plot_eval"]], "plot_failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_failure_rate"]], "plot_generation_loss() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_generation_loss"]], "plot_horizontal() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal"]], "plot_horizontal_model_count() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal_model_count"]], "plot_horizontal_per_generation() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal_per_generation"]], "plot_horizontal_transformers() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal_transformers"]], "plot_metric_corr() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_metric_corr"]], "plot_model_failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_model_failure_rate"]], "plot_mosaic() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_mosaic"]], "plot_per_series_error() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_per_series_error"]], "plot_per_series_mape() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_per_series_mape"]], "plot_per_series_smape() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_per_series_smape"]], "plot_series_corr() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_series_corr"]], "plot_transformer_by_class() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_transformer_by_class"]], "plot_transformer_failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_transformer_failure_rate"]], "plot_unpredictability() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_unpredictability"]], "plot_validations() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_validations"]], "precomp_wasserstein() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.precomp_wasserstein"]], "predict() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.predict"]], "predict() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.predict"]], "predict() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.predict"], [3, "id11"]], "predict_historic() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.predict_historic"], [3, "id12"]], "qae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.qae"]], "random_model() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.random_model"]], "regression_check (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.regression_check"]], "remove_leading_zeros() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.remove_leading_zeros"]], "results() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.results"]], "retrieve_validation_forecasts() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.retrieve_validation_forecasts"]], "rmse() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.rmse"]], "root_mean_square_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.root_mean_square_error"]], "rps() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.rps"]], "run() (autots.evaluator.benchmark.benchmark method)": [[3, "autots.evaluator.benchmark.Benchmark.run"]], "save() (autots.evaluator.auto_model.templateevalobject method)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.save"]], "save_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.save_template"]], "scaled_pinball_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.scaled_pinball_loss"]], "score_per_series (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.score_per_series"]], "score_to_anomaly() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.score_to_anomaly"]], "set_limit() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.set_limit"]], "set_limit() (autots.evaluator.event_forecasting.eventriskforecast static method)": [[3, "id13"]], "set_limit_forecast() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.set_limit_forecast"]], "set_limit_forecast_historic() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.set_limit_forecast_historic"]], "smape() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.smape"]], "smoothness() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.smoothness"]], "spl() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.spl"]], "symmetric_mean_absolute_percentage_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.symmetric_mean_absolute_percentage_error"]], "threshold_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.threshold_loss"]], "trans_dict_recomb() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.trans_dict_recomb"]], "unpack_ensemble_models() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.unpack_ensemble_models"]], "unsorted_wasserstein() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.unsorted_wasserstein"]], "validate_num_validations() (in module autots.evaluator.validation)": [[3, "autots.evaluator.validation.validate_num_validations"]], "validation_agg() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.validation_agg"]], "validation_aggregation() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.validation_aggregation"]], "wasserstein() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.wasserstein"]], "arch (class in autots.models.arch)": [[4, "autots.models.arch.ARCH"]], "ardl (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.ARDL"]], "arima (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.ARIMA"]], "averagevaluenaive (class in autots.models.basics)": [[4, "autots.models.basics.AverageValueNaive"]], "balltreemultivariatemotif (class in autots.models.basics)": [[4, "autots.models.basics.BallTreeMultivariateMotif"]], "basiclinearmodel (class in autots.models.basics)": [[4, "autots.models.basics.BasicLinearModel"]], "bayesianmultioutputregression (class in autots.models.cassandra)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression"]], "bestnensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.BestNEnsemble"]], "cassandra (class in autots.models.cassandra)": [[4, "autots.models.cassandra.Cassandra"]], "componentanalysis (class in autots.models.sklearn)": [[4, "autots.models.sklearn.ComponentAnalysis"]], "constantnaive (class in autots.models.basics)": [[4, "autots.models.basics.ConstantNaive"]], "dmd (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.DMD"]], "datepartregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.DatepartRegression"]], "distensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.DistEnsemble"]], "dynamicfactor (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.DynamicFactor"]], "dynamicfactormq (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.DynamicFactorMQ"]], "ets (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.ETS"]], "elasticnetwork (class in autots.models.dnn)": [[4, "autots.models.dnn.ElasticNetwork"]], "ensembleforecast() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.EnsembleForecast"]], "ensembletemplategenerator() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.EnsembleTemplateGenerator"]], "fbprophet (class in autots.models.prophet)": [[4, "autots.models.prophet.FBProphet"]], "fft (class in autots.models.basics)": [[4, "autots.models.basics.FFT"]], "glm (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.GLM"]], "gls (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.GLS"]], "gluonts (class in autots.models.gluonts)": [[4, "autots.models.gluonts.GluonTS"]], "greykite (class in autots.models.greykite)": [[4, "autots.models.greykite.Greykite"]], "hdistensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.HDistEnsemble"]], "horizontalensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.HorizontalEnsemble"]], "horizontaltemplategenerator() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.HorizontalTemplateGenerator"]], "kalmanstatespace (class in autots.models.basics)": [[4, "autots.models.basics.KalmanStateSpace"]], "kerasrnn (class in autots.models.dnn)": [[4, "autots.models.dnn.KerasRNN"]], "latc (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.LATC"]], "lastvaluenaive (class in autots.models.basics)": [[4, "autots.models.basics.LastValueNaive"]], "mar (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.MAR"]], "mlensemble (class in autots.models.mlensemble)": [[4, "autots.models.mlensemble.MLEnsemble"]], "metricmotif (class in autots.models.basics)": [[4, "autots.models.basics.MetricMotif"]], "modelobject (class in autots.models.base)": [[4, "autots.models.base.ModelObject"]], "mosaicensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.MosaicEnsemble"]], "motif (class in autots.models.basics)": [[4, "autots.models.basics.Motif"]], "motifsimulation (class in autots.models.basics)": [[4, "autots.models.basics.MotifSimulation"]], "multivariateregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.MultivariateRegression"]], "nvar (class in autots.models.basics)": [[4, "autots.models.basics.NVAR"]], "neuralforecast (class in autots.models.neural_forecast)": [[4, "autots.models.neural_forecast.NeuralForecast"]], "neuralprophet (class in autots.models.prophet)": [[4, "autots.models.prophet.NeuralProphet"]], "predictionobject (class in autots.models.base)": [[4, "autots.models.base.PredictionObject"]], "preprocessingregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.PreprocessingRegression"]], "pytorchforecasting (class in autots.models.pytorch)": [[4, "autots.models.pytorch.PytorchForecasting"]], "rrvar (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.RRVAR"]], "randomfourierencoding (class in autots.models.sklearn)": [[4, "autots.models.sklearn.RandomFourierEncoding"]], "rollingregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.RollingRegression"]], "seasonalnaive (class in autots.models.basics)": [[4, "autots.models.basics.SeasonalNaive"]], "seasonalitymotif (class in autots.models.basics)": [[4, "autots.models.basics.SeasonalityMotif"]], "sectionalmotif (class in autots.models.basics)": [[4, "autots.models.basics.SectionalMotif"]], "tfpregression (class in autots.models.tfp)": [[4, "autots.models.tfp.TFPRegression"]], "tfpregressor (class in autots.models.tfp)": [[4, "autots.models.tfp.TFPRegressor"]], "tmf (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.TMF"]], "tvvar (class in autots.models.basics)": [[4, "autots.models.basics.TVVAR"]], "tensorflowsts (class in autots.models.tfp)": [[4, "autots.models.tfp.TensorflowSTS"]], "theta (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.Theta"]], "tide (class in autots.models.tide)": [[4, "autots.models.tide.TiDE"]], "timecovariates (class in autots.models.tide)": [[4, "autots.models.tide.TimeCovariates"]], "timeseriesdata (class in autots.models.tide)": [[4, "autots.models.tide.TimeSeriesdata"]], "transformer (class in autots.models.dnn)": [[4, "autots.models.dnn.Transformer"]], "univariateregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.UnivariateRegression"]], "unobservedcomponents (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.UnobservedComponents"]], "var (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.VAR"]], "varmax (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.VARMAX"]], "vecm (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.VECM"]], "vectorizedmultioutputgpr (class in autots.models.sklearn)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR"]], "windowregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.WindowRegression"]], "zeroesnaive (in module autots.models.basics)": [[4, "autots.models.basics.ZeroesNaive"]], "analyze_trend() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.analyze_trend"]], "anomalies (autots.models.cassandra.cassandra..anomaly_detector attribute)": [[4, "autots.models.cassandra.Cassandra..anomaly_detector.anomalies"]], "apply_beta_threshold() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.apply_beta_threshold"]], "apply_constraints() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.apply_constraints"], [4, "id0"]], "apply_constraints() (in module autots.models.base)": [[4, "autots.models.base.apply_constraints"]], "arima_seek_the_oracle() (in module autots.models.statsmodels)": [[4, "autots.models.statsmodels.arima_seek_the_oracle"]], "auto_fit() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.auto_fit"]], "auto_model_list() (in module autots.models.model_list)": [[4, "autots.models.model_list.auto_model_list"]], "autots.models": [[4, "module-autots.models"]], "autots.models.arch": [[4, "module-autots.models.arch"]], "autots.models.base": [[4, "module-autots.models.base"]], "autots.models.basics": [[4, "module-autots.models.basics"]], "autots.models.cassandra": [[4, "module-autots.models.cassandra"]], "autots.models.dnn": [[4, "module-autots.models.dnn"]], "autots.models.ensemble": [[4, "module-autots.models.ensemble"]], "autots.models.gluonts": [[4, "module-autots.models.gluonts"]], "autots.models.greykite": [[4, "module-autots.models.greykite"]], "autots.models.matrix_var": [[4, "module-autots.models.matrix_var"]], "autots.models.mlensemble": [[4, "module-autots.models.mlensemble"]], "autots.models.model_list": [[4, "module-autots.models.model_list"]], "autots.models.neural_forecast": [[4, "module-autots.models.neural_forecast"]], "autots.models.prophet": [[4, "module-autots.models.prophet"]], "autots.models.pytorch": [[4, "module-autots.models.pytorch"]], "autots.models.sklearn": [[4, "module-autots.models.sklearn"]], "autots.models.statsmodels": [[4, "module-autots.models.statsmodels"]], "autots.models.tfp": [[4, "module-autots.models.tfp"]], "autots.models.tide": [[4, "module-autots.models.tide"]], "base_scaler() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.base_scaler"]], "base_scaler() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.base_scaler"]], "base_scaler() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.base_scaler"]], "basic_profile() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.basic_profile"]], "calculate_peak_density() (in module autots.models.base)": [[4, "autots.models.base.calculate_peak_density"]], "clean_regressor() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.clean_regressor"]], "coefficient_summary() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.coefficient_summary"]], "compare_actual_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.compare_actual_components"]], "conj_grad_w() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.conj_grad_w"]], "conj_grad_x() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.conj_grad_x"]], "cost_function() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.cost_function"]], "cost_function_dwae() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_dwae"]], "cost_function_l1() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_l1"]], "cost_function_l1_positive() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_l1_positive"]], "cost_function_l2() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_l2"]], "cost_function_quantile() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_quantile"]], "create_var_features() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.create_VAR_features"]], "create_feature() (in module autots.models.mlensemble)": [[4, "autots.models.mlensemble.create_feature"]], "create_forecast_index() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.create_forecast_index"]], "create_forecast_index() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.create_forecast_index"]], "create_forecast_index() (in module autots.models.base)": [[4, "autots.models.base.create_forecast_index"]], "create_seaborn_palette_from_cmap() (in module autots.models.base)": [[4, "autots.models.base.create_seaborn_palette_from_cmap"]], "create_t() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.create_t"]], "create_t() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.create_t"]], "create_unpredictability_score() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.create_unpredictability_score"]], "create_x() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.create_x"]], "cross_validate() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.cross_validate"]], "dates_to_holidays() (autots.models.cassandra.cassandra.holiday_detector method)": [[4, "autots.models.cassandra.Cassandra.holiday_detector.dates_to_holidays"]], "dmd() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.dmd"]], "dmd4cast() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.dmd4cast"]], "dmd_forecast() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.dmd_forecast"]], "ell_w() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.ell_w"]], "ell_x() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.ell_x"]], "empty_scaler() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.empty_scaler"]], "evaluate() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.evaluate"], [4, "id1"]], "extract_ensemble_runtimes() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.extract_ensemble_runtimes"]], "extract_single_series_from_horz() (in module autots.models.base)": [[4, "autots.models.base.extract_single_series_from_horz"]], "extract_single_transformer() (in module autots.models.base)": [[4, "autots.models.base.extract_single_transformer"]], "feature_importance() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.feature_importance"]], "find_pattern() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.find_pattern"]], "fit() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.fit"]], "fit() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.fit"]], "fit() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.fit"]], "fit() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.fit"]], "fit() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.fit"]], "fit() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.fit"]], "fit() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.fit"]], "fit() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.fit"]], "fit() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.fit"]], "fit() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.fit"]], "fit() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.fit"]], "fit() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.fit"]], "fit() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.fit"]], "fit() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.fit"]], "fit() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.fit"]], "fit() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.fit"]], "fit() (autots.models.cassandra.bayesianmultioutputregression method)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression.fit"]], "fit() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.fit"], [4, "id5"]], "fit() (autots.models.dnn.elasticnetwork method)": [[4, "autots.models.dnn.ElasticNetwork.fit"]], "fit() (autots.models.dnn.kerasrnn method)": [[4, "autots.models.dnn.KerasRNN.fit"]], "fit() (autots.models.dnn.transformer method)": [[4, "autots.models.dnn.Transformer.fit"]], "fit() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.fit"]], "fit() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.fit"]], "fit() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.fit"]], "fit() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.fit"]], "fit() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.fit"]], "fit() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.fit"]], "fit() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.fit"]], "fit() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.fit"]], "fit() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.fit"]], "fit() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.fit"]], "fit() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.fit"]], "fit() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.fit"]], "fit() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.fit"]], "fit() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.fit"]], "fit() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.fit"]], "fit() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.fit"]], "fit() (autots.models.sklearn.randomfourierencoding method)": [[4, "autots.models.sklearn.RandomFourierEncoding.fit"]], "fit() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.fit"]], "fit() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.fit"]], "fit() (autots.models.sklearn.vectorizedmultioutputgpr method)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR.fit"]], "fit() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.fit"]], "fit() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.fit"]], "fit() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.fit"]], "fit() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.fit"]], "fit() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.fit"]], "fit() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.fit"]], "fit() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.fit"]], "fit() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.fit"]], "fit() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.fit"]], "fit() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.fit"]], "fit() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.fit"]], "fit() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.fit"]], "fit() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.fit"]], "fit() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.fit"]], "fit() (autots.models.tfp.tfpregressor method)": [[4, "autots.models.tfp.TFPRegressor.fit"]], "fit() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.fit"]], "fit() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.fit"]], "fit_data() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.fit_data"]], "fit_data() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.fit_data"]], "fit_data() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.fit_data"]], "fit_data() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.fit_data"]], "fit_data() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.fit_data"]], "fit_data() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.fit_data"]], "fit_data() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.fit_data"]], "fit_data() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.fit_data"]], "fit_linear_model() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.fit_linear_model"]], "forecast (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.forecast"]], "generalize_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generalize_horizontal"]], "generate_psi() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.generate_Psi"]], "generate_classifier_params() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.generate_classifier_params"]], "generate_crosshair_score() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generate_crosshair_score"]], "generate_crosshair_score_list() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generate_crosshair_score_list"]], "generate_mosaic_template() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generate_mosaic_template"]], "generate_regressor_params() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.generate_regressor_params"]], "get_holidays() (in module autots.models.tide)": [[4, "autots.models.tide.get_HOLIDAYS"]], "get_changepoints() (in module autots.models.prophet)": [[4, "autots.models.prophet.get_changepoints"]], "get_covariates() (autots.models.tide.timecovariates method)": [[4, "autots.models.tide.TimeCovariates.get_covariates"]], "get_new_params() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.get_new_params"]], "get_new_params() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.get_new_params"]], "get_new_params() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.get_new_params"]], "get_new_params() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.get_new_params"]], "get_new_params() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.get_new_params"]], "get_new_params() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.get_new_params"]], "get_new_params() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.get_new_params"]], "get_new_params() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.get_new_params"]], "get_new_params() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.get_new_params"]], "get_new_params() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.get_new_params"]], "get_new_params() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.get_new_params"]], "get_new_params() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.get_new_params"]], "get_new_params() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.get_new_params"]], "get_new_params() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.get_new_params"]], "get_new_params() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.get_new_params"]], "get_new_params() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.get_new_params"]], "get_new_params() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.get_new_params"]], "get_new_params() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.get_new_params"], [4, "id6"]], "get_new_params() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.get_new_params"]], "get_new_params() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.get_new_params"]], "get_new_params() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.get_new_params"]], "get_new_params() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.get_new_params"]], "get_new_params() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.get_new_params"]], "get_new_params() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.get_new_params"]], "get_new_params() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.get_new_params"]], "get_new_params() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.get_new_params"]], "get_new_params() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.get_new_params"]], "get_new_params() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.get_new_params"]], "get_new_params() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.get_new_params"]], "get_new_params() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.get_new_params"]], "get_new_params() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.get_new_params"]], "get_new_params() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.get_new_params"]], "get_new_params() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.get_new_params"]], "get_new_params() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.get_new_params"]], "get_new_params() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.get_new_params"]], "get_new_params() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.get_new_params"]], "get_new_params() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.get_new_params"]], "get_new_params() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.get_new_params"]], "get_new_params() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.get_new_params"]], "get_new_params() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.get_new_params"]], "get_new_params() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.get_new_params"]], "get_new_params() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.get_new_params"]], "get_new_params() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.get_new_params"]], "get_new_params() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.get_new_params"]], "get_new_params() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.get_new_params"]], "get_new_params() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.get_new_params"]], "get_new_params() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.get_new_params"]], "get_params() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.get_params"]], "get_params() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.get_params"]], "get_params() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.get_params"]], "get_params() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.get_params"]], "get_params() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.get_params"]], "get_params() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.get_params"]], "get_params() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.get_params"]], "get_params() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.get_params"]], "get_params() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.get_params"]], "get_params() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.get_params"]], "get_params() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.get_params"]], "get_params() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.get_params"]], "get_params() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.get_params"]], "get_params() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.get_params"]], "get_params() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.get_params"]], "get_params() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.get_params"]], "get_params() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.get_params"]], "get_params() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.get_params"]], "get_params() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.get_params"]], "get_params() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.get_params"]], "get_params() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.get_params"]], "get_params() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.get_params"]], "get_params() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.get_params"]], "get_params() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.get_params"]], "get_params() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.get_params"]], "get_params() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.get_params"]], "get_params() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.get_params"]], "get_params() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.get_params"]], "get_params() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.get_params"]], "get_params() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.get_params"]], "get_params() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.get_params"]], "get_params() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.get_params"]], "get_params() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.get_params"]], "get_params() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.get_params"]], "get_params() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.get_params"]], "get_params() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.get_params"]], "get_params() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.get_params"]], "get_params() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.get_params"]], "get_params() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.get_params"]], "get_params() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.get_params"]], "get_params() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.get_params"]], "get_params() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.get_params"]], "get_params() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.get_params"]], "get_params() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.get_params"]], "get_params() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.get_params"]], "get_params() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.get_params"]], "get_params() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.get_params"]], "get_params() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.get_params"]], "get_params() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.get_params"]], "get_params() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.get_params"]], "get_params() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.get_params"]], "get_params() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.get_params"]], "glm_forecast_by_column() (in module autots.models.statsmodels)": [[4, "autots.models.statsmodels.glm_forecast_by_column"]], "holiday_count (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..holiday_count"]], "holidays (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..holidays"]], "horizontal_classifier() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.horizontal_classifier"]], "horizontal_xy() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.horizontal_xy"]], "is_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.is_horizontal"]], "is_mosaic() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.is_mosaic"]], "latc_imputer() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.latc_imputer"]], "latc_predictor() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.latc_predictor"]], "long_form_results() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.long_form_results"], [4, "id2"]], "looped_motif() (in module autots.models.basics)": [[4, "autots.models.basics.looped_motif"]], "lower_forecast (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.lower_forecast"]], "lstsq_minimize() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.lstsq_minimize"]], "lstsq_solve() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.lstsq_solve"]], "mae_loss() (in module autots.models.tide)": [[4, "autots.models.tide.mae_loss"]], "mape() (in module autots.models.tide)": [[4, "autots.models.tide.mape"]], "mar() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.mar"]], "mat2ten() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.mat2ten"]], "mlens_helper() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mlens_helper"]], "model_list_to_dict() (in module autots.models.model_list)": [[4, "autots.models.model_list.model_list_to_dict"]], "model_name (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.model_name"]], "model_parameters (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.model_parameters"]], "mosaic_classifier() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_classifier"]], "mosaic_or_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_or_horizontal"]], "mosaic_to_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_to_horizontal"]], "mosaic_xy() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_xy"]], "n_limited_horz() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.n_limited_horz"]], "next_fit() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.next_fit"]], "nrmse() (in module autots.models.tide)": [[4, "autots.models.tide.nrmse"]], "params (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..params"]], "parse_forecast_length() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.parse_forecast_length"]], "parse_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.parse_horizontal"]], "parse_mosaic() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.parse_mosaic"]], "plot() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot"], [4, "id3"]], "plot_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_components"], [4, "id7"]], "plot_df() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot_df"]], "plot_distributions() (in module autots.models.base)": [[4, "autots.models.base.plot_distributions"]], "plot_ensemble_runtimes() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot_ensemble_runtimes"]], "plot_forecast() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_forecast"], [4, "id8"]], "plot_grid() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot_grid"]], "plot_things() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_things"]], "plot_trend() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_trend"], [4, "id9"]], "predict() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.predict"]], "predict() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.predict"]], "predict() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.predict"]], "predict() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.predict"]], "predict() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.predict"]], "predict() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.predict"]], "predict() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.predict"]], "predict() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.predict"]], "predict() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.predict"]], "predict() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.predict"]], "predict() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.predict"]], "predict() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.predict"]], "predict() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.predict"]], "predict() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.predict"]], "predict() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.predict"]], "predict() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.predict"]], "predict() (autots.models.cassandra.bayesianmultioutputregression method)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression.predict"]], "predict() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.predict"], [4, "id10"]], "predict() (autots.models.dnn.elasticnetwork method)": [[4, "autots.models.dnn.ElasticNetwork.predict"]], "predict() (autots.models.dnn.kerasrnn method)": [[4, "autots.models.dnn.KerasRNN.predict"]], "predict() (autots.models.dnn.transformer method)": [[4, "autots.models.dnn.Transformer.predict"]], "predict() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.predict"]], "predict() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.predict"]], "predict() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.predict"]], "predict() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.predict"]], "predict() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.predict"]], "predict() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.predict"]], "predict() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.predict"]], "predict() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.predict"]], "predict() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.predict"]], "predict() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.predict"]], "predict() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.predict"]], "predict() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.predict"]], "predict() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.predict"]], "predict() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.predict"]], "predict() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.predict"]], "predict() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.predict"]], "predict() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.predict"]], "predict() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.predict"]], "predict() (autots.models.sklearn.vectorizedmultioutputgpr method)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR.predict"]], "predict() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.predict"]], "predict() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.predict"]], "predict() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.predict"]], "predict() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.predict"]], "predict() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.predict"]], "predict() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.predict"]], "predict() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.predict"]], "predict() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.predict"]], "predict() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.predict"]], "predict() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.predict"]], "predict() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.predict"]], "predict() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.predict"]], "predict() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.predict"]], "predict() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.predict"]], "predict() (autots.models.tfp.tfpregressor method)": [[4, "autots.models.tfp.TFPRegressor.predict"]], "predict() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.predict"]], "predict() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.predict"]], "predict_new_product() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.predict_new_product"]], "predict_proba() (autots.models.sklearn.vectorizedmultioutputgpr method)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR.predict_proba"]], "predict_reservoir() (in module autots.models.basics)": [[4, "autots.models.basics.predict_reservoir"]], "predict_x_array (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..predict_x_array"]], "predicted_trend (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..predicted_trend"]], "process_components() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.process_components"]], "process_components() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.process_components"]], "process_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.process_components"]], "process_mosaic_arrays() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.process_mosaic_arrays"]], "retrieve_classifier() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.retrieve_classifier"]], "retrieve_regressor() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.retrieve_regressor"]], "return_components() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.return_components"]], "return_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.return_components"], [4, "id11"]], "rmse() (in module autots.models.tide)": [[4, "autots.models.tide.rmse"]], "rolling_trend() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.rolling_trend"]], "rolling_x_regressor() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.rolling_x_regressor"]], "rolling_x_regressor_regressor() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.rolling_x_regressor_regressor"]], "rrvar() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.rrvar"]], "sample_posterior() (autots.models.cassandra.bayesianmultioutputregression method)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression.sample_posterior"]], "scale_data() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.scale_data"]], "scale_data() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.scale_data"]], "scale_data() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.scale_data"]], "scores (autots.models.cassandra.cassandra..anomaly_detector attribute)": [[4, "autots.models.cassandra.Cassandra..anomaly_detector.scores"]], "seek_the_oracle() (in module autots.models.greykite)": [[4, "autots.models.greykite.seek_the_oracle"]], "smape() (in module autots.models.tide)": [[4, "autots.models.tide.smape"]], "svt_tnn() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.svt_tnn"]], "ten2mat() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.ten2mat"]], "test_val_gen() (autots.models.tide.timeseriesdata method)": [[4, "autots.models.tide.TimeSeriesdata.test_val_gen"]], "tf_dataset() (autots.models.tide.timeseriesdata method)": [[4, "autots.models.tide.TimeSeriesdata.tf_dataset"]], "time() (autots.models.base.modelobject static method)": [[4, "autots.models.base.ModelObject.time"]], "tmf() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.tmf"]], "to_origin_space() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.to_origin_space"]], "to_origin_space() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.to_origin_space"]], "to_origin_space() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.to_origin_space"]], "total_runtime() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.total_runtime"], [4, "id4"]], "train_gen() (autots.models.tide.timeseriesdata method)": [[4, "autots.models.tide.TimeSeriesdata.train_gen"]], "transform() (autots.models.sklearn.randomfourierencoding method)": [[4, "autots.models.sklearn.RandomFourierEncoding.transform"]], "transformation_parameters (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.transformation_parameters"]], "transformer_build_model() (in module autots.models.dnn)": [[4, "autots.models.dnn.transformer_build_model"]], "transformer_encoder() (in module autots.models.dnn)": [[4, "autots.models.dnn.transformer_encoder"]], "treatment_causal_impact() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.treatment_causal_impact"]], "trend_analysis() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.trend_analysis"]], "trend_train (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..trend_train"]], "tune_observational_noise() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.tune_observational_noise"]], "update_cg() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.update_cg"]], "upper_forecast (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.upper_forecast"]], "var() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.var"]], "var4cast() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.var4cast"]], "wape() (in module autots.models.tide)": [[4, "autots.models.tide.wape"]], "x_array (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..x_array"]], "autots.templates": [[5, "module-autots.templates"]], "autots.templates.general": [[5, "module-autots.templates.general"]], "general_template (in module autots.templates.general)": [[5, "autots.templates.general.general_template"]], "alignlastdiff (class in autots.tools.transform)": [[6, "autots.tools.transform.AlignLastDiff"]], "alignlastvalue (class in autots.tools.transform)": [[6, "autots.tools.transform.AlignLastValue"]], "anomalyremoval (class in autots.tools.transform)": [[6, "autots.tools.transform.AnomalyRemoval"]], "bkbandpassfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.BKBandpassFilter"]], "btcd (class in autots.tools.transform)": [[6, "autots.tools.transform.BTCD"]], "centerlastvalue (class in autots.tools.transform)": [[6, "autots.tools.transform.CenterLastValue"]], "centersplit (class in autots.tools.transform)": [[6, "autots.tools.transform.CenterSplit"]], "changepointdetrend (class in autots.tools.transform)": [[6, "autots.tools.transform.ChangepointDetrend"]], "clipoutliers (class in autots.tools.transform)": [[6, "autots.tools.transform.ClipOutliers"]], "cointegration (class in autots.tools.transform)": [[6, "autots.tools.transform.Cointegration"]], "constraint (class in autots.tools.transform)": [[6, "autots.tools.transform.Constraint"]], "cumsumtransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.CumSumTransformer"]], "datepartregression (in module autots.tools.transform)": [[6, "autots.tools.transform.DatepartRegression"]], "datepartregressiontransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.DatepartRegressionTransformer"]], "detrend (class in autots.tools.transform)": [[6, "autots.tools.transform.Detrend"]], "diffsmoother (class in autots.tools.transform)": [[6, "autots.tools.transform.DiffSmoother"]], "differencedtransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.DifferencedTransformer"]], "discretize (class in autots.tools.transform)": [[6, "autots.tools.transform.Discretize"]], "ewmafilter (class in autots.tools.transform)": [[6, "autots.tools.transform.EWMAFilter"]], "emptytransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.EmptyTransformer"]], "fft (class in autots.tools.fft)": [[6, "autots.tools.fft.FFT"]], "fftdecomposition (class in autots.tools.transform)": [[6, "autots.tools.transform.FFTDecomposition"]], "fftfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.FFTFilter"]], "firfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.FIRFilter"]], "fastica (class in autots.tools.transform)": [[6, "autots.tools.transform.FastICA"]], "fillna() (in module autots.tools.impute)": [[6, "autots.tools.impute.FillNA"]], "gaussian (class in autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.Gaussian"]], "generaltransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.GeneralTransformer"]], "hpfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.HPFilter"]], "historicvalues (class in autots.tools.transform)": [[6, "autots.tools.transform.HistoricValues"]], "holidaytransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.HolidayTransformer"]], "intermittentoccurrence (class in autots.tools.transform)": [[6, "autots.tools.transform.IntermittentOccurrence"]], "kalmanfilter (class in autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.KalmanFilter"]], "kalmanfilter.result (class in autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.KalmanFilter.Result"]], "kalmansmoothing (class in autots.tools.transform)": [[6, "autots.tools.transform.KalmanSmoothing"]], "levelshiftmagic (class in autots.tools.transform)": [[6, "autots.tools.transform.LevelShiftMagic"]], "levelshifttransformer (in module autots.tools.transform)": [[6, "autots.tools.transform.LevelShiftTransformer"]], "locallineartrend (class in autots.tools.transform)": [[6, "autots.tools.transform.LocalLinearTrend"]], "meandifference (class in autots.tools.transform)": [[6, "autots.tools.transform.MeanDifference"]], "meanpercentsplitter (class in autots.tools.transform)": [[6, "autots.tools.transform.MeanPercentSplitter"]], "nonparametricthreshold (class in autots.tools.thresholding)": [[6, "autots.tools.thresholding.NonparametricThreshold"]], "numerictransformer (class in autots.tools.shaping)": [[6, "autots.tools.shaping.NumericTransformer"]], "pca (class in autots.tools.transform)": [[6, "autots.tools.transform.PCA"]], "pctchangetransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.PctChangeTransformer"]], "point_to_probability() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.Point_to_Probability"]], "positiveshift (class in autots.tools.transform)": [[6, "autots.tools.transform.PositiveShift"]], "randomtransform() (in module autots.tools.transform)": [[6, "autots.tools.transform.RandomTransform"]], "regressionfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.RegressionFilter"]], "replaceconstant (class in autots.tools.transform)": [[6, "autots.tools.transform.ReplaceConstant"]], "rollingmeantransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.RollingMeanTransformer"]], "round (class in autots.tools.transform)": [[6, "autots.tools.transform.Round"]], "stlfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.STLFilter"]], "scipyfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.ScipyFilter"]], "seasonaldifference (class in autots.tools.transform)": [[6, "autots.tools.transform.SeasonalDifference"]], "seasonalitymotifimputer (class in autots.tools.impute)": [[6, "autots.tools.impute.SeasonalityMotifImputer"]], "shiftfirstvalue (class in autots.tools.transform)": [[6, "autots.tools.transform.ShiftFirstValue"]], "simpleseasonalitymotifimputer (class in autots.tools.impute)": [[6, "autots.tools.impute.SimpleSeasonalityMotifImputer"]], "sintrend (class in autots.tools.transform)": [[6, "autots.tools.transform.SinTrend"]], "slice (class in autots.tools.transform)": [[6, "autots.tools.transform.Slice"]], "standardscaler (class in autots.tools.transform)": [[6, "autots.tools.transform.StandardScaler"]], "statsmodelsfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.StatsmodelsFilter"]], "thetatransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.ThetaTransformer"]], "variable_point_to_probability() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.Variable_Point_to_Probability"]], "anomaly_df_to_holidays() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.anomaly_df_to_holidays"]], "anomaly_new_params() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.anomaly_new_params"]], "apply_constraint_single() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.apply_constraint_single"]], "apply_fir_filter_time_domain() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.apply_fir_filter_time_domain"]], "apply_fir_filter_to_timeseries() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.apply_fir_filter_to_timeseries"]], "apply_fit_constraint() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.apply_fit_constraint"]], "autoshape() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.autoshape"]], "autots.tools": [[6, "module-autots.tools"]], "autots.tools.anomaly_utils": [[6, "module-autots.tools.anomaly_utils"]], "autots.tools.calendar": [[6, "module-autots.tools.calendar"]], "autots.tools.cointegration": [[6, "module-autots.tools.cointegration"]], "autots.tools.constraint": [[6, "module-autots.tools.constraint"]], "autots.tools.cpu_count": [[6, "module-autots.tools.cpu_count"]], "autots.tools.fast_kalman": [[6, "module-autots.tools.fast_kalman"]], "autots.tools.fft": [[6, "module-autots.tools.fft"]], "autots.tools.fir_filter": [[6, "module-autots.tools.fir_filter"]], "autots.tools.hierarchial": [[6, "module-autots.tools.hierarchial"]], "autots.tools.holiday": [[6, "module-autots.tools.holiday"]], "autots.tools.impute": [[6, "module-autots.tools.impute"]], "autots.tools.lunar": [[6, "module-autots.tools.lunar"]], "autots.tools.percentile": [[6, "module-autots.tools.percentile"]], "autots.tools.probabilistic": [[6, "module-autots.tools.probabilistic"]], "autots.tools.profile": [[6, "module-autots.tools.profile"]], "autots.tools.regressor": [[6, "module-autots.tools.regressor"]], "autots.tools.seasonal": [[6, "module-autots.tools.seasonal"]], "autots.tools.shaping": [[6, "module-autots.tools.shaping"]], "autots.tools.thresholding": [[6, "module-autots.tools.thresholding"]], "autots.tools.transform": [[6, "module-autots.tools.transform"]], "autots.tools.wavelet": [[6, "module-autots.tools.wavelet"]], "autots.tools.window_functions": [[6, "module-autots.tools.window_functions"]], "biased_ffill() (in module autots.tools.impute)": [[6, "autots.tools.impute.biased_ffill"]], "bkfilter() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.bkfilter"]], "bkfilter_st() (in module autots.tools.transform)": [[6, "autots.tools.transform.bkfilter_st"]], "btcd_decompose() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.btcd_decompose"]], "cffilter() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.cffilter"]], "changepoint_fcst_from_last_row() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.changepoint_fcst_from_last_row"]], "chunk_reshape() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.chunk_reshape"]], "clean_weights() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.clean_weights"]], "clip_outliers() (in module autots.tools.transform)": [[6, "autots.tools.transform.clip_outliers"]], "coint_johansen() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.coint_johansen"]], "compare_to_epsilon() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.compare_to_epsilon"]], "compute() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.compute"]], "consecutive_groups() (in module autots.tools.thresholding)": [[6, "autots.tools.thresholding.consecutive_groups"]], "constant_growth_rate() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.constant_growth_rate"]], "constraint_new_params() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.constraint_new_params"]], "continuous_db2_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.continuous_db2_wavelet"]], "convolution_filter() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.convolution_filter"]], "cpu_count() (in module autots.tools.cpu_count)": [[6, "autots.tools.cpu_count.cpu_count"]], "create_changepoint_features() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.create_changepoint_features"]], "create_datepart_components() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.create_datepart_components"]], "create_dates_df() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.create_dates_df"]], "create_daubechies_db2_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_daubechies_db2_wavelet"]], "create_gaussian_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_gaussian_wavelet"]], "create_haar_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_haar_wavelet"]], "create_lagged_regressor() (in module autots.tools.regressor)": [[6, "autots.tools.regressor.create_lagged_regressor"]], "create_mexican_hat_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_mexican_hat_wavelet"]], "create_morlet_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_morlet_wavelet"]], "create_narrowing_wavelets() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_narrowing_wavelets"]], "create_real_morlet_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_real_morlet_wavelet"]], "create_regressor() (in module autots.tools.regressor)": [[6, "autots.tools.regressor.create_regressor"]], "create_seasonality_feature() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.create_seasonality_feature"]], "create_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_wavelet"]], "data_profile() (in module autots.tools.profile)": [[6, "autots.tools.profile.data_profile"]], "date_part() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.date_part"]], "dates_to_holidays() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.dates_to_holidays"]], "dates_to_holidays() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.dates_to_holidays"]], "dcos() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.dcos"]], "ddot() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ddot"]], "ddot_t_right() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ddot_t_right"]], "ddot_t_right_old() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ddot_t_right_old"]], "detect_anomalies() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.detect_anomalies"]], "df_cleanup() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.df_cleanup"]], "dinv() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.dinv"]], "douter() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.douter"]], "dsin() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.dsin"]], "em() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.em"]], "em_initial_state() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.em_initial_state"]], "em_observation_noise() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.em_observation_noise"]], "em_process_noise() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.em_process_noise"]], "empty() (autots.tools.fast_kalman.gaussian static method)": [[6, "autots.tools.fast_kalman.Gaussian.empty"]], "ensure_matrix() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ensure_matrix"]], "ensure_stability() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ensure_stability"]], "exponential_decay() (in module autots.tools.transform)": [[6, "autots.tools.transform.exponential_decay"]], "fake_date_fill() (in module autots.tools.impute)": [[6, "autots.tools.impute.fake_date_fill"]], "fake_date_fill_old() (in module autots.tools.impute)": [[6, "autots.tools.impute.fake_date_fill_old"]], "fft_fir_filter_to_timeseries() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.fft_fir_filter_to_timeseries"]], "fill_forward() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_forward"]], "fill_forward_alt() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_forward_alt"]], "fill_mean() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_mean"]], "fill_mean_old() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_mean_old"]], "fill_median() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_median"]], "fill_median_old() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_median_old"]], "fill_na() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.fill_na"]], "fill_one() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_one"]], "fill_zero() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_zero"]], "fillna_np() (in module autots.tools.impute)": [[6, "autots.tools.impute.fillna_np"]], "filter() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.filter"]], "filter() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.filter"]], "find_centerpoint() (autots.tools.transform.alignlastvalue static method)": [[6, "autots.tools.transform.AlignLastValue.find_centerpoint"]], "find_epsilon() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.find_epsilon"]], "fit() (autots.tools.fft.fft method)": [[6, "autots.tools.fft.FFT.fit"]], "fit() (autots.tools.hierarchial.hierarchial method)": [[6, "autots.tools.hierarchial.hierarchial.fit"]], "fit() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.fit"]], "fit() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.fit"]], "fit() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.fit"]], "fit() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.fit"]], "fit() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.fit"]], "fit() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.fit"]], "fit() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.fit"]], "fit() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.fit"]], "fit() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.fit"]], "fit() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.fit"]], "fit() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.fit"]], "fit() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.fit"]], "fit() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.fit"]], "fit() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.fit"]], "fit() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.fit"]], "fit() (autots.tools.transform.diffsmoother method)": [[6, "autots.tools.transform.DiffSmoother.fit"]], "fit() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.fit"]], "fit() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.fit"]], "fit() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.fit"]], "fit() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.fit"]], "fit() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.fit"]], "fit() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.fit"]], "fit() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.fit"]], "fit() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.fit"]], "fit() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.fit"]], "fit() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.fit"]], "fit() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.fit"]], "fit() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.fit"]], "fit() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.fit"]], "fit() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.fit"]], "fit() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.fit"]], "fit() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.fit"]], "fit() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.fit"]], "fit() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.fit"]], "fit() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.fit"]], "fit() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.fit"]], "fit() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.fit"]], "fit() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.fit"]], "fit() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.fit"]], "fit() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.fit"]], "fit() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.fit"]], "fit() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.fit"]], "fit() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.fit"]], "fit() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.fit"]], "fit() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.fit"]], "fit() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.fit"]], "fit_anomaly_classifier() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.fit_anomaly_classifier"]], "fit_constraint() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.fit_constraint"]], "fit_sin() (autots.tools.transform.sintrend static method)": [[6, "autots.tools.transform.SinTrend.fit_sin"]], "fit_transform() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.fit_transform"]], "fit_transform() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.fit_transform"]], "fit_transform() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.fit_transform"]], "fit_transform() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.fit_transform"]], "fit_transform() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.fit_transform"]], "fit_transform() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.fit_transform"]], "fit_transform() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.fit_transform"]], "fit_transform() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.fit_transform"]], "fit_transform() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.fit_transform"]], "fit_transform() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.fit_transform"]], "fit_transform() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.fit_transform"]], "fit_transform() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.fit_transform"]], "fit_transform() (autots.tools.transform.diffsmoother method)": [[6, "autots.tools.transform.DiffSmoother.fit_transform"]], "fit_transform() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.fit_transform"]], "fit_transform() (autots.tools.transform.ewmafilter method)": [[6, "autots.tools.transform.EWMAFilter.fit_transform"]], "fit_transform() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.fit_transform"]], "fit_transform() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.fit_transform"]], "fit_transform() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.fit_transform"]], "fit_transform() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.fit_transform"]], "fit_transform() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.hpfilter method)": [[6, "autots.tools.transform.HPFilter.fit_transform"]], "fit_transform() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.fit_transform"]], "fit_transform() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.fit_transform"]], "fit_transform() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.fit_transform"]], "fit_transform() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.fit_transform"]], "fit_transform() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.fit_transform"]], "fit_transform() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.fit_transform"]], "fit_transform() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.fit_transform"]], "fit_transform() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.fit_transform"]], "fit_transform() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.fit_transform"]], "fit_transform() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.fit_transform"]], "fit_transform() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.fit_transform"]], "fit_transform() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.fit_transform"]], "fit_transform() (autots.tools.transform.stlfilter method)": [[6, "autots.tools.transform.STLFilter.fit_transform"]], "fit_transform() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.fit_transform"]], "fit_transform() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.fit_transform"]], "fit_transform() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.fit_transform"]], "fit_transform() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.fit_transform"]], "fit_transform() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.fit_transform"]], "fit_transform() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.fit_transform"]], "fit_transform() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.fit_transform"]], "fit_transform() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.fit_transform"]], "fixangle() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.fixangle"]], "fourier_df() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.fourier_df"]], "fourier_extrapolation() (in module autots.tools.fft)": [[6, "autots.tools.fft.fourier_extrapolation"]], "fourier_series() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.fourier_series"]], "fourier_series() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.fourier_series"]], "freq_to_timedelta() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.freq_to_timedelta"]], "gaussian_mixture() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.gaussian_mixture"]], "generate_harmonics_dataframe() (autots.tools.fft.fft method)": [[6, "autots.tools.fft.FFT.generate_harmonics_dataframe"]], "generate_random_fir_params() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.generate_random_fir_params"]], "get_new_params() (autots.tools.transform.alignlastdiff static method)": [[6, "autots.tools.transform.AlignLastDiff.get_new_params"]], "get_new_params() (autots.tools.transform.alignlastvalue static method)": [[6, "autots.tools.transform.AlignLastValue.get_new_params"]], "get_new_params() (autots.tools.transform.anomalyremoval static method)": [[6, "autots.tools.transform.AnomalyRemoval.get_new_params"]], "get_new_params() (autots.tools.transform.bkbandpassfilter static method)": [[6, "autots.tools.transform.BKBandpassFilter.get_new_params"]], "get_new_params() (autots.tools.transform.btcd static method)": [[6, "autots.tools.transform.BTCD.get_new_params"]], "get_new_params() (autots.tools.transform.centerlastvalue static method)": [[6, "autots.tools.transform.CenterLastValue.get_new_params"]], "get_new_params() (autots.tools.transform.centersplit static method)": [[6, "autots.tools.transform.CenterSplit.get_new_params"]], "get_new_params() (autots.tools.transform.changepointdetrend static method)": [[6, "autots.tools.transform.ChangepointDetrend.get_new_params"]], "get_new_params() (autots.tools.transform.clipoutliers static method)": [[6, "autots.tools.transform.ClipOutliers.get_new_params"]], "get_new_params() (autots.tools.transform.cointegration static method)": [[6, "autots.tools.transform.Cointegration.get_new_params"]], "get_new_params() (autots.tools.transform.constraint static method)": [[6, "autots.tools.transform.Constraint.get_new_params"]], "get_new_params() (autots.tools.transform.datepartregressiontransformer static method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.detrend static method)": [[6, "autots.tools.transform.Detrend.get_new_params"]], "get_new_params() (autots.tools.transform.diffsmoother static method)": [[6, "autots.tools.transform.DiffSmoother.get_new_params"]], "get_new_params() (autots.tools.transform.differencedtransformer static method)": [[6, "autots.tools.transform.DifferencedTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.discretize static method)": [[6, "autots.tools.transform.Discretize.get_new_params"]], "get_new_params() (autots.tools.transform.ewmafilter static method)": [[6, "autots.tools.transform.EWMAFilter.get_new_params"]], "get_new_params() (autots.tools.transform.emptytransformer static method)": [[6, "autots.tools.transform.EmptyTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.fftdecomposition static method)": [[6, "autots.tools.transform.FFTDecomposition.get_new_params"]], "get_new_params() (autots.tools.transform.fftfilter static method)": [[6, "autots.tools.transform.FFTFilter.get_new_params"]], "get_new_params() (autots.tools.transform.firfilter static method)": [[6, "autots.tools.transform.FIRFilter.get_new_params"]], "get_new_params() (autots.tools.transform.fastica static method)": [[6, "autots.tools.transform.FastICA.get_new_params"]], "get_new_params() (autots.tools.transform.generaltransformer static method)": [[6, "autots.tools.transform.GeneralTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.hpfilter static method)": [[6, "autots.tools.transform.HPFilter.get_new_params"]], "get_new_params() (autots.tools.transform.historicvalues static method)": [[6, "autots.tools.transform.HistoricValues.get_new_params"]], "get_new_params() (autots.tools.transform.holidaytransformer static method)": [[6, "autots.tools.transform.HolidayTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.intermittentoccurrence static method)": [[6, "autots.tools.transform.IntermittentOccurrence.get_new_params"]], "get_new_params() (autots.tools.transform.kalmansmoothing static method)": [[6, "autots.tools.transform.KalmanSmoothing.get_new_params"]], "get_new_params() (autots.tools.transform.levelshiftmagic static method)": [[6, "autots.tools.transform.LevelShiftMagic.get_new_params"]], "get_new_params() (autots.tools.transform.locallineartrend static method)": [[6, "autots.tools.transform.LocalLinearTrend.get_new_params"]], "get_new_params() (autots.tools.transform.meanpercentsplitter static method)": [[6, "autots.tools.transform.MeanPercentSplitter.get_new_params"]], "get_new_params() (autots.tools.transform.pca static method)": [[6, "autots.tools.transform.PCA.get_new_params"]], "get_new_params() (autots.tools.transform.regressionfilter static method)": [[6, "autots.tools.transform.RegressionFilter.get_new_params"]], "get_new_params() (autots.tools.transform.replaceconstant static method)": [[6, "autots.tools.transform.ReplaceConstant.get_new_params"]], "get_new_params() (autots.tools.transform.rollingmeantransformer static method)": [[6, "autots.tools.transform.RollingMeanTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.round static method)": [[6, "autots.tools.transform.Round.get_new_params"]], "get_new_params() (autots.tools.transform.stlfilter static method)": [[6, "autots.tools.transform.STLFilter.get_new_params"]], "get_new_params() (autots.tools.transform.scipyfilter static method)": [[6, "autots.tools.transform.ScipyFilter.get_new_params"]], "get_new_params() (autots.tools.transform.seasonaldifference static method)": [[6, "autots.tools.transform.SeasonalDifference.get_new_params"]], "get_new_params() (autots.tools.transform.shiftfirstvalue static method)": [[6, "autots.tools.transform.ShiftFirstValue.get_new_params"]], "get_new_params() (autots.tools.transform.sintrend static method)": [[6, "autots.tools.transform.SinTrend.get_new_params"]], "get_new_params() (autots.tools.transform.slice static method)": [[6, "autots.tools.transform.Slice.get_new_params"]], "get_new_params() (autots.tools.transform.thetatransformer static method)": [[6, "autots.tools.transform.ThetaTransformer.get_new_params"]], "get_transformer_params() (in module autots.tools.transform)": [[6, "autots.tools.transform.get_transformer_params"]], "gregorian_to_chinese() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_chinese"]], "gregorian_to_christian_lunar() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_christian_lunar"]], "gregorian_to_hebrew() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_hebrew"]], "gregorian_to_hindu() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_hindu"]], "gregorian_to_islamic() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_islamic"]], "half_yr_spacing() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.half_yr_spacing"]], "heb_is_leap() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.heb_is_leap"]], "hierarchial (class in autots.tools.hierarchial)": [[6, "autots.tools.hierarchial.hierarchial"]], "historic_quantile() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.historic_quantile"]], "holiday_flag() (in module autots.tools.holiday)": [[6, "autots.tools.holiday.holiday_flag"]], "holiday_new_params() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.holiday_new_params"]], "holt_winters_damped_matrices() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.holt_winters_damped_matrices"]], "impute() (autots.tools.impute.seasonalitymotifimputer method)": [[6, "autots.tools.impute.SeasonalityMotifImputer.impute"]], "impute() (autots.tools.impute.simpleseasonalitymotifimputer method)": [[6, "autots.tools.impute.SimpleSeasonalityMotifImputer.impute"]], "impute() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.impute"]], "infer_frequency() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.infer_frequency"]], "inferred_normal() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.inferred_normal"]], "inverse_transform() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.inverse_transform"]], "inverse_transform() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.inverse_transform"]], "inverse_transform() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.inverse_transform"]], "inverse_transform() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.inverse_transform"]], "inverse_transform() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.inverse_transform"]], "inverse_transform() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.inverse_transform"]], "inverse_transform() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.inverse_transform"]], "inverse_transform() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.inverse_transform"]], "inverse_transform() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.inverse_transform"]], "inverse_transform() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.inverse_transform"]], "inverse_transform() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.inverse_transform"]], "inverse_transform() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.inverse_transform"]], "inverse_transform() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.inverse_transform"]], "inverse_transform() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.inverse_transform"]], "inverse_transform() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.inverse_transform"]], "inverse_transform() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.inverse_transform"]], "inverse_transform() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.inverse_transform"]], "inverse_transform() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.inverse_transform"]], "inverse_transform() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.inverse_transform"]], "inverse_transform() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.inverse_transform"]], "inverse_transform() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.inverse_transform"]], "inverse_transform() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.inverse_transform"]], "inverse_transform() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.inverse_transform"]], "inverse_transform() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.inverse_transform"]], "inverse_transform() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.inverse_transform"]], "inverse_transform() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.inverse_transform"]], "inverse_transform() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.inverse_transform"]], "kepler() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.kepler"]], "lagmat() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.lagmat"]], "last_window() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.last_window"]], "limits_to_anomalies() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.limits_to_anomalies"]], "long_to_wide() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.long_to_wide"]], "loop_sk_outliers() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.loop_sk_outliers"]], "lunar_from_lunar() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.lunar_from_lunar"]], "lunar_from_lunar_full() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.lunar_from_lunar_full"]], "moon_phase() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.moon_phase"]], "moon_phase_df() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.moon_phase_df"]], "nan_percentile() (in module autots.tools.percentile)": [[6, "autots.tools.percentile.nan_percentile"]], "nan_quantile() (in module autots.tools.percentile)": [[6, "autots.tools.percentile.nan_quantile"]], "new_kalman_params() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.new_kalman_params"]], "nonparametric() (in module autots.tools.thresholding)": [[6, "autots.tools.thresholding.nonparametric"]], "nonparametric_multivariate() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.nonparametric_multivariate"]], "np_2d_arange() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.np_2d_arange"]], "offset_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.offset_wavelet"]], "percentileofscore_appliable() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.percentileofscore_appliable"]], "phase_string() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.phase_string"]], "predict() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.predict"]], "predict() (autots.tools.fft.fft method)": [[6, "autots.tools.fft.FFT.predict"]], "predict() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.predict"]], "predict_next() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.predict_next"]], "predict_observation() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.predict_observation"]], "predict_observation() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.predict_observation"]], "priv_smooth() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.priv_smooth"]], "priv_update_with_nan_check() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.priv_update_with_nan_check"]], "profile_time_series() (in module autots.tools.profile)": [[6, "autots.tools.profile.profile_time_series"]], "prune_anoms() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.prune_anoms"]], "query_holidays() (in module autots.tools.holiday)": [[6, "autots.tools.holiday.query_holidays"]], "random_cleaners() (in module autots.tools.transform)": [[6, "autots.tools.transform.random_cleaners"]], "random_datepart() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.random_datepart"]], "random_matrix() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.random_matrix"]], "random_state_space() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.random_state_space"]], "random_state_space_original() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.random_state_space_original"]], "reconcile() (autots.tools.hierarchial.hierarchial method)": [[6, "autots.tools.hierarchial.hierarchial.reconcile"]], "remove_outliers() (in module autots.tools.transform)": [[6, "autots.tools.transform.remove_outliers"]], "retrieve_closest_indices() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.retrieve_closest_indices"]], "retrieve_transformer() (autots.tools.transform.generaltransformer class method)": [[6, "autots.tools.transform.GeneralTransformer.retrieve_transformer"]], "rolling_mean() (in module autots.tools.impute)": [[6, "autots.tools.impute.rolling_mean"]], "rolling_window_view() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.rolling_window_view"]], "score_anomalies() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.score_anomalies"]], "score_to_anomaly() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.score_to_anomaly"]], "seasonal_independent_match() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_independent_match"]], "seasonal_int() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_int"]], "seasonal_repeating_wavelet() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_repeating_wavelet"]], "seasonal_window_match() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_window_match"]], "set_n_jobs() (in module autots.tools.cpu_count)": [[6, "autots.tools.cpu_count.set_n_jobs"]], "simple_context_slicer() (in module autots.tools.transform)": [[6, "autots.tools.transform.simple_context_slicer"]], "simple_train_test_split() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.simple_train_test_split"]], "sk_outliers() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.sk_outliers"]], "sliding_window_view() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.sliding_window_view"]], "smooth() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.smooth"]], "smooth() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.smooth"]], "smooth_current() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.smooth_current"]], "split_digits_and_non_digits() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.split_digits_and_non_digits"]], "stable_pinv() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.stable_pinv"]], "subset_series() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.subset_series"]], "summarize_series() (in module autots.tools.profile)": [[6, "autots.tools.profile.summarize_series"]], "to_jd() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.to_jd"]], "todeg() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.todeg"]], "torad() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.torad"]], "transform() (autots.tools.hierarchial.hierarchial method)": [[6, "autots.tools.hierarchial.hierarchial.transform"]], "transform() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.transform"]], "transform() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.transform"]], "transform() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.transform"]], "transform() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.transform"]], "transform() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.transform"]], "transform() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.transform"]], "transform() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.transform"]], "transform() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.transform"]], "transform() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.transform"]], "transform() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.transform"]], "transform() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.transform"]], "transform() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.transform"]], "transform() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.transform"]], "transform() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.transform"]], "transform() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.transform"]], "transform() (autots.tools.transform.diffsmoother method)": [[6, "autots.tools.transform.DiffSmoother.transform"]], "transform() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.transform"]], "transform() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.transform"]], "transform() (autots.tools.transform.ewmafilter method)": [[6, "autots.tools.transform.EWMAFilter.transform"]], "transform() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.transform"]], "transform() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.transform"]], "transform() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.transform"]], "transform() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.transform"]], "transform() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.transform"]], "transform() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.transform"]], "transform() (autots.tools.transform.hpfilter method)": [[6, "autots.tools.transform.HPFilter.transform"]], "transform() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.transform"]], "transform() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.transform"]], "transform() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.transform"]], "transform() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.transform"]], "transform() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.transform"]], "transform() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.transform"]], "transform() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.transform"]], "transform() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.transform"]], "transform() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.transform"]], "transform() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.transform"]], "transform() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.transform"]], "transform() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.transform"]], "transform() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.transform"]], "transform() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.transform"]], "transform() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.transform"]], "transform() (autots.tools.transform.stlfilter method)": [[6, "autots.tools.transform.STLFilter.transform"]], "transform() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.transform"]], "transform() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.transform"]], "transform() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.transform"]], "transform() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.transform"]], "transform() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.transform"]], "transform() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.transform"]], "transform() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.transform"]], "transform() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.transform"]], "transformer_list_to_dict() (in module autots.tools.transform)": [[6, "autots.tools.transform.transformer_list_to_dict"]], "trimmed_mean() (in module autots.tools.percentile)": [[6, "autots.tools.percentile.trimmed_mean"]], "unvectorize_state() (autots.tools.fast_kalman.gaussian method)": [[6, "autots.tools.fast_kalman.Gaussian.unvectorize_state"]], "unvectorize_vars() (autots.tools.fast_kalman.gaussian method)": [[6, "autots.tools.fast_kalman.Gaussian.unvectorize_vars"]], "update() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.update"]], "update() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.update"]], "update_with_nan_check() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.update_with_nan_check"]], "values_to_anomalies() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.values_to_anomalies"]], "wide_to_3d() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.wide_to_3d"]], "window_id_maker() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_id_maker"]], "window_lin_reg() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_lin_reg"]], "window_lin_reg_mean() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_lin_reg_mean"]], "window_lin_reg_mean_no_nan() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_lin_reg_mean_no_nan"]], "window_maker() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_maker"]], "window_maker_2() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_maker_2"]], "window_maker_3() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_maker_3"]], "window_sum_mean() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_sum_mean"]], "window_sum_mean_nan_tail() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_sum_mean_nan_tail"]], "window_sum_nan_mean() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_sum_nan_mean"]], "zscore_survival_function() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.zscore_survival_function"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["index", "source/autots", "source/autots.datasets", "source/autots.evaluator", "source/autots.models", "source/autots.templates", "source/autots.tools", "source/intro", "source/modules", "source/tutorial"], "filenames": ["index.rst", "source/autots.rst", "source/autots.datasets.rst", "source/autots.evaluator.rst", "source/autots.models.rst", "source/autots.templates.rst", "source/autots.tools.rst", "source/intro.rst", "source/modules.rst", "source/tutorial.rst"], "titles": ["AutoTS", "autots package", "autots.datasets package", "autots.evaluator package", "autots.models package", "autots.templates package", "autots.tools package", "Intro", "autots", "Tutorial"], "terms": {"i": [0, 1, 2, 3, 4, 6, 7, 9], "an": [0, 1, 2, 3, 4, 6, 7, 9], "autom": [0, 1, 3, 7, 9], "time": [0, 1, 3, 4, 6, 7, 9], "seri": [0, 1, 2, 3, 4, 6, 7], "forecast": [0, 1, 2, 3, 4, 6, 7], "packag": [0, 7, 8], "python": [0, 1, 3, 4, 6, 7, 9], "pip": [0, 2, 7, 9], "requir": [0, 1, 2, 3, 4, 6, 7], "3": [0, 1, 3, 4, 5, 6, 9], "6": [0, 1, 3, 5, 6, 9], "numpi": [0, 1, 3, 4, 6, 9], "panda": [0, 1, 3, 4, 6, 7, 9], "statsmodel": [0, 1, 6, 8, 9], "scikit": [0, 4, 6, 7, 9], "learn": [0, 1, 4, 6, 7, 9], "intro": 0, "content": [0, 8], "basic": [0, 1, 3, 5, 6, 8, 9], "us": [0, 1, 2, 3, 4, 6], "tip": [0, 9], "speed": [0, 1, 3, 4], "larg": [0, 1, 4, 6, 9], "data": [0, 1, 2, 3, 4, 6], "how": [0, 1, 3, 4, 6, 9], "contribut": [0, 1, 3, 9], "process": [0, 1, 3, 4, 6], "tutori": [0, 7], "extend": [0, 6, 7], "deploy": 0, "templat": [0, 1, 3, 4, 7, 8], "import": [0, 1, 2, 3, 5, 6, 7], "export": [0, 1, 2, 3, 4, 5, 7], "depend": [0, 1, 3, 4, 6, 7], "version": [0, 1, 3, 4, 6], "caveat": 0, "advic": 0, "simul": [0, 4, 7], "event": [0, 1, 2, 3, 7], "risk": [0, 1, 3, 7], "anomali": [0, 1, 3, 4, 6, 8], "detect": [0, 1, 3, 6, 8], "transform": [0, 1, 3, 4, 7, 8], "independ": [0, 4, 6, 7], "model": [0, 1, 3, 5, 6, 7, 8], "index": [0, 1, 2, 3, 4, 5, 6, 9], "search": [0, 1, 2, 3, 4, 7, 9], "page": [0, 1, 2], "dataset": [1, 3, 4, 6, 7, 8, 9], "submodul": [1, 8], "fred": [1, 8], "get_fred_data": [1, 2], "load_artifici": [1, 2, 8], "load_daili": [1, 2, 7, 8, 9], "load_hourli": [1, 2, 8, 9], "load_linear": [1, 2, 8], "load_live_daili": [1, 2, 8, 9], "load_monthli": [1, 2, 8, 9], "load_sin": [1, 2, 8], "load_weekdai": [1, 2, 8], "load_weekli": [1, 2, 8], "load_yearli": [1, 2, 8], "load_zero": [1, 2], "evalu": [1, 4, 5, 7, 8, 9], "anomaly_detector": [1, 4, 8, 9], "anomalydetector": [1, 3, 8, 9], "fit": [1, 3, 4, 6, 7, 8, 9], "fit_anomaly_classifi": [1, 3, 6, 8], "get_new_param": [1, 3, 4, 6, 8, 9], "plot": [1, 3, 4, 7, 8, 9], "score_to_anomali": [1, 3, 6, 8], "holidaydetector": [1, 3, 6, 8, 9], "dates_to_holidai": [1, 3, 4, 6, 8, 9], "plot_anomali": [1, 3, 8], "auto_model": [1, 5, 8], "modelmonst": [1, 3], "modelpredict": [1, 3, 8], "fit_data": [1, 3, 4, 8], "fit_predict": [1, 3, 8], "predict": [1, 3, 4, 6, 7, 8, 9], "newgenetictempl": [1, 3], "randomtempl": [1, 3], "templateevalobject": [1, 3], "full_mae_id": [1, 3, 4], "full_mae_error": [1, 3, 4], "concat": [1, 3, 5, 6], "load": [1, 2, 3, 4, 5, 7, 9], "save": [1, 3, 4, 6, 7], "templatewizard": [1, 3], "uniquetempl": [1, 3], "back_forecast": [1, 3, 8], "create_model_id": [1, 3], "dict_recombin": [1, 3], "generate_scor": [1, 3], "generate_score_per_seri": [1, 3], "horizontal_template_to_model_list": [1, 3], "model_forecast": [1, 3, 8, 9], "random_model": [1, 3], "remove_leading_zero": [1, 3, 9], "trans_dict_recomb": [1, 3], "unpack_ensemble_model": [1, 3, 5], "validation_aggreg": [1, 3], "auto_t": [1, 8, 9], "best_model": [1, 3, 5, 8, 9], "best_model_nam": [1, 3, 8, 9], "best_model_param": [1, 3, 8, 9], "best_model_transformation_param": [1, 3, 8, 9], "best_model_ensembl": [1, 3, 8, 9], "regression_check": [1, 3, 8], "df_wide_numer": [1, 3, 7, 8, 9], "score_per_seri": [1, 3, 4, 8], "best_model_per_series_map": [1, 3, 8], "best_model_per_series_scor": [1, 3, 8], "create_unpredictability_scor": [1, 3, 4, 8], "diagnose_param": [1, 3, 8], "expand_horizont": [1, 3, 8], "export_best_model": [1, 3, 8], "export_templ": [1, 3, 5, 8, 9], "failure_r": [1, 3, 8], "get_metric_corr": [1, 3, 8], "get_params_from_id": [1, 3, 8], "get_top_n_count": [1, 3, 8], "horizontal_per_gener": [1, 3, 8], "horizontal_to_df": [1, 3, 8], "import_best_model": [1, 3, 8], "import_result": [1, 3, 7, 8], "import_templ": [1, 3, 8, 9], "list_failed_model_typ": [1, 3, 8], "load_templ": [1, 3, 8], "mosaic_to_df": [1, 3, 8, 9], "parse_best_model": [1, 3, 8], "plot_back_forecast": [1, 3, 8], "plot_backforecast": [1, 3, 8, 9], "plot_chosen_transform": [1, 3, 8], "plot_failure_r": [1, 3, 8], "plot_generation_loss": [1, 3, 8, 9], "plot_horizont": [1, 3, 8, 9], "plot_horizontal_model_count": [1, 3, 8], "plot_horizontal_per_gener": [1, 3, 8, 9], "plot_horizontal_transform": [1, 3, 8, 9], "plot_metric_corr": [1, 3, 8], "plot_model_failure_r": [1, 3, 8], "plot_mosa": [1, 3, 8], "plot_per_series_error": [1, 3, 8, 9], "plot_per_series_map": [1, 3, 8, 9], "plot_per_series_smap": [1, 3, 8], "plot_series_corr": [1, 3, 8], "plot_transformer_by_class": [1, 3, 8], "plot_transformer_failure_r": [1, 3, 8], "plot_unpredict": [1, 3, 8], "plot_valid": [1, 3, 8], "result": [1, 2, 3, 4, 6, 7, 8, 9], "retrieve_validation_forecast": [1, 3, 8], "save_templ": [1, 3, 8], "validation_agg": [1, 3, 8], "initial_result": [1, 3, 4, 8], "model_result": [1, 3, 4, 5, 7, 8], "error_correl": [1, 3], "fake_regressor": [1, 3, 9], "benchmark": [1, 8], "run": [1, 2, 3, 4, 5, 6, 7], "event_forecast": [1, 8], "eventriskforecast": [1, 3, 8, 9], "predict_histor": [1, 3, 8, 9], "generate_result_window": [1, 3, 8], "generate_risk_arrai": [1, 3, 8], "generate_historic_risk_arrai": [1, 3, 8, 9], "set_limit": [1, 3, 8], "plot_ev": [1, 3, 8, 9], "extract_result_window": [1, 3], "extract_window_index": [1, 3], "set_limit_forecast": [1, 3], "set_limit_forecast_histor": [1, 3], "metric": [1, 2, 4, 7, 8], "array_last_v": [1, 3], "chi_squared_hist_distribution_loss": [1, 3], "contain": [1, 3, 4, 6, 9], "contour": [1, 3, 4, 9], "default_scal": [1, 3], "dwae": [1, 3], "full_metric_evalu": [1, 3], "kde": [1, 3], "kde_kl_dist": [1, 3], "kl_diverg": [1, 3], "linear": [1, 3, 4, 6, 9], "mae": [1, 3, 4, 9], "mda": [1, 3, 9], "mean_absolute_differential_error": [1, 3], "mean_absolute_error": [1, 3], "meda": [1, 3], "median_absolute_error": [1, 3], "mlvb": [1, 3], "mqae": [1, 3, 4], "msle": [1, 3], "numpy_ffil": [1, 3], "oda": [1, 3], "pinball_loss": [1, 3], "precomp_wasserstein": [1, 3], "qae": [1, 3], "rmse": [1, 3, 4, 9], "root_mean_square_error": [1, 3], "rp": [1, 3], "scaled_pinball_loss": [1, 3], "smape": [1, 3, 4, 9], "smooth": [1, 3, 4, 6, 9], "spl": [1, 3, 4, 9], "symmetric_mean_absolute_percentage_error": [1, 3], "threshold_loss": [1, 3], "unsorted_wasserstein": [1, 3], "wasserstein": [1, 3], "valid": [1, 4, 7, 8], "extract_seasonal_val_period": [1, 3], "generate_validation_indic": [1, 3], "validate_num_valid": [1, 3], "arch": [1, 3, 8, 9], "get_param": [1, 4, 8], "base": [1, 3, 6, 8, 9], "modelobject": [1, 3, 4], "basic_profil": [1, 4], "create_forecast_index": [1, 4, 8], "predictionobject": [1, 3, 4], "model_nam": [1, 3, 4, 9], "model_paramet": [1, 4], "transformation_paramet": [1, 4], "upper_forecast": [1, 3, 4, 6, 7, 9], "lower_forecast": [1, 3, 4, 6, 7, 9], "long_form_result": [1, 4, 9], "total_runtim": [1, 4], "apply_constraint": [1, 4], "extract_ensemble_runtim": [1, 4], "plot_df": [1, 4], "plot_ensemble_runtim": [1, 4], "plot_grid": [1, 4], "calculate_peak_dens": [1, 4], "create_seaborn_palette_from_cmap": [1, 4], "extract_single_series_from_horz": [1, 4], "extract_single_transform": [1, 4], "plot_distribut": [1, 4], "averagevaluena": [1, 3, 4, 5, 9], "balltreemultivariatemotif": [1, 4, 9], "balltreeregressionmotif": [1, 4, 9], "basiclinearmodel": [1, 4, 9], "base_scal": [1, 4, 8], "coefficient_summari": [1, 4], "create_x": [1, 4], "process_compon": [1, 4, 6, 8], "return_compon": [1, 3, 4, 8], "scale_data": [1, 4, 8], "to_origin_spac": [1, 4, 8], "constantna": [1, 4, 9], "fft": [1, 4, 8, 9], "kalmanstatespac": [1, 4, 9], "cost_funct": [1, 4], "tune_observational_nois": [1, 4], "lastvaluena": [1, 3, 4, 9], "metricmotif": [1, 3, 4, 9], "motif": [1, 3, 4, 9], "motifsimul": [1, 4, 9], "nvar": [1, 4, 9], "seasonalna": [1, 3, 4, 9], "seasonalitymotif": [1, 3, 4, 5, 9], "sectionalmotif": [1, 3, 4, 9], "tvvar": [1, 4, 5, 9], "apply_beta_threshold": [1, 4], "create_var_featur": [1, 4], "empty_scal": [1, 4], "zeroesna": [1, 3, 4], "looped_motif": [1, 4], "predict_reservoir": [1, 4], "cassandra": [1, 6, 8, 9], "bayesianmultioutputregress": [1, 4], "sample_posterior": [1, 4], "plot_forecast": [1, 4, 8], "plot_compon": [1, 4, 8], "plot_trend": [1, 4, 8], "analyze_trend": [1, 4, 8], "auto_fit": [1, 4, 8], "compare_actual_compon": [1, 4, 8], "create_t": [1, 4, 8], "cross_valid": [1, 4, 8, 9], "feature_import": [1, 4, 8], "next_fit": [1, 4, 8], "plot_th": [1, 4, 8], "predict_new_product": [1, 4, 8], "rolling_trend": [1, 4, 8], "treatment_causal_impact": [1, 4, 8], "trend_analysi": [1, 4, 8], "holiday_detector": [1, 4, 8], "score": [1, 3, 4, 5, 6, 7, 8, 9], "holiday_count": [1, 4, 8], "holidai": [1, 2, 3, 4, 8, 9], "param": [1, 2, 3, 4, 6, 7, 8, 9], "x_arrai": [1, 4, 8], "predict_x_arrai": [1, 4, 8], "trend_train": [1, 4, 8], "predicted_trend": [1, 4, 8], "clean_regressor": [1, 4], "cost_function_dwa": [1, 4], "cost_function_l1": [1, 4], "cost_function_l1_posit": [1, 4], "cost_function_l2": [1, 4], "cost_function_quantil": [1, 4], "fit_linear_model": [1, 4], "lstsq_minim": [1, 4], "lstsq_solv": [1, 4], "dnn": [1, 8], "elasticnetwork": [1, 4], "kerasrnn": [1, 4], "transformer_build_model": [1, 4], "transformer_encod": [1, 4], "ensembl": [1, 3, 5, 7, 8], "bestnensembl": [1, 4], "distensembl": [1, 4], "ensembleforecast": [1, 4], "ensembletemplategener": [1, 4], "hdistensembl": [1, 4], "horizontalensembl": [1, 4], "horizontaltemplategener": [1, 4], "mosaicensembl": [1, 4], "find_pattern": [1, 4], "generalize_horizont": [1, 4], "generate_crosshair_scor": [1, 4], "generate_crosshair_score_list": [1, 4], "generate_mosaic_templ": [1, 4], "horizontal_classifi": [1, 4], "horizontal_xi": [1, 4], "is_horizont": [1, 4], "is_mosa": [1, 4], "mlens_help": [1, 4], "mosaic_classifi": [1, 4], "mosaic_or_horizont": [1, 4], "mosaic_to_horizont": [1, 4, 9], "mosaic_xi": [1, 4], "n_limited_horz": [1, 4], "parse_forecast_length": [1, 4], "parse_horizont": [1, 4], "parse_mosa": [1, 4], "process_mosaic_arrai": [1, 4], "gluont": [1, 3, 8, 9], "greykit": [1, 8, 9], "seek_the_oracl": [1, 4], "matrix_var": [1, 8], "dmd": [1, 4, 9], "latc": [1, 4, 9], "mar": [1, 4, 9], "rrvar": [1, 4, 9], "tmf": [1, 4, 9], "conj_grad_w": [1, 4], "conj_grad_x": [1, 4], "dmd4cast": [1, 4], "dmd_forecast": [1, 4], "ell_w": [1, 4], "ell_x": [1, 4], "generate_psi": [1, 4], "latc_imput": [1, 4], "latc_predictor": [1, 4], "mat2ten": [1, 4], "svt_tnn": [1, 4], "ten2mat": [1, 4], "update_cg": [1, 4], "var": [1, 4, 9], "var4cast": [1, 4], "mlensembl": [1, 8], "create_featur": [1, 4], "model_list": [1, 3, 7, 8, 9], "auto_model_list": [1, 4], "model_list_to_dict": [1, 4], "neural_forecast": [1, 8], "neuralforecast": [1, 4, 9], "prophet": [1, 3, 6, 8, 9], "fbprophet": [1, 4, 9], "neuralprophet": [1, 4, 9], "get_changepoint": [1, 4], "pytorch": [1, 8, 9], "pytorchforecast": [1, 4, 9], "sklearn": [1, 6, 7, 8, 9], "componentanalysi": [1, 4, 9], "datepartregress": [1, 3, 4, 5, 6, 9], "multivariateregress": [1, 4, 5, 9], "preprocessingregress": [1, 4, 9], "randomfourierencod": [1, 4], "rollingregress": [1, 4, 9], "univariateregress": [1, 4, 9], "vectorizedmultioutputgpr": [1, 4], "predict_proba": [1, 4], "windowregress": [1, 4, 9], "generate_classifier_param": [1, 4], "generate_regressor_param": [1, 4], "retrieve_classifi": [1, 4], "retrieve_regressor": [1, 4], "rolling_x_regressor": [1, 4], "rolling_x_regressor_regressor": [1, 4], "ardl": [1, 4, 9], "arima": [1, 4, 5, 6, 9], "dynamicfactor": [1, 4, 9], "dynamicfactormq": [1, 4, 9], "et": [1, 3, 4, 6, 9], "glm": [1, 3, 4, 6, 9], "gl": [1, 3, 4, 6, 9], "theta": [1, 4, 5, 6, 9], "unobservedcompon": [1, 4, 9], "varmax": [1, 4, 9], "vecm": [1, 4, 6, 9], "arima_seek_the_oracl": [1, 4], "glm_forecast_by_column": [1, 4], "tfp": [1, 8], "tfpregress": [1, 4, 9], "tfpregressor": [1, 4], "tensorflowst": [1, 4, 9], "tide": [1, 8, 9], "timecovari": [1, 4], "get_covari": [1, 4], "timeseriesdata": [1, 4], "test_val_gen": [1, 4], "tf_dataset": [1, 4], "train_gen": [1, 4], "get_holidai": [1, 4], "mae_loss": [1, 4], "mape": [1, 3, 4], "nrmse": [1, 4], "wape": [1, 4], "gener": [1, 2, 3, 4, 6, 7, 8, 9], "general_templ": [1, 5], "tool": [1, 2, 3, 4, 7, 8, 9], "anomaly_util": [1, 8], "anomaly_df_to_holidai": [1, 6], "anomaly_new_param": [1, 6], "create_dates_df": [1, 6], "detect_anomali": [1, 6], "gaussian_mixtur": [1, 6], "holiday_new_param": [1, 6], "limits_to_anomali": [1, 6], "loop_sk_outli": [1, 6], "nonparametric_multivari": [1, 6], "sk_outlier": [1, 6], "values_to_anomali": [1, 6], "zscore_survival_funct": [1, 6], "calendar": [1, 3, 8], "gregorian_to_chines": [1, 6], "gregorian_to_christian_lunar": [1, 6], "gregorian_to_hebrew": [1, 6], "gregorian_to_hindu": [1, 6], "gregorian_to_islam": [1, 6], "heb_is_leap": [1, 6], "lunar_from_lunar": [1, 6], "lunar_from_lunar_ful": [1, 6], "to_jd": [1, 6], "cointegr": [1, 4, 8], "btcd_decompos": [1, 6], "coint_johansen": [1, 6], "fourier_seri": [1, 6], "lagmat": [1, 6], "constraint": [1, 3, 4, 8, 9], "apply_constraint_singl": [1, 6], "apply_fit_constraint": [1, 6], "constant_growth_r": [1, 6], "constraint_new_param": [1, 6], "fit_constraint": [1, 6], "cpu_count": [1, 8], "set_n_job": [1, 6], "fast_kalman": [1, 8], "usag": [1, 3], "exampl": [1, 2, 3, 4, 7], "gaussian": [1, 4, 6], "empti": [1, 2, 3, 4, 6], "unvectorize_st": [1, 6], "unvectorize_var": [1, 6], "kalmanfilt": [1, 6], "comput": [1, 3, 4, 6], "em": [1, 6], "em_observation_nois": [1, 6], "em_process_nois": [1, 6], "predict_next": [1, 6], "predict_observ": [1, 6], "smooth_curr": [1, 6], "updat": [1, 4, 6, 9], "autoshap": [1, 6], "ddot": [1, 6], "ddot_t_right": [1, 6], "ddot_t_right_old": [1, 6], "dinv": [1, 6], "douter": [1, 6], "em_initial_st": [1, 6], "ensure_matrix": [1, 6], "ensure_st": [1, 6], "holt_winters_damped_matric": [1, 6], "new_kalman_param": [1, 6], "priv_smooth": [1, 6], "priv_update_with_nan_check": [1, 6], "random_matrix": [1, 6], "random_state_spac": [1, 6], "random_state_space_origin": [1, 6], "stable_pinv": [1, 6], "update_with_nan_check": [1, 6], "generate_harmonics_datafram": [1, 6], "fourier_extrapol": [1, 6], "fir_filt": [1, 8], "apply_fir_filter_time_domain": [1, 6], "apply_fir_filter_to_timeseri": [1, 6], "fft_fir_filter_to_timeseri": [1, 6], "generate_random_fir_param": [1, 6], "hierarchi": [1, 3, 8], "reconcil": [1, 6], "holiday_flag": [1, 6], "query_holidai": [1, 6], "imput": [1, 4, 8], "fillna": [1, 3, 4, 6, 9], "seasonalitymotifimput": [1, 6], "simpleseasonalitymotifimput": [1, 4, 6], "biased_ffil": [1, 6], "fake_date_fil": [1, 6], "fake_date_fill_old": [1, 6], "fill_forward": [1, 6], "fill_forward_alt": [1, 6], "fill_mean": [1, 6], "fill_mean_old": [1, 6], "fill_median": [1, 6], "fill_median_old": [1, 6], "fill_on": [1, 6], "fill_zero": [1, 6], "fillna_np": [1, 6], "rolling_mean": [1, 4, 6], "lunar": [1, 8], "dco": [1, 6], "dsin": [1, 6], "fixangl": [1, 6], "kepler": [1, 6], "moon_phas": [1, 6], "moon_phase_df": [1, 6], "phase_str": [1, 6], "todeg": [1, 6], "torad": [1, 6], "percentil": [1, 8], "nan_percentil": [1, 6], "nan_quantil": [1, 6], "trimmed_mean": [1, 6], "probabilist": [1, 3, 4, 7, 8, 9], "point_to_prob": [1, 6], "variable_point_to_prob": [1, 6], "historic_quantil": [1, 6], "inferred_norm": [1, 6], "percentileofscore_appli": [1, 6], "profil": [1, 4, 8], "data_profil": [1, 6], "profile_time_seri": [1, 6], "summarize_seri": [1, 6], "regressor": [1, 3, 4, 7, 8], "create_lagged_regressor": [1, 6, 8], "create_regressor": [1, 6, 8], "season": [1, 3, 4, 8, 9], "changepoint_fcst_from_last_row": [1, 6], "create_changepoint_featur": [1, 6], "create_datepart_compon": [1, 6], "create_seasonality_featur": [1, 6], "date_part": [1, 6], "fourier_df": [1, 6], "half_yr_spac": [1, 6], "random_datepart": [1, 6], "seasonal_independent_match": [1, 6], "seasonal_int": [1, 6], "seasonal_repeating_wavelet": [1, 6], "seasonal_window_match": [1, 6], "shape": [1, 2, 3, 4, 7, 8, 9], "numerictransform": [1, 6], "fit_transform": [1, 3, 6, 8, 9], "inverse_transform": [1, 6, 7, 8, 9], "clean_weight": [1, 6], "df_cleanup": [1, 6], "freq_to_timedelta": [1, 6], "infer_frequ": [1, 6, 8], "long_to_wid": [1, 6, 8, 9], "simple_train_test_split": [1, 6], "split_digits_and_non_digit": [1, 6], "subset_seri": [1, 6], "wide_to_3d": [1, 6], "threshold": [1, 3, 4, 8, 9], "nonparametricthreshold": [1, 6], "compare_to_epsilon": [1, 6], "find_epsilon": [1, 6], "prune_anom": [1, 6], "score_anomali": [1, 6], "consecutive_group": [1, 6], "nonparametr": [1, 3, 6], "alignlastdiff": [1, 6], "alignlastvalu": [1, 4, 6], "find_centerpoint": [1, 6], "anomalyremov": [1, 6], "bkbandpassfilt": [1, 6], "filter": [1, 3, 4, 6, 9], "btcd": [1, 6], "centerlastvalu": [1, 6], "centersplit": [1, 6], "changepointdetrend": [1, 6], "clipoutli": [1, 6], "cumsumtransform": [1, 6], "datepartregressiontransform": [1, 6], "detrend": [1, 4, 6, 9], "diffsmooth": [1, 6], "differencedtransform": [1, 3, 6, 9], "discret": [1, 6], "ewmafilt": [1, 6], "emptytransform": [1, 6], "fftdecomposit": [1, 6], "fftfilter": [1, 6], "firfilt": [1, 6], "fastica": [1, 6], "generaltransform": [1, 6, 8, 9], "fill_na": [1, 6, 8], "retrieve_transform": [1, 6, 8], "hpfilter": [1, 6], "historicvalu": [1, 6], "holidaytransform": [1, 6], "intermittentoccurr": [1, 6], "kalmansmooth": [1, 6], "levelshiftmag": [1, 6], "levelshifttransform": [1, 6], "locallineartrend": [1, 6], "meandiffer": [1, 6], "meanpercentsplitt": [1, 6], "pca": [1, 4, 6], "pctchangetransform": [1, 6], "positiveshift": [1, 6], "randomtransform": [1, 6, 8], "regressionfilt": [1, 6], "replaceconst": [1, 6], "rollingmeantransform": [1, 3, 6], "round": [1, 3, 4, 6, 7], "stlfilter": [1, 6], "scipyfilt": [1, 6, 9], "seasonaldiffer": [1, 6], "shiftfirstvalu": [1, 6], "sintrend": [1, 6], "fit_sin": [1, 6], "slice": [1, 3, 4, 6, 9], "standardscal": [1, 6], "statsmodelsfilt": [1, 6], "bkfilter": [1, 6, 9], "cffilter": [1, 6], "convolution_filt": [1, 6], "thetatransform": [1, 6], "bkfilter_st": [1, 6], "clip_outli": [1, 6], "exponential_decai": [1, 6], "get_transformer_param": [1, 6], "random_clean": [1, 6], "remove_outli": [1, 6], "simple_context_slic": [1, 6], "transformer_list_to_dict": [1, 6], "wavelet": [1, 8], "continuous_db2_wavelet": [1, 6], "create_daubechies_db2_wavelet": [1, 6], "create_gaussian_wavelet": [1, 6], "create_haar_wavelet": [1, 6], "create_mexican_hat_wavelet": [1, 6], "create_morlet_wavelet": [1, 6], "create_narrowing_wavelet": [1, 6], "create_real_morlet_wavelet": [1, 6], "create_wavelet": [1, 6], "offset_wavelet": [1, 6], "window_funct": [1, 8], "chunk_reshap": [1, 6], "last_window": [1, 4, 6], "np_2d_arang": [1, 6], "retrieve_closest_indic": [1, 6], "rolling_window_view": [1, 6], "sliding_window_view": [1, 6], "window_id_mak": [1, 6], "window_lin_reg": [1, 6], "window_lin_reg_mean": [1, 6], "window_lin_reg_mean_no_nan": [1, 6], "window_mak": [1, 6], "window_maker_2": [1, 6], "window_maker_3": [1, 6], "window_sum_mean": [1, 6], "window_sum_mean_nan_tail": [1, 6], "window_sum_nan_mean": [1, 6], "select": [1, 3, 4, 6, 7, 9], "http": [1, 2, 3, 4, 6, 9], "github": [1, 4, 6, 7, 9], "com": [1, 2, 4, 6, 9], "winedarksea": 1, "class": [1, 3, 4, 6, 7, 9], "output": [1, 2, 3, 4, 6, 7, 9], "multivari": [1, 3, 4, 6, 7, 9], "method": [1, 2, 3, 4, 6, 7, 9], "zscore": [1, 3, 6], "transform_dict": [1, 3, 6], "transformation_param": [1, 3, 4, 6, 9], "0": [1, 2, 3, 4, 5, 6, 7, 9], "datepart_method": [1, 3, 4, 6], "simple_3": [1, 3, 6], "regression_model": [1, 3, 4, 6], "elasticnet": [1, 3, 6], "model_param": [1, 3, 4, 6, 9], "forecast_param": [1, 3, 6, 9], "none": [1, 2, 3, 4, 6, 7, 9], "method_param": [1, 3, 6], "eval_period": [1, 3, 6, 9], "isolated_onli": [1, 3, 6], "fals": [1, 2, 3, 4, 5, 6, 7, 9], "n_job": [1, 3, 4, 6, 7, 9], "1": [1, 2, 3, 4, 5, 6, 7, 9], "object": [1, 2, 3, 4, 6, 7, 9], "df": [1, 2, 3, 4, 6, 7, 9], "all": [1, 2, 3, 4, 6, 7], "return": [1, 2, 3, 4, 6], "paramet": [1, 2, 3, 4, 6, 7], "pd": [1, 3, 4, 5, 6, 9], "datafram": [1, 2, 3, 4, 6, 7, 9], "wide": [1, 2, 3, 4, 6, 7], "style": [1, 2, 3, 4, 6, 7, 9], "classif": [1, 3, 6], "outlier": [1, 3, 6, 9], "": [1, 3, 4, 6, 7, 9], "static": [1, 3, 4, 6], "random": [1, 2, 3, 4, 6, 7, 9], "new": [1, 3, 4, 6, 7, 9], "combin": [1, 3, 4, 6, 7, 9], "str": [1, 2, 3, 4, 6, 9], "fast": [1, 3, 4, 5, 6, 7, 9], "deep": [1, 3, 7, 9], "default": [1, 2, 3, 4, 6, 7, 9], "ani": [1, 3, 4, 6, 7, 9], "name": [1, 2, 3, 4, 6, 7], "ie": [1, 2, 3, 4, 6, 7, 9], "iqr": [1, 3], "specifi": [1, 3, 4, 6, 9], "onli": [1, 3, 4, 6, 7, 9], "series_nam": [1, 3], "titl": [1, 3, 4], "marker_s": [1, 3], "plot_kwarg": [1, 3], "A": [1, 3, 4, 6, 7], "decisiontre": [1, 3, 4, 6], "ar": [1, 2, 3, 4, 6, 7, 9], "nonstandard": [1, 3, 6], "forecast_length": [1, 3, 4, 6, 7, 9], "int": [1, 2, 3, 4, 6], "14": [1, 3, 4, 9], "frequenc": [1, 2, 3, 4, 6, 7], "infer": [1, 3, 4, 6, 7, 9], "prediction_interv": [1, 3, 4, 6, 7, 9], "float": [1, 2, 3, 4, 6, 9], "9": [1, 2, 3, 4, 6, 7, 9], "max_gener": [1, 3, 7, 9], "25": [1, 3, 4, 6], "no_neg": [1, 3, 9], "bool": [1, 2, 3, 4, 6], "initial_templ": [1, 3, 9], "random_se": [1, 2, 3, 4, 6, 9], "2022": [1, 3, 4, 6], "holiday_countri": [1, 3, 4, 6], "u": [1, 2, 3, 4, 6, 7, 9], "subset": [1, 3, 4, 7, 9], "aggfunc": [1, 3, 6, 7, 9], "first": [1, 2, 3, 4, 6, 7, 9], "na_toler": [1, 3, 6], "metric_weight": [1, 3, 7, 9], "dict": [1, 2, 3, 4, 6, 7], "containment_weight": [1, 3, 9], "contour_weight": [1, 3, 9], "01": [1, 2, 3, 4, 6, 7, 9], "imle_weight": [1, 3, 9], "made_weight": [1, 3, 9], "05": [1, 2, 3, 4, 6, 9], "mae_weight": [1, 3, 9], "2": [1, 2, 3, 4, 6, 7, 9], "mage_weight": [1, 3, 9], "mle_weight": [1, 3, 9], "oda_weight": [1, 3], "001": [1, 3, 4, 6], "rmse_weight": [1, 3, 9], "runtime_weight": [1, 3, 7, 9], "smape_weight": [1, 3, 9], "5": [1, 2, 3, 4, 5, 6, 9], "spl_weight": [1, 3, 9], "wasserstein_weight": [1, 3], "drop_most_rec": [1, 3, 6, 7, 9], "drop_data_older_than_period": [1, 3, 6, 9], "scalabl": [1, 3, 7], "transformer_list": [1, 3, 5, 6, 7, 9], "auto": [1, 3, 4, 6, 7, 9], "transformer_max_depth": [1, 3, 5, 6, 7], "models_mod": [1, 3, 9], "num_valid": [1, 3, 4, 5, 7, 9], "models_to_valid": [1, 3, 7, 9], "15": [1, 3, 4, 6, 9], "max_per_model_class": [1, 3, 5, 9], "validation_method": [1, 3, 4, 7, 9], "backward": [1, 3, 4, 6, 7, 9], "min_allowed_train_perc": [1, 3, 4, 6], "prefill_na": [1, 3, 6, 9], "introduce_na": [1, 3], "preclean": [1, 3], "model_interrupt": [1, 3, 7], "true": [1, 2, 3, 4, 5, 6, 7, 9], "generation_timeout": [1, 3], "current_model_fil": [1, 3], "force_gc": [1, 3], "horizontal_ensemble_valid": [1, 3], "custom_metr": [1, 3, 4], "callabl": [1, 3], "ndarrai": [1, 3, 6], "verbos": [1, 3, 4, 6, 9], "genet": [1, 3, 7, 9], "algorithm": [1, 3, 4, 6, 7, 9], "number": [1, 2, 3, 4, 6, 7, 9], "period": [1, 2, 3, 4, 6, 9], "over": [1, 3, 4, 6, 7, 9], "which": [1, 2, 3, 4, 6, 7, 9], "can": [1, 2, 3, 4, 6, 7], "overriden": [1, 3], "later": [1, 3, 6], "when": [1, 3, 4, 6, 7, 9], "you": [1, 3, 4, 6, 7], "don": [1, 3, 4, 6, 9], "t": [1, 2, 3, 4, 6, 7], "have": [1, 2, 3, 4, 6, 7, 9], "much": [1, 2, 3, 6, 9], "histor": [1, 3, 4, 6, 9], "small": [1, 3, 4, 6, 9], "length": [1, 2, 3, 4, 6, 9], "full": [1, 3, 6, 9], "desir": [1, 3, 4, 6, 9], "lenght": [1, 3], "usual": [1, 2, 3, 4, 6, 7, 9], "best": [1, 3, 4, 6, 7, 9], "possibl": [1, 3, 4, 6, 7, 9], "approach": [1, 3, 4, 6, 9], "given": [1, 3, 4, 6, 7, 9], "limit": [1, 3, 4, 6, 7, 9], "specif": [1, 2, 3, 4, 6, 7, 9], "datetim": [1, 2, 3, 4, 6, 7, 9], "offset": [1, 3, 6, 9], "forc": [1, 3, 4, 9], "rollup": [1, 3, 9], "daili": [1, 2, 3, 4, 6, 7, 9], "input": [1, 3, 4, 6, 7, 9], "m": [1, 2, 3, 4, 6, 7, 9], "monthli": [1, 2, 3, 6, 7, 9], "uncertainti": [1, 3, 4, 6], "rang": [1, 3, 4, 6, 9], "upper": [1, 3, 4, 6, 7, 9], "lower": [1, 3, 4, 6, 7, 9], "adjust": [1, 3, 4, 6, 7, 9], "rare": [1, 3, 4, 9], "match": [1, 2, 3, 4, 6, 9], "actual": [1, 3, 4, 6, 9], "more": [1, 2, 3, 4, 6, 7], "longer": [1, 3, 9], "runtim": [1, 3, 4, 7, 9], "better": [1, 2, 3, 4, 9], "accuraci": [1, 3, 4, 7, 9], "It": [1, 3, 4, 6, 7, 9], "call": [1, 2, 3, 4, 6, 9], "max": [1, 2, 3, 4, 6, 7, 9], "becaus": [1, 3, 4, 6, 7, 9], "somedai": [1, 3], "earli": [1, 3], "stop": [1, 3, 6, 7], "option": [1, 3, 4, 6, 7], "now": [1, 3, 4, 6, 9], "thi": [1, 2, 3, 4, 6, 7, 9], "just": [1, 2, 3, 4, 6], "exact": [1, 3, 4, 6], "neg": [1, 3, 4], "up": [1, 2, 3, 6, 9], "valu": [1, 2, 3, 4, 6, 7, 9], "st": [1, 2, 3, 4, 6, 9], "dev": [1, 3, 4, 6, 9], "abov": [1, 3, 4, 6, 9], "below": [1, 2, 3, 4, 6, 9], "min": [1, 3, 4, 9], "constrain": [1, 3, 6, 9], "also": [1, 3, 4, 6, 7], "instead": [1, 2, 3, 4, 6], "accept": [1, 3, 6, 9], "dictionari": [1, 3, 4, 6, 9], "follow": [1, 3, 4, 6, 9], "kei": [1, 2, 3, 4, 9], "constraint_method": [1, 3, 4, 6], "one": [1, 3, 4, 6, 9], "stdev_min": [1, 3, 4], "stdev": [1, 3, 4], "mean": [1, 3, 4, 6, 9], "absolut": [1, 3, 4, 9], "arrai": [1, 3, 4, 6, 9], "final": [1, 3, 4, 6, 9], "each": [1, 2, 3, 4, 6, 7, 9], "quantil": [1, 3, 4, 6, 9], "constraint_regular": [1, 3, 4, 6], "where": [1, 3, 4, 6, 7, 9], "hard": [1, 3, 4, 9], "cutoff": [1, 3, 4, 6], "between": [1, 2, 3, 4, 6, 7, 9], "penalti": [1, 3, 4], "term": [1, 3, 4], "upper_constraint": [1, 3, 4, 6], "unus": [1, 3, 4, 6], "lower_constraint": [1, 3, 4, 6], "bound": [1, 3, 4, 6, 7, 9], "appli": [1, 3, 4, 6, 7, 9], "otherwis": [1, 2, 3, 4, 6], "list": [1, 2, 3, 4, 6, 7], "comma": [1, 3, 4, 9], "separ": [1, 3, 4, 6, 9], "string": [1, 3, 4, 6, 9], "simpl": [1, 3, 4, 6, 7], "distanc": [1, 3, 4, 6, 7, 9], "horizont": [1, 3, 4, 7, 9], "mosaic": [1, 3, 4, 7, 9], "subsampl": [1, 3], "randomli": [1, 3, 6], "start": [1, 2, 3, 4, 5, 6, 7, 9], "includ": [1, 3, 4, 6, 7, 9], "both": [1, 3, 6, 9], "previou": [1, 3, 6, 7], "self": [1, 3, 4, 6], "seed": [1, 2, 3, 6], "allow": [1, 3, 4, 6, 7, 9], "slightli": [1, 3, 6], "consist": [1, 3, 6, 9], "pass": [1, 2, 3, 4, 6, 7], "through": [1, 3, 4, 6, 7, 9], "some": [1, 2, 3, 4, 6, 7, 9], "maximum": [1, 2, 3, 6, 9], "onc": [1, 3, 4], "mani": [1, 3, 4, 6, 7, 9], "take": [1, 3, 4, 6, 7, 9], "column": [1, 2, 3, 4, 5, 6, 7], "unless": [1, 3, 4, 9], "case": [1, 2, 3, 4, 6, 9], "same": [1, 2, 3, 4, 6, 9], "roll": [1, 3, 4, 6, 9], "higher": [1, 3, 4, 6, 7, 9], "duplic": [1, 3, 6], "timestamp": [1, 3, 4, 6], "remov": [1, 3, 4, 6, 9], "try": [1, 2, 3, 6, 7, 9], "np": [1, 3, 4, 6, 9], "sum": [1, 3, 6, 9], "bewar": [1, 3, 6, 9], "numer": [1, 3, 4, 6, 9], "aggreg": [1, 3, 6, 7, 9], "like": [1, 2, 3, 4, 6, 9], "work": [1, 2, 3, 4, 6, 9], "non": [1, 3, 4, 6, 9], "chang": [1, 3, 6, 9], "nan": [1, 3, 4, 6, 7, 9], "drop": [1, 3, 5, 6, 9], "thei": [1, 3, 4, 6, 7, 9], "than": [1, 3, 4, 6, 9], "percent": [1, 2, 3, 6, 9], "95": [1, 3, 4, 6, 9], "here": [1, 3, 4, 6, 9], "would": [1, 3, 4, 9], "weight": [1, 3, 4, 6, 7, 9], "assign": [1, 3], "effect": [1, 3, 4, 6, 9], "rank": [1, 3, 4, 6], "n": [1, 3, 4, 6, 7, 9], "most": [1, 2, 3, 4, 6, 7, 9], "recent": [1, 2, 3, 4, 6, 9], "point": [1, 3, 4, 6, 7, 9], "sai": [1, 3, 7, 9], "sale": [1, 3, 6, 9], "current": [1, 2, 3, 4, 6, 7, 9], "unfinish": [1, 3], "month": [1, 3, 6, 7, 9], "occur": [1, 3, 6, 7, 9], "after": [1, 3, 4, 6, 7, 9], "aggregr": [1, 3], "so": [1, 2, 3, 4, 6, 7, 9], "whatev": [1, 3, 4], "alia": [1, 3, 4, 6], "prob": [1, 3], "affect": [1, 3, 4, 6], "algorithim": [1, 3], "from": [1, 2, 3, 4, 5, 6, 7, 9], "probabl": [1, 2, 3, 4, 6, 7, 9], "note": [1, 2, 3, 4, 6], "doe": [1, 3, 4, 6, 9], "initi": [1, 3, 4, 6, 7, 9], "alias": [1, 3, 4, 6], "superfast": [1, 3, 7, 9], "should": [1, 3, 4, 6, 9], "fewer": [1, 2, 3, 9], "memori": [1, 3, 4, 6, 7, 9], "issu": [1, 3, 4, 6, 7, 9], "scale": [1, 3, 4, 6, 7, 9], "sequenti": [1, 3], "faster": [1, 2, 3, 4, 6, 7], "newli": [1, 3], "sporad": [1, 3], "util": [1, 3, 4, 6, 7, 9], "slower": [1, 3, 7, 9], "user": [1, 3, 4, 6, 7, 9], "mode": [1, 3, 4, 7], "capabl": [1, 3, 9], "gradient_boost": [1, 3], "neuralnet": [1, 3, 4], "regress": [1, 3, 4, 6], "cross": [1, 3, 4, 7], "perform": [1, 3, 6, 7, 9], "train": [1, 3, 4, 6, 7], "test": [1, 2, 3, 4, 6, 7, 9], "split": [1, 3, 4, 6, 7, 9], "confus": [1, 3, 4, 6, 7, 9], "eval": [1, 3], "segment": [1, 3, 6, 9], "total": [1, 3, 4, 6], "avail": [1, 3, 4, 6, 7], "out": [1, 3, 4, 7, 9], "50": [1, 3, 4], "top": [1, 3, 6, 7, 9], "Or": [1, 3], "tri": [1, 3, 6, 7, 9], "99": [1, 3, 4], "100": [1, 3, 4, 6, 7, 9], "If": [1, 3, 4, 6, 7, 9], "addit": [1, 3, 4, 6, 7, 9], "per_seri": [1, 3, 4], "ad": [1, 3, 4, 6, 7], "what": [1, 2, 3, 4], "famili": [1, 3, 4], "even": [1, 3, 4, 7, 9], "integ": [1, 3, 6], "recenc": [1, 3], "shorter": [1, 3, 4, 6], "set": [1, 2, 3, 4, 6, 7, 9], "equal": [1, 3, 4, 6, 9], "size": [1, 3, 4, 6, 9], "poetic": [1, 3], "less": [1, 3, 4, 6, 9], "strategi": [1, 3], "other": [1, 2, 3, 4, 6, 7], "similar": [1, 3, 4, 6, 7, 9], "364": [1, 3, 6, 9], "year": [1, 3, 6], "immedi": [1, 3, 4, 6, 9], "automat": [1, 3, 6, 7, 9], "find": [1, 3, 4, 6, 7, 9], "section": [1, 3, 7, 9], "custom": [1, 3, 4, 6], "need": [1, 2, 3, 4, 6, 7], "validation_index": [1, 3, 9], "datetimeindex": [1, 3, 4, 6, 7, 9], "tail": [1, 3, 6, 9], "els": [1, 2, 3, 4, 6, 7, 9], "rais": [1, 3, 6], "error": [1, 3, 4, 6, 7, 9], "10": [1, 2, 3, 4, 6, 9], "mandat": [1, 3], "unrecommend": [1, 3], "replac": [1, 3, 4, 6], "lead": [1, 3, 7, 9], "zero": [1, 2, 3, 4, 6, 9], "collect": [1, 3, 4, 6, 7], "hasn": [1, 3], "yet": [1, 3, 4, 6, 9], "fill": [1, 3, 4, 6, 7], "leav": [1, 3, 9], "interpol": [1, 3, 4, 6], "recommend": [1, 3, 6, 7, 9], "median": [1, 3, 4, 6], "mai": [1, 2, 3, 4, 6, 7, 9], "assum": [1, 3, 6, 9], "whether": [1, 2, 3, 4, 6], "last": [1, 3, 4, 6, 9], "help": [1, 3, 4, 6, 7, 9], "make": [1, 2, 3, 4, 6, 7, 9], "robust": [1, 3, 4, 6], "introduc": [1, 3], "row": [1, 2, 3, 5, 6], "Will": [1, 3, 4, 6], "20": [1, 2, 3, 4, 6, 9], "keyboardinterrupt": [1, 3, 7], "quit": [1, 3, 6, 9], "entir": [1, 3, 6, 7, 9], "program": [1, 3], "attempt": [1, 3, 6, 9], "conjunct": [1, 3], "result_fil": [1, 3, 7], "accident": [1, 3], "complet": [1, 3, 4, 6], "termin": [1, 3], "end_gener": [1, 3], "end": [1, 2, 3, 4, 6], "skip": [1, 2, 3, 4, 6], "again": [1, 3, 9], "minut": [1, 3], "proceed": [1, 3, 9], "check": [1, 3, 6, 7, 9], "offer": [1, 3, 9], "approxim": [1, 3, 6], "timeout": [1, 2, 3, 7], "overal": [1, 3, 6, 9], "cap": [1, 3, 6], "per": [1, 3, 4, 6, 9], "file": [1, 3, 9], "path": [1, 3], "write": [1, 3, 4, 5], "disk": [1, 3], "debug": [1, 3], "crash": [1, 3, 4, 7], "json": [1, 3, 4, 5, 9], "append": [1, 3], "gc": [1, 3], "won": [1, 2, 3, 4, 6, 7, 9], "differ": [1, 3, 4, 6, 7, 9], "reliabl": [1, 3], "unstabl": [1, 3, 9], "horz": [1, 3], "function": [1, 3, 4, 6, 7, 9], "expect": [1, 3, 4, 6, 7, 9], "func": [1, 3, 4, 6], "f": [1, 3, 4, 7, 9], "df_train": [1, 3, 4, 6, 9], "three": [1, 3, 4, 7, 9], "2d": [1, 3, 4, 6], "reduc": [1, 2, 3, 4, 7, 9], "give": [1, 3, 6, 7], "core": [1, 3, 4, 6, 7], "parallel": [1, 3, 4, 7, 9], "joblib": [1, 3, 4, 9], "context": [1, 3, 4], "manag": [1, 3, 4, 6, 9], "type": [1, 2, 3, 4, 6, 7, 9], "id": [1, 2, 3, 4, 6, 7], "future_regressor": [1, 3, 4, 6, 9], "n_split": [1, 3, 9], "creat": [1, 2, 3, 4, 6, 7, 9], "backcast": [1, 3, 6], "back": [1, 3, 4, 6, 9], "OF": [1, 3], "sampl": [1, 2, 3, 4, 6, 7, 9], "often": [1, 3, 4, 6, 7, 9], "As": [1, 3, 6, 9], "repres": [1, 3, 4, 6, 9], "real": [1, 3, 4, 6, 9], "world": [1, 3, 4, 6, 9], "There": [1, 3, 7, 9], "jump": [1, 3, 9], "chunk": [1, 3, 4, 9], "arg": [1, 3, 4, 6], "except": [1, 3, 4], "piec": [1, 3, 9], "fastest": [1, 3], "observ": [1, 3, 4, 6], "level": [1, 2, 3, 4, 6, 7, 9], "standard": [1, 3, 4, 6], "access": [1, 3, 9], "isn": [1, 3, 4, 6, 9], "classic": [1, 3], "percentag": [1, 3, 4, 6, 9], "intend": [1, 3, 9], "quick": [1, 3, 9], "visual": [1, 3, 7, 9], "statist": [1, 3, 4, 6, 7], "see": [1, 3, 4, 6, 7, 9], "df_wide": [1, 3, 4, 6, 9], "rel": [1, 3, 4, 6, 7, 9], "unpredict": [1, 3], "target": [1, 3, 4, 6, 9], "waterfall_plot": [1, 3], "explain": [1, 3, 4], "caus": [1, 3, 4, 7, 9], "measur": [1, 2, 3, 6, 9], "outcom": [1, 3, 4, 9], "shap": [1, 3], "coeffici": [1, 3], "correl": [1, 3, 6], "show": [1, 2, 3, 4, 9], "waterfal": [1, 3], "enabl": [1, 3], "expand": [1, 3, 4, 6], "rerun": [1, 3, 9], "best_model_origin": [1, 3], "best_model_original_id": [1, 3], "refer": [1, 3, 9], "origin": [1, 3, 4, 6, 9], "expans": [1, 3], "necessari": [1, 3, 4, 6, 7, 9], "without": [1, 3, 6, 7, 9], "flag": [1, 3, 4, 6, 9], "filenam": [1, 3], "kwarg": [1, 2, 3, 4, 6], "ever": [1, 3, 6], "40": [1, 3, 6], "include_result": [1, 3], "unpack_ensembl": [1, 3], "min_metr": [1, 3], "mle": [1, 3, 9], "iml": [1, 3, 9], "ewma": [1, 3], "max_metr": [1, 3], "focus_model": [1, 3], "reusabl": [1, 3], "csv": [1, 2, 3, 5, 9], "slowest": [1, 3, 6, 9], "diagnost": [1, 3, 4], "compon": [1, 3, 4, 6], "larger": [1, 3, 4, 6, 9], "count": [1, 3, 4, 6], "lowest": [1, 3, 4, 6], "wai": [1, 3, 4, 6], "major": [1, 3, 9], "part": [1, 3, 4, 6, 9], "addon": [1, 3], "pull": [1, 2, 3, 4, 6], "result_set": [1, 3], "fraction": [1, 3, 9], "date_col": [1, 3, 6, 7, 9], "value_col": [1, 3, 6, 7, 9], "id_col": [1, 3, 6, 7, 9], "grouping_id": [1, 3, 6], "suppli": [1, 3, 4, 6, 9], "long": [1, 2, 3, 4, 6, 7, 9], "NOT": [1, 3, 4, 6, 9], "sever": [1, 2, 3, 7, 9], "identifi": [1, 3, 4, 6, 9], "singl": [1, 3, 4, 6, 7, 9], "extern": [1, 3, 9], "colname1": [1, 3], "colname2": [1, 3], "increas": [1, 2, 3, 4, 7, 9], "left": [1, 3, 6, 9], "blank": [1, 3], "its": [1, 3, 4, 9], "tabl": [1, 3, 4], "pickl": [1, 3], "inform": [1, 3, 4, 6], "series_id": [1, 3, 4, 6, 7, 9], "group_id": [1, 3, 6], "map": [1, 3, 4], "x": [1, 3, 4, 5, 6, 9], "retain": [1, 3], "potenti": [1, 3, 4, 6, 9], "futur": [1, 3, 4, 6, 7, 9], "holdout": [1, 3, 7, 9], "setup": [1, 3, 7], "involv": [1, 3], "percent_best": [1, 3], "among": [1, 3, 9], "across": [1, 3, 4, 7, 9], "model_id": [1, 3, 4], "must": [1, 2, 3, 4, 6, 9], "wa": [1, 2, 3, 4, 6, 9], "input_dict": [1, 3], "get": [1, 2, 3, 4, 6, 7, 9], "common": [1, 3, 6, 7, 9], "helper": [1, 3], "import_target": [1, 3], "enforce_model_list": [1, 3], "include_ensembl": [1, 3], "overrid": [1, 3, 6], "exist": [1, 3, 4, 6, 9], "add": [1, 3, 4, 6, 9], "anoth": [1, 3, 6], "add_on": [1, 3], "include_horizont": [1, 3], "force_valid": [1, 3], "previous": [1, 3, 6], "done": [1, 3, 7, 9], "befor": [1, 3, 4, 6, 7, 9], "locat": [1, 3], "alreadi": [1, 3, 4, 6, 7, 9], "keep": [1, 3, 4, 6], "init": [1, 3, 4], "anywai": [1, 3], "unpack": [1, 3], "kept": [1, 3], "overridden": [1, 3], "keep_ensembl": [1, 3, 5], "sent": [1, 3], "regardless": [1, 3, 4], "weird": [1, 3], "behavior": [1, 3, 6], "wtih": [1, 3], "In": [1, 3, 4, 6, 7, 9], "validate_import": [1, 3], "eras": [1, 3], "fail": [1, 3, 4, 9], "had": [1, 3, 4], "least": [1, 3, 6, 9], "success": [1, 3, 6], "funciton": [1, 3], "readabl": [1, 3, 9], "start_dat": [1, 2, 3, 4, 7, 9], "alpha": [1, 3, 4, 6], "facecolor": [1, 3, 4], "black": [1, 3, 4], "loc": [1, 3, 4], "accur": [1, 3, 7, 9], "chosen_param": [1, 3], "color1": [1, 3], "grei": [1, 3], "color2": [1, 3], "darkorang": [1, 3], "invers": [1, 3, 4, 6, 9], "present": [1, 2, 3, 4, 6, 7, 9], "color": [1, 3, 4], "gain": [1, 3, 6, 9], "improv": [1, 3, 6, 7, 9], "doesn": [1, 3, 6, 9], "account": [1, 3, 4, 6], "benefit": [1, 3, 9], "seen": [1, 3, 9], "max_seri": [1, 3], "chosen": [1, 2, 3, 7, 9], "color_list": [1, 3], "top_n": [1, 3], "frequent": [1, 3], "factor": [1, 3, 4], "nest": [1, 3, 9], "well": [1, 3, 4, 6, 7, 9], "do": [1, 3, 4, 6, 9], "slow": [1, 2, 3, 4, 6, 9], "captur": [1, 3, 4, 9], "roman": [1, 3], "bar": [1, 3, 6], "hex": [1, 3], "col": [1, 3, 4, 6], "The": [1, 3, 4, 6, 7, 9], "highli": [1, 3, 4, 9], "those": [1, 3, 4, 6, 9], "mostli": [1, 3, 4, 6, 9], "unscal": [1, 3, 9], "ones": [1, 3, 9], "failur": [1, 2, 3, 9], "rate": [1, 3, 4, 6], "ignor": [1, 2, 3, 4, 6], "due": [1, 2, 3, 4, 6, 9], "60": [1, 3, 4, 6], "max_row": [1, 3], "max_name_char": [1, 3], "ff9912": [1, 3], "figsiz": [1, 3, 4], "12": [1, 3, 4, 6, 7, 9], "4": [1, 3, 4, 5, 6, 7, 9], "kind": [1, 3, 6, 9], "upper_clip": [1, 3], "1000": [1, 3, 4, 6, 9], "avg": [1, 3, 4, 6], "sort": [1, 3, 6], "chop": [1, 3], "tupl": [1, 2, 3, 4, 6], "axi": [1, 3, 4, 6, 9], "pie": [1, 3, 9], "prevent": [1, 3, 4, 9], "unnecessari": [1, 3], "distort": [1, 3], "To": [1, 3, 9], "compat": [1, 3], "necessarili": [1, 3, 9], "maintain": [1, 3, 6, 7, 9], "prefer": [1, 3], "plot_group": [1, 3], "modelclass": [1, 3], "asses": [1, 3], "end_dat": [1, 3], "compare_horizont": [1, 3], "include_bound": [1, 3, 4], "35": [1, 3, 6, 9], "start_color": [1, 3], "darkr": [1, 3], "end_color": [1, 3], "a2ad9c": [1, 3], "reforecast": [1, 3], "validation_forecast": [1, 3], "cach": [1, 3], "validation_forecasts_templ": [1, 3], "store": [1, 3, 4, 6, 9], "best_model_id": [1, 3, 9], "overlap": [1, 3, 9], "graph": [1, 3, 4], "reader": [1, 3], "compar": [1, 3, 4, 6, 9], "place": [1, 3, 4, 6, 9], "begin": [1, 3, 4, 6, 9], "either": [1, 3, 4, 6, 7, 9], "worst": [1, 3], "versu": [1, 3], "vline": [1, 3, 4], "val": [1, 3, 4], "marker": [1, 3], "just_point_forecast": [1, 3, 4], "fail_on_forecast_nan": [1, 3], "date": [1, 2, 3, 4, 6, 7, 9], "update_fit": [1, 3], "underli": [1, 3, 4, 7, 9], "retrain": [1, 3], "interv": [1, 3, 4, 6], "design": [1, 3, 4, 6, 7, 9], "high": [1, 3, 4, 6, 7, 9], "suffici": [1, 3, 9], "ahead": [1, 3, 4, 6, 9], "__init__": [1, 3, 4], "prediction_object": [1, 3], "Not": [1, 2, 3, 4, 6], "implement": [1, 3, 4, 6, 9], "strongli": [1, 3], "ha": [1, 3, 4, 6, 7, 9], "metadata": [1, 3, 4], "conveni": [1, 3, 6, 9], "id_nam": [1, 3, 4], "seriesid": [1, 2, 3, 4], "value_nam": [1, 3, 4], "interval_nam": [1, 3, 4], "predictioninterv": [1, 3, 4], "preprocessing_transform": [1, 4], "basescal": [1, 4], "past_impacts_intervent": [1, 4], "common_fouri": [1, 4, 6], "ar_lag": [1, 4], "ar_interaction_season": [1, 4], "anomaly_detector_param": [1, 3, 4, 6], "anomaly_intervent": [1, 4], "holiday_detector_param": [1, 4, 6], "holiday_countries_us": [1, 4, 6], "multivariate_featur": [1, 4], "multivariate_transform": [1, 4], "regressor_transform": [1, 4], "regressors_us": [1, 4], "linear_model": [1, 4], "randomwalk_n": [1, 4], "trend_window": [1, 4], "30": [1, 3, 4, 6, 7], "trend_standin": [1, 4], "trend_anomaly_detector_param": [1, 4], "trend_transform": [1, 4], "trend_model": [1, 4], "modelparamet": [1, 3, 4, 5, 9], "trend_phi": [1, 4], "x_scaler": [1, 4], "max_colinear": [1, 4], "998": [1, 4], "max_multicolinear": [1, 4], "decomposit": [1, 4, 6], "advanc": [1, 3, 4], "trend": [1, 4, 6], "preprocess": [1, 4, 6, 7, 9], "tunc": [1, 4], "etiam": [1, 4], "fati": [1, 4], "aperit": [1, 4], "futuri": [1, 4], "ora": [1, 4], "dei": [1, 4], "iussu": [1, 4], "umquam": [1, 4], "credita": [1, 4], "teucri": [1, 4], "Nos": [1, 4], "delubra": [1, 4], "deum": [1, 4], "miseri": [1, 4], "quibu": [1, 4], "ultimu": [1, 4], "esset": [1, 4], "ill": [1, 4], "di": [1, 4], "festa": [1, 4], "velamu": [1, 4], "frond": [1, 4], "urbem": [1, 4], "aeneid": [1, 4], "246": [1, 4], "249": [1, 4], "impact": [1, 3, 4, 6, 9], "uniqu": [1, 3, 4, 6], "past": [1, 4, 6, 9], "outsid": [1, 4, 9], "unforecast": [1, 4, 6], "accordingli": [1, 4, 9], "product": [1, 4, 6, 7, 9], "goal": [1, 4], "temporari": [1, 4], "whose": [1, 4, 6], "known": [1, 3, 4, 7, 9], "essenti": [1, 3, 4, 9], "estim": [1, 4, 6, 9], "raw": [1, 4, 6], "presenc": [1, 4], "warn": [1, 3, 4, 6], "about": [1, 3, 4, 6], "remove_excess_anomali": [1, 4, 6], "detector": [1, 3, 4, 6], "reli": [1, 4, 9], "alwai": [1, 3, 4, 6, 9], "element": [1, 2, 4, 6], "histori": [1, 2, 3, 4, 6], "intern": [1, 3, 4, 6, 7, 9], "attribut": [1, 3, 4, 9], "figur": [1, 3, 4], "latest": [1, 4], "code": [1, 3, 4, 5, 6, 7], "dai": [1, 2, 3, 4, 6, 9], "7": [1, 2, 3, 4, 6, 9], "weekli": [1, 2, 4], "For": [1, 2, 3, 4, 7, 9], "slope": [1, 4], "analysi": [1, 4, 6], "posit": [1, 3, 4, 6, 9], "sign": [1, 4], "exactli": [1, 4, 6], "regression_typ": [1, 4, 6, 9], "pattern": [1, 2, 3, 4, 6, 9], "inaccur": [1, 4], "keep_col": [1, 4], "keep_cols_idx": [1, 4], "dtindex": [1, 4, 6], "regressor_per_seri": [1, 4], "flag_regressor": [1, 4], "categorical_group": [1, 4], "past_impact": [1, 4], "future_impact": [1, 4], "regressor_forecast_model": [1, 4], "regressor_forecast_model_param": [1, 4], "regressor_forecast_transform": [1, 4], "include_histori": [1, 4], "tune": [1, 4], "16": [1, 3, 4], "breakdown": [1, 4], "look": [1, 2, 4, 7, 9], "right": [1, 4, 6, 7], "wrong": [1, 4, 6, 9], "especi": [1, 4, 7, 9], "easier": [1, 4], "window": [1, 3, 4, 6, 9], "anomaly_color": [1, 4], "darkslateblu": [1, 4], "holiday_color": [1, 4], "darkgreen": [1, 4], "trend_anomaly_color": [1, 4], "slategrai": [1, 4], "point_siz": [1, 4], "know": [1, 4, 9], "d4f74f": [1, 4], "82ab5a": [1, 4], "ff6c05": [1, 4], "c12600": [1, 4], "new_df": [1, 4], "include_organ": [1, 4], "step": [1, 3, 4, 6, 9], "equival": [1, 4, 6, 9], "include_impact": [1, 4], "multipl": [1, 3, 4, 6, 7, 9], "trend_residu": [1, 4], "trans_method": [1, 4, 6, 9], "featur": [1, 4, 6, 7, 9], "space": [1, 2, 4, 6, 9], "intervention_d": [1, 4], "lower_limit": [1, 3, 6, 9], "upper_limit": [1, 3, 6, 9], "univariatemotif": [1, 3], "model_param_dict": [1, 3, 9], "distance_metr": [1, 3, 4, 6], "euclidean": [1, 3], "k": [1, 3, 4, 6, 7], "pointed_method": [1, 3], "return_result_window": [1, 3, 4], "model_transform_dict": [1, 3, 9], "pchip": [1, 3], "fix": [1, 3, 6, 9], "maxabsscal": [1, 3, 6], "model_forecast_kwarg": [1, 3], "321": [1, 3, 9], "future_regressor_train": [1, 3, 4, 9], "future_regressor_forecast": [1, 3, 4, 9], "close": [1, 3, 4, 6, 7, 9], "exceed": [1, 3, 6, 9], "four": [1, 3, 9], "calcul": [1, 3, 4, 6, 9], "direct": [1, 3, 4, 6, 9], "edg": [1, 2, 3, 6, 9], "y": [1, 2, 3, 4, 6, 9], "z": [1, 3, 4, 9], "primarili": [1, 3, 9], "num_seri": [1, 3, 4, 6, 9], "middl": [1, 3, 6], "too": [1, 2, 3, 6, 9], "flip": [1, 3], "ab": [1, 3, 4, 6], "l": [1, 3, 7], "timestep": [1, 3, 6, 9], "two": [1, 3, 6, 9], "neighbor": [1, 3, 4], "resolut": [1, 3], "greater": [1, 3, 6, 9], "class_method": [1, 3], "standalon": [1, 3], "item": [1, 3, 6], "generaet_result_window": [1, 3], "fit_forecast": [1, 3], "result_window": [1, 3, 4], "forecast_df": [1, 3], "up_forecast_df": [1, 3], "low_forecast_df": [1, 3], "lower_limit_2d": [1, 3, 9], "upper_limit_2d": [1, 3, 9], "upper_risk_arrai": [1, 3, 9], "lower_risk_arrai": [1, 3, 9], "event_risk": [1, 3], "multivariatemotif": [1, 3, 9], "autots_kwarg": [1, 3], "shortcut": [1, 3], "suggest": [1, 3, 6, 9], "normal": [1, 3, 4, 6], "model_method": [1, 3], "num_sampl": [1, 3], "column_idx": [1, 3], "grai": [1, 3], "838996": [1, 3], "c0c0c0": [1, 3], "dcdcdc": [1, 3], "a9a9a9": [1, 3], "808080": [1, 3], "989898": [1, 3], "757575": [1, 3], "696969": [1, 3], "c9c0bb": [1, 3], "c8c8c8": [1, 3], "323232": [1, 3], "e5e4e2": [1, 3], "778899": [1, 3], "4f666a": [1, 3], "848482": [1, 3], "414a4c": [1, 3], "8a7f80": [1, 3], "c4c3d0": [1, 3], "bebeb": [1, 3], "dbd7d2": [1, 3], "up_low_color": [1, 3], "ff4500": [1, 3], "ff5349": [1, 3], "bar_color": [1, 3], "6495ed": [1, 3], "bar_ylim": [1, 3], "8": [1, 3, 4, 6, 9], "ylim": [1, 3], "barplot": [1, 3], "df_test": [1, 3, 9], "actuals_color": [1, 3], "00bfff": [1, 3], "v": [1, 3, 6], "dt": [1, 2, 3, 6], "line": [1, 3, 4, 6, 9], "manual": [1, 3, 9], "appropri": [1, 3, 4, 6, 7, 9], "assess": [1, 3, 9], "target_shap": [1, 3], "handl": [1, 3, 4, 9], "overview": [1, 3], "defin": [1, 3, 4, 6, 7, 9], "group": [1, 3, 4, 6], "reconcili": [1, 6, 9], "2020": [1, 3, 4, 6, 9], "mathemat": [1, 6], "chronolog": [1, 6], "fulli": [1, 4, 6], "under": [1, 6, 9], "condit": [1, 6], "primari": [1, 6], "intent": [1, 6], "na": [1, 4, 6], "cannot": [1, 4, 6, 9], "rollingmean": [1, 6], "pctchang": [1, 6], "cumsum": [1, 6], "ffill": [1, 6], "forward": [1, 3, 6, 9], "until": [1, 6, 9], "reach": [1, 6, 7], "miss": [1, 6, 9], "averag": [1, 3, 4, 6, 9], "rolling_mean_24": [1, 6], "24": [1, 4, 6, 9], "ffill_mean_bias": [1, 6], "fake_d": [1, 6], "shift": [1, 4, 6], "thu": [1, 3, 6, 9], "incorrect": [1, 6], "iterativeimput": [1, 6, 9], "iter": [1, 6], "minmaxscal": [1, 6], "powertransform": [1, 6], "quantiletransform": [1, 6], "robustscal": [1, 6], "worth": [1, 6, 9], "n_compon": [1, 4, 6], "receiv": [1, 6, 7], "second_transform": [1, 6], "fixedrollingmean": [1, 6], "disabl": [1, 6], "rollingmean10": [1, 6], "rollingmean100thn": [1, 6], "len": [1, 3, 4, 6], "minimum": [1, 4, 6, 9], "convert": [1, 4, 6, 9], "pct_chang": [1, 6], "lot": [1, 4, 6, 9], "sin": [1, 6], "log": [1, 3, 6, 9], "lag": [1, 4, 6], "seasonaldifferencemean": [1, 6], "seasonaldifference7": [1, 6], "28": [1, 3, 4, 6], "parameter": [1, 6], "center": [1, 6], "around": [1, 4, 6], "record": [1, 2, 3, 5, 6, 7], "bin": [1, 3, 6], "move": [1, 3, 4, 6], "lose": [1, 6], "smoother": [1, 6], "scipi": [1, 4, 6, 9], "hp_filter": [1, 6], "decompos": [1, 6], "exponenti": [1, 4, 6, 9], "joint": [1, 6], "differenc": [1, 4, 6], "vector": [1, 3, 4, 6], "box": [1, 6], "tiao": [1, 6], "align": [1, 6], "tailor": [1, 6], "wish": [1, 6], "good": [1, 6, 9], "cheer": [1, 6], "local": [1, 4, 6], "state": [1, 4, 6], "clip": [1, 6], "std": [1, 4, 6], "awai": [1, 6], "compens": [1, 6], "croston": [1, 6], "inspir": [1, 6, 9], "magnitud": [1, 2, 4, 6, 9], "occurr": [1, 6, 9], "intermitt": [1, 2, 6], "fourier": [1, 6], "harmon": [1, 6], "reintroduc": [1, 6], "within": [1, 6], "diff": [1, 3, 6], "overwrit": [1, 6, 9], "baxter": [1, 6], "king": [1, 4, 6], "bandpass": [1, 6], "fir": [1, 6], "firwin": [1, 6], "basi": [1, 4, 6], "recombin": [1, 3, 6], "changepoint": [1, 4, 6], "thrown": [1, 4, 6], "fun": [1, 6], "poisson": [1, 6], "applic": [1, 6], "argument": [1, 6], "techniqu": [1, 6], "directli": [1, 6, 7, 9], "fillzero": [1, 6], "undo": [1, 6], "mad": [1, 6], "classmethod": [1, 6], "retriev": [1, 2, 6], "legaci": [1, 6], "min_occurr": [1, 3, 6], "splash_threshold": [1, 3, 6], "65": [1, 3, 6], "use_dayofmonth_holidai": [1, 3, 6], "use_wkdom_holidai": [1, 3, 6], "use_wkdeom_holidai": [1, 3, 6], "use_lunar_holidai": [1, 3, 6], "use_lunar_weekdai": [1, 3, 6], "use_islamic_holidai": [1, 3, 6], "use_hebrew_holidai": [1, 3, 6], "use_hindu_holidai": [1, 3, 6], "holiday_impact": [1, 3, 6], "popul": [1, 3, 6], "day_holidai": [1, 3, 6], "join": [1, 2, 3, 6], "rather": [1, 3, 6, 9], "format": [1, 2, 3, 4, 6, 7, 9], "series_flag": [1, 3, 6], "contan": [1, 3, 6], "holiday_nam": [1, 3, 6], "anomaly_scor": [1, 3, 6], "include_anomali": [1, 3], "transformation_dict": [1, 3, 4], "model_str": [1, 3], "parameter_dict": [1, 3], "starttimestamp": [1, 3], "return_model": [1, 3], "model_count": [1, 3], "feed": [1, 3], "pipelin": [1, 3], "width": [1, 3, 6], "ask": [1, 3], "few": [1, 3], "tranform": [1, 3], "03": [1, 4, 6], "02": [1, 4, 6], "005": [1, 6], "002": [1, 6], "06": [1, 4, 6], "04": [1, 6], "na_prob_dict": [1, 6], "datepartregressionimput": [1, 6], "025": [1, 6], "iterativeimputerextratre": [1, 6], "0001": [1, 4, 6], "knnimput": [1, 6], "seasonalitymotifimputer1k": [1, 6], "seasonalitymotifimputerlinmix": [1, 6], "fast_param": [1, 6], "superfast_param": [1, 6], "traditional_ord": [1, 6], "transformer_min_depth": [1, 6], "allow_non": [1, 6], "no_nan_fil": [1, 6], "choosen": [1, 6, 9], "signal": [1, 6, 9], "transformt": [1, 8], "summar": [1, 4, 6, 9], "backfil": [1, 6], "bfill": [1, 6], "head": [1, 3, 5, 6, 9], "regressor_train": [1, 6], "iloc": [1, 6, 9], "thing": [1, 4, 6, 9], "feature_agglomer": [1, 6], "gaussian_random_project": [1, 6], "deal": [1, 6, 9], "prefil": [1, 6], "elsewher": [1, 6], "regressor_forecast": [1, 6], "simple_binar": [1, 6], "encode_holiday_typ": [1, 6], "distribut": [1, 2, 3, 6, 7], "gamma": [1, 2, 4, 6], "univari": [1, 4, 6, 9], "holiday_regr_styl": [1, 6], "preprocessing_param": [1, 6], "datepart": [1, 4, 6], "been": [1, 3, 6, 9], "peopl": [1, 6], "machin": [1, 6, 7], "elabor": [1, 6], "build": [1, 6, 9], "And": [1, 4, 6, 7], "post": [1, 6, 7, 9], "hoc": [1, 6], "want": [1, 6, 9], "easili": [1, 6, 9], "categor": [1, 2, 6], "discard": [1, 6], "annoi": [1, 6], "countri": [1, 6], "req": [1, 3, 6], "pkg": [1, 6], "subdiv": [1, 6], "subdivis": [1, 6], "resampl": [1, 6], "creation": [1, 4, 6], "swappabl": [1, 6], "infer_freq": [1, 6], "date_start": [1, 2], "date_end": [1, 2], "artif": [1, 2, 9], "wiki": [1, 2, 3], "united_st": [1, 2], "germani": [1, 2], "list_of_highest": [1, 2], "grossing_film": [1, 2], "jesu": [1, 2], "michael_jackson": [1, 2], "list_of_united_states_cities_by_popul": [1, 2], "microsoft_offic": [1, 2], "google_chrom": [1, 2], "periodic_t": [1, 2], "standard_devi": [1, 2, 9], "easter": [1, 2], "christma": [1, 2, 9], "chinese_new_year": [1, 2], "thanksgiv": [1, 2, 9], "list_of_countries_that_have_gained_independence_from_the_united_kingdom": [1, 2], "history_of_the_hamburg": [1, 2], "elizabeth_ii": [1, 2], "william_shakespear": [1, 2], "george_washington": [1, 2], "cleopatra": [1, 2], "df2": [1, 2], "observation_start": [1, 2], "2017": [1, 2, 6], "weather_year": [1, 2], "trends_list": [1, 2, 9], "gov_domain_list": [1, 2, 9], "wikipedia_pag": [1, 2, 9], "fred_seri": [1, 2, 9], "dgs10": [1, 2], "t5yie": [1, 2], "sp500": [1, 2], "dexuseu": [1, 2], "sleep_second": [1, 2, 9], "fred_kei": [1, 2], "93873d40f10c20fe6f6e75b1ad0aed4d": [1, 2], "weather_data_typ": [1, 2], "wsf2": [1, 2], "prcp": [1, 2], "weather_st": [1, 2, 9], "usw00014771": [1, 2], "ticker": [1, 2, 9], "london_air_st": [1, 2, 9], "weather_event_typ": [1, 2, 9], "earthquake_min_magnitud": [1, 2, 9], "data_file_nam": [1, 2], "zip": [1, 2], "to_csv": [1, 2], "compress": [1, 2], "archive_nam": [1, 2], "compresslevel": [1, 2], "sourc": [1, 2, 4, 6, 9], "wikimedia": [1, 2], "foundat": [1, 2], "traffic": [1, 2, 9], "mn": [1, 2], "dot": [1, 2], "via": [1, 2], "uci": [1, 2], "repositori": [1, 2], "2021": [1, 2, 3, 4, 9], "introduce_nan": [1, 2], "introduce_random": [1, 2], "123": [1, 2, 3, 6], "null": [1, 2, 6], "observation_end": [1, 2], "dcoilwtico": [1, 2], "wpu0911": [1, 2], "msft": [1, 2], "cycl": [1, 2, 4], "microsoft": [1, 2], "trends_geo": [1, 2], "awnd": [1, 2], "tavg": [1, 2], "usw00094846": [1, 2], "usw00014925": [1, 2], "ct3": [1, 2], "sk8": [1, 2], "london_air_speci": [1, 2], "pm25": [1, 2], "london_air_dai": [1, 2], "180": [1, 2], "earthquake_dai": [1, 2], "gsa_kei": [1, 2], "nasa": [1, 2], "gov": [1, 2], "gov_domain_limit": [1, 2], "600": [1, 2], "wiki_languag": [1, 2], "en": [1, 2, 3, 6, 9], "28z": [1, 2], "29": [1, 2], "winter": [1, 2, 9], "weather": [1, 2, 9], "storm": [1, 2], "caiso_queri": [1, 2], "eia_kei": [1, 2], "eia_respond": [1, 2], "miso": [1, 2], "pjm": [1, 2], "tva": [1, 2], "us48": [1, 2], "300": [1, 2, 4], "activ": [1, 2, 4, 9], "internet": [1, 2, 9], "connect": [1, 2, 9], "respect": [1, 2, 6, 9], "free": [1, 2, 7], "heavili": [1, 2, 4, 6, 9], "exclud": [1, 2, 6], "d": [1, 2, 3, 4, 6, 7, 9], "earliest": [1, 2, 4], "get_seri": [1, 2], "yfinanc": [1, 2, 9], "api": [1, 2, 7, 9], "restrict": [1, 2, 4], "stlouisf": [1, 2], "org": [1, 2, 3, 4, 6, 9], "doc": [1, 2, 4, 6, 7, 9], "api_kei": [1, 2], "html": [1, 2, 4, 6, 9], "fredapi": [1, 2, 9], "stock": [1, 2, 7, 9], "pypi": [1, 2], "keyword": [1, 2], "pytrend": [1, 2, 9], "ncei": [1, 2], "noaa": [1, 2], "ghcn": [1, 2], "snow": [1, 2], "tmax": [1, 2], "tmin": [1, 2], "wsf1": [1, 2], "wsf5": [1, 2], "wsfg": [1, 2], "station": [1, 2], "londonair": [1, 2], "uk": [1, 2], "london_speci": [1, 2], "london": [1, 2], "air": [1, 2], "smallest": [1, 2, 3], "earthquak": [1, 2], "usg": [1, 2], "open": [1, 2, 5, 9], "gsa": [1, 2], "dap": [1, 2], "dist": [1, 2, 4, 9], "govern": [1, 2], "domain": [1, 2, 6], "veri": [1, 2, 4, 6, 9], "usp": [1, 2], "ncbi": [1, 2], "nlm": [1, 2], "nih": [1, 2], "cdc": [1, 2], "ir": [1, 2], "usajob": [1, 2], "studentaid": [1, 2], "usembassi": [1, 2], "tsunami": [1, 2], "smaller": [1, 2, 3, 4, 6, 9], "10000": [1, 2], "wikipedia": [1, 2, 3], "encod": [1, 2, 3, 9], "underscor": [1, 2], "www1": [1, 2], "ncdc": [1, 2], "pub": [1, 2, 6], "swdi": [1, 2], "stormev": [1, 2], "csvfile": [1, 2], "pdf": [1, 2, 6], "ene_slr": [1, 2], "hardcod": [1, 2], "queri": [1, 2, 6], "server": [1, 2], "download": [1, 2, 9], "feder": [1, 2], "reserv": [1, 2], "loui": [1, 2], "econom": [1, 2], "indic": [1, 2, 3, 6], "week": [1, 2], "petroleum": [1, 2], "industri": [1, 2], "eia": [1, 2], "annual": [1, 2], "cleaner": [1, 6], "pivot_t": [1, 6], "determin": [1, 4, 6], "provid": [1, 3, 4, 6, 9], "template_col": [1, 3], "transformationparamet": [1, 3, 4, 5], "horizontal_subset": [1, 3], "internal_valid": [1, 3], "albeit": [1, 3, 9], "she": [1, 3], "turn": [1, 3], "me": [1, 3], "newt": [1, 3], "got": [1, 3, 4], "cpu": [1, 3, 4, 6, 7, 9], "meant": [1, 3], "nich": [1, 3], "tell": [1, 3, 4, 9], "insid": [1, 3, 9], "instal": [2, 4, 6], "fredkei": 2, "seriesnamedict": 2, "simplest": [2, 9], "sure": [2, 6, 7, 9], "request": [2, 6, 7, 9], "pair": 2, "seriesnam": 2, "anyth": [2, 4, 6], "second": [2, 4, 6, 9], "sleep": 2, "chanc": 2, "mon": [3, 6], "jul": [3, 6], "18": [3, 4], "19": [3, 4], "55": 3, "author": [3, 4, 6], "colin": [3, 4, 6, 9], "mid": [3, 6], "submitted_paramet": 3, "sort_column": 3, "sort_ascend": 3, "max_result": 3, "recursive_count": 3, "old": [3, 4, 9], "No": [3, 4, 6, 7], "mate": 3, "sanderson": 3, "submitted_paramt": 3, "hyperparamet": 3, "per_timestamp_smap": 3, "per_series_metr": [3, 4], "per_series_ma": 3, "per_series_rms": 3, "per_series_mad": 3, "per_series_contour": 3, "per_series_spl": 3, "per_series_ml": 3, "per_series_iml": 3, "per_series_max": 3, "per_series_oda": 3, "per_series_mqa": 3, "per_series_dwa": 3, "per_series_ewma": 3, "per_series_uwms": 3, "per_series_smooth": 3, "per_series_m": 3, "per_series_mats": 3, "per_series_wasserstein": 3, "per_series_dwd": 3, "correspond": [3, 4, 6], "order": [3, 4, 6, 9], "another_ev": 3, "merg": 3, "onto": 3, "validation_round": 3, "current_gener": 3, "traceback": 3, "mosaic_us": 3, "additional_msg": 3, "who": [3, 4], "tim": 3, "hyperparamt": 3, "prepar": 3, "info": [3, 6], "print": [3, 5, 6, 7, 9], "statement": 3, "keyboard": 3, "interrupt": [3, 7], "caught": [3, 4], "break": 3, "tracebook": 3, "represent": 3, "everi": [3, 4, 6, 9], "existing_templ": 3, "new_poss": 3, "selection_col": 3, "new_possibl": 3, "namess": 3, "judg": [3, 9], "hash": 3, "b": [3, 6, 7], "ident": [3, 4], "return_score_dict": 3, "made": [3, 4, 6, 9], "mage": [3, 9], "bigger": 3, "results_object": 3, "total_valid": 3, "models_to_us": [3, 4], "model_prob": 3, "counter": [3, 6], "n_model": 3, "keyword_format": 3, "preceed": [3, 9], "dict_arrai": 3, "recurs": [3, 5, 9], "unnest": 3, "validation_result": [3, 5, 7], "groupby_col": 3, "all_result": 3, "corr": 3, "onehot": 3, "poli": 3, "100000": [3, 6], "dimens": [3, 4, 6, 9], "fake": [3, 6], "purpos": [3, 6, 9], "fri": [3, 6], "nov": 3, "13": [3, 4, 9], "45": [3, 4], "base_models_onli": 3, "tensorflow": [3, 4, 9], "jan": [3, 4], "27": [3, 6], "36": [3, 4], "lag_1": [3, 4, 6], "lag_2": [3, 4], "nearest": [3, 4, 6], "ndim": 3, "ae": 3, "precalcul": 3, "arr": [3, 6], "loss": [3, 4, 9], "chi": 3, "squar": [3, 6, 9], "histogram": 3, "unchang": 3, "flat": [3, 6, 9], "concern": [3, 9], "bluff": 3, "river": 3, "elev": 3, "equiavel": 3, "last_of_arrai": [3, 4], "direciton": 3, "growth": [3, 4, 6], "declin": [3, 4], "scaler": [3, 4, 6], "cumsum_a": [3, 4], "diff_a": [3, 4], "extra": [3, 9], "precomput": [3, 4], "effici": [3, 4, 6, 9], "loop": [3, 4], "worri": 3, "them": [3, 9], "detail": [3, 4, 6, 7, 9], "bandwidth": 3, "kl": 3, "diverg": 3, "p": [3, 4, 6, 7, 9], "q": [3, 4, 6, 7, 9], "epsilon": [3, 4, 6], "1e": [3, 6], "perecentag": 3, "progress": [3, 7, 9], "along": [3, 6, 9], "differenti": [3, 9], "sole": 3, "optim": [3, 4, 7, 9], "unanchor": 3, "1d": [3, 6], "nan_flag": [3, 6], "baselin": 3, "naiv": [3, 4, 7, 9], "poorli": [3, 6, 9], "85": [3, 5], "largest": [3, 9], "full_error": 3, "le": 3, "y_pred": [3, 4], "y_true": [3, 4], "penal": [3, 9], "underestim": [3, 9], "overestim": [3, 9], "avoid": [3, 6, 7, 9], "divid": 3, "aren": [3, 4], "down": [3, 6, 9], "bad": [3, 9], "er": 3, "push": 3, "exclus": 3, "sqe": 3, "catlin": [3, 6, 7], "syllepsi": 3, "live": [3, 7], "22": [3, 4, 6], "categori": [3, 6], "OR": 3, "being": [3, 4, 6, 7, 9], "pinbal": [3, 9], "gradient": 3, "volatil": [3, 6, 9], "precomputed_spl": 3, "unmatch": 3, "poor": [3, 9], "penalty_threshold": 3, "view": [3, 6, 9], "strength": [3, 6], "earth": 3, "perhap": [3, 6], "relev": [3, 6], "unsort": 3, "extract": [3, 4], "py": [3, 6, 7, 9], "amfm": 3, "possibli": [3, 4, 6], "modif": 3, "structur": [3, 4, 6], "11": [3, 4, 9], "2023": [3, 4, 6, 7], "validation_param": 3, "etc": [3, 6, 9], "clean": [3, 6, 9], "beyond": [3, 4, 6], "constant": [4, 6], "vol": 4, "garch": 4, "o": [4, 6, 7], "power": [4, 9], "rescal": 4, "maxit": 4, "200": [4, 6], "linux": [4, 6, 9], "distro": 4, "confid": [4, 6], "multiprocess": [4, 6, 9], "uniniti": 4, "fit_runtim": 4, "timedelta": 4, "hold": 4, "timeseri": [4, 6, 9], "last_dat": 4, "forecast_index": 4, "forecast_column": 4, "predict_runtim": 4, "transformation_runtim": 4, "per_timestamp": 4, "avg_metr": 4, "avg_metrics_weight": 4, "form": [4, 6, 9], "exce": 4, "constraint_valu": [4, 6], "constraint_direct": [4, 6], "horizon": [4, 6, 9], "window_agg": 4, "go": [4, 9], "soft": 4, "decim": [4, 6], "dampen": 4, "gradual": 4, "flatten": 4, "98": 4, "series_weight": 4, "per_timestamp_error": 4, "column_nam": 4, "evalut": 4, "against": 4, "suboptim": 4, "update_datetime_nam": 4, "datetime_column": 4, "remove_zero": [4, 9], "title_substr": 4, "ax": [4, 6], "matplotlib": [4, 9], "dash": 4, "vertic": 4, "intens": 4, "shade": 4, "region": [4, 6], "xlim_right": 4, "grid": [4, 7], "certain": 4, "group_col": 4, "y_col": 4, "totalruntimesecond": 4, "train_last_d": 4, "cmap_nam": 4, "gist_rainbow": 4, "runtimes_data": 4, "xlim": 4, "title_suffix": 4, "point_method": 4, "canberra": [4, 6], "sample_fract": [4, 6], "comparison_transform": 4, "combination_transform": 4, "adapt": 4, "struggl": 4, "short": 4, "max_window": [4, 6], "weighted_mean": 4, "midhing": [4, 6], "cdist": [4, 9], "closest": [4, 6, 9], "consid": [4, 9], "extend_df": 4, "mean_rolling_period": 4, "macd_period": 4, "std_rolling_period": 4, "max_rolling_period": 4, "min_rolling_period": 4, "ewm_var_alpha": 4, "quantile90_rolling_period": 4, "quantile10_rolling_period": 4, "ewm_alpha": 4, "additional_lag_period": 4, "abs_energi": 4, "rolling_autocorr_period": 4, "nonzero_last_n": 4, "polynomial_degre": [4, 6], "scale_full_x": 4, "cointegration_lag": 4, "series_hash": 4, "frac_slic": 4, "ala": 4, "ml": [4, 9], "static_regressor": 4, "2024": [4, 6, 9], "changepoint_spac": [4, 6], "changepoint_distance_end": [4, 6], "lambda_": 4, "ridg": 4, "minim": [4, 9], "covari": [4, 6], "ratio": 4, "num_regressor_seri": 4, "nan_euclidean": [4, 6, 9], "include_differenc": [4, 6], "stride_s": [4, 6], "ob": [4, 6], "n_harmon": [4, 6], "state_transit": [4, 6], "process_nois": [4, 6], "observation_model": [4, 6], "observation_nois": [4, 6], "em_it": [4, 6], "undefin": 4, "solv": [4, 6, 9], "kalman": [4, 6, 9], "expens": [4, 7], "comparison": [4, 6], "mse": [4, 9], "minkowski": 4, "5000": [4, 6], "tradeoff": [4, 6], "own": [4, 9], "gather": 4, "phrase_len": 4, "magnitude_pct_change_sign": 4, "share": 4, "l2": 4, "max_motif": 4, "recency_weight": 4, "cutoff_threshold": 4, "cutoff_minimum": 4, "dark": [4, 6], "magic": [4, 6], "evil": 4, "mastermind": 4, "project": [4, 7], "knn": 4, "interest": [4, 9], "togeth": [4, 6, 9], "pairwise_dist": 4, "amount": [4, 6, 9], "choos": [4, 9], "sign_biased_mean": 4, "ridge_param": 4, "5e": 4, "warmup_pt": [4, 6], "seed_pt": 4, "seed_weight": 4, "batch_siz": 4, "batch_method": 4, "input_ord": 4, "nonlinear": 4, "variabl": [4, 6, 9], "autoregress": 4, "next": [4, 6, 9], "reservoir": 4, "quantinfo": 4, "ng": 4, "rc": 4, "paper": [4, 7], "gauthier": 4, "j": [4, 6, 7], "bollt": 4, "e": [4, 6, 7], "griffith": 4, "al": 4, "nat": 4, "commun": [4, 9], "5564": 4, "doi": 4, "1038": 4, "s41467": 4, "021": 4, "25801": 4, "pointless": 4, "lambda": [4, 6], "realiti": 4, "warmup": 4, "fine": [4, 9], "linearli": 4, "batch": [4, 7], "lastvalu": [4, 6], "concerto": 4, "g": [4, 6, 7], "minor": 4, "op": 4, "rv": 4, "315": 4, "produc": [4, 9], "phi": [4, 6], "max_cycl": 4, "2000": 4, "var_dampen": 4, "apply_pca": 4, "pca_n_compon": 4, "threshold_method": [4, 6], "threshold_valu": 4, "base_sc": 4, "x_scale": 4, "var_preprocess": 4, "var_postprocess": 4, "vari": [4, 6, 7, 9], "seem": [4, 9], "beta": [4, 6], "xa": 4, "xb": 4, "r_arr": 4, "inner": 4, "hungri": 4, "big": 4, "linpack": [4, 7, 9], "sensit": [4, 6, 9], "address": 4, "tue": 4, "sep": [4, 6], "57": 4, "assist": 4, "crgillespie22": 4, "gaussian_prior_mean": 4, "wishart_prior_scal": 4, "wishart_dof_excess": 4, "bayesian": [4, 6], "conjug": 4, "prior": [4, 6], "encourag": [4, 9], "coef": 4, "regular": [4, 6, 9], "peak": [4, 6], "matrix": [4, 6], "varianc": 4, "nois": [4, 6], "while": [4, 7, 9], "return_std": 4, "n_sampl": 4, "in_d": 4, "prefix": 4, "regr_": 4, "15000": 4, "l1": 4, "cost": 4, "lin": 4, "reg": 4, "lamb": [4, 6], "identity_matrix": 4, "neural": 4, "net": 4, "256": 4, "feature_subsample_r": 4, "adam": 4, "epoch": [4, 6], "32": [4, 6], "relu": 4, "rnn_type": 4, "lstm": 4, "kernel_initi": 4, "lecun_uniform": 4, "hidden_layer_s": 4, "huber": 4, "wrapper": [4, 6], "kera": 4, "rnn": 4, "cell": 4, "gru": 4, "layer": 4, "compil": [4, 9], "tf": 4, "set_se": 4, "head_siz": 4, "num_head": 4, "ff_dim": 4, "num_transformer_block": 4, "mlp_unit": 4, "128": 4, "mlp_dropout": 4, "dropout": 4, "io": [4, 6], "timeseries_transformer_classif": 4, "input_shap": 4, "output_shap": [4, 6], "ensemble_param": 4, "forecasts_runtim": 4, "model_weight": 4, "incompat": [4, 9], "bestn": [4, 9], "forecast_id": 4, "forecast_runtim": 4, "forecasts_list": 4, "ensemble_str": 4, "prematched_seri": 4, "use_valid": 4, "subset_flag": 4, "per_series2": 4, "only_specifi": 4, "outer": [4, 6], "full_mae_v": 4, "total_v": 4, "validation_test_index": 4, "known_match": 4, "available_model": 4, "full_model": 4, "error_matrix": 4, "error_list": 4, "col_nam": 4, "smoothing_window": 4, "metric_nam": 4, "id_to_group_map": 4, "unpredictability_adjust": 4, "classifier_param": 4, "classifi": 4, "unknown": 4, "construct": [4, 5, 6, 9], "x_predict": 4, "ensemble_list": 4, "models_sourc": 4, "all_seri": 4, "forecast_period": [4, 9], "datestamp": 4, "retur": 4, "safety_model": 4, "local_result": 4, "releas": 4, "amazon": 4, "realli": [4, 6], "mxnet": [4, 9], "gui": 4, "sorta": 4, "mayb": 4, "deprec": [4, 6, 9], "sad": 4, "excel": [4, 9], "routin": 4, "stabil": 4, "strong": 4, "suit": 4, "gluon_model": 4, "deepar": 4, "learning_r": 4, "context_length": 4, "npt": 4, "deepstat": 4, "wavenet": 4, "deepfactor": 4, "sff": 4, "mqcnn": 4, "deepvar": 4, "gpvar": 4, "nbeat": 4, "network": 4, "2forecastlength": [4, 6], "nforecastlength": 4, "unlik": [4, 6, 9], "df_index": 4, "freq": [4, 6, 9], "model_templ": 4, "silverkit": 4, "unitedst": 4, "inner_n_job": 4, "relat": [4, 9], "borrow": 4, "xinyu": 4, "chen": 4, "xinychen": 4, "transdim": 4, "medium": [4, 9], "articl": 4, "nan_to_num": 4, "pinv": 4, "On": [4, 9], "entri": 4, "dlascl": 4, "illeg": 4, "amplitude_threshold": 4, "eigenvalue_threshold": 4, "dynam": [4, 6, 9], "time_horizon": 4, "time_lag": 4, "lambda0": 4, "33333333": 4, "low": [4, 6, 9], "tensor": 4, "arxiv": [4, 6], "2104": 4, "14936": 4, "blob": 4, "master": 4, "mat": 4, "predictor": 4, "ipynb": 4, "rho": 4, "inner_maxit": 4, "tempor": 4, "sparse_mat": 4, "ind": 4, "w": [4, 5, 6], "psi": 4, "r": [4, 5, 6, 7], "pred_step": 4, "sparse_tensor": 4, "rho0": 4, "recogn": [4, 6, 7], "pred_time_step": 4, "time_interv": 4, "kernel": [4, 7], "dim": [4, 6], "tau": 4, "aq": 4, "rold": 4, "delta": 4, "sun": 4, "expanded_binar": [4, 6], "aspect": 4, "n_seri": [4, 6], "variou": [4, 6], "nixtla": 4, "Be": [4, 7], "commerci": 4, "mqloss": 4, "input_s": 4, "max_step": [4, 6], "early_stop_patience_step": 4, "scaler_typ": 4, "model_arg": 4, "point_quantil": 4, "document": [4, 6, 7, 9], "temp": 4, "za": 4, "facebook": 4, "sinc": [4, 9], "finicki": [4, 9], "yearly_season": 4, "weekly_season": 4, "daily_season": 4, "n_changepoint": 4, "changepoint_prior_scal": 4, "seasonality_mod": 4, "changepoint_rang": 4, "seasonality_prior_scal": 4, "weekly_seasonality_prior_scal": 4, "yearly_seasonality_prior_scal": 4, "yearly_seasonality_ord": 4, "holidays_prior_scal": 4, "thou": 4, "shall": 4, "neither": 4, "prece": 4, "off": [4, 6, 9], "changepoints_rang": 4, "trend_reg": 4, "trend_reg_threshold": 4, "ar_spars": 4, "seasonality_reg": 4, "n_lag": 4, "num_hidden_lay": 4, "d_hidden": 4, "loss_func": 4, "train_spe": 4, "training_start_d": 4, "training_end_d": 4, "custom_changepoint": 4, "distinct": [4, 7, 9], "uniform": [4, 6], "ecosystem": 4, "analyt": [4, 9], "control": [4, 9], "could": [4, 9], "93": 4, "mark": 4, "cours": [4, 7], "benn": 4, "yyyi": 4, "mm": 4, "dd": 4, "quotat": 4, "datetime64": 4, "dtype": [4, 6], "90": [4, 6], "max_epoch": 4, "max_encoder_length": 4, "hidden_s": 4, "n_layer": 4, "add_target_scal": 4, "target_norm": 4, "encodernorm": 4, "temporalfusiontransform": 4, "64": [4, 6], "78": 4, "model_kwarg": 4, "trainer_kwarg": 4, "callback": 4, "obsess": 4, "pt": 4, "lightn": [4, 9], "trainer": 4, "quantileloss": 4, "lesser": 4, "decis": [4, 7, 9], "tree": 4, "elast": 4, "forest": 4, "mlpregressor": 4, "adaboost": 4, "principl": 4, "nthn": 4, "max_depth": [4, 6], "min_samples_split": [4, 6], "forward_lag": [4, 6], "randomforest": 4, "quantile_param": 4, "min_samples_leaf": 4, "n_estim": 4, "250": 4, "frame": [4, 6], "multiari": 4, "window_s": [4, 6], "max_histori": 4, "one_step": 4, "processed_i": 4, "normalize_window": [4, 6], "sigma": [4, 6], "random_st": [4, 6], "extratre": 4, "add_date_part": 4, "x_transform": 4, "wise": [4, 9], "scienc": 4, "am": 4, "arthur": 4, "briton": 4, "ve": 4, "think": 4, "your": [4, 7, 9], "selv": 4, "re": 4, "individu": [4, 9], "ye": [4, 7, 9], "we": [4, 9], "rbf": 4, "noise_var": 4, "lambda_prim": 4, "polynomi": [4, 6], "locally_period": 4, "littl": [4, 9], "flexibl": [4, 6, 9], "toler": [4, 9], "\u03b3": 4, "reason": [4, 6, 9], "might": [4, 9], "365": [4, 6], "input_dim": [4, 6], "output_dim": [4, 6], "shuffl": [4, 6], "fourier_encoding_compon": 4, "model_dict": 4, "bootstrap": 4, "verbose_bool": 4, "multioutput": 4, "framework": [4, 6, 7], "mean_rol": 4, "slice_index": 4, "series_id_to_multiindex": 4, "bit": 4, "exog": 4, "exog_oo": 4, "exog_fc": 4, "sometim": 4, "c": [4, 6, 7, 9], "causal": 4, "ct": 4, "stationar": 4, "hour": [4, 6, 9], "k_factor": 4, "factor_ord": 4, "mamodel": 4, "mapr": 4, "factor_multipl": 4, "idiosyncratic_ar1": 4, "damped_trend": 4, "seasonal_period": 4, "formerli": 4, "damp": 4, "deseason": 4, "use_test": 4, "use_ml": 4, "damped_cycl": 4, "irregular": 4, "stochastic_cycl": 4, "stochastic_trend": 4, "stochastic_level": 4, "cov_typ": 4, "opg": 4, "lbfg": 4, "maxlag": [4, 6], "ic": 4, "fpe": 4, "determinist": 4, "k_ar_diff": [4, 6], "coint_rank": 4, "current_seri": 4, "xf": 4, "negloglik": 4, "conf_int": 4, "ar_ord": 4, "fit_method": 4, "hmc": 4, "num_step": 4, "tensorflowprob": 4, "42": 4, "0009999": 4, "layer_norm": 4, "dropout_r": 4, "512": [4, 6], "num_lay": 4, "hist_len": 4, "720": 4, "decoder_output_dim": 4, "final_decoder_hidden": 4, "num_split": 4, "min_num_epoch": 4, "train_epoch": 4, "patienc": 4, "epoch_len": 4, "permut": 4, "gpu_index": 4, "googl": 4, "research": 4, "mlp": 4, "num_cov_col": 4, "cat_cov_col": 4, "ts_col": 4, "train_rang": 4, "val_rang": 4, "test_rang": 4, "pred_len": 4, "loader": 4, "84": 5, "86": 5, "87": 5, "88": 5, "sort_valu": 5, "ascend": [5, 9], "groupbi": [5, 6], "reset_index": 5, "export2": 5, "export_fin": 5, "to_json": 5, "orient": [5, 6], "pprint": 5, "read_csv": 5, "autots_forecast_template_gen": 5, "jsn": 5, "json_temp": 5, "read": 5, "txt": 5, "dump": 5, "indent": 5, "sort_kei": 5, "41": 6, "21": [6, 7], "contextu": 6, "fall": [6, 7, 9], "densiti": 6, "sequenc": [6, 9], "anomal": 6, "itself": 6, "regard": 6, "1802": 6, "04431": 6, "anomaly_df": 6, "df_col": 6, "wkdom_holidai": 6, "wkdeom_holidai": 6, "lunar_holidai": 6, "lunar_weekdai": 6, "islamic_holidai": 6, "hebrew_holidai": 6, "hindu_holidai": 6, "max_featur": 6, "predict_interv": 6, "job": 6, "tol": 6, "max_it": 6, "responsibility_threshold": 6, "norm": 6, "rolling_period": 6, "surviv": 6, "outlieri": 6, "dataframm": 6, "rolling_zscor": 6, "sf": 6, "rolliing_zscor": 6, "convers": [6, 7], "chines": 6, "arab": 6, "datetime_index": 6, "christian": 6, "aspir": 6, "hebrew": 6, "pyluach": 6, "simlist": 6, "hindu": 6, "variat": [6, 9], "llm": 6, "put": 6, "appear": [6, 9], "still": [6, 7, 9], "welcom": 6, "epoch_adjust": 6, "islam": 6, "convertd": 6, "fitnr": 6, "timezon": 6, "new_moon": 6, "continu": 6, "pre": 6, "full_moon": 6, "julian": 6, "johansen": 6, "barba": 6, "towardsdatasci": 6, "canon": 6, "forgotten": 6, "4d1213396da1": 6, "p_mat": 6, "max_lag": 6, "return_eigenvalu": 6, "endog": 6, "det_ord": 6, "abbrevi": 6, "series_ord": 6, "trim": 6, "ex": 6, "modifi": 6, "train_min": 6, "train_max": 6, "final_growth": 6, "multiproces": 6, "conserv": 6, "intel": 6, "hyperthread": 6, "logic": 6, "psutil": [6, 9], "fallsback": 6, "mkl": [6, 9], "simd": 6, "otto": 6, "seiskari": 6, "mit": 6, "licens": 6, "resourc": [6, 9], "found": [6, 7, 9], "kevinkotz": 6, "www": [6, 9], "notebook": 6, "statespace_dfm_coincid": 6, "introduct": 6, "commandeur": 6, "koopman": 6, "chp": 6, "andrew": 6, "harvei": 6, "notat": 6, "transit": 6, "x_k": 6, "x_": 6, "q_": 6, "qquad": 6, "sim": 6, "y_k": 6, "h": [6, 7], "r_k": 6, "hidden": 6, "system": [6, 9], "matric": 6, "suitabl": 6, "definit": 6, "simo": 6, "sarkk\u00e4": 6, "2013": 6, "cambridg": 6, "univers": 6, "press": [6, 7], "aalto": 6, "fi": 6, "ssarkka": 6, "cup_book_online_20131111": 6, "simdkalman": 6, "kf": 6, "diag": 6, "denot": 6, "initial_valu": 6, "initial_covari": 6, "ey": 6, "third": [6, 9], "cov": 6, "29311384": 6, "06948961": 6, "19959416": 6, "00777587": 6, "02528967": 6, "pred_mean": 6, "pred_stdev": 6, "sqrt": 6, "71543": 6, "65322": 6, "multi": 6, "dimension": 6, "howev": [6, 9], "flexibli": 6, "broadcast": 6, "rule": 6, "oper": 6, "n_state": 6, "n_var": 6, "n_measur": 6, "main": 6, "interfac": 6, "accord": 6, "natur": [6, 9], "scalar": 6, "3d": 6, "lock": 6, "n_test": 6, "likelihood": 6, "log_likelihood": 6, "explan": 6, "With": [6, 9], "boolean": 6, "pairwis": [6, 9], "member": 6, "subresult": 6, "field": 6, "pairwise_covari": 6, "n_iter": 6, "interpret": 6, "mathbb": 6, "x_0": 6, "rm": 6, "prior_mean": 6, "prior_cov": 6, "x_j": 6, "simgl": 6, "y_1": 6, "ldot": 6, "y_j": 6, "y_t": 6, "smooth_mean": 6, "smooth_covari": 6, "smoothing_gain": 6, "y_": 6, "posterior_mean": 6, "posterior_covari": 6, "posterior": 6, "operand": 6, "transpos": 6, "initial_mean": 6, "correct": 6, "allow_auto": 6, "next_smooth_mean": 6, "next_smooth_covari": 6, "prior_covari": 6, "statespac": 6, "oct": 6, "07": 6, "37": 6, "colincatlin": 6, "n_harm": 6, "freq_rang": 6, "23": [6, 9], "59": 6, "sampling_frequ": 6, "numtap": 6, "cutoff_hz": 6, "ham": 6, "convolut": 6, "lfilter": 6, "pad": 6, "tap": 6, "hz": 6, "hann": 6, "filtered_data": 6, "chunk_siz": 6, "data_typ": 6, "time_seri": 6, "grouping_method": 6, "tile": 6, "n_group": 6, "hier_id": 6, "bottom": 6, "holidays_subdiv": 6, "fallback": 6, "unavail": 6, "bias": 6, "simple_2": 6, "linear_mix": 6, "mean_weight": 6, "back_method": 6, "half": [6, 9], "remaind": 6, "slice_al": 6, "keepna": 6, "phase": 6, "moon": 6, "stackoverflow": 6, "2531541": 6, "9492254": 6, "keturn": 6, "earlier": 6, "john": 6, "walker": 6, "ecc": 6, "016718": 6, "equat": 6, "2444237": 6, "905": 6, "ecliptic_longitude_epoch": 6, "278": 6, "83354": 6, "ecliptic_longitude_perige": 6, "282": 6, "596403": 6, "eccentr": 6, "moon_mean_longitude_epoch": 6, "975464": 6, "moon_mean_perigee_epoch": 6, "349": 6, "383063": 6, "illumin": 6, "zone": 6, "2444238": 6, "asia": 6, "matter": 6, "central": 6, "precis": 6, "75": 6, "nextnew": 6, "krstn": 6, "eu": 6, "nanpercentil": 6, "in_arr": 6, "rollov": 6, "support": [6, 7, 9], "driven": 6, "placehold": 6, "mixtur": 6, "gum": 6, "diseas": 6, "credibl": 6, "spell": 6, "cast": 6, "variable_pct_chang": 6, "upon": 6, "upper_error": 6, "lower_error": 6, "errorrang": 6, "cum": 6, "qtp": 6, "xn": 6, "broaden": 6, "although": [6, 7, 9], "corrupt": 6, "bay": 6, "theorem": 6, "adi_threshold": 6, "cvar_threshold": 6, "flat_threshold": 6, "92": 6, "new_product_threshold": 6, "seasonal_threshold": 6, "errat": 6, "lumpi": 6, "new_product": 6, "finiki": 6, "declar": 6, "new_product_correct": 6, "demand_profil": 6, "x_t_last_row": 6, "n_forecast": 6, "120": 6, "ensur": 6, "consecut": 6, "belong": 6, "hot": 6, "history_dai": 6, "set_index": 6, "weekdai": 6, "recur": 6, "commonli": [6, 9], "repeat": [6, 9], "ag": 6, "degre": 6, "holdiay_countri": 6, "dtindex_futur": 6, "full_sort": 6, "nan_arrai": 6, "include_on": 6, "very_smal": 6, "typic": [6, 9], "wavelet_typ": 6, "morlet": 6, "reshap": [6, 9], "na_str": 6, "categorical_fillna": 6, "handle_unknown": [6, 9], "use_encoded_valu": 6, "downcast": 6, "unalt": 6, "missing_valu": 6, "ordinalencod": [6, 9], "to_numer": 6, "messag": [6, 9], "convert_dtyp": 6, "polish": 6, "999": 6, "dateoffset": [6, 9], "somewher": 6, "pydata": [6, 9], "stabl": [6, 9], "user_guid": [6, 9], "cut": 6, "older": [6, 9], "eventu": 6, "incomplet": [6, 9], "upsampl": [6, 7], "silenc": 6, "rest": 6, "configur": 6, "wide_arr": 6, "gst": 6, "sgt": 6, "46": 6, "error_buff": 6, "z_init": 6, "z_limit": 6, "z_step": 6, "max_contamin": 6, "sd_weight": 6, "anomaly_count_weight": 6, "errors_al": 6, "obj": 6, "maxim": 6, "reduct": 6, "invert": 6, "meet": [6, 9], "yield": 6, "itertool": 6, "more_itertool": 6, "descript": [6, 9], "circa": 6, "decay_span": 6, "displacement_row": 6, "span": 6, "decai": 6, "soften": 6, "first_value_onli": 6, "on_invers": 6, "lanczos_factor": 6, "return_diff": 6, "on_transform": 6, "implent": 6, "somewhat": 6, "statmodelsfilt": 6, "linearregress": 6, "suffix": 6, "_lltmicro": 6, "vagu": 6, "gap": 6, "link": [6, 7], "std_threshold": 6, "purg": 6, "THE": 6, "historic_growth": 6, "bounds_onli": 6, "cumul": 6, "imprecis": 6, "missing": 6, "scatter": 6, "dure": 6, "reverse_align": 6, "n_bin": 6, "kmean": 6, "kbin": 6, "irrevers": 6, "exponeti": 6, "extrapol": 6, "n_harmnon": 6, "quadrat": 6, "revers": [6, 9], "highest": [6, 7, 9], "But": 6, "1600": 6, "upstream": 6, "regression_param": 6, "grouping_forward_limit": 6, "max_level_shift": 6, "old_wai": 6, "serious": 6, "alter": 6, "rolling_window": 6, "n_futur": 6, "macro_micro": 6, "simpli": [6, 9], "residu": 6, "demand": [6, 9], "plai": 6, "center_on": 6, "assur": [6, 9], "run_ord": 6, "season_first": 6, "holiday_param": [6, 9], "trend_method": 6, "local_linear": 6, "dv": 6, "reintroduction_model": 6, "reintroducion": 6, "built": 6, "force_int": 6, "ceil": 6, "floor": 6, "decomp_typ": 6, "stl": 6, "seaonal": 6, "seaonsal": 6, "hilbert": 6, "method_arg": 6, "wiener": 6, "savgol_filt": 6, "butter": 6, "cheby1": 6, "cheby2": 6, "ellip": 6, "bessel": 6, "oh": 6, "nice": 6, "ash": 6, "my": 6, "tomato": 6, "pippin": 6, "lm": 6, "tt": 6, "yy": 6, "amp": 6, "omega": 6, "fitfunc": 6, "unsym": 6, "question": 6, "16716302": 6, "sine": 6, "curv": 6, "pylab": 6, "deviat": [6, 9], "revert": 6, "theta_valu": 6, "reconstruct": 6, "halflif": 6, "23199796": 6, "condens": 6, "context_slic": 6, "halfmax": 6, "forecastlength": 6, "twice": 6, "daubechi": 6, "db2": 6, "cosin": 6, "wave": 6, "envelop": 6, "haar": 6, "mexican": 6, "hat": 6, "ricker": 6, "complex": [6, 7], "max_ord": 6, "phase_shift": 6, "anchor": 6, "choic": [6, 9], "unit": [6, 9], "apart": 6, "7734": 6, "float32": 6, "n_record": 6, "num_column": 6, "num_indic": 6, "braycurti": 6, "start_index": 6, "include_last": 6, "indici": 6, "include_differ": 6, "window_shap": 6, "writeabl": 6, "neighbourhood": 6, "gist": 6, "seberg": 6, "3866040": 6, "newer": 6, "toggl": 6, "__version__": 6, "skip_siz": 6, "downsampl": 6, "num": 6, "window_length": 6, "70296498": 6, "numba": 6, "70304475": 6, "1234": 6, "1step": 6, "num_ob": 6, "stride": 6, "trick": 6, "lib": [6, 9], "stride_trick": 6, "rapidli": 7, "deploi": 7, "m6": 7, "competit": 7, "deliv": 7, "invest": 7, "market": 7, "dozen": 7, "usabl": [7, 9], "These": [7, 9], "addition": [7, 9], "proprietari": 7, "readili": 7, "ten": 7, "hundr": 7, "thousand": [7, 9], "exogen": 7, "integr": 7, "automl": 7, "flagship": 7, "abil": [7, 9], "flowchart": 7, "additon": 7, "advis": 7, "come": [7, 9], "ideal": [7, 9], "_hourli": [7, 9], "_monthli": 7, "_weekli": [7, 9], "_yearli": [7, 9], "_live_daili": 7, "fast_parallel": 7, "2019": [7, 9], "forecasts_df": [7, 9], "forecasts_up": 7, "forecasts_low": 7, "particular": [7, 9], "extended_tutori": 7, "md": 7, "guid": 7, "production_exampl": [7, 9], "predefin": 7, "pretti": [7, 9], "environ": [7, 9], "toward": [7, 9], "prioriti": 7, "ram": 7, "instanc": 7, "pretrain": 7, "crtl": 7, "recov": 7, "udf": 7, "obvious": [7, 9], "2x": 7, "3x": 7, "5x": 7, "no_shared_fast": 7, "decreas": 7, "poorer": 7, "satisfactori": [7, 9], "shortag": 7, "pleas": 7, "report": 7, "significantli": 7, "bla": [7, 9], "feedback": 7, "feel": 7, "favorit": 7, "codebas": 7, "td": 7, "Into": 7, "cat": 7, "henc": 7, "logo": 7, "subpackag": 8, "modul": 8, "_daili": 9, "autot": 9, "df_long": 9, "transact": 9, "altern": 9, "coerc": 9, "handi": 9, "side": 9, "oldest": 9, "advantag": 9, "interg": 9, "troubl": 9, "sudden": 9, "overs": 9, "misrepres": 9, "promot": 9, "critic": 9, "discontinu": 9, "tricki": 9, "necess": 9, "leakag": 9, "firstli": 9, "resembl": 9, "enough": 9, "taken": 9, "valdat": 9, "june": 9, "messi": 9, "act": 9, "treat": 9, "suspect": 9, "fairli": 9, "whole": 9, "idea": 9, "suffer": 9, "interst": 9, "94": 9, "minneapoli": 9, "paul": 9, "minnesota": 9, "great": 9, "demonstr": 9, "road": 9, "influenc": 9, "alongsid": 9, "volum": 9, "carri": 9, "care": 9, "weights_hourli": 9, "traffic_volum": 9, "49": 9, "168": 9, "lieu": 9, "upper_forecasts_df": 9, "lower_forecasts_df": 9, "By": 9, "impract": 9, "engin": 9, "simplic": 9, "fault": 9, "switch": 9, "evolv": 9, "develop": 9, "example_filenam": 9, "example_export": 9, "deeper": 9, "subsidiari": 9, "df_forecast": 9, "future_regressor_train2d": 9, "future_regressor_forecast2d": 9, "consider": 9, "overfit": 9, "secondli": 9, "composit": 9, "balanc": 9, "qualiti": 9, "favor": 9, "translat": 9, "symmetr": 9, "versatil": 9, "human": 9, "coverage_fract": 9, "logarithm": 9, "hiearchial": 9, "went": 9, "wavi": 9, "seriou": 9, "someth": 9, "score_breakdown": 9, "skew": 9, "pyplot": 9, "plt": 9, "2018": 9, "09": 9, "26": 9, "mosaic_df": 9, "situat": 9, "tradition": 9, "problem": 9, "exagger": 9, "unfortun": 9, "inher": 9, "sub": 9, "reassign": 9, "drive": 9, "label": 9, "recogniz": 9, "usal": 9, "splice": 9, "latter": 9, "depth": 9, "happen": 9, "no_shar": 9, "possbl": 9, "horizontal_gener": 9, "enembl": 9, "extens": 9, "theoret": 9, "studio": 9, "apt": 9, "yum": 9, "sudo": 9, "openbla": 9, "show_config": 9, "doubl": 9, "haven": 9, "broken": 9, "slide": 9, "poissonreg": 9, "squared_error": 9, "histgradientboostingregressor": 9, "uecm": 9, "uniform_filter1d": 9, "stat": 9, "spatial": 9, "Of": 9, "tend": 9, "cu91": 9, "cu101mkl": 9, "lightgbm": 9, "xgboost": 9, "bring": 9, "venv": 9, "anaconda": 9, "miniforg": 9, "numexpr": 9, "bottleneck": 9, "action": 9, "pystan": 9, "forg": 9, "dep": 9, "ext": 9, "pmdarima": 9, "dill": 9, "upgrad": 9, "pointlessli": 9, "mamba": 9, "tqdm": 9, "intelex": 9, "spyder": 9, "torchvis": 9, "torchaudio": 9, "cpuonli": 9, "gpu": 9, "cuda": 9, "mix": 9, "session": 9, "nvidia": 9, "smi": 9, "cudatoolkit": 9, "cudnn": 9, "nccl": 9, "ld_library_path": 9, "conda_prefix": 9, "perman": 9, "bashrc": 9, "env": 9, "mine": 9, "home": 9, "mambaforg": 9, "torch": 9, "url": 9, "whl": 9, "cu113": 9, "cu112": 9, "command": 9, "interchang": 9, "env_nam": 9, "softwar": 9, "oneapi": 9, "ai": 9, "toolkit": 9, "aikit37": 9, "aikit": 9, "modin": 9, "dpctl": 9, "config": 9, "omp_num_thread": 9, "use_daal4py_sklearn": 9, "bench": 9, "hang": 9, "clear": 9, "overload": 9, "consumpt": 9, "acceler": 9, "persist": 9, "discuss": 9, "reboot": 9, "heavi": 9, "odd": 9, "shouldn": 9, "greatli": 9, "proper": 9, "future_": 9, "certaini": 9, "Such": 9, "plan": 9, "organ": 9, "inorgan": 9, "busi": 9, "anticp": 9, "describ": 9, "hand": 9, "confusingli": 9, "why": 9, "harm": 9, "experi": 9, "scenario": 9, "examin": 9, "enforc": 9, "future_regressor_forecast_2": 9, "prediction_2": 9, "forecasts_df_2": 9, "respons": 9, "multilabel_confusion_matrix": 9, "classification_report": 9, "df_full": 9, "historic_lower_limit": 9, "risk_df_upp": 9, "risk_df_low": 9, "historic_upper_risk_df": 9, "historic_lower_risk_df": 9, "eval_low": 9, "eval_upp": 9, "pred_low": 9, "pred_upp": 9, "zero_divis": 9, "target_nam": 9, "effectiv": 9, "far": 9, "tighter": 9, "extrem": 9, "portion": 9, "analyz": 9, "pick": 9, "anti": 9, "signific": 9, "wiki_pag": 9, "mod": 9, "ll": 9, "full_dat": 9, "date_rang": 9, "2014": 9, "prophet_holidai": 9, "familiar": 9, "manuali": 9, "clarifi": 9, "text": 9, "editor": 9, "guarante": 9, "incorpor": 9, "crude": 9, "meaning": 9, "properli": 9, "coercibl": 9, "unconnect": 9, "transformer_dict": 9, "tran": 9, "df_tran": 9, "df_inv_return": 9, "tradit": 9, "draw": 9, "pool": 9, "massiv": 9, "global": 9, "pars": 9, "gradientboostingregressor": 9, "experiment": 9, "lapack": 9, "nyi": 9, "_": 9}, "objects": {"": [[1, 0, 0, "-", "autots"]], "autots": [[1, 1, 1, "", "AnomalyDetector"], [1, 1, 1, "", "AutoTS"], [1, 1, 1, "", "Cassandra"], [1, 1, 1, "", "EventRiskForecast"], [1, 1, 1, "", "GeneralTransformer"], [1, 1, 1, "", "HolidayDetector"], [1, 1, 1, "", "ModelPrediction"], [1, 4, 1, "", "RandomTransform"], [1, 3, 1, "", "TransformTS"], [1, 4, 1, "", "create_lagged_regressor"], [1, 4, 1, "", "create_regressor"], [2, 0, 0, "-", "datasets"], [3, 0, 0, "-", "evaluator"], [1, 4, 1, "", "infer_frequency"], [1, 4, 1, "", "load_artificial"], [1, 4, 1, "", "load_daily"], [1, 4, 1, "", "load_hourly"], [1, 4, 1, "", "load_linear"], [1, 4, 1, "", "load_live_daily"], [1, 4, 1, "", "load_monthly"], [1, 4, 1, "", "load_sine"], [1, 4, 1, "", "load_weekdays"], [1, 4, 1, "", "load_weekly"], [1, 4, 1, "", "load_yearly"], [1, 4, 1, "", "long_to_wide"], [1, 4, 1, "", "model_forecast"], [4, 0, 0, "-", "models"], [5, 0, 0, "-", "templates"], [6, 0, 0, "-", "tools"]], "autots.AnomalyDetector": [[1, 2, 1, "", "detect"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_anomaly_classifier"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "plot"], [1, 2, 1, "", "score_to_anomaly"]], "autots.AutoTS": [[1, 2, 1, "", "back_forecast"], [1, 3, 1, "", "best_model"], [1, 3, 1, "", "best_model_ensemble"], [1, 3, 1, "", "best_model_name"], [1, 3, 1, "", "best_model_params"], [1, 2, 1, "", "best_model_per_series_mape"], [1, 2, 1, "", "best_model_per_series_score"], [1, 3, 1, "", "best_model_transformation_params"], [1, 2, 1, "", "create_unpredictability_score"], [1, 3, 1, "", "df_wide_numeric"], [1, 2, 1, "", "diagnose_params"], [1, 2, 1, "", "expand_horizontal"], [1, 2, 1, "", "export_best_model"], [1, 2, 1, "", "export_template"], [1, 2, 1, "", "failure_rate"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_data"], [1, 2, 1, "", "get_metric_corr"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "get_params_from_id"], [1, 2, 1, "", "get_top_n_counts"], [1, 2, 1, "", "horizontal_per_generation"], [1, 2, 1, "", "horizontal_to_df"], [1, 2, 1, "", "import_best_model"], [1, 2, 1, "", "import_results"], [1, 2, 1, "", "import_template"], [1, 2, 1, "", "list_failed_model_types"], [1, 2, 1, "", "load_template"], [1, 2, 1, "", "mosaic_to_df"], [1, 2, 1, "", "parse_best_model"], [1, 2, 1, "", "plot_back_forecast"], [1, 2, 1, "", "plot_backforecast"], [1, 2, 1, "", "plot_chosen_transformer"], [1, 2, 1, "", "plot_failure_rate"], [1, 2, 1, "", "plot_generation_loss"], [1, 2, 1, "", "plot_horizontal"], [1, 2, 1, "", "plot_horizontal_model_count"], [1, 2, 1, "", "plot_horizontal_per_generation"], [1, 2, 1, "", "plot_horizontal_transformers"], [1, 2, 1, "", "plot_metric_corr"], [1, 2, 1, "", "plot_model_failure_rate"], [1, 2, 1, "", "plot_mosaic"], [1, 2, 1, "", "plot_per_series_error"], [1, 2, 1, "", "plot_per_series_mape"], [1, 2, 1, "", "plot_per_series_smape"], [1, 2, 1, "", "plot_series_corr"], [1, 2, 1, "", "plot_transformer_by_class"], [1, 2, 1, "", "plot_transformer_failure_rate"], [1, 2, 1, "", "plot_unpredictability"], [1, 2, 1, "", "plot_validations"], [1, 2, 1, "", "predict"], [1, 3, 1, "", "regression_check"], [1, 2, 1, "", "results"], [1, 2, 1, "", "retrieve_validation_forecasts"], [1, 2, 1, "", "save_template"], [1, 3, 1, "", "score_per_series"], [1, 2, 1, "", "validation_agg"]], "autots.AutoTS.initial_results": [[1, 3, 1, "", "model_results"]], "autots.Cassandra..anomaly_detector": [[1, 3, 1, "", "anomalies"], [1, 3, 1, "", "scores"]], "autots.Cassandra.": [[1, 3, 1, "", "holiday_count"], [1, 3, 1, "", "holidays"], [1, 3, 1, "", "params"], [1, 3, 1, "", "predict_x_array"], [1, 3, 1, "", "predicted_trend"], [1, 3, 1, "", "trend_train"], [1, 3, 1, "", "x_array"]], "autots.Cassandra": [[1, 2, 1, "", "analyze_trend"], [1, 2, 1, "", "auto_fit"], [1, 2, 1, "", "base_scaler"], [1, 2, 1, "", "compare_actual_components"], [1, 2, 1, "", "create_forecast_index"], [1, 2, 1, "", "create_t"], [1, 2, 1, "", "cross_validate"], [1, 2, 1, "", "feature_importance"], [1, 2, 1, "id0", "fit"], [1, 2, 1, "", "fit_data"], [1, 2, 1, "id1", "get_new_params"], [1, 2, 1, "", "get_params"], [1, 2, 1, "", "next_fit"], [1, 2, 1, "id2", "plot_components"], [1, 2, 1, "id3", "plot_forecast"], [1, 2, 1, "", "plot_things"], [1, 2, 1, "id4", "plot_trend"], [1, 2, 1, "id5", "predict"], [1, 2, 1, "", "predict_new_product"], [1, 2, 1, "", "process_components"], [1, 2, 1, "id6", "return_components"], [1, 2, 1, "", "rolling_trend"], [1, 2, 1, "", "scale_data"], [1, 2, 1, "", "to_origin_space"], [1, 2, 1, "", "treatment_causal_impact"], [1, 2, 1, "", "trend_analysis"]], "autots.Cassandra.holiday_detector": [[1, 2, 1, "", "dates_to_holidays"]], "autots.EventRiskForecast": [[1, 2, 1, "id9", "fit"], [1, 2, 1, "id10", "generate_historic_risk_array"], [1, 2, 1, "id11", "generate_result_windows"], [1, 2, 1, "id12", "generate_risk_array"], [1, 2, 1, "id13", "plot"], [1, 2, 1, "", "plot_eval"], [1, 2, 1, "id14", "predict"], [1, 2, 1, "id15", "predict_historic"], [1, 2, 1, "id16", "set_limit"]], "autots.GeneralTransformer": [[1, 2, 1, "", "fill_na"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_transform"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "inverse_transform"], [1, 2, 1, "", "retrieve_transformer"], [1, 2, 1, "", "transform"]], "autots.HolidayDetector": [[1, 2, 1, "", "dates_to_holidays"], [1, 2, 1, "", "detect"], [1, 2, 1, "", "fit"], [1, 2, 1, "", "get_new_params"], [1, 2, 1, "", "plot"], [1, 2, 1, "", "plot_anomaly"]], "autots.ModelPrediction": [[1, 2, 1, "", "fit"], [1, 2, 1, "", "fit_data"], [1, 2, 1, "", "fit_predict"], [1, 2, 1, "", "predict"]], "autots.datasets": [[2, 0, 0, "-", "fred"], [2, 4, 1, "", "load_artificial"], [2, 4, 1, "", "load_daily"], [2, 4, 1, "", "load_hourly"], [2, 4, 1, "", "load_linear"], [2, 4, 1, "", "load_live_daily"], [2, 4, 1, "", "load_monthly"], [2, 4, 1, "", "load_sine"], [2, 4, 1, "", "load_weekdays"], [2, 4, 1, "", "load_weekly"], [2, 4, 1, "", "load_yearly"], [2, 4, 1, "", "load_zeroes"]], "autots.datasets.fred": [[2, 4, 1, "", "get_fred_data"]], "autots.evaluator": [[3, 0, 0, "-", "anomaly_detector"], [3, 0, 0, "-", "auto_model"], [3, 0, 0, "-", "auto_ts"], [3, 0, 0, "-", "benchmark"], [3, 0, 0, "-", "event_forecasting"], [3, 0, 0, "-", "metrics"], [3, 0, 0, "-", "validation"]], "autots.evaluator.anomaly_detector": [[3, 1, 1, "", "AnomalyDetector"], [3, 1, 1, "", "HolidayDetector"]], "autots.evaluator.anomaly_detector.AnomalyDetector": [[3, 2, 1, "", "detect"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "fit_anomaly_classifier"], [3, 2, 1, "", "get_new_params"], [3, 2, 1, "", "plot"], [3, 2, 1, "", "score_to_anomaly"]], "autots.evaluator.anomaly_detector.HolidayDetector": [[3, 2, 1, "", "dates_to_holidays"], [3, 2, 1, "", "detect"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "get_new_params"], [3, 2, 1, "", "plot"], [3, 2, 1, "", "plot_anomaly"]], "autots.evaluator.auto_model": [[3, 4, 1, "", "ModelMonster"], [3, 1, 1, "", "ModelPrediction"], [3, 4, 1, "", "NewGeneticTemplate"], [3, 4, 1, "", "RandomTemplate"], [3, 1, 1, "", "TemplateEvalObject"], [3, 4, 1, "", "TemplateWizard"], [3, 4, 1, "", "UniqueTemplates"], [3, 4, 1, "", "back_forecast"], [3, 4, 1, "", "create_model_id"], [3, 4, 1, "", "dict_recombination"], [3, 4, 1, "", "generate_score"], [3, 4, 1, "", "generate_score_per_series"], [3, 4, 1, "", "horizontal_template_to_model_list"], [3, 4, 1, "", "model_forecast"], [3, 4, 1, "", "random_model"], [3, 4, 1, "", "remove_leading_zeros"], [3, 4, 1, "", "trans_dict_recomb"], [3, 4, 1, "", "unpack_ensemble_models"], [3, 4, 1, "", "validation_aggregation"]], "autots.evaluator.auto_model.ModelPrediction": [[3, 2, 1, "", "fit"], [3, 2, 1, "", "fit_data"], [3, 2, 1, "", "fit_predict"], [3, 2, 1, "", "predict"]], "autots.evaluator.auto_model.TemplateEvalObject": [[3, 2, 1, "", "concat"], [3, 3, 1, "", "full_mae_errors"], [3, 3, 1, "", "full_mae_ids"], [3, 2, 1, "", "load"], [3, 2, 1, "", "save"]], "autots.evaluator.auto_ts": [[3, 1, 1, "", "AutoTS"], [3, 4, 1, "", "error_correlations"], [3, 4, 1, "", "fake_regressor"]], "autots.evaluator.auto_ts.AutoTS": [[3, 2, 1, "", "back_forecast"], [3, 3, 1, "", "best_model"], [3, 3, 1, "", "best_model_ensemble"], [3, 3, 1, "", "best_model_name"], [3, 3, 1, "", "best_model_params"], [3, 2, 1, "", "best_model_per_series_mape"], [3, 2, 1, "", "best_model_per_series_score"], [3, 3, 1, "", "best_model_transformation_params"], [3, 2, 1, "", "create_unpredictability_score"], [3, 3, 1, "", "df_wide_numeric"], [3, 2, 1, "", "diagnose_params"], [3, 2, 1, "", "expand_horizontal"], [3, 2, 1, "", "export_best_model"], [3, 2, 1, "", "export_template"], [3, 2, 1, "", "failure_rate"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "fit_data"], [3, 2, 1, "", "get_metric_corr"], [3, 2, 1, "", "get_new_params"], [3, 2, 1, "", "get_params_from_id"], [3, 2, 1, "", "get_top_n_counts"], [3, 2, 1, "", "horizontal_per_generation"], [3, 2, 1, "", "horizontal_to_df"], [3, 2, 1, "", "import_best_model"], [3, 2, 1, "", "import_results"], [3, 2, 1, "", "import_template"], [3, 2, 1, "", "list_failed_model_types"], [3, 2, 1, "", "load_template"], [3, 2, 1, "", "mosaic_to_df"], [3, 2, 1, "", "parse_best_model"], [3, 2, 1, "", "plot_back_forecast"], [3, 2, 1, "", "plot_backforecast"], [3, 2, 1, "", "plot_chosen_transformer"], [3, 2, 1, "", "plot_failure_rate"], [3, 2, 1, "", "plot_generation_loss"], [3, 2, 1, "", "plot_horizontal"], [3, 2, 1, "", "plot_horizontal_model_count"], [3, 2, 1, "", "plot_horizontal_per_generation"], [3, 2, 1, "", "plot_horizontal_transformers"], [3, 2, 1, "", "plot_metric_corr"], [3, 2, 1, "", "plot_model_failure_rate"], [3, 2, 1, "", "plot_mosaic"], [3, 2, 1, "", "plot_per_series_error"], [3, 2, 1, "", "plot_per_series_mape"], [3, 2, 1, "", "plot_per_series_smape"], [3, 2, 1, "", "plot_series_corr"], [3, 2, 1, "", "plot_transformer_by_class"], [3, 2, 1, "", "plot_transformer_failure_rate"], [3, 2, 1, "", "plot_unpredictability"], [3, 2, 1, "", "plot_validations"], [3, 2, 1, "", "predict"], [3, 3, 1, "", "regression_check"], [3, 2, 1, "", "results"], [3, 2, 1, "", "retrieve_validation_forecasts"], [3, 2, 1, "", "save_template"], [3, 3, 1, "", "score_per_series"], [3, 2, 1, "", "validation_agg"]], "autots.evaluator.auto_ts.AutoTS.initial_results": [[3, 3, 1, "", "model_results"]], "autots.evaluator.benchmark": [[3, 1, 1, "", "Benchmark"]], "autots.evaluator.benchmark.Benchmark": [[3, 2, 1, "", "run"]], "autots.evaluator.event_forecasting": [[3, 1, 1, "", "EventRiskForecast"], [3, 4, 1, "", "extract_result_windows"], [3, 4, 1, "", "extract_window_index"], [3, 4, 1, "", "set_limit_forecast"], [3, 4, 1, "", "set_limit_forecast_historic"]], "autots.evaluator.event_forecasting.EventRiskForecast": [[3, 2, 1, "id0", "fit"], [3, 2, 1, "id7", "generate_historic_risk_array"], [3, 2, 1, "id8", "generate_result_windows"], [3, 2, 1, "id9", "generate_risk_array"], [3, 2, 1, "id10", "plot"], [3, 2, 1, "", "plot_eval"], [3, 2, 1, "id11", "predict"], [3, 2, 1, "id12", "predict_historic"], [3, 2, 1, "id13", "set_limit"]], "autots.evaluator.metrics": [[3, 4, 1, "", "array_last_val"], [3, 4, 1, "", "chi_squared_hist_distribution_loss"], [3, 4, 1, "", "containment"], [3, 4, 1, "", "contour"], [3, 4, 1, "", "default_scaler"], [3, 4, 1, "", "dwae"], [3, 4, 1, "", "full_metric_evaluation"], [3, 4, 1, "", "kde"], [3, 4, 1, "", "kde_kl_distance"], [3, 4, 1, "", "kl_divergence"], [3, 4, 1, "", "linearity"], [3, 4, 1, "", "mae"], [3, 4, 1, "", "mda"], [3, 4, 1, "", "mean_absolute_differential_error"], [3, 4, 1, "", "mean_absolute_error"], [3, 4, 1, "", "medae"], [3, 4, 1, "", "median_absolute_error"], [3, 4, 1, "", "mlvb"], [3, 4, 1, "", "mqae"], [3, 4, 1, "", "msle"], [3, 4, 1, "", "numpy_ffill"], [3, 4, 1, "", "oda"], [3, 4, 1, "", "pinball_loss"], [3, 4, 1, "", "precomp_wasserstein"], [3, 4, 1, "", "qae"], [3, 4, 1, "", "rmse"], [3, 4, 1, "", "root_mean_square_error"], [3, 4, 1, "", "rps"], [3, 4, 1, "", "scaled_pinball_loss"], [3, 4, 1, "", "smape"], [3, 4, 1, "", "smoothness"], [3, 4, 1, "", "spl"], [3, 4, 1, "", "symmetric_mean_absolute_percentage_error"], [3, 4, 1, "", "threshold_loss"], [3, 4, 1, "", "unsorted_wasserstein"], [3, 4, 1, "", "wasserstein"]], "autots.evaluator.validation": [[3, 4, 1, "", "extract_seasonal_val_periods"], [3, 4, 1, "", "generate_validation_indices"], [3, 4, 1, "", "validate_num_validations"]], "autots.models": [[4, 0, 0, "-", "arch"], [4, 0, 0, "-", "base"], [4, 0, 0, "-", "basics"], [4, 0, 0, "-", "cassandra"], [4, 0, 0, "-", "dnn"], [4, 0, 0, "-", "ensemble"], [4, 0, 0, "-", "gluonts"], [4, 0, 0, "-", "greykite"], [4, 0, 0, "-", "matrix_var"], [4, 0, 0, "-", "mlensemble"], [4, 0, 0, "-", "model_list"], [4, 0, 0, "-", "neural_forecast"], [4, 0, 0, "-", "prophet"], [4, 0, 0, "-", "pytorch"], [4, 0, 0, "-", "sklearn"], [4, 0, 0, "-", "statsmodels"], [4, 0, 0, "-", "tfp"], [4, 0, 0, "-", "tide"]], "autots.models.arch": [[4, 1, 1, "", "ARCH"]], "autots.models.arch.ARCH": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.base": [[4, 1, 1, "", "ModelObject"], [4, 1, 1, "", "PredictionObject"], [4, 4, 1, "", "apply_constraints"], [4, 4, 1, "", "calculate_peak_density"], [4, 4, 1, "", "create_forecast_index"], [4, 4, 1, "", "create_seaborn_palette_from_cmap"], [4, 4, 1, "", "extract_single_series_from_horz"], [4, 4, 1, "", "extract_single_transformer"], [4, 4, 1, "", "plot_distributions"]], "autots.models.base.ModelObject": [[4, 2, 1, "", "basic_profile"], [4, 2, 1, "", "create_forecast_index"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "time"]], "autots.models.base.PredictionObject": [[4, 2, 1, "id0", "apply_constraints"], [4, 2, 1, "id1", "evaluate"], [4, 2, 1, "", "extract_ensemble_runtimes"], [4, 3, 1, "", "forecast"], [4, 2, 1, "id2", "long_form_results"], [4, 3, 1, "", "lower_forecast"], [4, 3, 1, "", "model_name"], [4, 3, 1, "", "model_parameters"], [4, 2, 1, "id3", "plot"], [4, 2, 1, "", "plot_df"], [4, 2, 1, "", "plot_ensemble_runtimes"], [4, 2, 1, "", "plot_grid"], [4, 2, 1, "id4", "total_runtime"], [4, 3, 1, "", "transformation_parameters"], [4, 3, 1, "", "upper_forecast"]], "autots.models.basics": [[4, 1, 1, "", "AverageValueNaive"], [4, 1, 1, "", "BallTreeMultivariateMotif"], [4, 1, 1, "", "BallTreeRegressionMotif"], [4, 1, 1, "", "BasicLinearModel"], [4, 1, 1, "", "ConstantNaive"], [4, 1, 1, "", "FFT"], [4, 1, 1, "", "KalmanStateSpace"], [4, 1, 1, "", "LastValueNaive"], [4, 1, 1, "", "MetricMotif"], [4, 1, 1, "", "Motif"], [4, 1, 1, "", "MotifSimulation"], [4, 1, 1, "", "NVAR"], [4, 1, 1, "", "SeasonalNaive"], [4, 1, 1, "", "SeasonalityMotif"], [4, 1, 1, "", "SectionalMotif"], [4, 1, 1, "", "TVVAR"], [4, 3, 1, "", "ZeroesNaive"], [4, 4, 1, "", "looped_motif"], [4, 4, 1, "", "predict_reservoir"]], "autots.models.basics.AverageValueNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.BallTreeMultivariateMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.BallTreeRegressionMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.BasicLinearModel": [[4, 2, 1, "", "base_scaler"], [4, 2, 1, "", "coefficient_summary"], [4, 2, 1, "", "create_x"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "process_components"], [4, 2, 1, "", "return_components"], [4, 2, 1, "", "scale_data"], [4, 2, 1, "", "to_origin_space"]], "autots.models.basics.ConstantNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.FFT": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.KalmanStateSpace": [[4, 2, 1, "", "cost_function"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "tune_observational_noise"]], "autots.models.basics.LastValueNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.MetricMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.Motif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.MotifSimulation": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.NVAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.SeasonalNaive": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.SeasonalityMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.SectionalMotif": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.basics.TVVAR": [[4, 2, 1, "", "apply_beta_threshold"], [4, 2, 1, "", "create_VAR_features"], [4, 2, 1, "", "empty_scaler"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "process_components"]], "autots.models.cassandra": [[4, 1, 1, "", "BayesianMultiOutputRegression"], [4, 1, 1, "", "Cassandra"], [4, 4, 1, "", "clean_regressor"], [4, 4, 1, "", "cost_function_dwae"], [4, 4, 1, "", "cost_function_l1"], [4, 4, 1, "", "cost_function_l1_positive"], [4, 4, 1, "", "cost_function_l2"], [4, 4, 1, "", "cost_function_quantile"], [4, 4, 1, "", "create_t"], [4, 4, 1, "", "fit_linear_model"], [4, 4, 1, "", "lstsq_minimize"], [4, 4, 1, "", "lstsq_solve"]], "autots.models.cassandra.BayesianMultiOutputRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "sample_posterior"]], "autots.models.cassandra.Cassandra..anomaly_detector": [[4, 3, 1, "", "anomalies"], [4, 3, 1, "", "scores"]], "autots.models.cassandra.Cassandra.": [[4, 3, 1, "", "holiday_count"], [4, 3, 1, "", "holidays"], [4, 3, 1, "", "params"], [4, 3, 1, "", "predict_x_array"], [4, 3, 1, "", "predicted_trend"], [4, 3, 1, "", "trend_train"], [4, 3, 1, "", "x_array"]], "autots.models.cassandra.Cassandra": [[4, 2, 1, "", "analyze_trend"], [4, 2, 1, "", "auto_fit"], [4, 2, 1, "", "base_scaler"], [4, 2, 1, "", "compare_actual_components"], [4, 2, 1, "", "create_forecast_index"], [4, 2, 1, "", "create_t"], [4, 2, 1, "", "cross_validate"], [4, 2, 1, "", "feature_importance"], [4, 2, 1, "id5", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "id6", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "next_fit"], [4, 2, 1, "id7", "plot_components"], [4, 2, 1, "id8", "plot_forecast"], [4, 2, 1, "", "plot_things"], [4, 2, 1, "id9", "plot_trend"], [4, 2, 1, "id10", "predict"], [4, 2, 1, "", "predict_new_product"], [4, 2, 1, "", "process_components"], [4, 2, 1, "id11", "return_components"], [4, 2, 1, "", "rolling_trend"], [4, 2, 1, "", "scale_data"], [4, 2, 1, "", "to_origin_space"], [4, 2, 1, "", "treatment_causal_impact"], [4, 2, 1, "", "trend_analysis"]], "autots.models.cassandra.Cassandra.holiday_detector": [[4, 2, 1, "", "dates_to_holidays"]], "autots.models.dnn": [[4, 1, 1, "", "ElasticNetwork"], [4, 1, 1, "", "KerasRNN"], [4, 1, 1, "", "Transformer"], [4, 4, 1, "", "transformer_build_model"], [4, 4, 1, "", "transformer_encoder"]], "autots.models.dnn.ElasticNetwork": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.dnn.KerasRNN": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.dnn.Transformer": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.ensemble": [[4, 4, 1, "", "BestNEnsemble"], [4, 4, 1, "", "DistEnsemble"], [4, 4, 1, "", "EnsembleForecast"], [4, 4, 1, "", "EnsembleTemplateGenerator"], [4, 4, 1, "", "HDistEnsemble"], [4, 4, 1, "", "HorizontalEnsemble"], [4, 4, 1, "", "HorizontalTemplateGenerator"], [4, 4, 1, "", "MosaicEnsemble"], [4, 4, 1, "", "create_unpredictability_score"], [4, 4, 1, "", "find_pattern"], [4, 4, 1, "", "generalize_horizontal"], [4, 4, 1, "", "generate_crosshair_score"], [4, 4, 1, "", "generate_crosshair_score_list"], [4, 4, 1, "", "generate_mosaic_template"], [4, 4, 1, "", "horizontal_classifier"], [4, 4, 1, "", "horizontal_xy"], [4, 4, 1, "", "is_horizontal"], [4, 4, 1, "", "is_mosaic"], [4, 4, 1, "", "mlens_helper"], [4, 4, 1, "", "mosaic_classifier"], [4, 4, 1, "", "mosaic_or_horizontal"], [4, 4, 1, "", "mosaic_to_horizontal"], [4, 4, 1, "", "mosaic_xy"], [4, 4, 1, "", "n_limited_horz"], [4, 4, 1, "", "parse_forecast_length"], [4, 4, 1, "", "parse_horizontal"], [4, 4, 1, "", "parse_mosaic"], [4, 4, 1, "", "process_mosaic_arrays"]], "autots.models.gluonts": [[4, 1, 1, "", "GluonTS"]], "autots.models.gluonts.GluonTS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.greykite": [[4, 1, 1, "", "Greykite"], [4, 4, 1, "", "seek_the_oracle"]], "autots.models.greykite.Greykite": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var": [[4, 1, 1, "", "DMD"], [4, 1, 1, "", "LATC"], [4, 1, 1, "", "MAR"], [4, 1, 1, "", "RRVAR"], [4, 1, 1, "", "TMF"], [4, 4, 1, "", "conj_grad_w"], [4, 4, 1, "", "conj_grad_x"], [4, 4, 1, "", "dmd"], [4, 4, 1, "", "dmd4cast"], [4, 4, 1, "", "dmd_forecast"], [4, 4, 1, "", "ell_w"], [4, 4, 1, "", "ell_x"], [4, 4, 1, "", "generate_Psi"], [4, 4, 1, "", "latc_imputer"], [4, 4, 1, "", "latc_predictor"], [4, 4, 1, "", "mar"], [4, 4, 1, "", "mat2ten"], [4, 4, 1, "", "rrvar"], [4, 4, 1, "", "svt_tnn"], [4, 4, 1, "", "ten2mat"], [4, 4, 1, "", "tmf"], [4, 4, 1, "", "update_cg"], [4, 4, 1, "", "var"], [4, 4, 1, "", "var4cast"]], "autots.models.matrix_var.DMD": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.LATC": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.MAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.RRVAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.matrix_var.TMF": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.mlensemble": [[4, 1, 1, "", "MLEnsemble"], [4, 4, 1, "", "create_feature"]], "autots.models.mlensemble.MLEnsemble": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.model_list": [[4, 4, 1, "", "auto_model_list"], [4, 4, 1, "", "model_list_to_dict"]], "autots.models.neural_forecast": [[4, 1, 1, "", "NeuralForecast"]], "autots.models.neural_forecast.NeuralForecast": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.prophet": [[4, 1, 1, "", "FBProphet"], [4, 1, 1, "", "NeuralProphet"], [4, 4, 1, "", "get_changepoints"]], "autots.models.prophet.FBProphet": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.prophet.NeuralProphet": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.pytorch": [[4, 1, 1, "", "PytorchForecasting"]], "autots.models.pytorch.PytorchForecasting": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn": [[4, 1, 1, "", "ComponentAnalysis"], [4, 1, 1, "", "DatepartRegression"], [4, 1, 1, "", "MultivariateRegression"], [4, 1, 1, "", "PreprocessingRegression"], [4, 1, 1, "", "RandomFourierEncoding"], [4, 1, 1, "", "RollingRegression"], [4, 1, 1, "", "UnivariateRegression"], [4, 1, 1, "", "VectorizedMultiOutputGPR"], [4, 1, 1, "", "WindowRegression"], [4, 4, 1, "", "generate_classifier_params"], [4, 4, 1, "", "generate_regressor_params"], [4, 4, 1, "", "retrieve_classifier"], [4, 4, 1, "", "retrieve_regressor"], [4, 4, 1, "", "rolling_x_regressor"], [4, 4, 1, "", "rolling_x_regressor_regressor"]], "autots.models.sklearn.ComponentAnalysis": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.DatepartRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.MultivariateRegression": [[4, 2, 1, "", "base_scaler"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "scale_data"], [4, 2, 1, "", "to_origin_space"]], "autots.models.sklearn.PreprocessingRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.RandomFourierEncoding": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "transform"]], "autots.models.sklearn.RollingRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.UnivariateRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.sklearn.VectorizedMultiOutputGPR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"]], "autots.models.sklearn.WindowRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "fit_data"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels": [[4, 1, 1, "", "ARDL"], [4, 1, 1, "", "ARIMA"], [4, 1, 1, "", "DynamicFactor"], [4, 1, 1, "", "DynamicFactorMQ"], [4, 1, 1, "", "ETS"], [4, 1, 1, "", "GLM"], [4, 1, 1, "", "GLS"], [4, 1, 1, "", "Theta"], [4, 1, 1, "", "UnobservedComponents"], [4, 1, 1, "", "VAR"], [4, 1, 1, "", "VARMAX"], [4, 1, 1, "", "VECM"], [4, 4, 1, "", "arima_seek_the_oracle"], [4, 4, 1, "", "glm_forecast_by_column"]], "autots.models.statsmodels.ARDL": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.ARIMA": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.DynamicFactor": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.DynamicFactorMQ": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.ETS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.GLM": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.GLS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.Theta": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.UnobservedComponents": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.VAR": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.VARMAX": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.statsmodels.VECM": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tfp": [[4, 1, 1, "", "TFPRegression"], [4, 1, 1, "", "TFPRegressor"], [4, 1, 1, "", "TensorflowSTS"]], "autots.models.tfp.TFPRegression": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tfp.TFPRegressor": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "predict"]], "autots.models.tfp.TensorflowSTS": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tide": [[4, 1, 1, "", "TiDE"], [4, 1, 1, "", "TimeCovariates"], [4, 1, 1, "", "TimeSeriesdata"], [4, 4, 1, "", "get_HOLIDAYS"], [4, 4, 1, "", "mae_loss"], [4, 4, 1, "", "mape"], [4, 4, 1, "", "nrmse"], [4, 4, 1, "", "rmse"], [4, 4, 1, "", "smape"], [4, 4, 1, "", "wape"]], "autots.models.tide.TiDE": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "get_new_params"], [4, 2, 1, "", "get_params"], [4, 2, 1, "", "predict"]], "autots.models.tide.TimeCovariates": [[4, 2, 1, "", "get_covariates"]], "autots.models.tide.TimeSeriesdata": [[4, 2, 1, "", "test_val_gen"], [4, 2, 1, "", "tf_dataset"], [4, 2, 1, "", "train_gen"]], "autots.templates": [[5, 0, 0, "-", "general"]], "autots.templates.general": [[5, 5, 1, "", "general_template"]], "autots.tools": [[6, 0, 0, "-", "anomaly_utils"], [6, 0, 0, "-", "calendar"], [6, 0, 0, "-", "cointegration"], [6, 0, 0, "-", "constraint"], [6, 0, 0, "-", "cpu_count"], [6, 0, 0, "-", "fast_kalman"], [6, 0, 0, "-", "fft"], [6, 0, 0, "-", "fir_filter"], [6, 0, 0, "-", "hierarchial"], [6, 0, 0, "-", "holiday"], [6, 0, 0, "-", "impute"], [6, 0, 0, "-", "lunar"], [6, 0, 0, "-", "percentile"], [6, 0, 0, "-", "probabilistic"], [6, 0, 0, "-", "profile"], [6, 0, 0, "-", "regressor"], [6, 0, 0, "-", "seasonal"], [6, 0, 0, "-", "shaping"], [6, 0, 0, "-", "thresholding"], [6, 0, 0, "-", "transform"], [6, 0, 0, "-", "wavelet"], [6, 0, 0, "-", "window_functions"]], "autots.tools.anomaly_utils": [[6, 4, 1, "", "anomaly_df_to_holidays"], [6, 4, 1, "", "anomaly_new_params"], [6, 4, 1, "", "create_dates_df"], [6, 4, 1, "", "dates_to_holidays"], [6, 4, 1, "", "detect_anomalies"], [6, 4, 1, "", "gaussian_mixture"], [6, 4, 1, "", "holiday_new_params"], [6, 4, 1, "", "limits_to_anomalies"], [6, 4, 1, "", "loop_sk_outliers"], [6, 4, 1, "", "nonparametric_multivariate"], [6, 4, 1, "", "sk_outliers"], [6, 4, 1, "", "values_to_anomalies"], [6, 4, 1, "", "zscore_survival_function"]], "autots.tools.calendar": [[6, 4, 1, "", "gregorian_to_chinese"], [6, 4, 1, "", "gregorian_to_christian_lunar"], [6, 4, 1, "", "gregorian_to_hebrew"], [6, 4, 1, "", "gregorian_to_hindu"], [6, 4, 1, "", "gregorian_to_islamic"], [6, 4, 1, "", "heb_is_leap"], [6, 4, 1, "", "lunar_from_lunar"], [6, 4, 1, "", "lunar_from_lunar_full"], [6, 4, 1, "", "to_jd"]], "autots.tools.cointegration": [[6, 4, 1, "", "btcd_decompose"], [6, 4, 1, "", "coint_johansen"], [6, 4, 1, "", "fourier_series"], [6, 4, 1, "", "lagmat"]], "autots.tools.constraint": [[6, 4, 1, "", "apply_constraint_single"], [6, 4, 1, "", "apply_fit_constraint"], [6, 4, 1, "", "constant_growth_rate"], [6, 4, 1, "", "constraint_new_params"], [6, 4, 1, "", "fit_constraint"]], "autots.tools.cpu_count": [[6, 4, 1, "", "cpu_count"], [6, 4, 1, "", "set_n_jobs"]], "autots.tools.fast_kalman": [[6, 1, 1, "", "Gaussian"], [6, 1, 1, "", "KalmanFilter"], [6, 4, 1, "", "autoshape"], [6, 4, 1, "", "ddot"], [6, 4, 1, "", "ddot_t_right"], [6, 4, 1, "", "ddot_t_right_old"], [6, 4, 1, "", "dinv"], [6, 4, 1, "", "douter"], [6, 4, 1, "", "em_initial_state"], [6, 4, 1, "", "ensure_matrix"], [6, 4, 1, "", "ensure_stability"], [6, 4, 1, "", "holt_winters_damped_matrices"], [6, 4, 1, "", "new_kalman_params"], [6, 4, 1, "", "predict"], [6, 4, 1, "", "predict_observation"], [6, 4, 1, "", "priv_smooth"], [6, 4, 1, "", "priv_update_with_nan_check"], [6, 4, 1, "", "random_matrix"], [6, 4, 1, "", "random_state_space"], [6, 4, 1, "", "random_state_space_original"], [6, 4, 1, "", "smooth"], [6, 4, 1, "", "stable_pinv"], [6, 4, 1, "", "update"], [6, 4, 1, "", "update_with_nan_check"]], "autots.tools.fast_kalman.Gaussian": [[6, 2, 1, "", "empty"], [6, 2, 1, "", "unvectorize_state"], [6, 2, 1, "", "unvectorize_vars"]], "autots.tools.fast_kalman.KalmanFilter": [[6, 1, 1, "", "Result"], [6, 2, 1, "", "compute"], [6, 2, 1, "", "em"], [6, 2, 1, "", "em_observation_noise"], [6, 2, 1, "", "em_process_noise"], [6, 2, 1, "", "predict"], [6, 2, 1, "", "predict_next"], [6, 2, 1, "", "predict_observation"], [6, 2, 1, "", "smooth"], [6, 2, 1, "", "smooth_current"], [6, 2, 1, "", "update"]], "autots.tools.fft": [[6, 1, 1, "", "FFT"], [6, 4, 1, "", "fourier_extrapolation"]], "autots.tools.fft.FFT": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "generate_harmonics_dataframe"], [6, 2, 1, "", "predict"]], "autots.tools.fir_filter": [[6, 4, 1, "", "apply_fir_filter_time_domain"], [6, 4, 1, "", "apply_fir_filter_to_timeseries"], [6, 4, 1, "", "fft_fir_filter_to_timeseries"], [6, 4, 1, "", "generate_random_fir_params"]], "autots.tools.hierarchial": [[6, 1, 1, "", "hierarchial"]], "autots.tools.hierarchial.hierarchial": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "reconcile"], [6, 2, 1, "", "transform"]], "autots.tools.holiday": [[6, 4, 1, "", "holiday_flag"], [6, 4, 1, "", "query_holidays"]], "autots.tools.impute": [[6, 4, 1, "", "FillNA"], [6, 1, 1, "", "SeasonalityMotifImputer"], [6, 1, 1, "", "SimpleSeasonalityMotifImputer"], [6, 4, 1, "", "biased_ffill"], [6, 4, 1, "", "fake_date_fill"], [6, 4, 1, "", "fake_date_fill_old"], [6, 4, 1, "", "fill_forward"], [6, 4, 1, "", "fill_forward_alt"], [6, 4, 1, "", "fill_mean"], [6, 4, 1, "", "fill_mean_old"], [6, 4, 1, "", "fill_median"], [6, 4, 1, "", "fill_median_old"], [6, 4, 1, "", "fill_one"], [6, 4, 1, "", "fill_zero"], [6, 4, 1, "", "fillna_np"], [6, 4, 1, "", "rolling_mean"]], "autots.tools.impute.SeasonalityMotifImputer": [[6, 2, 1, "", "impute"]], "autots.tools.impute.SimpleSeasonalityMotifImputer": [[6, 2, 1, "", "impute"]], "autots.tools.lunar": [[6, 4, 1, "", "dcos"], [6, 4, 1, "", "dsin"], [6, 4, 1, "", "fixangle"], [6, 4, 1, "", "kepler"], [6, 4, 1, "", "moon_phase"], [6, 4, 1, "", "moon_phase_df"], [6, 4, 1, "", "phase_string"], [6, 4, 1, "", "todeg"], [6, 4, 1, "", "torad"]], "autots.tools.percentile": [[6, 4, 1, "", "nan_percentile"], [6, 4, 1, "", "nan_quantile"], [6, 4, 1, "", "trimmed_mean"]], "autots.tools.probabilistic": [[6, 4, 1, "", "Point_to_Probability"], [6, 4, 1, "", "Variable_Point_to_Probability"], [6, 4, 1, "", "historic_quantile"], [6, 4, 1, "", "inferred_normal"], [6, 4, 1, "", "percentileofscore_appliable"]], "autots.tools.profile": [[6, 4, 1, "", "data_profile"], [6, 4, 1, "", "profile_time_series"], [6, 4, 1, "", "summarize_series"]], "autots.tools.regressor": [[6, 4, 1, "", "create_lagged_regressor"], [6, 4, 1, "", "create_regressor"]], "autots.tools.seasonal": [[6, 4, 1, "", "changepoint_fcst_from_last_row"], [6, 4, 1, "", "create_changepoint_features"], [6, 4, 1, "", "create_datepart_components"], [6, 4, 1, "", "create_seasonality_feature"], [6, 4, 1, "", "date_part"], [6, 4, 1, "", "fourier_df"], [6, 4, 1, "", "fourier_series"], [6, 4, 1, "", "half_yr_spacing"], [6, 4, 1, "", "random_datepart"], [6, 4, 1, "", "seasonal_independent_match"], [6, 4, 1, "", "seasonal_int"], [6, 4, 1, "", "seasonal_repeating_wavelet"], [6, 4, 1, "", "seasonal_window_match"]], "autots.tools.shaping": [[6, 1, 1, "", "NumericTransformer"], [6, 4, 1, "", "clean_weights"], [6, 4, 1, "", "df_cleanup"], [6, 4, 1, "", "freq_to_timedelta"], [6, 4, 1, "", "infer_frequency"], [6, 4, 1, "", "long_to_wide"], [6, 4, 1, "", "simple_train_test_split"], [6, 4, 1, "", "split_digits_and_non_digits"], [6, 4, 1, "", "subset_series"], [6, 4, 1, "", "wide_to_3d"]], "autots.tools.shaping.NumericTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.thresholding": [[6, 1, 1, "", "NonparametricThreshold"], [6, 4, 1, "", "consecutive_groups"], [6, 4, 1, "", "nonparametric"]], "autots.tools.thresholding.NonparametricThreshold": [[6, 2, 1, "", "compare_to_epsilon"], [6, 2, 1, "", "find_epsilon"], [6, 2, 1, "", "prune_anoms"], [6, 2, 1, "", "score_anomalies"]], "autots.tools.transform": [[6, 1, 1, "", "AlignLastDiff"], [6, 1, 1, "", "AlignLastValue"], [6, 1, 1, "", "AnomalyRemoval"], [6, 1, 1, "", "BKBandpassFilter"], [6, 1, 1, "", "BTCD"], [6, 1, 1, "", "CenterLastValue"], [6, 1, 1, "", "CenterSplit"], [6, 1, 1, "", "ChangepointDetrend"], [6, 1, 1, "", "ClipOutliers"], [6, 1, 1, "", "Cointegration"], [6, 1, 1, "", "Constraint"], [6, 1, 1, "", "CumSumTransformer"], [6, 3, 1, "", "DatepartRegression"], [6, 1, 1, "", "DatepartRegressionTransformer"], [6, 1, 1, "", "Detrend"], [6, 1, 1, "", "DiffSmoother"], [6, 1, 1, "", "DifferencedTransformer"], [6, 1, 1, "", "Discretize"], [6, 1, 1, "", "EWMAFilter"], [6, 1, 1, "", "EmptyTransformer"], [6, 1, 1, "", "FFTDecomposition"], [6, 1, 1, "", "FFTFilter"], [6, 1, 1, "", "FIRFilter"], [6, 1, 1, "", "FastICA"], [6, 1, 1, "", "GeneralTransformer"], [6, 1, 1, "", "HPFilter"], [6, 1, 1, "", "HistoricValues"], [6, 1, 1, "", "HolidayTransformer"], [6, 1, 1, "", "IntermittentOccurrence"], [6, 1, 1, "", "KalmanSmoothing"], [6, 1, 1, "", "LevelShiftMagic"], [6, 3, 1, "", "LevelShiftTransformer"], [6, 1, 1, "", "LocalLinearTrend"], [6, 1, 1, "", "MeanDifference"], [6, 1, 1, "", "MeanPercentSplitter"], [6, 1, 1, "", "PCA"], [6, 1, 1, "", "PctChangeTransformer"], [6, 1, 1, "", "PositiveShift"], [6, 4, 1, "", "RandomTransform"], [6, 1, 1, "", "RegressionFilter"], [6, 1, 1, "", "ReplaceConstant"], [6, 1, 1, "", "RollingMeanTransformer"], [6, 1, 1, "", "Round"], [6, 1, 1, "", "STLFilter"], [6, 1, 1, "", "ScipyFilter"], [6, 1, 1, "", "SeasonalDifference"], [6, 1, 1, "", "ShiftFirstValue"], [6, 1, 1, "", "SinTrend"], [6, 1, 1, "", "Slice"], [6, 1, 1, "", "StandardScaler"], [6, 1, 1, "", "StatsmodelsFilter"], [6, 1, 1, "", "ThetaTransformer"], [6, 4, 1, "", "bkfilter_st"], [6, 4, 1, "", "clip_outliers"], [6, 4, 1, "", "exponential_decay"], [6, 4, 1, "", "get_transformer_params"], [6, 4, 1, "", "random_cleaners"], [6, 4, 1, "", "remove_outliers"], [6, 4, 1, "", "simple_context_slicer"], [6, 4, 1, "", "transformer_list_to_dict"]], "autots.tools.transform.AlignLastDiff": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.AlignLastValue": [[6, 2, 1, "", "find_centerpoint"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.AnomalyRemoval": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_anomaly_classifier"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "score_to_anomaly"], [6, 2, 1, "", "transform"]], "autots.tools.transform.BKBandpassFilter": [[6, 2, 1, "", "filter"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.BTCD": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.CenterLastValue": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.CenterSplit": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ChangepointDetrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ClipOutliers": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Cointegration": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Constraint": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.CumSumTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.DatepartRegressionTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "impute"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Detrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.DiffSmoother": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.DifferencedTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Discretize": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.EWMAFilter": [[6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.EmptyTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FFTDecomposition": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FFTFilter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FIRFilter": [[6, 2, 1, "", "filter"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.FastICA": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.GeneralTransformer": [[6, 2, 1, "", "fill_na"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "retrieve_transformer"], [6, 2, 1, "", "transform"]], "autots.tools.transform.HPFilter": [[6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.HistoricValues": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.HolidayTransformer": [[6, 2, 1, "", "dates_to_holidays"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.IntermittentOccurrence": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.KalmanSmoothing": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.LevelShiftMagic": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.LocalLinearTrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.MeanDifference": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.MeanPercentSplitter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.PCA": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.PctChangeTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.PositiveShift": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.RegressionFilter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ReplaceConstant": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.RollingMeanTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Round": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.STLFilter": [[6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ScipyFilter": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.SeasonalDifference": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ShiftFirstValue": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.SinTrend": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_sin"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.Slice": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.StandardScaler": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.StatsmodelsFilter": [[6, 2, 1, "", "bkfilter"], [6, 2, 1, "", "cffilter"], [6, 2, 1, "", "convolution_filter"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "transform"]], "autots.tools.transform.ThetaTransformer": [[6, 2, 1, "", "fit"], [6, 2, 1, "", "fit_transform"], [6, 2, 1, "", "get_new_params"], [6, 2, 1, "", "inverse_transform"], [6, 2, 1, "", "transform"]], "autots.tools.wavelet": [[6, 4, 1, "", "continuous_db2_wavelet"], [6, 4, 1, "", "create_daubechies_db2_wavelet"], [6, 4, 1, "", "create_gaussian_wavelet"], [6, 4, 1, "", "create_haar_wavelet"], [6, 4, 1, "", "create_mexican_hat_wavelet"], [6, 4, 1, "", "create_morlet_wavelet"], [6, 4, 1, "", "create_narrowing_wavelets"], [6, 4, 1, "", "create_real_morlet_wavelet"], [6, 4, 1, "", "create_wavelet"], [6, 4, 1, "", "offset_wavelet"]], "autots.tools.window_functions": [[6, 4, 1, "", "chunk_reshape"], [6, 4, 1, "", "last_window"], [6, 4, 1, "", "np_2d_arange"], [6, 4, 1, "", "retrieve_closest_indices"], [6, 4, 1, "", "rolling_window_view"], [6, 4, 1, "", "sliding_window_view"], [6, 4, 1, "", "window_id_maker"], [6, 4, 1, "", "window_lin_reg"], [6, 4, 1, "", "window_lin_reg_mean"], [6, 4, 1, "", "window_lin_reg_mean_no_nan"], [6, 4, 1, "", "window_maker"], [6, 4, 1, "", "window_maker_2"], [6, 4, 1, "", "window_maker_3"], [6, 4, 1, "", "window_sum_mean"], [6, 4, 1, "", "window_sum_mean_nan_tail"], [6, 4, 1, "", "window_sum_nan_mean"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "data", "Python data"]}, "titleterms": {"autot": [0, 1, 2, 3, 4, 5, 6, 7, 8], "instal": [0, 7, 9], "get": 0, "start": 0, "modul": [0, 1, 2, 3, 4, 5, 6], "api": 0, "indic": 0, "tabl": [0, 7, 9], "packag": [1, 2, 3, 4, 5, 6, 9], "subpackag": 1, "content": [1, 2, 3, 4, 5, 6, 7, 9], "dataset": 2, "submodul": [2, 3, 4, 5, 6], "fred": 2, "evalu": 3, "anomaly_detector": 3, "auto_model": 3, "auto_t": 3, "benchmark": [3, 9], "event_forecast": 3, "metric": [3, 9], "valid": [3, 9], "model": [4, 9], "arch": 4, "base": 4, "basic": [4, 7], "cassandra": 4, "dnn": 4, "ensembl": [4, 9], "gluont": 4, "greykit": 4, "matrix_var": 4, "mlensembl": 4, "model_list": 4, "neural_forecast": 4, "prophet": 4, "pytorch": 4, "sklearn": 4, "statsmodel": 4, "tfp": 4, "tide": 4, "templat": [5, 9], "gener": 5, "tool": 6, "anomaly_util": 6, "calendar": 6, "cointegr": 6, "constraint": 6, "cpu_count": 6, "fast_kalman": 6, "usag": 6, "exampl": [6, 9], "fft": 6, "fir_filt": 6, "hierarchi": [6, 9], "holidai": 6, "imput": 6, "lunar": 6, "percentil": 6, "probabilist": 6, "profil": 6, "regressor": [6, 9], "season": 6, "shape": 6, "threshold": 6, "transform": [6, 9], "wavelet": 6, "window_funct": 6, "intro": 7, "us": [7, 9], "tip": 7, "speed": [7, 9], "larg": 7, "data": [7, 9], "how": 7, "contribut": 7, "process": [7, 9], "tutori": 9, "extend": 9, "A": 9, "simpl": 9, "import": 9, "you": 9, "can": 9, "tailor": 9, "few": 9, "wai": 9, "what": 9, "worri": 9, "about": 9, "cross": 9, "anoth": 9, "list": 9, "deploy": 9, "export": 9, "run": 9, "just": 9, "One": 9, "group": 9, "forecast": 9, "depend": 9, "version": 9, "requir": 9, "option": 9, "safest": 9, "bet": 9, "intel": 9, "conda": 9, "channel": 9, "sometim": 9, "faster": 9, "also": 9, "more": 9, "prone": 9, "bug": 9, "caveat": 9, "advic": 9, "mysteri": 9, "crash": 9, "seri": 9, "id": 9, "realli": 9, "need": 9, "uniqu": 9, "column": 9, "name": 9, "all": 9, "wide": 9, "short": 9, "train": 9, "histori": 9, "ad": 9, "other": 9, "inform": 9, "simul": 9, "event": 9, "risk": 9, "anomali": 9, "detect": 9, "hack": 9, "pass": 9, "paramet": 9, "aren": 9, "t": 9, "otherwis": 9, "avail": 9, "categor": 9, "custom": 9, "unusu": 9, "frequenc": 9, "independ": 9, "note": 9, "regress": 9}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 60}, "alltitles": {"AutoTS": [[0, "autots"], [7, "autots"]], "Installation": [[0, "installation"], [7, "id1"]], "Getting Started": [[0, "getting-started"]], "Modules API": [[0, "modules-api"]], "Indices and tables": [[0, "indices-and-tables"]], "autots package": [[1, "autots-package"]], "Subpackages": [[1, "subpackages"]], "Module contents": [[1, "module-autots"], [2, "module-autots.datasets"], [3, "module-autots.evaluator"], [4, "module-autots.models"], [5, "module-autots.templates"], [6, "module-autots.tools"]], ")": [[1, "id19"], [2, "id3"]], "autots.datasets package": [[2, "autots-datasets-package"]], "Submodules": [[2, "submodules"], [3, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"]], "autots.datasets.fred module": [[2, "module-autots.datasets.fred"]], "autots.evaluator package": [[3, "autots-evaluator-package"]], "autots.evaluator.anomaly_detector module": [[3, "module-autots.evaluator.anomaly_detector"]], "autots.evaluator.auto_model module": [[3, "module-autots.evaluator.auto_model"]], "autots.evaluator.auto_ts module": [[3, "module-autots.evaluator.auto_ts"]], "autots.evaluator.benchmark module": [[3, "module-autots.evaluator.benchmark"]], "autots.evaluator.event_forecasting module": [[3, "module-autots.evaluator.event_forecasting"]], "autots.evaluator.metrics module": [[3, "module-autots.evaluator.metrics"]], "autots.evaluator.validation module": [[3, "module-autots.evaluator.validation"]], "autots.models package": [[4, "autots-models-package"]], "autots.models.arch module": [[4, "module-autots.models.arch"]], "autots.models.base module": [[4, "module-autots.models.base"]], "autots.models.basics module": [[4, "module-autots.models.basics"]], "autots.models.cassandra module": [[4, "module-autots.models.cassandra"]], "autots.models.dnn module": [[4, "module-autots.models.dnn"]], "autots.models.ensemble module": [[4, "module-autots.models.ensemble"]], "autots.models.gluonts module": [[4, "module-autots.models.gluonts"]], "autots.models.greykite module": [[4, "module-autots.models.greykite"]], "autots.models.matrix_var module": [[4, "module-autots.models.matrix_var"]], "autots.models.mlensemble module": [[4, "module-autots.models.mlensemble"]], "autots.models.model_list module": [[4, "module-autots.models.model_list"]], "autots.models.neural_forecast module": [[4, "module-autots.models.neural_forecast"]], "autots.models.prophet module": [[4, "module-autots.models.prophet"]], "autots.models.pytorch module": [[4, "module-autots.models.pytorch"]], "autots.models.sklearn module": [[4, "module-autots.models.sklearn"]], "autots.models.statsmodels module": [[4, "module-autots.models.statsmodels"]], "autots.models.tfp module": [[4, "module-autots.models.tfp"]], "autots.models.tide module": [[4, "module-autots.models.tide"]], "autots.templates package": [[5, "autots-templates-package"]], "autots.templates.general module": [[5, "module-autots.templates.general"]], "autots.tools package": [[6, "autots-tools-package"]], "autots.tools.anomaly_utils module": [[6, "module-autots.tools.anomaly_utils"]], "autots.tools.calendar module": [[6, "module-autots.tools.calendar"]], "autots.tools.cointegration module": [[6, "module-autots.tools.cointegration"]], "autots.tools.constraint module": [[6, "module-autots.tools.constraint"]], "autots.tools.cpu_count module": [[6, "module-autots.tools.cpu_count"]], "autots.tools.fast_kalman module": [[6, "module-autots.tools.fast_kalman"]], "Usage example": [[6, "usage-example"]], "autots.tools.fft module": [[6, "module-autots.tools.fft"]], "autots.tools.fir_filter module": [[6, "module-autots.tools.fir_filter"]], "autots.tools.hierarchial module": [[6, "module-autots.tools.hierarchial"]], "autots.tools.holiday module": [[6, "module-autots.tools.holiday"]], "autots.tools.impute module": [[6, "module-autots.tools.impute"]], "autots.tools.lunar module": [[6, "module-autots.tools.lunar"]], "autots.tools.percentile module": [[6, "module-autots.tools.percentile"]], "autots.tools.probabilistic module": [[6, "module-autots.tools.probabilistic"]], "autots.tools.profile module": [[6, "module-autots.tools.profile"]], "autots.tools.regressor module": [[6, "module-autots.tools.regressor"]], "autots.tools.seasonal module": [[6, "module-autots.tools.seasonal"]], "autots.tools.shaping module": [[6, "module-autots.tools.shaping"]], "autots.tools.thresholding module": [[6, "module-autots.tools.thresholding"]], "autots.tools.transform module": [[6, "module-autots.tools.transform"]], "autots.tools.wavelet module": [[6, "module-autots.tools.wavelet"]], "autots.tools.window_functions module": [[6, "module-autots.tools.window_functions"]], "Intro": [[7, "intro"]], "Table of Contents": [[7, "table-of-contents"], [9, "table-of-contents"]], "Basic Use": [[7, "id2"]], "Tips for Speed and Large Data:": [[7, "id3"]], "How to Contribute:": [[7, "how-to-contribute"]], "AutoTS Process": [[7, "autots-process"]], "autots": [[8, "autots"]], "Tutorial": [[9, "tutorial"]], "Extended Tutorial": [[9, "extended-tutorial"]], "A simple example": [[9, "id1"]], "Import of data": [[9, "import-of-data"]], "You can tailor the process in a few ways\u2026": [[9, "you-can-tailor-the-process-in-a-few-ways"]], "What to Worry About": [[9, "what-to-worry-about"]], "Validation and Cross Validation": [[9, "id2"]], "Another Example:": [[9, "id3"]], "Model Lists": [[9, "id4"]], "Deployment and Template Import/Export": [[9, "deployment-and-template-import-export"]], "Running Just One Model": [[9, "id5"]], "Metrics": [[9, "id6"]], "Hierarchial and Grouped Forecasts": [[9, "hierarchial-and-grouped-forecasts"]], "Ensembles": [[9, "id7"]], "Installation and Dependency Versioning": [[9, "installation-and-dependency-versioning"]], "Requirements:": [[9, "requirements"]], "Optional Packages": [[9, "optional-packages"]], "Safest bet for installation:": [[9, "safest-bet-for-installation"]], "Intel conda channel installation (sometime faster, also, more prone to bugs)": [[9, "intel-conda-channel-installation-sometime-faster-also-more-prone-to-bugs"]], "Speed Benchmark": [[9, "speed-benchmark"]], "Caveats and Advice": [[9, "caveats-and-advice"]], "Mysterious crashes": [[9, "mysterious-crashes"]], "Series IDs really need to be unique (or column names need to be all unique in wide data)": [[9, "series-ids-really-need-to-be-unique-or-column-names-need-to-be-all-unique-in-wide-data"]], "Short Training History": [[9, "short-training-history"]], "Adding regressors and other information": [[9, "adding-regressors-and-other-information"]], "Simulation Forecasting": [[9, "id8"]], "Event Risk Forecasting and Anomaly Detection": [[9, "event-risk-forecasting-and-anomaly-detection"]], "A Hack for Passing in Parameters (that aren\u2019t otherwise available)": [[9, "a-hack-for-passing-in-parameters-that-aren-t-otherwise-available"]], "Categorical Data": [[9, "categorical-data"]], "Custom and Unusual Frequencies": [[9, "custom-and-unusual-frequencies"]], "Using the Transformers independently": [[9, "using-the-transformers-independently"]], "Note on ~Regression Models": [[9, "note-on-regression-models"]], "Models": [[9, "id9"]]}, "indexentries": {"anomalydetector (class in autots)": [[1, "autots.AnomalyDetector"]], "autots (class in autots)": [[1, "autots.AutoTS"]], "cassandra (class in autots)": [[1, "autots.Cassandra"]], "eventriskforecast (class in autots)": [[1, "autots.EventRiskForecast"]], "generaltransformer (class in autots)": [[1, "autots.GeneralTransformer"]], "holidaydetector (class in autots)": [[1, "autots.HolidayDetector"]], "modelprediction (class in autots)": [[1, "autots.ModelPrediction"]], "randomtransform() (in module autots)": [[1, "autots.RandomTransform"]], "transformts (in module autots)": [[1, "autots.TransformTS"]], "analyze_trend() (autots.cassandra method)": [[1, "autots.Cassandra.analyze_trend"]], "anomalies (autots.cassandra..anomaly_detector attribute)": [[1, "autots.Cassandra..anomaly_detector.anomalies"]], "auto_fit() (autots.cassandra method)": [[1, "autots.Cassandra.auto_fit"]], "autots": [[1, "module-autots"]], "back_forecast() (autots.autots method)": [[1, "autots.AutoTS.back_forecast"]], "base_scaler() (autots.cassandra method)": [[1, "autots.Cassandra.base_scaler"]], "best_model (autots.autots attribute)": [[1, "autots.AutoTS.best_model"]], "best_model_ensemble (autots.autots attribute)": [[1, "autots.AutoTS.best_model_ensemble"]], "best_model_name (autots.autots attribute)": [[1, "autots.AutoTS.best_model_name"]], "best_model_params (autots.autots attribute)": [[1, "autots.AutoTS.best_model_params"]], "best_model_per_series_mape() (autots.autots method)": [[1, "autots.AutoTS.best_model_per_series_mape"]], "best_model_per_series_score() (autots.autots method)": [[1, "autots.AutoTS.best_model_per_series_score"]], "best_model_transformation_params (autots.autots attribute)": [[1, "autots.AutoTS.best_model_transformation_params"]], "compare_actual_components() (autots.cassandra method)": [[1, "autots.Cassandra.compare_actual_components"]], "create_forecast_index() (autots.cassandra method)": [[1, "autots.Cassandra.create_forecast_index"]], "create_lagged_regressor() (in module autots)": [[1, "autots.create_lagged_regressor"]], "create_regressor() (in module autots)": [[1, "autots.create_regressor"]], "create_t() (autots.cassandra method)": [[1, "autots.Cassandra.create_t"]], "create_unpredictability_score() (autots.autots method)": [[1, "autots.AutoTS.create_unpredictability_score"]], "cross_validate() (autots.cassandra method)": [[1, "autots.Cassandra.cross_validate"]], "dates_to_holidays() (autots.cassandra.holiday_detector method)": [[1, "autots.Cassandra.holiday_detector.dates_to_holidays"]], "dates_to_holidays() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.dates_to_holidays"]], "detect() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.detect"]], "detect() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.detect"]], "df_wide_numeric (autots.autots attribute)": [[1, "autots.AutoTS.df_wide_numeric"]], "diagnose_params() (autots.autots method)": [[1, "autots.AutoTS.diagnose_params"]], "expand_horizontal() (autots.autots method)": [[1, "autots.AutoTS.expand_horizontal"]], "export_best_model() (autots.autots method)": [[1, "autots.AutoTS.export_best_model"]], "export_template() (autots.autots method)": [[1, "autots.AutoTS.export_template"]], "failure_rate() (autots.autots method)": [[1, "autots.AutoTS.failure_rate"]], "feature_importance() (autots.cassandra method)": [[1, "autots.Cassandra.feature_importance"]], "fill_na() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.fill_na"]], "fit() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.fit"]], "fit() (autots.autots method)": [[1, "autots.AutoTS.fit"]], "fit() (autots.cassandra method)": [[1, "autots.Cassandra.fit"], [1, "id0"]], "fit() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.fit"], [1, "id9"]], "fit() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.fit"]], "fit() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.fit"]], "fit() (autots.modelprediction method)": [[1, "autots.ModelPrediction.fit"]], "fit_anomaly_classifier() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.fit_anomaly_classifier"]], "fit_data() (autots.autots method)": [[1, "autots.AutoTS.fit_data"]], "fit_data() (autots.cassandra method)": [[1, "autots.Cassandra.fit_data"]], "fit_data() (autots.modelprediction method)": [[1, "autots.ModelPrediction.fit_data"]], "fit_predict() (autots.modelprediction method)": [[1, "autots.ModelPrediction.fit_predict"]], "fit_transform() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.fit_transform"]], "generate_historic_risk_array() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.generate_historic_risk_array"]], "generate_historic_risk_array() (autots.eventriskforecast static method)": [[1, "id10"]], "generate_result_windows() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.generate_result_windows"], [1, "id11"]], "generate_risk_array() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.generate_risk_array"]], "generate_risk_array() (autots.eventriskforecast static method)": [[1, "id12"]], "get_metric_corr() (autots.autots method)": [[1, "autots.AutoTS.get_metric_corr"]], "get_new_params() (autots.anomalydetector static method)": [[1, "autots.AnomalyDetector.get_new_params"]], "get_new_params() (autots.autots static method)": [[1, "autots.AutoTS.get_new_params"]], "get_new_params() (autots.cassandra method)": [[1, "autots.Cassandra.get_new_params"], [1, "id1"]], "get_new_params() (autots.generaltransformer static method)": [[1, "autots.GeneralTransformer.get_new_params"]], "get_new_params() (autots.holidaydetector static method)": [[1, "autots.HolidayDetector.get_new_params"]], "get_params() (autots.cassandra method)": [[1, "autots.Cassandra.get_params"]], "get_params_from_id() (autots.autots method)": [[1, "autots.AutoTS.get_params_from_id"]], "get_top_n_counts() (autots.autots method)": [[1, "autots.AutoTS.get_top_n_counts"]], "holiday_count (autots.cassandra. attribute)": [[1, "autots.Cassandra..holiday_count"]], "holidays (autots.cassandra. attribute)": [[1, "autots.Cassandra..holidays"]], "horizontal_per_generation() (autots.autots method)": [[1, "autots.AutoTS.horizontal_per_generation"]], "horizontal_to_df() (autots.autots method)": [[1, "autots.AutoTS.horizontal_to_df"]], "import_best_model() (autots.autots method)": [[1, "autots.AutoTS.import_best_model"]], "import_results() (autots.autots method)": [[1, "autots.AutoTS.import_results"]], "import_template() (autots.autots method)": [[1, "autots.AutoTS.import_template"]], "infer_frequency() (in module autots)": [[1, "autots.infer_frequency"]], "inverse_transform() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.inverse_transform"]], "list_failed_model_types() (autots.autots method)": [[1, "autots.AutoTS.list_failed_model_types"]], "load_artificial() (in module autots)": [[1, "autots.load_artificial"]], "load_daily() (in module autots)": [[1, "autots.load_daily"]], "load_hourly() (in module autots)": [[1, "autots.load_hourly"]], "load_linear() (in module autots)": [[1, "autots.load_linear"]], "load_live_daily() (in module autots)": [[1, "autots.load_live_daily"]], "load_monthly() (in module autots)": [[1, "autots.load_monthly"]], "load_sine() (in module autots)": [[1, "autots.load_sine"]], "load_template() (autots.autots method)": [[1, "autots.AutoTS.load_template"]], "load_weekdays() (in module autots)": [[1, "autots.load_weekdays"]], "load_weekly() (in module autots)": [[1, "autots.load_weekly"]], "load_yearly() (in module autots)": [[1, "autots.load_yearly"]], "long_to_wide() (in module autots)": [[1, "autots.long_to_wide"]], "model_forecast() (in module autots)": [[1, "autots.model_forecast"]], "model_results (autots.autots.initial_results attribute)": [[1, "autots.AutoTS.initial_results.model_results"]], "module": [[1, "module-autots"], [2, "module-autots.datasets"], [2, "module-autots.datasets.fred"], [3, "module-autots.evaluator"], [3, "module-autots.evaluator.anomaly_detector"], [3, "module-autots.evaluator.auto_model"], [3, "module-autots.evaluator.auto_ts"], [3, "module-autots.evaluator.benchmark"], [3, "module-autots.evaluator.event_forecasting"], [3, "module-autots.evaluator.metrics"], [3, "module-autots.evaluator.validation"], [4, "module-autots.models"], [4, "module-autots.models.arch"], [4, "module-autots.models.base"], [4, "module-autots.models.basics"], [4, "module-autots.models.cassandra"], [4, "module-autots.models.dnn"], [4, "module-autots.models.ensemble"], [4, "module-autots.models.gluonts"], [4, "module-autots.models.greykite"], [4, "module-autots.models.matrix_var"], [4, "module-autots.models.mlensemble"], [4, "module-autots.models.model_list"], [4, "module-autots.models.neural_forecast"], [4, "module-autots.models.prophet"], [4, "module-autots.models.pytorch"], [4, "module-autots.models.sklearn"], [4, "module-autots.models.statsmodels"], [4, "module-autots.models.tfp"], [4, "module-autots.models.tide"], [5, "module-autots.templates"], [5, "module-autots.templates.general"], [6, "module-autots.tools"], [6, "module-autots.tools.anomaly_utils"], [6, "module-autots.tools.calendar"], [6, "module-autots.tools.cointegration"], [6, "module-autots.tools.constraint"], [6, "module-autots.tools.cpu_count"], [6, "module-autots.tools.fast_kalman"], [6, "module-autots.tools.fft"], [6, "module-autots.tools.fir_filter"], [6, "module-autots.tools.hierarchial"], [6, "module-autots.tools.holiday"], [6, "module-autots.tools.impute"], [6, "module-autots.tools.lunar"], [6, "module-autots.tools.percentile"], [6, "module-autots.tools.probabilistic"], [6, "module-autots.tools.profile"], [6, "module-autots.tools.regressor"], [6, "module-autots.tools.seasonal"], [6, "module-autots.tools.shaping"], [6, "module-autots.tools.thresholding"], [6, "module-autots.tools.transform"], [6, "module-autots.tools.wavelet"], [6, "module-autots.tools.window_functions"]], "mosaic_to_df() (autots.autots method)": [[1, "autots.AutoTS.mosaic_to_df"]], "next_fit() (autots.cassandra method)": [[1, "autots.Cassandra.next_fit"]], "params (autots.cassandra. attribute)": [[1, "autots.Cassandra..params"]], "parse_best_model() (autots.autots method)": [[1, "autots.AutoTS.parse_best_model"]], "plot() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.plot"]], "plot() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.plot"], [1, "id13"]], "plot() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.plot"]], "plot_anomaly() (autots.holidaydetector method)": [[1, "autots.HolidayDetector.plot_anomaly"]], "plot_back_forecast() (autots.autots method)": [[1, "autots.AutoTS.plot_back_forecast"]], "plot_backforecast() (autots.autots method)": [[1, "autots.AutoTS.plot_backforecast"]], "plot_chosen_transformer() (autots.autots method)": [[1, "autots.AutoTS.plot_chosen_transformer"]], "plot_components() (autots.cassandra method)": [[1, "autots.Cassandra.plot_components"], [1, "id2"]], "plot_eval() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.plot_eval"]], "plot_failure_rate() (autots.autots method)": [[1, "autots.AutoTS.plot_failure_rate"]], "plot_forecast() (autots.cassandra method)": [[1, "autots.Cassandra.plot_forecast"], [1, "id3"]], "plot_generation_loss() (autots.autots method)": [[1, "autots.AutoTS.plot_generation_loss"]], "plot_horizontal() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal"]], "plot_horizontal_model_count() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal_model_count"]], "plot_horizontal_per_generation() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal_per_generation"]], "plot_horizontal_transformers() (autots.autots method)": [[1, "autots.AutoTS.plot_horizontal_transformers"]], "plot_metric_corr() (autots.autots method)": [[1, "autots.AutoTS.plot_metric_corr"]], "plot_model_failure_rate() (autots.autots method)": [[1, "autots.AutoTS.plot_model_failure_rate"]], "plot_mosaic() (autots.autots method)": [[1, "autots.AutoTS.plot_mosaic"]], "plot_per_series_error() (autots.autots method)": [[1, "autots.AutoTS.plot_per_series_error"]], "plot_per_series_mape() (autots.autots method)": [[1, "autots.AutoTS.plot_per_series_mape"]], "plot_per_series_smape() (autots.autots method)": [[1, "autots.AutoTS.plot_per_series_smape"]], "plot_series_corr() (autots.autots method)": [[1, "autots.AutoTS.plot_series_corr"]], "plot_things() (autots.cassandra method)": [[1, "autots.Cassandra.plot_things"]], "plot_transformer_by_class() (autots.autots method)": [[1, "autots.AutoTS.plot_transformer_by_class"]], "plot_transformer_failure_rate() (autots.autots method)": [[1, "autots.AutoTS.plot_transformer_failure_rate"]], "plot_trend() (autots.cassandra method)": [[1, "autots.Cassandra.plot_trend"], [1, "id4"]], "plot_unpredictability() (autots.autots method)": [[1, "autots.AutoTS.plot_unpredictability"]], "plot_validations() (autots.autots method)": [[1, "autots.AutoTS.plot_validations"]], "predict() (autots.autots method)": [[1, "autots.AutoTS.predict"]], "predict() (autots.cassandra method)": [[1, "autots.Cassandra.predict"], [1, "id5"]], "predict() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.predict"], [1, "id14"]], "predict() (autots.modelprediction method)": [[1, "autots.ModelPrediction.predict"]], "predict_historic() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.predict_historic"], [1, "id15"]], "predict_new_product() (autots.cassandra method)": [[1, "autots.Cassandra.predict_new_product"]], "predict_x_array (autots.cassandra. attribute)": [[1, "autots.Cassandra..predict_x_array"]], "predicted_trend (autots.cassandra. attribute)": [[1, "autots.Cassandra..predicted_trend"]], "process_components() (autots.cassandra method)": [[1, "autots.Cassandra.process_components"]], "regression_check (autots.autots attribute)": [[1, "autots.AutoTS.regression_check"]], "results() (autots.autots method)": [[1, "autots.AutoTS.results"]], "retrieve_transformer() (autots.generaltransformer class method)": [[1, "autots.GeneralTransformer.retrieve_transformer"]], "retrieve_validation_forecasts() (autots.autots method)": [[1, "autots.AutoTS.retrieve_validation_forecasts"]], "return_components() (autots.cassandra method)": [[1, "autots.Cassandra.return_components"], [1, "id6"]], "rolling_trend() (autots.cassandra method)": [[1, "autots.Cassandra.rolling_trend"]], "save_template() (autots.autots method)": [[1, "autots.AutoTS.save_template"]], "scale_data() (autots.cassandra method)": [[1, "autots.Cassandra.scale_data"]], "score_per_series (autots.autots attribute)": [[1, "autots.AutoTS.score_per_series"]], "score_to_anomaly() (autots.anomalydetector method)": [[1, "autots.AnomalyDetector.score_to_anomaly"]], "scores (autots.cassandra..anomaly_detector attribute)": [[1, "autots.Cassandra..anomaly_detector.scores"]], "set_limit() (autots.eventriskforecast method)": [[1, "autots.EventRiskForecast.set_limit"]], "set_limit() (autots.eventriskforecast static method)": [[1, "id16"]], "to_origin_space() (autots.cassandra method)": [[1, "autots.Cassandra.to_origin_space"]], "transform() (autots.generaltransformer method)": [[1, "autots.GeneralTransformer.transform"]], "treatment_causal_impact() (autots.cassandra method)": [[1, "autots.Cassandra.treatment_causal_impact"]], "trend_analysis() (autots.cassandra method)": [[1, "autots.Cassandra.trend_analysis"]], "trend_train (autots.cassandra. attribute)": [[1, "autots.Cassandra..trend_train"]], "validation_agg() (autots.autots method)": [[1, "autots.AutoTS.validation_agg"]], "x_array (autots.cassandra. attribute)": [[1, "autots.Cassandra..x_array"]], "autots.datasets": [[2, "module-autots.datasets"]], "autots.datasets.fred": [[2, "module-autots.datasets.fred"]], "get_fred_data() (in module autots.datasets.fred)": [[2, "autots.datasets.fred.get_fred_data"]], "load_artificial() (in module autots.datasets)": [[2, "autots.datasets.load_artificial"]], "load_daily() (in module autots.datasets)": [[2, "autots.datasets.load_daily"]], "load_hourly() (in module autots.datasets)": [[2, "autots.datasets.load_hourly"]], "load_linear() (in module autots.datasets)": [[2, "autots.datasets.load_linear"]], "load_live_daily() (in module autots.datasets)": [[2, "autots.datasets.load_live_daily"]], "load_monthly() (in module autots.datasets)": [[2, "autots.datasets.load_monthly"]], "load_sine() (in module autots.datasets)": [[2, "autots.datasets.load_sine"]], "load_weekdays() (in module autots.datasets)": [[2, "autots.datasets.load_weekdays"]], "load_weekly() (in module autots.datasets)": [[2, "autots.datasets.load_weekly"]], "load_yearly() (in module autots.datasets)": [[2, "autots.datasets.load_yearly"]], "load_zeroes() (in module autots.datasets)": [[2, "autots.datasets.load_zeroes"]], "anomalydetector (class in autots.evaluator.anomaly_detector)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector"]], "autots (class in autots.evaluator.auto_ts)": [[3, "autots.evaluator.auto_ts.AutoTS"]], "benchmark (class in autots.evaluator.benchmark)": [[3, "autots.evaluator.benchmark.Benchmark"]], "eventriskforecast (class in autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast"]], "holidaydetector (class in autots.evaluator.anomaly_detector)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector"]], "modelmonster() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.ModelMonster"]], "modelprediction (class in autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.ModelPrediction"]], "newgenetictemplate() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.NewGeneticTemplate"]], "randomtemplate() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.RandomTemplate"]], "templateevalobject (class in autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.TemplateEvalObject"]], "templatewizard() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.TemplateWizard"]], "uniquetemplates() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.UniqueTemplates"]], "array_last_val() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.array_last_val"]], "autots.evaluator": [[3, "module-autots.evaluator"]], "autots.evaluator.anomaly_detector": [[3, "module-autots.evaluator.anomaly_detector"]], "autots.evaluator.auto_model": [[3, "module-autots.evaluator.auto_model"]], "autots.evaluator.auto_ts": [[3, "module-autots.evaluator.auto_ts"]], "autots.evaluator.benchmark": [[3, "module-autots.evaluator.benchmark"]], "autots.evaluator.event_forecasting": [[3, "module-autots.evaluator.event_forecasting"]], "autots.evaluator.metrics": [[3, "module-autots.evaluator.metrics"]], "autots.evaluator.validation": [[3, "module-autots.evaluator.validation"]], "back_forecast() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.back_forecast"]], "back_forecast() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.back_forecast"]], "best_model (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model"]], "best_model_ensemble (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_ensemble"]], "best_model_name (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_name"]], "best_model_params (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_params"]], "best_model_per_series_mape() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_per_series_mape"]], "best_model_per_series_score() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_per_series_score"]], "best_model_transformation_params (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.best_model_transformation_params"]], "chi_squared_hist_distribution_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.chi_squared_hist_distribution_loss"]], "concat() (autots.evaluator.auto_model.templateevalobject method)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.concat"]], "containment() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.containment"]], "contour() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.contour"]], "create_model_id() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.create_model_id"]], "create_unpredictability_score() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.create_unpredictability_score"]], "dates_to_holidays() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.dates_to_holidays"]], "default_scaler() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.default_scaler"]], "detect() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.detect"]], "detect() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.detect"]], "df_wide_numeric (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.df_wide_numeric"]], "diagnose_params() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.diagnose_params"]], "dict_recombination() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.dict_recombination"]], "dwae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.dwae"]], "error_correlations() (in module autots.evaluator.auto_ts)": [[3, "autots.evaluator.auto_ts.error_correlations"]], "expand_horizontal() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.expand_horizontal"]], "export_best_model() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.export_best_model"]], "export_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.export_template"]], "extract_result_windows() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.extract_result_windows"]], "extract_seasonal_val_periods() (in module autots.evaluator.validation)": [[3, "autots.evaluator.validation.extract_seasonal_val_periods"]], "extract_window_index() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.extract_window_index"]], "failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.failure_rate"]], "fake_regressor() (in module autots.evaluator.auto_ts)": [[3, "autots.evaluator.auto_ts.fake_regressor"]], "fit() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.fit"]], "fit() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.fit"]], "fit() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.fit"]], "fit() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.fit"]], "fit() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.fit"], [3, "id0"]], "fit_anomaly_classifier() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.fit_anomaly_classifier"]], "fit_data() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.fit_data"]], "fit_data() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.fit_data"]], "fit_predict() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.fit_predict"]], "full_mae_errors (autots.evaluator.auto_model.templateevalobject attribute)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.full_mae_errors"]], "full_mae_ids (autots.evaluator.auto_model.templateevalobject attribute)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.full_mae_ids"]], "full_metric_evaluation() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.full_metric_evaluation"]], "generate_historic_risk_array() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.generate_historic_risk_array"]], "generate_historic_risk_array() (autots.evaluator.event_forecasting.eventriskforecast static method)": [[3, "id7"]], "generate_result_windows() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.generate_result_windows"], [3, "id8"]], "generate_risk_array() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.generate_risk_array"]], "generate_risk_array() (autots.evaluator.event_forecasting.eventriskforecast static method)": [[3, "id9"]], "generate_score() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.generate_score"]], "generate_score_per_series() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.generate_score_per_series"]], "generate_validation_indices() (in module autots.evaluator.validation)": [[3, "autots.evaluator.validation.generate_validation_indices"]], "get_metric_corr() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_metric_corr"]], "get_new_params() (autots.evaluator.anomaly_detector.anomalydetector static method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.get_new_params"]], "get_new_params() (autots.evaluator.anomaly_detector.holidaydetector static method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.get_new_params"]], "get_new_params() (autots.evaluator.auto_ts.autots static method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_new_params"]], "get_params_from_id() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_params_from_id"]], "get_top_n_counts() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.get_top_n_counts"]], "horizontal_per_generation() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.horizontal_per_generation"]], "horizontal_template_to_model_list() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.horizontal_template_to_model_list"]], "horizontal_to_df() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.horizontal_to_df"]], "import_best_model() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.import_best_model"]], "import_results() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.import_results"]], "import_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.import_template"]], "kde() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.kde"]], "kde_kl_distance() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.kde_kl_distance"]], "kl_divergence() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.kl_divergence"]], "linearity() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.linearity"]], "list_failed_model_types() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.list_failed_model_types"]], "load() (autots.evaluator.auto_model.templateevalobject method)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.load"]], "load_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.load_template"]], "mae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mae"]], "mda() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mda"]], "mean_absolute_differential_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mean_absolute_differential_error"]], "mean_absolute_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mean_absolute_error"]], "medae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.medae"]], "median_absolute_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.median_absolute_error"]], "mlvb() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mlvb"]], "model_forecast() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.model_forecast"]], "model_results (autots.evaluator.auto_ts.autots.initial_results attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.initial_results.model_results"]], "mosaic_to_df() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.mosaic_to_df"]], "mqae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.mqae"]], "msle() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.msle"]], "numpy_ffill() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.numpy_ffill"]], "oda() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.oda"]], "parse_best_model() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.parse_best_model"]], "pinball_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.pinball_loss"]], "plot() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.plot"]], "plot() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.plot"]], "plot() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.plot"], [3, "id10"]], "plot_anomaly() (autots.evaluator.anomaly_detector.holidaydetector method)": [[3, "autots.evaluator.anomaly_detector.HolidayDetector.plot_anomaly"]], "plot_back_forecast() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_back_forecast"]], "plot_backforecast() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_backforecast"]], "plot_chosen_transformer() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_chosen_transformer"]], "plot_eval() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.plot_eval"]], "plot_failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_failure_rate"]], "plot_generation_loss() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_generation_loss"]], "plot_horizontal() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal"]], "plot_horizontal_model_count() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal_model_count"]], "plot_horizontal_per_generation() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal_per_generation"]], "plot_horizontal_transformers() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_horizontal_transformers"]], "plot_metric_corr() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_metric_corr"]], "plot_model_failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_model_failure_rate"]], "plot_mosaic() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_mosaic"]], "plot_per_series_error() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_per_series_error"]], "plot_per_series_mape() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_per_series_mape"]], "plot_per_series_smape() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_per_series_smape"]], "plot_series_corr() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_series_corr"]], "plot_transformer_by_class() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_transformer_by_class"]], "plot_transformer_failure_rate() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_transformer_failure_rate"]], "plot_unpredictability() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_unpredictability"]], "plot_validations() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.plot_validations"]], "precomp_wasserstein() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.precomp_wasserstein"]], "predict() (autots.evaluator.auto_model.modelprediction method)": [[3, "autots.evaluator.auto_model.ModelPrediction.predict"]], "predict() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.predict"]], "predict() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.predict"], [3, "id11"]], "predict_historic() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.predict_historic"], [3, "id12"]], "qae() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.qae"]], "random_model() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.random_model"]], "regression_check (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.regression_check"]], "remove_leading_zeros() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.remove_leading_zeros"]], "results() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.results"]], "retrieve_validation_forecasts() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.retrieve_validation_forecasts"]], "rmse() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.rmse"]], "root_mean_square_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.root_mean_square_error"]], "rps() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.rps"]], "run() (autots.evaluator.benchmark.benchmark method)": [[3, "autots.evaluator.benchmark.Benchmark.run"]], "save() (autots.evaluator.auto_model.templateevalobject method)": [[3, "autots.evaluator.auto_model.TemplateEvalObject.save"]], "save_template() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.save_template"]], "scaled_pinball_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.scaled_pinball_loss"]], "score_per_series (autots.evaluator.auto_ts.autots attribute)": [[3, "autots.evaluator.auto_ts.AutoTS.score_per_series"]], "score_to_anomaly() (autots.evaluator.anomaly_detector.anomalydetector method)": [[3, "autots.evaluator.anomaly_detector.AnomalyDetector.score_to_anomaly"]], "set_limit() (autots.evaluator.event_forecasting.eventriskforecast method)": [[3, "autots.evaluator.event_forecasting.EventRiskForecast.set_limit"]], "set_limit() (autots.evaluator.event_forecasting.eventriskforecast static method)": [[3, "id13"]], "set_limit_forecast() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.set_limit_forecast"]], "set_limit_forecast_historic() (in module autots.evaluator.event_forecasting)": [[3, "autots.evaluator.event_forecasting.set_limit_forecast_historic"]], "smape() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.smape"]], "smoothness() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.smoothness"]], "spl() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.spl"]], "symmetric_mean_absolute_percentage_error() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.symmetric_mean_absolute_percentage_error"]], "threshold_loss() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.threshold_loss"]], "trans_dict_recomb() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.trans_dict_recomb"]], "unpack_ensemble_models() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.unpack_ensemble_models"]], "unsorted_wasserstein() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.unsorted_wasserstein"]], "validate_num_validations() (in module autots.evaluator.validation)": [[3, "autots.evaluator.validation.validate_num_validations"]], "validation_agg() (autots.evaluator.auto_ts.autots method)": [[3, "autots.evaluator.auto_ts.AutoTS.validation_agg"]], "validation_aggregation() (in module autots.evaluator.auto_model)": [[3, "autots.evaluator.auto_model.validation_aggregation"]], "wasserstein() (in module autots.evaluator.metrics)": [[3, "autots.evaluator.metrics.wasserstein"]], "arch (class in autots.models.arch)": [[4, "autots.models.arch.ARCH"]], "ardl (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.ARDL"]], "arima (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.ARIMA"]], "averagevaluenaive (class in autots.models.basics)": [[4, "autots.models.basics.AverageValueNaive"]], "balltreemultivariatemotif (class in autots.models.basics)": [[4, "autots.models.basics.BallTreeMultivariateMotif"]], "balltreeregressionmotif (class in autots.models.basics)": [[4, "autots.models.basics.BallTreeRegressionMotif"]], "basiclinearmodel (class in autots.models.basics)": [[4, "autots.models.basics.BasicLinearModel"]], "bayesianmultioutputregression (class in autots.models.cassandra)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression"]], "bestnensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.BestNEnsemble"]], "cassandra (class in autots.models.cassandra)": [[4, "autots.models.cassandra.Cassandra"]], "componentanalysis (class in autots.models.sklearn)": [[4, "autots.models.sklearn.ComponentAnalysis"]], "constantnaive (class in autots.models.basics)": [[4, "autots.models.basics.ConstantNaive"]], "dmd (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.DMD"]], "datepartregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.DatepartRegression"]], "distensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.DistEnsemble"]], "dynamicfactor (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.DynamicFactor"]], "dynamicfactormq (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.DynamicFactorMQ"]], "ets (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.ETS"]], "elasticnetwork (class in autots.models.dnn)": [[4, "autots.models.dnn.ElasticNetwork"]], "ensembleforecast() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.EnsembleForecast"]], "ensembletemplategenerator() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.EnsembleTemplateGenerator"]], "fbprophet (class in autots.models.prophet)": [[4, "autots.models.prophet.FBProphet"]], "fft (class in autots.models.basics)": [[4, "autots.models.basics.FFT"]], "glm (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.GLM"]], "gls (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.GLS"]], "gluonts (class in autots.models.gluonts)": [[4, "autots.models.gluonts.GluonTS"]], "greykite (class in autots.models.greykite)": [[4, "autots.models.greykite.Greykite"]], "hdistensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.HDistEnsemble"]], "horizontalensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.HorizontalEnsemble"]], "horizontaltemplategenerator() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.HorizontalTemplateGenerator"]], "kalmanstatespace (class in autots.models.basics)": [[4, "autots.models.basics.KalmanStateSpace"]], "kerasrnn (class in autots.models.dnn)": [[4, "autots.models.dnn.KerasRNN"]], "latc (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.LATC"]], "lastvaluenaive (class in autots.models.basics)": [[4, "autots.models.basics.LastValueNaive"]], "mar (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.MAR"]], "mlensemble (class in autots.models.mlensemble)": [[4, "autots.models.mlensemble.MLEnsemble"]], "metricmotif (class in autots.models.basics)": [[4, "autots.models.basics.MetricMotif"]], "modelobject (class in autots.models.base)": [[4, "autots.models.base.ModelObject"]], "mosaicensemble() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.MosaicEnsemble"]], "motif (class in autots.models.basics)": [[4, "autots.models.basics.Motif"]], "motifsimulation (class in autots.models.basics)": [[4, "autots.models.basics.MotifSimulation"]], "multivariateregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.MultivariateRegression"]], "nvar (class in autots.models.basics)": [[4, "autots.models.basics.NVAR"]], "neuralforecast (class in autots.models.neural_forecast)": [[4, "autots.models.neural_forecast.NeuralForecast"]], "neuralprophet (class in autots.models.prophet)": [[4, "autots.models.prophet.NeuralProphet"]], "predictionobject (class in autots.models.base)": [[4, "autots.models.base.PredictionObject"]], "preprocessingregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.PreprocessingRegression"]], "pytorchforecasting (class in autots.models.pytorch)": [[4, "autots.models.pytorch.PytorchForecasting"]], "rrvar (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.RRVAR"]], "randomfourierencoding (class in autots.models.sklearn)": [[4, "autots.models.sklearn.RandomFourierEncoding"]], "rollingregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.RollingRegression"]], "seasonalnaive (class in autots.models.basics)": [[4, "autots.models.basics.SeasonalNaive"]], "seasonalitymotif (class in autots.models.basics)": [[4, "autots.models.basics.SeasonalityMotif"]], "sectionalmotif (class in autots.models.basics)": [[4, "autots.models.basics.SectionalMotif"]], "tfpregression (class in autots.models.tfp)": [[4, "autots.models.tfp.TFPRegression"]], "tfpregressor (class in autots.models.tfp)": [[4, "autots.models.tfp.TFPRegressor"]], "tmf (class in autots.models.matrix_var)": [[4, "autots.models.matrix_var.TMF"]], "tvvar (class in autots.models.basics)": [[4, "autots.models.basics.TVVAR"]], "tensorflowsts (class in autots.models.tfp)": [[4, "autots.models.tfp.TensorflowSTS"]], "theta (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.Theta"]], "tide (class in autots.models.tide)": [[4, "autots.models.tide.TiDE"]], "timecovariates (class in autots.models.tide)": [[4, "autots.models.tide.TimeCovariates"]], "timeseriesdata (class in autots.models.tide)": [[4, "autots.models.tide.TimeSeriesdata"]], "transformer (class in autots.models.dnn)": [[4, "autots.models.dnn.Transformer"]], "univariateregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.UnivariateRegression"]], "unobservedcomponents (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.UnobservedComponents"]], "var (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.VAR"]], "varmax (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.VARMAX"]], "vecm (class in autots.models.statsmodels)": [[4, "autots.models.statsmodels.VECM"]], "vectorizedmultioutputgpr (class in autots.models.sklearn)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR"]], "windowregression (class in autots.models.sklearn)": [[4, "autots.models.sklearn.WindowRegression"]], "zeroesnaive (in module autots.models.basics)": [[4, "autots.models.basics.ZeroesNaive"]], "analyze_trend() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.analyze_trend"]], "anomalies (autots.models.cassandra.cassandra..anomaly_detector attribute)": [[4, "autots.models.cassandra.Cassandra..anomaly_detector.anomalies"]], "apply_beta_threshold() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.apply_beta_threshold"]], "apply_constraints() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.apply_constraints"], [4, "id0"]], "apply_constraints() (in module autots.models.base)": [[4, "autots.models.base.apply_constraints"]], "arima_seek_the_oracle() (in module autots.models.statsmodels)": [[4, "autots.models.statsmodels.arima_seek_the_oracle"]], "auto_fit() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.auto_fit"]], "auto_model_list() (in module autots.models.model_list)": [[4, "autots.models.model_list.auto_model_list"]], "autots.models": [[4, "module-autots.models"]], "autots.models.arch": [[4, "module-autots.models.arch"]], "autots.models.base": [[4, "module-autots.models.base"]], "autots.models.basics": [[4, "module-autots.models.basics"]], "autots.models.cassandra": [[4, "module-autots.models.cassandra"]], "autots.models.dnn": [[4, "module-autots.models.dnn"]], "autots.models.ensemble": [[4, "module-autots.models.ensemble"]], "autots.models.gluonts": [[4, "module-autots.models.gluonts"]], "autots.models.greykite": [[4, "module-autots.models.greykite"]], "autots.models.matrix_var": [[4, "module-autots.models.matrix_var"]], "autots.models.mlensemble": [[4, "module-autots.models.mlensemble"]], "autots.models.model_list": [[4, "module-autots.models.model_list"]], "autots.models.neural_forecast": [[4, "module-autots.models.neural_forecast"]], "autots.models.prophet": [[4, "module-autots.models.prophet"]], "autots.models.pytorch": [[4, "module-autots.models.pytorch"]], "autots.models.sklearn": [[4, "module-autots.models.sklearn"]], "autots.models.statsmodels": [[4, "module-autots.models.statsmodels"]], "autots.models.tfp": [[4, "module-autots.models.tfp"]], "autots.models.tide": [[4, "module-autots.models.tide"]], "base_scaler() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.base_scaler"]], "base_scaler() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.base_scaler"]], "base_scaler() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.base_scaler"]], "basic_profile() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.basic_profile"]], "calculate_peak_density() (in module autots.models.base)": [[4, "autots.models.base.calculate_peak_density"]], "clean_regressor() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.clean_regressor"]], "coefficient_summary() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.coefficient_summary"]], "compare_actual_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.compare_actual_components"]], "conj_grad_w() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.conj_grad_w"]], "conj_grad_x() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.conj_grad_x"]], "cost_function() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.cost_function"]], "cost_function_dwae() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_dwae"]], "cost_function_l1() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_l1"]], "cost_function_l1_positive() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_l1_positive"]], "cost_function_l2() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_l2"]], "cost_function_quantile() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.cost_function_quantile"]], "create_var_features() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.create_VAR_features"]], "create_feature() (in module autots.models.mlensemble)": [[4, "autots.models.mlensemble.create_feature"]], "create_forecast_index() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.create_forecast_index"]], "create_forecast_index() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.create_forecast_index"]], "create_forecast_index() (in module autots.models.base)": [[4, "autots.models.base.create_forecast_index"]], "create_seaborn_palette_from_cmap() (in module autots.models.base)": [[4, "autots.models.base.create_seaborn_palette_from_cmap"]], "create_t() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.create_t"]], "create_t() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.create_t"]], "create_unpredictability_score() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.create_unpredictability_score"]], "create_x() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.create_x"]], "cross_validate() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.cross_validate"]], "dates_to_holidays() (autots.models.cassandra.cassandra.holiday_detector method)": [[4, "autots.models.cassandra.Cassandra.holiday_detector.dates_to_holidays"]], "dmd() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.dmd"]], "dmd4cast() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.dmd4cast"]], "dmd_forecast() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.dmd_forecast"]], "ell_w() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.ell_w"]], "ell_x() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.ell_x"]], "empty_scaler() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.empty_scaler"]], "evaluate() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.evaluate"], [4, "id1"]], "extract_ensemble_runtimes() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.extract_ensemble_runtimes"]], "extract_single_series_from_horz() (in module autots.models.base)": [[4, "autots.models.base.extract_single_series_from_horz"]], "extract_single_transformer() (in module autots.models.base)": [[4, "autots.models.base.extract_single_transformer"]], "feature_importance() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.feature_importance"]], "find_pattern() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.find_pattern"]], "fit() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.fit"]], "fit() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.fit"]], "fit() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.fit"]], "fit() (autots.models.basics.balltreeregressionmotif method)": [[4, "autots.models.basics.BallTreeRegressionMotif.fit"]], "fit() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.fit"]], "fit() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.fit"]], "fit() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.fit"]], "fit() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.fit"]], "fit() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.fit"]], "fit() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.fit"]], "fit() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.fit"]], "fit() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.fit"]], "fit() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.fit"]], "fit() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.fit"]], "fit() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.fit"]], "fit() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.fit"]], "fit() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.fit"]], "fit() (autots.models.cassandra.bayesianmultioutputregression method)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression.fit"]], "fit() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.fit"], [4, "id5"]], "fit() (autots.models.dnn.elasticnetwork method)": [[4, "autots.models.dnn.ElasticNetwork.fit"]], "fit() (autots.models.dnn.kerasrnn method)": [[4, "autots.models.dnn.KerasRNN.fit"]], "fit() (autots.models.dnn.transformer method)": [[4, "autots.models.dnn.Transformer.fit"]], "fit() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.fit"]], "fit() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.fit"]], "fit() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.fit"]], "fit() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.fit"]], "fit() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.fit"]], "fit() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.fit"]], "fit() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.fit"]], "fit() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.fit"]], "fit() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.fit"]], "fit() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.fit"]], "fit() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.fit"]], "fit() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.fit"]], "fit() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.fit"]], "fit() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.fit"]], "fit() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.fit"]], "fit() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.fit"]], "fit() (autots.models.sklearn.randomfourierencoding method)": [[4, "autots.models.sklearn.RandomFourierEncoding.fit"]], "fit() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.fit"]], "fit() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.fit"]], "fit() (autots.models.sklearn.vectorizedmultioutputgpr method)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR.fit"]], "fit() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.fit"]], "fit() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.fit"]], "fit() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.fit"]], "fit() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.fit"]], "fit() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.fit"]], "fit() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.fit"]], "fit() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.fit"]], "fit() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.fit"]], "fit() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.fit"]], "fit() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.fit"]], "fit() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.fit"]], "fit() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.fit"]], "fit() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.fit"]], "fit() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.fit"]], "fit() (autots.models.tfp.tfpregressor method)": [[4, "autots.models.tfp.TFPRegressor.fit"]], "fit() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.fit"]], "fit() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.fit"]], "fit_data() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.fit_data"]], "fit_data() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.fit_data"]], "fit_data() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.fit_data"]], "fit_data() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.fit_data"]], "fit_data() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.fit_data"]], "fit_data() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.fit_data"]], "fit_data() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.fit_data"]], "fit_data() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.fit_data"]], "fit_linear_model() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.fit_linear_model"]], "forecast (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.forecast"]], "generalize_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generalize_horizontal"]], "generate_psi() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.generate_Psi"]], "generate_classifier_params() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.generate_classifier_params"]], "generate_crosshair_score() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generate_crosshair_score"]], "generate_crosshair_score_list() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generate_crosshair_score_list"]], "generate_mosaic_template() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.generate_mosaic_template"]], "generate_regressor_params() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.generate_regressor_params"]], "get_holidays() (in module autots.models.tide)": [[4, "autots.models.tide.get_HOLIDAYS"]], "get_changepoints() (in module autots.models.prophet)": [[4, "autots.models.prophet.get_changepoints"]], "get_covariates() (autots.models.tide.timecovariates method)": [[4, "autots.models.tide.TimeCovariates.get_covariates"]], "get_new_params() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.get_new_params"]], "get_new_params() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.get_new_params"]], "get_new_params() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.get_new_params"]], "get_new_params() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.get_new_params"]], "get_new_params() (autots.models.basics.balltreeregressionmotif method)": [[4, "autots.models.basics.BallTreeRegressionMotif.get_new_params"]], "get_new_params() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.get_new_params"]], "get_new_params() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.get_new_params"]], "get_new_params() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.get_new_params"]], "get_new_params() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.get_new_params"]], "get_new_params() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.get_new_params"]], "get_new_params() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.get_new_params"]], "get_new_params() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.get_new_params"]], "get_new_params() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.get_new_params"]], "get_new_params() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.get_new_params"]], "get_new_params() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.get_new_params"]], "get_new_params() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.get_new_params"]], "get_new_params() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.get_new_params"]], "get_new_params() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.get_new_params"]], "get_new_params() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.get_new_params"], [4, "id6"]], "get_new_params() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.get_new_params"]], "get_new_params() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.get_new_params"]], "get_new_params() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.get_new_params"]], "get_new_params() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.get_new_params"]], "get_new_params() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.get_new_params"]], "get_new_params() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.get_new_params"]], "get_new_params() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.get_new_params"]], "get_new_params() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.get_new_params"]], "get_new_params() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.get_new_params"]], "get_new_params() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.get_new_params"]], "get_new_params() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.get_new_params"]], "get_new_params() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.get_new_params"]], "get_new_params() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.get_new_params"]], "get_new_params() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.get_new_params"]], "get_new_params() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.get_new_params"]], "get_new_params() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.get_new_params"]], "get_new_params() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.get_new_params"]], "get_new_params() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.get_new_params"]], "get_new_params() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.get_new_params"]], "get_new_params() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.get_new_params"]], "get_new_params() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.get_new_params"]], "get_new_params() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.get_new_params"]], "get_new_params() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.get_new_params"]], "get_new_params() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.get_new_params"]], "get_new_params() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.get_new_params"]], "get_new_params() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.get_new_params"]], "get_new_params() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.get_new_params"]], "get_new_params() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.get_new_params"]], "get_new_params() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.get_new_params"]], "get_new_params() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.get_new_params"]], "get_params() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.get_params"]], "get_params() (autots.models.base.modelobject method)": [[4, "autots.models.base.ModelObject.get_params"]], "get_params() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.get_params"]], "get_params() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.get_params"]], "get_params() (autots.models.basics.balltreeregressionmotif method)": [[4, "autots.models.basics.BallTreeRegressionMotif.get_params"]], "get_params() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.get_params"]], "get_params() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.get_params"]], "get_params() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.get_params"]], "get_params() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.get_params"]], "get_params() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.get_params"]], "get_params() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.get_params"]], "get_params() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.get_params"]], "get_params() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.get_params"]], "get_params() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.get_params"]], "get_params() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.get_params"]], "get_params() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.get_params"]], "get_params() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.get_params"]], "get_params() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.get_params"]], "get_params() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.get_params"]], "get_params() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.get_params"]], "get_params() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.get_params"]], "get_params() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.get_params"]], "get_params() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.get_params"]], "get_params() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.get_params"]], "get_params() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.get_params"]], "get_params() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.get_params"]], "get_params() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.get_params"]], "get_params() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.get_params"]], "get_params() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.get_params"]], "get_params() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.get_params"]], "get_params() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.get_params"]], "get_params() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.get_params"]], "get_params() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.get_params"]], "get_params() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.get_params"]], "get_params() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.get_params"]], "get_params() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.get_params"]], "get_params() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.get_params"]], "get_params() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.get_params"]], "get_params() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.get_params"]], "get_params() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.get_params"]], "get_params() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.get_params"]], "get_params() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.get_params"]], "get_params() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.get_params"]], "get_params() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.get_params"]], "get_params() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.get_params"]], "get_params() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.get_params"]], "get_params() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.get_params"]], "get_params() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.get_params"]], "get_params() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.get_params"]], "get_params() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.get_params"]], "get_params() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.get_params"]], "get_params() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.get_params"]], "get_params() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.get_params"]], "glm_forecast_by_column() (in module autots.models.statsmodels)": [[4, "autots.models.statsmodels.glm_forecast_by_column"]], "holiday_count (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..holiday_count"]], "holidays (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..holidays"]], "horizontal_classifier() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.horizontal_classifier"]], "horizontal_xy() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.horizontal_xy"]], "is_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.is_horizontal"]], "is_mosaic() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.is_mosaic"]], "latc_imputer() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.latc_imputer"]], "latc_predictor() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.latc_predictor"]], "long_form_results() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.long_form_results"], [4, "id2"]], "looped_motif() (in module autots.models.basics)": [[4, "autots.models.basics.looped_motif"]], "lower_forecast (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.lower_forecast"]], "lstsq_minimize() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.lstsq_minimize"]], "lstsq_solve() (in module autots.models.cassandra)": [[4, "autots.models.cassandra.lstsq_solve"]], "mae_loss() (in module autots.models.tide)": [[4, "autots.models.tide.mae_loss"]], "mape() (in module autots.models.tide)": [[4, "autots.models.tide.mape"]], "mar() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.mar"]], "mat2ten() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.mat2ten"]], "mlens_helper() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mlens_helper"]], "model_list_to_dict() (in module autots.models.model_list)": [[4, "autots.models.model_list.model_list_to_dict"]], "model_name (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.model_name"]], "model_parameters (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.model_parameters"]], "mosaic_classifier() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_classifier"]], "mosaic_or_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_or_horizontal"]], "mosaic_to_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_to_horizontal"]], "mosaic_xy() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.mosaic_xy"]], "n_limited_horz() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.n_limited_horz"]], "next_fit() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.next_fit"]], "nrmse() (in module autots.models.tide)": [[4, "autots.models.tide.nrmse"]], "params (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..params"]], "parse_forecast_length() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.parse_forecast_length"]], "parse_horizontal() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.parse_horizontal"]], "parse_mosaic() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.parse_mosaic"]], "plot() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot"], [4, "id3"]], "plot_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_components"], [4, "id7"]], "plot_df() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot_df"]], "plot_distributions() (in module autots.models.base)": [[4, "autots.models.base.plot_distributions"]], "plot_ensemble_runtimes() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot_ensemble_runtimes"]], "plot_forecast() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_forecast"], [4, "id8"]], "plot_grid() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.plot_grid"]], "plot_things() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_things"]], "plot_trend() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.plot_trend"], [4, "id9"]], "predict() (autots.models.arch.arch method)": [[4, "autots.models.arch.ARCH.predict"]], "predict() (autots.models.basics.averagevaluenaive method)": [[4, "autots.models.basics.AverageValueNaive.predict"]], "predict() (autots.models.basics.balltreemultivariatemotif method)": [[4, "autots.models.basics.BallTreeMultivariateMotif.predict"]], "predict() (autots.models.basics.balltreeregressionmotif method)": [[4, "autots.models.basics.BallTreeRegressionMotif.predict"]], "predict() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.predict"]], "predict() (autots.models.basics.constantnaive method)": [[4, "autots.models.basics.ConstantNaive.predict"]], "predict() (autots.models.basics.fft method)": [[4, "autots.models.basics.FFT.predict"]], "predict() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.predict"]], "predict() (autots.models.basics.lastvaluenaive method)": [[4, "autots.models.basics.LastValueNaive.predict"]], "predict() (autots.models.basics.metricmotif method)": [[4, "autots.models.basics.MetricMotif.predict"]], "predict() (autots.models.basics.motif method)": [[4, "autots.models.basics.Motif.predict"]], "predict() (autots.models.basics.motifsimulation method)": [[4, "autots.models.basics.MotifSimulation.predict"]], "predict() (autots.models.basics.nvar method)": [[4, "autots.models.basics.NVAR.predict"]], "predict() (autots.models.basics.seasonalnaive method)": [[4, "autots.models.basics.SeasonalNaive.predict"]], "predict() (autots.models.basics.seasonalitymotif method)": [[4, "autots.models.basics.SeasonalityMotif.predict"]], "predict() (autots.models.basics.sectionalmotif method)": [[4, "autots.models.basics.SectionalMotif.predict"]], "predict() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.predict"]], "predict() (autots.models.cassandra.bayesianmultioutputregression method)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression.predict"]], "predict() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.predict"], [4, "id10"]], "predict() (autots.models.dnn.elasticnetwork method)": [[4, "autots.models.dnn.ElasticNetwork.predict"]], "predict() (autots.models.dnn.kerasrnn method)": [[4, "autots.models.dnn.KerasRNN.predict"]], "predict() (autots.models.dnn.transformer method)": [[4, "autots.models.dnn.Transformer.predict"]], "predict() (autots.models.gluonts.gluonts method)": [[4, "autots.models.gluonts.GluonTS.predict"]], "predict() (autots.models.greykite.greykite method)": [[4, "autots.models.greykite.Greykite.predict"]], "predict() (autots.models.matrix_var.dmd method)": [[4, "autots.models.matrix_var.DMD.predict"]], "predict() (autots.models.matrix_var.latc method)": [[4, "autots.models.matrix_var.LATC.predict"]], "predict() (autots.models.matrix_var.mar method)": [[4, "autots.models.matrix_var.MAR.predict"]], "predict() (autots.models.matrix_var.rrvar method)": [[4, "autots.models.matrix_var.RRVAR.predict"]], "predict() (autots.models.matrix_var.tmf method)": [[4, "autots.models.matrix_var.TMF.predict"]], "predict() (autots.models.mlensemble.mlensemble method)": [[4, "autots.models.mlensemble.MLEnsemble.predict"]], "predict() (autots.models.neural_forecast.neuralforecast method)": [[4, "autots.models.neural_forecast.NeuralForecast.predict"]], "predict() (autots.models.prophet.fbprophet method)": [[4, "autots.models.prophet.FBProphet.predict"]], "predict() (autots.models.prophet.neuralprophet method)": [[4, "autots.models.prophet.NeuralProphet.predict"]], "predict() (autots.models.pytorch.pytorchforecasting method)": [[4, "autots.models.pytorch.PytorchForecasting.predict"]], "predict() (autots.models.sklearn.componentanalysis method)": [[4, "autots.models.sklearn.ComponentAnalysis.predict"]], "predict() (autots.models.sklearn.datepartregression method)": [[4, "autots.models.sklearn.DatepartRegression.predict"]], "predict() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.predict"]], "predict() (autots.models.sklearn.preprocessingregression method)": [[4, "autots.models.sklearn.PreprocessingRegression.predict"]], "predict() (autots.models.sklearn.rollingregression method)": [[4, "autots.models.sklearn.RollingRegression.predict"]], "predict() (autots.models.sklearn.univariateregression method)": [[4, "autots.models.sklearn.UnivariateRegression.predict"]], "predict() (autots.models.sklearn.vectorizedmultioutputgpr method)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR.predict"]], "predict() (autots.models.sklearn.windowregression method)": [[4, "autots.models.sklearn.WindowRegression.predict"]], "predict() (autots.models.statsmodels.ardl method)": [[4, "autots.models.statsmodels.ARDL.predict"]], "predict() (autots.models.statsmodels.arima method)": [[4, "autots.models.statsmodels.ARIMA.predict"]], "predict() (autots.models.statsmodels.dynamicfactor method)": [[4, "autots.models.statsmodels.DynamicFactor.predict"]], "predict() (autots.models.statsmodels.dynamicfactormq method)": [[4, "autots.models.statsmodels.DynamicFactorMQ.predict"]], "predict() (autots.models.statsmodels.ets method)": [[4, "autots.models.statsmodels.ETS.predict"]], "predict() (autots.models.statsmodels.glm method)": [[4, "autots.models.statsmodels.GLM.predict"]], "predict() (autots.models.statsmodels.gls method)": [[4, "autots.models.statsmodels.GLS.predict"]], "predict() (autots.models.statsmodels.theta method)": [[4, "autots.models.statsmodels.Theta.predict"]], "predict() (autots.models.statsmodels.unobservedcomponents method)": [[4, "autots.models.statsmodels.UnobservedComponents.predict"]], "predict() (autots.models.statsmodels.var method)": [[4, "autots.models.statsmodels.VAR.predict"]], "predict() (autots.models.statsmodels.varmax method)": [[4, "autots.models.statsmodels.VARMAX.predict"]], "predict() (autots.models.statsmodels.vecm method)": [[4, "autots.models.statsmodels.VECM.predict"]], "predict() (autots.models.tfp.tfpregression method)": [[4, "autots.models.tfp.TFPRegression.predict"]], "predict() (autots.models.tfp.tfpregressor method)": [[4, "autots.models.tfp.TFPRegressor.predict"]], "predict() (autots.models.tfp.tensorflowsts method)": [[4, "autots.models.tfp.TensorflowSTS.predict"]], "predict() (autots.models.tide.tide method)": [[4, "autots.models.tide.TiDE.predict"]], "predict_new_product() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.predict_new_product"]], "predict_proba() (autots.models.sklearn.vectorizedmultioutputgpr method)": [[4, "autots.models.sklearn.VectorizedMultiOutputGPR.predict_proba"]], "predict_reservoir() (in module autots.models.basics)": [[4, "autots.models.basics.predict_reservoir"]], "predict_x_array (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..predict_x_array"]], "predicted_trend (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..predicted_trend"]], "process_components() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.process_components"]], "process_components() (autots.models.basics.tvvar method)": [[4, "autots.models.basics.TVVAR.process_components"]], "process_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.process_components"]], "process_mosaic_arrays() (in module autots.models.ensemble)": [[4, "autots.models.ensemble.process_mosaic_arrays"]], "retrieve_classifier() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.retrieve_classifier"]], "retrieve_regressor() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.retrieve_regressor"]], "return_components() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.return_components"]], "return_components() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.return_components"], [4, "id11"]], "rmse() (in module autots.models.tide)": [[4, "autots.models.tide.rmse"]], "rolling_trend() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.rolling_trend"]], "rolling_x_regressor() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.rolling_x_regressor"]], "rolling_x_regressor_regressor() (in module autots.models.sklearn)": [[4, "autots.models.sklearn.rolling_x_regressor_regressor"]], "rrvar() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.rrvar"]], "sample_posterior() (autots.models.cassandra.bayesianmultioutputregression method)": [[4, "autots.models.cassandra.BayesianMultiOutputRegression.sample_posterior"]], "scale_data() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.scale_data"]], "scale_data() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.scale_data"]], "scale_data() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.scale_data"]], "scores (autots.models.cassandra.cassandra..anomaly_detector attribute)": [[4, "autots.models.cassandra.Cassandra..anomaly_detector.scores"]], "seek_the_oracle() (in module autots.models.greykite)": [[4, "autots.models.greykite.seek_the_oracle"]], "smape() (in module autots.models.tide)": [[4, "autots.models.tide.smape"]], "svt_tnn() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.svt_tnn"]], "ten2mat() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.ten2mat"]], "test_val_gen() (autots.models.tide.timeseriesdata method)": [[4, "autots.models.tide.TimeSeriesdata.test_val_gen"]], "tf_dataset() (autots.models.tide.timeseriesdata method)": [[4, "autots.models.tide.TimeSeriesdata.tf_dataset"]], "time() (autots.models.base.modelobject static method)": [[4, "autots.models.base.ModelObject.time"]], "tmf() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.tmf"]], "to_origin_space() (autots.models.basics.basiclinearmodel method)": [[4, "autots.models.basics.BasicLinearModel.to_origin_space"]], "to_origin_space() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.to_origin_space"]], "to_origin_space() (autots.models.sklearn.multivariateregression method)": [[4, "autots.models.sklearn.MultivariateRegression.to_origin_space"]], "total_runtime() (autots.models.base.predictionobject method)": [[4, "autots.models.base.PredictionObject.total_runtime"], [4, "id4"]], "train_gen() (autots.models.tide.timeseriesdata method)": [[4, "autots.models.tide.TimeSeriesdata.train_gen"]], "transform() (autots.models.sklearn.randomfourierencoding method)": [[4, "autots.models.sklearn.RandomFourierEncoding.transform"]], "transformation_parameters (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.transformation_parameters"]], "transformer_build_model() (in module autots.models.dnn)": [[4, "autots.models.dnn.transformer_build_model"]], "transformer_encoder() (in module autots.models.dnn)": [[4, "autots.models.dnn.transformer_encoder"]], "treatment_causal_impact() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.treatment_causal_impact"]], "trend_analysis() (autots.models.cassandra.cassandra method)": [[4, "autots.models.cassandra.Cassandra.trend_analysis"]], "trend_train (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..trend_train"]], "tune_observational_noise() (autots.models.basics.kalmanstatespace method)": [[4, "autots.models.basics.KalmanStateSpace.tune_observational_noise"]], "update_cg() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.update_cg"]], "upper_forecast (autots.models.base.predictionobject attribute)": [[4, "autots.models.base.PredictionObject.upper_forecast"]], "var() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.var"]], "var4cast() (in module autots.models.matrix_var)": [[4, "autots.models.matrix_var.var4cast"]], "wape() (in module autots.models.tide)": [[4, "autots.models.tide.wape"]], "x_array (autots.models.cassandra.cassandra. attribute)": [[4, "autots.models.cassandra.Cassandra..x_array"]], "autots.templates": [[5, "module-autots.templates"]], "autots.templates.general": [[5, "module-autots.templates.general"]], "general_template (in module autots.templates.general)": [[5, "autots.templates.general.general_template"]], "alignlastdiff (class in autots.tools.transform)": [[6, "autots.tools.transform.AlignLastDiff"]], "alignlastvalue (class in autots.tools.transform)": [[6, "autots.tools.transform.AlignLastValue"]], "anomalyremoval (class in autots.tools.transform)": [[6, "autots.tools.transform.AnomalyRemoval"]], "bkbandpassfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.BKBandpassFilter"]], "btcd (class in autots.tools.transform)": [[6, "autots.tools.transform.BTCD"]], "centerlastvalue (class in autots.tools.transform)": [[6, "autots.tools.transform.CenterLastValue"]], "centersplit (class in autots.tools.transform)": [[6, "autots.tools.transform.CenterSplit"]], "changepointdetrend (class in autots.tools.transform)": [[6, "autots.tools.transform.ChangepointDetrend"]], "clipoutliers (class in autots.tools.transform)": [[6, "autots.tools.transform.ClipOutliers"]], "cointegration (class in autots.tools.transform)": [[6, "autots.tools.transform.Cointegration"]], "constraint (class in autots.tools.transform)": [[6, "autots.tools.transform.Constraint"]], "cumsumtransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.CumSumTransformer"]], "datepartregression (in module autots.tools.transform)": [[6, "autots.tools.transform.DatepartRegression"]], "datepartregressiontransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.DatepartRegressionTransformer"]], "detrend (class in autots.tools.transform)": [[6, "autots.tools.transform.Detrend"]], "diffsmoother (class in autots.tools.transform)": [[6, "autots.tools.transform.DiffSmoother"]], "differencedtransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.DifferencedTransformer"]], "discretize (class in autots.tools.transform)": [[6, "autots.tools.transform.Discretize"]], "ewmafilter (class in autots.tools.transform)": [[6, "autots.tools.transform.EWMAFilter"]], "emptytransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.EmptyTransformer"]], "fft (class in autots.tools.fft)": [[6, "autots.tools.fft.FFT"]], "fftdecomposition (class in autots.tools.transform)": [[6, "autots.tools.transform.FFTDecomposition"]], "fftfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.FFTFilter"]], "firfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.FIRFilter"]], "fastica (class in autots.tools.transform)": [[6, "autots.tools.transform.FastICA"]], "fillna() (in module autots.tools.impute)": [[6, "autots.tools.impute.FillNA"]], "gaussian (class in autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.Gaussian"]], "generaltransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.GeneralTransformer"]], "hpfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.HPFilter"]], "historicvalues (class in autots.tools.transform)": [[6, "autots.tools.transform.HistoricValues"]], "holidaytransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.HolidayTransformer"]], "intermittentoccurrence (class in autots.tools.transform)": [[6, "autots.tools.transform.IntermittentOccurrence"]], "kalmanfilter (class in autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.KalmanFilter"]], "kalmanfilter.result (class in autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.KalmanFilter.Result"]], "kalmansmoothing (class in autots.tools.transform)": [[6, "autots.tools.transform.KalmanSmoothing"]], "levelshiftmagic (class in autots.tools.transform)": [[6, "autots.tools.transform.LevelShiftMagic"]], "levelshifttransformer (in module autots.tools.transform)": [[6, "autots.tools.transform.LevelShiftTransformer"]], "locallineartrend (class in autots.tools.transform)": [[6, "autots.tools.transform.LocalLinearTrend"]], "meandifference (class in autots.tools.transform)": [[6, "autots.tools.transform.MeanDifference"]], "meanpercentsplitter (class in autots.tools.transform)": [[6, "autots.tools.transform.MeanPercentSplitter"]], "nonparametricthreshold (class in autots.tools.thresholding)": [[6, "autots.tools.thresholding.NonparametricThreshold"]], "numerictransformer (class in autots.tools.shaping)": [[6, "autots.tools.shaping.NumericTransformer"]], "pca (class in autots.tools.transform)": [[6, "autots.tools.transform.PCA"]], "pctchangetransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.PctChangeTransformer"]], "point_to_probability() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.Point_to_Probability"]], "positiveshift (class in autots.tools.transform)": [[6, "autots.tools.transform.PositiveShift"]], "randomtransform() (in module autots.tools.transform)": [[6, "autots.tools.transform.RandomTransform"]], "regressionfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.RegressionFilter"]], "replaceconstant (class in autots.tools.transform)": [[6, "autots.tools.transform.ReplaceConstant"]], "rollingmeantransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.RollingMeanTransformer"]], "round (class in autots.tools.transform)": [[6, "autots.tools.transform.Round"]], "stlfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.STLFilter"]], "scipyfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.ScipyFilter"]], "seasonaldifference (class in autots.tools.transform)": [[6, "autots.tools.transform.SeasonalDifference"]], "seasonalitymotifimputer (class in autots.tools.impute)": [[6, "autots.tools.impute.SeasonalityMotifImputer"]], "shiftfirstvalue (class in autots.tools.transform)": [[6, "autots.tools.transform.ShiftFirstValue"]], "simpleseasonalitymotifimputer (class in autots.tools.impute)": [[6, "autots.tools.impute.SimpleSeasonalityMotifImputer"]], "sintrend (class in autots.tools.transform)": [[6, "autots.tools.transform.SinTrend"]], "slice (class in autots.tools.transform)": [[6, "autots.tools.transform.Slice"]], "standardscaler (class in autots.tools.transform)": [[6, "autots.tools.transform.StandardScaler"]], "statsmodelsfilter (class in autots.tools.transform)": [[6, "autots.tools.transform.StatsmodelsFilter"]], "thetatransformer (class in autots.tools.transform)": [[6, "autots.tools.transform.ThetaTransformer"]], "variable_point_to_probability() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.Variable_Point_to_Probability"]], "anomaly_df_to_holidays() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.anomaly_df_to_holidays"]], "anomaly_new_params() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.anomaly_new_params"]], "apply_constraint_single() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.apply_constraint_single"]], "apply_fir_filter_time_domain() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.apply_fir_filter_time_domain"]], "apply_fir_filter_to_timeseries() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.apply_fir_filter_to_timeseries"]], "apply_fit_constraint() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.apply_fit_constraint"]], "autoshape() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.autoshape"]], "autots.tools": [[6, "module-autots.tools"]], "autots.tools.anomaly_utils": [[6, "module-autots.tools.anomaly_utils"]], "autots.tools.calendar": [[6, "module-autots.tools.calendar"]], "autots.tools.cointegration": [[6, "module-autots.tools.cointegration"]], "autots.tools.constraint": [[6, "module-autots.tools.constraint"]], "autots.tools.cpu_count": [[6, "module-autots.tools.cpu_count"]], "autots.tools.fast_kalman": [[6, "module-autots.tools.fast_kalman"]], "autots.tools.fft": [[6, "module-autots.tools.fft"]], "autots.tools.fir_filter": [[6, "module-autots.tools.fir_filter"]], "autots.tools.hierarchial": [[6, "module-autots.tools.hierarchial"]], "autots.tools.holiday": [[6, "module-autots.tools.holiday"]], "autots.tools.impute": [[6, "module-autots.tools.impute"]], "autots.tools.lunar": [[6, "module-autots.tools.lunar"]], "autots.tools.percentile": [[6, "module-autots.tools.percentile"]], "autots.tools.probabilistic": [[6, "module-autots.tools.probabilistic"]], "autots.tools.profile": [[6, "module-autots.tools.profile"]], "autots.tools.regressor": [[6, "module-autots.tools.regressor"]], "autots.tools.seasonal": [[6, "module-autots.tools.seasonal"]], "autots.tools.shaping": [[6, "module-autots.tools.shaping"]], "autots.tools.thresholding": [[6, "module-autots.tools.thresholding"]], "autots.tools.transform": [[6, "module-autots.tools.transform"]], "autots.tools.wavelet": [[6, "module-autots.tools.wavelet"]], "autots.tools.window_functions": [[6, "module-autots.tools.window_functions"]], "biased_ffill() (in module autots.tools.impute)": [[6, "autots.tools.impute.biased_ffill"]], "bkfilter() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.bkfilter"]], "bkfilter_st() (in module autots.tools.transform)": [[6, "autots.tools.transform.bkfilter_st"]], "btcd_decompose() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.btcd_decompose"]], "cffilter() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.cffilter"]], "changepoint_fcst_from_last_row() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.changepoint_fcst_from_last_row"]], "chunk_reshape() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.chunk_reshape"]], "clean_weights() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.clean_weights"]], "clip_outliers() (in module autots.tools.transform)": [[6, "autots.tools.transform.clip_outliers"]], "coint_johansen() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.coint_johansen"]], "compare_to_epsilon() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.compare_to_epsilon"]], "compute() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.compute"]], "consecutive_groups() (in module autots.tools.thresholding)": [[6, "autots.tools.thresholding.consecutive_groups"]], "constant_growth_rate() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.constant_growth_rate"]], "constraint_new_params() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.constraint_new_params"]], "continuous_db2_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.continuous_db2_wavelet"]], "convolution_filter() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.convolution_filter"]], "cpu_count() (in module autots.tools.cpu_count)": [[6, "autots.tools.cpu_count.cpu_count"]], "create_changepoint_features() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.create_changepoint_features"]], "create_datepart_components() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.create_datepart_components"]], "create_dates_df() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.create_dates_df"]], "create_daubechies_db2_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_daubechies_db2_wavelet"]], "create_gaussian_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_gaussian_wavelet"]], "create_haar_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_haar_wavelet"]], "create_lagged_regressor() (in module autots.tools.regressor)": [[6, "autots.tools.regressor.create_lagged_regressor"]], "create_mexican_hat_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_mexican_hat_wavelet"]], "create_morlet_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_morlet_wavelet"]], "create_narrowing_wavelets() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_narrowing_wavelets"]], "create_real_morlet_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_real_morlet_wavelet"]], "create_regressor() (in module autots.tools.regressor)": [[6, "autots.tools.regressor.create_regressor"]], "create_seasonality_feature() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.create_seasonality_feature"]], "create_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.create_wavelet"]], "data_profile() (in module autots.tools.profile)": [[6, "autots.tools.profile.data_profile"]], "date_part() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.date_part"]], "dates_to_holidays() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.dates_to_holidays"]], "dates_to_holidays() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.dates_to_holidays"]], "dcos() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.dcos"]], "ddot() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ddot"]], "ddot_t_right() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ddot_t_right"]], "ddot_t_right_old() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ddot_t_right_old"]], "detect_anomalies() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.detect_anomalies"]], "df_cleanup() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.df_cleanup"]], "dinv() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.dinv"]], "douter() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.douter"]], "dsin() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.dsin"]], "em() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.em"]], "em_initial_state() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.em_initial_state"]], "em_observation_noise() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.em_observation_noise"]], "em_process_noise() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.em_process_noise"]], "empty() (autots.tools.fast_kalman.gaussian static method)": [[6, "autots.tools.fast_kalman.Gaussian.empty"]], "ensure_matrix() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ensure_matrix"]], "ensure_stability() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.ensure_stability"]], "exponential_decay() (in module autots.tools.transform)": [[6, "autots.tools.transform.exponential_decay"]], "fake_date_fill() (in module autots.tools.impute)": [[6, "autots.tools.impute.fake_date_fill"]], "fake_date_fill_old() (in module autots.tools.impute)": [[6, "autots.tools.impute.fake_date_fill_old"]], "fft_fir_filter_to_timeseries() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.fft_fir_filter_to_timeseries"]], "fill_forward() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_forward"]], "fill_forward_alt() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_forward_alt"]], "fill_mean() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_mean"]], "fill_mean_old() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_mean_old"]], "fill_median() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_median"]], "fill_median_old() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_median_old"]], "fill_na() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.fill_na"]], "fill_one() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_one"]], "fill_zero() (in module autots.tools.impute)": [[6, "autots.tools.impute.fill_zero"]], "fillna_np() (in module autots.tools.impute)": [[6, "autots.tools.impute.fillna_np"]], "filter() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.filter"]], "filter() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.filter"]], "find_centerpoint() (autots.tools.transform.alignlastvalue static method)": [[6, "autots.tools.transform.AlignLastValue.find_centerpoint"]], "find_epsilon() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.find_epsilon"]], "fit() (autots.tools.fft.fft method)": [[6, "autots.tools.fft.FFT.fit"]], "fit() (autots.tools.hierarchial.hierarchial method)": [[6, "autots.tools.hierarchial.hierarchial.fit"]], "fit() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.fit"]], "fit() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.fit"]], "fit() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.fit"]], "fit() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.fit"]], "fit() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.fit"]], "fit() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.fit"]], "fit() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.fit"]], "fit() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.fit"]], "fit() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.fit"]], "fit() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.fit"]], "fit() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.fit"]], "fit() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.fit"]], "fit() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.fit"]], "fit() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.fit"]], "fit() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.fit"]], "fit() (autots.tools.transform.diffsmoother method)": [[6, "autots.tools.transform.DiffSmoother.fit"]], "fit() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.fit"]], "fit() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.fit"]], "fit() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.fit"]], "fit() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.fit"]], "fit() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.fit"]], "fit() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.fit"]], "fit() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.fit"]], "fit() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.fit"]], "fit() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.fit"]], "fit() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.fit"]], "fit() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.fit"]], "fit() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.fit"]], "fit() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.fit"]], "fit() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.fit"]], "fit() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.fit"]], "fit() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.fit"]], "fit() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.fit"]], "fit() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.fit"]], "fit() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.fit"]], "fit() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.fit"]], "fit() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.fit"]], "fit() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.fit"]], "fit() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.fit"]], "fit() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.fit"]], "fit() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.fit"]], "fit() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.fit"]], "fit() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.fit"]], "fit() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.fit"]], "fit() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.fit"]], "fit() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.fit"]], "fit_anomaly_classifier() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.fit_anomaly_classifier"]], "fit_constraint() (in module autots.tools.constraint)": [[6, "autots.tools.constraint.fit_constraint"]], "fit_sin() (autots.tools.transform.sintrend static method)": [[6, "autots.tools.transform.SinTrend.fit_sin"]], "fit_transform() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.fit_transform"]], "fit_transform() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.fit_transform"]], "fit_transform() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.fit_transform"]], "fit_transform() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.fit_transform"]], "fit_transform() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.fit_transform"]], "fit_transform() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.fit_transform"]], "fit_transform() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.fit_transform"]], "fit_transform() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.fit_transform"]], "fit_transform() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.fit_transform"]], "fit_transform() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.fit_transform"]], "fit_transform() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.fit_transform"]], "fit_transform() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.fit_transform"]], "fit_transform() (autots.tools.transform.diffsmoother method)": [[6, "autots.tools.transform.DiffSmoother.fit_transform"]], "fit_transform() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.fit_transform"]], "fit_transform() (autots.tools.transform.ewmafilter method)": [[6, "autots.tools.transform.EWMAFilter.fit_transform"]], "fit_transform() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.fit_transform"]], "fit_transform() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.fit_transform"]], "fit_transform() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.fit_transform"]], "fit_transform() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.fit_transform"]], "fit_transform() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.hpfilter method)": [[6, "autots.tools.transform.HPFilter.fit_transform"]], "fit_transform() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.fit_transform"]], "fit_transform() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.fit_transform"]], "fit_transform() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.fit_transform"]], "fit_transform() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.fit_transform"]], "fit_transform() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.fit_transform"]], "fit_transform() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.fit_transform"]], "fit_transform() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.fit_transform"]], "fit_transform() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.fit_transform"]], "fit_transform() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.fit_transform"]], "fit_transform() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.fit_transform"]], "fit_transform() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.fit_transform"]], "fit_transform() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.fit_transform"]], "fit_transform() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.fit_transform"]], "fit_transform() (autots.tools.transform.stlfilter method)": [[6, "autots.tools.transform.STLFilter.fit_transform"]], "fit_transform() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.fit_transform"]], "fit_transform() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.fit_transform"]], "fit_transform() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.fit_transform"]], "fit_transform() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.fit_transform"]], "fit_transform() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.fit_transform"]], "fit_transform() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.fit_transform"]], "fit_transform() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.fit_transform"]], "fit_transform() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.fit_transform"]], "fixangle() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.fixangle"]], "fourier_df() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.fourier_df"]], "fourier_extrapolation() (in module autots.tools.fft)": [[6, "autots.tools.fft.fourier_extrapolation"]], "fourier_series() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.fourier_series"]], "fourier_series() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.fourier_series"]], "freq_to_timedelta() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.freq_to_timedelta"]], "gaussian_mixture() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.gaussian_mixture"]], "generate_harmonics_dataframe() (autots.tools.fft.fft method)": [[6, "autots.tools.fft.FFT.generate_harmonics_dataframe"]], "generate_random_fir_params() (in module autots.tools.fir_filter)": [[6, "autots.tools.fir_filter.generate_random_fir_params"]], "get_new_params() (autots.tools.transform.alignlastdiff static method)": [[6, "autots.tools.transform.AlignLastDiff.get_new_params"]], "get_new_params() (autots.tools.transform.alignlastvalue static method)": [[6, "autots.tools.transform.AlignLastValue.get_new_params"]], "get_new_params() (autots.tools.transform.anomalyremoval static method)": [[6, "autots.tools.transform.AnomalyRemoval.get_new_params"]], "get_new_params() (autots.tools.transform.bkbandpassfilter static method)": [[6, "autots.tools.transform.BKBandpassFilter.get_new_params"]], "get_new_params() (autots.tools.transform.btcd static method)": [[6, "autots.tools.transform.BTCD.get_new_params"]], "get_new_params() (autots.tools.transform.centerlastvalue static method)": [[6, "autots.tools.transform.CenterLastValue.get_new_params"]], "get_new_params() (autots.tools.transform.centersplit static method)": [[6, "autots.tools.transform.CenterSplit.get_new_params"]], "get_new_params() (autots.tools.transform.changepointdetrend static method)": [[6, "autots.tools.transform.ChangepointDetrend.get_new_params"]], "get_new_params() (autots.tools.transform.clipoutliers static method)": [[6, "autots.tools.transform.ClipOutliers.get_new_params"]], "get_new_params() (autots.tools.transform.cointegration static method)": [[6, "autots.tools.transform.Cointegration.get_new_params"]], "get_new_params() (autots.tools.transform.constraint static method)": [[6, "autots.tools.transform.Constraint.get_new_params"]], "get_new_params() (autots.tools.transform.datepartregressiontransformer static method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.detrend static method)": [[6, "autots.tools.transform.Detrend.get_new_params"]], "get_new_params() (autots.tools.transform.diffsmoother static method)": [[6, "autots.tools.transform.DiffSmoother.get_new_params"]], "get_new_params() (autots.tools.transform.differencedtransformer static method)": [[6, "autots.tools.transform.DifferencedTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.discretize static method)": [[6, "autots.tools.transform.Discretize.get_new_params"]], "get_new_params() (autots.tools.transform.ewmafilter static method)": [[6, "autots.tools.transform.EWMAFilter.get_new_params"]], "get_new_params() (autots.tools.transform.emptytransformer static method)": [[6, "autots.tools.transform.EmptyTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.fftdecomposition static method)": [[6, "autots.tools.transform.FFTDecomposition.get_new_params"]], "get_new_params() (autots.tools.transform.fftfilter static method)": [[6, "autots.tools.transform.FFTFilter.get_new_params"]], "get_new_params() (autots.tools.transform.firfilter static method)": [[6, "autots.tools.transform.FIRFilter.get_new_params"]], "get_new_params() (autots.tools.transform.fastica static method)": [[6, "autots.tools.transform.FastICA.get_new_params"]], "get_new_params() (autots.tools.transform.generaltransformer static method)": [[6, "autots.tools.transform.GeneralTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.hpfilter static method)": [[6, "autots.tools.transform.HPFilter.get_new_params"]], "get_new_params() (autots.tools.transform.historicvalues static method)": [[6, "autots.tools.transform.HistoricValues.get_new_params"]], "get_new_params() (autots.tools.transform.holidaytransformer static method)": [[6, "autots.tools.transform.HolidayTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.intermittentoccurrence static method)": [[6, "autots.tools.transform.IntermittentOccurrence.get_new_params"]], "get_new_params() (autots.tools.transform.kalmansmoothing static method)": [[6, "autots.tools.transform.KalmanSmoothing.get_new_params"]], "get_new_params() (autots.tools.transform.levelshiftmagic static method)": [[6, "autots.tools.transform.LevelShiftMagic.get_new_params"]], "get_new_params() (autots.tools.transform.locallineartrend static method)": [[6, "autots.tools.transform.LocalLinearTrend.get_new_params"]], "get_new_params() (autots.tools.transform.meanpercentsplitter static method)": [[6, "autots.tools.transform.MeanPercentSplitter.get_new_params"]], "get_new_params() (autots.tools.transform.pca static method)": [[6, "autots.tools.transform.PCA.get_new_params"]], "get_new_params() (autots.tools.transform.regressionfilter static method)": [[6, "autots.tools.transform.RegressionFilter.get_new_params"]], "get_new_params() (autots.tools.transform.replaceconstant static method)": [[6, "autots.tools.transform.ReplaceConstant.get_new_params"]], "get_new_params() (autots.tools.transform.rollingmeantransformer static method)": [[6, "autots.tools.transform.RollingMeanTransformer.get_new_params"]], "get_new_params() (autots.tools.transform.round static method)": [[6, "autots.tools.transform.Round.get_new_params"]], "get_new_params() (autots.tools.transform.stlfilter static method)": [[6, "autots.tools.transform.STLFilter.get_new_params"]], "get_new_params() (autots.tools.transform.scipyfilter static method)": [[6, "autots.tools.transform.ScipyFilter.get_new_params"]], "get_new_params() (autots.tools.transform.seasonaldifference static method)": [[6, "autots.tools.transform.SeasonalDifference.get_new_params"]], "get_new_params() (autots.tools.transform.shiftfirstvalue static method)": [[6, "autots.tools.transform.ShiftFirstValue.get_new_params"]], "get_new_params() (autots.tools.transform.sintrend static method)": [[6, "autots.tools.transform.SinTrend.get_new_params"]], "get_new_params() (autots.tools.transform.slice static method)": [[6, "autots.tools.transform.Slice.get_new_params"]], "get_new_params() (autots.tools.transform.thetatransformer static method)": [[6, "autots.tools.transform.ThetaTransformer.get_new_params"]], "get_transformer_params() (in module autots.tools.transform)": [[6, "autots.tools.transform.get_transformer_params"]], "gregorian_to_chinese() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_chinese"]], "gregorian_to_christian_lunar() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_christian_lunar"]], "gregorian_to_hebrew() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_hebrew"]], "gregorian_to_hindu() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_hindu"]], "gregorian_to_islamic() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.gregorian_to_islamic"]], "half_yr_spacing() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.half_yr_spacing"]], "heb_is_leap() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.heb_is_leap"]], "hierarchial (class in autots.tools.hierarchial)": [[6, "autots.tools.hierarchial.hierarchial"]], "historic_quantile() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.historic_quantile"]], "holiday_flag() (in module autots.tools.holiday)": [[6, "autots.tools.holiday.holiday_flag"]], "holiday_new_params() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.holiday_new_params"]], "holt_winters_damped_matrices() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.holt_winters_damped_matrices"]], "impute() (autots.tools.impute.seasonalitymotifimputer method)": [[6, "autots.tools.impute.SeasonalityMotifImputer.impute"]], "impute() (autots.tools.impute.simpleseasonalitymotifimputer method)": [[6, "autots.tools.impute.SimpleSeasonalityMotifImputer.impute"]], "impute() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.impute"]], "infer_frequency() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.infer_frequency"]], "inferred_normal() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.inferred_normal"]], "inverse_transform() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.inverse_transform"]], "inverse_transform() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.inverse_transform"]], "inverse_transform() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.inverse_transform"]], "inverse_transform() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.inverse_transform"]], "inverse_transform() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.inverse_transform"]], "inverse_transform() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.inverse_transform"]], "inverse_transform() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.inverse_transform"]], "inverse_transform() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.inverse_transform"]], "inverse_transform() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.inverse_transform"]], "inverse_transform() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.inverse_transform"]], "inverse_transform() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.inverse_transform"]], "inverse_transform() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.inverse_transform"]], "inverse_transform() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.inverse_transform"]], "inverse_transform() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.inverse_transform"]], "inverse_transform() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.inverse_transform"]], "inverse_transform() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.inverse_transform"]], "inverse_transform() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.inverse_transform"]], "inverse_transform() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.inverse_transform"]], "inverse_transform() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.inverse_transform"]], "inverse_transform() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.inverse_transform"]], "inverse_transform() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.inverse_transform"]], "inverse_transform() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.inverse_transform"]], "inverse_transform() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.inverse_transform"]], "inverse_transform() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.inverse_transform"]], "inverse_transform() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.inverse_transform"]], "inverse_transform() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.inverse_transform"]], "inverse_transform() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.inverse_transform"]], "inverse_transform() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.inverse_transform"]], "inverse_transform() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.inverse_transform"]], "inverse_transform() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.inverse_transform"]], "kepler() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.kepler"]], "lagmat() (in module autots.tools.cointegration)": [[6, "autots.tools.cointegration.lagmat"]], "last_window() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.last_window"]], "limits_to_anomalies() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.limits_to_anomalies"]], "long_to_wide() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.long_to_wide"]], "loop_sk_outliers() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.loop_sk_outliers"]], "lunar_from_lunar() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.lunar_from_lunar"]], "lunar_from_lunar_full() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.lunar_from_lunar_full"]], "moon_phase() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.moon_phase"]], "moon_phase_df() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.moon_phase_df"]], "nan_percentile() (in module autots.tools.percentile)": [[6, "autots.tools.percentile.nan_percentile"]], "nan_quantile() (in module autots.tools.percentile)": [[6, "autots.tools.percentile.nan_quantile"]], "new_kalman_params() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.new_kalman_params"]], "nonparametric() (in module autots.tools.thresholding)": [[6, "autots.tools.thresholding.nonparametric"]], "nonparametric_multivariate() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.nonparametric_multivariate"]], "np_2d_arange() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.np_2d_arange"]], "offset_wavelet() (in module autots.tools.wavelet)": [[6, "autots.tools.wavelet.offset_wavelet"]], "percentileofscore_appliable() (in module autots.tools.probabilistic)": [[6, "autots.tools.probabilistic.percentileofscore_appliable"]], "phase_string() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.phase_string"]], "predict() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.predict"]], "predict() (autots.tools.fft.fft method)": [[6, "autots.tools.fft.FFT.predict"]], "predict() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.predict"]], "predict_next() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.predict_next"]], "predict_observation() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.predict_observation"]], "predict_observation() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.predict_observation"]], "priv_smooth() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.priv_smooth"]], "priv_update_with_nan_check() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.priv_update_with_nan_check"]], "profile_time_series() (in module autots.tools.profile)": [[6, "autots.tools.profile.profile_time_series"]], "prune_anoms() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.prune_anoms"]], "query_holidays() (in module autots.tools.holiday)": [[6, "autots.tools.holiday.query_holidays"]], "random_cleaners() (in module autots.tools.transform)": [[6, "autots.tools.transform.random_cleaners"]], "random_datepart() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.random_datepart"]], "random_matrix() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.random_matrix"]], "random_state_space() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.random_state_space"]], "random_state_space_original() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.random_state_space_original"]], "reconcile() (autots.tools.hierarchial.hierarchial method)": [[6, "autots.tools.hierarchial.hierarchial.reconcile"]], "remove_outliers() (in module autots.tools.transform)": [[6, "autots.tools.transform.remove_outliers"]], "retrieve_closest_indices() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.retrieve_closest_indices"]], "retrieve_transformer() (autots.tools.transform.generaltransformer class method)": [[6, "autots.tools.transform.GeneralTransformer.retrieve_transformer"]], "rolling_mean() (in module autots.tools.impute)": [[6, "autots.tools.impute.rolling_mean"]], "rolling_window_view() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.rolling_window_view"]], "score_anomalies() (autots.tools.thresholding.nonparametricthreshold method)": [[6, "autots.tools.thresholding.NonparametricThreshold.score_anomalies"]], "score_to_anomaly() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.score_to_anomaly"]], "seasonal_independent_match() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_independent_match"]], "seasonal_int() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_int"]], "seasonal_repeating_wavelet() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_repeating_wavelet"]], "seasonal_window_match() (in module autots.tools.seasonal)": [[6, "autots.tools.seasonal.seasonal_window_match"]], "set_n_jobs() (in module autots.tools.cpu_count)": [[6, "autots.tools.cpu_count.set_n_jobs"]], "simple_context_slicer() (in module autots.tools.transform)": [[6, "autots.tools.transform.simple_context_slicer"]], "simple_train_test_split() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.simple_train_test_split"]], "sk_outliers() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.sk_outliers"]], "sliding_window_view() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.sliding_window_view"]], "smooth() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.smooth"]], "smooth() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.smooth"]], "smooth_current() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.smooth_current"]], "split_digits_and_non_digits() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.split_digits_and_non_digits"]], "stable_pinv() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.stable_pinv"]], "subset_series() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.subset_series"]], "summarize_series() (in module autots.tools.profile)": [[6, "autots.tools.profile.summarize_series"]], "to_jd() (in module autots.tools.calendar)": [[6, "autots.tools.calendar.to_jd"]], "todeg() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.todeg"]], "torad() (in module autots.tools.lunar)": [[6, "autots.tools.lunar.torad"]], "transform() (autots.tools.hierarchial.hierarchial method)": [[6, "autots.tools.hierarchial.hierarchial.transform"]], "transform() (autots.tools.shaping.numerictransformer method)": [[6, "autots.tools.shaping.NumericTransformer.transform"]], "transform() (autots.tools.transform.alignlastdiff method)": [[6, "autots.tools.transform.AlignLastDiff.transform"]], "transform() (autots.tools.transform.alignlastvalue method)": [[6, "autots.tools.transform.AlignLastValue.transform"]], "transform() (autots.tools.transform.anomalyremoval method)": [[6, "autots.tools.transform.AnomalyRemoval.transform"]], "transform() (autots.tools.transform.bkbandpassfilter method)": [[6, "autots.tools.transform.BKBandpassFilter.transform"]], "transform() (autots.tools.transform.btcd method)": [[6, "autots.tools.transform.BTCD.transform"]], "transform() (autots.tools.transform.centerlastvalue method)": [[6, "autots.tools.transform.CenterLastValue.transform"]], "transform() (autots.tools.transform.centersplit method)": [[6, "autots.tools.transform.CenterSplit.transform"]], "transform() (autots.tools.transform.changepointdetrend method)": [[6, "autots.tools.transform.ChangepointDetrend.transform"]], "transform() (autots.tools.transform.clipoutliers method)": [[6, "autots.tools.transform.ClipOutliers.transform"]], "transform() (autots.tools.transform.cointegration method)": [[6, "autots.tools.transform.Cointegration.transform"]], "transform() (autots.tools.transform.constraint method)": [[6, "autots.tools.transform.Constraint.transform"]], "transform() (autots.tools.transform.cumsumtransformer method)": [[6, "autots.tools.transform.CumSumTransformer.transform"]], "transform() (autots.tools.transform.datepartregressiontransformer method)": [[6, "autots.tools.transform.DatepartRegressionTransformer.transform"]], "transform() (autots.tools.transform.detrend method)": [[6, "autots.tools.transform.Detrend.transform"]], "transform() (autots.tools.transform.diffsmoother method)": [[6, "autots.tools.transform.DiffSmoother.transform"]], "transform() (autots.tools.transform.differencedtransformer method)": [[6, "autots.tools.transform.DifferencedTransformer.transform"]], "transform() (autots.tools.transform.discretize method)": [[6, "autots.tools.transform.Discretize.transform"]], "transform() (autots.tools.transform.ewmafilter method)": [[6, "autots.tools.transform.EWMAFilter.transform"]], "transform() (autots.tools.transform.emptytransformer method)": [[6, "autots.tools.transform.EmptyTransformer.transform"]], "transform() (autots.tools.transform.fftdecomposition method)": [[6, "autots.tools.transform.FFTDecomposition.transform"]], "transform() (autots.tools.transform.fftfilter method)": [[6, "autots.tools.transform.FFTFilter.transform"]], "transform() (autots.tools.transform.firfilter method)": [[6, "autots.tools.transform.FIRFilter.transform"]], "transform() (autots.tools.transform.fastica method)": [[6, "autots.tools.transform.FastICA.transform"]], "transform() (autots.tools.transform.generaltransformer method)": [[6, "autots.tools.transform.GeneralTransformer.transform"]], "transform() (autots.tools.transform.hpfilter method)": [[6, "autots.tools.transform.HPFilter.transform"]], "transform() (autots.tools.transform.historicvalues method)": [[6, "autots.tools.transform.HistoricValues.transform"]], "transform() (autots.tools.transform.holidaytransformer method)": [[6, "autots.tools.transform.HolidayTransformer.transform"]], "transform() (autots.tools.transform.intermittentoccurrence method)": [[6, "autots.tools.transform.IntermittentOccurrence.transform"]], "transform() (autots.tools.transform.kalmansmoothing method)": [[6, "autots.tools.transform.KalmanSmoothing.transform"]], "transform() (autots.tools.transform.levelshiftmagic method)": [[6, "autots.tools.transform.LevelShiftMagic.transform"]], "transform() (autots.tools.transform.locallineartrend method)": [[6, "autots.tools.transform.LocalLinearTrend.transform"]], "transform() (autots.tools.transform.meandifference method)": [[6, "autots.tools.transform.MeanDifference.transform"]], "transform() (autots.tools.transform.meanpercentsplitter method)": [[6, "autots.tools.transform.MeanPercentSplitter.transform"]], "transform() (autots.tools.transform.pca method)": [[6, "autots.tools.transform.PCA.transform"]], "transform() (autots.tools.transform.pctchangetransformer method)": [[6, "autots.tools.transform.PctChangeTransformer.transform"]], "transform() (autots.tools.transform.positiveshift method)": [[6, "autots.tools.transform.PositiveShift.transform"]], "transform() (autots.tools.transform.regressionfilter method)": [[6, "autots.tools.transform.RegressionFilter.transform"]], "transform() (autots.tools.transform.replaceconstant method)": [[6, "autots.tools.transform.ReplaceConstant.transform"]], "transform() (autots.tools.transform.rollingmeantransformer method)": [[6, "autots.tools.transform.RollingMeanTransformer.transform"]], "transform() (autots.tools.transform.round method)": [[6, "autots.tools.transform.Round.transform"]], "transform() (autots.tools.transform.stlfilter method)": [[6, "autots.tools.transform.STLFilter.transform"]], "transform() (autots.tools.transform.scipyfilter method)": [[6, "autots.tools.transform.ScipyFilter.transform"]], "transform() (autots.tools.transform.seasonaldifference method)": [[6, "autots.tools.transform.SeasonalDifference.transform"]], "transform() (autots.tools.transform.shiftfirstvalue method)": [[6, "autots.tools.transform.ShiftFirstValue.transform"]], "transform() (autots.tools.transform.sintrend method)": [[6, "autots.tools.transform.SinTrend.transform"]], "transform() (autots.tools.transform.slice method)": [[6, "autots.tools.transform.Slice.transform"]], "transform() (autots.tools.transform.standardscaler method)": [[6, "autots.tools.transform.StandardScaler.transform"]], "transform() (autots.tools.transform.statsmodelsfilter method)": [[6, "autots.tools.transform.StatsmodelsFilter.transform"]], "transform() (autots.tools.transform.thetatransformer method)": [[6, "autots.tools.transform.ThetaTransformer.transform"]], "transformer_list_to_dict() (in module autots.tools.transform)": [[6, "autots.tools.transform.transformer_list_to_dict"]], "trimmed_mean() (in module autots.tools.percentile)": [[6, "autots.tools.percentile.trimmed_mean"]], "unvectorize_state() (autots.tools.fast_kalman.gaussian method)": [[6, "autots.tools.fast_kalman.Gaussian.unvectorize_state"]], "unvectorize_vars() (autots.tools.fast_kalman.gaussian method)": [[6, "autots.tools.fast_kalman.Gaussian.unvectorize_vars"]], "update() (autots.tools.fast_kalman.kalmanfilter method)": [[6, "autots.tools.fast_kalman.KalmanFilter.update"]], "update() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.update"]], "update_with_nan_check() (in module autots.tools.fast_kalman)": [[6, "autots.tools.fast_kalman.update_with_nan_check"]], "values_to_anomalies() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.values_to_anomalies"]], "wide_to_3d() (in module autots.tools.shaping)": [[6, "autots.tools.shaping.wide_to_3d"]], "window_id_maker() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_id_maker"]], "window_lin_reg() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_lin_reg"]], "window_lin_reg_mean() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_lin_reg_mean"]], "window_lin_reg_mean_no_nan() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_lin_reg_mean_no_nan"]], "window_maker() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_maker"]], "window_maker_2() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_maker_2"]], "window_maker_3() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_maker_3"]], "window_sum_mean() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_sum_mean"]], "window_sum_mean_nan_tail() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_sum_mean_nan_tail"]], "window_sum_nan_mean() (in module autots.tools.window_functions)": [[6, "autots.tools.window_functions.window_sum_nan_mean"]], "zscore_survival_function() (in module autots.tools.anomaly_utils)": [[6, "autots.tools.anomaly_utils.zscore_survival_function"]]}}) \ No newline at end of file diff --git a/docs/build/html/source/autots.datasets.html b/docs/build/html/source/autots.datasets.html index d4a9f100..99256aa9 100644 --- a/docs/build/html/source/autots.datasets.html +++ b/docs/build/html/source/autots.datasets.html @@ -14,10 +14,10 @@ gtag('config', 'G-P2KLF8302E'); - autots.datasets package — AutoTS 0.6.16 documentation + autots.datasets package — AutoTS 0.6.17 documentation - + diff --git a/docs/build/html/source/autots.evaluator.html b/docs/build/html/source/autots.evaluator.html index 04144b81..d7657a6e 100644 --- a/docs/build/html/source/autots.evaluator.html +++ b/docs/build/html/source/autots.evaluator.html @@ -14,10 +14,10 @@ gtag('config', 'G-P2KLF8302E'); - autots.evaluator package — AutoTS 0.6.16 documentation + autots.evaluator package — AutoTS 0.6.17 documentation - + @@ -1966,7 +1966,7 @@

    Submodules
    -autots.evaluator.validation.validate_num_validations(validation_method, num_validations, df_wide_numeric, forecast_length, min_allowed_train_percent=0.5, verbose=0)
    +autots.evaluator.validation.validate_num_validations(validation_method='backwards', num_validations=2, df_wide_numeric=None, forecast_length=None, min_allowed_train_percent=0.5, verbose=0)

    jPL9ob1%oR#a@td@Xy*d$i$3^$odtdK zH*uVORyg!=yFGBJUhD|y8-wzyf10$GC5f zG0ZUp`>hxHgdrsRxH_B_{{&Y9i;r^z7(+5U5kgYN0^?nd0Z)N6$EZZ);o#1?78vhw zj9MB7N?XS^7>Z1$&1ao6g*DQ7sc#`XKCdu*9eFXrQ5mJKBPYf=B9NL&l}OF%bsOQK z7B=^Dn}al){{5jobbr8r?*H2V+DFuXJ!@--*492M6Jx91AMI#@Pg}I=2yfLXp;gEA zt@_{kh>qvCRcO4U6|S+td!C-=t*S~A|8eJO9Ml(L<^AIaj;^?$1^8JG-ur(7PSeD@ zY4{e!ZOCVAUrd5tvPC2crv%l=R{y3^?7`^5P?l6`JX#-ki710_Qu9v&9UDc}s&ed}JXi zw+Pl@mn;nYzzv-L?+qC2*=RV>ChrOL6F2oT&lFmkABWRai=FT2jmsOsg`Mu7Ie6qI zGHI40-oFggHBHsV79jUINCOWL)>aME@KJO1a0~PY9R2nG65U{oene$9!qs zoht-lhL1FvE57MHng8W>V#vHmm%3I%8}l2K7j{P+Zf}A9jH9>F(EVFMebbB{VgdA= z0}V6n{LBmHHq|+9*e7UVtnl04o z&HVP9Y#2I!G@@he(w(0#iK4M*r%tz^qG@!V8xe$sLqX2(sm9M=17f}qKGN2f-RwOj z3v;wm^Fu zd}d*~A~*d{zD!fJGH)3&P+0xNakP?evDF{ik`G_U(}n!`J+P(I%mTSGM{cYl`!|5P zrhe{a0aAs7^zZ;-PSr43PN!NRRpUq#Ux`HX*#NxO0=OmzUiC^~8jHggNVPfA2PzV3 z@YbvIo-G|-9vm8nzp+5B!;!z{9KV3Nrm^_l0;DbndE^1YVxeKOScGgfB%Lt-*Y_o} z+qma{O;1|}RWT|HQ-1?aqY|0a#XVVT7)B~In3mt7FY@7KHoCkx45P~g3ua9@v#|oR z(NN#i(~B&CnsK1{ra-KT8ZPtpTNY?7INF=0XqwXxTVS;07$2Bo7#UHg3j_@xX*YOa zVXFFTGz7U_gpTXww#}*jfIL1j+4CW0DlEvo-3$z{_?YsP-(YZ0l z?u@~H+YLD=jDN5Bk|P6ME!FE31}0^UdP45@;!H}C+k@Q8MM0g$QTRyX*vta04@YaP zp`q>hjpNM!z*hHQ3-rDmeSn7U-xul&ah&}J^s`h8jD8$rqIZlHKfo@{QVWd!9Ak+o z2FnFAT5nrG4&;#A%pvJYbmO-$SDdiG7{oD-dc)|7zp_vt%+;@&tJ6%-TE#N_Zws`c z9PJMc4fWlg&mR5g8r-}UvBQw{(Zk5&aqbZ}80s4{p{51KFpg2pI|j>y_C^e$ z*CqOrhi|x79U1|a0@_D5-m=UbWyBKNG=lRPVaf*_&QoBv1;$8@F~b{1SM0J-PvYu| zxjIb&tyL@q_FJI6!O`|D(Cqlng8If7ud=|H%rSDjW3U+S zwZKT_81I;3u#WJFg?buS|HxEb8y#+1V5D=5>!ui5PW)kkF@=${HG)^>#i-hd@`K_PC1$`V5W^FAmM)+8*i~GiQVa z#!QX@H(GkbV3{++0%I1(m}-i_eCA23dJzl6IUJFgBj!yL`z$arIL2;s3_2QUtPCVs zwqLUVpU=U+)WA{uo%sxG)n|?__^Ac@0*?NdhVK6a>Kg+aw99)UFXR|S$t1;{$QlM~ zulA93&x?vJ4%fDTT+AVBqi1R8 z{)?f$;O{#=&T#UjkFyruYyq@_18p<~Vm{DtS(2TyK$AGyaZ@zy1oxT+hRiX(G{rD5 z0>~0%SQWnr(lRQ$6p#f#k=y^L4NXgHo>*t z@t)k-+;(-+bG19Ut3Z9zfOW6{%Hcq5y#ui|?NAF0!Z8M!Vz4NuTd1$(>XXgY={Th| zjRj2jNc+ut3-C1@d`-T4puQSZ z)^hJ3DfL3Ty=TlO4(>}HZ*^ykcQoqs|K?ltRertj&%oL}aBmBu+c?pl0?}?zUr6mI zC7^qZwZPcUF-DtWFi&cbEJ2r9puNq}GV_H-U1tE_Zvp-e2Z!^gytoMJ1~mAHy6t{- z!UdIecEvwhnBB|GelM841@(no^Zt?MTCqLebL~A2j!Dm*?h|(njg8xXMmp=^iWV6A zIYx{r1`DAE$wJuP0_^}tYm+ZD>g8Mc@G@)3j2LG#Jk7%P2i$hLV0$vu7hL^+=_8HH zVGAb5IFk?Z%LGl{^Xgm!=f{z+pSG`nA6VEv$!*^kY~Ry+;s4S{>V-Oc4cRGNxje&} z)ZDAyw`OS;-OGmuSRRa;+O-iLX<_#>Za0zJ9SU`YK`pt4vk{(Yp?{9+PxH`cy+MGZ zms!85346(FEZ{D1xRoAotT{JoIjiA!E%YyP{XL%g?yc;z7V4L{`e_e!Lu-s5X?TCL z0REf!yU@077$-^h%{3O)(X3Y`Zcb;%v_z$ zfPzox*o@)9VDRV#%U=tyQR&&>Y8CKt3)?ri?IVKiLr|ZO&2(ft+uT_Je`$enlVe;l z$DsUmkX`X#7HGFP+7nYW7E^YIanX0ZXX|gC4c-4Ku;G1%w%q$iO1-iXT$r4HIb1%9jHN6Xl+JZuO2vTPu7^!CP2>7vkVe^9zoC%#X9^z5W3q zbz0zw7PbSp?eT)`WT-Esi}#PTVXG{_137rk{{);m(c1JC3)8{e^kvO7O5XqK6oYBG zGWn+e$XNWu0zHJIKi1IwALMzB4O1(JIqTpe?|VxZUYcj2L9zxXc}gSce;n!yy^w9i z->|@_$uX{(Vz6GQL9$->+ybpOM|*0D#*&epi-hKSPxU$+BZzFm+5AVX0tMP}gpV}) z>RF)G<7l<>jn>-&tpP`aG1tuv9nWW4kiaGlo8dGI^oAULl7{X-0qP6!ypZPXhL>4j zG~yVUrWh=q8YGM7P7Aaq9BsQPnikKK78p%A#xYY2Ge+N8pf%@c-+uf{Xc=^TO^Td2o#^#-Qu%yAkT z3*`U{v^E^AuPK@q%83>jZ8^qxQw$>`+EWb#S6P5};NUr4!BLrm`3#NUrV)+sNeg2M z+}JU}*kPzIgyw4t^-f&<3sZIG2n~&e<{t~RE*$O8{GjEnT}po7J@dM8#BidN%jQoh zF%YU{q28UVSNE>o!9u+US8r>sPCMD*{6@0$QrP64XkqL%ZVb+s@|v0q^@T_-u~6^D z)fbwovq)-aERx$S(E4z+E%`yqi{vL3i2XR?N9Krhyt`?k-k+;qH&u@=?(9~?LVEz$ z{>@aIc>^CZWTCJ%GmxwMA5wqumHa_IyKl0?*$P*)Kpw=AE33%<6``&W@HQ5zgSl!e z4^nlqxwhs-;Oj!vm^>M#=PFnBmU1Hq=E$!jR z{YG6fEWUI!*?Sg+JEQvh`|Mi~klV9rL?atLBCp4X-O9+NiuT`Kl0$^iKt zJ^Yr6;Kd+{QPG-;mQE1pF@kB&$13KXEHXf&ExERtC)idigznJjvlEOMDFYMCrznaRIp zK%_ERs4`iYGFgZ+S$Hy8WHMP)GFe12Su`?PB(hi(vRDMNnD?`o=d+mCGnvP;n76Z- zr!$$8vzUXkm~*qhu@L`E=G9E*(Jbc8Eau59=EW@L!7S#zEatha- zif7Rymf|1KBbMSn(Ib}PC29Jy6i=W>EXAkOqdipYpn_%i*Yt>GxIfGA3@RJvrFb$u z`iLfW7CmCg{x&^g$=;dfK1=pbX_W`dKrEuU&(i)0{TNG=eIM-wtOKx@SF#Q;n10d1 zPQRr`Hrf^7ecl);$`~p24~Yd+Q+U9_+nQAD%&eoZ=Nq$*!XEw0ItqI{CF>{$Xm6n%C7C_RGW0_@qJwUF@^f-$N?2dA zWvlZzZbOURPo9Kfy(4*a5&79#5v5*s?Sd>SiKNx~uo47scly_(&-7UCJ8sN`Bv z{PB`Li){QscPxAy3}E?qOcJ&`uj8Q}hK6mMSCE^bK^4q27tIXwFvFtnVTLvoc62%q zBTDm#YNW;6&N+Cxhf&r#c!nu!9nBkWW)FLqWeMih>|xdH!FQeI$=^Gjld;Rg_N^Cf z+zqBV>CN&DPs=oUy;{DZT3+~$a|+($VYJ7W!`(({`U^%|3SRD7#O7gDeDS>&P3~q; zpk_;x;>i&qBw~-VJO0$eHgz`o^kID z-H0-=T}Sx6BEGOx-ks~LfYvP_S96{9Y%j>XgV42#A9aSJQHRNigU%LY?m=ful*&IS zhn+E`=%1|%leuNG%c8lwc*}=Sd^Dp~VbZ)^Lts~>Ftss?V} zo#0RAexFoAt-6g@%{c@xH7<@1B*!C16;r?4&%ayp0et6wb$tjr!AcTI^TWXM!eMgz zkTa3&KkN)g*V#ACiT@F2aK;M+uQMD)z4V+OrP3oG7`u|^(j!EVR?wrD^xM_+=wEuY zjUGLtNBikf0b1__J+jfG3-rjB9$kl{^yR*3DI-$Z7B(~Y53C6)t6SRS(kIS9GWUQV zJpbs3bA;_LGPh}V2O`~GA8UKUvV%RV^fwB~I_ks2>gfQzyB__1nDpF{Q=i;?WDhN@ zejk2>%xjw6o+1R11IL`vwh&Ugb9QYCQ$&L)?k)_n1+qgDl@k?Ydr0EDWw%DZ94671 zT#qIM$kz7x(^TWdE+A*>;{gd2h2e8pKj5tEA_IXgnOEI;W?vJKYEAgFU< zIEnYLbMch3B$^@GiT}tMWt(bdC(YAN#K&Mq5$r%6w;kpE73K2UGw`%C3hfc?e16(l z$p*hI@bnb?Tu&_wvi(B6181xQ3&M}cKXEqA!>f75Sq5F_c$Y$5LF88U>JWH0j2lnz z&sD~|p>JHWJ9^{JLaU!@+QH=8v(89J1rzNjhE|jPpE^gOprh)^Brpp=P=z)6@ezFx z_x@*nSyc0=njSzhn53L@Mx$z~u8s|O1iHGBq30p|uN@_qzjwx??ng-? zat(KuTwRpZy5I~(U7(<^tD69jKmi(4@64;bsykU8pIrgX;_B0n65A~&Q+Ga;3X>{7 zx`NOY6+-Y*DzJjnS2Xb`aYv3(sdU*HgLZJNtqiL_x%3Y4Cyy?}2({S*Xrm`k{30NA zv|V<6^aTg{oCC>c*ZPwepF10&OCCVyJ%Jdbe>!B>Kt9Kqb8H33yfcht(tG}Blb<;hr6c8cRY|;jz@(8=MA@=Py3Zy9{C zJE#zu^_?@w7D~UbL!yef$_m7TXek}6gGBPowX45}4W$koy{(GQy7Aue*~}xsetSM&g#;d!NqC2u<(IyVJ zUVxi85&G(bcHocG&rlF~>mImbjVby{Q*;)`kA8wt-~vbgEDyarNold6IN9 z{MZ!J&A1Tx^gfJq|8n5J^MHeiMq3K=2_lV`L4y2YYT`Fj6YlgYOuFvLE{)<&s7X?R zBxbnB3)Zz)Jb{?5L`acaogqaYw%kyTJbVJ-++m8m)dN}Uj5l+$%b{;L{MQ0J^!3`dFHG@1 z_rP;^kV?q^q#Ck<X*b2ecXPP;zE>7smLaw7_GG*9M_33(5zPR`CR* zwj4cPK%d)TjXybD&{fIS!Uzm^XPN-d+vDm^s+WT#J#^AHj06^TVKj*YPY{56w1#9p zR@hb5Hr5C{+7uXapf7pp59bN%PmvQFvs(*b+Iaa{fUCT1r4cdP9FeY7{w?CFi9X{5 z&*Whaw|#5`IcW|O=t@U_bNxT^^eYKt_?pe&;cb^8IB+3PADoA#nC{M6h@AgVc9g9G zxxF^KHH_2y)rsX*OTAeKEWzW0M6zFmxv38s+l zjI3bGP|;=yXe<|3w}Dxab?@m$$SJ0ftanF+yK2BG5o_rV0g|q3$&+wbE!$Qj+GbNU zHuuF|&yKNut)hJ)pt)zgLgeQjenm;~lCB`z=SJL1rnv4gCS6 zN0%6p7kVHwZ|<$*3M4mDVnWF5=Q%~up^xD~rz=|v+*$B(3gM9y32Xq zG4h<-ZbKlcRRMV3HiF*t0KHtDbSK>_x~ibi(=6&J=rld0>`ykfUhPjJE4iwpqNmv@ zsc?=_s=FGZY!4iVC(gXe;HS>N z0gW?&({yEP8+X&AOgLQ_Thmn^o%Fyt=82;;a}6TTyA>=-0(@cS_~SI0bOy#g4(9F~ zn6&Cy5VHvnJ@kP6#S_+@ZZ%N(Pt?vEN#-4e6DD>_<4!Y7wJhy*{x_vVV&4z6fvSrB6K{+vKEXNxy;IVbcuU%agZAqqh!#(h{1^bMIib14QXbwgz z&ywgZuGRvsx}56{%Q=TBu9Sz%_SIl7jBVb+zM5{|lbwNY49}^8E_3o11S4)|z!`H9 zpJHU<=TXJTy#$y~KQpy?Mzv|&yW4Y#lt3@ek`ujQ%GV;-qd3eLb9%c<+y2(jgsJt9 zvw7QhEN;6~U1d?+r)mmRASZ6SM}xibFoCt|>x!fs9N+2sY9y_u_SG_<>RUdppDP;m z;c%}BaBL&+;+w7jvZr~GLS#VumBDmZLl4}=6u4(aIK5o-1*w7NbKndCcyC8oM>HDf zs!jJZ^l;Nn;c7o8>1Yo}f)^{~wU~{614jYH7F{+JCF{Q?Y$rpHxz!YtEg_FwBXQ^( z4*azWe5)KxV;zUWX&UTd=#f4*MPhlMG95^?S^&M-pF}@^`MV%F@f!r@Rs^7R8U|?( z?~{eaf^k2x04?JH)Q zoeYk?qoIY;i*4Bj+`rmkmj!Q|!m>5s-iVa}WZ1VY%8)%{VF6d-9P61V^qjhCX3N2= zp#ia^$Im1P1)Vc4or|7Rm(D`Rbo(M2wdH8>9BpoW*iace!4->IcmOr^1ac=*0IB+@ zMG!fdLiZ*(00n51WXU;rsyrDYMa z@ps_&H%I%!-EQv60CK4%>fE{&}$s1I|qWep|y0%Ojik%!GUIRAa}k5kmj>orOtB;W=|kCZhy@&zTg-Wzgb@beeR)t$wZxA=zvZeK#txH zC`#tOgdi5Ypw4?fq-SsroXpVv3xjnrQhdHE0(K&xR2^f53G}%qwA=IQn2qXk)LINR zXRa%p411gt0$UMzc*6c-6%t)0r!^A#D@$26kq+ZXLo}ps7P&%T>%k1Ep9j+Aool+2 zR(>n1p%olyDMM0E+vY~Xy8Pl2S54S(FvDBuffrP0nGa&wmm0Y$|E1QkCjMX+E; zP!tuFVngYoSU~u`cXpq9_MUzC{r(DEa<84;*`1x8-JLZNw%v)L!zqCb?7%say{jbS z4HMY%hSpmK@lA)wt}y&cPgi&Y6?OFaXkknA@k@%k^9X`{j|Yl6TNe!O--@fb)b_mC z+?UH7UnAO;i-9QuupDMtKcK7z;vTuB->m zHUY7;=X+Euw^ks|w?%Sal3clWA)=;VtwEui+*~-e9$emEiG8xDrthev9nxsFi(bd~ zt(yjK)`QlpX<(3l9d;BF_DMS$N4^d)3hY{~8CV9{*1@%k7M~ivYNYtoP>Rzlcl;5Z zL_5w!N2;Sz9aS0aWEt#pVz)b*K776?nL7U-9ZiRxL20c$OKag-nq#=9{1aU%Ufx`m zC$lE0;wFZQt4{B&FUo=I>s6a^p8T-dL{Y-?MX8owfmepW$z<1~F&tno`jRlZeb|eY znU{?v{M(ATQ)5D#jp6c!aM~31#=g)RkX_l5w*I=-NyYe0G8SwsD!`$N(ATvY3lU*k zb4T`tmVYpEv#s>cWJgG&ncdU~CAM#?%drH4h3*zMFq6awvJYq^?)*6)7d5wfDO`6A z$0Kv&OBk83%;C7sSH_)wxu~5rOW|f}xbh(wLVI2*>L6@$IBxQlai28xx3bnM+-e8M z=BV21a3k_4E|z}F^NaHmE^fe++pN9+F>8-PA`%d4zr@#z`UvwJF5J7G5S~{v_P}Ca zP$WbFLL`n*Lb_x+GpsCz#zmj3W*b8np#6$4JMTlLl`lFq@UZxpJEL%IQ>01XeiiGM$A`;^oT%J>t5sA zcbnhl&Lw&SOeP~g}B8Hi`DfDk`T@y3-5zkJmg{ z7D=@}faT2dEU}4ai9FhGRP=Eg{pyb(`}Llr>pV%$XkVsqOElbH9|QNOC+=ZSoZS=+ zt?dejt97B4{c#U)|MSGX5{6@+26oc+X>6M-raU^;ctth(^q$p`)_GONIavm8S`6QZ zz`z-&3~f}LM9MsMcJAz4Z1{}*tf+yN`GxEO8Ps*6Z8Ld7$o(7^JY9UMJ2PqG1K9&A zf8khPadh*R{YBZ<0EO$T;jph9P0t*H)0*FHRjRL-o7vry$x;1DUt;YzM=@uIn0eIs zKv8qwEH`PUCyCwFd0!RfSPsY<^AAxO*>fB+PB9|`sm7}gMC-Eu@I>fM`v*o+R+Ce+FSY^ti}a5?r%>VZzv=T zSk=hNl{l->mvTwMizU=H*UCXiFx+ZpW3OFUO(>Q-Ao`2D19FXTIf9_=&G_RLh-ZOf z6^*AxM-h1)Zy?8f8R~MZg@IF7Ris0O#SN_GO0cD0idDmSTHiMzfyVuXODU_KDoL^y z8>mG}I)q~FXgAxjn4vf^yhG8pay1ogZ?^<>X81LOw#B4z-Fp90RL455Xvb8e@tI*3 zF!NYZ73(L1cJvCg4%Zgv`l?d1`~3yJRPxo zO{+6Ijkk=%0f`=xiyik6mp3MAojiV!&2Uv7{{!>WMK|*wPbSX*8~=n4)KoDW)656$xs_+XdFP9o_!@{$jS03M4PFZO zMw4;vtE&p>jlW=8M=Rb)jmHrN7Bp{edNi&28-fn^Bo7UdSy5ggmUUV&PiRbTjo&U|^YB+s=FbKb6KWw%-C0@_ z#|FBVqF+{{@qUDH_)z|!<)zWZKNr{bRgoXMwjxu+r(qIu3;ypcXniEDr$*!BgWp)i zS-x(bxO{J1bVPAY92j8XZg=D6$KhO0yT6iRXESjz%?OLVca=!XBc(tuuRtMTI%U4%^>SAVzPuuzMort5csc|6&=)oETqRpPH}n7ix>tfu7&y5mA~@T$OHJYkwO%rgdq^lVRV! z$Mf541=}}AdWVOfvcJvSq}`K?YtfW-{zB{bZM0*Zzn?BKYiE86wDY~z5_t0>)Dlop zJawsz*8NI;>S~EEJf&f70;EVQe4lfaM0~tSO=wdp^a#6&B8RC zac`>_trR1wDvWY-gVEGvaI18zhU2vp6ypZPz$t=ge>!d|j5Ro;9S&Q=2I__iu0iqt zaqmi4N8e|Btx8;Xi=`Dmtj-kg)Kt@MV>#Cr%MZ%CQZtU>DxJ8{Wo z7@E;=6K{a^sq>v=YFZOj_}KW)2U1cTp-P%kk{P;0_T8|FQ8aB!YIW)|G7xF~u9G&_ z!u_4o2I&Nsp21J;2o5*gbD6~%@JzbC0@IgFN4CM*qXxah>9ZzTP%RzYy5t+fWnn5N7K)P0BY} zlaFJ=8BNe}vxM=(g}76N!AVDh9-T-_?1d-K;yDA(Ybzcwy)StTj5D_jNki` z_O3=_ckEzWF}xaJc)jIDzIi3&Bm_oSC%=2r*c6_2(@uEO97~9U6z@SpwP@`wI39WF zW%bE!#)g>w@Tu;7Rudmc?^A2Mko^;qA=~4m19SGTgIjjTZdR4gUAa;LNtL$9W3e z!~-mjzM(i>(e=d#Aw{$K!zg6)w_A*9zQY>hd!EO)^{lij@?IFxl-riHr93>v$}I} zM;yOUwbe`iAD6DK*>V@+TdapwLw+Z|)0~#QxiXbd58Q=)s<`sXy^q)8JFUKN#IFZw zcK(1<8D63Coz|E`a+a)kNX(Kw8RUNzS4dAIzsSnWH?mfqdAy>$;TmzsJ$L#J$+`2= z_aQUJV)6~wHj3O*BNM{5(KMrbalX~epyir0=bGzHiZ))SE$dl4+8SekMwuWMi?6vZ zSD>XjC~`z`-IdGAYsovViw)u;lgJBRzT>(>5x45Z8CS1D8}=>kYQ1LAwwN@ID)9~1 z>!KcW0BRWqr>(V`^E`oUkQ zb(89cLw(*A8yR?*`w9*J$=^cjc2nO#ciA|&cp&D^uE)a$aSz)36V@UHheQ3tiH+Q& zXnlUsX`#MH<=ql;xZ}}NzlarS_$A@n3^Lc0<0R`P8Ef~=N8veeo$ZcSoz4s`PNdTA z@I0S%i(BRm72y)=3kCg5gQDA9gGIfo(m2iHs&ptgVp+J2CBkTzHHzI;lxTS(vQeua zOzcHB`5%KU0wq>c38e>4>n%x}`k@ORAMB42O_@c@Mis|Vms3T_R)Zt%fn4v19LP`< zcO>)yyCd=cVTt(vZfjN}szLI~Ghane>z>t8rO!9>NXW7#Q~GLuI^~Zou3=3>3E^(% zaplZ z$m(*p2*r7o_?janlSH`3IxZXBI;M+RegF%o%v;K;&|f!U zy8FpM9aX{|IuaTUPNb*mQE7)$k7_ml^e<@e@!yIOiWA&3-4pR&1bwXJqizi*9F-c> z;7-V=hk_UA@WKPw;~V#v4c|K`F^)>k1K!1ecQoNn{O2|WpMI3OR(Z4C&Y(wVc;?C9-13t-tb6-P?b6F8sh8OTo^q&>6q{zt`` z#kG7DXkkT2W>K>Q(x+yKSCb0cRZpRaA~f-3gL?6(GaAJCq~C5UZtQC+X^q{q`F+qY zw%uOb6X7}(q`OV^Xjc>js6$7vf5q#mS;g~^xP-+T=>|C_V$GzoT*|l;R%bXPuf_pQ z+E$U;iF^DSj!*4$oDFC75y^bW&9p6TESY&^O@cj<>V6*{-S_aXKdx}$N z^4-NLzE>q3FK~o6q}`KJsk}d0^YpOl73lWU*s{g@Ug0gV!DtCpLOtIP5`Osq1Hb9s z;wrxH+}v+$?((W6olpzPb9Y(pWtHZkm({?vTw(GN!b=J36Wr6#C!+k5;Z*-Q4^4!K zUP_oc5zIsG8_uPmbzxpSRbBvi9|cE5FC1>$G+5=yxH+eZ?(BY%iRNu$~7K5>K_BQaFV5!f}qUGmg|qr054BEW&)@U_|&l zz-$_F9>P_ry-Y8lcIjcQ%p-5ig&HZ8_As!B`GsQd-nPg+AC@8b^~e?5{dwV%fxWoMfJYlk`m%V{{CIRnQg= zS#-8873f@c!A3k*oJWgm*|dZdSne5Very9gQ7w`dw9BYX6P6Sw(XE+MxNVu?!f|ax zFp5gEYzX(h(T^8r(jB$KWVpwWfv4w3mm#{ixsLsH-k#)1d1r3Tsx);uiudFEwTSf{ zs~cWCyFZVuD6T_$vhDBl36r_|F#DWoRI?&2=uxvW&0h(~rg{>BsAyONa~)O{6=%_p z^=$~}x;czIi^4OArN-0Bl4)@W zMYOW?XU&&dnjTD~jh%~Q>F_(XE7HkQ^yYv~)t8OMKZ~hEUp8_^n;kz(JG51NM|s5@ zXc<`s$7S^@>`%Q$`&y8`WZc3iue3JD6zwOCR#;Zt8I!VLXnpz+%Sd_MnMzpsNyfRVkk1Easy21W}M_>B@)nkCqmy6RdVDEMw2ZjZcbw0c*j%wA)?ZE$y*Tvi#UtvRo_=fb!` zWs9#y77mfT#yVplPnt+uRGGB~ZpPp)Fn^iH^qwG&qQOv9qXpkWT#>cL$~flk3F*g- zo?!PdnXblHDA@yawqrjEv$GQE)23Hf;#=%iU!#CtW&v!PL#by%5FhyT7h!;$vJwWPP&3>hYBN5)z zVHmr$Y401zfz{|&cPGgC)#wB^Ol7DU^Q*KqqYPxBAIWb-Vj63N!5wCDooaJdn#GE{ zNawN*%b%t4R#*=j-1|%}cLP^Wn%5M3iw5T-m2WP=%$NV<)yN-tAWL5DwO%qx*<_aD zq^9}lS32?+&a`T1;zJgg6sl3;+gQjRGKk-rMD|FL^sJ_p{F|I+5@`8wdzx{a1(r7P zT^!qpqg^Az=80(Wg=X$~!f9yERntY$J8E><&f6m*DDypR8?|$TTYG{X)8pi-nWE^E zbox}xjth22#M9+hB4Xt^tcmU-ZuBgIeL`2(nxHDeuN7fC9SO3W%!g|y(AQBoGO^NK z&N9z(&}mc>o85|z$D=}x@7VkNJIj*jTigWk?R0~;dxJx{Y|bh084cW}jUPwnME9HV zc|+U0<3+;aotuZYu~|2KkgphX~(ZPyj4z{0g~8PC$hoF zn+?y9M|Up++ug)EeSy}apds}7>!v5cBYB7`*ODLSxH4)Mg=BR9udq(pwuO?L)u;%AWwS_Yi^+(pdyEW)0dDw2~0 zXNxNAC3j)miFY2WfV7UGd^nrj<-F)w4!6E5C(cn-4z>@%^niIp#sq89rF9ij=tPqh zNjT2!(!|%E<%HEI6Z`Xs_Y?>#zrdaaoJu&!a-zlWjpJsx*uB8iHODhW)*K%W4GK6c zeF$!cO1t2yix(2NyFHNhh}81u_$Em>YcB(B8iUAFOe|k zA*ANaovVWwdC#&qx^M~>beU%fxchyj5=5RI-`lbT*!55ePHb=QDICN(bGlA~w9z<3 z;?d@~0Pax&-!c;!cyM-`+Z+ZyR6_c>;zC^Z_M+kLw+Age505W{vL43-kbcTz0;ona z8r6-YQ#~VNWk#N~Q||eo@+o6JuseIMudihH(%E+JF0i^Au&ySILrWqH50W>tptE$C z9kar<*v55}=uGpv73hgpi0#fa*wailpM(}Ed3@_6d#%oP!bOSIE7qhg^CBZ@>jg|R zs||Lk$+pLdmYT=6PnNPrFU1}*HJ#Kv)<;GG@0$hK!fQEsa4wvi=z?BAST*W$P9E!T zqkuon0z@(%OcKqOqj%(-_Us+P7>bNMR`zLkzo>oM>=$+_9^VK_9i~%-Bjc}^-GILC z0{sm!fP*}MBByjH1&{ARNxe^}I!mhZZrMpr_8n`!QNX=s0d^b9+&exzS}q!6lU{(< zyg896oPfuA(O^GkvPJqGY~3^QTb=04m^{~fx2<9vjauhVvc5L3Uz%7Re4L9X?u=Xm zL{qae*l}kch?5@O6YsA^1Gi^K(RDp>F*Q>Dk!yeVYVm1-rA2la&$)TpDSYcI;hXyq z?h_@upn2X<)+1->nRtc}Ijb1} z$LhX0vR)O6?1=%JdDd+KGR{g1pkZ0yz3Kj%zM&FZsAKJZnM@le)Jvc_+e?$I0S30O zgXI7&0!~?2(}g`T&S~u9SngShsJh7fmNK{K?isz=m&)-+xv_aQRH6 zI@ZbJXS`D{siM4y3tvyP&2xGskh!3(^^76)Qx1$@TVPaaCX$)qc8Gv{u0!mldJAi> zLHb11|3fLTIBXST0nd%FM*k2M@NAj1OZA$|mci|lm&017Ze4#T9Qj;`PAlGd&<>;| z|E|TeInW@k_xd^rLIF}|;VUYfZO>?E-Q}@$>EMev-E!@#!oS4f5slcKi5%AE@guJK zB4?K1(G9QR??V>LIgYX*yHZ_B%<-rC#)=XRpA}oIQuHKiBr>w9ry8)3n2oGiOrG$D zP9}IyDFkX`X$Bwjq+*lRgUTutcY%FxDxtT9q3bsGkMzCn3B~6IrlJ5#05fe@k?t@ zz7O0}A-n0wADa6oSosE{lgVKJh_3_Ru0S(%knK0upz?`v+NEG?ssX>%g!76*TnV<2 z5QkUNt8_SAjR97P0U{F=>X_Ci3iP1^szPJi;b!oA2Iw6RkhntquVVZa#<)l+)*lAr ztjXXG$G64n{~@RLx^!f}9ClS`N_<(0FH3x2jEb7#Q@MYwX_0Zg za}sD%F8t41jB+NZax^ZxTPOP?Ibx~e26V2y`ir5R129n*8^{$VlAV#rLH;c3eIP{w zTAgS+;5^+V)8h{z2iL_x5ce&E{iez0_N_h`=@9=!x&e`oR%hG&s*iQrfSqt)+{Tz7 z-Lq}i*kC8hDQtjv@3W22l0*G*SWqoL9yaCLJIXP5Q^8-&$~o`$L$dLrx;p;M9jo;) z%)0{xroifVUh7!4{}kgN*&vOo4@VpHKJPZ?J-`>{yx@FjdSq(5YyHhJK$&`%PPJns zF*M_W2FOP-u0d_;P#+%O9R~Y0lZ{jIgJ{A?e>yI8GW%(r4QB~UrUx3tQLU*BqNr{H zJiaFlY?+B=k;jknr(s+&_A?#JX+3I=_BXOVHDDiK0XF=4w5mmGPoh;XhrvXOSge*} zC~*~qP_m&lRvE$NDSd1ew74aM$xZjI(o8T--VE&+#Wy;<^SEsNpyqpu)}1 z^I;L!dg23VyET=uvF$S+IWI;_Htv0fvk@&zK|hG1?>9o~PB(y!yPx6gp`PruEBu3K z^o{;xIL<8hLvFT6Me3gdx$E5oPwaj-c7Z3Bea1c$(8{k$?8|Pf?e&WO8%4DyV)aq( zW^eFhb9WeUGrZ{^B>S+N&8avOZ}B(7Q8HI6eB+7aODBUSA!|nB-*U38L}&l8eO$h( zTj^GR6JLz@)R=KAiceW%!>b0a z?`z{pZyBQN!4m>aQT!&;w*my-*HdoF;6DDg}v@TYNDF|$j(unW<~|{v5i$e_T@yI zJa|vTR4H~<@kjc0N~-w47~I^OubmBv`zd;FH(gnd6smg{Mqm#&7g=|&#O--ExOXY; z9arGy;M%`S)ah47wz>z%rxo(aDgRTwK3;**t^i5hq%hVYGHk$j`%b0zEJ6Y42_Zhk}nERql942z&Lh4CW4`E zV4)|FD_{LVRQ@3)-~A4fLYDof2cfJ5Zsc4~B=^_v9xJJAy{wSs8ZtD=eg3e&if@A( z`Mf8R=eNHW!8<*ykl$%YF}KmqOATw$@kgMUZ`{lSo=mQJ%wp8M(gmrR7@ChE8S>Q|J%c7-n^#HYATUTq-VN z$Z#do-pAnvjrZh^F}OH%Qb^~QVOlG?z?VGSTt0X5>(a6eN=d_3?NU$fVuOpu9dGSI z^>MAkjSRKw8!OSOTRn-d8AR??-xgt!a7wl6aW{B#v45EFm?!TiZ{FO-H^)*-3TOU6*;l}}pGUk5j^n2mc^A+{Z2 zZi}~0U9>KqG`4{CO5r%)A!)a1H1?a%lw#CRchjbX(RgKo1%!KL!jHW!TLnAxf}rbT z0Jnu&!&z4~)I)$zUkoiocw?kynZFTo7;#-ca-_4Pb={B|&Q;ZSZ7f!27enh0UW4VY z^*2NYBZmF$z=#)&iBIAH+MjOP@18Vlf!}H6{3l0vHu+lG>UH9h%horFp^txRl+ODq zNFt9vGF-S?bhahNIppLy&R3;JF_pIM}33lVH?c=F%NMrRZu^*W)cGI=;IoOp9*Vg;Xa1U6& zA-jeDdIaYUz^;``luc5U7yk=g&*GZY^z}`k53gyQEU%D#r5Ib6AXwgXMZb#FG_^?u zda!3O35za))CBm91u$ae(_e(Oy`XgQw`gXZHbdeR8WGndk=ks)8UxF1yYV&N?@oo- z4m8;ai}_@wM(JS#<-g0FxEp9 zZji(kz7%8}juGRDRoq>7;re*ucvVyHB_z6>uW&g~_-w&i&X^ z`aXQ%<*>9-*Iaxm`#{snp+3N8hNo_W^}9u4@luBnk1fQwGo-kC*Egv`j~<{T z-wmGdv7T^D1GgbT1dEFtNrH=srGpQdk?hK90zT%+KnA|SRJzk&A88>3h$;*Xw4g%K z2Y4d+^cuV#u;3$fgvWL?QO6;XDanKXx+kCAtBr4A{x~fKJt6)K`gt4MKS+<{0s7e! z#CPttzJqsZYFtIj-!3VjeIqfO9KIaD-H&GiiBdsIb@%B(2i}NT2&?79d;GXTo~wzSMOZK9sb6jN>>+QOLdS_oYuGc65N?$8BQq+ai zfX&|&DsP1{2^g}=rU%-{7OB)M zH(EXohy0%t!VEC%zS6DJ4xIMA{ByMWL4R2SHJG(5&T8S4+C-91!Jd%>L(J{Ke==$` z+)!lt3}-hKAMn67*^RAniil*N;l#52{!FB(cfqdpfN`UK{Dr@{wM4;?>QlgY6mrlx zz8OX#S~i8cv}&3x-^qE{&3@oY?6U{Z8QxHAaY8Se2K{MwxyuE)@pR@Z^fsgc z4R3_a9&8RxBz%L=#4n2dqhy!Qq4ty?EK8$*zrnnVYtZ2^I3`Am+G8X~JTiR;?06D& zy)#VxV+TR~@!vtZc=0QJ{*4tMxKzZg+W32fn!8G1X9@Ib)IB3|lj-<5pgXwHZU3L> zX%anILucYa4H$cugcCe4PL=VPw5T#}cZn*qgrR3IVBlS>6&@_EZSIf$_V9$6^{&R^ zahW+Fw=yMUHmycuPNJf3xv6hni7I*~d?%*GpzBTvaDiQ<4gz3`njaCPWYJ(JU{Be`Xt1%ZpQ>v zCD_%%Je9RO(AB~mXs{jswl-ibOc?j1w7+0?CMnoN2}4vr zmEs@Ct4QC^%S&K?%DT}Yjx&iIc&_~qUheZN;z~)x#XNQ_DhO;A)%_PTE;EQrOd`M5 z^;2nHZMy4`K%Diq!tRtljte?F6!LG%B^%y>p|PD+l`i8}l9l4$Ab zyjVKkWJR*|o5B9YWbDX8xF4}gR(2h<%` zUJ2cLHPy84RD$0w1;^G)B5vWfsz{mDnkCVI2;gQol55`CROUG+g1T3ry4D&+TP100 zYG|}7v}6?8p~RtSZWxJAWjo+;T;Icinko~+AR3Itto4Zke<;EBlpZg{Or}Fmz>@Jw z@I6oZJDzloi_D6qM%KSbLh%yZCCD&RX^jSiZhjn1tVC~2E? zTbFmiLnLRatgNLR?{TV7I948ojvL-AooXQ|pm4G5@-+Qki*GCMoBhDlL~3k3s*v!U z1oHbt>WLRDLtobvx=@Nc56^Sh$`l(%P*z*(e~JPhNl-Ak4)(!4vW3tn8@(x0D^pAB zM@4~iBq-R|il#oXt?)X}@MgG(_e--lDw~Ds!B_GiBZs1BPE9^uXa=iLo|S}PGHkXL zUy=4L4vZj9H#8jy(=EI>C``2`VU+&`%$)OR-zNOHR{W3)Buy{E+SV%=KV`}_w@sKZ zWWvq2O}PE`Nz@iavY*IQ8CW9=*?-AW_6cxXzJ>U@7n6Z z15uT|N~6QcPgJ&MsZwUD+TjRunrO4IQWlm_b!(bY+sUG~)-4r7N)_qGlFho&%p=Xx zh+nf`i(+!0C_sRo+mcTxjHw5QnY+Hb+|6G%OO+|bN{zw;?!v_^n^M=K^l_7r$z_kK z=SQk!1Sgega~HaF7S*=iH_Ch0U7nbdyed0=GS#pysN()s#W~AF&x$TjgNT0`W&UoL z$%7n9bq{j(EE=RVud0rb(ukLH^-6L?2b`{^6|o2ENPnz zYUx`n(Tfz?8L72uQfuo$gLR+5VoQ2sEy_W{1+MQF#d2BFE}5|AFB!m129V?bcV$r> z-%k>FQ~_t)hS4ynHr2BZ8JKSk3_B_J*TIvb$}!rmOQea9 z6Ms2~vj*+i7LZwkoYq5}eH`JBBWU{J=8^PfHYHeHqG@n5gl)Klow+n9^amAbbv>B6 zc8t`lQ)}^oTmU#|UIA>cPxY-SO6W-v$;&3&Bf{(SLg(@4nyXs}6W#C|z2Lb1w9pDd z(4JVIgqni486KZzk9sDLif)liW1<4dxU?%;LKAzL7n%Fh-;JobwOfh(wk%*xW4aCZ zb6t$>UJSJA-PSqzb=v$M;&f=n$+&~-`tomHUuGY-T^=>17vB%8l8G4+R>-Hh9|Smy z%cma%`dLHJZN#boXUN=Rm$!-fH)&B>P0%B;rzz%{;W2W|;h>7NQ2skwRH7X%@Z{yt z828$s5MNS;o?GOVmXu}PuSg3NDdfh1luV_q@Wkg_gES{bt}@DO?l+OVjycwz>e7YJpb^L2+}VNZ)1J?zS~B-TEvO``1 zmya^B$LU)A-4rWL>3G`py)>n~&S=yXiY`%D7~*CLL22)CkGHN>WMGyX7_R8D=v5Ka zsvD(S?@1P2`>l*uxA*5$6xFEGGL{C+!I{Bb26Bgi!TvLd$r1q%RaO*gy@$`*ULX-48$2z~K2}eLt#W zJ)n>a6_O{68DF-MpPx) zoNyhx)1SYY5UY~Wf;{V3*HC@jKM@dGal)>$J@ngJ%`3Up+SDX*H?BOK+Tj8Ula`;d zNqh$Q^&wP?)>LR!jT&7G{f;%5qa7x9L3AB=7vz&cuimmEfew$rlh3PVy-QWSdA9`P zxC(6=i4p=v3B{E{osq}x)7McJ;)>jO?^cpSw|qQRp+`oc&%7nS&#u7Xv(go?wn0eM z`FQ>H;%I7&AR;4vS8`zel}2lNv`V0hnaJhGw)nIm%n4OpjmRDFgE8oUwc}MN@uIyI z!2f_v0wr8iXxH3_}rM z3>AYYV;2!y6d$ykrhd@7{wH=~^oDKc^cC^>ToN28FH?p1h24t`tpz8*jf=0 z9!#Oa7OfNM;~uS}2-_1$RttlOz@bfK{h_7Z`s3qW|4fB)Zj&WUw@cUnna}*zrUJb) z4erkr13oDsq&DsZTc=Z1-xCrNR1oZ3H@A@M&sEcvO0H%2>6rDwbo&vkImKGl_krZ> zwmG*^C+ls4v(x0rt<~G9mJf%`MT?zFkTceT+b{zLW}%~=F*qkp4!8XFJ1E1dlPHHw zCN+x-s!dw<57AXB(WV!WmR~eKG6L}LT_Y%6d@2JGs4Z&&4d>PZm)59#n>6K*j#gzN z>1n7;yZ6V@<+g2NWk$&1PMO+(8j5f0Zcy4B%$5%&(n3EXYYve6Q0Culu*Gl`YJT*0 z>=+{Pfhf>biMiraS&2D`A(gSvnfGFvds&HFuF*N%j3$bsgbnac3;$^oLCa1;aE=ac z@GJ-SO+CuN(7nq#oJh^~VXkt-4;!;iDKRu~b}$*I8@(!Wz_S3(2Rvc{%wr|IUnH+O*{vMbL!QDMqDt0j?@Si_~zhRG5Q^p;Hl+P_hB^kRONKza)@7H z=ZIO}!nPIY_50DC@|`j?)po)cb=7Ws03CXUqD_@Fev@I!gIJ>9>M%6pcr(js-INrr z$v<|sRe_>aidQ1OK1sTg5G;c3eHfD`c|wZ}C`YzmSOi=Cq2j$K<>QXbzBfbTHX?n9 zaC3d{c#?OSWO3Z*#YYhr`%97kkYs*j@zZE~am)Dmiz(fA){}fnD(oie+Bm45WauRR zU0`W3L-wn4m%#VKE)jQ*CUm4u5IYNEjhOi~lFsB0X^)c-*S4!b(Mw@S8;ak{-l1u( zKEADM?($MBBCb=&YbBBwi($wZUNZWwaggkrtg08}FoiWRIiy4mAXQk7u*<`W`hcW5 zE5W(e?W)rEM3Gi{3hUNNOOdmMU0OV?4`94jPH|6RN%(?NC$C7#g0QjO z6{RcA=Ww`Mgs{*uN%U|Dyvxo8r2{@$zq){Y-Ga_}m*-1iQfH=6(yG-3K1FgC4z^?o z)TKSnI*I_6HQ4~);sW!+;iFYp&aYN7mMSs_ogpKVQg>;ue3O8|!^!b5LD3nmr4wa{ zoPMNu?<-zdmq?<$Yp9y_uEBdt@=!fi5L(l%Aoly`JxSGl5p=dQ#v~3?aHF!zk5)*f zQBR@nmkjm=M>Xv74?&t5JT%XcMwO+@kMB3Kaw@yEnq65sOttY-clk#?1D79%Q-vHO zlpO5xFH7ivCpMdRh@jJ(?HJ5313SdTvfqE_dKl?N68oUSI!-@itRmPkw0agQdY^%v z?|~Jb{^IB1f^L!6mlPIGej2f~*SG1Q9L7xs@kNKodO=gV^&%X`lxv0$?>Z!G#{{>7 zMB^M+#o^JXT3B0P|qs@Ah1hy3scxDb^Zb*w@M z@xHT_oa)wDLMrP_L?-&mQN(TgZ#jJZ9tvAvW1Vwp0()>XqRU+jVn>6>{V3sOSnS&r zaeAukNG#sY_8sG?S`COd#ehvRV8UCrt{G0{4^R~g*a~kb^882j>*aBYA z;Ne(+@aeVcvi;d}ZAUeGf2@cf*hFE3mbL5{Nri%;7#DN`glHmG|6=jI(oIyNe5ZPg@x)nY((w}gx>)?2!FqAx(GB$sF$7oI}VP#fv zYdWKfyXqXusInaa^r4DasECdk%736^H5wZgKvook*jEy*I7lx-VCbKAf49fK&=zfa z6K>XHs)$Fb(AoFx9iAFn;JrM&6RLX1px>|P@Fr{;TeW9)!F73E(Oy*oyL^|CTgocY zyVJmZ+2EF&TyEMmZ=-|$thhfYZYTgvHOf0C)5GrodDuXH=ODQua7KX}!hPQP^udxS z>i=&?B=*81c?d-KZnW1#!QIpx4+Si|C8!^9uaYK4ynWaK`=Rv2doX%k#1{*Y3=e;< z)>QUM0vsbgfPg_l(@q&QY5`pNcJhy0(XrMH=2H*6U;Ow7lqd4v3G74-%X?h+BnOgc zP}5E|>7zBlRAj>AVqL48apKbg>-w~iwzySa{fJum{1UuU1JAD(NEgg{G-G6m$bIL< zTw*Yh1!NHY@(FbkdGCa<55UJVM*bPXN`e}icr#f`N!fx72Y2sO3 z0scn=JG~2yn?kSererLTLlSF#>N%%fnYi(Gyi8pWcQD1es1B{2BwSxURC9nTQ{Ul5 zsYr&3PmSeJhWJ!^dg)cen{>*xc-eZWVirm!PEX;Wj$qc>i6!S3t2^JPP5)N7&}dd-FPuny>wG$O zJ-4dB=W4~u^msu`G+nqYi01_i_DPd%H)VaR4sOW{-#D|n)HM#qrdc>C;;LhMbweGt zNvLBLD#ie2+#-icht^$UsQ(N>%g3E|Q zBlX0Sm`Z(gWDSg{=TQEdDp2BmNGNp4DCB}!h^-Q7rG3pLKUd?+)AAyZR3q`JZkuz& z2Ung_adL>I9i`DYgVYE&XqYF6cenB@1RCR<5Q7$JpfLB0C+W&`@?lu82i@@dJmEOd zFb8Lbn7c*e+QYUwE$bGW!j3xbUb-s2$rBlxQ*d;MxkoiFr=L3H27T)Z;%OyeNl^_e zIYW-MgbepObng+^)$8-}E77<(tR>>$-h>|&kIwKOfAcE^>R4Se_`nc039#N#!!Ldp zA_mjq0c&T#TAMH)D@zgrIo1><|X>gXA9NS>U(BYIohP7J>`L^AX%IsIB9hC!_)=mSt-9hpa1db># zLEz%rt0%VE8>pzGby?9bDth0vzzFLfgLz&tHHJN#Hn$q%Anyw7h;-d*FG1ka4@Qa! z{=l_3K%R-M@Mtv9<~wo7_fUEu*BV(K+NNy_l*|D_e`{)?Tt%Z~OFDp6AC4;XUA}*xdZs4Qnw>7u} zv%#|rq?~ZI07v*^pTxr%hil5+8Aoi#ou9T9k>S|d$d>z!Cl_faTwD=(@UJVXq9fITO{5MI z^fr>t_vhGyJo!%NDC+!sbTl1$2IaJLm($F%9LKOv`6s$kCH*up5(U-RU`cNk1}H3`)6Ay6o|$0Zj!?do5Y zA5Y8PDyu+GwLp6xa}$5^B%+f{v#Mvxkyn+H_F*xF9Ze}9BX7zJR7MsG{Ki3t)8*!ic&C#n1JWJ@}SptL}LmOHI60JK_3D}i3CBLsF zB%kido#M%51G27FAlrIUamyq(te@fXbL&73_UOHuB}Z*%yJ{rXAWaG>aG_1!P+>hT@9 zf5T)5?Tj*7 z*ADGMa6I{O)+52dNrIRkeF zd0@nT#K}-2@Cb|>5~u@LYUUXz5l`ctgbn67M1~F(G#jBq{7Rq1;ewu2miZ*g5L0pCvo%tcBGrQyJ=_3P; zaE}=^kkN2|;uFYOGBS{bEZM3-^ecqh>V$eQxAv;*Fk}BDr9CR8%^MXMi-!_i&HJrQ z!@CG|Le0seVAW`hf@Es;7y3a$T{&juUhBL7T%nN#mFS-9#mc9yd(1}Hl_pao@<1pV zgMrXR5kPW9K+iA*1NoaR~FjelrIBL_^3MO(D7Iw%mZG3rZ{=ft6d#!tOD4{*wjqvf3*R z;xd!SrgY0qP}^=vd|MIO9cE(Urv*5o^in}Il}$iv?liF5O)M{TcT5a46fY47{hU!) zT)tI;0$YRLxEaKg2JttO$W{O97L0t1z=|b!$t+tPd=QQK;v}rl(zD%qPD5TOaT;6G zGlvYmxfLOU0g}@+ z_Csut9hiy=&oYQJO(KV9&rb`~McAGzypD-8Y47wveQT|OSZyNM@vblvy>P!o>{CKH zn*&@|5F=^Nb=^|v!c2&VcY|G#f{#o#w`2P4nCOMk6w$s*-VJHPlWEVyZjqEe3ng4I zO8DC>fu(PE2P&JZN@#>+iemHCOZ*yl!fVK>=axLXp3wuiVF%8}pN~@95zL)QP3K@H zir<2(9G&lil*0_#5R=CJa`fGZA1qR|2bGk3YK+?#+*;Os25tToXrt}{ZHuD4p|cF24+@*aSLccU9M&Kq^(gFqn(6K^4| zbfZ|l4WE?7vlg(A>XL7X0fi23w%%5}os!3sbK<-}H9GTSw~Ewb5mr#!-KaMV6t~~R zN3dErqj)DZ9y=@C=T6n@og*-x{e2a;7js3XEHw=<_(c2evP=8Ad(yjl(z#dO z`#5^#Y(<}?=prK(w*u&u=(=TSg_)k_VdqmO6C!sZ*>F-veA96`+s4d0WqrBVa>1+hEqv|e2d)z>ZJ5G+h{s~!X^h2N72{@&0Vk*pqKOQ3g{jAjPYbLu4MSZA z;tZnVX9M*tQm7&grNxJy!ODEjdW4vldy{2|kDe)%aSirU&nl@;X>=Kg6!alIu}s6u5TbouO>ry)=3ao-WsSFV znuhyV=Z)xJ4JoN7MrwUJJHS>H53ObE;JdE=48hKIKd(%}Nao+W3PPY|0NNa2E(o2$ zvukZE59H$cH58<}0-ms_N|_yc#?Xk(7`)dDjGp`SI`S2kwCC(AB4NjzYgWdp$TjW< z2yqu^;@Y=bll?CTQt_U%^x8zP02VUsChxTamkf$NlLo828^u+<_1-hvW{!C-4OU#&aI825P{8_L6U(0hV(9 z57TqS#ypm+h{j?aIf-Tjdsd?SJw4;-``6&R;gtyCyJ^S3FBvdC$^YN$fpn{-f;DR# zTJKet)xLP7XA~WL1H@cO)NFjC#?tv++ej*UP9teoW{ZZ%4C!gXHmpCVsuFHhCGee$ zk)NQ)_T3K4aI*ow3185!2Xx;77n2mFNKx!5B$?*#FN>y(HzDV81GQAixfnlHP>$QN z!%i_&fy7Wnd&!MRp_f{3qnFp(6{unDFko9v7!R91Z$T+%m3*h{T5|kdA+xOG2JM&! zO)T{Wz5`QNvx!u3bzHDG7r+&+w*wWZ@C)>r+;>sYs!iPPd1@1>5LA>$9@>x%y-OjV z@5Z;URq$(?NR@}i3(g}3Qmw%Td?3D{E2Q{+gk%?@#7_{(X(C+y$Em{DEt#y6mvH<rVnXqMX9br+Tx2!1H9_`;WG@0$%=N1Mw7u+(e2j!2IT9X!*oq> zkeX4rL3~4Rh0LMq7zT{QDf>}gL}8hl_v5C#?&Uo zeX%JID*s_v?P^ES_ntF2&zKw@Q(b<*+2Hl}maGzYma9{(ud!K}@gsthbLN)lDHuL? zzRzurwsP8B&aKRQ>nAKHQfc#jn0J$D{3CFJ89Yva*ZhnjglspDm@5g~Lw-cABk>M& zXu4+Po4){w#FYZsB^-%MXU765IGpW;#6@HeBoFs(zrs15E|F6t(lN6S{f1GA^fn$+ zBA<;1k`=Q4I3B=zLL!3-`7?GoaLF$jSPIKT;yo4Qbi|=|-zgGii@AF}`GAs6G{*3Dlx-ze6+P&`XI-SoFbSlYklyru)xf zL=`H`01e~RvtskUm7?#sH3n}i-I^RhjhB>ka9`K!CBDdk2)zSw6E64@bM{bIjiADRA>2L|PP5~CJZUWCvA0o92H`Y7Egx@NnNC2S0?rG1=Fm>inJ(1>PFih?Hfgz7M?S}!{Hvx`#hPfi7r|tW+X0o+O)rTMEpg3 zPaEB=rlja#RTy1nc9hJ__>$Vv$v6@nOvjxUFI;QJS+mswApi>0qCfwaPr zP+KEC&Nz-?Fl$1A9wg^rBd_w25 z#9$8cG&A#rWF|gKNYO3k2$TuEnJ)ytZCgRi=bgIp%2Pu1gZu*Soa##yA>4_rb7Kp)w&SBYJy-zBAr>? zFM`t3gXz|5NNpyLq9A0^!rHkC7^&y;+h;-~KLeP0KOTT3#6)qPPk_;m~^+)sNAbuAY=5|UaoSQo1md^$+$ zkCz=D*B6p{);BIQ*uvLYpw+kuW(M10T>_k#{q(4D+g75odeoSw!?G+0H(m;dbJ#+- zyxPH=ajV58(g^;(bMofiI>9U)xaL|dl3zqByf#!ew0|v{(Xf96O|8q;R&cb@ai1+* zl5aj8*;&FD$ax>}vFu=D9JOZR7D?po5&M!zPgqzNY?Bv^N86Tu{cF&m>wuegKfO7)PayL+zeiyiwSVH z5_*;ty1WXE^n#-}miBh(>SSz!gv8gn+%!fxCNL*2m|?AL&AC@4W^Z1wkFV7EvZhqn zUAykZtwTeA_ipPqhw0g)1o}vkge`SqxDXBd!fghqtPbyc7V)lU5xfrW&@x!Zx}b{q zTPuRYxlF&*b3iQZ=z@0q)06(YC!H--&(`SZIkff*4Bu?p{Fyz}IGW4wf&B&`*wY5^ z+Vc0VX}Xs9ROX>U>+pa^YjZc4+&XkRjF&h2+hP_SFAE!^7bZ5dP#6M{!v|KP@^+Zr zM>&OQdK}RvWYk#vXWH{PW$_p3M6vm16O(Ca2Og|kJ(u`Me`Sk5zfDNFoVQ~`$6zB2 zS%z=X;C#S?;b*QNm?7u1mmG1mo`XbL9&qkCA9N1Z$LMAFQ4Jo}aiRz%B-8Y111n1X z9`Y;(S+hKf;py|cd`zFoZRKQ_&{oc$JlSyt%4ZI&!pgPc+Pde@=(ckHM6<9~(e}1h z?P-7`DKkZ$jDD(!-l_-=b8rzox(91pJq&t*qN9&69fSSKrsK^mgDO(vcLv7GZJ>p1 zrTyTKALt1Ob{^C8>F*v06h0%cuv_;Gtfulgty3beRU&8h4tBIw8-kWHh)oA?(RJ+; z%(nKZ?|#JJMWV@paGi4d22-u~4Zypqrf=b=nm+k@$KZa!JnMo2{jG$+#aJXc9T==d z1NsMRSbrL{-%T3NFS7?=e#xQ1$1s8mV{p$TyPZ^a{=i@_t9CoLc5Ahh+SR1u><`6* zf(>BO9nKKN;bUD~&r6>S!uh&FT$&qXVEa2*Rx4VM)fzzkj;`)%K`mEOb3jG}Hsu|W9gL`gf%4lHk{O%3ecEMBqFPWt?YCjI}~$s=y#mIN`FMt~IM z$KASD48b=uk=4ut=h85^Eqt*fZ^tSgPknP_jAQkY7Y?zv zL9v&<06`N+q13hpv6Vq&zoP%>V2(9eac)r@`zTU^taVv2bi)4e1Ot16#9CjWQN$@x zG^)@xcAn7`H6wDwz7!9`E}IK+C}eUl(pslVTdPWwCz3^D%os8_nLZth(Y=}rs$a1< z`6}O4SK)D{!z&wTouL#6<>~SW-91i>P{sX-xj1qykZZ=He(xJ%zpKQ43qREe<ovb{u)0wCr%}xBW-%}X^D$~S z`%1<1+bptF^?o)3w#X@zIc%_UA8-mevefX-YKc#!cc$0jh0;M(4emL(<-(=CCQB3Re?BX*<^mL5*r^bygzv_C1)Qw{ zaSglGw0`qahfu#^XX1ZTgUvA|GZg^~TN!qC?r!j`Ll|w6N1VcL{I5HNIuKf=kly-e zNHvay2pNWM`@=uG-p-#duA{f z;R>d9R8+nWI%YWz+XyO6KR877#dZd^wTb06s5UFu3I}=_J4s>fC5kdqhmYg!qw?1< zJ54mOH=0z2-eJc&;SV`$0nk^~&>>9Sr}~SyIH}!ny(fmMd~62{*nShn z9qP@8QFcscxiqdwUF$2WY#Ra$FNM}kW&~}nQ>w=TeBuLXl(h!n!F%ix%*t&#lkW?} zyhD7_#xDx+KZ=}*Y&Dy?(Yax0?h;U)(IvPx%O1n}afYhRR9RYnO%Xd>0xjIiXw4|z zjK8!e(@i*~G;1lQ%o6o=l3$rWzK4E+@7E=wo(DF$oP+KE(3%em1lSG-_he<<@Q%U%}F;8cS zPi2>=iEK;yn5aR)rq;De(rYB0W7=T@1Bdp{lx4~#=U~qw26`58HV~X+J)r0dCH>4Z z!G@Gs0^>Q)lXQg)%*_|Rwre1o%les>O$qGax8w%t&?c6_BRF?|; zO_lVEEQy;1(T^lLJa>3?skg1i_^A)1qc370;WY?83@g7?ee*T>P2A(gbvrTV@7;!l@0vf9mx;_tE-?|k zvMao)Yp6MSs6V*{L;aWn!#NfeMq;O1ktE3lL2Swc!nXdk|H0O$7D$~W(~;q&Dx&Xn zY8G+EC)Z+1g=>jjJ^mwCunt!;hL_4%qb4W2D&M>wY-kmzBD!crxcn8noLITg>F8Mw z?rV6I!zQF+!3wW#D+Lz;Z+}8;n2!qa|p#cj-deAUeOfOzw5F(Z9v*thHOK_;q-U{Zp<-nhVH;qwhc4n}-RMclUL%H20%mW$Vpu za`W)`N5PiXHfHG2)7K$T_}0tGkKy7URdOD(Yc4KimtPLX(X!8j5wz_S{LQz9h+i|z z*?f6v4-^#FU3P(J8b86d1~?f|Ly#&^`RMB+=&?`Hzar)DU54Ol@o9nYDq1^BhS*q7 z&+kRwYNx<>+$#ijmO!?!(Uf^B+Jg6^TX+_c=PrW1%GW=Gg`TL2z!P7gBDfRS^emhy z=U=(RzTRMpgSKz(4_3EUDkdKH3NaBxSM4!<{&kqKzCe2{@dQ80VC$;xGVX>J=T7it zx6lR*pPT4;01En8m4xRULM7n_gi_??>`@h{%2&Z;EU80P&?cU@@ohEnWQi=SmA-~D z&v)niY8sI5gmQD7{w^3vKYon^1!o+f7Cyo2VnUU_g;dG&S;d3FI=G|WY&L$CNm;kq zUBtGn?Qq_TKXtWmy7*L{!*Pfla!mU!Sj$%^i32nu9LX94A#3~kdJ=ni5xKk7JQU2p zseYDmjz;9Qg;V!8+mBL5JZF0rFe_Am^_$Wk8riKs-as30&$7zuy1}cmT%3A_V8ZRc6sXDK*?<=|hE_=hCgQ4iG&Yc66to1aoT zYfw*_RCZo&{yo^hs@sbVzLh18F9t@C6QbjK?|gK$yoqMj?B(tU)qBZ)5H9T?y8n-0 zJ!`Py4pdy*-|J}gGeEr^5bFsI>Zzw%f1&*!Rp5sen6HaGcNsC|6Mw;sK48!n;tR?& zvbK-@jnfLRD9UC<;p-x0|6tPJXaHVN;;qL|r4@E-zWx`( z+gqkC0Ih-5%3w5i7_101ou?wE`Y_&RDdtRDOp#Irib$b0R!OQg&7e=l7j#ABU0sr9 ztyYv$MX?o;;*Th)W(5pLu@Z3we(K7oU!f$+`bfdvXBaCZjxzteK8gliwx1k$*Fe5y zB3T*DE0)x>{_ai7=i?fST}g3mhermm2{NDi?*{R-Nn~BLi7rXEvinH&*6tJ11q&HL z@iC}!tv+te*61TOiz>5L(2ky3*%}M2j8XJaeN^WOY30EMKz zHsuh@L?N1c&;{SoeY|hdN~&77DbVx~s123ZC`qQHkK@U=DQ-b0NkJ#}4QYq{y8YEk z>R4q8^+X6&KXhO!h04=Q>S2e-RdK(;W3TSV>NsQfvEqFoc^vnEXku5$MS0txu$GT! zlw?@{D9U+FD(O;*TGkjcHi|y2S(1c}As6&a2+BG^>$!EpR{W04k}O|y@@vxVP|I;Dgn7TgUSP5j@|o*ZnkS{(SzJ_Pv9cKZl>CGf+@cnc6fisqDkM4(~uR@vf3Kj#B!E^v1-d zOY8 z;3FPjDssqZbCILl@a>)GFI z`V)inX*JMfR&1%aR^|A!JLtpG`8O_cy`pK1K1v$YZ$HNzlF)G-JTg z_0zOGtYEeb(XIPZLAFtmbi<2kBOK-k?o5}Jd=v*{d2N~kn*0%vtquZUw*c)BAeuyT z-EKCvIh(7PZB@9N3@&*H*=gw^$J)g?g@>Mr)EL(CJivJR2|Dc^o41@Ac%k4K=Y4wyN2@dPD3D`6sHczXJ zwI8cA&Qcm0DpwbjR*Mo_q!rV=WAx&bB}O!adI`LTV$dh86~hanJkMDJ7P#j*scxDVi@K?+ zFszd>j5uUqqSC@3=ph33SF5_P>hIum@u&ol)! znT)KjO~R+Ew&;MZQ@21^weHjnt=dWkVL$Vrnbw_2X~r@zsB1 zDni-$w+(o9kl&Hhfmm>sis6?Yj*fw`UKNT;7;x}fpxj+B5fz}tD4BzU2f?NI2C}^Nl>%z3f+(Q-_d`I>6`)zI^nJw(>-5a0?}nYOfTkEA zauM>;@VBV0nb~U74{&qY!H6*Pa+EDyk9*zd_ zFZ2y9{;l1?PNpmw%9~IDX~chrp8Gbu5hx(Cmp9H4!R^uN3)Y)Gnb;>}!K8N6Hk`Mc zf;m($M`4xQ#q?(H&-N7OH4HL?`&)x~+nF|!x1Fu^lBt_|6o=zc@gQ~wKXk_EoCcd2 zo9cn(p7pxVZu{FCXm?w=>nM60E#DZVaz&W`8^26!O>mtdG^OW7EoNS-#Ny<;CiU*zqiv6a8ryEg!o-4z=EUv*~Z$rhC1n zf9eNuArT5pv;FfY!2UWSomzT2hsLCpVP{J9@?m`^!r&VGTV)_r71xN0l@{x}OiC-Q z^%0<+I*5iu_U?`bmN3oPMt&2XwtW=}zNa`+48HGsdRg6A~t0VCp&spzxqvxH%nGAz|P ze4)2u$PiZ!yIKfDNF3`GZlBAdMx~WtkEf?autxdqvC{26*CB9=>mn*?VKY%&OSIA5 zUz8P!gi**%a(`C#`^>a_IMWW_D%;T___uoLH8XR}PRpgW5zJOPGje{SVR(5e= z3P0G+irL(fNe|cmJqOImZRoTfok%`Ev>_=6+c-C^h}U>a;uuRJ-TC!-AZ`*?uGg7l zg<<>-Cv$xgT%dBnn z_R>`!=VS?i8CltcMVM06+ESw?dHjQ$if2(!r-(OVAJgj>^nDlYoFBpK0b1kVa?V+R z^(YNTQ{z5qNm@y^3jgH~%Th1;(=v9w7mX{o#wOL*65p}I-C2FF`RsYsRDx&8GO~Nz zTXy)^k{WLAjr)VJ!SPP7P!{{`l5E;2Jn@;7+Jt2sUV<%n$!Q_l@V4fT^$^^yYxul2 zrKOf^TocSHL?lOOiaTx~;p~eBRbpmqnza;oTzx7CgZSsr>z3cy&lB@@=Pr z+D6IK^T1S1k{@hK(Ry4ZKQzE25$LwiJp{AF!gjpJEiJ8zc0u=m)cH9lj5>`A_ybHJ zQ^|#qu0rU}do8G)J72U1eC+0&%7 z+HN0|KRwWo9V*xxn~%8K*-y)m^RpD*bR%UN=&k++1HDc7l0R*~zMY=y zr<38ouKS%hPJLsVKie3T5y~9P!CTYL+^t(F?E40vqAyJoUw)w@va=&AFe!7D;0?TF z_Lh~ks`-HdkZ%qk2Yvwx{qs9D+2MyOD^$tjB*g4#GZBaprD z$NM!j{%57Z`=F931W&I)*SVS?S2oD(!zPnwf`OK*gtBbWXJ|>J{GhSQ z)pZ!FbQk0<5;?H5E1Mth?;XTC@xNoqy`^v|mvd}KUgY^okBksjzpaQ2X5{kC56I;=3CQI@ z{&%I(#de5TPyf*xd2(2v0<6MLjMEwle3XGt8I$b878bK%&W*=(^IRF>EN~Z$uVa}6 zwnmteprK%e-I&@KBItM$z-@fgFPLN_a$tczIa$CSkmD@L*dk#fQ+Aizi|lp?a+*Xo zGW=Gq43Xh@h`=ISk`yv^x9aReck6^8A2Y})`_r0w9kC=Gc9W=9MTJDQs=0#0nFM%I z(~BY5*!zKf@=z^@{bZ9n*(=4AbME4)23Ch=XbV*u?}W-^Fycy#og)+`mGXxp`uMRMOOOfkj;7`GTBp-jOZ2WYnNM;(#57U}Wv3JS zWMy4{L^3NZlUb%DY|JS%s9!0_wknc3zw9)6sdEK#mW+(* zihG|mqE7(pdIk;SbOkxZKvI!Ifv_xco%a{d&N`j!Q%LVq9R8a3VML!I@l+pwmVOQ< zA0V1M&#@0yi2_FPI`LO@J;(}PE;V6Ut9i&JwlDPf|N%XsjBz!xV9hbd>?l^N2Gk;5qz?n9Lt!<4x^B=H- zE&=+r&6aM%`{m2xWMSAW zSB+6EY@zIZg}w-lG&`QrCYbCsTL;-|F>K^@%$FX~4LvLyn(+$N3`j*-+zsx3#n64i z&^`E+=Tm3jM7@PUG566EnMl1U5QEssW_<(L>@>V|=}!gw;3HVfCKS;k&`09SwBfAV zG*=_w(q2 zEa5H|_#0b7G3j7}Qt0luhaxeiBMUm=Xdod`tpu_7|D~12A!Al1Vl#)JQ3SwcAB%th zc08$Xs9tb4b)4wt% z!)(j@ulwHS&z|k;n@_+0s-5(T3&YSVcw6w<`80_lA6-(X=dSw`?5$@7Rq4Fd^$>Mz943W3DIjh@J7ZBsBneuviYR5-exMK|Kn5+@-gvu*qf zeKskzliNwuxjpwHt(10F&~cEX2OV8Ggg|&kZdNycKOB|xl0tynE5U!Vgwr!Ck6&TB z@4bM(HNknmC_g*%JS{s5jOgdbe*XuxnBvRxyjCR&^?pKfn9PXE! z&Cw8Tzgt3YDo~maUz^!hR?Ce+FwfFp=9S^f(%Apu1cGOI5yzCTEsysLV(YU2AHaX4 zRNy)Jw|Ycdjvl)ID~GLuW*4}n5^l>hOc21%a_nCpWJQW4c!@Qb z?->uvX)B@~7vLWyFg2Gvqf`8BVO~F2at~Q@X_26~zpb?Ps*C<)iIJ^`ilet6s5n16 zJuU|;8UVYWS@IuS@~Pm#ZhsaVXv>We+Tl$!Lc6`e6)AdC&z+a+8YUkKuu9uJYK(jg zzjcQOYK#W_MeqEMOg<0{g{;nP3&!aUCS-yolGdk=<$(>mbmVpkN%b0# zrSUk4iMG*_MuVLn!)ygHyFv!ul4$yif8?Y*Su1@4A_L#ga=m{!2dGcpy8w z7a8h@O0RX!}RM3Sky3&T`wvg4*6mXKsBkRj|^ss27Jy$I|*U? zZ{)^5H~+#qB<_{8g?csD*-cGs7R9@+2m1C8Vf#vvpd^E;y$nPn(d` za|1Dmy)TlHhrO?Zi1@|KK5oe-*L|pn;QgSp|1+@}MewOA2)Edx*kGSp2=F&%_$x~| zO+abe`{!nB15$HpWqYt?i?LdJ`?Ra7ph*(2E8@kD_*SVU&>);ghf1m;s71Zn0cX*RcJ|V#kn;G zlI-NgEagRiZ}zx0Y(@QTVe4-SmPW)m>)48FemyB)HJ_f+WDCt73vxF0q>c@b3HCJ4 zwPfk3&$Yl^)DVlFyLrNQP~vERmRipisx|DXkKbs8j%IhGN)O1ws$9aWP@@PY&tueq zVV=8e#@E3UDZPcgJ!E?~*SD3@x+)fSB80KQW`6@%kthK3Wx(KuwsP7W1u#?G;xv4^ zW~@e_I$hTYox1M?=vx^?t84KMZQ0rU#ZUwnRMN;4#Z-T&iD3JGMWWupjANIk| znT;*{434;~Aa5H;8bjf>sY~>=VKw7XTQB|jz8H`X zr)nac@CNE99+h@J{)Jv?gHEZzPv*fpmX8~Llmlg$fz zFnV2rC6D00fMsF^gXZ0HP8tx5+8)<*YKg)+K^Q*PY`ES%Es;@@MMcB#QD(!3yAli1 zhV(L=$ve`WW8kQ@0=&u$HpVVb#tkUV5?X`4+)U4~q|*&dZe=T@T@>_R&2%#R$)W)` z_n(8$n87D4!PG*ee}S0K+*>cbnR-j57Xy_bR)Obpd>dO?ES#8}_^$_)oQQ0uU zS7Koo-voh7hL_5FCuh+Q<5qe!~A{RrBB~E*WDJbHO7~GMBjk_TAqqFX1s3nM1^e~ z<9kOocBn7-JrFeA7$s~e^)wVdHJ_g z)#EWM{!e|AB2wg8>~TZXOB+21y|fN}^;p3>R@_PI8%}tVhmH;`px+JNwqlWFYj)em z5y9$3CL6nldJnNx)us#V6bbubC*Nx#u*K+3*aJU@@{S^$eJbvQ-ScHuzR6+Vn%cdKVod z>X!qvvR9)~tp)cp*Si6j;=-Hlbq5<+lY1<$3Iw}>2b&Mbz|P5{au4!mPsiGV+5J4i z5wwUlDAb|9+R4Zf8uA8=M;Bq3U=Eg<)H=ABIrT2$0L9dPimBA-M3jXYVH0t8>4I&S z*_g1%&;DA4l8tv~x}S8}mrt>gs(>uzn+Gs`wM}JHKUA9DVh4ybWHu=89zX!$>-1c7kU+9c%EGJ z=M2CTbU1rn48dYp3I9~~8fRvW{wV9_EU-2T*0U03RyZ5nd{8#FV>SvDUgGL$A>QAr zT1ZvF=5MFt?Wc2WA=(vz&Rp69ZBz;Itp;IJ)m-rLE>}-JUgIkG+CkAqp^dR@qdF(` z_hmn&eu6} zWDad{$l*ZMae65Bx_-R`Wp<{5o%Rvzm?X>`;?#M5ue)Vzd^PNxAZ%1JVq=Fw+^Q03 zm8o}%EiaxTAmUw_NRyla4wT1)ig+U7QwBqCE7%(ipM#tH!EP(()z=b*L4*~mmJ=wOK&5)3!kCthn@+am;k{adN8Mo` zJb}rl`prFFY?Sb485yYg&JHjSH@BP~Y;h;ZtTOVM>NED$$JDssCd(9XP>UYOp5qZ${)oA|kq5D+)>Pp%HaL`xxNpmBq-{cT z*VsyE(+29X{BWxOjb;9r^G%$Sj&B%V~s$j{ntM-pw#NwoGzf}9WESvsFajfuX`QW79CUn z!FrhZVpQrbV_1``rDY#%E~{Aw>t%J#AblW;?6Az{@OTVFV;&3^J9-*nQ2|@=Xh+YG z?|4;C9Jzh3%ewV;x9>42=}x>3-~g=aBdqHwTSqetH!cMhW-Sk*PU)uD*;%&}8ydX2 z>lupsjb#H5A)1o}agj_kwx9qT#NJg6^3hM)T%fS$iah9mzwoz^)E#V{2d*8!`Snmc zq2~d^n`guX#rve8*;&F5==UB|vg3%H9nq}I5p;?k3&S7EhSSX2;Nv!*l-ENd*wk;G zLE3%AdZX=2NEDpn1aI4`cYZI;RM`_zmfHp$VhFZ`9*|>s3bFuY5!^%Ns zZhtE-b<0oug6`5XoM%!VlLp4Uqcai2h8*W((<$T7O~Hgc9+x&*n`%X+Ue%#fw!GRY zVeQWnm%2Z=cbp2EJk*yhJq>HI-^?>lk6Ll5GUuB*wYP%%TH?~^(Z$Wq`dms2!z`;V(qgq|C7>BE6Be!N5Ig<=m{K1#0>u7 z^H_msJ5&#^)|T)gyN3oc#|2~s9<{efp@mfnldssmVn3aO%P(KVyw4PoLcElME6{SV zo3DoEU?0988q9vXj$|fSCNtJ58LHaPUqVH-S){N*O2IXc;jPCCCA0A|dUtCrQ&?q{ z0&ZlCc1^%9OK=bK!`bH>oIzd}ExEs1acQ#m!8Odetel~V?hQ|PlX5GlYF*UKQ zN_mr6|B-3dF%$o`fp%L|bVoi?(NUXv^N-;HEa4`cQV&bYeBZS(6B`{lEIYgK7I%WV z(HS0{)0(i-z4}FM(&O-9dD-dl&TLwDaR*(@cVJZ3n{Q*{zoTKiG-cSH$TY8xC&gk} z(H_IX*n;==oZ39Woo(jo^O3i0`Pj4W!*ELQ9YoCx11^n5r}A$bXbHpIJvrJ0b^0#W z%k~QVE)(9h2?0;ph$OPGGxl-5>{f0(&9mJyoh@oQe88G{`mmC$YYk^k?SCS%JEp`K zZM&j`284^QV0^I;jj&S1@N zxVfv~GhFW~Adje-gg>aO&`!!TelOqsi9urvkxnx?9alLkr!`UN4Fz4IQ60SRG3wy4 zf;LK~p>nUP4Oc)zR1j6VTc4r_y-I+V%OHJ@@itnCae0OZv(#tkfn+FLhsvc&clUEt zy1xqU8JVlk1#<4`TS0;Bp@z5Ro>aIeEV%rLf!NUGa4pja-CgfwuF(mNe_<=G{i`7V zQIW`k7`FW-eqL?_Tl5Z3xp^^H`#>8=5LtMmMdI)B?IK(hdRLDnSuPVeH$J!+qKCrJwt=;LqVX*&pv==zY$S$MJVzjJv9&0qOA%7$5kJ)P3$VQYxaz&LDQ9 z_K3pC`|$9D_egW$%z}&LIe}lxjVQ-%c%gEvF_N|&*QT`Pl6F}$T?03T(xSJrw8E4#_usA6e8?6=w@YOuFifb6UwJE%zVc;0M4 zE)vKEGV*>ldn;|O0-B|Q=zSYavfHa^2Lx!J3`z{b>ny@^fVM}W?KEhuaylCzugJyt zblo_XDTZkO2<{7+8-EOWdCJ#bQG2d%p9ro5qTBWLvlqZCe=6;CG{8{{%Qm@6qN^Rm zF5%iEu*b6=7F3@4p`wrAKT`T^*uJ(EWfF9XOvICAWR4H8m%+nnNKKxW{SaWUj1mii z9FuKENioSM{8NJL`S_vb+|+TBsTHm`^06~P_JVkzz-^nldSJVfM1OKr7Nzirznw|A&2x|_>h8WY)+!dWQ=S~)c6 z@jqfDOD!}W>a)nypA|Z_o*(kq%V@Y)T2X#4;iD$m^RZi@_VQkDEqSjM9=+mZb3uC! zmLngYh#4~89-x)i$yymap5Y#|yCzKPYbBA%IND6g-(sWn!YSnfLMxU`e*UpK2_uT`ph`*OEj^ zi{z9NBkZ-b1qymDekQfa( zJ=V~Y_6piCfok%z2P)<_tosk~#rAy|8Nf2^BZH|QsSQx@{Zu?XU;SxmdkHOF;2WRx zz+=)hpH4osW~7h4S7fO|PBF+-YauGA)*5OGuk!mwx*mbLBr^MgoY@Gna5m((k$!A< zIW&pql!Q*>DiLlJ5u3`}3u)R|@*Df%tcU3chH#eg8}cKy0vfLW6xbWxYOhzU+eK+Y zZ&yV$Hx+cIS6R08s;efSS;^iChsELxrPeOamR&>1GDs9(|ErAprK2FVmq-*;6&qy) zv+_?yim^pIOYj$FFvV8pYKX1b0z5+kBe3Y6{Zl?580c)Rsg~RXGnWFbZi{4ZR;q@* zq_#`Iw@Yv%)L?o5TOTwkh!xCd=P#JB%9D-eB&dS;tfsxZc1O@}Npx5JfR|MLHqxI} zh#VEjqFW{hu-BBf9h!2cb`CU4^#qTQZ!#fe}STmA0zmCU8_c*XNLWQejPUFW5qa!FOYA|MsV5?JxTdk8FWgi4 z(d<;TJxtpzSP!0i#2_u-o~~=hBhNWTXQ8v+wXKTPn}pTt@hLajM`BS$-xXPMTh0Mz7(Y#OI-xar3ZvB|BF&pXJ=>M zqk}D(NoN#YYJ)yjUBRqvFc}`<6ILeV9<8^nUY}T!t0`o%_CY&T75xRduS7;`hwgSW zRHb|irdKaZXm>Z1VqqH2N8`)RQp-w-3~6sKpsf&zERzy>7K(VTSZj13+Z%y;$Y~@Z zRYo>kD33Ioc0dN75;Q!D?UBKN;Vohv?RhXgZk55i2MmBu1d~z12zRxg6awc(t zDtkT)?PJ$Yqa*YPDa?PQL`XsYt=pF0>4~t0{t#|V=Q*LGZSPwdd44i8YnL_+| z{Pw+3Hogo=ZWmLtc9MX#Hf1DfE#i*sXX?)GbO*$JXFRFv{%Xv{4H+a89rTY z&nWvOtyH{TQj0UMf=+p&#OTVx#yl*x`WR8?6w!ZaGBuKa+dz}>R2vi{_0!i( zblUnku{p-9<@b!q$zCU*+j+-GOlp{J;qFE4LJ|0MGCB$&33|URFhMT-;&=*T;*1Bp zkVf;vD93Y##V3JP>YUa9kI}i}gsOrUQ_*dU64*L2)~Ettsvo;G4e8fXur(Ac&0hJ< zKn@QS*f<$W^H+mou(DTc<V`s`XK@Jryj)MTuGH7^ev=ldwj&n~Z&S2E~uJL|T%9 zUZkL@5H_2GUeGatJ|dxcHz=G{;O;ted5ow@4lCFLZY%`{+-I&xXv6WGKgQ$|N0?-q ztUL3aoEV>oOsP25j~$qgF7CfdGXKCrxxcbw0s5GwC+ja|?^Z#y`^-HLiFVAFb*Tm5 z(uMZin5D&UlxDvW|5k7IBPP4!gB-a(5sv&)w-hTLMhfIdgB}|;R?I`TvP>e{G6^b; zmlh+5X(EZqQW7YN;kxa4Tf3@}NtX2SmUJ3Ry+}gHY!&oP65TzTLUu>$-In#1@HLk3 zO7B=K3u6eH8v=e+g7d*ExHw^<;aELnye?V7FL=Nybl_rh=uq%)S&Cju=oGzP&&8HC zayi?zf`&IU+mISRkjg8F|6O;qRH^vmYB_o)+0bRFFOYR5Bz4e<*3pjcZf%1m4WvF{ z%NnC?s5ZqNGBgvB;J{48AOXeZT(_Mx6G2eNH)8|zS?j)*drMKLw3zA+5Gs;Q*P%#G7vL#ou)AC`&~r;$5aP{AOt4IX7WMjXz%0i$k;G_ixbvF>Ga z5*Iy^AVYw82k+ZvmfJ?phuzqaY2yNLI#3ec4=>Eb`{CVYqI1|1=l5`iWLj@B&8r8y-O*`0tJQwD zy|!i-kfjo&;vV~#IIG75Sz-xE+H3z*J1!tUN)W6Ye}#j2OprsCkhA;HBYibZKaR(^ z8Qv8|_C(-#G#smRb3e+}Gc)k9CGh=s_Ig^8>AD*uaSpjhFa7cXdj~xBP2ZZFn2&$k zz?@U{57}#Iu>#l9jN8;)m>KmeHV#r8er^f>jNn?2Y5E*6JnITX*J2qxmGIy9_FUR* zk=hJ%YO%fX+{gUNm;-%UYrHq!-##XL$_Tp;4&!m(kJKh503)J@dPql(*l~1&U~e(A zr4jludv2C~6gj@p;7SpNLmZG#+Un`<%7=!I2Y*DZc5AwRhy&SU^!-t%)yLTlZYw1k z&TcT#sMmPvCv*V(X6Rn@VO~RBg)#OLTBK+E_P=ZI>brRJzw2$XM9#v$)jMC3t<>J# zJc0JEmY~;==xFcqu@CJtFv8^a_lD_Mf6EAjFd^cwpJFpej1n{6}}$1rw1f6^X~ zcTZSZ-PsNITFnj*L_j9+4`pqYMnuz2V?>l8l5C znCGBKE_TCS)$6uSyde{5lA!Cs@uBR@K7U?jy6MlYh5=qSY42Ph@1x9GKW6Q{6ogt(wBEY{BJ+pzOYj zCGx(4+e_veQ$2}y#uuV$U+b=LyBJ*Re86YsI-hd7#mn)*V&u9EsbFh5j!rbDAYFry zvYJgvA{Ew&!b_-%f1tzqvoQH5nL^`^jL#;ZEIh>G%~1vQy|DHmK1CeRpri7i7<9az zrN2a4CeomThzXss|A=pu(f(4fPgN|{z@I%vG!~n!$3bE2$aU{#p(>cT6`$B6wSu$F zagcwu9tV=8v^3uNDVD}t3uKIp#E=8)EuT#&pif=2P>{`3Bo)%}&oR`9$ItKJAU>H$ zLk%*r%U{^uGFBmuGKl1Sc*@fG{x2~0+#`(MDJS9bdmxLPKS4iIM%$*Ovl*9)2q1S| ze+hT}E_gR(9{klvyQTmx3qvpBQ}`VYie-QQ15m&m-9b6$m>qQHH8MNL9J6n-&Cz`$ z(I_Kx{ELkIRM2Y5G|EZbp)Z@1f!oZ8#Dgr=6>b%SOWBFrw$9G$qr&t}M5QIvcAonqo zjZgtTT%YmjX(o4blPOldhM&ugaQiSv z0qvw$JLu}MK%1oxddA$OTTx`f`S4>2k$;}lql@wbfis0n=`U~GYEvD@nWbmXy zj&QvB&15UK=LuUW7T`L|SSVM-5vqMFY~O9R9bpj8ZuOd!UEe#kgA$PfVk<5b0YS4% z{}#noz`KHW+e|ZRp^AS^%)z?$#!l8-#Sj`d%*J2UjlYCDmwW2(izD8G7U(YYXOmC4 zhRPIb1iezikq7U=#h;W>a(340IK1ZxjbZOgBHro>Xl)6KU~7oYDpsg!3W`GPZi`9b z`ZkLGf`?O^+(uG}k&y|FCW&oVy)5zF6+FdR@p6c>R6$Ob$olZFB0?;%Jldzlme7R? zltL`30z&MlfPQa4DZa?sjr}J1Qg4MHBxI4Vcz2%2SBf;mggMe^!spjYj$GP%klN+W75l*+d+xLs`TMW-fVbPM{Ydh zNxw8rgcW41t|BDzFLcKlP4J{ta}?FuF4W_!wSJ|?6c5&pt2;{Iu}&*!3k6C8?3Fbf z#k46pluf;a_%x8TO)B9NM@eiAw-V;f_?0Y_`82jutd>HGK6vVdkf0?`qb{@9* z4z}p`*0FScR`eZbR7w`jM<&wd;eHpBDrie#Z4(TNWowNQIEaPx!RHdi&_vZx+GH{5 zQc^|jN0F63$XwcB5nC%Egav*dFS^Tz6z+E_mqKGxQ%6W?;BaS^x{i!5G{h^`V(MT3zle4Ca!i^4eHvHSDD)nyn z{}S@*ZAZBNcT+JBL zy+?@!NxV~;8^#ls%4Dl0?r5R%{;;>Bs@F7$jh!x@_d`?0V27~xy&XX;F%<7D!L~XV zTPj4@oy~7*h}{=+2CiN%mHe=Nj$$k!Yr5XJq-4WCj0~efj|4*XHFG?QYr$S)#inMa zRDVYWbhnM%K~LNB4h)AQl|05g4K|-xC3V3nDQbG62RbUECw@EF<^1e86V$``)C5sx zeYb0l7;|OSe`JaPjel#-ESF1iv0Hs6<5UwoHHhxIkzO@(dWLgwf#?ubwoI>rReES! z+Of4m9YwL(+(@OnITb4FbXV!)CySNRE|#fubf>~v`K60DQ@7&(_E=!2Il7rMCl?UA zN1amYHgoC}9|cFECz)!bDTQ=$k~^fSmsEC?qZGEH8~1b6Ofb~85?5C6-B*f%Be=;MhD z9p|W~6~@2_2j$`%I%A@p7F;U)h(dGl`^loOlOH>LJR70B$$BGXwmoBl;}b0=S#Q@` z$Xr@=0k@Ps+ulq;HnBkR1(%DH92K+)0y$Pj8pSW>!sJ3!D{7+@?r?)k?IpZwZZ9d@ zef~E&R4lmc6sc{KQ`5JVM^6c0=ilOKn$1c=8*r6qFA3OwD(e560(DJ7(Qq*`dP<1g9}rs%nwBSrF>zQ3Cz%U7P_M-icAOEG&bGhVmEH>gWo zvUKW9%mdaG-0Bk7m|!Gx7u3Vu)8_Ol3cI4p#yhv#vh}ku5brJ6JtVgNBm=mG^@!-I zAUml@8p{1L7el!v0+}cy6X!V^Yx5P*90Nol08d$kKyupDP?oR&bA7)E_;DFd0T4R` zdE8JK)1E1e$HLTy_>^7Waxq+A zgz2u2WCllnswHq_MhNS=SX2fYUhrcou=$wodWlP}@1F$M#|mysiR*HGl=is-`%HyV zGd4fPQBj*HVB;j1?&~vGUA`WzAV;W3^7W2X_k#XOlJ_6e_0xXTPK zxgI`px!#q(ln?M#5$%ph=a!sKfZb7FyRLw*2(Yxfi$I+nSX>B9)g9%RDmhA;())TU z78aVJ7V*KhO3#|r8<&b8qQsl>&rDWLxG>4Pezr zqJk;3)EpZTxJn+8mD+$2Su25xmQl1haUa1RCR01O&|lRNmw$qfHX9 z@iL6}(o!}$g4xqmQ}y14Hb%jYRI${Hj@g3dd%eJ}k+JUP8|(nqc?-q>{2^~`rNaJ3 zWz(2x#5OEbToUXHGMkT;2-|hLBV0SD5KkLKav5^g>@o_wfSt(UpfufC{%MA@s11)T zGcAO@*@@A!Z<^Ux*>REZ)v{fVky>p5`9y*+dgz)cH+MVoXw?)-Wo*yl&Z>Y<;Vi0Y zGw(%B+gBia$;i`t9WAx)3aE<;q8lu=59KOZfELRjDp+J&MBualeb~HE;m-RAxAk}E zUw$vR2W2jGFo_#`00FvRLGD$N)ccuo5KZ7yfqWz*srN(3F6E~AvhVJpnEs(~|7UQ? z=kSoF&zsem<|{gaC2^1mp76wZChm5dx!!+KOe<_NJH4RI?R3iB`#)gCs5QRi2k*wn z6xT$4Ad8)VrJempP~clAyk<7t{Y~&GSKe2SA}r(abG`#b#=0k(H~-|o>Co+`i7hx| z74#?-O|v}9hfK?@ugh!@cCVEaNdL)ES6ijfma8;c9r*J&Tzpx8F3KR<(2jf0!kh`y zM7{m1!abvMDP!OKjMc4dcD$$$&4FF=4pz6q*_N5p{Pf{KCcD{1?+hYE0bFK|0?LPk zQ^?|ac6~}*PJx=;jER^Hr(Jk8l@zMm-9bRLRQEHerTXDZ9t6E*6wT-Wm5X&*Gfh8X zQ0t-ay4u;Ir|`4gGX_STL&;4M*d;QSN-kl4v14mE?ZHY^u=5pctMiU&+7E(wNG8(J zT;ne|nrh!EoNpBldFaeVbOfFW*kcLi>R$vhGI7(@X&CtPLjxZw==*MTrOPOVcEwY) z#x?db*0@SJ^!zRE@C=5US`mji1S0WUxu4$RDqQ`A0L01wcX6tB#SzLXUPB$-Qo((W zZ*Iao?6ehSlvW_yT*tsCK~N{kRDG3O5VNo?`KIg7glgjy_GpDoy{y4Ek+~ZMd!5X7 zZ`w%lnT{R4w^006E7TPV6)uZmi*I9f_lltYCR6G8Dh_m3g{|~(?|FrK)=i~?gU1oFjTIo zb3cTqm>?!eM57phnv41UiEj2Hg}OkYlK*Qw0`&-}j}dngRPJP#o`L6Wyl033`vC>L zPeD_;ZT|$-%5!1x6Pc~|v^lo?6tPCC{i$FdC|K%fPkn}tc0{`F_3(7b>rzL%^bDLS z#JBo|rJDmFce*QkDY)P`S8%zy*kt|1+A~~}IA4my+Q^Av3?I&(PQ}jDEHBV)Yo(+U zjjQCk;oldCh{@@+s|2qybqA~7|JybrkllHSC6Dn6Xbi65J-3ngbX5!MZ80p{Kj_75 z61J_Ei26W2mLub*%nhK|Ae&FO?3LPsS7O-mpb6!bY2 zO`XjqZ_(Mzo}v3LYle{t`mmn3@29##Ld!7w?t{vuvHiez7~5A9+{!YS#`fUm)9acF z3bJg5J9jA_;5KtS@X>R!ud|3YNTkqTPJz$;rrezosyE_&l>~a>A`u4^zt6p#rLbt0xl2^ zF2oNh@eOc>X`2OQgG|B3E-*}+~xh`wtAd09eIW#93U+{EgWynZD88;%Q$DE0P;OuP$g+ zWEzc2KjcQpS5#=_R2n@NTRqenq4f~7t}+dkZf&iT0{Yqjk$>S4vwx{(JDArQs@Vm2 zsSGC1ME)@|2W`32Qj{c?;3}gwk74t|amPOj)DJR>?l{nA7WOngohd5cLkjOZVe+^5 zbXDq$@nCvJ0dW5o+-EYEy76>9mv6F*b=UjB)z1$bm?#U=b9! zFO_O&Z1fk{P99+1N_Fgc^W_in@4wk zC52etAd>UpAG7mm7r^`S*pe|sSUylrf>!^#E}9jhPe{foN%X;0!sWCaf32dkn3g6` zOh(aK>z0kM_GBeQPm+RKB&=P4Pgf<%+m6ST(RLgY$Rje+)pi6jaK&z~!wUC+%B4Uu#ZsHMF z9E7hl$3fUiJr1ONpy}D(HJxR&=#~2WuVgH(p%b>kO%zTVoHbRjjSVaX13YIA1~Na# zr%s%nF3g`Mr-MQp&d$uk)3uL2MHhXtlEfrjWmLA&>~m|(V zE+h4xF~8%}wPy=&cTu<<4K8^buCesCZ_C+%Vye?AQnSga(QZ6c{K5KaRjQIuGOlvf z`TV^D`#*PvYd@``(>*-0!u9BJdF^`za!^>iAD_bSR59&s0iV7UcKs#Wt9=GLAn>_;k_YN`X#sHqCC*7rZGHvCVgFuJH>?kxXmb0p+ltw(}nF~TZ_ zosLC6AZE25RxM;K&7g2&w=BeoAhd?wOu;r$v1qAc*`3x1hY12ZR>r!UD>C`foY~?a z(NPL}xXPw^&bMuxg|xMTy-H@&8WK0T;Ep2 zxhW^(>ZAvz*k@;B?Y~0Za!pC*GOiSHR*3i3W7?y`l5>ro(K*&g{-ZwOp+v0K@!dCC zwl!woWyX##J}}ROPgg_3-#pT|1FEZ<0$E)~QeW%Y=Gj?T;ECBHCaNghiYk}-?Du}3 z9jZ^L_ZILTG8`TED6OkP>!i{s!a8?Bge?)EL>WXq*e!37hf!UfA>qk>u8oU6Su$mc z3+D1~X2^UctvPC1)PWn?4IQ{cBCYS_w5Tnh9J#g#F9xMH=Uaul+u%}cz=`JApmou= zJy2=95$U{=)1ej71aEA3yV?`Z{98%l8Lkp>LD77+7oxeyT0Jfz*Gh3geHozq*_OaL zS=qkc;1yVF4vu_l_23A_r>iRJfL_RzK4^Vo1-GTlrRG=XE=Jo(1G>)@?q@2OR!9Ho zhu+OZ!5t@ajouBxV@u2tMSHXYAECm}@=-~F0f?1#0=`;?)2M{F5q0K>1+x_jcbUN@ z{~@y#|M3~!E{*4eu``44j;1>zv0HLt?n(5g1Dt+r;b3Q^c3ny93a%86q$+RIFlP{3 zH3TC+zjeAdeb!0dbk}<q6qgPenl~g!&Esl;r2e6NT_mtt(0VI15jYR9yO+j{6ku=@=_bBvMk_2**jC4=; z>-o^7AL5(NURa>O=c;g8r^qwbSz0@cKk}UwGMknu$Y<$2Py#C^qfVu9=01hJ$6!;W zz?w}+Wo6VtT#tTI5q_Hh9C@|azk*~F{dyKtb$$Mtpqk&!n)_}ftDZ5Zm#f~ zs(kY1p~>*(B!M0;p{3dTXY1#PEiz*i?nsqOnfv=xXJu`@;I5Imn7NPERw|%xR1nQ| z=A40vpGyLCK?WJc?%8j1FjtQgwzP8!_q4&KXn@OH(csExTDV(3%b8CL+Mv76e}m*Y zW7gp`e-vc!y*WAA%-N{1eK(lBn0^_`oC6@9>hw7ht^gXcs^o{fsbX_@_8inD~)LLi&T zNNVjOmuBQ;KQY{M69w5&M|$Dqm;ALgZTN@2H{1NuZF;$3#iH{9=ymnl6g+6;`EtX~ ztLJ8C$FJfgaPb6{-yl5!#)+zn9DhCyj$bJ({zkSqavNH|Tg#l;*(MwADqXSIE;3;$ zK1JO{vru>J7%HC=NbFQGW*?|Fzq!mAz)m$9#ZXOBK(iD(UzlG{z9R}sx%7FN-GhdGw^oi6i@Robx*87_T7oO{;c3C1XO}T zov2c2TwixJvVOa;af@stdheLTAopCE8^Tr;!R!7uD%^D{m+t+GwYc|No9L7^kIbZ7 zC+wL2&CR8odqu(irediM?YABS0Kd(8mila#oJ7OO*h!DjDue*Ai*>rOU+veqEA)!e@S}r_%=~+sHw&+11)y(R~TMcHs71A zI)tf`pA_!Vk8qD3MjpHs+}ASq*%@a^j`U-DzlW(W735zklB$zSKcG4(xmDl$xK#=O zOpS{i02XKG#lYN4M__K@t>yqIh___&-nA3}G}v#SXF<-OlBJU5%x=3?54P4)TCNzb zpv5Tc7Ao77#o1ZrpPYHLDS{X;5t%EW3$WjRa^}(|DBQ9CAJ_K;xSIucgEjZz32@gc z+*K-9(z)af|2T~?iI)iwtF5p#UIO45|R#5?!GeA^tqn>ru+pcP|)!LM5 zY|A;+w*$86Rd$JAaSQ$EO1X~iEm)}YiPf;3&WdWs&i?MK&FWcSKyWLT)z9mw=j!)5U5aq_R1+K&Eb8L6tKrp*CHz^B? z9+MQJW!uhuBxg`&`UVfIm{^mpF9;Gd{bdza`AJ}vQdq@5!g_cWoy-`SGUOU2YFa3O zW*-6cypB1bVKU&xb>z%o1u)_IT!g$C2 zC3!R-94b`L_N5-d-aE{`&qCkS*Kp*gYf~J>QP{eLd0oCI!dLA2J>+*Og;0D4zp)xw zO7hb?Op)9|TuMRQOu4j)a;eV))NTXBRYuJAQ!edIm(tr_Db1FDz`OIrg+KfO$Ie!+ znSoB(h_77&W#!t7AG!9+9~QbQ(GN!ISy-3tOYXaV(K5edC)0Do!lU}<#>jS^{SXUh? zuAT87HNha|+Ww~Wx_rPa@gi}}oe#*v1bqjSzJ@z8`o4&t|?33)YnSkQ_2$dZ{nh^B97Y%!t?CuaawDI z5c3hjCqC&#wK3w_T|VihwUNrT!#;BDcfRS>G@H1#Mb7lvTB>qwvT-ft9PZwga~^l{ z&<}Q;5G<H6;dx7b#HNQQ&yA}nd zx6yp|nBC<~-_+N#;8V`}|MD*m6IowT5Nd^_N3h5~$=S4W3a0c&FvSZmcGc@&2+Ro_ z!Jx$|gq8+@auPS=%1MuAx@#U>K1Hw|xXEk2P_bd4DJ{PU9b2;y&QZmJht*-s->kkN-Eb7MF?t zHG3TIT{ZWL%ff>5r#JL^&)VfrubG2?*(oWm|5TQmKfOo+PEU-pq2skMsbrk~zYDJa zu}k^WoBQ-fw~PPLD>ExsAbpkQIL|H=NKY#kvDY_KTqtmH1@W&XNu~HKKuPMLMaLDv zSJ81r_p+pj^eTml)Bhajz40CI(M89Vz&EqwNAmbhM0!!L_q+WHrnk(DggO*X zkM`1buPdD1H*@@gBAGMwqI>NGeu+|f+F{1b?8O-L^;_i94|KZS%fgv{YG zr4b}wW5@?C?VCVOa!G0dIm^YrC8Rl*SzL~C(V`(=MQ4uB6t{{0^A(r6F_0Ntmb8Vi z4v^bIc`{_n z6o}7MNc_<0&`gPtkVTN!Tv{)N>`j7f*aRuH1>(OI(w9rk9gs?gAW2-Z9foB89uoco zB-0Vd*Iah|2>HOJ`!UE-E_Z%{TsZ}Kd>V4@OgyygS;&%KA$lM2zA%8$laIrmt_&$bYJcn%m3zGUb=q zkZ#7Aj8{2PQ`bJ*6Rr=+6yv?%e_93^s$hF;~-PG z+~e|kJmmTWNR5e*Me&d~T!tp_|4xC_ng!{_rOsT)9xk!-AlJFHT>)`$xyPl>$}EV# zB`fjIt6Yk#g7oLIoy%J;O;4Ki&fq}jKSBrg8@A$bo&dUE-j%h(?vFSvYp1k(2? zE?*vpls*ATG-lp5(bV`aI+>EK%djet>eV4rxNN8g zIT!_5Q6KW2ORq+daj}s3tsui%Lw?~>r7fgwCrIDUkd|E_tGW1hhg6J%H0%#4IRG++ z%O8Uv8^&Zs{2d&Nf36q@dC#TSL`dIBke}lrT@xVhxzwHldCtXq8e~3~ZPOt&WVS1!&JNPIvl^aYpbrI50A$P@=8ol6}ja^eYO^HWHUXOK*PL&|VT{SUJK9VGERg3Rgy8Q2wajLWnhkhvov#YRJX#z1;e0$H8}8I}ymyA*QB4k@r6vh!QWEiUhlKmvb+yyOyd46^GuWZJI~ zb{;b40^}~2=9eHTHz8|pK^EN3hWLAM8~OM;k4y1SAwwHNrZwWGTH zWM*f`Z7xl_LH@_(NO#CNE=32#Lu(9#*f8Sj1ap4pV;_$r;tqZRyn-W}!NPhN$uj&pgi7BYMtn<16ALq_a? zeBknMC*+S^ko~(MGxm7H|3mlUpLf551RQ|O=b_*K2AOsV()TiC zJC~eSAU|A#L|=#0xdRz-7gF>dWIvaxe?q=}1ZnyN((!M|ikFbwuOW-Mlz0Q#&!yGB zkds`xzlA*DGWS33|2O|Z{(cA9{vPssrtG+h%#f^EAlb7*e&7(>lFqez~NajGuR4ze5kO9FE#^vV_NO*2YMjpu6(CqO4OlaJ)e2|cE$aF3d`60Er zBo&0TE({sWR;v;<>)53Mo|$lENi(b;wXIMQT7oYC?{38Cn~1lS{8pA?aLxtpo9{2f51SHJ3*X zAU7LB5}HEFd=B}*C4Y0sYA(M;LoUZ;NBrH7!9S0+gM8ToGKEXAo{(C-Ag8%(?G5>J z5F~I2y zYV#pJiy@yUL-uePlL}do2HDG{eL7@Q1|;)0koR1AFNc&{0r`c?A6zQ0g#@mHWLgjL z+5idI1o@Xsg`JQaT=wsRY}n21+PDX@?_0>KeUMwXCg3ksZ@M2)@VwVNn*F&2z1#-12^ zK@(%g@0mU4-n&aae+=H8XLo03XZ!9PkPAc(9tSye2E?lf40y646NRJC3 zhl)XRFM(wK3bODr$lq5$?p_5cxK8#r<2U?w>FGQt>g!KSX|g0&@8&$gXD~`OiW6mw+^R4O06JNS(hy*8Kyr>@CQR1!+|tWG|6y zXOK-UAV0Z+yr~G1>jtvb9pro^kd2i==2Zb1=4B208}5z&w)FuC@CEs&8pw$1Aioir zT>~VsCP+kWkbOkz)B*9V3sO)IB(pxqj{zWAfgtHYAQ{0RpBsQY3IW;B2xLxUkhx7j zlA3}XYX*|0YYv*#0%Unhkn*7*?}_NzfXr+Qk`NA(7y<}uH;73e5YxUOGy8$W_XjB$05W4>8tB+TAmavuJdOdm91CJS z2ISRPkn`g}LK8r45{aGw@?|o}j42?erh%-R4zhj*NLDJy5=wMTI>>+wkb$#6uFnQJ zHV5QjCdk``AR`x9!~Xg##(zzgfV?4cXDP^*ERf9QAR||Rj9LlOZWTz-YLH=TK-#PY z3C;s)kPouG03=rdIj|0dtp}OE0c61sAf}r@UJ@Cx8RXM;kQ+Ndiqdw1p4|l!@jsBj z-5|sEfLtTeVK0d9evtA9K!Of|IQ#_ig2>CCLCzfp*>?owSs_T#QIG@2Kn@-UX?POE z=M>0SBDYV2#GL_Yb{6E|S+c+P=kecb7eIDj1X)oGl6ncG>vfQ)w?NL^2HAfHE!@&n#dVP zkZ&u1_&9^ybpiR=6=YjQknL_Dbtl35NI@jX)-ndrS-e9HthcL2IQx#fxjL1kvABt<`uJS}Tp|w`CigdEjq& z8&#gPHfrIHYrjj|sOdLrtKyT}s`0nARh9Cpttw}&a5cZd;c7a$;cB|q!qxZ{B2;|O z2=#YXgwm4oy%?dUXWdRMU)Od@dkW8Kr$o@-yY1BUJld=A2ewy2D11eGr4{}CwY{2- zQwQ~Tw+=#T`_Axp!3geLJfBl^vBpihol3`>vyk3yoCEGdWT%@6Jf29^r0B zDlICgmO@+f@wXOZL#f^=Rsy-HXR?|Px znd>3DizF_oi-Y{6D%Wp;Vk|-BtY1?rJ^- z-BtXx?rQOzd#L8xw}+bksvfG`MLm?RhBo5e6URG9tVd5ZQdUp3(ARn@op>g_RAr3q zr9{*3!@X1`ed(nZwsCLu_oUvMGI}fF?rPo80yX|unoEqqL?JU}RR#-fY+u7P9?1mu zQKQHAQB7leA63@B`>0jlysz3s=k-;~c&e}3WIps2I*HExROaG-YGSAQsTK64pK70> z{WbgPuj2OgR}*>KUukDhK;r?b@r@p!YH9rdwLlLBs9N3|0at-R}ph_+PcZd2- zQ&lJ(QpKN|P!8LkbINgru8Kdh2tQS}DVraoG|{l8=y2nsiMeo@9_ze9!2T7ZG}M$} z%6wy$0H@Wi`nQ?-^!mmsK?Y2g_~T5h5Zf$H2{yo5#wh`YAIWh_1H+GPaYAZ;i9f0g zQG)!mOiAv``yptRgL=8|pESr#Cv)-t9xBHM%~HHp`W*CKS+dMZ%fW;d4N*E7es~U5 z1{;2)4^?^_e%u}^7*XIbrLTdrY?#u|@Z;4mB}(gNc(z@OAjYmDc7L>jPpb7;?Nffl z=#*8O@=aLwa3PDohYMM>8=>?xr26d$#oh3uaD>vz@WXth5@Gn!ZKM+Etg3`(zU5D3 z-rzww<~UEO#7YKvc(I?RdDs~6|Bh5T8h*4JrGy)PEFYzW8GigGa;lA1x*0grM+-t; z8!afZcD#`E6!FKIcp+(rF-mJgYJJ8ip@tv%BImC$f^30fg#;##6*4UvtMo7=P;Hz5 ziytTGY{xjEDSsZPv^B(Om!NbIYwwW138tVytXqOogXwZtyVcUy9GTRsAaG9wn`o_y zHNa0z`^+>^$UQPqsHE&frM)4;2Z=)cw@wmtwmeA?@=lVFK;7{|Dd&tAV3)=VW$~P# zM2p5yITqrLh&5pWqj5!`Fj1+qe!;lQG%Dh?tdn-K5jGN);ZKU>d$$7|+JVt#)U z!~>ttqslCNZ0=-8?DaIEMR%MowCHuymF@=Em+69{BWDO|DVQNN;)gSY2H7N4i8LgT znJRE@rV6Rmo+(t@%$b6D|29*IQ#VbBGdWFZX-N8z_~UDukU+n5rLCxjH;18y6-QLl zimqX1!)i~lvKJb`%XFbIjWUExre!FBh8%Zg2y2En8A>Z{2<83mnIdFz^}N1gcyIwf z^)09OEG5d2%9dGzg3V?t0}PxIvy~x+9~Wl}qf*EmWu#c5o4+IV4L8}~xk@Wm(o3;5 zMEf#FP-~C5Ld9;MD{#!_33b_bo}lo}^OT<25X;MT^$oIW{8nGCr&yrr%SA>T`xYPU zd8oLs!evSYR=#&O?lndhB!r;N)y8mtA%15@yE1MO0H`u%KOO*%zSH8_IeB&Vwi7TYc_X!U00(XltqTgjS0IU{%~F_aJnoO zG_-WFAn57EN^?UItd|IVQ1>MQY|#=SwUbK(RXHscV3A9O1XeCpLJUb?SSs|^_REAg z?UyNi46yafgckB-nb1Er$P$W>l4Y32nXs){LK7&rT(G`g%auq`*Oz>u&SBNquH}lS zXoyRyAsjo<+Q@r>t{$nD#@BW=>zJ}m`nDTzs&iVn4v)U5$5DQ$P)Y9sW2Unnb zORh~!S=z4{7t>cL9-0`OTZ1k%eQd(+e5bfkni!9M%(iq9v$Ua`PCc8NvSKUx0Hlwf zb3H+zVZ_~zdr-8XSrxyAE<*|I2P|wQ=F&ol10jB5=_{2cq9AT<5j?dmTfPCqLg5|= zQoPa6O)N+zA;yQBvYPm!Au4z6_s%yTEqGyNC83as)Ozw%-hmFPa!OYE?$ zQ7W^n`PR0qc$H!&B1#F-p&fg@P7}gCW%Rh=l9v0n17wE=aXgdlEa~bTabG5wvW(*- zV{QM+EU+lsTt5JEm9L~LV1=F4lJ2bU@61Af$##;GDJIC5&ZeyN0Frs-7U;$le}Ads z?C8>1Gkjn@NAY8JLH^cK0+Ga>+{Kh#I;6@`k=@Kz97ToAC&+FIqFl*#kVHK}nAcs{ zjy&i?6}4f2v#7BWx{c-?!^-8W2$$@({&tcm*>ofA9#m3%7ozyQ4ZsIVJNcWttP;&6 zfbO%^7)7ONEGEB#uD#70AP8`wufMZcjJb3>ZdNZ%RcTcM0_EIEzIy{qS?GDaB4VEe zSc?YPkgm}!V&ig^c4ES7>0+J7Sk0iqaus*h>V1HP2&qfg?&hIryUfutj(7*Ui|Lk9 z!MC%nYm|m!q{DPMuVA84ALh(HGtiRVnHlIP7JWP2--Ew|o$E=nYZPl%x<-*ro-X$V zP1aZPK0k97mL2FTX4aZ+{aplvw~AKTflh2`L7=Uxr2M-CnmfgmwcbZMqI3ec1iI80 z8trPjIQV(0zLlS++k*nT#x&-Wr!*3CZbOjRxu$IVKa^;m;w9>4AKg4W$hPMxt;OK8 zbQe*{&Nqydyus|4h0qVPv_=)`6I6*6h6Gv4g|MCtP!HtCTiz?DU~5)8hPfM(}SiTC&0eJ+->(?kBPb&Japz0#z9YI>JfC@_V z5QyZ?Dl3Y$Skv9;cIDbtEMq10Iz_=2B)LWP?!!k;7@nMro#rlyDWgY7Rkok*V%FYm z%Hntjp$TXaSSF5t*@A7M>znSlzR7#*#m(7$r(idposBUn+jS$Tq9|Z(y6^dACwum- z;={rIMlhGnf8_9#n54J~apRIDG3|CCVxL{q)p@bl-a%IN%SKF^FnrkPp@wY(uKke| z%M*p;_E=cHu_fzzJlIk0F`Ce&(_ha}$Kyq8_&fJxWehuzuA|N_)auA#Yp|bKJu8X( z7F=#I;8tR>{|mN~IzV%}%lhtUHp!1nB&}E;1JCBTS~xC2$)#X>+2A~m1M}**R!_*o zodIOV67L}+p#gm*T*ni^(0CEcM9y6r>KtF zh)t@L!n?8i8?ajALOKL6TPbE7-NW5|n)+Bxlcnwr^b0IrAtwlN@(fK9Bn|#Smv?7f z)}|I&dlbv;i4COT;RfC8y>(HorJYS#1(x-_QeG_9bGr6>v{)-SAeE&4`%*F3o|m+4 z#9^J{B^qYEOW;nt%tF^G)x<h6iGN2oi%oym&n8?$9J~^S zPyYXm*qLq~KmMI21^!~@?!*R ze>DXsZd5A%rw)|YfPD8x>y81bDa!pL-P)f2w^n9wJy@83kko7#UFW_J2p`=k54JO< zp(Olkf;9h^YRQX*4P)gcA^Xx*@P-y<>Ii;ulLGf`Bbb?_SO0Q2PFZHcbX(Dc!p1UN z7Tcha84Da$rX49JbdT4RwK|WfG?IeX`k+SgRC*5GGQVJI#^*xW7{gd$L?c&Gr*{ZZ z+k)wSgt#S78=K4hNrVO1PHtvw$2FAo?q;QesIgIWbA61n87sE|bxE;VtX*UC)iWAP z^Wf=pw>{d0h3$ikv0Ic%Vj8h@-F>r*8N2(PK8@{L6dMt8kRWCdf=_$WJ~pl>3+YRj zh<4{Q|L(s~fYm zZDQ>y^rD9dVP3~f8{H}~r&CQT$-_ofaO2lEVPm!_(s2HnuJC^i5o8X`Xkx}%>}%pE z8H__i;2t#8%ImU=I3Nc}bNwdmRIG6L)3i)A z@1e&7>m$t6H5+xTOpmk`^V>l03pTYjV{zY8dJQPkmo7y36T?_+6^C;k)xwr_j@9M8PZELLGYda z)9MG%+lQaJ!G?9J(7s|VpQA?+-*#uQ2Ovh`8s^T9gf)}QcNe{w_|%;WBds89=@CV* zUM%YbV*0FSuCinkdVzgqq?x*WO#BfQq&PG;7xO+p1Q7pWtoRV+O^Ddw=4R~GE=3Zc z)iA)EhqLtK0<4TSs|^Qc+;FusKvLdfKB>e!J(3!E4Ke(|NQ6I5Bg@A&_73JL^+N^p z0K|Tpn(f71%vUl@FM1C$ewtQ1ukQ#AuTLe zbaV^JnBLK&lXEi!Gtk4#nEjv@QU`sD-lo({)vP^iP7A9_|DEqOqPHvQX;h);qUW^m z5KTOb9%THUX2xFMM1ANgpwFzlN3jzj?+Fr{uC+R>4=h=~J&L^uNuu{K>9dRt$|G3l zH?n4d>$pJcH{wSw!B2tR6dc-;VLS66LSm-14RZ)+Sw%LlVFWt27;@5jfP=aQwDfW- zI|FaA2)G{>u`dU(>jy+lsgCy%H*_((y;tcbT1Hno(m%48bRH;{>+4p857=(Tx~)O3 z(Fv_8OUc>MlNqa{?94u;tC-vadhAnwJ*%_dumQ*?dM(x?eAaq0K&%RW!hUDg4Q4Od z+3Y=lG&#t-oQmw;e%XRu=-m!pnDah5tYIimz&!iCO_}xn%7egtIYh0zxmcci^bROy z7rNK=D9@_}Hu(64N0>CFd_(VkMja;wb`Ya}+<@@LKVWX1i>MB3Tlq<t6RCU7gcgBE6S^xy9AoJ(Wq<}mT*Y!BIj-d1kQNTiTY+& z&vBMSu-F7<>rK?Xv=nQj8-*|4L=D@Qh5e+si_AP?Ugwb-Fo(^n9X;#S>ksIY2c z)L?pimA{z_!vYW4*s#E#6&n$;jS%pxiI(TacAjF^EWM76Ez5GWu@lGD+VpH|I*5MN zxa(dksRWA%aB7R1lh4CeE@CFvh*@W=s`=Q%@-9?UGT?Pv`Cy<`c+{I#vfg$R1|AJb zsVw?3dbXs0n1!U;G4zP6c&EYcyd`cTJt;e|OHjnpBeEij2x0c4porMntsI%-tX1*^ zt^?WaY*;_<3PK}nv7==ZRzYeZ?qr}nj%q~$rnab!p~U^;sG-JO*ucOr{qY%Zgj47_ z+n>h`WpQElN98rs--Kv)!q^5~SX!d3lh_)1({s2!C$;W~H>8(c!YYZ9j64a*uP0gY zQMnENLE%+SX(P#z^e|f%dQ6dqfaa$Fxp0aUD(!9Eq42S%)maqN-Dzc$y&%lqZEVmg zu|J)08Yr7HM)5g{RX#3v>mFwS+XxunIMgRracr=Z*nUE_E275JR8l|@!YiHC#*NtF zD8-B8iZm6gLk|Gw17gU4)j1*0s2M@p{GyE;yjS;MA13Ld`!9e@I!DtE|6pO%n0F50 zBk-t@H=6jy7w}VHFQey%G^p@#O>t{oK^{-G62JRZZK4UjG|`+yj}z}-(L@hzmm^OV zUK2a~Dorrl*p6kb%gbpGxeE51JL)_j`;=VdkM!Cx1x!p(vCpuqwO#f9Z29QeP-sQc=U>EM94ARAUwQ-@Qlideb!QZ5*&R-gLxbMv z*HA-q+@wCFH9Z?`^|w~&w4pipqVtb!q;W8c9+h@{t4>xqLK#`c4EntVB=o(i7TrH> z+$H(C(p%KMAKA+yB~&c^sgDRh@JT3r%vr@=L=@56)s)ZFLt#HKF{h%G?i_m5TKHA% z;dTscEA7k_(_`16-+ z9CFf60X?*}v(gaA z$eP_b*VbMtQ5AZ9JKc(v+(dJV9oxp5-Mie@Myjwy1bKpFmY;yU#pe|1=;{M;7h9XF zJ&ogerLw5bJbKsL+lJl0isUbrwDpoQA7KOTR9lt1<6&Dzw(Y#(z6IA+CcOrpZKsN- zyVcev+dEvICak2V!q)aIhzbBhux2l7hRfSEmFxjIVXrAOab&m!>##V-Q4-|}VS?dg z{0@>)hKJ)LGtI&!eYc@U$VVz@YVe_^gQTRUbCI4X`#EbFHM^*|X~&GFZT3T>5=n~HO$pT_g9|?XL(`!(Hs0PK5XW%IKnBc8X;|W z*wK^d)xKPsinxy%fg}Dp5w=p@t|!d2s#@&lIDDVT~uE!f| zwLG(H;-^ran-KdKD;($EeG=g$chc|aVRl>tO_i}5aw2jS%#>B~~SF@6eV zY1oL}{8gzhT6PA&@jb)IGOMz}%ZeEby{t$}?k%A}Y!4&r<_Ie|#+O&yhr@ta*_vd9 z>&@JDb}Z~dJ8Av*Jv~K#(OPT5iMj3Uv#+$Xt}M#-g&^(mT3tU{WlU)AEh=mny=1T2 zOEsd^(UG<+?TWnXHI<&Z&*-LE%8|G2@EM8q?ai6@(Hz-a7SmJsxbECs+*sk;cKGJm z`u5T}^LTnAf2cdzOjYK6Jja|xUzO)3zYxL|@?Zzs*R4zI?oy`}Owa4T#Ho7S*`|XT ziw)`^?^^a81W2F3q}WDcm5dyW@D?$uI`6r6uwzlzSr(-xAFE+#&nAQc+|E#Df_;#+-JV(bTRh(n)0-atGix)?6Lt z!F6Tn?>bnCqSqon0prJ#U1GKJse^n{kU`vEkT+?JIr?^#?Cfy@xII(3#yop=Y4_ig zu_*v-pUTGnrZf`IPY#naf|V@bj#4T6UQPwi|L2tJd-787Vw$F~ueWm?nBR$x(p2*c zLE5JpO%$8RH)ORBO9iCQ%rX!g*C|rXkDLkA!8BHQL%!v4HVxrj)3r{}@pnbqRgNKd z2`|!Bd+YbRJeq$YX5Cp-nN^uxPcT71@YRlyUM& z>{;TzS!6JITc-OiQl1-_kgtit#aaTB;wDHnT1?ztON>2FBOpSC#wDjnu;JvZ!gi^? z^L>i{i5*Qm3_(2eNXx-uJIv2Ucqubi?}qFsigd+FO_5fQ_T>KJPjpNC zXjBg|XGuLfNiFhk!nMq$PR5<>EQ)kt&F;zz>n`L&!=4LKm3^7nNuG4nBj*}@^Koxs z9lC^91)Xdhq(W!pv$J>QUEYFxM5$k(W?6z5Y@AoFa|2NqEeZhH1fq_)(-iy^#;IS4 zO)D=<8?gu6qqCPh@V+AcrLE@b**f^%EU9j1$p}Ae1Z2c!=5*h1HZE?=Chqx!U>gC-@u0sTQKSC5fM|hRg#fl}3>?~VX4T9e~ zs?8J9|Bz>%x5)*`y`Qz3Ec`>BCY1aP?#aX2G=ZnDtKG$hmA305?RZ~344n57G9@== zghh4gA~%(QBfwo0WU*q!y`${p`PlQL0FAg|NX)g;e>&rlzLmgIl;pVa^CqJ^<`$W0Wp-pwR}a~i79vjkwKw`n!=A35K4mwA_r3t+z)LOd z#f{mnJzf1+m(IEJtfB~r_<~m$9%yGY?4jKKZzmTq@4@BwL9!ky)y0XM75R=SdZQPA z4>^z##Q*w+-FqnCyQ)hNI}=v=5-Y2czPT0H#lg{16JVc#So4LAf26b)O?~qhgr}8i zRTurdw-s|7kXuFSQJ0kha|0N@xcfRb+Jh;pqoo1!2|>Owfk)KGa_?1zoZQ5@Sg5V{ z)yQ1W|D0j;CKouz?Jek347~~(b{c@2|cfOhO37ZNxeU_mKLIndDCBQV1)3 z0af#&l{{CZ>m~OI@kc|}`n^E|b8^ev-1^!OnDgzmI#tD(lj|v~av}LETGEDP{7qTS z$@P^=o==X9YP2Om+Kc04L-K886E0T3oLqb=?RgJu^Tu|Q&a*to`_VA0jrsmBl#3b# zID28Pr7TJc0Sntx1Cp-A-6qdT7LgXJ=`S1I3)j^Adb%*BRZnxt!0gGfQg%l%r`W)r z=m)cMZR9>?10ml7$?wG?$udXY70EkO@=y{5?yBQ@IWeE`UQ%0rL9Ux7$8f!6=j6%< zi}T5))4*5@b-KVCw9lF{4SFm&d)f;OZ_p4yI)^w#+z~^uYmaJ4TGGo^s+QU0BWnJ1 zmh}O(e=oInWin{7eilvyz-2Nkd98$thF+aqN`06tYA9<-Z)s6sO}?gjOc7-dT-95; zLNt^h)3oe&Zp!tMYJriTD%W&l0yQMrZ;%J8@HA3fYf7%_A5=E}RK-;oEcy30i6 zaA4B;K4vT_y|=V$(`*^Q4q0O3(u1X@?41SN=q$CWcvl6OJb9l=kdrILPRj0IrLtIW ze~=@u6|2NDq+0itw;;Y-1x(y(cJC96BIzA2N#vi*wPHK|l@CJ3uLjI2myZ%&Y-fkQ z(!rBExd_{lXGo;X*nEVXhn3%=_3(-Blv=^Upjer_iY>K>kX*>5cRgM5E&Hu*!FcZF)Rsc5{}R}en+D%l?P z%W4jAWhEg4q+T$ST&G>Ws`WTWY7VHtjx-w}PX+%ZjNfk>CiJ@jo?;%6roZB0!scOveRj!Mq+63|sH~u9J9c{%L z$sm_;yddywP3!#*#KarCW$K$wOV8FWNk5$Cq3e=HF_N)a;v*|2q3p-g>a1@+H?plFf^p z+KmF6-(x&de-OTi{54mua+5dO#!{Wd zIozPM-wrZkUBAi=e5ws_QMQ&e4Rm9UHwHNnPU@5flZ(BLwk*h8R}Ie#kVwLpLDF1u zKOs!)xscT>%KG!R2X9&>l2cOOB^QKWaWx8P&tftLOSkPFxB_yZqER+Gf>^A+r;`>S zMda?!*-e$tF>SC}<^S(Ets40Q99PLwZNmY(2g_&53oC)0Slg0y`+!ZFz@QlE8rZ37 z;1*T4WXp*g78)b%yWOY`?)Dm%v=@w99p!YcEYL(JHR!`N0I{lRsZJpj_ceGt(>+G6 zYWJGJ41owdlQi2{DU-C?;JUW3RA&ijiqciiisZ?#QWHz{Jxi#mPU^qvGy%61TwI;O zN0?1@)tRo=8o8m^HwC6|Qxu{Em=aT+wC^~IxK_v=W?0p|cbVPN8Z9XI4!n(2%??~+ z_Ma6)Qd=OB!?oIuX|cwE*<6p6)|<1#Nq`8gwqskYv1ecYjFonEM@0bgV+7T-bV=tJ zg_lSEujvZYy_C2L@?5b_2k@)(WIN4u0b(baLf#xFN3+-Fx@KbUGCvyO1G`zWuP>ns zh$649#*){^y&%`F`W-10#v8*S?9aq^?6ZwCQ0X|N@`|A~w@Y=}9#&~A;qyq!lLDT{&OuhjJE zn6ZH1A@W|`Jp$H^Bc)Vh13ImdPet03JIkvOn=i{S?3QNXMxr_sgJ2P7Lc0bEVbhpf+Sh%T*Oow zkylOI1l|s{Q~<%Z=F6-xJQIK$4jiA)^W4I24>4n%XLpk-aU$W4BvB>S5zXdS62d1< zW2NPF*pwTz#zpGYcTWM=f2yYFl7&O%`CF^0V2_^0`yni81BR8kIxue<_~RF7s<>Nz zn5_RZv%&slj;4lyQEMu)!Cu3pQRn6yKz7d6)BuQVy@hkZwwb4uep$<5p5ji1$2@R{ z!NsUrcMUS}Q>eQ&3s_`%T`f@?8v%}gu#)w6&{bwTj}J3vj{h5GCaI)<79dlWYbtT@ z8E%O)nPKuIYQb_~2CX2aN>3ohk!#a^E4aQeK=}-}U<2%QQh`qs43AWGfg(o|_9L24ltexsgJ$##&7(>NE13?MMu3Tg#(`ZP!e{4cd8Rw+EE)?Ivy!;h`I3Vl3~BAzN|M)zs{obI%YL_X1lxW4PSrgnq=K*9gPJkwYGl|Jxz>taAmO zei6yTCy+PXyPGXpU>77jvw}{40h@DQ5%IN0CMnWO%9f|a-{we0Z-viaCl9@yk0LKTPRLdUaIm({hem+uvzm6l?oCG53lz=GyEF%V=0^+ALR75w{)pL}Kez@oH z&z%AHZINE4KIC&*kjd*TYhFpGe=x;kG$&Wh=YP@KM`^$)Cw9K$DE;m*hur=JkhT|$ z5L*_VGRmBNs-)9zZE{?X3&8z$f!akyhLkwWO{|B;K=L^K3WTT6#y=cg z*-p@n`xO>c7aet$r%u0p!NodC-l;#`VEa9F`jbT-KKnO>_qn09qzj%9s#WFDhR%>< zM&1DCyBpL9FbVR)lD+u#8k`Y$jkc?VgHJ=B%fUYq_yrQ&)sY&O574@uqm5G%4zm3n zAhY*cU2Gpbx)MwHw8m2EhK}6=rsZw59ssE-Rza8BVAlVWT37?I_i6Db!iPT4w6nMw z`*!f?n#|$oX#L8EXP*o}yz^g{taUzQLVfU^$~ zyV^5@PW1j8IJ3bsFgHEN>?9lMBeK6Xq;u{8a`xT$rBL{6yS0X;6Nj{a2}q~EG5v0+ z2?&SmuFC9v<+0=tF~dGmlGWTsCrr}sckr0eIf4ZX7u{zy66@8s3ljuB{|l$RpxT`%G~|L?c-E8R3sX z^h40{fH8U(1w7gJ1o-2N+WX$ED)+u`zJU2%DRZo*)8AI$k$x;i_@!@HKo_)v!=uJX zBk=ui;Pctul!f_$>G*I=dA4l+82v1bNB1%X;vZ8hb;#Q8x7LZ3R?|uSikTT8@61?X zeI#(yQxy#CknO%$63cT!b3kE4$HJ!?`n$-i7?W ze`jIEGHU32J(9;ICZ>#%s_I7q%(gZZ!(Bh==FwMLgFC>6N7pZ3IAe?r7?yTyX?Ns| z=2SlWpD`BfWy`gWEyS+N%?>aRdn>J89JPsCN@C*JWd9K(QY2B@+T)d7O96UU`0-_yswo*HqueD^0 zI_nIsjjLK=FPD$4Eos}s72IVNt=J`3^a02d_uG1|_0(Tg>-9nA8zH9a4W zU+cwYo*t)Pw(}hG=wk(?waB7ch*2xoMtEdBE9Rt7KfiulbsklO{9YH376hU3UU9}A zfnTv)+Wz$b>0X~@)R+6|A@n(f+kRw``n@+U%?m$-j|wm*X}mnk`BUh-34aApBi8Rt z@$k14J|vK3_{shLgg}HB2U@YNArSF!odkP!*Uzxo$fMpPNS7eq@?DvOzfON>!?}Zk zz&#tJR@aXCYw_*g*=ud}mpM7)cY?GJ*0hUFqh^#LIML@-HMl@I=pzYOWP8h*~Re*h6~(05tBxM#WrI8fx7CVF(y%X zg~n74827dWZ1)Emmg_ub)y6=WG}Q{@Jv+hCJ!Y8U3LA%1pif!s1_V7h7C_q)qzXAf z+}P%L4B6K&L-i=JD@DfSK6Ait#lck3VKsqJGPm zL()0`;t{EJ*!LR99d_MFaIZ$PDj_;=QAMSZ)R{?*)Uy+y*`2h$_3(~FE4CTUOEiQH z1UVJOE`{g<#h&w86vB7lgCeSW#zo_&pq}5lGQWm8y$1>|^+SN;_x5I~4Ryg{N~d}w z+;6BprN$%WlzI=PQA_W8lBbjbaJ8cMyc%9);eJoVJ^!!?Dmh}tvb<&E~ z8uluA0!`^tCx^=dJ*AQD0%3F`G~*3uY}j+0r2L+sS^tq;*B)rtR8RWkvx3DXgGowmF18G!si-o`YFU0zKY`p$?4;Skd;kqSLN3LZ?F!#|3^2{bK8L*=h%Oodlk6fAv$iqoA zU^Nn3&cBloUT%uMLVv~o#M0KCVx_t~wDL~2XSy*HjHeb{!1jdyGo6xkV-DWQa8a;m zf-@@|Ho;t+W^JNR&P>K9XVea^AuH#d?5aWok|r3h2J$rL)2C@hrm>^#QD}SbWL$To zG{;SwAn9gu8eqe4ow*UR4$PcTU7E?Kq=S1cUDcd!GZMMCc7lE%lxOodAtuk#Y$l<( zJOa(11@5hd>f~)^$y#~x_Ix3@{T8X_!bQAz&q=D`(TjknzC;@W{aeUu=a41feps${ zDm?zZtYm37$$AA4O;>AGn)Q9MT)d8}!Tw>jp?HQ3cwV%9#2uNV6^*BV@O-kZv?DS( z2bf`N^c6o~Eq)4p!jd&CqopoP^jf|j;P_tOt1;NlS}E--i81;rVCU;J_W9;1t)(Wq z4V?Hl-&(P_xv19C?kRy{+9uzD`vQavgeAtNgiE#gh1l)CCw;lG3$}UQQqsdAQ+(xh zRxD~Yl1`tL;vr3G>#qa*I}o+^OJ0wkLP>u?MB|jUYpt0!tk@~f@b-%<^f4vzWIK+n zbPdG0SkNYff8C_b^nCVAv0>3+Iw#iUOp1Q@pT~FD4BV^De5vNm?z!a|jypK}E3r$q zXk$cShR!D2BhN?Dz&G^8q|$9PZT6uA>{%DjJZpIe!G1e1x3;VO&dw=18=Cx?10rv~Rw)x}vr9jw!SzRQ%?Hu$%;) zw+boTIMGH@&%uMhEI1?-JuqBXrbz1#0ki42S|qUb=W;xgyYzXfn}@l1dNXhZww@KS^N}zVJ;vw&jVJVp zFgMSN1>;EX<&&h1(r0IZyY&n8{L&oa`7a3Xb6#D4-`hUjM$O1!_avJt(%?MuJb(=^ zXjZk@lO6py$_o zE&(#-S3dj01>#SWBy(BtE4WiHW4<;A+T$styH1vdu*}PV{BcFF+TxBnY2W(|eU_~7 zYIbKGT=tBaY%Q1N&Q)-a-O>aIY&IFMG6&`v9F6kw=3fV9%x`3oK8!=c+D$fN_qtD( zCP34F18l$zs>U#}hZ{qmKpXfw#vz&^mrO*b!V`(=B)6ZjzXNyuCLgb0;3P^^`eYl~ zRvz61XwNNnw3ECp{q+{YuRK60r5W#zy9iFbr={uB8I9(`QCaLI_W&7pU$Bgwo#k_( zRQgI=!XIk+kp`SG-I^@#M$h~MkSBlA=pt?EefSgMryr;$kW_0*nLhBr1F#oA*D4r% zH_19&=__!5KGvE%*l^9#Xo@r}{7sOfPekPc=ggKx$yRXb32?`rvRzTSc4FoH`V`^1 zXIhWMqmG-IC-;myp8+%TIW47qnE(DMW%kYU=(}_?-)h|i_;&wk3H?d{sr6dWF~Qiq zIc1td5{Fkcn`L0C!g6se=H{WlOR|Irl6Gbz3?#a3M5 zd{1A?8~;{Y1!Anu4xCzM`ndEhAU0oUto8xdo-MPPs=w931^M?K04LrX<+Non&8FJ1 zX!oho1o6sy;C6pdwaZhg)LkbHrzhw$eS1C%{Tg7>F7C;XKzMzoZdUJ@g3I9l8R4Hl zYtzG5*yR-K)q}qGx6;y@PCPJOSUc55x*5q+XkvnI$XJ-N*aXxoL0JBGQ>DJ6qA3t? zz4z^4J>p^y`C!Vz3Vw7Q!5l^y0Ne5Dgc+#ESIwrE8R^ee0^7^in%Vc$)fZ*|p)wc~t60-50dI;3i*=u_ z_f*64o?8Ww9$qYIj+(R;`?;UoeGT;jqNg_*qHlJ8o!+w-k3GyAykH;Ad}6|;JB!PL zHa_4w`f49aitRAHmNe`02Pb|ooB{UN1&fOPyBflKRcGafL8Pp)(;eBE%X!9|GCbqq z)qy!(-Dp2HgtTL^Y15@vbe(V$YN*B2EuOCT%fu6zRRhfEnw*(^GtW(uE}Kh87U$K#j<^?|t-qV+?%_A_k% zGdS#`4}7Kts@)JFSo&a{WFN}{fk+IZ+HY2QwQc8b_&;$Tl@AOE-5AW2CaM@b`b^ynsfo>L0z~(wWQ>>yn@*SK+lfuVeH5z34?Hx(@ce}r z@@O+~mo;ZWaq{d-X^!x;7Gf`nxK7OB{tRg#TGj%%^p@6iJdD{FK?=?DEf9mk#d07ICl(N$T4t#*E*!|g5n4$&XlZP!G;2LbG%*#!`>s?od0xGu6Ogf;t=Y2fYD#u&%$!Nm zd^xEzAkke^b3$G=Y|D{UsZL_M0MRW<>R^6Pts?eQaZ!Mr>&kqS$z&*zgg;ZIRopH5 zc#tTCnAR+IgyBXiueai!Kvcu~GJTol^STDTz%JKYD=1H) zpy5oZ|8t^G<-YE%7L+5>!)HocUFG@!@urVhP>yr(&zDCjlfD3s>!%i%L$-~cDQPve z9}u1TtHV@M{>(DN)ad?TAB*L~6dsW^$~QiaOfI(VU zo>P`Rnp$S~0KDI%zU9b}$gvW3;gFfzOk{96ZHZJs{!> z=b6#@@(I;+eA6&KEmbWZxHxbhD^HnEP6J})bj{*8#Aj@}v|uJDt)6A6;P0BFCIPks`??`r8hRI}0ntBQEh-_h2j$DF`}lMq zA~TFrL&FnVUK{;0!0t3lt18MO`a-&-&yYH$*MvB-R29&BV!qtUZZ8GbXSLc$ zx{jCE>YKB`oU)vyj+ZlCupHsNSEzHKfKwT6?8vbUN!$@DfatT5=0TB~;})*#kt-42 zkd2>;HD}kW8Pbifh*jV@uV&xQLSyrZn&luXI&d}E3l!?Dq>Hmd*C0Fy=RSrd14VXZ z{=u`#Ox;?q1=2T99Tz!fX()0Lr#?Y>fK<&Fs{_EQ(mXOaADH|CwPQ+8k#DwcD*$u4 zq81`LX_kBvm7{=rdz0GZI!=_YyzXBI=DhV{K>%@Pu`BY+%$>5=1375}>oyr`4E$x5 zmsEy%8^E3XgRuP8#D(HUUw*N$a&y1{*eDZN9;`AFsz3 zgz2?e8|nJbE;BtDz8P%q-RktjalmZ6g>5}sYVRMn194^t6+znH`i;JKzJI4UGeLam zkoU|^Ko0EErX)P|g5=p!Q!m;DNXY+GtLBK*DRLph{|7{c-CB>ebIEMUd;@la`)R+r zNZnRu*c?jVTtB&oH@WO>`4!l!4YSKs&{cvo-pkuPAP#Ks&a(YRd-`a*<9G8v%CB94bRniEd?F|ru2}}5^x+sz$4}6 z$YyW<6M(mV(p1VZUXH-565Gae0^R;uZS@=zeK_Cns7N)7p8+{^STtb{jPaWz%`1L6 z3|#IJ_F=lNhS;0!J%VtDQ#9YuKPBVoJ}pG}{-fGRA3Z~7$)5L_BX9MeISS0iW9k@F zJVV|N-G2^%Jws>43ex9Dvxx)80jYk{I5mT^2v>YAU*5qBISHW2DKc*9F246E z%Hym$Gt;GF+8wiTj)gd6mlERKX-&->axQP0qqxGpbsCW9GujHf+fQ>^OMOo)IPrDP zs$CdQVEfHEWmeKn&jPddtWc0_o4Izf^&B9~*h{KHiOm9Ul`)=o=K(o+L6}DBaqz(4 zF;`koT)hD7_ZNj$%dxTd$~2w-T?8(pn6*lmFPtwgMtIC6>NVjdEOf5a7-w7pv(wY zR2>hHmbA)No`N~<8OF z!g4lv0Bd5S9z1eLz=!$Lx_6WbApJ~j*rf$J{pV}A`0z$1Sjx`}>|| z;P1p6?i>t2V3%jHO%@m)>G33*Sps5ZWkZ*ScoOB=k?;lbS-razFb{EUB_Edo_+g<# zodWr~(7yzE1P}hkDV&<$LV3aW&KkIrYCt2j-}t6#Uo?2xnHjdqJ6YcZz`f z9Bo*uBnZJlStk}qBh6_?K(Z>>&_!|S&5^DG7$(lD#$z8Zke2n{&S08)@Op%U->`x* zTjzINz~AaBDlxiFrX#x>Rv<5=esTpcuc8gR5D5u6=7@Wy!Sy~@#@33!iNP<$##6bfST>4S{6qPT%IY7fGY{{7Kr$HI`8bfOufHGt}AD6Fkj;1IavmO20XmT z7vZd`R;497GR>Id*)lcpLsekrS7Xbe3;5T}v|xdQ3*=I=YJe=LuJscf6Bb(_Z-(Sl z2gbCfYFdCursZ4{%=kIV`gShSX2?1hRLv8d({0o&OYG+$RuwOP}am?^)pGPZggz&;9S}jgrQebeY!P&)4 zz|Lu^b<%#77sq^gD?c^!dT~Ao!%v}+GHslcQaT}Q`Baw`HSSMZ`X;P+FGk@u&tTyz#)|%)y=b0F(z!*_8TX@bKz@(lorsuG|F!Z(%%>5+ZEHsvNxNu2 zw?p{O_UznRoxeEMD{PPOZ#uH_c{=}K;hLXgM}((D+Gw``Yj?&^ft?SILC@K>7Rzeh zLfkC48O2EN$_B4p?8Lq_UM#)F(scr42i#`ztKbg#@)NKlUBJB&MNLERBaGL}lPH8& z>rHlFizOZ`GuLa-8{Fr8i7TCSeC~^I|Nh)+@pk)gfx%fDPqbBkuul!vDtlRh{D|+` zU~p%}s96@aULsE~SHytZDwYOfy)z@8W>hS~KgJr1=fsLn6&SuO#W6N+mQHQSOW>RHxaNG|$|w@d=qEPkUgP!)3tawnaE+Tr9uyul7uo!?!b0R4_=d1C z>5)tD=?H;KpXD-g`S(=>E`49c$mJjX5V#MXn57A9{+R)Rjn51ST<)}A;KFIYz~yf6 z1#Uz5yf51upyq3taA_ zR^Z0K6Rj~WT)?JD%KZ99WOHwKLS*uGXN=4}<_O&5aF1i;a-S>$cMTk{7`eNS=?k0| z&r2MfFS2(V*zpDr8^*{7%W%nohLOwtXQ&zTK8gHi7`YFPaXI(Tw4X&bcU2%nj)z|Y zV`T0$K;U}8Lx7RXpXCc&dX{hG);q2*aXio1{ff#>Q#%A*8FpKHDK1h+O_e zQ^*)kG=;eQm88I}f`^bsvEHUt#Z5DT-3`BuY=;xF)bB$?u3s7MFudV1#^rCYgp~0H zOW;OoansOSa)p#eifsNuNr?O#o+BBP=C6(fZttNYmp@?=~Zp#L39$#1% zmf6!+uj$vI&1H_S;nmC1=2Gjo_P5WuXWc96AHZdOYpuP$wfEW6+2`B~@7z@Hs}HZO zSAE7Xa-KPBED=VIe?~+${c~5u;zsl*GImfs`ZF=!XxOOU?D^BCFWoV+)u)f61Z+TQ@be z{#`J=-sl7QOCcj ziRb7Qf@`5~z7BAUaVfx!8w_5X;(zHvl%hd{DWVm!wuV|=#)lt71sb7C9G+ceUpgsxpNrhC=Sbb6f zRYa&?W>|Cj-9&vKT-q>K}_2u-he^gqj|NG1~Mkjx{tA+mwZ?u1{E5U!Fpq>Bkw1no-9*();GY*(VcrK_#~gYgfN#9p`VAE&O-qHutwEXyd=dBm6JATl#mp+WWsE%j(>AhI{#{Qc0DF2Dv#{LXXbN_(sCjLe4cK#{pY5o?uaUn6a_t)!|=wIh* zNAX7ccV;&Af0vtVBq)!Krc9qdb=JJ{MRWWvPe-u@^%@-MPhC3s*JQUK|IPe&caAX1 z{D-qW{!zY;VBf4ug8$#$QvG-5wDup$E&`{e-BbMCJPrNhvzj2x=Qz7<8Bei1C>&L=G>(V<}bOeTXIka+UI-y%Q{E<|D?DTvu;@t{-?Wp z{l_vRRd)O{@;mr5a(WS;X5mX_Pn+(kyn5@VffQ7V|5abIF&v+6%kui0WqAFcc5X?3 z`}*7Gck;j9qglP#^JcG@?*FcHo3Jev=l$7T1~yX7Ql&Ksv<`G>;(xqb9Gcg|`B4q7 zDql8z?(`-8h%OzG%jgnU*!L@YX|>~ZeIUAU1N|>m8U&j2a>EeT2*%<=<%22QBCJZ`KRVIBczl6 z^R5w5i)YWAUp^Pz81g_isd?k+*b7x=9Sv=}X=X#&y?4uIvh__fqvg)ox3`pq z(_n?K(xc?*n)D>u!50-Jo9}4bN{;g<3UsgVM_O$XPvlq;tG;jKnSqrAsVwNha!^7vubKj;wuB z)n)Axja5p%)EF;!{+j-bal6)vTr(b8%J6UeqRLrSEu3}T?G}7?=xgnxyvgnM}~#V zSN=|4XU2DsXCF)-)jX~PDP16?fkwrjO80#G+jqMX!di6*lkw+oEt7?PTeg+`Zcb@l zGtzK{65ja-HF=gUT}uV?k^U*R^upZ_H9g#SN!xVJ{`jkvkJzE#&j9U5Ry- zT+?h6=gKv%g|@jSNpm~1BO$r&ZAzsmEF!UiZWUW~7?rX0!{v#>lyLcOJQ3TH1Y*V- zS>DuDET3vkyc9s!hv9SO$>#@0_cf}u`zI~;V~0fNnFo^O_ibE*)!%})u2beqmZK+` zqw02!qdUu@dmI1Nj=r=U70!!@kn{H^M4G=R$?61Gg7If)kZlqv$X_krUozhcu!Fp3 zSaiM-BhMzeip}O7bq;QB@A4VR^2PS9-c6G`Qq%sLE{zFWD?WSAltpu*2g`{aTsIm? zGO?Yj*k~>jlU*h9SO>@Fq><5GjltUIK+C7oW+sxyK%1d%=Wqg<&r2rr@!I1+<#CuD z;8V%2A@msmUag%yHzxW;!`#$S#-zGV85_0L)rg~E8(m{o6}*||8e}}Hji0t6iEI$v zRIW{TMb`bdisW!g!`AX2>8|?5YY3%bJMH0R?e=Ny))HE7KXXxh|IuzwSZ=+OqL-LI zb(9y}t_|w%jUI~atafrjJ4s-%-E77stE*pMiPXCxx0UFD1(g%J0EFR(d#TcZ)0Sc_Do2I(MvZtdHW#3UQDdu&e_%X81l;z`Hy=3H+ity+PN2)%Z zr!HetcX_tCnc)9xQggXxw5w9AadaHZ*j0|ywyap$DNJtJ6FoV$7PkuY_n4Y3y?xwG zW$Ur7BC*|Z!5rW2NV(%}&qbHZ(!TCkIcc1$p6oZy<%%#k_$AjIk3~lq%ObhW60EXunKnzD1R(Xxmoa(a;PL6XIiC6}J8+o$1 zMZG}t!9z#0)(9Wd0zp@ruFC=jfFJ=NSi%8CP+2^xrha?+6^V%qC6+T~1Wy3i-oOCVr){y70Rf9C?yllK27oSE1kv4bm1~sP$FxAV z#-jTM1Ii~19${D!e$3^HEg7IXzhQt~okfju637q~Ne>jm(nIQp08or#04UlP?HB-x z1fa=2yvo&CxETtbga+|^>z;8D^1wCJ^Yvk>imXvA%U8Q{#Be4@)fT7gSf_A6kyXGl z_fWBf0S5<w7~Oi&GR^ugXh~8&(j=GJPAOh{>=cpQV*teNiZy$wu4r#kV+*0G*cJ= znzltY13>d_P4l@8E|=)ZK+q(sAex&ej1QM%hIWpVlNO9l5aXFX2#=QK*HOh*FgXa1 zc3IaM2NYoisEXalfS`)K!KEwK_V55xM8y&S#!oWZAf#QEO#b1~l6#rvU40DH6i2@YGXa)pPjB;y=wg)d$1VsWsu{#4m(Y6@K z0NX-sXoxWk07tS2;`qSr#BmYRQXI|sZr%5;WdKMLfX-wy2h_zfU#_ci4HG+=Jc#36 z7DwB`3rrCa69A5{GXNZIi;oy!TkP6QWBL~iP#h_iqT6XELqjKqm+d=TBg6%!1d4xH z6orRXS5cP{w44XSR$Q(a{-GGg=)onOffo-hDIQ&)R0Lf0X4;6HfGVFiC!EPa)ix++ zfNelKTQTy{ovsdI0Yky}5AZdjG&d)l=^}EHgX(Mspf2rFuVR30k9V2$=wo{FwnDXt?W8Q>!G~q8SHNfdm|^ z&d3o73^;3M-W0e@NMZLBZ(kJ|8etw&M41F2v;7!=%-R+s8DLu+%=UE)XL96}41#j{ z*}q&jh-;V@E|aS>bZ>Ao1CUe#5aAshP#l%TqpsoNaRyw}9Xy<&TM#Ml-jtoggG10H z2hI1H6VSAaJ;?yu0^Pw63;<8Euz4CEd1K_xX{{EDhMk=%1JAmhHP09ZfF}XqnZyCb zlK}MYISdGDH=R4n#8uh-X!8XQN|_!aCI{d+kpbYSfX_WS;Y@BDWPIVv7b_S5iez9@ zq<+99d%QY&i10HlP`uTmxQhXxNB|;yiUW$G0#rwEkO4s*!G4NVbp*DDBTNw?69A6i zFaR8Fi{BVvTO3}I(MnGKz|~&V%XF#cZ}BlhgNVLQJf3jngfkq`k{tcq9~@Bq90AB_ zgDj_-Yzy>r(F_Rc=g1QM90djsUZw~S1R$r~8GxMH76TbzThIuSFUBwcIVB4_rx-jA z6m_MkI@3~qX|j9x3s<37%j7E8BwzTYo&>M^J+&;R_U$*ha9mov`EDn<@Oy8e+U*LL zo4;~3Y*SC|@f>MLTXZ{>U-j<|TPuz#LA_MDuA8TMJnh{DZ!#Wsw(F!3ma#!R$U<7% zBQsH+8P&Is`Bavy%FRp_yBUgI!V`Nl^35l+ zFK?OERrdJCHQRVlG0c#WH&sN%zpcFSEzkRy`=~_)F|y6Ku0O>GOj@=gZ?LTVpKG?@ zx{2L0SBh_#TG7ai!HvIC0&B}sX87H+0P3=p`x)O$7srvUEM8|w~W4Nt%JO+OUq9W z5*WKOW961X6H42Qff}D`qeOVy2C3 zs+aDDN1plB<%yehrO?SULg$_lIu{`H>YrQ#1(zc90Th`PdU?MzkDOeb`GmNeMTPk9 zu;Rai0fp-eri!PT0P#N+9RHpx#ZR8gj^@OLGd~EQmvl00>TtmYhRn0vo?iAm8rzkmpFkj8v2 zN0!aZS}#5dQ8M4l(PPOM48T}I0EUbo8Gs>!01O%A61_f)CU6Vo*&N;L-$Q?`USH@A z|1;{}H#IC8+OwZ$#%wxciUFW`ZkT+mp*u7FSydSCVt2CAGrAAlF5+{YR)XGjuvpMZ z7M8m*<+(6-<0ySkvK7-pZ=1mc=xsepfZmp3T{k~-hv>spaQzhL>h@R60BV2va_6@h z1!5eNqWz7Q84>PzaTAoB^|-{1&az@)(LFA?MZ@E6Rl{q|1a=~CH|rR6>d+~Tjgx$W z;Sx=-hbl2cmLBXAWqNYep^|R?(%b9N{w?GOnukRRo(W@wcW?~Ls9j2huC64rGFMiO z$w-Q+R59bU(Ju7~r;T>ys?$c@BW5Zq91)@+O&&bbXoeg%Yeu4Kz|G~IFZXFGk5Ad& zM1DJYyO5Fj{aXYz>cS&k&|2Mc^PpXkvO2$irc7$)UL*FYa;%FVZM=pFLacmmsr0@8s&q?Fj~8-bVnYQQvbwP5cPJBBf3jr);%IiBf~)riPVQ=S`hkzIgH0ih8Ix zwI(pR!nM|1o}9eBg`E6+-TKCK`AKW{!1y;*Ciqphhoz=!(Tr!r zd=?Dd*&ZDKOsL5mrcsoUQ5?g3@X!uF<{l7py;4SdxHB_=M}E`RJyGmrk)Y|^#RQ~#B!&qBq5Y!^9YyiB zF}gTOGwR9sM0bMu&n~hc(On$>59Noa=?><2S5#@0c%2E5rtP67|7IFU6Z64iL7I*$ zWu)nZ`h+x{&}oXUElu0y!Zz+Ha`MUpaFr2&tIWj#b(JYVEg=gSpjK9w zxXR4Du6jjDcI&ddC3N-#1J@L0j?rzR%t&|Vh)O2Mg*K7w)KX_P18_YlKs%(><1Iom z91i{3;e$+`xVUHp1%SPiXP6xR`~iPz7>s853{-3bxjVt##yk_;$lCcx_CZ%!;B$A2 zZ=l@rM)o7Cm&5ype z@|-HgFxMzg4|9ze;7qgHGb!eZ?eg@>B1r*kocll($HzJHi*b(o#RQ8BXo6KHxBvrN zeR(F&U2KNsNleVE%lls^# zj$3%8=*c^xAIUr+dM?mY+{9eB;8IW+7EB@XulySE5c35J_gSgGj{%rrRNiAIi+xNA z5_>~P>{kkxs{-;565KyXa6!i3eI^SoK>YV2embjuxQDxop4ir*gsbzbKXeUDHO%km zYW*yGoT!uUv?{c|3o16N_0^pGEW3vxqL>c#mi^_Kcg=cclYBj0zMx7fRt}A$*+oI^ zo8~P;S~!V(%q zri4Lno-8Y)QFINHgXp|&n&>SYP(%p;(R&$yo&Dr)`qa}7i=p-qLJ{J#gG8! zgjX6viKcbJ%jTNgUDqa=B;HJw#+1QT$<=|qp$q_5yYR^j2w12CUh^3MvSblN7I*n> zWLjvr>$}T?n=*p~QFr0j%Y_rEn(t@&D30`cC2|#bNivubT1mGfkh5>es;qb&$6tBAXWP5m< zDIzfhAd^QJ07A<3msvUCOl}+C{@QO007o*gInw>Ll_Ii-Q)!^rxQDf5V1S}$G?t0W zsZqMPoY;~4&@%ThQNZN56=Pp@c|AbRwja&(5GoZ2ZZjBwR$>*ngvo6Kx~-Nku4MqY zktdrQ?x^ix3g9L!ZjUkm+@$7K!{v&b)ZE@+@*r;iwzygL|6zIvl?nv6vkU+?%iwP& zw+(PNEuzq=7H}g^j9bjMb?)IJnJIx^`$AoJSquO_dMxcas=Hz?S1pqau-Y5WfFOdU zg}U-A2lJU8;w1+lxQYQFXc=r|a@zn`VCjL8?ZtM6f+e|AERCajFvKRxC1wxUMA<>( z`1jrc@}D=l8@4&DhJS2OKCk?$f9*R|hx7Fvssl>p0!;+$=jQHKf^&LiknwEs0`U?H ziRSi+vh>Xeci8KNw0HL3mL0^K48{Zpx2RsFGzM-_eLyKux2O;VR#=Dgw{3J+nJ*Pu zkGIj|Sn*#eM?8{!%rmBY^>21B7pIvNtI5e_sh#ARP9CqGb>(exM>JukG{2GwOFXW+ zsk9L(-?+uyuI7PF?zM&pD{_d^e6yFV9F`j1{9GW4`g-#CcVW$z&F(3tXc4SGn5ov) zs!>I1gFIIr8j%`q{!J~f%3Z{?EQjX{wN}EH5#cexf$H_fxk6cTn|rOuV+CSKlB)#g zRn^d3kru=U#R#T?1zA~^85}=X0c;J%D@m?$Zrb1=oEZc_~;Kk5$KeJm6NeUBCNJq$q5HB5k@_Y~?r;RBBMjd%} zySsoMG(`OM6nv@NSMAJfVOZgF#|WPbaEpx#5c$_3k;mQZzFFk4cvR#@j*Qywju$yh zPMNpvPz_;HL|+mVec9!rN6X16*4gLo5k40n`)78!dj~~Pv%RT&U_`G>dEJBVO7SG4 zirvLWnIOdKzYn>Wh*ub{MjGP)V#UoW<3;@$oi%e5SnBO7);r$!)8FsC15N6TKYzrX zYJO2H8$9YB8NW|C=Uw4LtTfuV^~y&cb&nUPnG`GL2Se??Wg6JMWsZ0>*uAaWlS;+T zLp}8gI}i1GhHi2r$>@Y0EY_RcUq0^M6qIFb+U|YA{g`O099e@2(%PB{*1posS}t!n zOv~l{HSRX@(*fLSI12kX&{kIU6iPI3(8QyHL!@@A@w zNj>$XlMFHDx@GCp?gipTW{*hLlb%`?-Od2aJqf^U{eA{u6ej?46*noU zgC;BufogE|)QuvV{#uPsMgf{h!UVcYaiuvO0*i^R)0++7xNRK zaD+mCIGy(LYsR>vS$F{jmpt^Cdtl6Y0(~InR18c?vyPoR88`z`;+Z)LpW81fug$0p|gqvxiT2p(e$I=Iy9qF&S)!aK& zp{SQWk_2rluhN*Rg2U4260Z|@a)Uo?>Tr#22ql$8&- zTgwwK(;YtEzZPEbPL_1tM#@`yM?L(j zm%h+HU;r+30mGnpl%6jR9N}8JB^;|e&}uYnE3sQ z9IyFD7+c)*oWhF6c<^wj$t0$M@qqc@aiFnWt(4JNR;W*CEGv3ndOUczmmUua@9R=e zesgGQOWkyK49jUICokOIOzu4FZXh>*J-9_sOUiiC-ZiD>^px1jLPY!7!URFO@p8+N zJ~N{oIKbe(-ujx_NPn%aH2wp3viVGJ+3N#$Y5aZ4hNtot$BD#^(HEHjsoWH5@;uW( zDwz)+2vYgJQbsC2P@j;>4=$6+O}$kr-wVnUM%B+gc3&TH+9}%JqyEJa>HXZ(y;Z9# zlBKt_3>V*UG@`FH1$yUGcOMbnhvH!!XbjU0&}h_0?%tagFH1iwEW4BfR-a!u3BU1( zJHhBAA35Ug9p6Y5!t?zV4@h-dOu$P;^7525l9#VOA$j?ILhp#|qZOyRBf{3N0Z+7C z!X1${w0xjDA}0ME`;ohh-TfFQ4?pRfCAS`PS6qB&px1HtGE+|a#2p?+_e=1!w|s*B zqqB_bBz*%4{b&ImOdbej3rYxt#pVjHa@1y)Rp=4o-BMJd}}}&$AzOgdPQH z^M!ke*c7ZfO-x_{rB-wP3-?A-+{eV|Iq&JCd(LVGpywn2J?BdtP(3FB=s6EDAZR1* ztvw^wDefrS2N9L0GOus)lB<=1E{tN(E4i2^29Zb@GLC+%xf?ZfLUf4WDAQA`P5hgn{yGXP$P zX|Ic!9A1Y7d+l(6V%@});B|xL^-c!B>jv%h5hjP%4Z&V<`{p21g4g~1bW44g0cfcN z;F>(j0o78KMc@hj9~ep(X2|`U|53MaBA7TL95@5S6TS5=h{9mkRg7_!Xg4=!C?b}R#@R}YY49n{gCWqI3 zj#nCeVq|7(&vNlI(}LGC+N(LxsT~A+#&R3U0JtT<4i+u%*?7+^k;=4`TeIUp-K=vN zp#0K9p1a~Ga|sWIC5zq+gm1D6@?H8)>-y5$&eK;+WU44&tX05V2B3hktbi2^L;+-F z7eF_WV&tUJhLD>RJ;Q{bsiJ^etpav200rF23V4cvD1fZ&0*W^04h@+UE!OukHmmss z?qwWO_Ud2zUdHA=xR)VMA92UgJPda&K4gVBcP)+&wC-A*WH7BV(j@L$939B+TKtc= zsJj*@4tFg!_o2HMiE`tGjkw`3$oz01yMJ*(x#W}F_gEQKBWJXfzod9ph`J?CqoMto zwd%k~wyaF?G!fhYZy0iZ#HbdwebA+B8ojz1giQ&66rRF_&t|6r1D-I#FrZ zt!q|7ud>RIi!&f%0RnvN8kjZWT>D9{&n-3o8xsNVlGOA zI^mxvPhPz}R=)4`L?F25)d)~f|4Iz=K8?UqZ)SMzy*Mw`ojsX#capvIoHpa--w~cx;yxCW%1iV;j=+hD&Q*Ha zn0M%OLa^Qj*=5uU0s7or3s!t$Ycxlp^1+|f$u%~eY`S_2sqcrnTsc{Q= z=EvDFVhjrh?SF(LVBs9?LG8cvQmk9cr`B(8+Rz?+RHqm#*A;qVjk%#&h}Bsb>Xf3h zzyz$=E=81uRZ16GxJG?K7Ots13#v~XRP4DWnhg}p-4Df{DG^(hldtI>F}>yU7n#_T zLVfI)un4h@g@o(kHb>z22wWF&{;2z>Mc1k$|LQ~8x~0}^Ef_A6WxWSzuOZ5RgSZHp<<7J^#IQT65&sczOfJpZ)0a|8|gU(%+LVzGLyAY5ms`uz2?O_soy3 z9V#3^dHheUdAw_Y#}nvv_P6y7V0pA&VEUy~oX+D_13lM@sKLb7y52+bXuVLh3DZCx znIjgr3QiqNZs3o+HzlT%GD1RA)h8r0bujv;ODA-S{A`eC$;JKDf|$nb!U_k|bR?#6 zq9|tZAddx(fWORUuAh_9`P}=6UrAnR&kU%&6|{$VksE7iZzAQ686hXs|pw%HtL9u`rN^cN_r= zW6NmI{McF{n)pT~6vmlv)S3wDvN~J6RjhnrjHiqxB3&oq|C|Dmh*&0YBGAS3kEt`n z&VZplAp^#cTE}uL1I6;&aWq+Dy}DEr{h9&eJyC{et-P=yT*NRzQn~&8l^hP%^3i{1i)`11K^hc=6AiwV+wGYW4Y|d z0JtOoE=Mu|E(x$*qTWio`bxzDrUk!qEWg(<0DcKrw=6AR+{^&@CBXKJ``4`H1=@Y5 zA-LB@FILMKvUCgGL>#o3R?1H^r5TGo#o`qvpmDF4{PxZ6;W11t5bw*SHL*)P?ndI%P!pX0 zds#^lWiNg4e^^>meT^rzp*VX5{hnI?bg3l$zBQX}pq^YbDs$Qk;!=gQa0;=OPW8&@ zIi=I>+%^3-c!ts?A8a+anPXtRL_AjRy4BM~pERsjhLeU&$?|GyC3Voy{JT`1+~|2! zj zWs2<~`i!hKd)*ouy(PDcoxjbqT09Zrh81hQINr|jJn5NXikCw4S+VVPm@kADYsu|m zAGy;rQoI-9h81g#=ytJdc6dgc;)@V{R&1&+_C#p0mfS9u*tV4ME9lqf_jm@2-$NX- z06f9ze*9j~IYWdG4Z1jZGxurz`ZDUipjx)%b^t5y^V})ghPYwHX4}QqP?N4}3SWpS zqnxW%U7;mfa=XN_4|%4DULkH+iQViHaS_Sx4|`6Cks<1=)B>$OG_+JpZkPJwBc9Eo zBE$_VwJ^BUk&k(L%asp%A|-v=DOQCTvhs_y;quV(ExBF(|2^($FSdlZVdYzWC8^`< zN^k(0Izk+Pb~+fVhy1qGIRI^bjqA0AEa(u^UQ}PYgx)$(Qg=%D@S+l|INoC=#MV9t zgvrYDJzB}OMfKZ@cSDMecS7!?i)B6}9#%fZOw`$Iaa;+onCv9azU4`l)&FeQvu1y_ z=S@RgV9Gcz{KrszO8XB6;J|aUVa^qS6Sqy}!Dl@4;#(*=J1G2w8jGwwX?=E)TrS+6 z8^jKvOX;1qC{t z_>4!N7A6Ws|D-1Z&QJC265E(RP`FJ~xQ)p{;c+Gag-1dtJgF2eTMf4j(#is2u#!sosbJ{LIQb1A|< z5)?j8%+Gw;^N{ciciJ_sfVAQI3P@uBT><$L503X_QpLn99Il^!x7$*0rEuAbpaO94 zpBDfoTmU9xUiC~8T&kFuDHNc3Xu-Z1J}&j`6f0OPd`nB=mOQu0HTI(VBQ^WPK{KLb8eBw!X-g)8;K5XJ2n3n5hM3PB0jK|;ek|eu z9sDqc%99__P3-HK97jH?PxkH*MK=@qnRRu~Q=M5~YdPD_jBt*F06g9L5C_zA!?wj9 z4ybb{1RPZFul*MT)Z?wq)Q!SRl#Ta1+Jxw91_Oyk3&0-U zq}QBbc)AzdKa@r z8p$cr_!t8eH``z@liLP(<;$xK0B7>VIWPFiQz?!!C2&5XIiF^7aHh^(aX!c8s@)v1 zI7f_fl5s`OjYetCmeUkw3ku{EoU<7K&Xz$>Cbtc+iBZM?a3)Wj^N#O4rJ{lfWIBu-##Wslw`o89CMbU z{D3LJ>mkeQDF(pnA?@`Hlfx?+Ft6KQO`R?pjb^o^PMy>nt*OT{Ksi+auAGhxP+sXZ zQyIT|O6=Y*`Bz#I6)+uynrC?}VF0`m0Iy>i0I&3_7v{CPQT%kVnCZal0?X?<2EZ!; z@Omo);B^7KnmN?Ds0VLY*B=;qvPbCC;%(`#IxS9JD|W}LN9*$s*d5PST^QfJO5lB( zdiv(p^PcC#^Q?UAURC$W?ko>o@RW$>7=*`JyZ_~>5U(>SZrHr01SrTlV8QLM_V}Ec z;JMIGl>lQjQBf~Sx_!ELyZDW%VY2emXg%lpi2=@JrSTZ2U0|}(XpDY9w21=PT&r4{ z2dzEGF(xV8F(xToKyT@3DaVF+`w1?^B;^bRrsi6w>5Ea+draro^==itSUd>7aEuPW zkO5ZsDam3ClOp_)WAv0Uk<93YN%7;ZNP`Lh4PF3fZ~^98gBy6W1($+GcPh!Ek=W4t zvwZo;b*<&0`+K>?78V@1Y_hm)Vt`W>4>BpZ+!w;-;VW{X0>FhA04`hrE(e8oui#Q} zxyj*zD(M~JeN=qT;vyP@8sBc@NQepmAzlCo zaRCVBMS2GbE+s-k=ph=rZontZ2MO*UB)9-1F5H}OkKj^OD+V1(iu4v6r&XV(7P{68TfZHx-$3;# z;S^=_+cS>Tw|uTcWsVaUQZ-t3z7vEJyq!q4;qQ+s2JD%4sstQm{x zy>z^L<-2?4Wr=ELiXxs2F5*G)Z>B-B%Kl*$I&UsHtF1S&@x{H$!Ljn-Syy~Gv!l95 zmpk{%`tpY#bJ~g{3<`Gn+h3LKYIhk`olm@ml=s3|#IXK9WF$#a zEkZ3~q7zlK#v-QKIQoP|Ofy-Y>Mf}4F7e&%z4rvIVXBwWg1EG!cZ7VTr|`(SNnR;j z$`N18bYcSAU|%$o2BOQ8Myj`s*?wGLnA?=>%`*p%)5F}cWbc&tJmrlKa~+v`9M`xx z#rv2T&ZHQ%l0xmumJ!p57inTI*K|&6B#qP0nUxfKdde|r z-iz;?%IDL(e~Rl_2GJ*{?qW)qb8H`H&Au6c zIR^nW=ZKbnXC!wPdl`zU7olqEWo{j(@1=^&0Othk+TerIS;zg!>+@--e2$eLa)0u#UY-{6 zvC@W(#WPGv&DrFwIbOBU#dPg;1)f*0@$iq+@3mZ5;9V-dVm26!PL0>2(J2N{4>(Dj zV*(7Pzf*4LW%=#fqX??m*7&&3yxDvYL4^ycs*6? zRP4P;WKN)B&goaiAad^n9l4hQh`b*YAoAW5^eiosEYvJ*fKs?D1M&?9+&36-0T`U? z<;@jb3I;AJi8J`CH_esTu(-frrNv++1HfP_6M#Wg2!m}`WI(>bfcpjmE})lsw3H|N zdAkWN1%u@w48G}4bF=?rae={W7K7Iq00t+R01S?XFgSHZ2ILzIxNk7v0@T6hB{bpZ zQZRTWgu$6X-WNse#E@3he4=he%^3g&E+znj)QQ2Z$fFc4+lt6H7;xWUzy)CNYpJ(H za48r>QfyW$!fQ!B9k2I4Umx%6fBu_#GBy2L$ihVjFkcDITOB|V&A;TC#hd6$^R8c# zAg*P~n1k&sY+v7)s3&;zbtS{S#U?q%#wzb+)SM)m^;p4OUs6~FU18W*ja0RZ!S-=g z6b9SJC)T#Hx_j6hI-oU(o=$jt5FV{^EQ+d$2V;z@473cVa?hx-o=JE!t^l=d^}N)UEeSO!wUfz2YzFK8V8JzRdO=) zw*|aU)kEK~vu%QRf{2_%G_BqVt{YF%8?$X0fQ?xKurcf6fZE|w7I-30eU(@NLus39 z!zH)%@+@~lnE|${2*B3tWDcmUS=(Yh2UGwAU~6_211`5UOG}gLDc*i6a4_1&><|J0 z*zbCP0Z6ZH@iYT$3*`L(12F!Q1;$^>IlUurz4(+VAm1Na`Tm*#$TtCq?iUUyy2?WB zqBfY!s_sg=s9}@!vyiseL}m;I1c0-b0pM&~bZ3BVfqm403;<`cusP$v)rC3Ud14yV z0`bX{bwgXk01zht#Mg2_5my$0hISi6FWb;ITkalW28f>kG_*Y&Pz}wt_!kFM00f|+ z9b&-c8k#b|Jph~1x6BYR5P+=z&H!ZHwy0n3RI+V>mezs+$U0frS;xb9$Cr4g2{+S1 z)>F%M*7F&FtP_B&_ve5jO#mK(AIE^pCVW)6Zfds2rOXf%2mtBz3;=1{qKW~w1(A-H zJO7SM6ZbL{%*o7VuG-tSl{6;pWlA8v$13zy2B1&{OmVlAhg?e&#Rm+9Z$fR~Mb~&2 ziqlL1e!sE&o?`&~5`ZO(P~}`bCceg7Vp5-j>u*i(4uixfrUc)^EZ@@^0N(_lg)L?P+|qO6mRt4s zyxer1w?b@UN^rZua(gEO;FbWmeS`sUOAm_kXea+Ke2_TEl;C#1<@Q|$z%2oAdz1li zOHX8Tw>_5CFBQKsCAj_3a$9$*Q$KJ^0NgfX0Nnl1ck-Ik1vCqgQVI4(Z1}gU^83o#fI%JG*Y@5uq;9|TywAouI<}*2p9Ivg7 z_w{IxSFEwgMqt|W-bB5rzmNV}oBDVdVDnVH+kuAx-cxgk3p5e4Uw*ltO)6-~_pOku ze603L8)S5rh3C9^Y97->Y-KpUr{@VKz+~@HCBS5lLc+HgWNh`W5U(*k%-3I@s%N_| zGXS&Q&zS(T-A||L)!s1$uvzYA^?%T6k9=a5%Y9;&%LSO_{<6)RA-EK?+yfMon&s}F zs#kkIN*do=Orv7>YA_4?i&oa0BfZK zchXvkOTi$5V&e>6-{D;#CbPIy?rCeG>Mn0PF`mhhmG|!Q<_AgPb4-ZOPw%ER@J-AX z^?ALOmFpQmS+P#I+{2_u&5n@N>{JSuO$`-*)bIk38ZH2hf9&*n1($-xwIMVf-9_7r zAF{YWz8zyDKsv-(bLfg8>(S!Nv!?#ez%0;GGZ#+aIL+Mv2oy znrEBox_P!?02t&j0T^UX4{n}al)`1}fP8}i_YDSI00zq*AqHFu2CXSJ-aM~+)VoH^ zV{xGlW?KwqGXPELpO1Mx;#wvJjWr=OuDc=)DgZQi0ieMJpfTzR+Ed|D(3lZIW9*aE z!#&U90*z-a8qYESG)}xuH}KwJQqcIn5E_TBNP`Lh4PF3fZ~F>=WOuM&>S4x*_PKF^DKI4rO+&$vw z0>uBtGv3ZYYKZ?YCw|=Is@WbsN|dqCPz{4D5`!3k>tO~HfCTl@7m=8CMG}KF3GN;w zLIf@4m>uEG1(zxk^kxn!v^X&2Ox^3P5qGo5z~K&y!yOC&ho_kU9GYW=_f ztON+aO5g$mFjXf2Q}s_NPxf|N%q*u3z-_ZxdcB>*0IatOzK=A^x77C8DLu=@2@fdE3js&xDu1njvck*3`fe3SSdfv0HmA%r2HHQ6k}zfcGMzf zv)a4Tj#{JHdYi-cn!=1hfB;a=W&kML7CjkYTVO}6i~*p0BtY5OP^(}{;5}ouZfeUJ z0Nwio&ze~wnY^OsC;7r z9bKgf>b*>U*=&;|WSioq_ERe#H1OA$L*!cpMLTALOxeedmL)}3RWMEu@c5dVqlrTM1C%dFeR8=#qhyT;2@W9E=G zMxKpPZq)qx`}2vfqX}H*;d-pdabb{GkrsESdA8_imA)d|DF(3{Y++ zxP)na`Pon2J4HXHiN@D!j_zDWG61#2F>oVU3l z4zOrYK`%Oj8d84B5Fa}diHdmNs)#QcfQldhZT%+(pe6`FO}tAXtF7OEEUPy`G@k3U z4ft(1S66Ur2EZ=?15 z1K_rMz%4q&59;}5h-FL(ZWmc@uVa96Yb=t!2EGDu8<%kYUPFF*+tZY)=Sbp`xN*8?x z9@3t{G*lU8)I6uDs5=|8o0f_JOi7V2=vBbV{b(i!hd!3q84Q3|0s;+C?J;9(d=1lr z+m+hwEldu#D=oJ>7y!2f1i5v##`iE)_^#Hz|Hb6+T}{5#yA}>H0KN&Zed8DtyD$UY z#5=m%6%%(L_*i0Vas2V#B2@$aaMk#}6rv#S#w*PxcZ&&8jtd~{rUL+yTJ z8tAx~qmYQ4jw@dsN<@BJ=Z#)cW48B8~b;0 zzK4WMx#XiuCng9nxVepQP7K2X5$Dk%3iWN{?dh*I#^P;D1Lx}`;%!TL$}vx3M^+M& zIJBLwPz+~MBrz$}u8e7@B*rjDJS2?GbCfcYH&=Z^^5*K~)%upDBpH?H>nFzcaneF> z2Twt5$P>r1lVh$9cw7O<6n#&;_ePhIZ3|E6q%&m?fKz`SJyj#Aef3h#d5PKaBJ^1XQYEfUxQB8lJ zcE`#|dm7hM?|U034uz_|6{Je%X%?o&%F0yV0P){Y)h`@X^vem8JQGEo1rA5_o#*H4 z0jdcDa1j%L-YlL0xQGeBMNHA6%ft(GvY8hAW-QQtdon=zrR|j6K3_Lc#^i8I20?C} z_vchFRrsD^`CiTd_@1GC-@xQp2!y!C+jH(^O7ObF^7 zT&VXSkB}MNw2X>Y3Kz#tUJ*O@irBdTu|Lqqw?c3!V*f29_HX<8ZV>}mFe-MM2_5d| zqqi?GxfA*%CPnDuLqadFHFR>C(Z?4TqzL_ykkFs3J@ngj=-eqn=K_T89^yMDxD=t^8XUUBQ~sw| zEQtJ=j{F#tJ4yeINfG(aA(8)4d*sJ-2Zikx;i69@YWOuM1?R`|sYJ#CS0=-eqH=K>WY9RneM z`h^_&igeecjrNT-#WGeh;#{QTT*Ty*;Ys3VCP0WAfV2X%&ZY?n{tUYG(iI_(+ zABdR?oS3;3F%JvGj9adF+sQ-B7XrV}%JzK>(0$)MX0q7FqzHd+E#dE1N*AY`JR^MW z8R2sQ!pCb)xD?^v8wejaz#gE~$GeJ5f2DrTZ)cB{^$nW(sAKGPmN;z)bA$^jBzulP z$Jle^Eem}!MHJJcMUnM_kS0sC=L?I2JmVZYpN`D| zuvSZXszj`o@|Iw!dGXptF7aJ`(b`6iTIzdR3}f-qDkV*pW<}+RAx!Fg>saN8T`lFg zWxlCm3d6CsVFrPi%a`cy&HDQ)-`!$4v%s8k$r8P^sidIQCPl*C1AB=rp<0`?7S%%O z3g05}NGSfm5k}>N#+eiVzTN$uXMGdI zQKpG7KeY<@9|KST0oXw*SWS!2KNyMvK6MJ9*io1|tQTEtp5*Q|zBcB7C2C2or@`^l zltWB|TQ8+g>fal-RvcCD=BF=~8$qwp9lqArBEDRy@o8}h3k2Uszywakpg_G)KJY?v zYD}ss1558T^$CqBZRsT%Q~hgwS6$qgUb)t{Tl7@ce4UKO)PqT#ry+)1=UXm@G6?O6 z=?20rTdLd9tm}P`idoD;Rgf`FF1&#@L?nKCx7{wU-!xra%BzS8p)@t>6i{aFwsbn5_QLv#e`xXc_IOaDG?^T%%z0&jy1t-3p{_4n zs;)hoX&OE(pY*I+#aD2cxBBiCG0PmO({VIoQlA)RZHiD`H;}h%rf;seYYWwSN2Y{Y zXI6orla}dPf40hZm&j)psP$aA`!?DW?a$<>iri)Ts+{2W<%v-Y#j2E0tV%PN={{#| z>Ea%ul4-&BTVh4|n-)66cr&D&seK za06Z5KUpdE?))|-LJqmdS1g)eMa-^)i?J6mh+^|g||Ev+NviAO|Z zIr&jvXOSLilM=8&&0Qi!)ZE*w=30KOVnxjjR4&!O=%c0k@$JcS%`RV5{1-}vSL3^k zA64VHXy<>P5T_Q$D%YsRaq1Ilaokmxs725HzI7MZ;;;Ano)b$LYo`_~nH1knOBEO= zkNw}e26FA4>zd1b5Bi3R^-M|CVl=Y~1bwZnddRn5+`)8FA-C(~R#C`mln<%D-J$AF z2GlQEe{Y1^{5xQS&9)!1Z)_wFbzB!M=Qk^kl#_2-+fSSfwK*EFL7msi=qkNcK8OC= z<8tKn$`R_^SWcg=m*r3R^5U;mQeMsTSb4ZwnZQZeRnn>FNaYUo9Hl;?o}=i+q_teF zpI%(WXaC_lD$vzKJ`we%o?&cW zQr`GGu)Lu0GXZZ_X#6L_Qj?;UH?;i?>J!@jhO5!`8`D?L*3oaF9hNW4x49F-I#pE4 zqX&I6V=EM-+k3$6O8SP{or`8?%Ps%%4HuFzr^Q$=89AjQJa(%i4YIq#-?m)3`z@qC zqpv$$R=(n^E8l;aMhs?96ZwkIYluCL3yE7_&nN*;0<)3$HnYfAeU;pk{*r^&UiD2g zB0hH9*1gJ*Oz4$uaE~n^z}0=<8r2ib4O&1lS&I1psoYu z6~$e{0NVn~x5p3rdWoAEiYtW7)I`yUl!rf|%V_P)7E{FoObHx!S{$Ed05}qWLJx32 z9njh-E8p?an>v|XoeiVcGZ``?!F-2UsP8ki?Z0Ds2$}%U{F4EoX0PkRt%(268}Ept8Ve!#(|q!~}*CMg7ICHqS9D zHBZ~sRZJOC69AsqGXOko3qJz_7V3LjcQF7w$-?0oBYmU$ED|p;C6Im2BKtZ6K$ZZI z{fGmKECG0E_P-3^Rr!TQ(RN_23aJO-g*hS*&u!|W0f@EP4EIaF4D8?}yt#i~h z`cjQ9)DS_T8i{8%+0KHS1p1C?C^~wOpYzG>>MGJE?3DU1Ds(V$^dn$*6z#*SBGc~E84kC4FyuPNahL# zAeolI1|~-`PpM>DUw6BWfygL%;~B-%!%s0KG{MJL%fp+!J;Z(nAk_pYYcq0%p7~v3 zV8_hwovUTJnK3-Rt{Q7F={u_2sei4V$cno1u$j>!o@NihbDu+O;$ehkY!IhdAhh$J zD9?=Q+sFKlqRGunmEHgHskcL6ih?hq{g&b%l$Ie2`*dw>{=Qm&5iLr`^SyOf$nut1 zUFF1j87s_FtJ#;(hOY^UGD^|64pD+*?cBBqBM9^KdI+e_UUfE#)vnLyp^Fo&(t4>ONe0K2~tL>6zlCZD*~ z!F}RZ2N&R0$Cg18QUsT(TODQ|#iR}ge2^a49(4=y1U8rpd*bPl(T) z@Fa+QWD)s@0k~220}~+o--R$ZdqoE18w|K_FyI1uAbYsr0tElQ6FhD^QyJF zYrBa7=zs{ohPY$^x-SCI0g+4WyRhH_i;=Nw^}b8bweswj8H0?v^2PX!Uf=X(JjJ$C`w|G;5?6N10 z);kQSkHck8zNx{*g)`S^Z@jFk)7^7|3dg<8FLXJj2m3^s@2^E0yS;RMeJ#aHJvn*Y zcw{*Ysf{EvdYyizFIt6+wR#`*32XH}>#$a5Z}p@GtiHth#z1q8lNFQ3G?oACo7F(4 z|4_$_4na-0`o7^^q|-JDZz|73xijT+$r-nZ$t;a%*5jF=Hq+|W?ZailHzhm7RZJ73 z;No?9K6O0Q~fmmZUDR5cCFL1V=`QKik_@tc9;~9 z9Fu~#8GtLt4&ev`YzsOJ-&1_U0ChCDSA9(!i6UWG)#}p$t)mG>RfalR}h=>bKTspL5UW-VDFLJnOU8 z+Uv9S-e-^J+(%9K3eui%l-Ylj|L#X3Whh#k{e*~K|7|}Ceape%en3wZ%bD_(LN}Ph z+w$egkucirYAb4lS|#<<61l5&q!6Y*@<7DgQ8P5$DK=Wv+(8vvB6r8z6()_%Co>zN zDOn2+P_~6`PpqQ4Xl6I-Uub4Gk47`2o78wtqI2Fo%Dw{9uTRIa)aXv8gl>&#WjK?H zX=OQ0|NFD^noX&p7o8>)AzE1`39e+C(`0?s^npZDk21Pzv`u-P(eWuyGMO8mEt}6y zu6lYoe>xIsnsk?z%Q>%4fyfQ)=}un~Al>!iO?r_AE?<)mjt==AtIEjtIQ+C~Y<-)+ueuZ;MU zqrOJ~I;sHZsQVbuj;esJT8|Q-tAfjR)Ne-Hjw*&2n3j#UV_lvxk_ERl2S&AQXEGbf zZ-bN|DY|QpF?OJ5?(h_+E-7Ga&9EMCCpkQ3j4^mc^lk#+Q2@^)hEB?6 zv^JLt{da4Y4cMk8Bj>Uvp(;6sj&Zy5sV1QYNlP^~+_VhkDzk9?lg?-=8iQumt)bD* zlO(ktbobHgyVCaJG{a6SVgw zz4~R>4-}wrQW(XJlj0Z?Gj@!Dk_9rgY~!#16SLPOCY>3-GR9t;UD^G%vCh8~3L?MY zMt*?+9pq=9N)J25$4WeIYeC>e#@e~@L9x=gaiS_*k%0II0rn39EWq4&Q~C624okt} zk2n^E|EaUqX-;v0#jRs){%<7!Qx$x5p&Lm-3w=_~Av9~Tm;PGVC<4Nn0rdV>oU^1spe9%nj9C|YTV4+U% z?wi-P>Jq9LFzas2UCfmGsqF&=a*Y$e-gs+9&3>|hQ@|J5Q-)mQ^eN+>G6V>f2lfM| z!G_TF=I4LYJ3BWJBoB9cZLB02MA?-ehqHw;W^cDpYo}(cUC+czo0v9tR7(mL4y-L- zBPAhV?tZ=U4R#a0DcR#W+Rzl~DNp9MB*zfZaGV_??qfiQ2mvsc8$XS!J6nO=XKJssbBDEy?ekF-GXBTMlcl7r$$ zF2$c2P>KThJMsS#Dm-I%;xD*lJy+L`k2Vq89s~f{n+O0|&mxTgkW~xaiEl&z$O_<* z#eKVZJ+B?;bRjK_`FD@EV}36Jl&$=l!;xN6(T}rS$%+B$^JxOOKF5!@o1L!x0#ZY~ zVh@I^2~dV!ftyI~8DJlNHvvje3^M!6a#<=fbX?vR`HpZ%EHc4TbM0%88X^^YP^(7(sJRBsN$wf!(>?f(1c2I6Pz%&IdxwSkI*$;H z7Ao(3JtlQClH_Qi{U+E>IF$jdGzD~?Hje;i_JU;wJ>7oaKzfK&9Dv#m0?;nKB0nR* zv%vQIF#^yo#lmZsxIsAY^-*^@f0Gs{{%I*XPf;CZX0!{q46kLmGW^qJcryXSP~HyM zHzL#wYD%yPsUcjkpI);@B!T4Mr+(F-I{}_S_EZ7-699hdNjH6^T?)U4ou^0v?Q-l> zw#&^X0M#b|%38pHl2bsd?@a=j+-ghCv)@ZCvpUpm z>Qp8z@T~Z>t;ci%z*7M5Y{G!>3{*7bUkKghbRapk)ZkrD+tJ>$A4qx{wb%!ql}Fo? zBnM5;URWSR4wKO;H^j z3YDBBf9Zd{L!p#$W>nqk#gb&+7rV~HeB-w@&O;B&o5w?*fwx^4*NcGwnM$KA*ZYm$3Z;H586KlLAH7^z@AHe`}r zj}0L}Qqk4PA_10SQzl_4TxNy>w2~z5rby|O;z4nV6&Sn33XBE*Aqz{f3>zdN=`w8K zB)c5OAULM`v(CQpa!Z8 z$Ot(s1&aa_AJ;(rouOBqZWI<+ba7d9A;4!bn51CwNF0kHS7Ram!GisR1q;BU^q`Ek z4oktJV;qaU+3CYf)z#QD0)bat0FcfC!fX zA}j!r>)NHxa99c=XJUz%|FuueavD=;VA5cU?G+6O5GGxnjwAqy_Lm^h`D!G@JxH*7 zkYE8wbQzgZ!(pkCkolHmPF^Ru^(80ZKAHL*khMq_MF$>}T^^GO@M~ltNkL}*CCDtk z8W|}AWVj5FVFAb#8k-SuSPC)|eKHuH{2w#yH_2{K-D8I>{V~I5TF=TA>@>-q4D+ai zli|m{k^2=a#Rhzn!}8z@PW4+KHsJpu@+04`D;w|~vrC(n--jIY?vcbjDG5s-1ECDb=Z` zz$xaI6QSzCep5~V6QO&P3ad{Z$}bQ%|NM6d6^)U6&xQm{44Rm79kX+rx7O9o?+hX( zjO3F^fRTKn3NVsOSU3dECKYXVffr4i?V%*+MUqRat0V8Kgz7tQk`%4(bxmwN(|T*3 znq}50Nd3Q`{@>1K?1=v2RNLCvH(DDDa0nbD&|WjgRv-?6Cr*v-qXx!XIgWvuK6X7R zm2uUP9NZ;UC%^5OxJ!e?9_2;-3%i~dr^X)xOS?4qv}@sEBTAbF-?hU1g+k_VXSt~S z(Zx`L`Tm9)Ma|(ep=zdZo!g3YLteY;RH$9RNt`C`-AN)EaZwV8$_&$BNa{SN8c8v! ztvt=H6zULwm4X0RDcr_@u80J{il{RIx*{r~Q!GB@O|jL|VVYe!cn$}X9aaJYV2Lz_ z0CWt`Vmbky1rB-V5`Z2f7U(e*r`ZGE0UtCiRl-+_R#UQYka>C_zd3z8)Ji%{=+98C z;HGKXX|6Yu{tUHCN>(%OIfZ;b@}jDDocjSualTkE-fkOd;CzuBaX>gZHO^}}(m;O55l4gk z)K+EWr;h%G{M5<1e16Wl`FS!&N*3n_ZxxvKIa5|TZK-_ZsI@OxJ2F>FpMcZbm)P%3 zJ(y*C%}@f+YXm^AnLt3OYWsHb`?%N%dXD6}zP?PS3CuE^PloKLgvBM6!adBHZ$o39 zx5)!~@cJy1^m}pM7zwL47S5ku8UtG7>O!q4gZUw-}Ye53w zRseLq9#XFUiaO;nT95bHRuycXPXnNwMMNHG_)A zaJA{Crz*|y(|(3@DnC-$^4Ke7&e82{2mSt^)KTiON5WeTeihQ|dY0&iHx~ z;LntXlT^p7;1kpB3iL?@XuPVS|L5^a{9<;*elcFLKxRj692Q`z+Fe4@rO&<7=`3~) zMS{Rrxq+`DKnGi##qJ~_;@&>puHR;el`cR(RD~CqWP@Yd<}B(^gJiq?0x3cS`Q-^Hk!Z&s4~JLzi!nbqVgtbNGD zKbU=ZhArgo88L<6V3ylFrYO{N;<{k6W(ZT18Jbu;QfFy_c%;sn5q~gyt!z)|!7S}g zMLpVGuVmf2z`^W7-MWCs`B9Jat;e{7SxkEFTAAAKKL@jG^Q=k@1q;08=fHd8>pfp& z&)(jeq0b%nEOsrS*()-7nt5-eKI(iyQhCO^$FQUuQ_#6cCU~0uF~bfR3C~Dsyx~wkQY`=mj8Y8fG)n+Xv#Jn4 z8_&TTpRv;_(JMbG6p3-{+GAFAC)wlq?UmS#0Bqs@VagXwNi_Z6PHkv<7nk$o2MwO< zVu0uRIpMHA^0+gB3_)(pGiLMT)YuS|o5;cKWir70O#pCPLjZGI<#O{J>>)kR!M^FS zq`^%L$}g3BgqP6A$?~5BD7S#zXegKB-U<|cI2ys}a?zQ7MS*0&nYISY5r83I0I;mi zfYyLoL|^o3K&VjV&0Ya;VF3F}_{BTKhETIO!o~0YLIB0U+sF z1ZMd);#uH;xex(h`CKeZIc2VD$}Mkrhf|3(!7_Q4Ir52QoaCrek)u`7)428o z@G;4qVyAB=s-B)c4j?_mtd0|_r#T}C087teG69~2oHbu-D!tzD24@bT=$m5Z^-cK@ zKp*FIQUJphvuv~7OaLeffDrdEpd1y@L(3xsFvmkKN6*0p(nG`ofMdSdeuaUfXHk*> z&jM%86$t=6vGC}jYYym`KGdmCTHsiFw&mD@0OcsZZ`-C(O2p~Ja;2yS=$ZOUy?qF! zhfv@lYdn%*1pAN}zb$n;l>sfyHF$yLTACQ(&8Q^=(3??Wccgg==K5a1?~^9Vlz@@a zj|tF}dIpC{?ipb2{|f==8@08t7D4Y>mo=fz2($ZkJnZ%UX22kordM-_ki{HkdP~V- z1>;vI%E)1Cmro;r5*Q2_bcTRye+Q|ly~vBS7r*zA9GqPJ-X!_#!x zR`M+a+Dcr5(=6B0!~m`29|EYAD315%+-OTZ8(SLz*;LYO-biv})71}?903YDw2+1b zAdv#ZBr@xC*O^Xd($Z|otBiq;QryENM>0E@Rb53sgyl-F!?TpkiG*@8$64bS2}Vm9 zr-hX?d+X-B-g%8dO{ifk zy4hah5=1_o=lqI6kL#f2pvTE)S4x@||D<+ul1T}Tv)ps`5tc%L<})Y&9@7mN(DKwm zTj%M#0~;m~7&o~n7i{&M9h1bM{K4uG)&)tG>yY#WIZ={c(Pq~JK1)#+mWgKG(1sPA z*<=B#?|AKy?=bN>weCYPt7|-R2x3^gmp`bX}Yw zC6E*V-SJ-rG{2rjfjNG)c^2r8WeDKr^QCgNJ2YP4X`~7t0wA@G2taBD*qkdINg%mr zfJW4n0A%*H*vu9@l=ms;aZ*BN2hFjKXgmSPtN_UDOa?TwYN0>)w1@yr>g+cP-{8Ht zJAaOCKc16Kq>G>h0L$G3fTd?~kO0qOl>WTIj|70Gd}45DN?9|nU4a_WAqqD&ay;)> z4}AYCl;quA)BN%16F%^-Z*4v;m{QlY?%TIi34bX@i#&U1vU-NSrt!V%;F?BA%hCUO z*EGJLVXtY(x-fQA>J8to!8MHtg(w>o?lp}D&)aJn4GF~x6xTHBKTp>*T0C#BX&?q{ z6iMN7O=ER1@;tq~d#`%p?XgsHjoTSdT^p8PcDtX%*d#kuIy}^2WgOx>L2B5T7@`7f zOng3r-rk)>df1qm{=D55n@)i6?&>Td0rq4TOZfVF!cqljFD8a4UgHy=*o*X*e?f9~!M=kH2320LX|F;6Zj>}40T?uR!ES|l44SCI z71J-i!GL{(0Sj=YgaruxCJD>UJc7S|dflI$CnzKY|Ck&6V+0`m(@22eC&vXp{i?x> zZv@Z25j+cQ+qpTM<**bC9*tw57crb|6c-q5aT#nOKp41}V!k3NXnYYzf(rl( z7JvorVz3k}90`z{(_b&vUE$nIaiKCgximTvfadfl3BX`L9D~7EWgx!6fPI4j3&5aS zM)*#LrC`t@jzRNU;j_*XiVF-DxeOK&APn5!|9+RGps_KI#^$TikODx13jhrkfJWEXvk%f7CCy&m|}`VYG3dCP62|?uP&co3Gf?M!b^TT1fM)F#Wt+`s&K`I zB?W*F7XUsi03Tc_VJY~WisRFHN!=4pCdCCB^LU6_HlhR4TD z1aKFoezS0Y=XIin!_XBZ@ZRjLZfbVPPBPaGZ}6zIlkkC`H*Obr$$qYS3;wk~ua`(p zqI0m#FWEWR5@8}2SAsIvd8v80YVb#q4-Y4rZ<~jkCT&*lf79m+mQr!}W*!OHH4cj} zsxrW6~lA^sBZU@MVphJL;? z+&-zIy5|fPrt)wMKlQF~1E&K?aSUH5-mWca;2549aY)E)KUGF%`|DrGZ2!6O$M9%) z7j^DZXs*4cu%cafWK4?D@*Zm+Ug9v-9xCzsxpvL-7Xet82!KuLyz~5aqMm~SU|U6;d)w{>&AfZV1D*1u3g>0# zS?4tffO7$`ZmLHBoD1MN$I(0GE?Rf9-RAV9-<%G14_6M}JI^+!viF4>B+XVn+?+-c zL3B70uikZD~uK}hC{^K5r}PX5(4vOZp6jhpT51R&c2U@`tF0m!xh zMYi1BLOxT7WK%TJj65qz)xJAwUbOGd?G;WA{_ZCGt6t$q(zEKAlRbt?@-OH8OHzBy zKA2d^jO-dpvk#}I`h<%(7fA{0y5ia5+Zyn^KMFDTva3o@5;94-FIoUXr*KIFSOFJ*_UgjW?Jt^B|StgY=%7= zZX44=&m7Lgr&y|MJsfggqWqwl&LKgJZUuW8Zw=%6mEcv`b_3@<0K#oF+QkPEci{f-Ocel{!ND1n-KuJInI1Zj@y3F9XyL`3Ggg% z8}B9pw4Vf4*($?s&a!NKBX4i<0i{a#WkzdhsSwc)GgF$NI~`~+JX|B#Y`#97?n_## zHr!W??}V=7wV@a=&drXuYegCu=g1L9gK_R5RYqHRSpPy>d01YFm#? z(VCtlfp1V|*gbs`35rsfE{W5G4xNvL=D{A|9_4S3ErX@68xV2g#^EMg#-_i zd+3_rxkGvvGXsj(ks(yOX6Fgvma!S_oL1MInh;*>9P~@aS9+Z-PUs1i+;L zxaT*U0Js#ubBXbf5*n@FAKlis-?l!-ZGHGzmcYH)rSo97b?wV`>hb0?;rdBGYRb9k zeM)tJYk!+45)6bR8nwYKbv%Im>dS5R&I;#t-X?Y20Q{5$7!p5L0ft10*S`UHn)EO( zo_yJkizf;2mxH+$_|=bbF}T2vi+L2FadEAh$Bc{O7~>*4#<<7=Sq8RoSb!Da4-%8E z08hM3R{-l#D2Tk)0vmZP0(3;j6~H@5h`{eyV3*^i#Y*=)+g_D`_y+;@4+1Q}Iu>^T zSqc^rDT!I&4&X$J3oORDEXEOlc?s?SzC=>ccs`ECysOfX0ziWc01X!45+Dn}V6@Kw zEAgW*+m-moFZ(O;J<`YY$FYu5q-cPLRp2&2_j4@gNXNhRcV>b0dU!#MSKRvJc8*yP zb)2{knH-d=#jU^6S_~e%Wf#g{c<`28c-dLdEw6-U{`Ub}`ql7gC!+T5(+>kx3JKbr zzmp%ZUGB{;ZceYx%xNB;afAHI#eoKG5=lK8ZR3S@@T#^jIvbe$TDV$~S&iH)l6L57 zx6o{UE!-=qv6je>jv5pKRxKppLNEqBsLDviL;4p|@zCW{v3*&1#(z^WZ+Uo>Gm45u zDu$C_^Z0h0ioz>p6XsdM@id;f(5_ap@NaFivhtu(C48l5?9#8lV6keKR=F4=YN?f9U1enWUlOk%vxFjk*^^4aUnwEj-2 z`RT3j8%{Iz#vQ3K3I1c0%RF%;^HrxS=^%5R7ugonVUd1bCD9aqH~gS8Bwp*$MRwF5 zM*v2B0c0Xk!ZdhvREqNqp_tLj&+`4{ozF@E`0bgj&EYQ2Qqn{iueb$lAOHmjfN8}J z0^s|VSl_tsHSKWQHqH^!gzrPH?^6W8w*c_{Hv#Z{$oDNbS1gA|E2kw=hNIQoURsJy zoa--&K6^@S57!J{x7fCzZrj7HlGxK$tAPxwNUdwqvzKIxVZi9 z^Iichq6M_D1zhUl_M^MP55-^HuDkYz55x5X1@8BGc^9|)`XYOA`~Jl`k#sL^cPA7- z6OXS??k$m4zb>E#fU}59(CX$dwu|#O2++m3d?KxU-qeV*h2^?77Xz%#KOsQZ=HA7My^AsF_w0Wm zHLN1U9y9Zc1ZXq&3=&?U#^n}>zWc&w;kr&KLNRR@cbK-nBs}yQcZd`~u-Yq@;4K7T z_dx)xb6PT>1quL$T?t@@onNub8qdK{(gQ^SKyd;A=*gbNECM_W+~j_l0Ce$cW?!jP z_v(mH^lx%+Bu(&K=knZ10C)-jo?kGaJkkOG=%$0fEq_9g(_I+`|>rP_wFT)0US+;?ND{FYVWy!D(( z1Twz~OKjD-J{FQ1!j(e7?{xye&o$Uga?b!)xAzbLe&WgFhrZbQcbO)9Pg)>(%q96d z0U&wIlFa#F1Fs)Ajn7RfnNbVVcX(s}} zR6NBn#f7y;NlV=Z`@d#?Y+@7vNPz&JIkribPh^_QINcSt%<$wTiQvK#a7wueMxBM1OH&qhz>LIGi6L zU|U1V#%G1Pz5k>fP?St-phI`T;G);)`r2-F%rmE#sU-aNME77?mh&k|vDfoX@2=SE zscO7AK|zO2ap>_QSz&?woeHqP9<`V*v*lVUVt1;I9frVCyH64zKyuR6DNO?1TnLmj zXPTtC-=$AdkT!T?GNIe;fq+@nEVYcoZn3Yx0&I`qJ{wE1x$w_xc6;Q)YxX|dofHk? zZso?^iU7p@APEq6Pa8KrsZv9%bbsgJtH$5T#?S5%KMN2)uC%dK;}0~~LK_ApeE&w< zOB5M6%yBu)ApkepUMB%Kth@w=HCN>@$8uoz;J^Z0YGVPyH?iSwD4f>c`H_M`_$S=( zPY{6c|0My!zj%r81Iw<~gihG-**(H%0jgj~v9$6IOTpo2lmoV>{*ar*`rGZ_z2NjW;I-@BB=CQE4_$Xt$+YRtqlDYX z;4-^z?JfW6Iqjr)g$c{-1N%7w@MIN0_rA@=wyDu~7Da}Ks(8agmBOhck>ZKaYnff> z-L=dv^yKN)GAXTmaK|zeXp&aUj7dsMP3onk@#Cr;6`wgyUX9pC0z9c&=LvPT4=G`q z-~7`#lH1u$N_bM8AOW6KM^)g(h2z-^q=J@qUILXL&@lNsfGBoAaWY$Yxu1P)X~6=^ z?GAKN1?T~_LtT20YCNFMo9q^;QJ31VJokDW8~s~PV$UtJP3Pz`zv&!aW}6Q4!yY81 zDK6p3!HUc69%Mz04(r+W`WM!-?U%=Iq)4l@_jB%@_qhLYlsuZ@lICQJe6A0zYCyN_ zTxR*1XA{inDYZ((G*j>1k~?(xnuR}V8a9<~Oq=KopbTP*st*Y+YoArD+9GEHX`&^M zS#Dp4CAm&%f+ENA;$;SOQYrwJQELd$`F2qqPxug5$96r$UA5e zUSa#v{)9T$nwx8+)l3?p*4&{U_TAAzZiN-1<~~rcbMjEUT{+U29=^BHWx~SFNp00d zORJ-Qp{3PX5x;YS=O4P@LsEr$%(&v|+jE)1DQQDv+LL!`=(nc=`nwn@rg3W8gHAh& z3r(pF2`*#m{w@Y-Ml;)Eh0Sd9717LQrKMF04stX5QCeDNQV%VHliG^Pj2_!M!%2#y zwv4xXf;2Kip@xa%h(khFXR0!?I!pgTR%cxyt1VY(R_`S_sBPkAP7n1-3;{p|+S4s^2A?+5@!|3>q%ntSE zrQRVxhDi5j{^umc5c!E@Nnc9&QUMwwC+h!shzyEj91gN$%)nS6Gq5%>MPvT{mc*pT zo9kB6A#I^mQUWhNoK-e*hX5ViaY&m?LIhrZl|7_ADZX_Qf1@f~k%0II0rn39EWi{J zhqNpOi@Xvav%n#3XNn8?@36{jzCJxEf#jH>=oziK{b@{DK%j3Nfk&=NKwN`B2l5R9 zEWq(B3lMu-KX%N2*Q~UYm<22SNldo%K{=i^w@gKlXmzW#D7V$QC$rnAbbB)U(vaM8 z$w}wafz>8+nk);WA0iZ=IGpA7jfoNUi@45}9F!`>;p|CmgLtr>(lYU2J+%tM75&in z%d!~PPqNU$KI&0cyV%*6l^%BXYv@`89xp~cUbG%BwX;9JQ(9Zz*aAeg#Crq;Ucw5l0lS8 zXtn#p7}tK*H`!?rYu7XJ(k6B%|IMyxbpuX&GQk7#&eit$-;)45{{_JF{}BfC`7Z!w zXk!VW9nru@Q+|nTKA+BAzpAu^RqJKvmozcO5*OHST1o&O%U+=y2=FZAd7Wrpxj*eD zX9uDB&<@*Z9RRgZKH%K2;#T%+~3jyHkmA{vOsD*Cie@y^} zU$MaOD^=-l;-4oi5I*Y?&h>_0J0L6o2p3~O2@8PwtVjSg+F>R~&a0}@nVgbOh zB>~_l0KVo=a?b$!_zx2RielhVEHX50nAxxn4Md5VYuBe{%BO~ui&^3RE#aFc8&XS| zO;6>n>#QVqw3%&MzLom4TB>%{jqsx3nb~ipraLFd2pV_4om$e&TUsEeDO0H34bC~j zHAZvOJE<+TJLzt``Q;ryz?Sd&0sg)vHQkin1Q1@kZIRy@9l0sB2tqX)|}R#;<%NZ^BkTwzAvo z-fVgOI&!n__oC>6Z0Bh`)K-TX{t?gBDvk(0!zy2`wUXfFyG$%gt>r~)8=EL2v zMcz8^iLuRN{@5c7yXELt-BjO;uo2dRy*4a7K6E$U^xFp%PX7E@+5x`szcDu0c7Zq1 zN&~I*0aVAFzBgyd%MCAB?B-u>cjFuClN7u02i2qg*V~P6xZ3W<%ODmzJuXO3U+l&o zprqBx$7Vbt!1Ps$#%BEF*=c=(N8Y3@ z_Qg87=fADLIbi@BwI{+NwFlXi>4N?4b*e>SbVQ&D}nlUc0G%99}UT-qN_T@v6) zma*3E^o8YL-RWx^uh4p}eeT>xfL2{l0IZ1y5TG@#0G==65-S)AB07&qU27N8No%o? zPC~8WH$C$-ZQ8c_0}l^!FGNpYo5Qp@(KnQos>Se{<~l0Ze?MamNwKi$)~0eLQ|`mG zbaP;CS`o((j=jGXB*0{IsR}UJlpwLh*)*Zx1I|v;!xVd)gsw}RZ3JMBja|TRNQ#N} zLCJV}dy#sr%kV}i{Byq^&x&|SgzBqm)PY+7rVID6i%`-D?+ zos_^!oMP*2q5nPO3)YHJQovd6OZ2t5 zc7b(v>a>yMm`N;IXEMK%uc5JAClVsZMB*R;`phn>4;$W}^qSKb>+H-z3^6tNoeVKi z5CAiaoa_B|f*$T!6eYm3zz$_O0?_rv0$qR6I=e%;>G9m9O8DhPD`cUN&>hMtQq%f^ ziNyNR8)-KLGuN9lZ=^L#TBtVM*|U5nv@dx(m5(j7Y4LWqk_NWW$Pq__Ewt{cjAn74 z{)J|7-}?BCNj!S-e3-V*ZcP5LHmz4o`&gM@zEfXwU0NYC{9KDvlXJZc#{Z*8&^8_? zfp5@iLt5`df}%k_z22tm5lNAovbt}jT^D?Qz3K8+T7#sg)g7m7F!}d)9T$)kDH{}T zmrWW-89Cx;kg~T_87bSSe<5WXuaL4q>ut&^y_426CS@4J_P>)h$N7}XN22zTVDt6W z+=Z*8H>Vl!j$B6T`e9lg)8NKx-#8~p6QkSr>uvA)ivaX40ni!pZjh+mXCs=n0=l_a zngE@tUAB8AZm``;4AJzDt+xYdeR6Uz;(somJ zvAejQip3y2?fT~KeSw&2E8x6In%HsNO#%$ZyHtSgCUN;Yjz5qdhU4QK?4Wj>02$QW z9mju2ic#%?BwdH&Yu*y~G@7kcMQ_T6;aD7FG-JmY%~*gPM;2fp`&MGof$W`V)-m;OW5D*=Xo0AZMH+#zt$Hl}-hvSy2a76;*9|YJx2(Z8(j#&y8HKZhFfgQ)u z6c_S80xXgeNRHVM-U=}!1&f(+ES|e63-J#YBghq4umIbREC7LFJ^{=p4sNjXiCr7~ z`NR(CO8QpFL2{4w_oWKl_UGvzdP zsaecYifJ);wkB?rzwm5L+!(*{__ZuMbmNiMFj0>oSwJtTR(aOE-sKW2s1JBcj(SVB z-Y&K2_~AEcm-r6!$ip(?6sV^TF5ojr-p*qaUu3Tn*ON~xMz0gsA{5_&-g{r9ut_{7 zi|9@S$cQVu+Iw@O_r%4Y_c5#3w`(r{%_aO7V9jzq$eTH0bgRQy!`mo;208x>FXhl*+ zsRDp#Isr^H^=(U3^ziLGQuFM=vnv7M>6O@*0M7zDki!T7F|qK7`CE`PNegwEW!X9N z2>?X_l%lDAlclZIsLIjZ$1P+b6l1RtzvJ?By*LL+8DR?mqCXMoNB` zeg%Q3Sa?MJt;g$03q;GjV;gNX0zgy%)MXt8l&t`$%a#OCT?TG5+111L?ycVhjPE1-2ij69AfG;nBo3;w7X2hKpQ=>j(ft0l;t@1IkbVowR*HfV;gG zkh^+;Pr%S@`k+wNfa~K|QboMt0}QWu*RK{Z^hzyAfMa_ zuC2pH1c0Fc=uRwGf+7dO9t04z=oIq8Xn*GSt~bTA;YmEpRshC{O@A&zyph`lfRubV~RY!1IfKUZGIr3FkL5 zhu<@<-yECbs!0I&eYJ3;wNr#pI2Sa=`Tio2!A=#@g7X_U*(_xcfS?7C1#hBhS1eM^ zX-X)Z3mW6ROL56aSJHy>&f?<@shhq8pwb0Er43_1Yh5j(kEtny{^v0@Q3BUboqMhp zlQL>k0M!2)0>I3(c#nXn#eG6~p7~z|XCI-UEM`&4ze^*SRyxwb`H{3h`GiaP4+210 z08q}o*{?;Es(|+7QUq{AFTU9l^&F&-p638W8xR1Zo<%DHJPR}&?5cMm6hy@=N_0b& z62_E^^l}E17KjeqZ0mLm0U#;>h)!of>sA0flwT%*9?HSFE>X|H+oY#q2L_sfUBeM) z7s*Rkgt{w&O%&`M-nRzp|=fWH9nMyC6Y~oC% zs=CwvdS@!VHrg{4nVrXO3PfmviZhiEMItLh_e`bEd-hDF9-&wV;7p~~dpJ`u4Vu;} z9lZ5Dd#ZvMutb-_k3=G?gQ556K&7L4`kOveSDjqrorb&_k!PK5B*h+ue34gf3d_Re z+L@O%$BDsUvcwYc5fxn2^-#x+^j0yaH`8~VPpG<&cqN}rz1Xv!=7ecx_u~-3G z+{aMI?u7WnvY35hSO2!5a&{6GRE z{qDBb(+V-orMCDVLp) zJMf-8tl^%BcN$JKk38+L6x+aSTSWfnd`Hx<4SbXYg{Ri)IlD)sh-uX#Qqa_F6&dIJ zLolAKf4z^B&A{&_dy0I7Vbe&bzLU7sZyQi5x;3gaBYbBfl@Z-{`0ahW@&2_C)s1&~ z=w!5sR1ZeBnwp&=iDpEb$n8nLY3cmXIZWZ;BL*a3*VsjGreR@k<~IEcJ3Y5;jX#f) zJmEab|5o41-jVX=`MV;w{5OZ?+eZ31_Yqy>@Lm$=xB4W9#m%G1S;g(+Lj^er+NlN`g3$T4~?BLJh98q}`RA|SZ_EFlFH&B}nSHsKw& zMiZXUDUuxAjfA&I8lXNo*PW>l|0MWxlHviMrC;jn_Cd{5uwLA3OhM-p(!sO+Bnj|r z|3L+Kwo6!e6C|)rB>a5&TjJD%;J?XMx~Tgzx{0KYE?R7xeYTfUfF3Tp)!ZA_@N5^y z=$h;pU6Tbk2#yixLGWK&Z7=*`tG^j}Vyo?iOd6Y!l)t!2NDkh-&2C2CtkI&0cG17k zM7wOeR1?jdIw)oUGdsAVo z{HtwoLA=7eZFVZPngBFL0nivX5rD=h0OmsC60MOUi6&yqHrpEeY(r~wFc-p2g=@{g ze9x86YbQoWw%Mn_>kmg7B#qI6xP|tklJPVk0hffQ!C6&Cs?X_PNcFi(rW(K4C*MSz z9FuDA>xNbFggn(po{)IA=1?C|EVx});gioTM&0_w<|r*V_!1F>{|e=^o9|D>h>%q65v_j z*xC?)b|4mL2W7Y0V{2SCqQpe2C`nl8xpmI%(MQwd!I2ulb=z(2?;jj#k(8wFx%Tr= zdGce$uREJbfJ4~a@h0z(My9^{K|VMdG?*_`84c!3{R<7|%kA;!));2-B+I?s9>V$` zMwDr9X;WZmq-jh;lCJ^TQFi$MBKgfXLnALZXDKc;pHn1=)h|2jo?eLrN5c;6uu1&E zCNa0|QD*bQGMGw9MS?|ln5_RrIwb{m#3k}16(&d8)15M^;kITZ@+Z~c+?OH^B$9k^ zL`Y0kBBlLx3*QuT(Zx?GpLG0$)pK_EtW5Ofw}9b>AJf~MSb{4|_yhJTD* zOD)En`ZS!!O#UqFe#5#M8K_6o>ho~Rpt!>Ues@AqgZF%3qwh}uq89)M_`?Z6gaUXG zV#uNfQ%RVje|K^_SR*Ocov~gwJyI$7(g*e_b?@{@{iIHsFzzW$D1$h~Urc3V0_A<- zQC_th6_J<5^t+A=NC^k{8%cl})OrK6rQ8ugO?KV}*wjxmj5$CyU3KvpM+&A@FQfPs;}`dcpWP#V7GQ;jH-=aW5@jVkCV}(&0TdR} z-^V4(*BYvJF`kw9g4N1U7VdQ;4m656k^)ICAL8Pi!o>{qY(bB96=BP?9+^|eG`Q?Anoa?s4+TP0}*9Hnq z@o9ONA7=R?d--9?E`3O6nw8-ZP6C0r=GXPSOvpd{JmP*uZ3*Er1#mAwO!TEuQm^ik zcdzbjnPmQ56{+Q{^EL1(<-|*y*mtkKTpcMKaCVc4HVA2_firT3aFFDfKkVFP=MO(J zpo8a5Q~qSQq&YoPUIe*FAfH_PvCB@}Jtv7D`gz2VEdYk>WC8*;9%vVEOHCoUXCUjh z66U3Kk@`*pLNOwWJB*0icG-&$9Z3PrzTJm*n)Dz6peX>RNrM^CS&9HytV|$)DUSKj zQuG{TlO7@#02EgcfN|Zkc$)yV2(&Y8F37Z`b^9(=om~WiqF8wp{VNd1NDDjA~wm&O>{kO z{`)=!ib4U-M#(qg^jPW{@&?iZc$S#gUgl|r)%Vz4_E>6zK7nv7^}4##|9Zz#8+O@a zDS2kbj!NU{sfA;ybrgxrcidyCEfS8t>hnIKcslE`R6vfk3#O&mQ>op%?Wq((z`Rq+ z#=Aa0uNYp*4EQo~M{wP4I-feME_t9_LuKH6>W(jDBJdqaG5h}ee89SM*Z{kh7fBa$ zo1qsZY}|-X%=6eM z=6Ni@bQLF3EX8E6u*9U()dJ#2Po#QMD43~sbA#?i0D>M$0tEfo9y`^}6bn6(8g|v- z#W#Xy-w2)s2p%U=EJg75_`&-pQY$GgFj(p`SV{m+q_&a(47S8E*nU+8;u{RuHyE%0 zCsHgx@UQy8W15|?$4-d<+#Q_|>uE~Cw2;|UEJu-;c8KGgf4_@75+lWN&bsgA+~|hA ze$&HF$8{u-S7UmbC$CK}Wd3(L;+Wly#}u;%617MPkBPLsb_yGke|3T0CSIZCUi%p9 zN&ucb0$>xkF98^91i+I=T;jHanN-lY z-j*2kIO1&ru#m%hX`hi4Eo{H|(WB-s6rhehRsZij&(N{OF-R3EUsKdvL2?vD@IXJ=&UP_O*WB14SN0$@OY znE>lW-5;;IFWOJ41k$So5AV}{Qrz?n zq~D&@Slx4HsX^t*{&>XPQ8P5$`GKU^+pQjNcY-vqw@Z#VB&;y6`PgeQ0sRXtCh&3m z-Y$k#^snj?vVL`Hz}XgM&48}*^0O@5N|~i+TNE;PatNj{S&y>hVj$2Q3|^QJdU zs;u5Q$;GKS|8=lNBt?>o#oIL?4J4TyaY#sVCsjtb?5uww$(^r|vf~(ib{|sC*0@14z)|?;3T?rrhZnW~z=JcnNG0;pmGKKDK@FIRelZ1whwX%z$=A z1#~{Wo&fBSU#>H*`Pg_b zuzg%~zu$!5vfzH}vK#^GGEmS=zdx;{**iUOlT)2QxD_kUEe1SFXtY8{yKStu-^QAk zOusRB$9~(!CX`ICn>1Pj<~G)s7+?$eZYmq2UW4O3+);03(sTLD2eZNjoOYyyE#$r= zz^K?bz;WeLE{16#-ul7dF+C$Tg# zRN;y=qyW(10ziWW*g|Fj7?hUS+3%SA8>vPMC2Kb)q98uYi+8Ci?sglrsAsO^Y~HNREM_)Tee}$Y4MR z1_3ZjyPW{uMQZw~9S1xIJxLE!ECDbGJVF2l0ncJ20iFdmKR4A%&v2#^if6f);aOh% zQ@i=Om=r+qWlM1l$wBdDm*RU2C`AE4@lyhr;y#z6=w)AsL`=)a)AH%-WUejP{Y|!D z=auGs=2x0$fw#V{B>=?4!XxHyd8UvS2Egi{*`d7w0ZK1W-DHoEnr+2$jZh7uJD%ML z6^gMto?SjeReGMDAYDW*p1}1f0x)ak zCyyI8JDZULXf^)a)?j-AK&!FI9xt?dvRrA20p@0p5kPyL!ACx~_2$}Vks3l3dvJS+ z0B~~+mXh2vz-wL`2mm+n|I}lv_{$ zOsbz?K*^~Ey54)mn>dpR7UOk#K2=FYB*LegWuVUflwauXPhn@ALfRwHgcKRyg zb^?%60g%#987Ne*T|nfzp#F~J?t`sJyOi<*XMSI^nQCdH3w#w*A!-e3g-8x+UU6j! z5Nc|Wc~453b2G`oObk3`c(%2^H>J1Jn6yBz!B>{vodkfM00^)f16p|k=vZs&ZMN%u z*|_t%UcayGl+d%CdToo%ovoescfm@)SMfsN}(zN`wROtVjTOdKRe!fTsZX=IXN} z>)hmI5(=Jz#_-JQP`9bmiL}78{Xtuo4-o*K0-ztUTzQHdP4y`PcnltU(2RO8rCC7K zw5`r3H3Tj8pt+I&&{W52@eTo=1*#J-pngawXo^`3O}y@RoV4Klh&b1C)w2YEzW|;& zHhV6!q{6Q4$Di19)x0`=$GK{;L-LpY*E?6u`>8!wJ+JFE-un537H~LMEv2Rx@R1NB zn*i>)>J5kNxoR?@{<&&7)BSVrT($Zkd#;KQup1*~<6L!aS^1a{mX4KYq!$d9Iz)%7 z4b(5kRe}oA!__zE)OjG_+)7gHOW^}WQJ)T5;UK098DLAGqY5r6Jz0=qOKRj3_2suc zNe??aj~=pnB99Uv>FDZACV_5;1STr^dZzW(JT;T1Do9%)F-gGozxc&g2>ZoW2n(X8 ztft&SJeYJV#0)){R%>?7U_!93_|Oy9_bC(vy~z!F69EYNOA;XH&ot=z!E74_2)9$}?W)ICc;JiZN zfz1M!%>n{^HgA&@Y&Kki&AV4+BZYts7Xmgc0GsRDrOt3z3O3pQWn)S$Ngv^yqxeAQ zv`gnS0q7+8zVVx)G70AX1{FS&wm_6jeA|@!K;WX zj-r;4putxe_s=f>Tp?5Mt@J$R-6NrK&JKbx7{C9Gy}htW{?*$HhvO9veq$#OzYu`& zT>#A0FA|{B1D%HanbtyXB*{N@%-+6jOO^0dqMN4geq)aeUy)qN8v)fY!s8{jLM`tf z^vJ_KTJ|6G@B{SO-Li+ZsanirZLL$>yu3a=Iq6;X{WrZ^zr-)h_^)2xDAwNCkKy(D z-GeHbc`Is#y$ls_Dv%C_*g7P@5SyU_46zbEhFE-vw>{~hf!=x8Hqbi>kOu0$f7zR) zc&F=@I^}N9e{{B^XYEn~nkbimCdvZbe25X~cy)&@E$cvX zrC^K0^cldHDK5~M>(ZD@fYQJj&^i)=#TuVQj$R|hREOUUs&z#sQV5uEAz;D+bT)jN zm!)`qybwzV9qu+al>Q|u1v3uYlaJHIhUB*50Z%1dXI9>tD3wR%}n7;8aj2?yMAD z_s$ADcA zlq%sHM{6Q<#6B~wJ%VS3<3BS>o9^4wlgzx2s^tzI$zewAP4AEtQV;xONb+6M7kfV= zDefDTiMQKN8n|yjjyN{lH~3kV(K>$7ztB2zmV2u-^SmS@zZ+Ew>GW+RP9kZI*JxI^$w)hkI6EI(k%zl z=R4gg9Q4C`NRa(|y9{06Wtgr9(({@^2kM@19w%JK(!e0oy?i9%j3+rd<)CkEr<}=v zF6RD%H*OaYHNDsI1=OiF%-$Ath-)4H5{_xY1=nMNqkfZvM*;9wU>O47@d7*s2IxQTZzWJdqxIYWTid1Y z{?^_cl4s8?C(aXhKC}Xg~bz#OToO*b3`kG^K#k zkQ8yNqZ0`*zIRXox~0VB-|84ldKef79<}59Kmz;;=+h*{Y=D~<)Obrd`%#kvnVut+#&^PfNf=2y7ZQGukOQSMkQ zjf$#pMH*57XmA0b!2(?CU;!B9k=WdNz_pHtj@la-9gapP{=v3K?X`}FC{i@Q`&HmJ zK=)e5P}0G*j!pUc=9b?%$F+|8kHt8}wGM9PnAA{@iR*XCL8)0xYUXOq;`usX%fs_^ z{;~LL9VHIgYaO(;7WF8bPPo<~8!x!lp-W5aaYfYQ3hVJw*E)W>kbd`nuXRkkn0_iy zV27Uq?^?%RUt|yZcO26>guT{L;C&wzgMaVI=x=`hH@&lS+?VScYE?|Rzoyhl^o3C} z$Bx+_6`S=#MkVL0uVCM6i*fJP*D?8Bc)i!LI*@TZ;N&|l)d?ugty#cox}D zRV`^+<;|$#3?mfNG%>?8P0GXfd}opZNM^Yt=Mw;u0)XU729%@#Ai0GACixCXnw2{W zDogk{NU8{0e1PVU1c0Vj>K_Dn7P#V(`-ERhU?>(IL;s4$^`r%wWlq?-tVRH63V;yn zFrYNmB6`Q8C85GK_KwGGC+wu#bM+u8BX$A6b}#{8>sgE;AZnqvJf;%>wqoJ2^>2AB zAuX_7GU9J6nOOr)Mj} zNe{6K0CtlI06Wj(IRZQjT=!T^0N9Cz#}3y$Hjx6@ZFJe~CIIXNu$_qkrKf;SNq-@L z>HX-^^Bm;;-mfDBD*)&v5&(LhMKS@N1+IOh5CD2&;n9;rU-|Cq>!a>+nv)hd-uk_* z!HxugqX6LeAOp%#0p&Q90OmOOds~H`gJ(z&5eop0*#v;2XR(3+&mw!Ow1&3{07tPP zjt@JZkpk#_?9w|%0O$z-dcQKD^b}BfIe+l0hUs1NgQe#=xQ_G?tN@@_l>pH5ENTSZL83CXt79Kr3Q2$NM802&(EpWW&2U~^x2~duKd(4qBvZ5N!a-}E+c*0C0fS)jv zEJe@$RZ>H|Vh@IE2~dWf!B&!c1~?F{R4b#dv!76~6n8N!>(|a0>YOAku>9U-`4<6T z`MqVC_ea0JP^cJyWoZJKW#W&h$bf4fCN<9HV0-z^y_&b@?! zrGyj15~tfkNK07;9yR61i;LD>1J^s_2t=EG^heufpJ6~NQ~_jzZ- zA*zK51l50Bs@E}~R25LFH3?v4ED%mh0Ul2UpMF0Rq5P0O6WwrZmr} z=nNthTm|*GqKi&$kQ2S+d6L%pwpe%Zxq%` zV4+*Tkaw?U9F}nOmG^H6#j*`wV*XlKw5$@c@4TOs z9F_`)^CJe_&5*)zH>3KKjpS~|f{c*q)h(l7@UxS2H{&05%$rO5sU*Dk{=>Z)JDglU zi<-Nd!wyqIw~T%c>*BbmG^t@VUs45F&CBZ0zmbtfdf3hg{cN{0LIg+_x;nR$06Q7C z{%m)WS|~s}7%{YQKqNk~gTX$rgTVr9#NeHGmSP*Dy2Pa07&nU_y^%4RLP5|Y5Oh)k z$q}<50b-u{v)z5^Dh9fV^xRcr7uSe=1i3=&EI{md<(;L7eV8A+e;s2tIRk;6AW+8H zNdWF+93=r59FAjfTotaEeen$j>>CVNfV&thK=9k+f*-jp^mxKAegj18iNDwulSqJM zzpfcDp;{;Leg2stbTg<=w&+jfxu z`a45Q*cT|==Tf*Yp2DV1!3xeWl7hqIK8Nlf{(m@#e^dec2MHE{MCm~pZ5@_^MAtYH zdLPF0c`u@$ZvlbjE`j9~D(V0Pwv!YD-uDTh8+@P&SF8mo01UVQFkk@~;2I1|!Qi!6 z2Dk$A4}}F5f4MCFBEYh!bXRi1DZkx;MB!7>mIM+dRN;yw#6L)|e~@4SNZ|GhOF`m% zED7_!_NiIU?GzVSG(BbeLsJ6qH0nwMFz6D;p!-!Bi0{Ccp)#Bc5a6;vpv%aN8V*ZA zppk^eogwya%WR4dOlG)DW)R@FswE@^oyBoFm_;DgI8ECruwaeRu5 z%gA<)P+XvK$fa?J0H4P1Bn6GLaWww8Dh(+BG`IlJU;$`coRHDNVJT=Fh@(+_V#cRV zwbOok2aU?7ZM&*WfY7L8aL~|@q@Z!j>DcbkSQW0=J){88-~vE{1)z~OIpcp0OF`pC z36NXY@F^LmoS_sKXbcvuRW*_lNDda8mW;oNg&;90jzrc~Nr-!p7)<^_f(0P4E-Pc0 z!%~oV#F7ZyY(gs|dXqAb$?B9lAz0~WoN@$8LT>inoRweiO$CepY`@dNGcfzLm(%0i z-zAreQ~Aw+XEN%?Ow(}M``a@aJ)EC7)P$xz3w-Abc1~Z30L;Awz_qCe0hqcAu&QWk3p46OBxFuMRH}Sp zOi1oT^3T)uy!2a1nVi*^$Lt%|rt-yKnCc)UOwMJmN?mv^9apf{w(*n)6h z?-8jMxvz&Gjj&=|*JJ)TWTRYGBH}m_d*h5fWP3w{#39>p{R@X|$Iryy9FkUTZw@t> zpYa$s-?j4l2-O14ziP|ZJ}!_zR7RKvLsI8CiNE@4XtPCswTs(i0k)c!h&=J2+BISb4R zx|d#iz4~hoQ*CKR^P~b=B6pTQD9ipQVOCRMxaM+R)!1$YY2ca*IpQ#J&E*4CMhn@g zf1!o!{5AfX3!Z!ETIbK$Yc8$-u9s{M|C^pmpLq$U^NNf*F)c@a;xtddIYy!2ipyaV zh{_Wt>#L>@B$6~5;ID2T4@ll)^H_LRzm$@>bDY(O&8)d8Wz4qK85NU$RnMG;LtIpm z)-_E1KuR|!znFP#8Rb8p+A9^%4aCs|=mz3td*z6;wpXg*u1Jf(SvzJeB71}~U-b0a z&>IAxdkTOtYYPGBg#x%9ac$@;!r}3A*W(Waz@q@zz&cL=JPP1?#0C_lGg{fr&!S5Q z!X`UUdaE4Lqs_CMGm>(bI*0MD--+~6=Hty7HzYMz=iCM(R2r@hl@}AQ`C+Jgr*~Iu z7P(c1YeUzO60QwJNPwX(RR!pe5}SW*s1501ylZ*Rj(05y@F&F&kQ5WK9_Q?4&qE5( zSf@l|$2xJ0v5p;MtYd*pz}h%0z})M0iAg7rx1OV~!MsGFAo4kGgNKQg?)a=xg)0&e{~*BrL4XCALE?krECmY_#{$=eex$g-;)KiM1Ob?DU^f3R zNkQXc9F4$lSEC^XfCd);8Z5xIAr^qaQJ(>>4K+SzZ}_C1^KbanJZG;BHP%4f82}n! zrV88!=w2IYM>@DRbXtEA{LbI3*UaByyyD&vw{uKssJp~l$&uDZDfkCUPvCs~h|x;J#o=NWzedvEB> z=NZj|1s3=@@a_#Q^+opH(1PD|%iH}N%sfKn?TOEv%_P9ibL()C+9gRXN@LS+a_xB1 zm?X3App3nHV(oe+UfRT78Jc-0BQxk6Clfq8kNjpwhO-1bAS<`4gq*xdqv(xfMJbx+qF?!R{pjh+S~b@Af#bS zo;}EIBVg6>d)nFJJ|U^6j!Qz{5&%*Xheyi4By@qa!0fzb=Hxq1m856d=WTf!Jx5_LT_B3(o-o0a}Y*(OpR%HP9PEeF*?n@#InU zZwQSiEl?eO-Zs>k1fZb`fQCAs0bK`-Hk<3F-{rhPa<0jhmSE7c-%WZ5SO73QNC4WY zXYnHeo&|0Q{XqaIiiJlJH-w7(;nx?~75KxlyPg2B69Aovvh9 zIZ`;iSwO7yeo#kJL!{ys+#VzV+_XHk7)*d?f%`#Y2mm*+@VIS`)J!z>{>kX>yg*tY z_^eBC2>~D|018~kfHHhm8M@!x-$@|X;WnY6zyB;w@GTQkL(n3}w@gS5mR_OP{OQ+& zXHZ^${kd(9S{0mvgo3J=c~sFU<%1@U>5{Wnf9EDrRlb1=rhHp@zNC>HbSwO6={90O zd!_(*@U$a z2n9=V=dnZ^K9g9hhqHsU!18^Uhg6x6_&Y$ zS8)hmJb~|Z1c0w=P?hAK0h)24q*^yPwFw1ZaTmkaDO+o(a~ElW?;RIxt#&5>tycg% zp87MOgw-NScod=kAw2wo?YW+-=Sdj^1OVe#2|ye6EY=bbwYaZZDRbzH*5#e8go3h| z#ZazSq1I#0*Q5o?2VBZ02>@jQK>05Ql(JexDd(4!fLCw-p`7=krR=&glOMG+FV_p$ zhRFfgdgV4G0Bi-2hjJ~aH31+h!2c0;odHr6OV=6lHfae9!XgVSLGluoo!Om%B}q<_ z^OCb5q9`JwqJpS^K&wbHCj|6U%!1)zMhs8I1ZFXTih-x{Rh_MrKP!m&7dyY)ebe*nwgXDf$XuA6w&#G%aA{6w*olg&4by&>hWVu#=7+^rEO8^f@XZ_;_B+tHp)DX1TZ$GnjZW_r!($gPGa$jGzSF72F z+C-X~NrZx=c=Jih_2P`Ri<=EJi%1C^7yRR@@OlE!Rs}#?UB`fuR6zHywh+Lzc%LH) zJz4MAPnHDLD7L7^_sAA4)GzG|0zgp!)MLM$gX@~Zgo2`=M6teYIe5%DChgy#y1=pI zzm8*d0>DuKaBRSUa#TP$<`F;~W$$X`(stdTrc1g3q=u-)9z4eq0G@t{vk34laKrdg z0zgqLe2QqQxDvL8wBUE81guxW?jQi%1@O(WBX^PqS!}YeJL0Z{?bRn%TnT$Y-RVF5 zD`9(&xGQ1uxSYH9`ZN;{Cqfov=-JMAB^gb0X!#FaJvy!w#u`X)I^-47nF} zU!nqWG3@zsBKyrBB*p%r|5bsG@M%)5cC79mSsOAXkBN5~!q1o{Unw2gv`=OU6`;7{ z#~0`BmXV3OTc!dTaL$;v^9bK9BR%YS*=pwQOeio1b(a%prkNae&jeeXLJ$pv@YnjER8?hHDnLp->#1%gKbC?(C%gYS>H-^QL^heV6cz}q@(8RV00bT&0SMfiLSV~j35ahHVBa9X0uZ?V zyhuC4QV_T?nZSzKkq6A@6cz}4>Jj*q01)_t1R(HR3W2{)OF(>s0Q&|37J$Igxsfi0 zr6BN8GJ#t!h}>zKhl7?40*%A22{k4F<7mq+S7fJ=5F|Q;llwszRXAlo5dR>-{y~BT zAaU(Qk*=@091-Sc_B+#yLRWV!iSEs`8++w!>UOAVWEtSzD zT9`x_r=yg&l;mfJAC-z)9?8ylR3pP#=GXccPDj5kX1DK(#ON$j8mPPQwcz^5GH#ta zD&7z&44E^Ei>>##fJ-KSt20j^D%ZLTU)4wrt*~-&yS=$Iu=)hxu~mT0r37frfIhYg zQ1n{60j3K9y8lo~9|ZWqmp;bnCA-4nHgqKK95sZ;F=U9xQUTD&XA*!$?prJ%AYt)b zUR8Vfit5eHQbN%M#0*`aLUFtJ`HuZFC>4oXC|}%lf!~Xv3m80(;*R85cCU?`W#6jN ztW@~^;?f_g+Q)6AXJ&aVhC9VylwrB-^@w?d0>LBOpQ^zo+eiZ!mBVO^wV$b3ZspqU&X zfv8;NZg-J15!SC>#y%>Znz0(1u_|`VhDf<^@e;^b)lx&MSi2$8BJ)=*fOGIEl_;Nr zT4~Ca5Dk9P{Up^SjWm!p^1<;TZP}`fwAI(Ykhc0IPM)?;q3AxZg64P|H}*_2tBO7l&w8%JOSuo0-!(4VL*GB0Ck?s8(^*^KsSa? z+QSx=a6L>6(eQgqk%=kg9`b^K?kM59+oJ@ay9t0fy#fd8JRl;@Jwk3jjYyFl;gYcOp z(dzbXiNrE{X(`;`+EKB%(N(u((BKYyGkBqU^G_yi`3l&YHYH7M#@DpD)U+c3=B+j= zK&R_fV#nf!`NcwJ0O?@j>QmB9Tzv?@`VO!DOeQHNt_daG#5Gj`nz+u?enQx1irnb zTbW)eKA(y-%X~}~PDw!gg8=&n0Ty6khl^Y+1&fJs#Y7in1-Q5TiMh)O@_^^)uk>-{a-q)m8~?MJ=86&hnh|7(|>F-A9@;Ba}u z;d1AYmOQI3_Le*|UWg1n{`yww7bCkvn=$`r%pZ1W&*Ykos?(y zKb_OmW=-2%+~)6=C+X)2$A&R3a* zQR0=zvmx^}nPBkzTRvfK`_OGLBcZ^Y=s=o1uhak`NS=#HYeUC!fnFR~c{SkQR8( zEbVwMA^8@xvVcnScX{RWS0 zYQ7*;d4^`%6?O7@g@xwfne8)d*2eyqnZHR1H2?Hyrj?;u(;re105q#Jpfm+IP+i)2 zV*-R`(&2lkfj!VTuUo=NXVL}LKONNpBnMT$)UgDBssNxmJELK?nMEk5{+XbP8f`hW z>-pvyQUcX0%eWd{LjY=208qVy0i`McYV=V8s76EE9ZTPS52=CWm3C(nsnAbI4wk;b z_XL2Y0NWeM!}4DQpv?+EZFYgFlonK%l9OK~-PT-+$|51i;#@0|CLI zUY$^y>y)CFelRaLjkFM{$nhvNg#d8V0w;Dpp@C4#usa`));Cv?75Isj&#(Vig`)LH zbg)@ZS|E9gBl!TyLGl)lfFtOVR6p=mac94wk=?Jy;45S`*1l zGeI>VEh68%HQv@#AOHjf@Cl-c*7#ZW;~J3`nrOChO*EGPFcbhyv@-+BPyjF-OaL<+ zU|c==4rY@cA{GD?FCzdHeT(G;_!iqcMB18L2>?g2@Hrk{-Z{foI1-s=9w9Ao-0E@M zMF2Po0FHYYP>up%#5q7f>WCBm#3L%oEB}_NBwa);a_}ruHmEZ2^oy-VK*B<2k@%Q+ zQ&XQ%kkxW@`^uk1o?AC>tcjBr$VSV$3hhMz$O?dd#d75;a@6Mx0=Pb>ly&tfdPvsQ zq=%>l0MFF~fTwS9I|050>T??bpePnT#r|WYK6`|s!^|tB1&S|u6yGNR6a_%1V!2Wj zIVk=?08{+cqbPcym|iZZF$63CDApzb6a`q^AeNg(a^C<9^9cY$G4L5;j_flje!dw< zT430(oU6of1c0Fch;TLoN>KorII7we`dfTg5K6O0_%hFWE#U}P0QpRMTXQD^Iw$)U z4>O?U39zew`&_e=0RC|^!G&iguFLyD?;~9lD*)2^EdfZYZ}B?;z6GAcir^bHmh;2B86$*^PB)~#)BBoHjc%4b>FU#7Mm8PPfBUeW@~J3W?<5df9~faQw} zXl)9BWygOB;D+E@DwYb zCu$RyZd#KTe7C4z54;d-Zwd)O0tE2Qv0-wOhYoD?-&RUDOnTXkFU3mNdRrecaPy`} zed<5`n>TOE8oouma;7}rB=4bYpvMy2yqQGd$WyiVF{arSY|-1%v(5R0;zP5R4HrN|!ov|Y$JDMLdcap`wi#ye|mrt2i#y&eY-q1c& zKib1QNVs(RxZU~6iZaz666w5YvTiwJS|$CDT$Mdz+MPnXL3G*iE~__;o^PHzp`%?V zarA4$=#V5wvSHBurmTS_GVf47$V4$$EEB`|%BNHkwhKN|0k#Wvm9nx=HO1oRzWyRT z?3Em;;P$GH5FoWW#+0up4tSfyRCL=^6&0ZE5w1&{vm&o@SbSo8gneRrgaz2;!7U(` zVvpn(Y502n_;Ur_t9sFNrBD!b$BHiKjszg+5hTFg&d`c(i>h8lw?#GTbis!@+U*PS zY8rNp*ja$saSMp0h`oKqMC=DXi|#Y4C?dpugBSY^1mN`g9ugq-J5yr6@3gVs;9_Uj zb9PK+{f8A0^>sni*d4s9ZFE|AmG=WnpOQH!?DHt>BS6wG_khkBoy~=T#?L7< zemgA<`QcEl0(OroU;(P&lDz1-NopYTehQgeBGN(6P7j(hNYqbvZKys0sE0TSKp;Oo zxeawtg_CrEHQNiTgwkE}XU~YA1&IH@%j2yLOA&wF^h6UvWz3F6Z#45LD#Sm>i+>IQ zs03^>FC!^PToaJ!|95`#ny27kLnQ(d>>eaoAdRWIePBhrz_1h~W~GoAP#As8?4qbZ z;u(*`GXw-A{!3Djcqbr%4d)L|#R5aoGwEwK7t~B6M7M;I7vgYb3Tn$kuPFkAT2|l5I+kL z|Cnyke8W=2U$Ro7C1JDq2bryOv-zV6Zg2R53hwlprxScB=g}U~(Mhu>E+R*Y z$;TtkA`P^&8kOCMRf7O&Xx`6;wI->ywopr(^MKq)!S`_5Do8Eudkx21f4MnZoTI6+ zb2K#;;7&x6Krdd(_m{LFd=IB&Wwb20yaE|MhQr)(@<4e^sh;d`x61D1p_@jGgMy3o zFPuDFTsigRVZ1cpL$S$rhS0ya}(tXr@A+i z;6$d|E~}env%c%K&Su_?_K1djx5T46_m7h`9z+DdgUEjv&<7C#@F4O50s0_PNf%Lk zgF=?$I(~)Zr&=G#t0fE23QgsLE1dp9ws_VMr+7FyqlzTTTd|?PcwyL?_ao+na^n6( zCRv~(iG_Bg(Cu36fDB4YqM|lS4eJe}rE=d^ZV-hf(y`;C_0nSEYk6_)O7=jFW;N}- zmhhAa}dv>p8t4)j6%e-1k;l$3NVsW=(6A6&h*{LS$ zNdq}09~>2Ox>N-K2O`36oCEk47KOIDpD|&iSuNyf=_Y(k{IfDs6FB1UMmG2UlD$XM< zj4soiU;FQKC`(<2rrVv*$w%w1BVBkDUEd=nK+0sICO`Aq*UPSb)ek1XvX}s8pFeTJ z)bSUrb{hl_N)giPY~i|b8MfBN(K?x*X{Nc!y-KOa?TSY!ESU*kFb|Ue-^O{B1b9r{ ztpaqy&#HLWDZU~d%zFo_x_R#a0l^~iC`qx(`lG6QPW@W}n)8%V(wrwhXt#2=JZG@q z(3)XQ)5xPNuKFh_U|scTRkyDCs488iXq6%Uy#|N4n`gMVn-ie(H7-+}Lqdct+rhZ* zULnIhsdiU|Q-JwKfDrgZHKr2;~ zzc7GSs&;|}&ED5LW!aWHhBeEet+#|*+0BvZH@jH9ipA~W2^H&R$RD2H+6lk4o!=AP zsJQlq=##gkvudw<^dg!D?W&;&yM73o~u)o1*Q^_++~Y87DT;TNRl*{&&)*-^Q!!2U_3S&u zv?L`|VbdD6a8xwczIH6HjOETGO{UjXmw?cf?)hViBDGJvmZYKbw1YlCb>M!eWo+2fX+EK%`%U1{}8r5fz zWm+#i7ad``k`icjtO;7Spe#y4LlhZ$3+bXbkxNgjYFqXUbukwZ$`v-drfbF55)Nwt zaL~M#0Ug79i#r+6914Jg=7$O3gJ!{npgU-m*wA@iCtW}2l{p=A(@2hP?i+kdfNy|D zlivwIKE;Cbx%_2$#I2ASR2=eYGF>yNMF5g200L~nfU*<-<5!FTo{J)xZZ7g23?V%P zEC9OrL;^t3x0p*n!b0bwjc-KTn8k#GrPORq6U}ZIw{G^o=IJY>1eS;#B z)wp*C`@UpZ&tN|!6zeXW!M>O2&S1Zg+S4;w6puYXiNT%0j(u@aqqV#9g^{k|8owJY zAAUou5+|}p)N#@yAeDp@*)8uzA2ffH6g#5$ZfdYNRLAC3Qi5ss|3+sSQ%g$lpW5}? z2Wcumk>1fK+hHfQHkn|3pQ!?@@1+8Qqt7Vm;n60ymU}+SB|wrn#`Glto@#p4!XstP z{tD1D8KuyM=0>W7#U*x8*(IK4Sb%3ToP4qrk2I}oxo5JLwcN?)H53VAzS4{NN&*n` zZ6rXKEF7xapAJSNhPA+9LJEgp zzmMK;c2HE{@QBCZ5dy$rcK?3Ib9g0%!<(n$Anw6|-J>E{fQtC$r|4wEQjpjdkid3C zvs!NVAhVX+JvdX^sJ<%70~ik5wtlkI`&o+FV_KK8hsxzwv+EB>3z9UkZJPB0G1IK5P<1b0G%Mi;urgo6k=j_Y**XOj#;(cez(ki#r}-e39qSb8~hpVn%PdB z@?=w&N(qkNHjosPO}|n(Bi0NlVFmcK8>m9eoe^7cC!KQ}wdsFKkWK%SzpvdR5kFde%02 z)BGB?!#90O*`T@p&?+ZGa-NgaWLuhZxh?)2k~*pQM%OlWe<**ciD^;(Sgq&C5fYrp zbVcQ6cbkEvgcjUS;?&KaaRgv3Dgf4^vl-B}r~p`tUO|AaMbmXQ=QFs8u97axa%)rH z;caAxm8Jk#o8C_Vx`%J^H~|TZ#39^&2-VIL>SqfVMsn=_D#dGtdu6#7nJGDmYV4Wi zI#BB@bRdJ3B~G+u-5SczbT2Z0lVx|N<&Vtlsl{-2%B6Dg67wMv;KZnHs>zR}ffFP0 z!C~RVs8k)lRh8Di(5gz;Nj-(bXo%j|R`UFH{y4jBS&!njVym{bbtD{~)S?RC?8+_b z@9CS%+MTU)TGg4?Qf9nFRWfTjST*_HvNDF8MSW^WC(H|G$lTa@~x+>`N@ z`>5dSdoChdj2;4Dyg82mj5of;LIM&N`Wp6i1c1C)_~bE9Q}rjB-%`okWd*e)fqLFg zqfAx1Jv+Z@8UMhru3es;-zRgaCZ4;+1ymE5wx79f*v;lq3I)^lwytg6w0(Jl{Ho?* zg5Aj>3Eat{3NUait>d2@k`CtW19jcJeSiSB>eU~SJW5i`+kez`^Y-5g(7gSi{+s4) zIXFB#DIy1l1yq*iYIRU!da0iDZMAV(@ zc?XB}+=E_sRX9cTVR4UzF1yFFg9TXVx`RV5P}d$!>LrtK2Zy8u5|?-+E+GJGCUb1Dtb-i;w>0mfHBtv&{sDebB zb0>$SLnnvzypzLv36JjNkQxM*XVf{k!|4%UxI#Veb0Kj4yWE4G)#!T4kgIVlVTtc>@s(>mlI z44I1q4U3_Do>0bdApscL1;Eh0h5;Sg1;7gO9s+nb^Nwscg8L43ksiil0dQzYatz?U z!6yXx1~_xNuWNos^F5&$#l;Mx_#9!9c>lV1{X~^Go@dl|JS!0Zo&tbp76Zyt0Pt)@ z0P}2K-|_Sv^ddckEdXY!;RJxFZ!v{{ghgg`4b*jQAV=fCuKw~fO55Is}si=>RFU?(@vzTEb;Dj zs6kLsV0m4FC2G?hA(9eUW;AfM*@ytJR6vgqS*|Qaj>_ytfLED%geWhVW7Q#QI2R!; z&=WbTay9{|N&)mJ@kHghvqLgKYZU`(tqaUuqyTE0J!+2-0BQmt_q!NSZUVT&Ljt_> z8a+JpxrrLi4@nE$RF3mQ0)*Qju|s)f8U{7w8_@Y7p&%&ke1gHN*DXm4ESomO0b&}- zK~m%>v=;+PQUG^~NB|v5g@)Uldm`ObEp(=|InqMRA_vK<2|xw<1+FGQE#!=`@V-dK z+7dOg%HY{lM#=9{NT3mkVebdB^C0`xpFp5GDb zwNxA{ddB|{42E9`bA8LxG@|O#!#4pA+$&9#i zCsuGgNtNp-r5+{&ZZ;3u&{L6Gc#&09LGpD{1xW#LzDRO#^bNixz&8k9^ZcDqFjaTD zJLu0>{YJN%ZYrD|)EbzYvmMh~1c0dk8m8Uzk~_}TsuUSUw-_n&R24bf4R4;U8A5u9 zSOC=HL;}Fkx0p*n!UBW%_*RY0VnV@D%zTb`b$|AP{PWGNqy>&^J&yMh0FDBnDjs7% zi3$LsFB8B-U-XFj4n8M6ge?Gw9wGoleT#nyNLW0Vmtk+dJinnS+c>Bu5EV0@=&t@9 zGi<+GbGq1P-$vDdW1YsX9$S+oI11qU6a&gp05sWi37{q$?%UW^rte@T=^BE*3X+2?a+n^EqPK@zM49 zQ%pW-p)%Vwah2Jf03{k~XY1^jyDvjnt~|v6BRaN0rV=V-lYTI0ViQ!V@90WWMfBpR z&eNT8(@3s#ef^Cj_w{AT95Y)8P@-b6{ad$)1W!HsxACunMceaD+^PS&WT@Oj&nFDA zS8|d^4ZIxDB3n00ytl3=>Utd~{=cb9{b%CDUsmq=*7ZPD;Z2hqTI1uy|1XM09;3Yz z|6)zuiGPWvK_duG{AC8mTh|qux)XmC@AfgWy%YaitGCfz7d(Jfw6jL%l??r*H08aa zrPI!@Fj>vsx6PwgMOHGfjbG@|0Mne*Jb{EH3i;^-wtYIvTGssPW^1GDL*ekkc- zFJWL)w;?i+07=3aGm`|^MwljFo!5`Ro~Hn9A24;=7<00jLc2@v!SsV6-%zCv8-cl4eRZvaWbpl=F;fv0641%Lq;00t~T`j1^C zd*eycK`m;R@-JBy9yB@O+-815+Og}w{L&$_lmY~wB_5w81O$9GkQ98@rSREwT0T+$ z_;3N>!vgR*Yf$S|hNY;MD-smkwr2JF+g)bfqqsn0uSa7q0q771NdN}lq%ip5v<$>I z7_e_JU;!BHf3RIG!%{GKGljvdeL1~~P4nM?uhTqe^q^9!xocsy2ncGVElI(rRrBON z(oPjl*+--R@Zkc$hXvqM;VQWm&QkEH(cEuTu0}q7JpW5GgW>{>DISd}1PBee|JA8P z!!#0t#bqfht~@OZ@eda4A1qh^7GXkiz>l;11!2Mw0z^7kqF;6BB7m^%YT>%iA_CCv@MZU#Ns5NIriGi-Z&iT0 zO%MIIx1Mp6x;RFIW5;N4EWnM5B!M0ZT-w6*n2W{5GX?jWwjY@fIFMR*IC9% z*SUM-qyu4K7Bu8091%hnK}k7bo~0hx3;B-^#Pl`Y+4i|24F+2Jun9O5zU z83OR!;u*X~@`QmtrQrkj9}TYyPHxP7fnHUJ>f1KYUd{k^+ z%FnRReJrEFX!XpaL3b)Dcr&|LPEZfH!q6?%?hMkv6$Wy|A>j%`4OK=ns;PgW8P&{5 zy%U1r9K%RA$*z8(eOubqCG5`6@)spFp#ulz?1>ib20lkmVCWNXdct*Y3&zsPTy*-5=|#+s9Rx$n`!#zU>fno%T0#+s$t z4JQp`j2v-T$k+v{jEv3GzmTzcr^r~d9L?BgNqNEq*YKPCd&~_~G*YyT1bRhghuj@( z5;Av@7*p0}DN;MqBLrZBLjY`W>|#KBk^pW`o&ep%IcZPYBa!Pp4>3d&UoS-_?s@z{ zUJ%f)Ij&!oXeC+k1`5of0$>iUOaQu$07-uF)^$_Tg5O51oZlz`@T-9CCv+nKeg*LT zVs56CCTjCGuaPYY8reg?$X%kTtz4J<>6iR?=55N68`w2O8ZTI%Pi13nzN}OK7JA*Y zm-~GEd4%KE#5E+q41JXf(6w&M@or7rPCA(AHneiH^9BNf#qAD~>P#2#!gn~57P1S$0&Z4T?479_??H3KH!PHz@8Vo!|z=9j)E!WmW5h zN8F&`CXUq$b&{0smK~Og#p>mCZ4MYj_h?}lMEA5l!Rm!>Py`!r3AeIIg?F#7XzJad zkUu=XA1C~N?EIeS2F0w>1=EhdL2*`@f{d{3(4^IQ<&FfY@UKz)6Nub3iX)N`{iOY2 z0=AVcc+XU7Bf$hqrp6X;Ta#LXM|vCihW&uvnYLm1f{4jVwwsV~ViSDB{;>)LmxfI) zSzyp?)yB;Zoe99~AOL2E0SxHuAOO}`6A19OzZWmduOq*Ji@8A5aJWobSR{!YtE%M$ zV3byaZgL7n@`Qn|s&X<4;^tmLF@%d1hVbUXBXNOZ7iodzGak!51c0RgVEG9H%2EKZ z{FwmWDp{G;xE%mK`0{_e#OB zTU%F?!^sj0=5BV^7+Ek+VYyNi16-cCgaF;zPr5vDVOzII_MEIHT?8#oK=XD2lxD~? z*hcb%fwIH}if0K0OL6D3M0Mf@#rvcMs_%GIzajus-*HrbWw}xn1Jq`T+@O}YHbc3N zrDtE8)DX1TgJm-Uz|u3wC%JEcD-_)c073CY1Q(cbq@dhFqix}Asjb;0M@t=@>-rPR zm72=+kaz_FeB!p;QBys%^!rHRbGW0N*0GL-8)5U?^rj!{83ZkE8{f z-#ME9BROb(=Y?6OT~JdfQ~>a-NdWPbPnjK96m^H;zK^z~>iYoIP6U9eZ_%Fs-vTdX zk0Ago#lmM9+@hFIT4<;j$cdG%y{{$!GzCCytY$!~QvhkH-q*74CX}1&?Vk0MgdI`Z1Eou