-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathindex.html
748 lines (599 loc) · 12.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
<!DOCTYPE html>
<html>
<head>
<title>Introduction to Elasticsearch</title>
<meta charset="utf-8">
<style>
@import url(https://fonts.googleapis.com/css?family=Helvetica);
@import url(https://fonts.googleapis.com/css?family=Roboto:400light,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Roboto+Mono);
body {
font-family: 'Roboto';
}
h1, h2, h3 {
font-family: 'Helvetica';
font-weight: normal;
}
.remark-code, .remark-inline-code {
font-family: 'Roboto Mono';
font-size: small;
}
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
background: #e7e8e2;
border-radius: 5px;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
/* Footnote */
.footnote {
position: absolute;
bottom: 2em;
background-image: url('docs/media/elastic-logo.png');
background-repeat: no-repeat;
padding-left: 30px; /* width of the image plus a little extra padding */
display: block;
}
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# Introduction to Elasticsearch
Sutina Wipawiwat
---
# Agenda
1. Introduction
2. Creating indices, indexing and deleting documents
3. Mappings
4. Range queries
5. Term queries
6. Analyzers
7. Match queries
8. Phrase match queries
7. Bool queries (Query composition)
---
# Setup
Clone the repository and follow the instructions for setting up the environment
```
https://github.com/wsutina/intro-elasticsearch-training
```
---
class: center, middle, inverse
# Introduction
---
class: center, middle, inverse
# Let's get to it!
---
class: center, middle
![kibana logo](docs/media/kibana-logo.png)
*Should be running at [localhost:5601](http://localhost:5601)
---
# Getting started
Create an index called movies
```
PUT movies
```
Index our first document
```
PUT movies/_doc/1
{
"id": "1",
"title": "Spider-Man: Homecoming",
"genres": [ "comedy", "action" ]
}
```
Searching
```
GET movies/_search
{
"query": {
"match": {
"title": "spider man"
}
}
}
```
---
# Getting started
Delete a document
```
DELETE movies/_doc/1
```
Delete the index
```
DELETE movies
```
---
# Mappings
Define how a document and it fields are indexed
- Which string should be tokenized or treated as keywords
- Field data types (e.g number, dates, geolocations)
- How text field should be analyzed
- etc
### Dynamic mappings
- Allows for indexing documents without previously defining the mappings
- New fields will be added by indexing new documents
- It can be disabled
.footnote[[Mappings](https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html)]
---
# Mappings
Create a mapping for our example movie document
```
PUT movies
{
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"title": {
"type": "text",
"analyzer": "english"
},
"genres": {
"type": "keyword"
}
}
}
}
```
Now run `./auto/index-movies.sh` and see the dynamic mapping
---
`GET movies/_mapping`
.left-column[
```
{
"movies" : {
"mappings" : {
"properties" : {
"genres" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"id" : {
"type" : "long"
},
"overview" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
...
```
]
.right-column[
```
"rating" : {
"type" : "float"
},
"release_date" : {
"type" : "date"
},
"title" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
```
]
---
class: center, middle
# Queries
---
# Range queries
- Matches documents with values within the specified range
- Supports numeric, string, date and ip values (since v6)
```
GET movies/_search
{
"query": {
"range": {
"rating": {
"lt": 5
}
}
}
}
```
.footnote[[Range query](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-range-query.html)]
---
# Range queries (Exercises)
### Find movies with **release_date** between `2016-01-01` and `2016-12-01`
---
# Term queries
- Matches on the **exact** term
- A document either matches or not. No score (relevancy) is calculated
- Commonly used on `keyword` type fields
- Useful for searching: names, ids, discrete values (e.g movie genres)
Query for documents that contain the word `beer`:
.left-column[
```
GET articles/_search
{
"query": {
"term": {
"description": "beer"
}
}
}
```
]
.right-column[
```
GET articles/_search
{
"query": {
"terms": {
"description": ["beer", "rum"]
}
}
}
```
]
.footnote[[Term query](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-term-query.html)]
---
# Term queries (Exercises)
### 1. Find movies that contain 'batman' in the **overview**
### 2. Find movies that contain 'batman' OR 'thor' in the **overview**
### 3. Now only 'Batman' (note the uppercase), can you guess why no movies are returned?
---
# Analyzers
- Specifies how the text will be processed before being added to the inverted index (eg. tokenised, lowercased, stemming, stop word removal, etc)
- Elasticsearch has several [built-in analyzers](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html)
- Specified in the mapping
- Supports custom analysers
You can use the `/_analyze` endpoint to test analyzers
.footnote[[Analyzers](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis.html)]
---
# Analyzers (in Mapping)
```
PUT /some-index
{
"mappings": {
"properties": {
"myField": {
"type": "text",
"analyzer": "whitespace"
}
}
}
}
```
---
# Analyzers (Exercises)
1.Try the 'standard', 'whitespace' and 'english' analyzers with:
```
GET /_analyze
{
"analyzer": "english",
"text": "Where is that café?"
}
```
2.Which analyzer should you use so that the following query returns the sample document
.left-column[
Query:
```
GET analyzer-test/_search
{
"query": {
"match": {
"title": {
"query": "bobs burgers"
}
}
}
}
```
]
.right-column[
Sample document:
```
PUT analyzer-test/_doc/1
{
"title": "Bob's Burgers!!"
}
```
]
---
# Match queries
- Accepts text/numeric/date values
- Analyses the requested value
- Calculates scores; how relevant is a document for the requested query?
- Supports fuzziness
- By default uses the analyzer specified in the mappings
Find the most relevant movies to the "war"
```
GET movies/_search
{
"query": {
"match": {
"overview": {
"query": "war"
}
}
}
}
```
.footnote[[Match queries](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html)]
---
# Match queries (Exercises)
### 1. Find movies with 'young' AND 'man' in the **overview**
Hint: use `operator` field
### 2. Add fuzziness so 'young mam' returns the same results
---
# Relevance
- **Term frequency:** How often does the term appear in the field
- **Inverse document frequency:** How often does each term appear in the index (all documents)
- **Field-length norm:** How long the field is
- **Percentage of the query terms that match**
.footnote[[Relevance](https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html)]
---
# Relevance: Term Frequency
.left-column[
Data:
```
DELETE /scoring-test
PUT /scoring-test
{
"settings": {
"number_of_shards": 1
}
}
POST /scoring-test/_bulk
{"index":{}}
{ "title": "Apples Apples Apples Apples"}
{"index":{}}
{ "title": "Apples Apples Apples Bananas"}
{"index":{}}
{ "title": "Apples Apples Bananas Bananas"}
{"index":{}}
{ "title": "Apples Bananas Bananas Bananas"}
{"index":{}}
{ "title": "Bananas Bananas Bananas Bananas"}
{"index":{}}
{ "title": "Oranges"}
```
]
.right-column[
Queries:
```
GET /scoring-test/_search
{
"query": {
"match": {
"title": "apples"
}
}
}
GET /scoring-test/_search
{
"query": {
"match": {
"title": "bananas"
}
}
}
```
]
---
# Relevance: Inverse document frequency
.left-column[
Data:
```
DELETE /scoring-test
PUT /scoring-test
{
"settings": {
"number_of_shards": 1
}
}
POST /scoring-test/_bulk
{"index":{}}
{ "title": "Apples"}
{"index":{}}
{ "title": "Apples"}
{"index":{}}
{ "title": "Apples"}
{"index":{}}
{ "title": "Bananas"}
{"index":{}}
{ "title": "Oranges"}
{"index":{}}
{ "title": "Oranges"}
```
]
.right-column[
Query:
```
GET /scoring-test/_search
{
"query": {
"match": {
"title": "apples bananas oranges"
}
}
}
```
]
---
# Relevance: Field length normalisation
.left-column[
Data:
```
DELETE /scoring-test
PUT /scoring-test
{
"settings": {
"number_of_shards": 1
}
}
POST /scoring-test/_bulk
{"index":{}}
{ "title": "The day I ate the Apples"}
{"index":{}}
{ "title": "Apples & Bananas"}
```
]
.right-column[
Query:
```
GET /scoring-test/_search
{
"query": {
"match": {
"title": "Apples"
}
}
}
```
]
---
# Relevance: Percentage of the query terms that match
.left-column[
Data:
```
DELETE /scoring-test
PUT /scoring-test
{
"settings": {
"number_of_shards": 1
}
}
POST /scoring-test/_bulk
{"index":{}}
{ "title": "Apples Oranges"}
{"index":{}}
{ "title": "Apples Bananas"}
{"index":{}}
{ "title": "Bananas Oranges"}
```
]
.right-column[
Query:
```
GET /scoring-test/_search
{
"query": {
"match": {
"title": "Apples Bananas"
}
}
}
```
]
---
# Phrase-match queries
- Analyses the requested value
- Calculates scores
- Does not support fuzzyness
- By default uses the analyzer specified in the mappings
.footnote[[Phrase-match query](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html)]
---
# Phrase-match queries (Exercises)
### 1. Find only movies that contain the phrase 'young man' (in that order)
### 2. What happens if the analyzer removes the stopwords? Would `match_phrase` still work?
---
# Bool queries (query composition)
Combine the results and scores of multiple queries
Possible contexts:
- `must`: The clause must appear in matching documents and will contribute to the score.
- `must_not` & `filter`: Executed as filters, only matching documents will be returned and no scores are calculated.
- `should`: The document "should" match the clause
- If it is in a context that has `must` or `filter` it will be used to influence the score, not to filter. Documents might be returned even if they do not match any of the `should` clauses
- If it is by itself, will behave as an *OR*; documents must match at least one of the `should` clauses
.footnote[[Bool queries](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html)]
---
# Bool queries (Example)
.left-column[
Should will act filter:
```
GET movies/_search
{
"query": {
"bool": {
"should": {
"match": {
"title": "thor"
}
}
}
}
}
```
]
.right-column[
Should will influence the score:
```
GET movies/_search
{
"query": {
"bool": {
"must": {
"match": {
"title": "thor"
}
},
"should": {
"match_phrase": {
"title": "Dark World"
}
},
"must_not": {
"match": {
"title": "ragnarok"
}
}
}
}
}
```
]
---
# Bool queries (Exercises)
### 1. Find movies that contain 'comedy' and do NOT 'action' in the **genres**
### 2. To the previous query, add a clause to filter AND rank by the relevance of 'life' in the **overview** field
HINT: Look at ` must`
### 3. Find ALL the 'comedy' movies and boost those that are about 'christmas'
---
class: center, middle
# End
Join [#sig-search](#24) to continue the fun
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js">
</script>
<script>
var slideshow = remark.create({
highlightStyle: 'tomorrow-night',
highlightLanguage: 'json',
});
</script>
</body>
</html>