-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbreeds_inc.py
289 lines (232 loc) · 10.9 KB
/
breeds_inc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch.utils.data as data
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
import os
import os.path
import sys
from robustness.tools import folder
from robustness.tools.breeds_helpers import make_living17, make_entity13, make_entity30, make_nonliving26
from robustness.tools.helpers import get_label_mapping
class BREEDSFactory:
def __init__(self, info_dir, data_dir):
self.info_dir = info_dir
self.data_dir = data_dir
def get_breeds(self, ds_name, partition, source=True, mode='coarse', transforms=None, split=None):
superclasses, subclass_split, label_map = self.get_classes(ds_name, split)
partition = 'val' if partition == 'validation' else partition
print(f"==> Preparing dataset {ds_name}, mode: {mode}, partition: {partition}..")
if split is not None:
# split can be 'good','bad' or None. if not None, 'subclass_split' will have 2 items, for 'train' and 'test'. otherwise, just 1
index = 0 if source == True else 1
print("index: {}, subclass_split: {}".format(index, subclass_split[index]))
return self.create_dataset(partition, mode, subclass_split[index], transforms)
else:
return self.create_dataset(partition, mode, subclass_split[0], transforms)
def create_dataset(self, partition, mode, subclass_split, transforms):
coarse_custom_label_mapping = get_label_mapping("custom_imagenet", subclass_split)
fine_subclass_split = [[item] for sublist in subclass_split for item in sublist]
fine_custom_label_mapping = get_label_mapping("custom_imagenet", fine_subclass_split)
if mode == 'coarse':
print("coarse_custom_label_mapping: {}".format(coarse_custom_label_mapping))
active_custom_label_mapping = coarse_custom_label_mapping
active_subclass_split = subclass_split
print("active_subclass_split: {}".format(active_subclass_split))
elif mode == 'fine':
active_custom_label_mapping = fine_custom_label_mapping
active_subclass_split = fine_subclass_split
else:
raise NotImplementedError
dataset = ImageFolder(root=os.path.join(self.data_dir, partition), transform=transforms,
label_mapping=active_custom_label_mapping)
coarse2fine = self.extract_c2f_from_dataset(dataset, coarse_custom_label_mapping, fine_custom_label_mapping, partition)
setattr(dataset, 'num_classes', len(active_subclass_split))
setattr(dataset, 'coarse2fine', coarse2fine)
return dataset
def extract_c2f_from_dataset(self, dataset,coarse_custom_label_mapping,fine_custom_label_mapping,partition):
classes, original_classes_to_idx = dataset._find_classes(os.path.join(self.data_dir, partition))
_,coarse_classes_to_idx = coarse_custom_label_mapping(classes, original_classes_to_idx)
_, fine_classes_to_idx = fine_custom_label_mapping(classes, original_classes_to_idx)
coarse2fine={}
for k,v in coarse_classes_to_idx.items():
if v in coarse2fine:
coarse2fine[v].append(fine_classes_to_idx[k])
else:
coarse2fine[v] = [fine_classes_to_idx[k]]
return coarse2fine
def get_classes(self, ds_name, split=None):
if ds_name == 'living17':
return make_living17(self.info_dir, split)
elif ds_name == 'entity30':
return make_entity30(self.info_dir, split)
elif ds_name == 'entity13':
return make_entity13(self.info_dir, split)
elif ds_name == 'nonliving26':
return make_nonliving26(self.info_dir, split)
else:
raise NotImplementedError
def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
extensions (iterable of strings): extensions to consider (lowercase)
Returns:
bool: True if the filename ends with one of given extensions
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in extensions)
def is_image_file(filename):
"""Checks if a file is an allowed image extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
return has_file_allowed_extension(filename, IMG_EXTENSIONS)
def make_dataset(dir, class_to_idx, extensions):
images = []
dir = os.path.expanduser(dir)
for target in sorted(class_to_idx.keys()):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if has_file_allowed_extension(fname, extensions):
path = os.path.join(root, fname)
item = (path, class_to_idx[target], target)
images.append(item)
return images
class DatasetFolder(data.Dataset):
"""A generic data loader where the samples are arranged in this way: ::
root/class_x/xxx.ext
root/class_x/xxy.ext
root/class_x/xxz.ext
root/class_y/123.ext
root/class_y/nsdf3.ext
root/class_y/asd932_.ext
Args:
root (string): Root directory path.
loader (callable): A function to load a sample given its path.
extensions (list[string]): A list of allowed extensions.
transform (callable, optional): A function/transform that takes in
a sample and returns a transformed version.
E.g, ``transforms.RandomCrop`` for images.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
samples (list): List of (sample path, class_index) tuples
targets (list): The class_index value for each image in the dataset
"""
def __init__(self, root, loader, extensions, transform=None,
target_transform=None, label_mapping=None):
classes, class_to_idx = self._find_classes(root)
if label_mapping is not None:
classes, class_to_idx = label_mapping(classes, class_to_idx)
# print("classes: {} \n".format(classes))
# print("class_to_idx: {} \n".format(class_to_idx))
# print("extensions: {} \n".format(extensions))
samples = make_dataset(root, class_to_idx, extensions)
if len(samples) == 0:
raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
"Supported extensions are: " + ",".join(extensions)))
self.root = root
self.loader = loader
self.extensions = extensions
self.classes = classes
self.class_to_idx = class_to_idx
self.samples = samples
self.targets = [s[1] for s in samples]
self.transform = transform
self.target_transform = target_transform
def _find_classes(self, dir):
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
if sys.version_info >= (3, 5):
# Faster and available in Python 3.5 and above
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target, coarse_target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
return len(self.samples)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class ImageFolder(DatasetFolder):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, label_mapping=None):
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
transform=transform,
target_transform=target_transform,
label_mapping=label_mapping)
self.imgs = self.samples