-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon.hpp
299 lines (243 loc) · 12.9 KB
/
common.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#ifndef YOLOV5_COMMON_H_
#define YOLOV5_COMMON_H_
#include <iostream>
#include <fstream>
#include <map>
#include <sstream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "dirent.h"
#include "NvInfer.h"
#include <chrono>
#define CHECK(status) \
do\
{\
auto ret = (status);\
if (ret != 0)\
{\
std::cerr << "Cuda failure: " << ret << std::endl;\
abort();\
}\
} while (0)
using namespace nvinfer1;
// Load weights from files shared with TensorRT samples.
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file)
{
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
if (weightMap.count(lname + ".weight") == 0)
std::cout << "no key: " <<lname + ".weight" << std::endl;
if (weightMap.count(lname + ".bias") == 0)
std::cout << "no key: " <<lname + ".bias" << std::endl;
if (weightMap.count(lname + ".running_mean") == 0)
std::cout << "no key: " <<lname + ".running_mean" << std::endl;
if (weightMap.count(lname + ".running_var") == 0)
std::cout << "no key: " <<lname + ".running_var" << std::endl;
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
std::cout << "len " << len << std::endl;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
IActivationLayer* basicBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int stride, std::string lname) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
if (weightMap.count(lname + "conv1.weight") == 0)
std::cout << "no key: " <<lname + "conv1.weight" << std::endl;
if (weightMap.count(lname + "conv2.weight") == 0)
std::cout << "no key: " <<lname + "conv2.weight" << std::endl;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{3, 3}, weightMap[lname + "conv1.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{stride, stride});
conv1->setPaddingNd(DimsHW{1, 1});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
assert(conv2);
conv2->setPaddingNd(DimsHW{1, 1});
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
IElementWiseLayer* ew1;
if (inch != outch) {
if (weightMap.count(lname + "downsample.0.weight") == 0)
std::cout << "no key: " <<lname + "downsample.0.weight" << std::endl;
IConvolutionLayer* conv3 = network->addConvolutionNd(input, outch, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
assert(conv3);
conv3->setStrideNd(DimsHW{stride, stride});
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "downsample.1", 1e-5);
ew1 = network->addElementWise(*bn3->getOutput(0), *bn2->getOutput(0), ElementWiseOperation::kSUM);
} else {
ew1 = network->addElementWise(input, *bn2->getOutput(0), ElementWiseOperation::kSUM);
}
IActivationLayer* relu2 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
assert(relu2);
return relu2;
}
IActivationLayer* basicBlock_2(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int stride, std::string lname,bool b_is_1=false) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
int stride_x = 2;
int stride_y = 1;
if(false == b_is_1)
{
stride_x = 1;
}
if (weightMap.count(lname + "conv1.weight") == 0)
std::cout << "no key: " <<lname + "conv1.weight" << std::endl;
if (weightMap.count(lname + "conv2.weight") == 0)
std::cout << "no key: " <<lname + "conv2.weight" << std::endl;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{3, 3}, weightMap[lname + "conv1.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{stride_x, stride_y});
conv1->setPaddingNd(DimsHW{1, 1});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
assert(conv2);
conv2->setPaddingNd(DimsHW{1, 1});
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
IElementWiseLayer* ew1;
if (inch != outch) {
if (weightMap.count(lname + "downsample.0.weight") == 0)
std::cout << "no key: " <<lname + "downsample.0.weight" << std::endl;
IConvolutionLayer* conv3 = network->addConvolutionNd(input, outch, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
assert(conv3);
conv3->setStrideNd(DimsHW{stride_x, stride_y});
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "downsample.1", 1e-5);
ew1 = network->addElementWise(*bn3->getOutput(0), *bn2->getOutput(0), ElementWiseOperation::kSUM);
} else {
ew1 = network->addElementWise(input, *bn2->getOutput(0), ElementWiseOperation::kSUM);
}
IActivationLayer* relu2 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
assert(relu2);
return relu2;
}
void splitLstmWeights(std::map<std::string, Weights>& weightMap, std::string lname) {
int weight_size = weightMap[lname].count;
for (int i = 0; i < 4; i++) {
Weights wt{DataType::kFLOAT, nullptr, 0};
wt.count = weight_size / 4;
float *val = reinterpret_cast<float*>(malloc(sizeof(float) * wt.count));
memcpy(val, (float*)weightMap[lname].values + wt.count * i, sizeof(float) * wt.count);
wt.values = val;
weightMap[lname + std::to_string(i)] = wt;
}
}
ILayer* addLSTM(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int nHidden, std::string lname) {
splitLstmWeights(weightMap, lname + ".weight_ih_l0");
splitLstmWeights(weightMap, lname + ".weight_hh_l0");
splitLstmWeights(weightMap, lname + ".bias_ih_l0");
splitLstmWeights(weightMap, lname + ".bias_hh_l0");
splitLstmWeights(weightMap, lname + ".weight_ih_l0_reverse");
splitLstmWeights(weightMap, lname + ".weight_hh_l0_reverse");
splitLstmWeights(weightMap, lname + ".bias_ih_l0_reverse");
splitLstmWeights(weightMap, lname + ".bias_hh_l0_reverse");
Dims dims = input.getDimensions();
std::cout << "lstm input shape: " << dims.nbDims << " [" << dims.d[0] << " " << dims.d[1] << " " << dims.d[2] << "]"<< std::endl;
auto lstm = network->addRNNv2(input, 1, nHidden, dims.d[1], RNNOperation::kLSTM);
lstm->setDirection(RNNDirection::kBIDIRECTION);
lstm->setWeightsForGate(0, RNNGateType::kINPUT, true, weightMap[lname + ".weight_ih_l00"]);
lstm->setWeightsForGate(0, RNNGateType::kFORGET, true, weightMap[lname + ".weight_ih_l01"]);
lstm->setWeightsForGate(0, RNNGateType::kCELL, true, weightMap[lname + ".weight_ih_l02"]);
lstm->setWeightsForGate(0, RNNGateType::kOUTPUT, true, weightMap[lname + ".weight_ih_l03"]);
lstm->setWeightsForGate(0, RNNGateType::kINPUT, false, weightMap[lname + ".weight_hh_l00"]);
lstm->setWeightsForGate(0, RNNGateType::kFORGET, false, weightMap[lname + ".weight_hh_l01"]);
lstm->setWeightsForGate(0, RNNGateType::kCELL, false, weightMap[lname + ".weight_hh_l02"]);
lstm->setWeightsForGate(0, RNNGateType::kOUTPUT, false, weightMap[lname + ".weight_hh_l03"]);
lstm->setBiasForGate(0, RNNGateType::kINPUT, true, weightMap[lname + ".bias_ih_l00"]);
lstm->setBiasForGate(0, RNNGateType::kFORGET, true, weightMap[lname + ".bias_ih_l01"]);
lstm->setBiasForGate(0, RNNGateType::kCELL, true, weightMap[lname + ".bias_ih_l02"]);
lstm->setBiasForGate(0, RNNGateType::kOUTPUT, true, weightMap[lname + ".bias_ih_l03"]);
lstm->setBiasForGate(0, RNNGateType::kINPUT, false, weightMap[lname + ".bias_hh_l00"]);
lstm->setBiasForGate(0, RNNGateType::kFORGET, false, weightMap[lname + ".bias_hh_l01"]);
lstm->setBiasForGate(0, RNNGateType::kCELL, false, weightMap[lname + ".bias_hh_l02"]);
lstm->setBiasForGate(0, RNNGateType::kOUTPUT, false, weightMap[lname + ".bias_hh_l03"]);
lstm->setWeightsForGate(1, RNNGateType::kINPUT, true, weightMap[lname + ".weight_ih_l0_reverse0"]);
lstm->setWeightsForGate(1, RNNGateType::kFORGET, true, weightMap[lname + ".weight_ih_l0_reverse1"]);
lstm->setWeightsForGate(1, RNNGateType::kCELL, true, weightMap[lname + ".weight_ih_l0_reverse2"]);
lstm->setWeightsForGate(1, RNNGateType::kOUTPUT, true, weightMap[lname + ".weight_ih_l0_reverse3"]);
lstm->setWeightsForGate(1, RNNGateType::kINPUT, false, weightMap[lname + ".weight_hh_l0_reverse0"]);
lstm->setWeightsForGate(1, RNNGateType::kFORGET, false, weightMap[lname + ".weight_hh_l0_reverse1"]);
lstm->setWeightsForGate(1, RNNGateType::kCELL, false, weightMap[lname + ".weight_hh_l0_reverse2"]);
lstm->setWeightsForGate(1, RNNGateType::kOUTPUT, false, weightMap[lname + ".weight_hh_l0_reverse3"]);
lstm->setBiasForGate(1, RNNGateType::kINPUT, true, weightMap[lname + ".bias_ih_l0_reverse0"]);
lstm->setBiasForGate(1, RNNGateType::kFORGET, true, weightMap[lname + ".bias_ih_l0_reverse1"]);
lstm->setBiasForGate(1, RNNGateType::kCELL, true, weightMap[lname + ".bias_ih_l0_reverse2"]);
lstm->setBiasForGate(1, RNNGateType::kOUTPUT, true, weightMap[lname + ".bias_ih_l0_reverse3"]);
lstm->setBiasForGate(1, RNNGateType::kINPUT, false, weightMap[lname + ".bias_hh_l0_reverse0"]);
lstm->setBiasForGate(1, RNNGateType::kFORGET, false, weightMap[lname + ".bias_hh_l0_reverse1"]);
lstm->setBiasForGate(1, RNNGateType::kCELL, false, weightMap[lname + ".bias_hh_l0_reverse2"]);
lstm->setBiasForGate(1, RNNGateType::kOUTPUT, false, weightMap[lname + ".bias_hh_l0_reverse3"]);
return lstm;
}
int read_files_in_dir(const char *p_dir_name, std::vector<std::string> &file_names) {
DIR *p_dir = opendir(p_dir_name);
if (p_dir == nullptr) {
return -1;
}
struct dirent* p_file = nullptr;
while ((p_file = readdir(p_dir)) != nullptr) {
if (strcmp(p_file->d_name, ".") != 0 &&
strcmp(p_file->d_name, "..") != 0) {
//std::string cur_file_name(p_dir_name);
//cur_file_name += "/";
//cur_file_name += p_file->d_name;
std::string cur_file_name(p_file->d_name);
file_names.push_back(cur_file_name);
}
}
closedir(p_dir);
return 0;
}
#endif