forked from intell-sci-comput/PTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_realworld_EMPS.py
79 lines (67 loc) · 2.88 KB
/
run_realworld_EMPS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import numpy as np
import time
from utils.data import get_dynamic_data
from utils.log_ import create_dir_if_not_exist, save_pareto_frontier_to_csv
import gc
import torch
from model.regressor import PSRN_Regressor
import click
@click.command()
@click.option('--gpu_index','-g',default=0,type=int,help='gpu index used')
@click.option('--n_runs','-r',default=20,type=int,help='number of runs for each puzzle')
def main(gpu_index, n_runs):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_index)
# EXP
n_seeds = n_runs
# PSRN
ops = ['Add','Mul','SemiSub','SemiDiv','Identity','Sign','Sin','Cos','Exp','Log']
n_inputs = 5
down_sample = 200
simu = 5
top_k = 30
for seed in range(n_seeds):
df, variables_name, target_name = get_dynamic_data('emps','emps')
# select the first half of the data as train set
df = df.iloc[:len(df)//2,:]
gc.collect()
np.random.seed(seed)
Input = df[variables_name].values
Output = df[target_name].values.reshape(-1,1)
p = './log/EMPS/'
if os.path.exists(p+'pf_{}.csv'.format(seed)):
print('exist {}, skip.'.format(p+'pf_{}.csv').format(seed))
continue
Input = torch.from_numpy(Input).to(torch.float32)
Output = torch.from_numpy(Output).to(torch.float32)
qsrn_regressor = PSRN_Regressor(variables=variables_name,
operators=ops,
n_symbol_layers=3,
n_inputs=n_inputs,
use_const=True,
trying_const_num=2,
trying_const_range=[0,3],
trying_const_n_try=1,
device='cuda',
)
print(Input.shape, Output.shape)
start_time = time.time()
flag, pareto = qsrn_regressor.fit(Input,
Output,
n_down_sample=down_sample,
n_step_simulation=simu,
use_threshold=False,
real_time_display_freq=1,
prun_ndigit=3,
top_k=top_k,
add_bias=True,
)
end_time = time.time()
time_cost = end_time - start_time
print('time_cost',time_cost)
create_dir_if_not_exist(p)
with open(p+'time.txt','a') as f:
f.write(str(time_cost)+'\n')
save_pareto_frontier_to_csv(p+'pf_{}.csv'.format(seed),pareto_ls=pareto)
if __name__ == '__main__':
main()