-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
131 lines (103 loc) · 3.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import numpy as np
import random
import os
from dataclasses import dataclass, field
from module import *
from tqdm import tqdm
from scipy.stats import spearmanr
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@dataclass
class DataArgument:
save_dir: str = field(
default='./data',
metadata={"help": 'directory to save model'}
)
start_time: str = field(
default="2010-12-01",
metadata={"help": "start_time"}
)
end_time: str =field(
default='2020-12-31',
metadata={"help": "end_time"}
)
fit_end_time: str= field(
default="2017-12-31",
metadata={"help": "fit_end_time"}
)
val_start_time : str = field(
default='2018-01-01',
metadata={"help": "val_start_time"}
)
val_end_time: str =field(default='2018-12-31')
seq_len : int = field(default=20)
normalize: bool = field(
default=True,
)
select_feature: str = field(
default=None,
)
def load_model(args):
feature_extractor = FeatureExtractor(num_latent = args.num_latent, hidden_size =args.hidden_size)
factor_encoder = FactorEncoder(num_factors=args.num_factor, num_portfolio=args.num_portfolio, hidden_size=args.hidden_size)
alpha_layer = AlphaLayer(args.hidden_size)
beta_layer = BetaLayer(args.hidden_size, args.num_factor)
factor_decoder = FactorDecoder(alpha_layer, beta_layer)
factor_predictor = FactorPredictor(args.hidden_size, args.num_factor)
factorVAE = FactorVAE(feature_extractor, factor_encoder, factor_decoder, factor_predictor)
return factorVAE
@torch.no_grad()
def generate_prediction_scores(model, test_dataloader, test_dataset, args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
model.to(device)
model.eval()
test_loss = 0
ls = []
with tqdm(total=len(test_dataloader)) as pbar: # -args.seq_length+1
for i, (char, _) in enumerate(test_dataloader):
char = char.to(device)
if char.shape[1] != args.seq_length:
print("?")
continue
predictions = model.prediction(char.float())
ls.append(predictions.detach().cpu())
pbar.update(1)
ls = torch.cat(ls, dim=0)
multi_index = pd.MultiIndex.from_tuples(test_dataset.get_index(), names=["datetime","instrument"])
ls = pd.DataFrame(ls.numpy(), index=multi_index, columns=['score'])
return ls
@dataclass
class test_args:
run_name: str
num_factor: int
normalize: bool = True
select_feature: bool = True
batch_size: int = 300
seq_length: int = 20
hidden_size: int = 20
num_latent: int = 20
num_portfolio: int = 128
save_dir='./best_model'
use_qlib: bool = False
def RankIC(df, column1='LABEL0', column2='Pred'):
ric_values_multiindex = []
for date in df.index.get_level_values(0).unique():
daily_data = df.loc[date].copy()
daily_data['LABEL0_rank'] = daily_data[column1].rank()
daily_data['pred_rank'] = daily_data[column2].rank()
ric, _ = spearmanr(daily_data['LABEL0_rank'], daily_data['pred_rank'])
ric_values_multiindex.append(ric)
if not ric_values_multiindex:
return np.nan, np.nan
ric = np.mean(ric_values_multiindex)
std = np.std(ric_values_multiindex)
ir = ric / std if std != 0 else np.nan
return pd.DataFrame({'RankIC': [ric], 'RankIC_IR': [ir]})