-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
52 lines (44 loc) · 1.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
* Test script for <RGB to/from LAB> color-space conversion (tf-1.x)
- Maintainer: Jahid (email: [email protected])
- https://github.com/xahidbuffon/tf-rgb-lab
"""
import argparse
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
# local library
import rgb_lab_formulation as Conv_img
def test_tf_rgb_lab(img, tf_v1=True):
# raw tensor
raw_input = tf.image.convert_image_dtype(img, dtype=tf.float32)
raw_input.set_shape([None, None, 3])
# convert to lab-space image {L, a, b}
lab = Conv_img.rgb_to_lab(raw_input)
L_chan, a_chan, b_chan = Conv_img.preprocess_lab(lab)
lab = Conv_img.deprocess_lab(L_chan, a_chan, b_chan)
# get back the RGB image (tensor)
true_image = Conv_img.lab_to_rgb(lab)
true_image = tf.image.convert_image_dtype(true_image, dtype=tf.uint8, saturate=True)
# get image array from tensor
if tf_v1: # for tf v1.x
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
image = true_image.eval()
else: # for tf v2.0
tf.compat.v1.disable_eager_execution()
init_op = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as sess:
sess.run(init_op)
image = true_image.numpy()
# save/show image
plt.imshow(image)
plt.imsave('output.jpg', image)
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--im_path', dest='im_path', type=str, default='data/umn.jpg')
args = parser.parse_args()
img = plt.imread(args.im_path)
test_tf_rgb_lab(img, tf_v1=True)