forked from ki-ljl/LSTM-Load-Forecasting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process.py
197 lines (159 loc) · 5.41 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding:utf-8 -*-
"""
@Time: 2022/03/01 20:11
@Author: KI
@File: data_process.py
@Motto: Hungry And Humble
"""
import os
import random
import pdb
import datetime
import numpy as np
from numpy import nan as NaN
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def setup_seed(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# 函数统计每行空值,数量超过阈值的删除
def nan_drop(dataframe, n):
print(dataframe.count(axis=1))
dataframe.dropna(thresh=n)
return
def load_data():
"""
:return:
"""
path = os.getcwd()
df = pd.read_excel(path + '/data/daily.xlsx')
# 用上值补充空白值
df.fillna(method='ffill', inplace=True)
# 删除2000年前的数据
data_delete = df[df['date'] < datetime.datetime(2000, 1, 1)].index
df.drop(data_delete, inplace=True)
# 用下值将切片数据补充完整
df.fillna(method='bfill', inplace=True)
return df
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, item):
return self.data[item]
def __len__(self):
return len(self.data)
# Multivariate-MultiStep-LSTM data processing.
def nn_seq_mm(B, num):
print('data processing...')
dataset = load_data()
# split
train = dataset[:int(len(dataset) * 0.7)]
test = dataset[int(len(dataset) * 0.7):len(dataset)]
def process(data, batch_size):
load = data[data.columns[1]]
load = load.tolist()
data = data.values.tolist()
m, n = np.max(load), np.min(load)
load = (load - n) / (m - n)
seq = []
for i in range(0, len(data) - 24 - num, num):
train_seq = []
train_label = []
for j in range(i, i + 24):
x = [load[j]]
for c in range(2, 8):
x.append(data[j][c])
train_seq.append(x)
for j in range(i + 24, i + 24 + num):
train_label.append(load[j])
train_seq = torch.FloatTensor(train_seq)
train_label = torch.FloatTensor(train_label).view(-1)
seq.append((train_seq, train_label))
# print(seq[-1])
seq = MyDataset(seq)
seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=False, num_workers=0, drop_last=True)
return seq, [m, n]
Dtr, lis1 = process(train, B)
Dte, lis2 = process(test, B)
return Dtr, Dte, lis1, lis2
# Multivariate-SingleStep-LSTM data processing.
def nn_seq_ms(B):
print('data processing...')
dataset = load_data()
# split
train = dataset[:int(len(dataset) * 0.7)]
test = dataset[int(len(dataset) * 0.7):len(dataset)]
def process(data, batch_size):
index_hs300 = data[data.columns[16]]
index_hs300 = index_hs300.tolist()
data = data.values.tolist()
m, n = np.max(index_hs300), np.min(index_hs300)
index_hs300 = (index_hs300 - n) / (m - n)
seq = []
for i in range(len(data) - 30):
train_seq = []
train_label = []
for j in range(i, i + 30):
x = [index_hs300[j]]
for c in range(1, 16):
x.append(data[j][c])
for c in range(17, 30):
x.append(data[j][c])
train_seq.append(x)
train_label.append(index_hs300[i + 30])
train_seq = torch.FloatTensor(train_seq)
train_label = torch.FloatTensor(train_label).view(-1)
seq.append((train_seq, train_label))
# print(seq[-1])
seq = MyDataset(seq)
seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=False, num_workers=0, drop_last=True)
return seq, [m, n]
Dtr, lis1 = process(train, B)
Dte, lis2 = process(test, B)
return Dtr, Dte, lis1, lis2
# Univariate-SingleStep-LSTM data processing.
def nn_seq_us(B):
print('data processing...')
dataset = load_data()
# split
train = dataset[:int(len(dataset) * 0.7)]
test = dataset[int(len(dataset) * 0.7):len(dataset)]
def process(data, batch_size):
load = data[data.columns[1]]
load = load.tolist()
data = data.values.tolist()
m, n = np.max(load), np.min(load)
load = (load - n) / (m - n)
seq = []
for i in range(len(data) - 24):
train_seq = []
train_label = []
for j in range(i, i + 24):
x = [load[j]]
train_seq.append(x)
# for c in range(2, 8):
# train_seq.append(data[i + 24][c])
train_label.append(load[i + 24])
train_seq = torch.FloatTensor(train_seq)
train_label = torch.FloatTensor(train_label).view(-1)
seq.append((train_seq, train_label))
# print(seq[-1])
seq = MyDataset(seq)
seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=False, num_workers=0, drop_last=True)
return seq, [m, n]
Dtr, lis1 = process(train, B)
Dte, lis2 = process(test, B)
return Dtr, Dte, lis1, lis2
def get_mape(x, y):
"""
:param x: true value
:param y: pred value
:return: mape
"""
return np.mean(np.abs((x - y) / x))