forked from ImperialCollegeLondon/WInc3D
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathacl_beam.f90
102 lines (83 loc) · 4.37 KB
/
acl_beam.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
module actuator_line_beam_model
! Use the actuator_line Modules
use decomp_2d, only: mytype, nrank
use actuator_line_element
use xbeam_shared
type BeamType
character(len=100):: name ! Beam model name (the same as the turbine name)
real(mytype), allocatable :: pos(:,:) ! positions
real(mytype), allocatable :: StructuralTwist(:) ! Structural twist
real(mytype), allocatable :: frame_of_reference_delta(:,:,:) ! Frame of reference delta
integer, allocatable :: Conn(:,:) ! Connectivity
integer :: Nnodes ! Number of nodes
integer :: Ndofs ! Number of degrees of freedom=6*(num_nodes-3) (blades are clamped at the root)
integer :: NElems ! Number of elements
type(xbelem), allocatable :: elem(:) ! Element information.
type(xbnode), allocatable :: node(:) ! Nodal information.
end type BeamType
contains
subroutine actuator_line_beam_model_init(beam,acl,Nblades)
implicit none
type(BeamType) :: beam
integer, intent(in) :: Nblades
type(ActuatorLineType),intent(in),dimension(3) :: acl(3)
integer :: i,j,k
! Degrees of freedom for the beam. It should be equal to the number of blades times twice the number of elements plus one (midpoints + edges)
beam%Nnodes=Nblades*(2*acl(1)%Nelem+1)
beam%NElems=Nblades*acl(1)%Nelem
beam%Ndofs=6*(beam%Nnodes-Nblades)
! First allocate
allocate(beam%pos(beam%Nnodes,3))
allocate(beam%StructuralTwist(beam%Nnodes))
allocate(beam%frame_of_reference_delta(Nblades*acl(1)%Nelem,3,3))
allocate(beam%Conn(acl(1)%Nelem,3))
allocate(beam%elem(beam%NElems))
allocate(beam%node(beam%Nnodes))
! Init the coordinates
do i=1,Nblades
do j=1,acl(i)%Nelem
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j-1,1)=acl(i)%QCx(j) ! First-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j,1)=acl(i)%PEx(j) ! Mid-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j+1,1)=acl(i)%QCx(j+1) ! Last-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j-1,2)=acl(i)%QCy(j) ! First-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j,2)=acl(i)%PEy(j) ! Mid-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j+1,2)=acl(i)%QCy(j+1) ! Last-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j-1,3)=acl(i)%QCz(j) ! First-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j,3)=acl(i)%PEz(j) ! Mid-point of the element
beam%pos((i-1)*(2*acl(i)%NElem+1)+2*j+1,3)=acl(i)%QCz(j+1) ! Last-point of the element
enddo
enddo
beam%StructuralTwist=0.
! Positions are correct !
return
end subroutine actuator_line_beam_model_init
subroutine actuator_line_beam_solve(beam,dt)
use cbeam3_solv ! This loads the module from xbeam (WInc3D needs to be compiled against the xbeam library)
implicit none
type(BeamType),intent(inout) :: beam
real(mytype),intent(in) :: dt
! Update location of the beams
! Update the velocities
! Call the cbeam solver (timestep variation -- not sure if that is the correct thing to do)
!call cbeam3_solv_nlndyn_step(beam%Ndofs, &
! beam%NElems,&
! beam%Nnodes,&
! dt,&
! elem,&
! node,&
! static_forces,&
! dynamic_forces,&
! gravity_forces,&
! quat,&
! for_vel,&
! for_acc,&
! pos_ini,&
! psi_ini,&
! pos_def,&
! psi_def,&
! pos_dot_def,&
! psi_dot_def,&
! options)
return
end subroutine actuator_line_beam_solve
end module actuator_line_beam_model