forked from ScalaConsultants/Aspect-Based-Sentiment-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaux_models.py
executable file
·187 lines (160 loc) · 6.61 KB
/
aux_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from abc import ABC
from abc import abstractmethod
from typing import List
from typing import Set
from typing import Tuple
from dataclasses import dataclass
import numpy as np
import tensorflow as tf
from transformers import PretrainedConfig
from .data_types import Pattern
from .data_types import TokenizedExample
from .data_types import Output
from . import alignment
class ReferenceRecognizer(ABC):
@abstractmethod
def __call__(
self,
example: TokenizedExample,
output: Output
) -> bool:
pass
class PatternRecognizer(ABC):
"""
The aim of the Pattern Recognizer is to discover patterns that explain
a model prediction.
"""
@abstractmethod
def __call__(
self,
example: TokenizedExample,
output: Output
) -> List[Pattern]:
"""
To recognize patterns, we provide detailed information about a
prediction, including hidden states after each layer, attentions from
each head in each layer, and attention gradients with respect to the
model output. The Recognizer returns the most significant patterns.
"""
@dataclass
class BasicReferenceRecognizer(ReferenceRecognizer, PretrainedConfig):
"""
The Basic Reference Recognizer predicts whether a text relates to an
aspect or not. Briefly, it represents a text and an aspect as two
vectors, measure cosine similarity between them, and then use the simple
logistic regression to make a prediction. It calculates text and aspect
representations by summing their subtoken vectors, context-independent
embeddings that come from the embedding first layer. This model has two
parameter (β_0, β_1). Benefit from two useful methods `save_pretrained`
and `load_pretrained` (to persist the model for future use).
"""
weights: Tuple[float, float]
model_type: str = 'reference_recognizer'
def __call__(
self,
example: TokenizedExample,
output: Output
) -> bool:
β_0, β_1 = self.weights
n = len(example.subtokens)
hidden_states = output.hidden_states[:, :n, :] # Trim padded tokens.
text_mask, aspect_mask = self.text_aspect_subtoken_masks(example)
similarity = self.transform(hidden_states, text_mask, aspect_mask)
is_reference = β_0 + β_1 * similarity > 0
return bool(is_reference) # Do not use the numpy bool object.
@staticmethod
def transform(
hidden_states: tf.Tensor,
text_mask: List[bool],
aspect_mask: List[bool]
) -> float:
hidden_states = hidden_states.numpy()
h = hidden_states[0, ...] # Take embeddings without context.
h_t = h[text_mask, :].mean(axis=0)
h_a = h[aspect_mask, :].mean(axis=0)
h_t /= np.linalg.norm(h_t, ord=2)
h_a /= np.linalg.norm(h_a, ord=2)
similarity = h_t @ h_a
return similarity
@staticmethod
def text_aspect_subtoken_masks(
example: TokenizedExample
) -> Tuple[List[bool], List[bool]]:
text = np.zeros(len(example.subtokens)).astype(bool)
text[1:len(example.text_subtokens)+1] = True
aspect = np.zeros(len(example.subtokens)).astype(bool)
aspect[-(len(example.aspect_subtokens) + 1):-1] = True
return text.tolist(), aspect.tolist()
@dataclass
class BasicPatternRecognizer(PatternRecognizer):
"""
The Base Pattern Recognizer uses attentions and their gradients to
discover patterns which a model uses to make a prediction. The key idea
is to use attentions and scale them by their gradients with respect to
the model output (attention-gradient product). The language model
constructs various relations between words. However, only some of them
are crucial. Thanks to gradients, we can filter unnecessary patterns out.
Note that this is heuristic, an approximation. Concerns stated in papers
like "attentions is not explainable" are still valid. To be more robust,
we additionally use gradients and take the mean over model layers
and heads. Moreover, we provide an exhaustive analysis how accurate this
pattern recognizer is. Check out details in the README.
"""
max_patterns: int = 5
is_scaled: bool = True
is_rounded: bool = True
round_decimals: int = 2
def __call__(
self,
example: TokenizedExample,
output: Output
) -> List[Pattern]:
text_mask = self.text_tokens_mask(example)
w, pattern_vectors = self.transform(output, text_mask, example.alignment)
patterns = self.build_patterns(w, example.text_tokens, pattern_vectors)
return patterns
def transform(
self,
output: Output,
text_mask: List[bool],
token_subtoken_alignment: List[List[int]]
) -> Tuple[np.ndarray, np.ndarray]:
x = output.attentions * tf.abs(output.attention_grads)
x = tf.reduce_sum(x, axis=[0, 1], keepdims=True)
x = alignment.merge_tensor(x, alignment=token_subtoken_alignment)
x = x.numpy().squeeze(axis=(0, 1))
w = x[0, text_mask]
w /= np.max(w + 1e-9)
patterns = x[text_mask, :][:, text_mask]
max_values = np.max(patterns + 1e-9, axis=1)
np.fill_diagonal(patterns, max_values)
patterns /= max_values.reshape(-1, 1)
if self.is_scaled:
patterns *= w.reshape(-1, 1)
if self.is_rounded:
w = np.round(w, decimals=self.round_decimals)
patterns = np.round(patterns, decimals=self.round_decimals)
return w, patterns
@staticmethod
def text_tokens_mask(example: TokenizedExample) -> List[bool]:
""" Get the mask of text tokens according to the BERT input. """
mask = np.zeros(len(example.tokens)).astype(bool)
mask[1:len(example.text_tokens) + 1] = True
return mask.tolist()
def build_patterns(
self,
w: np.ndarray,
tokens: List[str],
pattern_vectors: np.ndarray
) -> List[Pattern]:
# Negate an array to have a descending order
indices = np.argsort(w * -1)
build = lambda i: Pattern(w[i], tokens, pattern_vectors[i, :].tolist())
return [build(i) for i in indices[:self.max_patterns]]
def predict_key_set(patterns: List[Pattern], n: int) -> Set[int]:
""" Make sure that patterns before a prediction are scaled by
importance values. The function returns token indices. """
weights = np.stack([p.weights for p in patterns]).sum(axis=0)
decreasing = np.argsort(weights * -1)
key_set = set(decreasing[:n])
return key_set