-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
172 lines (145 loc) · 5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from makedata import *
from makemodel import *
#from feature import get_feature
import radiomics
from radiomics import featureextractor
import six
import skimage.io as skio
from skimage.color import rgb2gray
from scipy import ndimage
import urllib
from loadweights import *
import numpy as np
import cv2
import matplotlib.pyplot as plt
import os
import skimage.io as skio
from skimage import measure
from skimage.draw import polygon
from skimage.color import rgb2gray
import pandas as pd
def init_extractor():
# First define the settings
settings = {}
settings['force2D'] = True
settings['binWidth'] = 1
# Instantiate the extractor
extractor = featureextractor.RadiomicsFeatureExtractor(**settings) # ** 'unpacks' the dictionary in the function call
# enable 2D shape
extractor.enableFeatureClassByName('shape',False)
extractor.enableFeatureClassByName('shape2D')
#extractor.enableImageTypeByName('Wavelet')
print('Enabled features:\n\t', extractor.enabledFeatures) # Still the default parameters
return extractor
# shape feature
def get_feature(imagePath,maskPath,extractor):
f = {}
result = extractor.execute(imagePath, maskPath,label=255)
for key, val in six.iteritems(result):
if "shape2D" in key:
f[key] = val
return f
def creat_model():
isTrain = False
isContinue = False
savedir = "./"
loadpath= "dk1_UNet_pre60_3000.pth"
file_id = "1-7KaljDeB-Li0nCTkrJQtlcPe4NEkEHe"
download_file_from_google_drive(file_id, loadpath)
print("weight download")
model = GlomNet(isTrain, isContinue, savedir, loadpath, "UNet")
return model
"""
def test_sample(model):
# whole slide
input_img = skio.imread("./static/input.png")
img_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor()
])
img = img_transform(input_img)
model.set_input(img.unsqueeze(0),img)
model.test()
pred = model.get_pred()
pred = pred.detach().squeeze().cpu().numpy()
pred = np.moveaxis(pred,0,-1)
result = np.argmax(pred,axis=2)
result = (ndimage.binary_fill_holes(result).astype(int))*255
#skio.imsave("./static/output.png", result[:,:,None].repeat(3,axis=2))
return result
"""
def test_sample(model):
# whole slide
input_img = skio.imread("./static/input1.png")
img_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor()
])
# image slices:
img = img_transform(input_img)
model.set_input(img.unsqueeze(0),img)
model.test()
pred = model.get_pred()
pred = pred.detach().squeeze().cpu().numpy()
pred = np.moveaxis(pred,0,-1)
result = np.argmax(pred,axis=2)
result = (ndimage.binary_fill_holes(result).astype(int))*255
#skio.imsave("./static/output.png", result[:,:,None].repeat(3,axis=2))
return result
from skimage.measure import label, regionprops, find_contours
import json
def get_json(fileid):
extractor = init_extractor()
js = {}
im = skio.imread("./log/{}".format(fileid))[:,:,0]
img = skio.imread("./static/{}".format(fileid))
filepth = fileid.split('.')[0]
if not os.path.exists('./log/feature_masks/{}'.format(filepth)):
os.makedirs('./log/feature_masks/{}'.format(filepth))
os.makedirs('./log/feature_slides/{}'.format(filepth))
# initial gloms, get attributes
lb = label(im[:,:])
regs = regionprops(lb)
for i, reg in enumerate(regs[:]):
js[str(i)]={}
js[str(i)]["id"] = str(i)
if(i<20):
js[str(i)]["cat"] = "#sclGlom"
else:
js[str(i)]["cat"] = "#normalGlom"
js[str(i)]["area"] = int(reg.area)
(top, left, down, right) = reg.bbox
js[str(i)]["left"] = left
js[str(i)]["top"] = top
# save glom image and mask
mask = im[top:down+1,left:right+1]
slide = img[top:down+1,left:right+1]
slide = rgb2gray(slide)
# create url for this glom to extract feature from
maskurl = "./log/feature_masks/{}/mask_{}.png".format(filepth,i)
imageurl = "./log/feature_slides/{}/slide_{}.png".format(filepth,i)
skio.imsave(maskurl, mask)
skio.imsave(imageurl, slide)
# fetch and extract features
features = get_feature(imageurl, maskurl, extractor)
for key, val in six.iteritems(features):
keyy = key.split('_')[2]
if(not isinstance(val, np.ndarray)):
js[str(i)][keyy] = val
else:
js[str(i)][keyy] = val.tolist()
# add contours
coords = find_contours(im[:,:],0.6)
for i, coord in enumerate(coords):
jos = []
for x,y in zip(coord[:,1], coord[:,0]):
pos = {}
pos["x"]=x
pos["y"]=y
jos.append(pos)
js[str(i)]["coord"]=jos
return js
if __name__ == "__main__":
regs = get_json()
with open('./hello_app/static/glomglom.json', 'w') as fp:
json.dump(regs, fp)