-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
144 lines (133 loc) · 5.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch.utils.data as data # 加载torch的数据加载器
import numpy as np
import time
import cv2
import sys
import os
sys.path.append(os.getcwd())
import argparse
import model.model as crnn
import torch
import torch.optim as optim
from utils.utils import load_yml,model_info,get_batch_label,get_optimizer,encode,decode
from data.dataset import OCRDataset
def parse_arg():
parser = argparse.ArgumentParser(description="train crnn")
parser.add_argument('--cfg', help='experiment configuration filename', required=True, type=str)
args = parser.parse_args()
config = load_yml(args.cfg)
return config
if __name__ == "__main__":
config = parse_arg()
print(config)
if not os.path.exists(config.OUTPUT_DIR):
os.mkdir(config.OUTPUT_DIR)
train_dataset = OCRDataset(config)
train_loader = data.DataLoader(
dataset=train_dataset,
batch_size=config.TRAIN.BATCH_SIZE_PER_GPU,
shuffle=config.TRAIN.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
val_dataset = OCRDataset(config,is_train=False)
val_loader = data.DataLoader(
dataset=val_dataset,
batch_size=config.TEST.BATCH_SIZE_PER_GPU,
shuffle=config.TEST.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
# get device
if torch.cuda.is_available():
device = torch.device("cuda:{}".format(config.GPUID))
else:
device = torch.device("cpu:0")
model = crnn.get_crnn(config)
model = model.to(device)
model_info(model)
print(model)
optimizer = get_optimizer(config, model)
last_epoch = config.TRAIN.BEGIN_EPOCH
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch-1
)
if config.ATTENTION.ENABLE:
criterion = torch.nn.NLLLoss()
else:
criterion = torch.nn.CTCLoss()
# 训练
best_acc = 0.0
for epoch in range(last_epoch,config.TRAIN.END_EPOCH):
model.train()
for i, (inp, idx) in enumerate(train_loader):
# 前馈,计算loss
inp = inp.to(device)
labels = get_batch_label(train_dataset, idx)
batch_size = inp.size(0)
text, length = encode(config.DICT,labels)
preds = model(inp,length).cpu()
preds_size = torch.IntTensor([preds.size(0)] * batch_size)
if config.ATTENTION.ENABLE:
loss = criterion(preds, text)
else:
loss = criterion(preds, text, preds_size, length)
# 反馈
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % config.PRINT_FREQ == 0:
print("epoch:{} step:{} loss:{} lr:{}".format(epoch,i,loss.item(),lr_scheduler.get_lr()))
# 每个epoch更新学习率
lr_scheduler.step()
# 每EVAL_FREQ评估一次并保存best模型
if epoch % config.EVAL_FREQ == 0:
model.eval()
n_correct = 0
test_num = len(val_loader) * config.TEST.BATCH_SIZE_PER_GPU
with torch.no_grad():
for i, (inp, idx) in enumerate(val_loader):
# 计算前馈,计算loss
inp = inp.to(device)
labels = get_batch_label(val_dataset, idx)
batch_size = inp.size(0)
text, length = encode(config.DICT,labels)
preds = model(inp,length).cpu()
preds_size = torch.IntTensor([preds.size(0)] * batch_size)
if config.ATTENTION.ENABLE:
loss = criterion(preds, text)
else:
loss = criterion(preds, text, preds_size, length)
# 后处理解码
if config.ATTENTION.ENABLE:
_, preds = preds.max(1)
index = 0
for label in labels:
pre = "".join(str(preds[index:index + len(label)]))
index += len(label)
if pre == label:
n_correct += 1
else:
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = decode(preds.data, preds_size.data, config.DICT,raw=False)
for pred, target in zip(sim_preds, labels):
if pred == target:
n_correct += 1
# 抓一个batch来显示
if not config.ATTENTION.ENABLE:
raw_preds = decode(preds.data, preds_size.data, config.DICT, raw=True)[:config.TEST.NUM_TEST_DISP]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, labels):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
now_acc = n_correct * 1.0 / test_num
print("best_acc:{} correct:{} total:{}".format(now_acc,n_correct,test_num))
if now_acc >= best_acc:
torch.save(
{
"state_dict": model.state_dict(),
"epoch": epoch + 1,
"best_acc": best_acc,
}, os.path.join(config.OUTPUT_DIR, "checkpoint_{}_acc_{:.4f}.pth".format(epoch, now_acc)))
best_acc = now_acc
print("save_model!")