forked from NVIDIA/MinkowskiEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
245 lines (198 loc) · 7.88 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
r"""
Parse additional arguments along with the setup.py arguments such as install, build, distribute, sdist, etc.
Usage:
python setup.py install <additional_flags>..<additional_flags> <additional_arg>=<value>..<additional_arg>=<value>
export CXX=<C++ compiler>; python setup.py install <additional_flags>..<additional_flags> <additional_arg>=<value>..<additional_arg>=<value>
Examples:
python setup.py install --force_cuda --cuda_home=/usr/local/cuda
export CXX=g++7; python setup.py install --force_cuda --cuda_home=/usr/local/cuda
Additional flags:
--cpu_only: Force building only a CPU version. However, if
torch.cuda.is_available() is False, it will default to CPU_ONLY.
--force_cuda: If torch.cuda.is_available() is false, but you have a working
nvcc, compile cuda files. --force_cuda will supercede --cpu_only.
Additional arguments:
--blas=<value> : type of blas library to use for CPU matrix multiplications.
Options: [openblas, mkl, atlas, blas]. By default, it will use the first
numpy blas library it finds.
--cuda_home=<value> : a directory that contains <value>/bin/nvcc and
<value>/lib64/libcudart.so. By default, use
`torch.utils.cpp_extension._find_cuda_home()`.
--blas_include_dirs=<comma_separated_values> : additional include dirs. Only
activated when --blas=<value> is set.
--blas_library_dirs=<comma_separated_values> : additional library dirs. Only
activated when --blas=<value> is set.
"""
import sys
if sys.version_info < (3, 6):
sys.stdout.write(
"Minkowski Engine requires Python 3.6 or higher. Please use anaconda https://www.anaconda.com/distribution/ for an isolated python environment.\n"
)
sys.exit(1)
try:
import torch
except ImportError:
raise ImportError("Pytorch not found. Please install pytorch first.")
import codecs
import os
import re
import subprocess
from sys import argv, platform
from setuptools import setup
from torch.utils.cpp_extension import CppExtension, CUDAExtension, BuildExtension
from distutils.sysconfig import get_python_inc
if platform == "win32":
raise ImportError("Windows is currently not supported.")
elif platform == "darwin":
# Set the distutils to use clang instead of g++ for valid std
os.environ["CC"] = "/usr/local/opt/llvm/bin/clang"
os.environ["CXX"] = "/usr/local/opt/llvm/bin/clang"
here = os.path.abspath(os.path.dirname(__file__))
def read(*parts):
with codecs.open(os.path.join(here, *parts), "r") as fp:
return fp.read()
def find_version(*file_paths):
version_file = read(*file_paths)
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
def run_command(*args):
subprocess.check_call(args)
def _argparse(pattern, argv, is_flag=True):
if is_flag:
found = pattern in argv
if found:
argv.remove(pattern)
return found, argv
else:
arr = [arg for arg in argv if pattern in arg]
if len(arr) == 0: # not found
return False, argv
else:
assert "=" in arr[0], f"{arr[0]} requires a value."
argv.remove(arr[0])
return arr[0].split("=")[1], argv
# For cpu only build
CPU_ONLY, argv = _argparse("--cpu_only", argv)
CPU_ONLY = CPU_ONLY or not torch.cuda.is_available()
KEEP_OBJS, argv = _argparse("--keep_objs", argv)
FORCE_CUDA, argv = _argparse("--force_cuda", argv)
# args with return value
CUDA_HOME, argv = _argparse("--cuda_home", argv, False)
BLAS, argv = _argparse("--blas", argv, False)
BLAS_INCLUDE_DIRS, argv = _argparse("--blas_include_dirs", argv, False)
BLAS_LIBRARY_DIRS, argv = _argparse("--blas_library_dirs", argv, False)
Extension = CUDAExtension
compile_args = [
"make",
"-j%d" % min(os.cpu_count(), 12), # parallel compilation
"PYTHON=" + sys.executable, # curr python
]
extra_compile_args = ["-Wno-deprecated-declarations"]
extra_link_args = []
libraries = ["minkowski"]
# extra_compile_args+=['-g'] # Uncomment for debugging
if CPU_ONLY and not FORCE_CUDA:
print("--------------------------------")
print("| WARNING: CPU_ONLY build set |")
print("--------------------------------")
compile_args += ["CPU_ONLY=1"]
extra_compile_args += ["-DCPU_ONLY"]
Extension = CppExtension
else:
# system python installation
libraries.append("cusparse")
if not (CUDA_HOME is False): # False when not set, str otherwise
print(f"Using CUDA_HOME={CUDA_HOME}")
compile_args += [f"CUDA_HOME={CUDA_HOME}"]
if KEEP_OBJS:
print("\nUsing built objects")
BLAS_LIST = ["openblas", "mkl", "atlas", "blas"]
if not (BLAS is False): # False only when not set, str otherwise
assert BLAS in BLAS_LIST
libraries.append(BLAS)
if not (BLAS_INCLUDE_DIRS is False):
compile_args += [f"BLAS_INCLUDE_DIRS={BLAS_INCLUDE_DIRS}"]
if not (BLAS_LIBRARY_DIRS is False):
extra_link_args += [f"-Wl,-rpath,{BLAS_LIBRARY_DIRS}"]
else:
# find the default BLAS library
import numpy.distutils.system_info as sysinfo
# Search blas in this order
for blas in BLAS_LIST:
if "libraries" in sysinfo.get_info(blas):
BLAS = blas
libraries += sysinfo.get_info(blas)["libraries"]
break
else:
# BLAS not found
raise ImportError(
' \
\nBLAS not found from numpy.distutils.system_info.get_info. \
\nPlease specify BLAS with: python setup.py install --blas=openblas" \
\nfor more information, please visit https://github.com/NVIDIA/MinkowskiEngine/wiki/Installation'
)
print(f"\nUsing BLAS={BLAS}")
compile_args += ["BLAS=" + BLAS]
if "darwin" in platform:
extra_compile_args += ["-stdlib=libc++"]
if not KEEP_OBJS:
run_command("make", "clean")
run_command(*compile_args)
# Python interface
setup(
name="MinkowskiEngine",
version=find_version("MinkowskiEngine", "__init__.py"),
install_requires=["torch", "numpy"],
packages=["MinkowskiEngine", "MinkowskiEngine.utils", "MinkowskiEngine.modules"],
package_dir={"MinkowskiEngine": "./MinkowskiEngine"},
ext_modules=[
Extension(
name="MinkowskiEngineBackend",
include_dirs=[here, get_python_inc() + "/.."],
library_dirs=["objs"],
sources=["pybind/minkowski.cpp",],
libraries=libraries,
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
)
],
cmdclass={"build_ext": BuildExtension},
author="Christopher Choy",
author_email="[email protected]",
description="a convolutional neural network library for sparse tensors",
long_description=read("README.md"),
long_description_content_type="text/markdown",
url="https://github.com/NVIDIA/MinkowskiEngine",
keywords=[
"pytorch",
"Minkowski Engine",
"Sparse Tensor",
"Convolutional Neural Networks",
"3D Vision",
"Deep Learning",
],
zip_safe=False,
classifiers=[
# https://pypi.org/classifiers/
"Environment :: Console",
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Intended Audience :: Other Audience",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: C++",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Topic :: Multimedia :: Graphics",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Physics",
"Topic :: Scientific/Engineering :: Visualization",
],
python_requires=">=3.6",
)