Golang 官网:https://golang.org/
Golang 官方文档:https://golang.org/doc/
Golang 官方中文入门文档:https://tour.go-zh.org/welcome/1
下面记录一下学习过的重点。
程序从 main
包开始运行。下面的程序通过导入路径 "fmt"
和 "math/rand"
来使用这两个包。
按照约定,包名与导入路径的最后一个元素一致。例如,"math/rand"
包中的源码均以 package rand
语句开始。
package main
import (
"fmt"
"math/rand"
)
func main() {
fmt.Println("My favorite number is", rand.Intn(10))
}
此代码用圆括号组合了导入,这是“分组”形式的导入语句。
当然你也可以编写多个导入语句,例如:
import "fmt"
import "math"
不过使用分组导入语句是更好的形式。
在 Go 中,如果一个名字以大写字母开头,那么它就是已导出的。例如,Pizza
就是个已导出名,Pi
也同样,它导出自 math
包。
pizza
和 pi
并未以大写字母开头,所以它们是未导出的。
函数可以没有参数或接受多个参数。
在本例中,add
接受两个 int
类型的参数。注意类型在变量名 之后。
package main
import "fmt"
func add(x int, y int) int {
return x + y
}
func main() {
fmt.Println(add(42, 13))
}
当连续两个或多个函数的已命名形参类型相同时,除最后一个类型以外,其它都可以省略。
在本例中,
x int, y int
可以被缩写为
x, y int
函数可以返回任意数量的返回值。
swap
函数返回了两个字符串。
package main
import "fmt"
func swap(x, y string) (string, string) {
return y, x
}
func main() {
a, b := swap("hello", "world")
fmt.Println(a, b)
}
Go 的返回值可被命名,它们会被视作定义在函数顶部的变量。
返回值的名称应当具有一定的意义,它可以作为文档使用。
没有参数的 return
语句返回已命名的返回值。也就是 直接
返回。
直接返回语句应当仅用在下面这样的短函数中。在长的函数中它们会影响代码的可读性。
package main
import "fmt"
func split(sum int) (x, y int) {
x = sum * 4 / 9
y = sum - x
return
}
func main() {
fmt.Println(split(17))
}
var
语句用于声明一个变量列表,跟函数的参数列表一样,类型在最后。
就像在这个例子中看到的一样,var
语句可以出现在包或函数级别。
package main
import "fmt"
var c, python, java bool
func main() {
var i int
fmt.Println(i, c, python, java)
}
变量声明可以包含初始值,每个变量对应一个。
如果初始化值已存在,则可以省略类型;变量会从初始值中获得类型。
package main
import "fmt"
var i, j int = 1, 2
func main() {
var c, python, java = true, false, "no!"
fmt.Println(i, j, c, python, java)
}
在函数中,简洁赋值语句 :=
可在类型明确的地方代替 var
声明。
函数外的每个语句都必须以关键字开始(var
, func
等等),因此 :=
结构不能在函数外使用。
Go 的基本类型有
bool
string
int int8 int16 int32 int64
uint uint8 uint16 uint32 uint64 uintptr
byte // uint8 的别名
rune // int32 的别名
// 表示一个 Unicode 码点
float32 float64
complex64 complex128
本例展示了几种类型的变量。 同导入语句一样,变量声明也可以“分组”成一个语法块。
int
, uint
和 uintptr
在 32 位系统上通常为 32 位宽,在 64 位系统上则为 64 位宽。 当你需要一个整数值时应使用 int
类型,除非你有特殊的理由使用固定大小或无符号的整数类型。
没有明确初始值的变量声明会被赋予它们的 零值。
零值是:
- 数值类型为
0
, - 布尔类型为
false
, - 字符串为
""
(空字符串)。
表达式 T(v)
将值 v
转换为类型 T
。
一些关于数值的转换:
var i int = 42
var f float64 = float64(i)
var u uint = uint(f)
或者,更加简单的形式:
i := 42
f := float64(i)
u := uint(f)
与 C 不同的是,Go 在不同类型的项之间赋值时需要显式转换。试着移除例子中 float64
或 uint
的转换看看会发生什么。
常量的声明与变量类似,只不过是使用 const
关键字。
常量可以是字符、字符串、布尔值或数值。
常量不能用 :=
语法声明。
Go 只有一种循环结构:for
循环。for 循环和 C 、Java 的 for 循环的写法是一样的,只不过可以省略括号。大括号是必须的
for 是 Go 中的 “while”
此时你可以去掉分号,因为 C 的 while
在 Go 中叫做 for
。
package main
import "fmt"
func main() {
sum := 1
for sum < 1000 {
sum += sum
}
fmt.Println(sum)
}
无限循环
如果省略循环条件,该循环就不会结束,因此无限循环可以写得很紧凑。
package main
func main() {
for {
}
}
Go 中的 if 和其他语言是一样的,只不过可以省略小括号而已。
Go 中的 switch 自动提供了在这些语言中每个 case 后面所需的 break
语句。
defer 语句会将函数推迟到外层函数返回之后执行。
推迟调用的函数其参数会立即求值,但直到外层函数返回前该函数都不会被调用。
package main
import "fmt"
func main() {
defer fmt.Println("world")
fmt.Println("hello")
}
这回显示 hello \n world \n
推迟的函数调用会被压入一个栈中。当外层函数返回时,被推迟的函数会按照后进先出的顺序调用。
更多关于 defer 语句的信息,请阅读此博文。
Go 拥有指针。指针保存了值的内存地址。
类型 *T
是指向 T
类型值的指针。其零值为 nil
。
var p *int
&
操作符会生成一个指向其操作数的指针。
i := 42
p = &i
*
操作符表示指针指向的底层值。
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21 // 通过指针 p 设置 i
这也就是通常所说的“间接引用”或“重定向”。
与 C 不同,Go 没有指针运算。
总体来说, Go 的指针还是比较简单的,需要注意的是,* 有两种 用处,一种是声明,一种是取值。
一个结构体(struct
)就是一组字段(field)。
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
fmt.Println(Vertex{1, 2})
}
结构体字段使用点号来访问。
结构体字段可以通过结构体指针来访问。
如果我们有一个指向结构体的指针 p
,那么可以通过 (*p).X
来访问其字段 X
。不过这么写太啰嗦了,所以语言也允许我们使用隐式间接引用,直接写 p.X
就可以。
这里有个语法糖需要注意:
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
p := &v
p.X = 1e9
fmt.Println(v)
}
结构体文法通过直接列出字段的值来新分配一个结构体。
使用 Name:
语法可以仅列出部分字段。(字段名的顺序无关。)
特殊的前缀 &
返回一个指向结构体的指针。
package main
import "fmt"
type Vertex struct {
X, Y int
}
var (
v1 = Vertex{1, 2} // 创建一个 Vertex 类型的结构体
v2 = Vertex{X: 1} // Y:0 被隐式地赋予
v3 = Vertex{} // X:0 Y:0
p = &Vertex{1, 2} // 创建一个 *Vertex 类型的结构体(指针)
)
func main() {
fmt.Println(v1, p, v2, v3)
}
还要注意这里 var () 的使用方式。
类型 [n]T
表示拥有 n
个 T
类型的值的数组。
表达式
var a [10]int
会将变量 a
声明为拥有 10 个整数的数组。
数组的长度是其类型的一部分,因此数组不能改变大小。这看起来是个限制,不过没关系,Go 提供了更加便利的方式来使用数组。
每个数组的大小都是固定的。而切片则为数组元素提供动态大小的、灵活的视角。在实践中,切片比数组更常用。
类型 []T
表示一个元素类型为 T
的切片。
切片通过两个下标来界定,即一个上界和一个下界,二者以冒号分隔:
a[low : high]
它会选择一个半开区间,包括第一个元素,但排除最后一个元素。
以下表达式创建了一个切片,它包含 a
中下标从 1 到 3 的元素:
a[1:4]
切片并不存储任何数据,它只是描述了底层数组中的一段。
更改切片的元素会修改其底层数组中对应的元素。
与它共享底层数组的切片都会观测到这些修改。
切片文法类似于没有长度的数组文法。
这是一个数组文法:
[3]bool{true, true, false}
下面这样则会创建一个和上面相同的数组,然后构建一个引用了它的切片:
[]bool{true, true, false}
切片可以用内建函数 make
来创建,这也是你创建动态数组的方式。
make
函数会分配一个元素为零值的数组并返回一个引用了它的切片:
a := make([]int, 5) // len(a)=5
要指定它的容量,需向 make
传入第三个参数:
b := make([]int, 0, 5) // len(b)=0, cap(b)=5
b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:] // len(b)=4, cap(b)=4
映射将键映射到值。
映射的零值为 nil
。nil
映射既没有键,也不能添加键。
make
函数会返回给定类型的映射,并将其初始化备用。
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m map[string]Vertex
func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{
40.68433, -74.39967,
}
fmt.Println(m["Bell Labs"])
}
函数也是值。它们可以像其它值一样传递。
函数值可以用作函数的参数或返回值。
Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。该函数可以访问并赋予其引用的变量的值,换句话说,该函数被这些变量“绑定”在一起。
例如,函数 adder
返回一个闭包。每个闭包都被绑定在其各自的 sum
变量上。
Go 没有类。不过你可以为结构体类型定义方法。
方法就是一类带特殊的 接收者 参数的函数。
方法接收者在它自己的参数列表内,位于 func
关键字和方法名之间。
在此例中,Abs
方法拥有一个名为 v
,类型为 Vertex
的接收者。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
}
你也可以为非结构体类型声明方法。
在此例中,我们看到了一个带 Abs
方法的数值类型 MyFloat
。
你只能为在同一包内定义的类型的接收者声明方法,而不能为其它包内定义的类型(包括 int
之类的内建类型)的接收者声明方法。
(译注:就是接收者的类型定义和方法声明必须在同一包内;不能为内建类型声明方法。)
package main
import (
"fmt"
"math"
)
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
func main() {
f := MyFloat(-math.Sqrt2)
fmt.Println(f.Abs())
}
这里要注意,这里需要考虑 go 语言的引用和拷贝。
你可以为指针接收者声明方法。
这意味着对于某类型 T
,接收者的类型可以用 *T
的文法。(此外,T
不能是像 *int
这样的指针。)
例如,这里为 *Vertex
定义了 Scale
方法。
指针接收者的方法可以修改接收者指向的值(就像 Scale
在这做的)。由于方法经常需要修改它的接收者,指针接收者比值接收者更常用。
试着移除第 16 行 Scale
函数声明中的 *
,观察此程序的行为如何变化。
若使用值接收者,那么 Scale
方法会对原始 Vertex
值的副本进行操作。(对于函数的其它参数也是如此。)Scale
方法必须用指针接受者来更改 main
函数中声明的 Vertex
的值。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func main() {
v := Vertex{3, 4}
v.Scale(10)
fmt.Println(v.Abs())
}
接口类型 是由一组方法签名定义的集合。
接口类型的变量可以保存任何实现了这些方法的值。
注意: 示例代码的 22 行存在一个错误。由于 Abs
方法只为 *Vertex
(指针类型)定义,因此 Vertex
(值类型)并未实现 Abser
。
package main
import (
"fmt"
"math"
)
type Abser interface {
Abs() float64
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat 实现了 Abser
a = &v // a *Vertex 实现了 Abser
// 下面一行,v 是一个 Vertex(而不是 *Vertex)
// 所以没有实现 Abser。
a = v
fmt.Println(a.Abs())
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
自我感觉,在语言层面,go 的接口没那么强,都是靠类型推导。其实这是隐式接口实现。
类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。
隐式接口从接口的实现中解耦了定义,这样接口的实现可以出现在任何包中,无需提前准备。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。
package main
import "fmt"
type I interface {
M()
}
type T struct {
S string
}
// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
fmt.Println(t.S)
}
func main() {
var i I = T{"hello"}
i.M()
}
接口也是值。它们可以像其它值一样传递。
接口值可以用作函数的参数或返回值。
在内部,接口值可以看做包含值和具体类型的元组:
(value, type)
接口值保存了一个具体底层类型的具体值。
接口值调用方法时会执行其底层类型的同名方法。
package main
import (
"fmt"
"math"
)
type I interface {
M()
}
type T struct {
S string
}
func (t *T) M() {
fmt.Println(t.S)
}
type F float64
func (f F) M() {
fmt.Println(f)
}
func main() {
var i I
i = &T{"Hello"}
describe(i)
i.M()
i = F(math.Pi)
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
即便接口内的具体值为 nil,方法仍然会被 nil 接收者调用。
在一些语言中,这会触发一个空指针异常,但在 Go 中通常会写一些方法来优雅地处理它(如本例中的 M
方法)。
注意: 保存了 nil 具体值的接口其自身并不为 nil。
package main
import "fmt"
type I interface {
M()
}
type T struct {
S string
}
func (t *T) M() {
if t == nil {
fmt.Println("<nil>")
return
}
fmt.Println(t.S)
}
func main() {
var i I
var t *T
i = t
describe(i)
i.M()
i = &T{"hello"}
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
nil 接口值既不保存值也不保存具体类型。
为 nil 接口调用方法会产生运行时错误,因为接口的元组内并未包含能够指明该调用哪个 具体 方法的类型。
package main
import "fmt"
type I interface {
M()
}
func main() {
var i I
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
指定了零个方法的接口值被称为 空接口:
interface{}
空接口可保存任何类型的值。(因为每个类型都至少实现了零个方法。)
空接口被用来处理未知类型的值。例如,fmt.Print
可接受类型为 interface{}
的任意数量的参数。
类型选择 是一种按顺序从几个类型断言中选择分支的结构。
类型选择与一般的 switch 语句相似,不过类型选择中的 case 为类型(而非值), 它们针对给定接口值所存储的值的类型进行比较。
switch v := i.(type) {
case T:
// v 的类型为 T
case S:
// v 的类型为 S
default:
// 没有匹配,v 与 i 的类型相同
}
类型选择中的声明与类型断言 i.(T)
的语法相同,只是具体类型 T
被替换成了关键字 type
。
此选择语句判断接口值 i
保存的值类型是 T
还是 S
。在 T
或 S
的情况下,变量 v
会分别按 T
或 S
类型保存 i
拥有的值。在默认(即没有匹配)的情况下,变量 v
与 i
的接口类型和值相同。
package main
import "fmt"
func do(i interface{}) {
switch v := i.(type) {
case int:
fmt.Printf("Twice %v is %v\n", v, v*2)
case string:
fmt.Printf("%q is %v bytes long\n", v, len(v))
default:
fmt.Printf("I don't know about type %T!\n", v)
}
}
func main() {
do(21)
do("hello")
do(true)
}
关于协程,参考 Golang协程入门.md