-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
197 lines (163 loc) · 4.6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def add_args(parser):
# Training settings
parser.add_argument(
"--method",
type=str,
default="fedavg",
metavar="N",
help="Options are: fedavg, fedprox, moon, mixup, stochdepth, gradaug, fedalign",
)
parser.add_argument(
"--data_dir",
type=str,
default="data/cifar10",
help="data directory: data/cifar100, data/cifar10, or another dataset",
)
parser.add_argument(
"--partition_method",
type=str,
default="hetero",
metavar="N",
help="how to partition the dataset on local clients",
)
parser.add_argument(
"--partition_size",
type=int,
default=600,
metavar="N",
help="how to partition the dataset on local clients",
)
parser.add_argument(
"--partition_alpha",
type=float,
default=0.5,
metavar="PA",
help="alpha value for Dirichlet distribution partitioning of data(default: 0.5)",
)
parser.add_argument(
"--client_number",
type=int,
default=10,
metavar="NN",
help="number of clients in the FL system",
)
parser.add_argument(
"--silos_number",
type=int,
default=5,
metavar="NN",
help="number of silos in the FL system",
)
parser.add_argument(
"--batch_size",
type=int,
default=50,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--net",
type=str,
default="modVGG",
metavar="N",
help="network arch:[resnet18, resnet56, SimpleCNN, modVGG, Sent140LSTM]",
)
parser.add_argument(
"--lr",
type=float,
default=0.01,
metavar="LR",
help="learning rate (default: 0.01)",
)
parser.add_argument(
"--momentum", type=bool, default=False, metavar="LR", help="momentum"
)
parser.add_argument("--wd", help="weight decay parameter;", type=float, default=0)
parser.add_argument("--seed", help="random seed", type=int, default=1)
parser.add_argument(
"--epochs",
type=int,
default=3,
metavar="EP",
help="how many epochs will be trained locally per round",
)
parser.add_argument(
"--comm_round",
type=int,
default=100,
help="how many rounds of communications are conducted",
)
parser.add_argument(
"--pretrained", action="store_true", default=False, help="test pretrained model"
)
parser.add_argument(
"--mu", type=float, default=1, metavar="MU", help="mu value for various methods"
)
parser.add_argument(
"--scale",
type=float,
default=5.0,
metavar="MU",
help="mu value for various methods",
)
parser.add_argument(
"--width",
type=float,
default=0.25,
metavar="WI",
help="minimum width for subnet training",
)
parser.add_argument(
"--mult",
type=float,
default=1.0,
metavar="MT",
help="multiplier for subnet training",
)
parser.add_argument(
"--num_subnets",
type=int,
default=3,
help="how many subnets sampled during training",
)
parser.add_argument(
"--save_client",
action="store_true",
default=False,
help="Save client checkpoints each round",
)
parser.add_argument(
"--thread_number",
type=int,
default=4,
metavar="NN",
help="number of parallel training threads",
)
parser.add_argument(
"--client_sample",
type=float,
default=0.4,
metavar="MT",
help="Fraction of clients to sample",
)
parser.add_argument(
"--stoch_depth", default=0.5, type=float, help="stochastic depth probability"
)
parser.add_argument(
"--gamma", default=0.1, type=float, help="hyperparameter gamma for mixup"
)
parser.add_argument(
"--additional_experiment_name",
default="",
type=str,
help="",
)
parser.add_argument("--match_epoch", type=int, default=100)
parser.add_argument("--crt_epoch", type=int, default=300)
parser.add_argument("--times", type=int, default=1)
parser.add_argument("--LT", type=int, default=1)
parser.add_argument("--Log", type=int, default=0)
parser.add_argument("--imbalance_ratio", type=float, default=0.5)
parser.add_argument("--server_device", type=int, default=0)
args = parser.parse_args()
return args