forked from findmyway/ML_in_Action
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apriori.py
82 lines (74 loc) · 2.57 KB
/
apriori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from numpy import *
import itertools
support_dic = {}
#生成原始数据,用于测试
def loadDataSet():
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
#获取整个数据库中的一阶元素
def createC1(dataSet):
C1 = set([])
for item in dataSet:
C1 = C1.union(set(item))
return [frozenset([i]) for i in C1]
#输入数据库(dataset) 和 由第K-1层数据融合后得到的第K层数据集(Ck),
#用最小支持度(minSupport)对 Ck 过滤,得到第k层剩下的数据集合(Lk)
def getLk(dataset, Ck, minSupport):
global support_dic
Lk = {}
#计算Ck中每个元素在数据库中出现次数
for item in dataset:
for Ci in Ck:
if Ci.issubset(item):
if not Ci in Lk:
Lk[Ci] = 1
else:
Lk[Ci] += 1
#用最小支持度过滤
Lk_return = []
for Li in Lk:
support_Li = Lk[Li] / float(len(dataSet))
if support_Li >= minSupport:
Lk_return.append(Li)
support_dic[Li] = support_Li
return Lk_return
#将经过支持度过滤后的第K层数据集合(Lk)融合
#得到第k+1层原始数据Ck1
def genLk1(Lk):
Ck1 = []
for i in range(len(Lk) - 1):
for j in range(i + 1, len(Lk)):
if sorted(list(Lk[i]))[0:-1] == sorted(list(Lk[j]))[0:-1]:
Ck1.append(Lk[i] | Lk[j])
return Ck1
#遍历所有二阶及以上的频繁项集合
def genItem(freqSet, support_dic):
for i in range(1, len(freqSet)):
for freItem in freqSet[i]:
genRule(freItem)
#输入一个频繁项,根据“置信度”生成规则
#采用了递归,对规则树进行剪枝
def genRule(Item, minConf=0.7):
if len(Item) >= 2:
for element in itertools.combinations(list(Item), 1):
if support_dic[Item] / float(support_dic[Item - frozenset(element)]) >= minConf:
print str([Item - frozenset(element)]) + "----->" + str(element)
print support_dic[Item] / float(support_dic[Item - frozenset(element)])
genRule(Item - frozenset(element))
#输出结果
if __name__ == '__main__':
dataSet = loadDataSet()
result_list = []
Ck = createC1(dataSet)
#循环生成频繁项集合,直至产生空集
while True:
Lk = getLk(dataSet, Ck, 0.5)
if not Lk:
break
result_list.append(Lk)
Ck = genLk1(Lk)
if not Ck:
break
#输出频繁项及其“支持度”
print support_dic
#输出规则
genItem(result_list, support_dic)