forked from ameya005/Phys-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_train.py
407 lines (353 loc) · 15.9 KB
/
gan_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os, sys
sys.path.append(os.getcwd())
import time
import functools
import argparse
import numpy as np
import libs as lib
import libs.plot
from tensorboardX import SummaryWriter
from models.wgan import *
from models.checkers import *
import torch
import torchvision
from torch import nn
from torch import autograd
from torch import optim
from torchvision import transforms, datasets
from torch.autograd import grad
from timeit import default_timer as timer
from microstructure import MicrostructureDataset
import torch.nn.init as init
import matplotlib.pyplot as plt
import regress
from regress import *
#DATA_DIR = '/data/Bernard/DARPA_data/pytorch_data_train.npy'
#DATA_DIR = '/data/Bernard/DARPA_data/pytorch_balanced_data_train.npy'
#VAL_DIR = '/data/Bernard/DARPA_data/pytorch_data_test.npy'
DATA_DIR = '/data/Bernard/DARPA_data/pytorch_balanced_fixed_flip_data_train.npy'
VAL_DIR = '/data/Bernard/DARPA_data/pytorch_data_test.npy'
IMAGE_DATA_SET = 'microstructure'
torch.cuda.set_device(0)
if len(DATA_DIR) == 0:
raise Exception('Please specify path to data directory in gan_64x64.py!')
RESTORE_MODE = False # if True, it will load saved model from OUT_PATH and continue to train
START_ITER = 0 # starting iteration
OUTPUT_PATH = './output/Debugging/'
DIM = 128
CRITIC_ITERS = 5 # How many iterations to train the critic for
GENER_ITERS = 1
N_GPUS = 1 # Number of GPUs
BATCH_SIZE = 16 # Batch size. Must be a multiple of N_GPUS
END_ITER = 10000 # How many iterations to train for
LAMBDA = 10 # Gradient penalty lambda hyperparameter
OUTPUT_DIM = DIM * DIM * 6 # Number of pixels in each image
PJ_ITERS = 5
INV_PARAM = 'J'
def proj_loss(fake_data, real_data, model, real_label):
"""
Fake data requires to be pushed from tanh range to [0, 1]
"""
if INV_PARAM == 'JF':
p_loss = torch.norm(predict_J(model, fake_data) - predict_J(model, real_data))
return p_loss
elif INV_PARAM == 'J':
p_loss = torch.norm(predict_J(model, fake_data) - predict_J(model, real_data))
#p_loss = torch.norm(predict_J(model, fake_data) - real_label)
return p_loss
def weights_init(m):
if isinstance(m, MyConvo2d):
if m.conv.weight is not None:
if m.he_init:
init.kaiming_uniform_(m.conv.weight)
else:
init.xavier_uniform_(m.conv.weight)
if m.conv.bias is not None:
init.constant_(m.conv.bias, 0.0)
if isinstance(m, nn.Linear):
if m.weight is not None:
init.xavier_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0.0)
def load_data(path_to_folder, train):
data_transform = transforms.Compose([
# transforms.Scale(64),
# transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
if IMAGE_DATA_SET == 'microstructure':
dataset = MicrostructureDataset(path_to_folder, mode=INV_PARAM)
else:
dataset = datasets.ImageFolder(root=path_to_folder, transform=data_transform)
dataset_loader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True,
pin_memory=True)
return dataset_loader
def training_data_loader():
return load_data(DATA_DIR, train='train')
def val_data_loader():
return load_data(VAL_DIR, train='valid')
def calc_gradient_penalty(netD, real_data, fake_data):
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(BATCH_SIZE, int(real_data.nelement() / BATCH_SIZE)).contiguous()
alpha = alpha.view(BATCH_SIZE, CATEGORY, DIM, DIM) # Changed the CATEGORY from 1
alpha = alpha.to(device)
fake_data = fake_data.view(BATCH_SIZE, CATEGORY, DIM, DIM) # Changed the CATEGORY from 1
interpolates = alpha * real_data.detach() + ((1 - alpha) * fake_data.detach())
interpolates = interpolates.to(device)
interpolates.requires_grad_(True)
disc_interpolates = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
def generate_image(netG, noise=None, lv=None):
if noise is None:
noise = gen_rand_noise()
if lv is None:
# lv = torch.randn(BATCH_SIZE, 1)
lv = torch.rand(BATCH_SIZE, CATEGORY)
summ = torch.sum(lv, dim=1).unsqueeze(1)
lv = lv /summ
lv = lv.to(device)
with torch.no_grad():
noisev = noise
lv_v = lv
samples = netG(noisev, lv_v)
# samples = samples.view(BATCH_SIZE, 1, DIM, DIM)
samples = torch.argmax(samples.view(BATCH_SIZE, CATEGORY, DIM, DIM), dim=1).unsqueeze(1)
samples = (samples * 255/CATEGORY)
samples = samples.int()
return samples
def gen_rand_noise(): # z
noise = torch.randn(BATCH_SIZE, 128)
noise = noise.to(device)
return noise
def predict_J(model,x):
model.eval()
J = model(x)
return J
# Reference: https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
def train():
print('Loading surrogate model weights')
#------Load regressor as invariant checker--------#
#regressor = regress.Net()
regressor = regress.Net3()
regressor.load_state_dict(torch.load('fixed_balanced_J3_regressor.pt', map_location='cuda:0'))
regressor.eval()
regressor.to(device)
for params in regressor.parameters(): #Freeze surrogate
params.requires_grad_(False)
#-------Load training data---------------------
print("Loading the Training Data")
dataloader = training_data_loader()
dataiter = iter(dataloader)
for iteration in range(START_ITER, END_ITER):
start_time = time.time()
print("-------------------------")
print("Iter: " + str(iteration))
print("-------------------------")
start = timer()
# ---------------------TRAIN G------------------------
for p in aD.parameters():
p.requires_grad_(False) # freeze D
gen_cost = None
try:
real_data, real_label = next(dataiter)
except StopIteration:
dataiter = iter(dataloader)
real_data, real_label = dataiter.next()
if INV_PARAM == 'p1':
real_p1 = p1_fn(real_data)
elif INV_PARAM == 'p2':
real_p1 = p2_fn(real_data.to(device))
elif INV_PARAM == 'J':
real_data = real_data.unsqueeze(1) #batch, 1, 128, 128
#try to use real_label for all except when cannot for now
real_p1 = regressor(real_data.to(device))
real_p1 = real_p1.unsqueeze(1)
real_p1 = real_p1.to(device)
#real_label = real_label.to(device)
for i in range(GENER_ITERS):
print("Generator iters: " + str(i))
aG.zero_grad()
noise = gen_rand_noise() #generate random z vector (batch,128)
noise.requires_grad_(True)
#z (batch,128), real_p1 (batch), making it (batch,129)
fake_data = aG(noise, real_p1)
#fake_data = aG(noise, real_label)
gen_cost = aD(fake_data)
gen_cost = gen_cost.mean()
gen_cost = -gen_cost
gen_cost.backward()
optimizer_g.step()
end = timer()
print(f'---train G elapsed time: {end - start}')
print('Fake Min:', fake_data.min(), 'Real Min:',real_data.min())
print('Fake Max:', fake_data.max(), 'Real Max:',real_data.max())
# Projection steps: ensures invariance
pj_cost = None
for i in range(PJ_ITERS):
print('Projection iters: {}'.format(i))
aG.zero_grad()
noise = gen_rand_noise()
noise.requires_grad=True
fake_data = aG(noise, real_p1)
#fake_data = aG(noise, real_label)
pj_cost = proj_loss(fake_data.view(-1, CATEGORY, DIM, DIM), real_data.to(device), regressor.to(device), real_label)
pj_cost = pj_cost.mean()
pj_cost.backward()
optimizer_pj.step()
# ---------------------TRAIN D------------------------
for p in aD.parameters(): # reset requires_grad
p.requires_grad_(True) # they are set to False below in training G
for i in range(CRITIC_ITERS):
print("Critic iter: " + str(i))
start = timer()
aD.zero_grad()
# gen fake data and load real data
noise = gen_rand_noise()
try:
batch, real_label = next(dataiter)
except StopIteration:
dataiter = iter(dataloader)
batch, real_label = dataiter.next()
# batch = batch[0] #batch[1] contains labels
real_data = batch.to(device=device, dtype=torch.float) # TODO: modify load_data for each loading
# real_data = batch.to(device)
# real_p1.to(device)
with torch.no_grad():
noisev = noise # totally freeze G, training D
if INV_PARAM == 'p1':
real_p1 = p1_fn(real_data)
elif INV_PARAM == 'p2':
real_p1 = p2_fn(real_data)
elif INV_PARAM == 'J':
real_data = real_data.unsqueeze(1)
real_p1 = regressor(real_data.to(device))
real_p1 = real_p1.unsqueeze(1)
real_p1 = real_p1.to(device)
#label = label.to(device)
end = timer();
print(f'---gen G elapsed time: {end-start}')
start = timer()
fake_data = aG(noisev, real_p1).detach()
#fake_data = aG(noisev, label).detach()
end = timer();
print(f'---load real imgs elapsed time: {end-start}')
start = timer()
# train with real data
disc_real = aD(real_data)
disc_real = disc_real.mean()
# train with fake data
disc_fake = aD(fake_data)
disc_fake = disc_fake.mean()
# print('fake', fake_data.size())
# showMemoryUsage(0)
# train with interpolates data
gradient_penalty = calc_gradient_penalty(aD, real_data, fake_data)
# showMemoryUsage(0)
# final disc cost
disc_cost = disc_fake - disc_real + gradient_penalty
disc_cost.backward()
w_dist = disc_fake - disc_real
optimizer_d.step()
# ------------------VISUALIZATION----------
if i == CRITIC_ITERS - 1:
writer.add_scalar('data/disc_cost', disc_cost, iteration)
writer.add_scalar('data/disc_fake', disc_fake, iteration)
writer.add_scalar('data/disc_real', disc_real, iteration)
writer.add_scalar('data/gradient_pen', gradient_penalty, iteration)
# writer.add_scalar('data/p1_cost', pj_cost.cpu().detach(), iteration)
# writer.add_scalar('data/d_conv_weight_mean', [i for i in aD.children()][0].conv.weight.data.clone().mean(), iteration)
# writer.add_scalar('data/d_linear_weight_mean', [i for i in aD.children()][-1].weight.data.clone().mean(), iteration)
# writer.add_scalar('data/fake_data_mean', fake_data.mean())
# writer.add_scalar('data/real_data_mean', real_data.mean())
# if iteration %200==99:
# paramsD = aD.named_parameters()
# for name, pD in paramsD:
# writer.add_histogram("D." + name, pD.clone().data.cpu().numpy(), iteration)
# if iteration % 10 == 0:
# body_model = [i for i in aD.children()][0]
# layer1 = body_model.conv
# xyz = layer1.weight.data.clone()
# tensor = xyz.cpu()
# # TODO: change the tensor
# # tensor = torch.argmax(tensor, dim=1)
# tensors = torchvision.utils.make_grid(tensor, nrow=8, padding=1)
# writer.add_image('D/conv1', tensors, iteration)
end = timer();
print(f'---train D elapsed time: {end-start}')
# ---------------VISUALIZATION---------------------
writer.add_scalar('data/gen_cost', gen_cost, iteration)
lib.plot.plot(OUTPUT_PATH + 'time', time.time() - start_time)
lib.plot.plot(OUTPUT_PATH + 'train_disc_cost', disc_cost.cpu().data.numpy())
lib.plot.plot(OUTPUT_PATH + 'train_gen_cost', gen_cost.cpu().data.numpy())
lib.plot.plot(OUTPUT_PATH + 'wasserstein_distance', w_dist.cpu().data.numpy())
if iteration % 50 == 0:
fake_2 = torch.argmax(fake_data.view(BATCH_SIZE, CATEGORY, DIM, DIM), dim = 1).unsqueeze(1)
fake_2 = (fake_2 * 255/6)
fake_2 = fake_2.int()
fake_2 = fake_2.cpu().detach().clone()
# fake_2 = (fake_2 + 1.0)/2.0
fake_2 = torchvision.utils.make_grid(fake_2, nrow=8, padding=2)
writer.add_image('G/images', fake_2, iteration)
if iteration % 10 == 0:
val_loader = val_data_loader()
# p2_vals = []
dev_disc_costs = []
for _, images in enumerate(val_loader):
# print(images[0])
# print(images[0].shape)
# imgs = torch.FloatTensor(np.float32(images))
imgs = torch.FloatTensor(np.float32(images[0]))
# print(imgs.size())
imgs = imgs.to(device)
with torch.no_grad():
imgs_v = imgs
# Sample random p2's for analysis
rn = np.random.rand()
# if rn > 0.1 and len(p2_vals) < 64:
# p2_vals.append(p2_fn(imgs.unsqueeze(0)))
D = aD(imgs_v)
_dev_disc_cost = -D.mean().cpu().data.numpy()
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot(OUTPUT_PATH + 'dev_disc_cost.png', np.mean(dev_disc_costs))
lib.plot.flush()
# p2_vals = torch.stack(p2_vals, dim=0).squeeze(1).to(device)
# if p2_vals.size()[0] != BATCH_SIZE:
# continue
gen_images = generate_image(aG, fixed_noise)
# torchvision.utils.save_image(gen_images, OUTPUT_PATH + 'samples_{}.png'.format(iteration), nrow=8,
# padding=2)
grid_images = torchvision.utils.make_grid(gen_images, nrow=8, padding=2)
writer.add_image('images', grid_images, iteration)
# ----------------------Save model----------------------
torch.save(aG, OUTPUT_PATH + "generator.pt")
torch.save(aD, OUTPUT_PATH + "discriminator.pt")
lib.plot.tick()
if __name__ == '__main__':
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
fixed_noise = gen_rand_noise()
if not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
if RESTORE_MODE:
aG = torch.load(OUTPUT_PATH + "generator.pt")
aD = torch.load(OUTPUT_PATH + "discriminator.pt")
else:
aG = GoodGenerator(dim=128, output_dim = DIM * DIM * 6, ctrl_dim=CATEGORY)
aD = GoodDiscriminator(dim=128)
#initilize gen and disc weights
aG.apply(weights_init)
aD.apply(weights_init)
LR = 1e-5
optimizer_g = torch.optim.Adam(aG.parameters(), lr=LR, betas=(0, 0.9)) # Gen loss
optimizer_d = torch.optim.Adam(aD.parameters(), lr=LR, betas=(0, 0.9)) # Disc loss
optimizer_pj = torch.optim.Adam(aG.parameters(), lr=LR, betas=(0, 0.9)) # Projection Loss
aG = aG.to(device)
aD = aD.to(device)
writer = SummaryWriter()
train()