-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimply_ddqn.py
238 lines (211 loc) · 9.28 KB
/
simply_ddqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from builtins import * # NOQA
from future import standard_library
standard_library.install_aliases() # NOQA
import argparse
import os
import sys
import chainer
from chainer import optimizers
import gym
from gym import spaces
import gym.wrappers
import numpy as np
import cupy as cp
import chainerrl
from chainerrl.agents import DQN, DoubleDQN
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import links
from chainerrl import misc
from chainerrl import q_functions
from chainerrl import replay_buffer
import norms
class ConvNet(chainer.Chain):
def __init__(self):
super().__init__()
with self.init_scope():
self.l1 = L.Convolution2D(3, 32, ksize =8, stride = 4)
self.l2 = L.Convolution2D(32, 64, ksize =4 , stride = 2)
self.l3 = L.Convolution2D(64, 64, ksize =3 , stride = 1)
self.fc1 = L.Linear(None, 512)
self.fc2 = L.Linear(512, 5)
def __call__(self, x, test=False):
h = self.l1(x)
h = F.relu(h)
h = self.l2(h)
h = F.relu(h)
h = F.dropout(h, ratio = 0.5)
h = self.l3(h)
h = F.relu(h)
h = F.relu(self.fc1(h))
h = F.relu(self.fc2(h))
return h
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--env', type=str, default='BipedalWalkerHardcore-v2') #MountainCarContinuous-v0, BipedalWalker-v2, BipedalWalkerHardcore-v2,CarRacing-v0
parser.add_argument('--seed', type=int, default=5,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--final-exploration-steps',
type=int, default=10 ** 4)
parser.add_argument('--start-epsilon', type=float, default=1.0)
parser.add_argument('--end-epsilon', type=float, default=0.1)
parser.add_argument('--load', type=str, default=None) #DDQNBipedalWalker-v2_Run2
parser.add_argument('--n_episodes', type=int, default=7000)
parser.add_argument('--prioritized-replay', action='store_true')
parser.add_argument('--episodic-replay', type=bool, default=False)
parser.add_argument('--replay-start-size', type=int, default=1000)
parser.add_argument('--target-update-interval', type=int, default=500)#500
parser.add_argument('--target-update-method', type=str, default='hard')
parser.add_argument('--soft-update-tau', type=float, default=1e-2)
parser.add_argument('--update-interval', type=int, default=1)
parser.add_argument('--n-hidden-channels', type=int, default=200)#128
parser.add_argument('--n-hidden-layers', type=int, default=3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--lr', type=float, default=1e-4) #1e-4
parser.add_argument('--minibatch-size', type=int, default=64)
parser.add_argument('--render', type=bool, default=True)
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)#1e-2
parser.add_argument('--run_id', type=str, default='_Run1')
args = parser.parse_args()
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
args.outdir = experiments.prepare_output_dir(
args, args.outdir, argv=sys.argv)
print('Output files are saved in {}'.format(args.outdir))
def clip_action_filter(a):
return cp.clip(a, action_space.low, action_space.high)
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = gym.wrappers.Monitor(env, args.outdir)
if isinstance(env.action_space, spaces.Box):
misc.env_modifiers.make_action_filtered(env, clip_action_filter)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
# if args.render:
# env = chainerrl.wrappers.Render(env)
return env
env = make_env(test=False)
eval_env = make_env(test=True)
timestep_limit = env.spec.tags.get(
'wrapper_config.TimeLimit.max_episode_steps')
obs_space = env.observation_space
obs_size = obs_space.low.size
action_space = env.action_space
if isinstance(action_space, spaces.Box):
action_size = action_space.low.size
# Use NAF to apply DQN to continuous action spaces
# q_func = q_functions.FCQuadraticStateQFunction(
# obs_size, action_size,
# n_hidden_channels=args.n_hidden_channels,
# n_hidden_layers=args.n_hidden_layers,
# action_space=action_space)
q_func = q_functions.FCBNQuadraticStateQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
action_space=action_space)
# q_func = q_functions.FCLSTMQuadraticStateQFunction(
# obs_size, action_size,
# n_hidden_channels=args.n_hidden_channels,
# n_hidden_layers=args.n_hidden_layers,
# action_space=action_space)
# Use the Ornstein-Uhlenbeck process for exploration
ou_sigma = (action_space.high - action_space.low) * 0.0015
explorer = explorers.AdditiveOU(sigma=ou_sigma)
#explorer = norms.DecayAdditiveOU(sigma=0.5, end_sigma=ou_sigma, decay_steps=1e4)
else:
n_actions = action_space.n
q_func = q_functions.FCStateQFunctionWithDiscreteAction(
obs_size, n_actions,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers)
# Use epsilon-greedy for exploration
explorer = explorers.LinearDecayEpsilonGreedy(
args.start_epsilon, args.end_epsilon, args.final_exploration_steps,
action_space.sample)
q_func.to_gpu(args.gpu)
opt = optimizers.Adam(args.lr)
opt.setup(q_func)
rbuf_capacity = 5 * 10 ** 5
if args.episodic_replay:
if args.minibatch_size is None:
args.minibatch_size = 4
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) \
// args.update_interval
rbuf = replay_buffer.PrioritizedEpisodicReplayBuffer(
rbuf_capacity, betasteps=betasteps)
else:
rbuf = replay_buffer.EpisodicReplayBuffer(rbuf_capacity)
else:
if args.minibatch_size is None:
args.minibatch_size = 32
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) \
// args.update_interval
rbuf = replay_buffer.PrioritizedReplayBuffer(
rbuf_capacity, betasteps=betasteps)
else:
rbuf = replay_buffer.ReplayBuffer(rbuf_capacity)
agent = DoubleDQN(q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma,
explorer=explorer, replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
minibatch_size=args.minibatch_size,
target_update_method=args.target_update_method,
soft_update_tau=args.soft_update_tau,
episodic_update=args.episodic_replay, episodic_update_len=16)
if args.load is not None:
agent.load(args.load)
print('Environment Time Step Limit', timestep_limit)
for i in range(1, args.n_episodes + 1):
obs = env.reset()
reward = 0
done = False
R = 0
t = 0
while not done and t < timestep_limit:
#env.render()
action = agent.act_and_train(obs, reward)
obs, reward, done, _ = env.step(action)
R += reward
t += 1
if i % 10 == 0:
print('episode:', i,
'R:', R,
'statistics:', agent.get_statistics())
agent.stop_episode_and_train(obs, reward, done)
agent.save('DDQN' + args.env + args.run_id)
for i in range(10):
obs = env.reset()
done = False
R = 0
t = 0
while not done and t < timestep_limit:
env.render()
action = agent.act(obs)
obs, r, done, _ = env.step(action)
R += r
t += 1
print('test episode:', i, 'R:', R)
agent.stop_episode()
print("Finished")
if __name__ == '__main__':
main()