Skip to content

Latest commit

 

History

History
8 lines (6 loc) · 1015 Bytes

README.md

File metadata and controls

8 lines (6 loc) · 1015 Bytes

This is a collection of PyTorch snippets that have helped me (and others) significantly with doing ML research.

  • Minimal CIFAR-10 A very simple training script to get 94% accuracy with just ~150 lines of code, for an easy but strong baseline.
  • FastMNIST: a drop-in replacement for the standard MNIST dataset which speeds up training on the GPU (by 2x !) by avoiding unnecessary preprocessing that pegs the cpu at 100% for small models.
  • Subset of ImageNet: it's remarkably difficult to train on a subset of the ImageNet classes with the default TorchVision datasets. This snippet makes the minimal changes to them to make it very easy.
  • ImageNet dogs vs not dogs: a standardized setup for the ImageNet Dogs vs Not Dogs out-of-distribution detection task.

In a separate repository, Slurm for ML, I explain how I use slurm job arrays without pain using a simple 1 file shell script.