-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmpii_train.py
309 lines (245 loc) · 11.4 KB
/
mpii_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import sys
import time
import logging
import argparse
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import KFold
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from config import data_config
from utils.helpers import angular_error, gaze_to_3d, get_model, get_dataloader
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(message)s',
# handlers=[
# logging.FileHandler("training.log"),
# logging.StreamHandler(sys.stdout) # Display logs in terminal
# ]
)
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description="Gaze estimation training")
parser.add_argument("--data", type=str, default="data", help="Directory path for gaze images.")
parser.add_argument("--dataset", type=str, default="gaze360", help="Dataset name, available `gaze360`, `mpiigaze`.")
parser.add_argument("--output", type=str, default="output/", help="Path of output models.")
parser.add_argument("--checkpoint", type=str, default="", help="Path to checkpoint for resuming training.")
parser.add_argument("--num-epochs", type=int, default=100, help="Maximum number of training epochs.")
parser.add_argument("--batch-size", type=int, default=64, help="Batch size.")
parser.add_argument(
"--arch",
type=str,
default="resnet18",
help="Network architecture, currently available: resnet18/34/50, mobilenetv2, mobileone_s0-s4."
)
parser.add_argument("--alpha", type=float, default=1, help="Regression loss coefficient.")
parser.add_argument("--lr", type=float, default=0.00001, help="Base learning rate.")
parser.add_argument("--num-workers", type=int, default=8, help="Number of workers for data loading.")
args = parser.parse_args()
# Override default values based on selected dataset
if args.dataset in data_config:
dataset_config = data_config[args.dataset]
args.bins = dataset_config["bins"]
args.binwidth = dataset_config["binwidth"]
args.angle = dataset_config["angle"]
else:
raise ValueError(f"Unknown dataset: {args.dataset}. Available options: {list(data_config.keys())}")
return args
def initialize_model(params, device):
"""
Initialize the gaze estimation model, optimizer, and optionally load a checkpoint.
Args:
params (argparse.Namespace): Parsed command-line arguments.
device (torch.device): Device to load the model and optimizer onto.
Returns:
Tuple[nn.Module, torch.optim.Optimizer, int]: Initialized model, optimizer, and the starting epoch.
"""
model = get_model(params.arch, params.bins)
optimizer = torch.optim.Adam(model.parameters(), lr=params.lr)
start_epoch = 0
if params.checkpoint:
checkpoint = torch.load(params.checkpoint, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Move optimizer states to device
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
start_epoch = checkpoint['epoch']
logging.info(f'Resumed training from {params.checkpoint}, starting at epoch {start_epoch + 1}')
return model.to(device), optimizer, start_epoch
def train_one_epoch(
params,
model,
cls_criterion,
reg_criterion,
optimizer,
data_loader,
idx_tensor,
device,
epoch
):
"""
Train the model for one epoch.
Args:
params (argparse.Namespace): Parsed command-line arguments.
model (nn.Module): The gaze estimation model.
cls_criterion (nn.Module): Loss function for classification.
reg_criterion (nn.Module): Loss function for regression.
optimizer (torch.optim.Optimizer): Optimizer for the model.
data_loader (DataLoader): DataLoader for the training dataset.
idx_tensor (torch.Tensor): Tensor representing bin indices.
device (torch.device): Device to perform training on.
epoch (int): The current epoch number.
Returns:
Tuple[float, float]: Average losses for pitch and yaw.
"""
model.train()
sum_loss_pitch, sum_loss_yaw = 0, 0
for idx, (images, labels_gaze, regression_labels_gaze, _) in enumerate(data_loader):
images = images.to(device)
# Binned labels
label_pitch = labels_gaze[:, 0].to(device)
label_yaw = labels_gaze[:, 1].to(device)
# Regression labels
label_pitch_regression = regression_labels_gaze[:, 0].to(device)
label_yaw_regression = regression_labels_gaze[:, 1].to(device)
# Inference
pitch, yaw = model(images)
# Cross Entropy Loss
loss_pitch = cls_criterion(pitch, label_pitch)
loss_yaw = cls_criterion(yaw, label_yaw)
# Mapping from binned (0 to 90) to angels (-180 to 180)
pitch_predicted = torch.sum(F.softmax(pitch, dim=1) * idx_tensor, 1) * params.binwidth - params.angle
yaw_predicted = torch.sum(F.softmax(yaw, dim=1) * idx_tensor, 1) * params.binwidth - params.angle
# Mean Squared Error Loss
loss_regression_pitch = reg_criterion(pitch_predicted, label_pitch_regression)
loss_regression_yaw = reg_criterion(yaw_predicted, label_yaw_regression)
# Calculate loss with regression alpha
loss_pitch += params.alpha * loss_regression_pitch
loss_yaw += params.alpha * loss_regression_yaw
# Total loss for pitch and yaw
loss = loss_pitch + loss_yaw
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss_pitch += loss_pitch.item()
sum_loss_yaw += loss_yaw.item()
if (idx + 1) % 100 == 0:
logging.info(
f'Epoch [{epoch + 1}/{params.num_epochs}], Iter [{idx + 1}/{len(data_loader)}] '
f'Losses: Gaze Yaw {sum_loss_yaw / (idx + 1):.4f}, Gaze Pitch {sum_loss_pitch / (idx + 1):.4f}'
)
avg_loss_pitch, avg_loss_yaw = sum_loss_pitch / len(data_loader), sum_loss_yaw / len(data_loader)
return avg_loss_pitch, avg_loss_yaw
@torch.no_grad()
def evaluate(params, model, data_loader, idx_tensor, device):
"""
Evaluate the model on the test dataset.
Args:
params (argparse.Namespace): Parsed command-line arguments.
model (nn.Module): The gaze estimation model.
data_loader (torch.utils.data.DataLoader): DataLoader for the test dataset.
idx_tensor (torch.Tensor): Tensor representing bin indices.
device (torch.device): Device to perform evaluation on.
"""
model.eval()
average_error = 0
total_samples = 0
for images, labels_gaze, regression_labels_gaze, _ in tqdm(data_loader, total=len(data_loader)):
total_samples += regression_labels_gaze.size(0)
images = images.to(device)
# Regression labels
label_pitch = np.radians(regression_labels_gaze[:, 0], dtype=np.float32)
label_yaw = np.radians(regression_labels_gaze[:, 1], dtype=np.float32)
# Inference
pitch, yaw = model(images)
# Regression predictions
pitch_predicted = F.softmax(pitch, dim=1)
yaw_predicted = F.softmax(yaw, dim=1)
# Mapping from binned (0 to 90) to angles (-180 to 180) or (0 to 28) to angles (-42, 42)
pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * params.binwidth - params.angle
yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * params.binwidth - params.angle
pitch_predicted = np.radians(pitch_predicted.cpu())
yaw_predicted = np.radians(yaw_predicted.cpu())
for p, y, pl, yl in zip(pitch_predicted, yaw_predicted, label_pitch, label_yaw):
average_error += angular_error(gaze_to_3d([p, y]), gaze_to_3d([pl, yl]))
logging.info(
f"Dataset: {params.dataset} | "
f"Total Number of Samples: {total_samples} | "
f"Mean Angular Error: {average_error/total_samples}"
)
return average_error/total_samples
def main():
params = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_name = f'{params.dataset}_{params.arch}_{int(time.time())}'
output = os.path.join(params.output, summary_name)
if not os.path.exists(output):
os.makedirs(output)
torch.backends.cudnn.benchmark = True
model, optimizer, start_epoch = initialize_model(params, device)
data_loader = get_dataloader(params, mode="train")
dataset = data_loader.dataset
cls_criterion = nn.CrossEntropyLoss()
reg_criterion = nn.MSELoss()
idx_tensor = torch.arange(params.bins, device=device, dtype=torch.float32)
best_avg_error = float('inf')
k = 5 # number of folds
kfold = KFold(n_splits=k, shuffle=True, random_state=42)
fold_errors = []
# K-Fold Cross Validation
for fold, (train_idx, val_idx) in enumerate(kfold.split(dataset)):
print(f"Fold {fold+1}/{k}")
# Split data into training and validation sets for this fold
train_subset = torch.utils.data.Subset(dataset, train_idx)
val_subset = torch.utils.data.Subset(dataset, val_idx)
# Create data loaders for the subsets
train_loader = torch.utils.data.DataLoader(train_subset, batch_size=params.batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_subset, batch_size=params.batch_size, shuffle=False)
# Reset model and optimizer for each fold
model, optimizer, start_epoch = initialize_model(params, device)
for epoch in range(start_epoch, params.num_epochs):
avg_loss_pitch, avg_loss_yaw = train_one_epoch(
params,
model,
cls_criterion,
reg_criterion,
optimizer,
train_loader,
idx_tensor,
device,
epoch
)
logging.info(
f'Epoch [{epoch + 1}/{params.num_epochs}] '
f'Losses: Gaze Yaw {avg_loss_yaw:.4f}, Gaze Pitch {avg_loss_pitch:.4f}'
)
# checkpoint_path = os.path.join(output, f"checkpoint_fold_{fold+1}.ckpt")
# torch.save({
# 'epoch': epoch + 1,
# 'model_state_dict': model.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
# 'loss': avg_loss_pitch + avg_loss_yaw,
# }, checkpoint_path)
# logging.info(f'Checkpoint saved at {checkpoint_path}')
# Evaluate on validation set for the current fold
avg_error = evaluate(params, model, val_loader, idx_tensor, device) # Returns average error
fold_errors.append(avg_error)
logging.info(f'Fold {fold+1} average error: {avg_error:.4f}')
# Save the best model for the fold
if avg_error < best_avg_error:
best_avg_error = avg_error
best_model_path = os.path.join(output, f'best_model.pt')
torch.save(model.state_dict(), best_model_path)
logging.info(f'Best model saved for fold {fold+1} at {best_model_path}')
# Calculate average error across all folds
avg_error_overall = np.mean(fold_errors)
logging.info(f'Average error across {k} folds: {avg_error_overall:.4f}')
if __name__ == '__main__':
main()