-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathKfold_trainer.py
152 lines (110 loc) · 5.46 KB
/
Kfold_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from model import Transformer
from early_stop_tool import EarlyStopping
from data_loader import data_generator
from args import Config, Path
def set_random_seed(seed=0):
np.random.seed(seed)
torch.manual_seed(seed) # CPU
torch.cuda.manual_seed(seed) # GPU
def test(model, test_loader, config):
criterion = nn.CrossEntropyLoss()
model.eval()
pred = []
label = []
test_loss = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data = data.to(config.device)
target = target.to(config.device)
data, target = Variable(data), Variable(target)
output = model(data)
test_loss += criterion(output, target.long()).item()
pred.extend(np.argmax(output.data.cpu().numpy(), axis=1))
label.extend(target.data.cpu().numpy())
accuracy = accuracy_score(label, pred, normalize=True, sample_weight=None)
return accuracy, test_loss
def train(save_all_checkpoint=False):
config = Config()
path = Path()
dataset, labels, val_loader = data_generator(path_labels=path.path_labels, path_dataset=path.path_TF)
kf = StratifiedKFold(n_splits=config.num_fold, shuffle=True, random_state=0)
for fold, (train_idx, test_idx) in enumerate(kf.split(dataset, labels)):
print('\n', '-' * 15, '>', f'Fold {fold}', '<', '-' * 15)
if not os.path.exists('./Kfold_models/fold{}'.format(fold)):
os.makedirs('./Kfold_models/fold{}'.format(fold))
X_train, X_test = dataset[train_idx], dataset[test_idx]
y_train, y_test = labels[train_idx], labels[test_idx]
train_set = TensorDataset(X_train, y_train)
test_set = TensorDataset(X_test, y_test)
train_loader = DataLoader(dataset=train_set, batch_size=config.batch_size, shuffle=False)
test_loader = DataLoader(dataset=test_set, batch_size=config.batch_size, shuffle=False)
model = Transformer(config)
model = model.to(config.device)
criterion = nn.CrossEntropyLoss()
# AdamW optimizer
optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate, weight_decay=0.01)
# apply early_stop. If you want to view the full training process, set the save_all_checkpoint True
early_stopping = EarlyStopping(patience=20, verbose=True, save_all_checkpoint=save_all_checkpoint)
# evaluating indicator
train_ACC = []
train_LOSS = []
test_ACC = []
test_LOSS = []
val_ACC = []
val_LOSS = []
for epoch in range(config.num_epochs):
running_loss = 0.0
correct = 0
model.train()
loop = tqdm(enumerate(train_loader), total=len(train_loader))
for batch_idx, (data, target) in loop:
data = data.to(config.device)
target = target.to(config.device)
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target.long())
loss.backward()
optimizer.step()
running_loss += loss.item()
train_acc_batch = np.sum(np.argmax(np.array(output.data.cpu()), axis=1) == np.array(target.data.cpu())) / (target.shape[0])
loop.set_postfix(train_acc=train_acc_batch, loss=loss.item())
correct += np.sum(np.argmax(np.array(output.data.cpu()), axis=1) == np.array(target.data.cpu()))
train_acc = correct / len(train_loader.dataset)
test_acc, test_loss = test(model, test_loader, config)
val_acc, val_loss = test(model, val_loader, config)
print('Epoch: ', epoch,
'| train loss: %.4f' % running_loss, '| train acc: %.4f' % train_acc,
'| val acc: %.4f' % val_acc, '| val loss: %.4f' % val_loss,
'| test acc: %.4f' % test_acc, '| test loss: %.4f' % test_loss)
train_ACC.append(train_acc)
train_LOSS.append(running_loss)
test_ACC.append(test_acc)
test_LOSS.append(test_loss)
val_ACC.append(val_acc)
val_LOSS.append(val_loss)
# Check whether to continue training. If save_all_checkpoint=False, the model name will be ‘model.pkl'
early_stopping(val_acc, model, path='./Kfold_models/fold{}/model_{}_epoch{}.pkl'.format(fold, fold, epoch))
if early_stopping.early_stop:
print("Early stopping at epoch ", epoch)
break
np.save('./Kfold_models/fold{}/train_LOSS.npy'.format(fold), np.array(train_LOSS))
np.save('./Kfold_models/fold{}/train_ACC.npy'.format(fold), np.array(train_ACC))
np.save('./Kfold_models/fold{}/test_LOSS.npy'.format(fold), np.array(test_LOSS))
np.save('./Kfold_models/fold{}/test_ACC.npy'.format(fold), np.array(test_ACC))
np.save('./Kfold_models/fold{}/val_LOSS.npy'.format(fold), np.array(val_LOSS))
np.save('./Kfold_models/fold{}/val_ACC.npy'.format(fold), np.array(val_ACC))
del model
if __name__ == '__main__':
set_random_seed(0)
train(save_all_checkpoint=False)